{"dp_type": "Project", "free_text": "Diatoms"}
[{"awards": "1939146 Siddoway, Christine; 1939139 Scherer, Reed", "bounds_geometry": "POLYGON((-120 -66,-117.5 -66,-115 -66,-112.5 -66,-110 -66,-107.5 -66,-105 -66,-102.5 -66,-100 -66,-97.5 -66,-95 -66,-95 -67.1,-95 -68.2,-95 -69.3,-95 -70.4,-95 -71.5,-95 -72.6,-95 -73.7,-95 -74.8,-95 -75.9,-95 -77,-97.5 -77,-100 -77,-102.5 -77,-105 -77,-107.5 -77,-110 -77,-112.5 -77,-115 -77,-117.5 -77,-120 -77,-120 -75.9,-120 -74.8,-120 -73.7,-120 -72.6,-120 -71.5,-120 -70.4,-120 -69.3,-120 -68.2,-120 -67.1,-120 -66))", "dataset_titles": "Pliocene diatom abundance, IODP 379-U1532; Population morphometrics of the Southern Ocean diatom Fragilariopsis kerguelensis related to Sea Surface Temperature; U-Pb zircon and apatite fission track dates for IRD (ice-rafted cobbles and mineral grains) from IODP379 drill sites", "datasets": [{"dataset_uid": "601828", "doi": null, "keywords": "Amundsen Sea; Antarctica; Cryosphere; Geochronology; Marie Byrd Land; Subglacial Bedrock; Thermochronology", "people": "Siddoway, Christine", "repository": "USAP-DC", "science_program": null, "title": "U-Pb zircon and apatite fission track dates for IRD (ice-rafted cobbles and mineral grains) from IODP379 drill sites", "url": "https://www.usap-dc.org/view/dataset/601828"}, {"dataset_uid": "601804", "doi": "10.15784/601804", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Oceanography; Sabrina Coast; Sea Surface Temperature; Southern Ocean", "people": "Ruggiero, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Population morphometrics of the Southern Ocean diatom Fragilariopsis kerguelensis related to Sea Surface Temperature", "url": "https://www.usap-dc.org/view/dataset/601804"}, {"dataset_uid": "601769", "doi": null, "keywords": "Antarctica; Biogenic Silica; Diatom", "people": "Scherer, Reed Paul; Furlong, Heather", "repository": "USAP-DC", "science_program": null, "title": "Pliocene diatom abundance, IODP 379-U1532", "url": "https://www.usap-dc.org/view/dataset/601769"}], "date_created": "Tue, 20 Feb 2024 00:00:00 GMT", "description": "Part I, Non-technical Abstract \u003cbr/\u003eConcerns that the West Antarctic Ice Sheet (WAIS) might be susceptible to releasing its ice as giant icebergs into the Southern Ocean due to a warming climate, raising global sea level, were first expressed more than 40 years ago. To best-assess this threat, scientists need to know whether such events occurred in the geologically recent past, during warm intervals of past glacial-interglacial cycles. Ocean drilling near the most vulnerable sector of the WAIS, in 2019, yielded seafloor geologic records demonstrating times when icebergs dropped large volumes of sands and pebbles, called ice-rafted detritus (IRD) in deep water of the Amundsen Sea. Occurring together with IRD that was eroded from bedrock beneath the ice sheets, there are abundant microfossils of diatoms (algal plankton), which indicate high biological productivity in the open ocean. The new sediment cores provide a complete, uninterrupted record of a time of dramatic fluctuations of ice sheet extent that occurred over the last 3 million years. Therefore, they provide the means to obtain clear answers to the question whether ice sheet collapse occurred in the past and offering clues to its potential future. This project will investigate sediment intervals where IRD coincides with evidence of high diatom production, to test whether these two criteria indicate rapid ice sheet collapse. Geochemical analysis of IRD pebbles will help trace the source of the icebergs to likely on-land sites. By analyzing conditions of high diatom and IRD accumulation in deep ocean sediment, where local coastal influences can be avoided, we will assess oceanographic and climatic conditions associated with past ice sheet collapse events. Diatoms provide powerful evidence of temperature and ocean productivity changes in the past, that, when linked to time, can translate into rates of ice sheet drawdown. These results will provide critical data for designing, constraining and testing the next suite computer models that can determine the likelihood and timing of future ice sheet collapse in a warming world. The project will include training of undergraduate and graduate students from diverse backgrounds, and the public will be introduced to Antarctic science and engaged through several different outreach efforts.\u003cbr/\u003e\u003cbr/\u003ePart 2, Technical Abstract\u003cbr/\u003e\u003cbr/\u003eNew drillcores from the Amundsen Sea, Antarctica (IODP Expedition 379) contain a continuous record of oceanographic changes and iceberg rafted debris (IRD) spanning the last 5 million years. This study aims to identify the signature of retreat/collapse of the West Antarctic Ice Sheet (WAIS) in these continental margin, deep-sea sediments by quantitatively analyzing, in detail, diatom and IRD records across glacial-interglacial lithostratigraphic transitions to establish the timing and frequency of Late Pliocene and Pleistocene WAIS collapse events. The investigators will secure age constraints and diagnostic observations of marine paleoenvironmental conditions for selected interglacial intervals of cores from sites U1532 and U1533, using high resolution micropaleontology of diatom assemblages coupled with microstratigraphic analysis of IRD depositional events, while petrography, geochronology and thermochronology of iceberg rafted clasts will provide evidence of iceberg sources and pathways. Depositional paleotemperatures will be assessed via a new paleotemperature proxy based on quantitative assessment of morphologic changes in the dominant Southern Ocean diatom Fragilariopsis kerguelensis. Their results will contribute to parameterization of new ice sheet models that seek to reconstruct and forecast West Antarctic Ice Sheet behavior. This project will directly contribute to undergraduate education at an undergraduate-only college and at a public university that serves a demographic typified by first generation university students and underrepresented groups. Spanning geology, geochemistry, sedimentology, paleontology and paleoceanography, the proposed work will allow undergraduate students to develop diverse skills through hands-on research within a collaborative team that is dedicated to societally relevant research. The two graduate students will conduct original research and work alongside/mentor undergraduates, making for a well-rounded research experience that prepares them for success in future academic or employment sectors. The discoveries that come from this deep-sea record from West Antarctica will be communicated by students and investigators at national and international conferences and an array of public science outreach events.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -95.0, "geometry": "POINT(-107.5 -71.5)", "instruments": null, "is_usap_dc": true, "keywords": "ICEBERGS; SEA SURFACE TEMPERATURE; Amundsen Sea; MICROFOSSILS", "locations": "Amundsen Sea", "north": -66.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY; PHANEROZOIC \u003e CENOZOIC \u003e NEOGENE \u003e PLIOCENE", "persons": "Scherer, Reed Paul; Siddoway, Christine", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Collaborative Research: Testing the Linchpin of WAIS Collapse with Diatoms and IRD in Pleistocene and Late Pliocene Strata of the Resolution Drift, Amundsen Sea, Antarctica", "uid": "p0010451", "west": -120.0}, {"awards": "2224760 Gooseff, Michael", "bounds_geometry": "POINT(162.87 -77)", "dataset_titles": "EDI Data Portal: McMurdo Dry Valleys LTER", "datasets": [{"dataset_uid": "200379", "doi": "", "keywords": null, "people": null, "repository": "Environmental Data Initiative (EDI)", "science_program": null, "title": "EDI Data Portal: McMurdo Dry Valleys LTER", "url": "https://portal.edirepository.org/nis/browseServlet?searchValue=MCM"}], "date_created": "Tue, 14 Nov 2023 00:00:00 GMT", "description": "In this iteration of the McMurdo LTER project (MCM6), the project team will test ecological connectivity and stability theory in a system subject to strong physical drivers (geological legacies, extreme seasonality, and contemporary climate change) and driven by microbial organisms. Since microorganisms regulate most of the world\u0027s critical biogeochemical functions, these insights will be relevant far beyond polar ecosystems and will inform understanding and expectations of how natural and managed ecosystems respond to ongoing anthropogenic global change. MCM6 builds on previous foundational research, both in Antarctica and within the LTER network, to consider the temporal aspects of connectivity and how it relates to ecosystem stability. The project will examine how changes in the temporal variability of ecological connectivity interact with the legacies of the existing landscape that have defined habitats and biogeochemical cycling for millennia. The project team hypothesizes that the structure and functioning of the MDV ecosystem is dependent upon legacies and the contemporary frequency, duration, and magnitude of ecological connectivity. This hypothesis will be tested with new and continuing monitoring, experiments, and analyses of long-term datasets to examine: 1) the stability of these ecosystems as reflected by sentinel taxa, 2) the relationship between ecological legacies and ecosystem resilience, 3) the importance of material carryover during periods of low connectivity to maintaining biological activity and community stability, and 4) how changes in disturbance dynamics disrupt ecological cycles through the polar night. Tests of these hypotheses will occur in field and modeling activities using new and long-term datasets already collected. New datasets resulting from field activities will be made freely available via widely-known online databases (MCM LTER and EDI). The project team has also developed six Antarctic Core Ideas that encompass themes from data literacy to polar food webs and form a consistent thread across the education and outreach activities. Building on past success, collaborations will be established with teachers and artists embedded within the science teams, who will work to develop educational modules with science content informed by direct experience and artistic expression. Undergraduate mentoring efforts will incorporate computational methods through a new data-intensive scientific training program for MCM REU students. The project will also establish an Antarctic Research Experience for Community College Students at CU Boulder, to provide an immersive educational and research experience for students from diverse backgrounds in community colleges. MCM LTER will continue its mission of training and mentoring students, postdocs, and early career scientists as the next generation of leaders in polar ecosystem science and stewardship. Historically underrepresented participation will be expanded at each level of the project. To aid in these efforts, the project has established Education \u0026 Outreach and Diversity, Equity, and Inclusion committees to lead, coordinate, support, and integrate these activities through all aspects of MCM6.", "east": 162.87, "geometry": "POINT(162.87 -77)", "instruments": null, "is_usap_dc": true, "keywords": "COMMUNITY DYNAMICS; ABLATION ZONES/ACCUMULATION ZONES; SOIL TEMPERATURE; DIATOMS; FIELD INVESTIGATION; PERMANENT LAND SITES; BUOYS; GROUND-BASED OBSERVATIONS; SEDIMENTS; SNOW WATER EQUIVALENT; SPECIES/POPULATION INTERACTIONS; WATER-BASED PLATFORMS; FIXED OBSERVATION STATIONS; VIRUSES; PHYTOPLANKTON; ACTIVE LAYER; FIELD SURVEYS; RADIO TRANSMITTERS; DATA COLLECTIONS; ECOLOGICAL DYNAMICS; LANDSCAPE; GROUND WATER; SNOW/ICE CHEMISTRY; LAND-BASED PLATFORMS; ANIMALS/INVERTEBRATES; ECOSYSTEM FUNCTIONS; HUMIDITY; GEOCHEMISTRY; SURFACE WINDS; RIVERS/STREAM; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE; SNOW; LAND RECORDS; ATMOSPHERIC PRESSURE; SURFACE TEMPERATURE; ATMOSPHERIC RADIATION; BACTERIA/ARCHAEA; AIR TEMPERATURE; GLACIERS; SNOW/ICE TEMPERATURE; SOIL CHEMISTRY; METEOROLOGICAL STATIONS; WATER QUALITY/WATER CHEMISTRY; TERRESTRIAL ECOSYSTEMS; MOORED; PROTISTS; STREAMFLOW STATION; Dry Valleys; LAKE/POND; LAKE ICE; SNOW DEPTH; AQUATIC ECOSYSTEMS; SNOW DENSITY; FIELD SITES", "locations": "Dry Valleys", "north": -77.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Gooseff, Michael N.; Adams, Byron; Barrett, John; Diaz, Melisa A.; Doran, Peter; Dugan, Hilary A.; Mackey, Tyler; Morgan-Kiss, Rachael; Salvatore, Mark; Takacs-Vesbach, Cristina; Zeglin, Lydia H.", "platforms": "LAND-BASED PLATFORMS; LAND-BASED PLATFORMS \u003e FIELD SITES; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e DATA COLLECTIONS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e RADIO TRANSMITTERS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e METEOROLOGICAL STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e STREAMFLOW STATION; WATER-BASED PLATFORMS; WATER-BASED PLATFORMS \u003e BUOYS; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED \u003e BUOYS", "repo": "Environmental Data Initiative (EDI)", "repositories": "Environmental Data Initiative (EDI)", "science_programs": "LTER", "south": -77.0, "title": "LTER: MCM6 - The Roles of Legacy and Ecological Connectivity in a Polar Desert Ecosystem", "uid": "p0010440", "west": 162.87}, {"awards": "2149070 Hawco, Nicholas", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 13 Mar 2023 00:00:00 GMT", "description": "This proposal represents collaborative research to explore manganese (Mn) limitation in Antarctic diatoms by two early career investigators. Diatoms are central players in the Southern Ocean carbon cycle, where the micronutrient chemistry is fundamentally different from other oceans. The Southern Ocean is characterized by widespread low Mn, coupled with high zinc (Zn). High Zn levels are potentially toxic to diatoms as Zn can competitively inhibit Mn uptake and metabolism, compromising the ability of building critical cellular components, thus impacting the biological pump. Using culture experiments with a matrix of micronutrient treatments (Mn, Zn, Fe) and irradiances, and using physiological and transcriptomic approaches, along with biochemical principles, the Principal Investigators will address the central hypothesis (that diatoms from the Southern Ocean possess unique physiological mechanisms to adapt to low Mn/high Zn) by quantifying rates of uptake and transporter binding constants. The transcriptomics approach will help to identify candidate genes that may provide Antarctic diatoms physiological mechanisms in low Mn/high Zn environment. The project does not require fieldwork but instead would make use of culture experiments with 4 diatom species (3 Antarctic, and 1 temperate). The proposed approach will also enable the goal of developing biomarker(s) for assessing Mn stress or Zn toxicity and results from the physiological experiments will help parameterize models of micronutrient limitation in the Southern Ocean.\r\n\r\nThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Southern Ocean; BIOGEOCHEMICAL CYCLES; TRACE ELEMENTS; DIATOMS; Iron; Phytoplankton", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Hawco, Nicholas; Cohen, Natalie", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "ANT LIA: Collaborative Research: Adaptations of Southern Ocean Diatoms to Manganese Scarcity: Can Physiological Ingenuity Overcome Unfavorable Chemistry?", "uid": "p0010412", "west": -180.0}, {"awards": "1744871 Robinson, Rebecca", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Diatom assemblage from IODP Site U1357; Diatom-bound and bulk sedimentary N isotopes from ODP Site 1098, Western Antarctic Peninsula; Diatom-bound and bulk sedimentary nitrogen isotopes from IODP Site U1357; Dissolved nutrients, cell counts, and nitrogen isotope measurements from Chaetoceros socialis culture experiments; ODP Site 1098 deglacial diatom assemblage; Sediment chemistry of ODP Site 1098", "datasets": [{"dataset_uid": "601817", "doi": "10.15784/601817", "keywords": "Antarctica; Cryosphere; Wilkes Land", "people": "Dove, Isabel; Robinson, Rebecca; Kelly, Roger", "repository": "USAP-DC", "science_program": null, "title": "Diatom-bound and bulk sedimentary nitrogen isotopes from IODP Site U1357", "url": "https://www.usap-dc.org/view/dataset/601817"}, {"dataset_uid": "601727", "doi": "10.15784/601727", "keywords": "Antarctica", "people": "Dove, Isabel", "repository": "USAP-DC", "science_program": null, "title": "Dissolved nutrients, cell counts, and nitrogen isotope measurements from Chaetoceros socialis culture experiments", "url": "https://www.usap-dc.org/view/dataset/601727"}, {"dataset_uid": "601778", "doi": "10.15784/601778", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere", "people": "Dove, Isabel", "repository": "USAP-DC", "science_program": null, "title": "Sediment chemistry of ODP Site 1098", "url": "https://www.usap-dc.org/view/dataset/601778"}, {"dataset_uid": "601818", "doi": "10.15784/601818", "keywords": "Antarctica; Cryosphere; Geochemistry; Sediment; Wilkes Land", "people": "Dove, Isabel", "repository": "USAP-DC", "science_program": null, "title": "Diatom assemblage from IODP Site U1357", "url": "https://www.usap-dc.org/view/dataset/601818"}, {"dataset_uid": "601777", "doi": "10.15784/601777", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Sediment Core Data", "people": "Dove, Isabel", "repository": "USAP-DC", "science_program": null, "title": "ODP Site 1098 deglacial diatom assemblage", "url": "https://www.usap-dc.org/view/dataset/601777"}, {"dataset_uid": "601816", "doi": "10.15784/601816", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Geochemistry; Sediment", "people": "Robinson, Rebecca; Dove, Isabel; Jones, Colin; Kelly, Roger", "repository": "USAP-DC", "science_program": null, "title": "Diatom-bound and bulk sedimentary N isotopes from ODP Site 1098, Western Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601816"}], "date_created": "Wed, 28 Jul 2021 00:00:00 GMT", "description": "The chemical composition of diatom fossils in the Southern Ocean provides information about the environmental history of Antarctica, including sea ice extent, biological production, and ocean nutrient distribution. The sea ice zone is an important habitat for a group of diatoms, largely from the genus Chaetoceros, that have a unique life cycle stage under environmental stress, when they produce a structure called a resting spore. Resting spores are meant to reseed the surface ocean when conditions are more favorable. The production of these heavy resting spores tends to remove significant amounts of carbon and silicon, essential nutrients, out of the surface ocean. As a result, this group has the potential to remove carbon from the surface ocean and can impact the sedimentary record scientists use to reconstruct environmental change. \r\n\r\nThis project explores the role of resting spores and nutrients in the sedimentary record using the nitrogen isotopic signature of these fossils and how those measurements are used to estimate carbon cycle changes. Measurements of nitrogen stable isotopes of nitrate, biomass, and diatom-bound nitrogen and silicon-to-nitrogen ratios of individual species grown in the laboratory are used to quantify how resting spores record nutrient drawdown in the water column and to what degree their signature is biased toward low nutrient conditions. Laboratory incubations were conducted with surface sediment containing Chaetoceros spp.. The emergence of vegetative cells and subsequent formation of resting spores is manipulated with the addition of nutrients, primarily nitrate. The resulting samples, both of vegetative cells and resting spores were measured for diatom-bound d15N. Resting spore d15N values are consistently lower than the vegetative d15N \r\n from the same incubations. The incubation results will be used to quantify nutrient drawdown in sea ice environments during two contrasting intervals in earth history, the last ice age and the warm Pliocene. The project provided training and research opportunities for undergraduate and graduate students. Research efforts in Antarctic earth sciences are disseminated through an interactive display at the home institution and during university sponsored events.\r\n\r\nThis work addresses uncertainties in how Chaetoceros resting spores record surface nutrient conditions in their nitrogen stable isotopic composition, the relative impact of their specific signal with respect to the full sedimentary assemblage, and their potential to bias or enhance environmental reconstructions in the sea ice zone. \r\n", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; USAP-DC; Antarctica; ISOTOPES; MARINE SEDIMENTS; LABORATORY; USA/NSF; NITROGEN; AMD", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Robinson, Rebecca", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information?", "uid": "p0010234", "west": -180.0}, {"awards": "1543328 Van Mooy, Benjamin", "bounds_geometry": null, "dataset_titles": "Lipidomics of Antarctic waters. (TBD)", "datasets": [{"dataset_uid": "200149", "doi": "TBD", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Lipidomics of Antarctic waters. (TBD)", "url": "https://www.bco-dmo.org/data"}], "date_created": "Fri, 19 Jun 2020 00:00:00 GMT", "description": "The depletion of stratospheric ozone over Antarctica leads to abnormally high levels of ultraviolet radiation (UVR) from the sun reaching the surface of the ocean. This phenomenon is predicted to continue for the next half century, despite bans on ozone-destroying pollutants. Phytoplankton in the near surface ocean are subjected to variable amounts of UVR and contain a lot of lipids (fats). Because phytoplankton are at the base of the food chain their lipids makes their way into the Antarctic marine ecosystem\u0027s food web. The molecular structures of phytoplankton lipids are easily altered by UVR. When this happens, their lipids can be transformed from healthy molecules into potentially harmful molecules(oxylipins) known to be disruptive to reproductive and developmental processes. This project will use state-of-the-art molecular methods to answer questions about extent to which UVR damages lipid molecules in phytoplankton, and how these resultant molecules might effect the food chain in the ocean near Antarctica. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eLipid peroxidation is often invoked as consequence of increased exposure of phytoplankton to UVR-produced reactive oxygen species (ROS), but the literature is practically silent on peroxidized lipids and their byproducts (i.e. oxylipins) in the ocean. In waters of the West Antarctic Peninsula (WAP), spring-time blooms of diatoms contribute significantly to overall marine primary production. Oxylipins from diatoms can be highly bioactive; their impact on zooplankton grazers, bacteria, and other phytoplankton has been the subject of intense study. However, almost all of this work has focused on the production of oxylipins via enzymatic pathways, not by pathways involving UVR and/or ROS. Furthermore, rigorous experimental work on the effects of oxylipins has been confined almost exclusively to pure cultures and artificial communities. Thus, the true potential of these molecules to disrupt carbon cycling is very poorly-constrained, and is entirely unknown in the waters of the WAP. Armed with new highly-sensitive, state-of-the-art analytical techniques based on high-mass-resolution mass spectrometry, the principal investigator and his research group have begun to uncover an exquisite diversity of oxylipins in natural WAP planktonic communities. These techniques will be applied to understand the connections between UVR, ROS, oxylipins, and carbon cycling. The project will answer the question of how UVR, via ROS, affects oxylipin production by diatoms in WAP surface waters in controlled experiments conducted at a field station. With the answer to this question in hand, the project will also seek to answer how this phenomenon impacts the flow of carbon, particularly the export of organic carbon from the system, during a research cruise. The level of UVR-induced stresses experienced by oxylipin-rich planktonic communities in the WAP is unique, making Antarctica the only location for answering these fundamental questions. Major activities will include laboratory experiments with artificial membranes and diatom cultures, as well field experiments with phytoplankton, zooplankton, and bacteria in WAP waters.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Oxylipins; Palmer Station; UV Radiation; USAP-DC; West Antarctic Shelf; NOT APPLICABLE; AQUATIC SCIENCES; Phytoplankton", "locations": "West Antarctic Shelf; Palmer Station", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Van Mooy, Benjamin", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": null, "title": "Production and Fate of Oxylipins in Waters of the Western Antarctic Peninsula: Linkages Between UV Radiation, Lipid Peroxidation, and Carbon Cycling", "uid": "p0010109", "west": null}, {"awards": "1341464 Robinson, Rebecca; 1341432 Brzezinski, Mark", "bounds_geometry": "POLYGON((-175 -54,-174 -54,-173 -54,-172 -54,-171 -54,-170 -54,-169 -54,-168 -54,-167 -54,-166 -54,-165 -54,-165 -55.3,-165 -56.6,-165 -57.9,-165 -59.2,-165 -60.5,-165 -61.8,-165 -63.1,-165 -64.4,-165 -65.7,-165 -67,-166 -67,-167 -67,-168 -67,-169 -67,-170 -67,-171 -67,-172 -67,-173 -67,-174 -67,-175 -67,-175 -65.7,-175 -64.4,-175 -63.1,-175 -61.8,-175 -60.5,-175 -59.2,-175 -57.9,-175 -56.6,-175 -55.3,-175 -54))", "dataset_titles": "Diatom assemblage counts from NBP17-02 shipboard carboy experiments; Dissolved nutrient profiles from along 170\u00b0W between 67 and 54\u00b0S; Expedition Data of NBP1702; Particle composition measurements from along 170\u00b0W between 67-54\u00b0S; Particulate silicon and nitrogen concentrations and isotopic composition measurements in McLane pump profiles from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean; Silicon concentration and isotopic composition measurements in pore waters and sediments from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean; Surface Southern Ocean community growouts to evaluate the diatom bound N isotope proxy", "datasets": [{"dataset_uid": "200126", "doi": "10.7284/907211", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP1702", "url": "https://www.rvdata.us/search/cruise/NBP1702"}, {"dataset_uid": "601562", "doi": "10.15784/601562", "keywords": "Antarctica; Biogenic Silica; Chemistry:sediment; Chemistry:Sediment; Lithogenic Silica; Marine Geoscience; NBP1702; Pore Water Biogeochemistry; Sediment; Silicon Cycle; Silicon Stable Isotope; Southern Ocean", "people": "Closset, Ivia; Brzezinski, Mark; Jones, Janice L.", "repository": "USAP-DC", "science_program": null, "title": "Silicon concentration and isotopic composition measurements in pore waters and sediments from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean", "url": "https://www.usap-dc.org/view/dataset/601562"}, {"dataset_uid": "601523", "doi": "10.15784/601523", "keywords": "Antarctica; Biota; Carboy Growouts; Diatom; Diatom Assemblage Data; NBP1702; Oceans; R/v Nathaniel B. Palmer; Southern Ocean; Southern Ocean Summer", "people": "Jones, Colin; Robinson, Rebecca ; Riesselman, Christina; Robinson, Rebecca", "repository": "USAP-DC", "science_program": null, "title": "Diatom assemblage counts from NBP17-02 shipboard carboy experiments", "url": "https://www.usap-dc.org/view/dataset/601523"}, {"dataset_uid": "601522", "doi": "10.15784/601522", "keywords": "Antarctica; Nitrogen Isotopes; Oceans; Paleoproxies; Southern Ocean", "people": "Robinson, Rebecca ; Kelly, Roger; Closset, Ivia; Riesselman, Christina; Brzezinski, Mark; Jones, Colin; Robinson, Rebecca", "repository": "USAP-DC", "science_program": null, "title": "Surface Southern Ocean community growouts to evaluate the diatom bound N isotope proxy", "url": "https://www.usap-dc.org/view/dataset/601522"}, {"dataset_uid": "601576", "doi": "10.15784/601576", "keywords": "Antarctica; Biogenic Silica; Chemistry:sediment; Chemistry:Sediment; Diatom; Diatom Bound; Lithogenic Silica; Marine Geoscience; NBP1702; Nitrogen Isotopes; Silicon Cycle; Silicon Stable Isotope; Southern Ocean", "people": "Closset, Ivia; Brzezinski, Mark; Robinson, Rebecca; Jones, Janice L.", "repository": "USAP-DC", "science_program": null, "title": " Particulate silicon and nitrogen concentrations and isotopic composition measurements in McLane pump profiles from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean", "url": "https://www.usap-dc.org/view/dataset/601576"}, {"dataset_uid": "601276", "doi": "10.15784/601276", "keywords": "Antarctica; Biogenic Silica; Nitrogen Isotopes; Southern Ocean", "people": "Robinson, Rebecca; Brzezinski, Mark", "repository": "USAP-DC", "science_program": null, "title": "Particle composition measurements from along 170\u00b0W between 67-54\u00b0S", "url": "https://www.usap-dc.org/view/dataset/601276"}, {"dataset_uid": "601269", "doi": "10.15784/601269", "keywords": "Antarctica; Chlorophyll; Southern Ocean", "people": "Brzezinski, Mark; Robinson, Rebecca", "repository": "USAP-DC", "science_program": null, "title": "Dissolved nutrient profiles from along 170\u00b0W between 67 and 54\u00b0S", "url": "https://www.usap-dc.org/view/dataset/601269"}], "date_created": "Wed, 26 Feb 2020 00:00:00 GMT", "description": "The rise in atmospheric carbon dioxide concentrations and associated climate changes make understanding the role of the ocean in large scale carbon cycle a priority. Geologic samples allow exploration of potential mechanisms for carbon dioxide drawdown during glacial periods through the use of geochemical proxies. Nitrogen and silicon isotope signatures from fossil diatoms (microscopic plants) are used to investigate changes in the physical supply and biological demand for nutrients (like nitrogen and silicon and carbon) in the Southern Ocean. The project will evaluate the use the nitrogen and silicon isotope proxies through a series of laboratory experiments and Southern Ocean field sampling. The results will provide quantification of real relationships between nitrogen and silicon isotopes and nutrient usage in the Southern Ocean and allow exploration of the role of other factors, including biological diversity, ice cover, and mixing, in altering the chemical signatures recorded by diatoms. Seafloor sediment samples will be used to evaluate how well the signal created in the water column is recorded by fossil diatoms buried in the seafloor. Improving the nutrient isotope proxies will allow for a more quantitative understanding of the role of polar biology in regulating natural variation in atmospheric carbon dioxide. The project will also result in the training of a graduate student and development of outreach materials targeting a broad popular audience.\r\n\r\nThis project seeks to test the fidelity of the diatom nitrogen and silicon isotope proxies, two commonly used paleoceanographic tools for investigating the role of the Southern Ocean biological pump in regulating atmospheric CO2 concentrations on glacial-interglacial timescales. Existing ground-truthing data, including culture experiments, surface sediment data and downcore reconstructions, all suggest that nutrient utilization is the primary driver of isotopic variation in the Southern Ocean. However, strong contribution of interspecific variation is implied by recent culture results. Moreover, field and laboratory studies present some contradictory results in terms of the relative importance of interspecific variation and of inferred post-depositional alteration of the nutrient isotope signals. Here, a first order test of the N and Si diatom nutrient isotope paleo-proxies, involving water column dissolved and particulate sampling and laboratory culturing of field-isolates, is proposed. Southern Ocean water, biomass, live diatoms and fossil diatom sampling will be conducted to investigate species and assemblage related variability in diatom nitrogen and silicon isotopes and their relationship to surface nutrient fields and early diagenesis. Access to fresh materials produced in an analogous environmental context to the sediments of primary interest is critical for making robust paleoceanographic reconstructions. Field sampling will occur along 175\u00b0W, transecting the Antarctic Circumpolar Current from the subtropics to the marginal ice edge. Collection of water, sinking/suspended particles and multi-core samples from 13 stations and 3 shipboard incubation experiments will be used to test four proposed hypotheses that together evaluate the significance of existing culture results and seek to allow the best use of diatom nutrient isotope proxies in evaluating the biological pump.", "east": -165.0, "geometry": "POINT(-170 -60.5)", "instruments": null, "is_usap_dc": true, "keywords": "Southern Ocean; AMD; NITROGEN ISOTOPES; R/V NBP; NSF/USA; NUTRIENTS; USAP-DC; Amd/Us", "locations": "Southern Ocean", "north": -54.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Robinson, Rebecca; Brzezinski, Mark", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -67.0, "title": "Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump", "uid": "p0010083", "west": -175.0}, {"awards": "1643684 Saito, Mak; 1644073 DiTullio, Giacomo", "bounds_geometry": "POLYGON((-180 -72,-173.6 -72,-167.2 -72,-160.8 -72,-154.4 -72,-148 -72,-141.6 -72,-135.2 -72,-128.8 -72,-122.4 -72,-116 -72,-116 -72.7,-116 -73.4,-116 -74.1,-116 -74.8,-116 -75.5,-116 -76.2,-116 -76.9,-116 -77.6,-116 -78.3,-116 -79,-122.4 -79,-128.8 -79,-135.2 -79,-141.6 -79,-148 -79,-154.4 -79,-160.8 -79,-167.2 -79,-173.6 -79,180 -79,178 -79,176 -79,174 -79,172 -79,170 -79,168 -79,166 -79,164 -79,162 -79,160 -79,160 -78.3,160 -77.6,160 -76.9,160 -76.2,160 -75.5,160 -74.8,160 -74.1,160 -73.4,160 -72.7,160 -72,162 -72,164 -72,166 -72,168 -72,170 -72,172 -72,174 -72,176 -72,178 -72,-180 -72))", "dataset_titles": "Algal pigment concentrations from the Ross Sea; Biogenic silica concentrations from the Ross Sea; NBP1801 Expedition data; Nutrients from NBP18-01 CICLOPS", "datasets": [{"dataset_uid": "200056", "doi": "10.7284/907753", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1801 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1801"}, {"dataset_uid": "601205", "doi": "10.15784/601205", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Chlorophyll; Chromatography; Liquid Chromatograph; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Sea Water; Seawater Measurements; Southern Ocean; Water Measurements; Water Samples", "people": "Ditullio, Giacomo", "repository": "USAP-DC", "science_program": null, "title": "Algal pigment concentrations from the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/601205"}, {"dataset_uid": "601428", "doi": "10.15784/601428", "keywords": "Amundsen Sea; Antarctica; NBP1801; Nitrate; Nitrite; Nutrients; Phosphate; Ross Sea; R/v Nathaniel B. Palmer; Silicic Acid; Terra Nova Bay", "people": "Saito, Mak", "repository": "USAP-DC", "science_program": null, "title": "Nutrients from NBP18-01 CICLOPS", "url": "https://www.usap-dc.org/view/dataset/601428"}, {"dataset_uid": "601225", "doi": "10.15784/601225", "keywords": "Antarctica; Biogenic Silica; Biogenic Silica Concentrations; Chemistry:Water; Geochemistry; NBP1801; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Sea Water; Southern Ocean; Spectroscopy; Water Measurements; Water Samples", "people": "Ditullio, Giacomo; Schanke, Nicole", "repository": "USAP-DC", "science_program": null, "title": "Biogenic silica concentrations from the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/601225"}], "date_created": "Thu, 08 Aug 2019 00:00:00 GMT", "description": "Phytoplankton blooms in the coastal waters of the Ross Sea, Antarctica are typically dominated by either diatoms or Phaeocystis Antarctica (a flagellated algae that often can form large colonies in a gelatinous matrix). The project seeks to determine if an association of bacterial populations with Phaeocystis antarctica colonies can directly supply Phaeocystis with Vitamin B12, which can be an important co-limiting micronutrient in the Ross Sea. The supply of an essential vitamin coupled with the ability to grow at lower iron concentrations may put Phaeocystis at a competitive advantage over diatoms. Because Phaeocystis cells can fix more carbon than diatoms and Phaeocystis are not grazed as efficiently as diatoms, the project will help in refining understanding of carbon dynamics in the region as well as the basis of the food web webs. Such understanding also has the potential to help refine predictive ecological models for the region. The project will conduct public outreach activities and will contribute to undergraduate and graduate research. Engagement of underrepresented students will occur during summer student internships. A collaboration with Italian Antarctic researchers, who have been studying the Terra Nova Bay ecosystem since the 1980s, aims to enhance the project and promote international scientific collaborations. \u003cbr/\u003e\u003cbr/\u003eThe study will test whether a mutualistic symbioses between attached bacteria and Phaeocystis provides colonial cells a mechanism for alleviating chronic Vitamin B12 co-limitation effects thereby conferring them with a competitive advantage over diatom communities. The use of drifters in a time series study will provide the opportunity to track in both space and time a developing algal bloom in Terra Nova Bay and to determine community structure and the physiological nutrient status of microbial populations. A combination of flow cytometry, proteomics, metatranscriptomics, radioisotopic and stable isotopic labeling experiments will determine carbon and nutrient uptake rates and the role of bacteria in mitigating potential vitamin B12 and iron limitation. Membrane inlet and proton transfer reaction mass spectrometry will also be used to estimate net community production and release of volatile organic carbon compounds that are climatically active. Understanding how environmental parameters can influence microbial community dynamics in Antarctic coastal waters will advance an understanding of how changes in ocean stratification and chemistry could impact the biogeochemistry and food web dynamics of Southern Ocean ecosystems.", "east": 160.0, "geometry": "POINT(-158 -75.5)", "instruments": null, "is_usap_dc": true, "keywords": "BIOGEOCHEMICAL CYCLES; NBP1801; Amd/Us; USA/NSF; USAP-DC; NUTRIENTS; PIGMENTS; CHLOROPHYLL; R/V NBP; Ross Sea; AMD", "locations": "Ross Sea", "north": -72.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science", "paleo_time": null, "persons": "DiTullio, Giacomo; Lee, Peter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -79.0, "title": "Collaborative Research: Cobalamin and Iron Co-Limitation Of Phytoplankton Species in Terra Nova Bay", "uid": "p0010045", "west": -116.0}, {"awards": "1744645 Young, Jodi", "bounds_geometry": "POLYGON((-64.4 -64.2,-64.38 -64.2,-64.36 -64.2,-64.34 -64.2,-64.32 -64.2,-64.3 -64.2,-64.28 -64.2,-64.26 -64.2,-64.24 -64.2,-64.22 -64.2,-64.2 -64.2,-64.2 -64.26,-64.2 -64.32,-64.2 -64.38,-64.2 -64.44,-64.2 -64.5,-64.2 -64.56,-64.2 -64.62,-64.2 -64.68,-64.2 -64.74,-64.2 -64.8,-64.22 -64.8,-64.24 -64.8,-64.26 -64.8,-64.28 -64.8,-64.3 -64.8,-64.32 -64.8,-64.34 -64.8,-64.36 -64.8,-64.38 -64.8,-64.4 -64.8,-64.4 -64.74,-64.4 -64.68,-64.4 -64.62,-64.4 -64.56,-64.4 -64.5,-64.4 -64.44,-64.4 -64.38,-64.4 -64.32,-64.4 -64.26,-64.4 -64.2))", "dataset_titles": "Dataset: Particulate Organic Carbon and Particulate Nitrogen; Dataset: Photosynthetic Pigments; Dataset: Physical Profiles of Temperature, Salinity, and Brine Volume; Sea-ice diatom compatible solute shifts", "datasets": [{"dataset_uid": "200377", "doi": "10.26008/1912/bco-dmo.913222.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Dataset: Photosynthetic Pigments", "url": "https://www.bco-dmo.org/dataset/913222"}, {"dataset_uid": "200378", "doi": "10.26008/1912/bco-dmo.913655.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Dataset: Physical Profiles of Temperature, Salinity, and Brine Volume", "url": "https://www.bco-dmo.org/dataset/913655"}, {"dataset_uid": "200376", "doi": "10.26008/1912/bco-dmo.913566.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Dataset: Particulate Organic Carbon and Particulate Nitrogen", "url": "https://www.bco-dmo.org/dataset/913566"}, {"dataset_uid": "200322", "doi": "10.21228/M84386", "keywords": null, "people": null, "repository": "Metabolomics workbench", "science_program": null, "title": "Sea-ice diatom compatible solute shifts", "url": "https://www.metabolomicsworkbench.org/data/DRCCMetadata.php?Mode=Study\u0026StudyID=ST001393"}], "date_created": "Tue, 23 Jul 2019 00:00:00 GMT", "description": "Rapid changes in the extent and thickness of sea ice during the austral spring subject microorganisms within or attached to the ice to large fluctuations in temperature, salinity, light and nutrients. This project aims to identify cellular responses in sea-ice algae to increasing temperature and decreasing salinity during the spring melt along the western Antarctic Peninsula and to determine how associated changes at the cellular level can potentially affect dynamic, biologically driven processes. Understanding how sea-ice algae cope with, and are adapted to, their environment will not only help predict how polar ecosystems may change as the extent and thickness of sea ice change, but will also provide a better understanding of the widespread success of photosynthetic life on Earth. The scientific context and resulting advances from the research will be communicated to the general public through outreach activities that includes work with Science Communication Fellows and the popular Polar Science Weekend at the Pacific Science Center in Seattle, Washington. The project will provide student training to college students as well as provide for educational experiences for K-12 school children. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eThere is currently a poor understanding of feedback relationships that exist between the rapidly changing environment in the western Antarctic Peninsula region and sea-ice algal production. The large shifts in temperature and salinity that algae experience during the spring melt affect critical cellular processes, including rates of enzyme-catalyzed reactions involved in photosynthesis and respiration, and the production of stress-protective compounds. These changes in cellular processes are poorly constrained but can be large and may have impacts on local ecosystem productivity and biogeochemical cycles. In particular, this study will focus on the thermal sensitivity of enzymes and the cycling of compatible solutes and exopolymers used for halo- and cryo-protection, and how they influence primary production and the biogeochemical cycling of carbon and nitrogen. Approaches will include field sampling during spring melt, incubation experiments of natural sea-ice communities under variable temperature and salinity conditions, and controlled manipulation of sea-ice algal species in laboratory culture. Employment of a range of techniques, from fast repetition rate fluorometry and gross and net photosynthetic measurements to metabolomics and enzyme kinetics, will tease apart the mechanistic effects of temperature and salinity on cell metabolism and primary production with the goal of quantifying how these changes will impact biogeochemical processes along the western Antarctic Peninsula.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -64.2, "geometry": "POINT(-64.3 -64.5)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; SHIPS; DIATOMS; Antarctic Peninsula", "locations": "Antarctic Peninsula", "north": -64.2, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Young, Jodi; Deming, Jody", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "BCO-DMO", "repositories": "BCO-DMO; Metabolomics workbench", "science_programs": null, "south": -64.8, "title": "Spring Blooms of Sea Ice Algae Along the Western Antarctic Peninsula: Effects of Warming and Freshening on Cell Physiology and Biogeochemical Cycles.", "uid": "p0010039", "west": -64.4}, {"awards": "1745036 Marchetti, Adrian; 1744760 Hopkinson, Brian", "bounds_geometry": "POLYGON((-77 -61,-75.2 -61,-73.4 -61,-71.6 -61,-69.8 -61,-68 -61,-66.2 -61,-64.4 -61,-62.6 -61,-60.8 -61,-59 -61,-59 -62.1,-59 -63.2,-59 -64.3,-59 -65.4,-59 -66.5,-59 -67.6,-59 -68.7,-59 -69.8,-59 -70.9,-59 -72,-60.8 -72,-62.6 -72,-64.4 -72,-66.2 -72,-68 -72,-69.8 -72,-71.6 -72,-73.4 -72,-75.2 -72,-77 -72,-77 -70.9,-77 -69.8,-77 -68.7,-77 -67.6,-77 -66.5,-77 -65.4,-77 -64.3,-77 -63.2,-77 -62.1,-77 -61))", "dataset_titles": "Photosynthetic physiological data of Proteorhodopsin containing diatoms under differing iron availabilities", "datasets": [{"dataset_uid": "601530", "doi": "10.15784/601530", "keywords": "Antarctica; Diatom", "people": "Hopkinson, Brian; Andrew, Sarah; Plumb, Kaylie; Marchetti, Adrian", "repository": "USAP-DC", "science_program": null, "title": "Photosynthetic physiological data of Proteorhodopsin containing diatoms under differing iron availabilities", "url": "https://www.usap-dc.org/view/dataset/601530"}], "date_created": "Sun, 16 Jun 2019 00:00:00 GMT", "description": "Proteorhodopsins (PR) are retinal-binding membrane proteins that can act as light-driven proton pumps to generate energy that can be used for metabolism and growth. The discovery of PRs in many diverse marine prokaryotic microbes has initiated extensive investigations into their distributions and functional roles. Recently, a rhodopsin-like gene of the proton-pumping variety was identified in diatoms thus revealing their presence within obligate marine eukaryotic photoautotrophs. Since this time, PRs have been identified in a number of diatom isolates although there appears to be a much higher frequency of\r\nPR in diatoms residing in cold, iron-limited regions of the ocean, particularly in the Southern Ocean (SO). PR is especially suited for use in SO phytoplankton since unlike conventional photosynthesis, it uses no iron and its reaction rate is insensitive to temperature. The overall objective of our proposed project is to characterize Antarctic diatom-PR and determine its role in the adaptation of SO diatoms to the prevailing conditions of low iron concentrations and extremely low temperatures. Our research objectives will be achieved through a combination of molecular, biochemical and physiological measurements in diatom isolates recently obtained from the Western Antarctic Peninsula region. We will determine the proton-pumping characteristics and pumping rates of PR as a function of light intensity and wavelength, the resultant PR-linked intracellular ATP production rates, and the cellular localization of the protein. We will examine under which environmental conditions Antarctic diatom-PR is most highly expressed and construct a cellular energy budget that includes diatom-PR when grown under these different growth conditions. Estimates of the energy flux generated by PR in PR-containing diatoms will be compared to total energy generation by the photosynthetic light reactions and metabolically coupled respiration rates. Finally, we will compare the characteristics and gene expression of diatom-PR in Antarctic diatoms to PR-containing diatoms isolated from temperate regions in order to investigate if there is a preferential dependence on energy production through diatom-PR in diatoms residing in cold, iron-limited regions of the ocean.", "east": -59.0, "geometry": "POINT(-68 -66.5)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; NSF/USA; Southern Ocean; AMD; Amd/Us; LABORATORY; USAP-DC; BIOGEOCHEMICAL CYCLES", "locations": "Southern Ocean", "north": -61.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Marchetti, Adrian; Septer, Alecia; Hopkinson, Brian", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -72.0, "title": "Collaborative research: Antarctic diatom proteorhodopsins: Characterization and a potential role in the iron-limitation response", "uid": "p0010033", "west": -77.0}, {"awards": "1341479 Marchetti, Adrian", "bounds_geometry": "POLYGON((-72.8 -48,-67.12 -48,-61.44 -48,-55.76 -48,-50.08 -48,-44.4 -48,-38.72 -48,-33.04 -48,-27.36 -48,-21.68 -48,-16 -48,-16 -50.02,-16 -52.04,-16 -54.06,-16 -56.08,-16 -58.1,-16 -60.12,-16 -62.14,-16 -64.16,-16 -66.18,-16 -68.2,-21.68 -68.2,-27.36 -68.2,-33.04 -68.2,-38.72 -68.2,-44.4 -68.2,-50.08 -68.2,-55.76 -68.2,-61.44 -68.2,-67.12 -68.2,-72.8 -68.2,-72.8 -66.18,-72.8 -64.16,-72.8 -62.14,-72.8 -60.12,-72.8 -58.1,-72.8 -56.08,-72.8 -54.06,-72.8 -52.04,-72.8 -50.02,-72.8 -48))", "dataset_titles": "16S and 18S Sequence data; Fragilariopsis kerguelensis iron and light transcriptomes; Physiology and transcriptomes of polar isolates; Polar isolate transcriptomes; Sequence data from Ocean Station Papa seawater ; Sequence data RNA-Seq of marine phytoplankton: FeB12", "datasets": [{"dataset_uid": "200019", "doi": "", "keywords": null, "people": null, "repository": "Cyverse Data Commons", "science_program": null, "title": "Polar isolate transcriptomes", "url": "http://datacommons.cyverse.org/search/?search_term=unc_phyto_isolates"}, {"dataset_uid": "200021", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "16S and 18S Sequence data", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA299401"}, {"dataset_uid": "200020", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Physiology and transcriptomes of polar isolates", "url": "https://www.bco-dmo.org/project/653229"}, {"dataset_uid": "200016", "doi": "", "keywords": null, "people": null, "repository": "iMicrobe", "science_program": null, "title": "Fragilariopsis kerguelensis iron and light transcriptomes", "url": "https://www.imicrobe.us/#/projects/104"}, {"dataset_uid": "200017", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Sequence data RNA-Seq of marine phytoplankton: FeB12", "url": "https://www.ncbi.nlm.nih.gov/sra/SRP074366"}, {"dataset_uid": "200018", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Sequence data from Ocean Station Papa seawater ", "url": "https://www.ncbi.nlm.nih.gov/sra/SRP006906"}], "date_created": "Mon, 11 Mar 2019 00:00:00 GMT", "description": "The Southern Ocean surrounding Antarctica is changing rapidly in response to Earth\u0027s warming climate. These changes will undoubtedly influence communities of primary producers (the organisms at the base of the food chain, particularly plant-like organisms using sunlight for energy) by altering conditions that influence their growth and composition. Because primary producers such as phytoplankton play an important role in global biogeochemical cycling, it is essential to understand how they will respond to changes in their environment. The growth of phytoplankton in certain regions of the Southern Ocean is constrained by steep gradients in chemical and physical properties that vary in both space and time. Light and iron have been identified as key variables influencing phytoplankton abundance and distribution within Antarctic waters. Microscopic algae known as diatoms are dominant members of the phytoplankton and sea ice communities, accounting for significant proportions of primary production. The overall objective of this project is to identify the molecular bases for the physiological responses of polar diatoms to varying light and iron conditions. The project should provide a means of evaluating the extent these factors regulate diatom growth and influence net community productivity in Antarctic waters. Although numerous studies have investigated how polar diatoms are affected by varying light and iron, the cellular mechanisms leading to their distinct physiological responses remain unknown. We observed several growth responses, but a majority of polar diatom growth rates and photophysiology did not appear to be co-limited by iron and light limitation. Using comparative transcriptomics, we have examined the expression patterns of key genes and metabolic pathways in several ecologically important polar diatoms isolated from Antarctic waters and grown under varying iron and irradiance conditions. In addition, molecular indicators for iron and light limitation will be developed within these polar diatoms through the identification of iron- and light-responsive genes -- the expression patterns of which can be used to determine their physiological status. Upon verification in laboratory cultures, these indicators will be utilized by way of metatranscriptomic sequencing to examine iron and light limitation in natural diatom assemblages collected along environmental gradients in Western Antarctic Peninsula waters. In order to fully understand the role phytoplankton play in Southern Ocean biogeochemical cycles, dependable methods that provide a means of elucidating the physiological status of phytoplankton at any given time and location are essential.", "east": -16.0, "geometry": "POINT(-44.4 -58.1)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; AQUATIC SCIENCES; PHYTOPLANKTON; USAP-DC; Southern Ocean; Sea Surface; DIATOMS", "locations": "Sea Surface; Southern Ocean", "north": -48.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Marchetti, Adrian", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "Cyverse Data Commons", "repositories": "BCO-DMO; Cyverse Data Commons; iMicrobe; NCBI GenBank", "science_programs": null, "south": -68.2, "title": "Iron and Light Limitation in Ecologically Important Polar Diatoms: Comparative Transcriptomics and Development of Molecular Indicators", "uid": "p0010018", "west": -72.8}, {"awards": "1543245 Rynearson, Tatiana", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP1701; NCBI Popset of 43 Southern Ocean diatom isolates, including accessions ON678208.1 - ON678250.1; Specific growth rate measurements for 43 Southern Ocean diatoms", "datasets": [{"dataset_uid": "601586", "doi": "10.15784/601586", "keywords": "Antarctica; Biota; NBP1701; Phytoplankton; R/v Nathaniel B. Palmer; Specific Growth Rate; Thermal Optimum Temperature", "people": "Bishop, Ian", "repository": "USAP-DC", "science_program": null, "title": "Specific growth rate measurements for 43 Southern Ocean diatoms", "url": "https://www.usap-dc.org/view/dataset/601586"}, {"dataset_uid": "001369", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1701"}, {"dataset_uid": "200328", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "NCBI Popset of 43 Southern Ocean diatom isolates, including accessions ON678208.1 - ON678250.1", "url": "https://www.ncbi.nlm.nih.gov/popset/?term=2248543458"}, {"dataset_uid": "002661", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1701", "url": "https://www.rvdata.us/search/cruise/NBP1701"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "The research will examine how diatoms (an important group of plankton in the Southern Ocean) adapt to environmental change. Diatoms will be sampled from different regions of the Southern Ocean, including the Drake Passage, the Pacific Sector of the Southern Ocean and the Ross Sea and examined to determine the range of genetic variation among diatoms in these regions. Experiments on a range of diatoms will be conducted in home laboratories and will be aimed at measuring shifts in physiological capacities over many generations in response to directional changes in the environment (temperature and pH). The information on the genetic diversity of field populations combined with information on potential rates of adaptability and genome changes will provide insight into ways in which polar marine diatoms populations may respond to environmental changes that may occur in surface oceans in the future or may have occurred during past climate conditions. Such information allows better modeling of biogeochemical cycles in the ocean as well as improves our abilities to interpret records of past ocean conditions. The project will support a doctoral student and a postdoctoral researcher as well as several undergraduate students. These scientists will learn the fundamentals of experimental evolution, a skill set that is being sought in the fields of biology and oceanography. The project also includes a collaboration with the Metcalf Institute for Marine and Environmental Reporting that will design and facilitate a session focused on current research related to evolution and climate change to be held at the annual conference of the National Association of Science Writers (NASW). \u003cbr/\u003e\u003cbr/\u003eBoth physiological and genetic variation are key parameters for understanding evolutionary processes in phytoplankton but they are essentially unknown for Southern Ocean diatoms. The extent to which these two factors determine plasticity and adaptability in field populations and the interaction between them will influence how and whether cold-adapted diatoms can respond to changing environments. This project includes a combination of field work to identify genetic diversity within diatoms using molecular approaches and experiments in the lab to assess the range of physiological variation in contemporary populations of diatoms and evolution experiments in the lab to assess how the combination of genetic diversity and physiological variation influence the evolutionary potential of diatoms under a changing environment. This research will uncover general relationships between physiological variation, genetic diversity, and evolutionary potential that may apply across microbial taxa and geographical regions, substantially improving efforts to predict shifts in marine ecosystems. Results from this study can be integrated into developing models that incorporate evolution to predict ecosystem changes under future climate change scenarios.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "USAP-DC; NBP1701; R/V NBP; AMD; USA/NSF; Amd/Us; DIATOMS", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Rynearson, Tatiana; Bishop, Ian", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "NCBI; R2R; USAP-DC", "science_programs": null, "south": null, "title": "NSFGEO-NERC: Evolutionary Response of Southern Ocean Diatoms to Environmental Change", "uid": "p0000850", "west": null}, {"awards": "1443474 Jenkins, Bethany", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP1608", "datasets": [{"dataset_uid": "002664", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1608", "url": "https://www.rvdata.us/search/cruise/NBP1608"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "This project focuses on an important group of photosynthetic algae in the Southern Ocean (SO), diatoms, and the roles associated bacterial communities play in modulating their growth. Diatom growth fuels the SO food web and balances atmospheric carbon dioxide by sequestering the carbon used for growth to the deep ocean on long time scales as cells sink below the surface. The diatom growth is limited by the available iron in the seawater, most of which is not freely available to the diatoms but instead is tightly bound to other compounds. The nature of these compounds and how phytoplankton acquire iron from them is critical to understanding productivity in this region and globally. The investigators will conduct experiments to characterize the relationship between diatoms, their associated bacteria, and iron in open ocean and inshore waters. Experiments will involve supplying nutrients at varying nutrient ratios to natural phytoplankton assemblages to determine how diatoms and their associated bacteria respond to different conditions. This will provide valuable data that can be used by climate and food web modelers and it will help us better understand the relationship between iron, a key nutrient in the ocean, and the organisms at the base of the food web that use iron for photosynthetic growth and carbon uptake. The project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. The project supports early career senior investigators and the training of graduate and undergraduate students as well as outreach activities with middle school Girl Scouts in Rhode Island, inner city middle and high school age girls in Virginia, and middle school girls in Florida.\u003cbr/\u003e\u003cbr/\u003eThe project combines trace metal biogeochemistry, phytoplankton cultivation, and molecular biology to address questions regarding the production of iron-binding compounds and the role of diatom-bacterial interactions in this iron-limited region. Iron is an essential micronutrient for marine phytoplankton. Phytoplankton growth in the SO is limited by a lack of sufficient iron, with important consequences for carbon cycling and climate in this high latitude regime. Some of the major outstanding questions in iron biogeochemistry relate to the organic compounds that bind \u003e99.9% of dissolved iron in surface oceans. The investigators\u0027 prior research in this region suggests that production of strong iron-binding compounds in the SO is linked to diatom blooms in waters with high nitrate to iron ratios. The sources of these compounds are unknown but the investigators hypothesize that they may be from bacteria, which are known to produce such compounds for their own use. The project will test three hypotheses concerning the production of these iron-binding compounds, limitations on the biological availability of iron even if present in high concentrations, and the roles of diatom-associated bacteria in these processes. Results from this project will provide fundamental information about the biogeochemical trigger, and biological sources and function, of natural strong iron-binding compound production in the SO, where iron plays a critical role in phytoplankton productivity, carbon cycling, and climate regulation.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V NBP; NBP1608", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Jenkins, Bethany", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Investigating Iron-inding Ligands in Southern Ocean Diatom Communities: The Role of Diatom-Bacteria Associations", "uid": "p0000852", "west": null}, {"awards": "1142074 Ballard, Grant; 1142174 Smith, Walker", "bounds_geometry": "POLYGON((165.9 -76.9,166.25 -76.9,166.6 -76.9,166.95 -76.9,167.3 -76.9,167.65 -76.9,168 -76.9,168.35 -76.9,168.7 -76.9,169.05 -76.9,169.4 -76.9,169.4 -76.97,169.4 -77.04,169.4 -77.11,169.4 -77.18,169.4 -77.25,169.4 -77.32,169.4 -77.39,169.4 -77.46,169.4 -77.53,169.4 -77.6,169.05 -77.6,168.7 -77.6,168.35 -77.6,168 -77.6,167.65 -77.6,167.3 -77.6,166.95 -77.6,166.6 -77.6,166.25 -77.6,165.9 -77.6,165.9 -77.53,165.9 -77.46,165.9 -77.39,165.9 -77.32,165.9 -77.25,165.9 -77.18,165.9 -77.11,165.9 -77.04,165.9 -76.97,165.9 -76.9))", "dataset_titles": "Access to data; Experimental analyses of phytoplankton temperature response; Glider data from the southern Ross Sea collected from the iRobot Seaglider during the RVIB Nathaniel B. Palmer (AUV-SG-503-2012, NBP1210) cruises in 2012 (Penguin Glider project); Penguin Science file sharing site", "datasets": [{"dataset_uid": "001426", "doi": "", "keywords": null, "people": null, "repository": "CADC", "science_program": null, "title": "Access to data", "url": "http://data.prbo.org/apps/penguinscience/AllData/NSF-ANT-1142074/"}, {"dataset_uid": "002575", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Glider data from the southern Ross Sea collected from the iRobot Seaglider during the RVIB Nathaniel B. Palmer (AUV-SG-503-2012, NBP1210) cruises in 2012 (Penguin Glider project)", "url": "https://www.bco-dmo.org/dataset/568868/data"}, {"dataset_uid": "002740", "doi": null, "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Penguin Science file sharing site", "url": "https://data.pointblue.org/apps/penguin_science/"}, {"dataset_uid": "601135", "doi": "10.15784/601135", "keywords": "Antarctica; Biota; Chlorophyll; Foraminifera; Growth; Phytoplankton; Plankton; Temperature", "people": "Smith, Walker", "repository": "USAP-DC", "science_program": null, "title": "Experimental analyses of phytoplankton temperature response", "url": "https://www.usap-dc.org/view/dataset/601135"}], "date_created": "Mon, 14 Dec 2015 00:00:00 GMT", "description": "Abstract\u003cbr/\u003e\u003cbr/\u003eThe Ross Sea is believed to contributes a huge portion (~1/3) of the primary productivity of the Southern Ocean and is home to a similar large portion of the top predators (e.g. 38% of Adelie, 28% of Emperor penguins) of the Antarctic sea ice ecosystem. The trophic pathways in this system are complex in both space and time. One scenario for the Ross Sea ecosystem is that diatoms are grazed by krill, which are in turn the preferred food of fish, penguins and other predators. Phaeocystis colonies, on the other hand lead to grazing by pteropods and other organisms that are a non-favoured food source for top predators. Remotely sensed chlorophyll, indicating all phytoplankton, is then suggested to be a relatively poor predictor of penguin foraging efforts. This is also consistent with notion that algal species composition is very important to penguin grazing pressure, mediated by krill, and perhaps resulting in selective depletion. \u003cbr/\u003e\u003cbr/\u003eThis collaborative research sets out to use an autonomous glider, equipped with a range of sensors, and informed by satellite chlorophyll imagery to be combined with 3-dimenisonal active penguin tracking to their preferred foraging sites. The effect of localized grazing pressure of krill on the appearance and disappearance of algal blooms will also be followed. Overall the objective of the research is to reconcile and explain several years of the study of the foraging habits and strategies of (top predator) penguins at the Cape Crozier site (Ross Island), with the dynamics of krill and their supporting algal food webs. The use of a glider to answer a primarily ecological questions is subject to moderate to high risk, and is potentially transformative.", "east": 169.4, "geometry": "POINT(167.65 -77.25)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided; USAP-DC", "locations": null, "north": -76.9, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Walker; Ballard, Grant", "platforms": "Not provided", "repo": "CADC", "repositories": "BCO-DMO; CADC; Project website; USAP-DC", "science_programs": null, "south": -77.6, "title": "Collaborative Research: Penguin Foraging Reveals Phytoplankton Spatial Structure in the Ross Sea", "uid": "p0000322", "west": 165.9}, {"awards": "1043690 Scherer, Reed", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Southern Ocean Diatom Taphonomy and Paleoproductivity: A Laboratory Study of Silica Degradation and Export", "datasets": [{"dataset_uid": "600127", "doi": "10.15784/600127", "keywords": "Antarctica; Biota; Diatom; Marine Sediments; Oceans; Sediment Core; Southern Ocean", "people": "Haji-Sheikh, Michael; Scherer, Reed Paul", "repository": "USAP-DC", "science_program": null, "title": "Southern Ocean Diatom Taphonomy and Paleoproductivity: A Laboratory Study of Silica Degradation and Export", "url": "https://www.usap-dc.org/view/dataset/600127"}], "date_created": "Fri, 14 Feb 2014 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eDiatom abundance in sediment cores is typically used as a proxy for paleo primary productivity. This record is complicated by variable preservation, with most loss occurring in the water column via dissolution and zooplankton grazing. This study will investigate preservational biases via a series of controlled experiments to create proxies of original productivity based on morphological changes associated with diatom dissolution and fracture. The PIs will utilize fresh diatoms from culture. Specific objectives include: (1) Linking changes in diatom morphology to availability of dissolved silica and other physical and chemical parameters; (2) Documenting the dissolution process under controlled conditions; (3) Assessment of changes in morphology and diatom surface roughness with increased dissolution; (4) Documenting the physical effects of grazing and fecal pellet formation on diatom fragmentation and dissolution; and (5) Analyzing the impact of diatom dissolution on silica and carbon export. These objectives will be achieved by growing Southern Ocean diatom species in the laboratory under differing physical and chemical conditions; controlled serial dissolution experiments on cultured diatoms; analysis of the dissolution process by imaging frustules under scanning electron microscopy (SEM) and with micro-analysis of surface texture by atomic force microscopy (AFM); making the cultures available to krill and other live zooplankton crustaceans in order to analyze the specific effects of grazing and pelletization on diatom morphology; and comparing experimental results with natural plankton, sediment trap material, and selected Holocene, Pleistocene and Pliocene sediment core material. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis work will contribute to understanding of the use of diatom abundance as an indicator of paleoproductivity. The proposed experiments are multi-disciplinary in nature. Importantly, the project was designed, and the proposal largely written, by a Ph.D. candidate. The research proposed here will lead to peer-reviewed publications and provide a base for future studies over the course of an extremely promising scientific career. The project will also support an undergraduate research student at NIU. The PI is heavily involved in science outreach, including classroom visits, museum events and webinars related to evolution and climate change, and is active with NSF-funded outreach activities linked to the ANDRILL and WISSARD programs. He will continue these efforts with this project.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Haji-Sheikh, Michael; Scherer, Reed Paul", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Southern Ocean Diatom Taphonomy and Paleoproductivity: A Laboratory Study of Silica Degradation and Export", "uid": "p0000360", "west": -180.0}, {"awards": "0732535 Arrigo, Kevin", "bounds_geometry": "POLYGON((-130 -67,-127.1 -67,-124.2 -67,-121.3 -67,-118.4 -67,-115.5 -67,-112.6 -67,-109.7 -67,-106.8 -67,-103.9 -67,-101 -67,-101 -67.9,-101 -68.8,-101 -69.7,-101 -70.6,-101 -71.5,-101 -72.4,-101 -73.3,-101 -74.2,-101 -75.1,-101 -76,-103.9 -76,-106.8 -76,-109.7 -76,-112.6 -76,-115.5 -76,-118.4 -76,-121.3 -76,-124.2 -76,-127.1 -76,-130 -76,-130 -75.1,-130 -74.2,-130 -73.3,-130 -72.4,-130 -71.5,-130 -70.6,-130 -69.7,-130 -68.8,-130 -67.9,-130 -67))", "dataset_titles": "GEOTRACES International Data Assembly Centre Accession# NIO100280", "datasets": [{"dataset_uid": "000212", "doi": "", "keywords": null, "people": null, "repository": "GEOTRACES", "science_program": null, "title": "GEOTRACES International Data Assembly Centre Accession# NIO100280", "url": "http://www.bodc.ac.uk/geotraces/"}], "date_created": "Thu, 24 Feb 2011 00:00:00 GMT", "description": "IPY: Shedding dynamic light on iron limitation: The interplay of iron\u003cbr/\u003elimitation and dynamic irradiance in governing the phytoplankton\u003cbr/\u003edistribution in the Ross Sea\u003cbr/\u003e\u003cbr/\u003eThe Southern Ocean plays an important role in the global carbon cycle, accounting for approximately 25% of total anthropogenic CO2 uptake by the oceans, mainly via primary production. In the Ross Sea, primary production is dominated by two taxa that are distinct in location and timing. Diatoms dominate in the shallow mixed layer of the continental shelf, whereas the colony forming Phaeocystis antarctica (Prymnesiophyceae) dominate in the more deeply mixed, open regions. Significantly, both groups have vastly different nutrient utilization characteristics, and support very different marine food webs. Their responses to climate change, and the implications for carbon export, are unclear. Previous studies show that light availability and the quality of the light climate (static versus dynamic) play a major role in defining where and when the different phytoplankton taxa bloom. However, iron (Fe) limitation of the algal communities in both the sub-Arctic and the Southern Ocean is now well documented. Moreover, phytoplankton Fe demand varies as a function of irradiance. The main hypothesis of the proposed research is: The interaction between Fe limitation and dynamic irradiance governs phytoplankton distributions in the Ross Sea. Our strategy to test this hypothesis is three-fold: 1) The photoacclimation of the different phytoplankton taxa to different light conditions under Fe limitation will be investigated in experiments in the laboratory under controlled Fe conditions. 2) The photophysiological mechanisms found in these laboratory experiments will then be tested in the field on two cruises with international IPY partners. 3) Finally, data generated during the lab and field parts of the project will be used to parameterize a dynamic light component of the Coupled Ice Atmosphere and Ocean (CIAO) model of the Ross Sea. Using the improved model, we will run future climate scenarios to test the impact of climate change on the phytoplankton community structure, distribution, primary production and carbon export in the Southern Ocean. The proposed research complies with IPY theme\" Understanding Environmental change in Polar Regions\" and includes participation in an international cruise. Detailed model descriptions and all of the results generated from these studies will be made public via a DynaLiFe website. Improving the CIAO model will give us and other IPY partners the opportunity to test the ecological consequences of physiological characteristics observed in Antarctic phytoplankton under current and future climate scenarios. Outreach will include participation in Stanford\u0027s Summer Program for Professional Development for Science Teachers, Stanford\u0027s School of Earth Sciences high school internship program, and development of curriculum for local science training centers, including the Chabot Space and Science Center.", "east": -101.0, "geometry": "POINT(-115.5 -71.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -67.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Arrigo, Kevin", "platforms": "Not provided", "repo": "GEOTRACES", "repositories": "GEOTRACES", "science_programs": null, "south": -76.0, "title": "IPY: Shedding dynamic light on iron limitation: The interplay of iron limitation and dynamic irradiance in governing the phytoplankton distribution in the Ross Sea", "uid": "p0000112", "west": -130.0}, {"awards": "0542111 Lonsdale, Darcy; 0542456 Caron, David", "bounds_geometry": "POLYGON((-179.9999 -43.5663,-143.99993 -43.5663,-107.99996 -43.5663,-71.99999 -43.5663,-36.00002 -43.5663,-0.000050000000016 -43.5663,35.99992 -43.5663,71.99989 -43.5663,107.99986 -43.5663,143.99983 -43.5663,179.9998 -43.5663,179.9998 -46.99537,179.9998 -50.42444,179.9998 -53.85351,179.9998 -57.28258,179.9998 -60.71165,179.9998 -64.14072,179.9998 -67.56979,179.9998 -70.99886,179.9998 -74.42793,179.9998 -77.857,143.99983 -77.857,107.99986 -77.857,71.99989 -77.857,35.99992 -77.857,-0.000049999999987 -77.857,-36.00002 -77.857,-71.99999 -77.857,-107.99996 -77.857,-143.99993 -77.857,-179.9999 -77.857,-179.9999 -74.42793,-179.9999 -70.99886,-179.9999 -67.56979,-179.9999 -64.14072,-179.9999 -60.71165,-179.9999 -57.28258,-179.9999 -53.85351,-179.9999 -50.42444,-179.9999 -46.99537,-179.9999 -43.5663))", "dataset_titles": "Do Crustacean Zooplankton Play a Pivotal Role in Structuring Heterotrophic Plankton Communities in the Ross Sea?; Expedition Data; NBP0802 data; Processed CurrentMeter Data from the Ross Sea near Antarctica acquired during the Nathaniel B. Palmer expedition NBP0801", "datasets": [{"dataset_uid": "001517", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0801"}, {"dataset_uid": "000122", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0802 data", "url": "https://www.rvdata.us/search/cruise/NBP0802"}, {"dataset_uid": "600059", "doi": "10.15784/600059", "keywords": "Antarctica; Biota; Crustacea; Oceans; Phytoplankton; Ross Sea; Southern Ocean", "people": "Lonsdale, Darcy", "repository": "USAP-DC", "science_program": null, "title": "Do Crustacean Zooplankton Play a Pivotal Role in Structuring Heterotrophic Plankton Communities in the Ross Sea?", "url": "https://www.usap-dc.org/view/dataset/600059"}, {"dataset_uid": "601344", "doi": null, "keywords": "Antarctica; Cape Adare; Mooring; NBP0801; Physical Oceanography; Ross Sea; R/v Nathaniel B. Palmer; Salinity; Southern Ocean; Temperature", "people": "Gordon, Arnold; Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Processed CurrentMeter Data from the Ross Sea near Antarctica acquired during the Nathaniel B. Palmer expedition NBP0801", "url": "https://www.usap-dc.org/view/dataset/601344"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Recent studies of marine ecosystems show conflicting evidence for trophic cascades, and in particular the relative strength of the crustacean zooplankton-phytoplankton link. The Ross Sea is a natural laboratory for investigating this apparent conflict. It is a site of seasonally high abundances of phytoplankton, characterized by regions of distinct phytoplankton taxa; the southcentral polynya is strongly dominated by the colony-forming prymnesiophyte Phaeocystis antarctica, while coastal regions of this sea are typically dominated by diatoms or flagellate species. Recent studies indicate that, while the south-central polynya exhibits a massive phytoplankton bloom, the poor food quality of P. antarctica for many crustacean zooplankton prevents direct utilization of much of this phytoplankton bloom. Rather, evidence suggests that indirect utilization of this production may be the primary mechanism by which carbon and energy become available to those higher trophic levels. Specifically, we hypothesize that nano and microzooplankton constitute an important food source for crustacean zooplankton (largely copepods and juvenile euphausiids) during the summer period in the Ross Sea where the phytoplankton assemblage is dominated by the prymnesiophyte. In turn, we also hypothesize that predation by copepods (and other Crustacea) controls and structures the species composition of these protistan assemblages. We will occupy stations in the south-central Ross Sea Polynya (RSP) and Terra Nova Bay (TNB) during austral summer to test these hypotheses. We hypothesize that the diatom species that dominate the phytoplankton assemblage in TNB constitute a direct source of nutrition to herbivorous/omnivorous zooplankton (relative to the situation in the south-central RSP). That is, the contribution of heterotrophic protists to crustacean diets will be reduced in TNB. Our research will address fundamental gaps in our knowledge of food web structure and trophic cascades, and provide better understanding of the flow of carbon and energy within the biological community of this perennially cold sea. The PIs will play active roles in public education (K-12) via curriculum development (on Antarctic biology) and teacher trainer activities in the Centers for Ocean Science Education Excellence (COSEE-West), an innovative, NSF-funded program centered at USC and UCLA.", "east": 179.9998, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": true, "keywords": "R/V NBP", "locations": null, "north": -43.5663, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Lonsdale, Darcy; Caron, Bruce", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -77.857, "title": "Collaborative Research: Do Crustacean Zooplankton Play a Pivotal Role in Structuring Heterotrophic Plankton Communities in the Ross Sea?", "uid": "p0000520", "west": -179.9999}, {"awards": "0087401 Smith, Walker", "bounds_geometry": null, "dataset_titles": "Current Meter Data from the Ross Sea acquired with a Mooring deployed in December 2005 and recovered during the Nathaniel B. Palmer expedition NBP0601A (2006); Expedition data of NBP0301B; Expedition data of NBP0305A; Expedition data of NBP0501; Expedition data of NBP0601A; Fluorometer Data acquired on Moorings deployed the Ross Sea and recovered during the Nathaniel B. Palmer expedition NBP0601A (2006); Processed Fluid Chemistry Data from the Ross Sea acquired during the Nathaniel B. Palmer expedition NBP0601A", "datasets": [{"dataset_uid": "002627", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "002623", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0601A", "url": "https://www.rvdata.us/search/cruise/NBP0601A"}, {"dataset_uid": "002622", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "002621", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0305A", "url": "https://www.rvdata.us/search/cruise/NBP0305A"}, {"dataset_uid": "601341", "doi": null, "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Fluid Chemistry Data; Mooring; NBP0601A; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Seawater Measurements; Southern Ocean", "people": "Smith, Walker; Asper, Vernon", "repository": "USAP-DC", "science_program": null, "title": "Processed Fluid Chemistry Data from the Ross Sea acquired during the Nathaniel B. Palmer expedition NBP0601A", "url": "https://www.usap-dc.org/view/dataset/601341"}, {"dataset_uid": "002583", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0301B", "url": "https://www.rvdata.us/search/cruise/NBP0301B"}, {"dataset_uid": "601339", "doi": null, "keywords": "Antarctica; Current Meter; Mooring; NBP0601A; Oceans; Physical Oceanography; Ross Sea; Southern Ocean", "people": "Asper, Vernon; Smith, Walker", "repository": "USAP-DC", "science_program": null, "title": "Current Meter Data from the Ross Sea acquired with a Mooring deployed in December 2005 and recovered during the Nathaniel B. Palmer expedition NBP0601A (2006)", "url": "https://www.usap-dc.org/view/dataset/601339"}, {"dataset_uid": "601333", "doi": null, "keywords": "Antarctica; Flourometer; Mooring; NBP0601A; Ross Sea; Southern Ocean", "people": "Asper, Vernon; Smith, Walker", "repository": "USAP-DC", "science_program": null, "title": "Fluorometer Data acquired on Moorings deployed the Ross Sea and recovered during the Nathaniel B. Palmer expedition NBP0601A (2006)", "url": "https://www.usap-dc.org/view/dataset/601333"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "During the past few decades of oceanographic research, it has been recognized that significant variations in biogeochemical processes occur among years. Interannual variations in the Southern Ocean are known to occur in ice extent and concentration, in the composition of herbivore communities, and in bird and marine mammal distributions and reproductive success. However, little is known about the interannual variations in production of phytoplankton or the role that these variations play in the food web. This project will collect time series data on the seasonal production of phytoplankton in the southern Ross Sea, Antarctica. Furthermore, it will assess the interannual variations of the production of the two major functional groups of the system, diatoms and Phaeocystis Antarctica, a colonial haptophyte. The Ross Sea provides a unique setting for this type of investigation for a number of reasons. For example, a de facto time-series has already been initiated in the Ross Sea through the concentration of a number of programs in the past ten years. It also is well known that the species diversity is reduced relative to other systems and its seasonal production is as great as anywhere in the Antarctic. Most importantly, seasonal production of both the total phytoplankton community (as well as its two functional groups) can be estimated from late summer nutrient profiles. The project will involve short cruises on the US Coast Guard ice breakers in the southern Ross Sea that will allow the collection of water column nutrient and particulate after data at specific locations in the late summer of each of five years. Additionally, two moorings with in situ nitrate analyzers moored at fifteen will be deployed, thus collecting for the first time in the in the Antarctic a time-series of euphotic zone nutrient concentrations over the entire growing season. All nutrient data will be used to calculate seasonal production for each year in the southern Ross Sea and compared to previously collected information, thereby providing an assessment of interannual variations in net community production. Particulate matter data will allow us to estimate the amount of export from the surface layer by late summer, and therefore calculate the interannual variability of this ecosystem process. Interannual variations of seasonal production (and of the major taxa of producers) are a potentially significant feature in the growth and survival of higher trophic levels within the food web of the Ross Sea. They are also important in order to understand the natural variability in biogeochemical processes of the region. Because polar regions such as the Ross Sea are predicted to be impacted by future climate change, biological changes are also anticipated. Placing these changes in the context of natural variability is an essential element of understanding and predicting such alterations. This research thus seeks to quantify the natural variability of an Antarctic coastal system, and ultimately understand its causes and impacts on food webs and biogeochemical cycles of the Ross Sea.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "Ross Sea; AMD; USAP-DC; Amd/Us; USA/NSF; R/V NBP", "locations": "Ross Sea", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Walker; Gordon, Arnold", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": null, "title": "Interannual Variability in the Antarctic-Ross Sea (IVARS): Nutrients and Seasonal Production", "uid": "p0000803", "west": null}, {"awards": "0127037 Neale, Patrick; 0338350 Dunbar, Robert; 0741411 Hutchins, David; 0338097 DiTullio, Giacomo; 0338157 Smith, Walker", "bounds_geometry": "POLYGON((173.31833 -46.5719,173.757539 -46.5719,174.196748 -46.5719,174.635957 -46.5719,175.075166 -46.5719,175.514375 -46.5719,175.953584 -46.5719,176.392793 -46.5719,176.832002 -46.5719,177.271211 -46.5719,177.71042 -46.5719,177.71042 -48.759516,177.71042 -50.947132,177.71042 -53.134748,177.71042 -55.322364,177.71042 -57.50998,177.71042 -59.697596,177.71042 -61.885212,177.71042 -64.072828,177.71042 -66.260444,177.71042 -68.44806,177.271211 -68.44806,176.832002 -68.44806,176.392793 -68.44806,175.953584 -68.44806,175.514375 -68.44806,175.075166 -68.44806,174.635957 -68.44806,174.196748 -68.44806,173.757539 -68.44806,173.31833 -68.44806,173.31833 -66.260444,173.31833 -64.072828,173.31833 -61.885212,173.31833 -59.697596,173.31833 -57.50998,173.31833 -55.322364,173.31833 -53.134748,173.31833 -50.947132,173.31833 -48.759516,173.31833 -46.5719))", "dataset_titles": "Expedition Data; Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea; Processed Fluid Chemistry Data from the Ross Sea acquired during the Nathaniel B. Palmer expedition NBP0601", "datasets": [{"dataset_uid": "601340", "doi": null, "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Fluid Chemistry Data; Geochemistry; NBP0601; Niskin Bottle; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Southern Ocean; Water Measurements", "people": "Smith, Walker; DiTullio, Giacomo", "repository": "USAP-DC", "science_program": null, "title": "Processed Fluid Chemistry Data from the Ross Sea acquired during the Nathaniel B. Palmer expedition NBP0601", "url": "https://www.usap-dc.org/view/dataset/601340"}, {"dataset_uid": "001584", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0508"}, {"dataset_uid": "001545", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0608"}, {"dataset_uid": "001580", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0601"}, {"dataset_uid": "001687", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0305"}, {"dataset_uid": "600036", "doi": "10.15784/600036", "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; Diatom; Oceans; Phytoplankton; Ross Sea; Southern Ocean", "people": "DiTullio, Giacomo", "repository": "USAP-DC", "science_program": null, "title": "Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/600036"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The objectives of this proposal are to investigate the controls on the large-scale distribution and production of the two major bloom-forming phytoplankton taxa in the Southern Ocean, diatoms and Phaeocystis Antarctica. These two groups, through their involvement in the biogeochemical cycles of carbon, sulfur and nutrient elements, may have played important roles in the climate variations of the late Quaternary, and they also may be key players in future environmental change. A current paradigm is that irradiance and iron availability drive phytoplankton dynamics in the Southern Ocean. Recent work, however, suggests that carbon dioxide (CO2) concentrations may also be important in structuring algal assemblages, due to species-specific differences in the physiology. This proposal examines the interactive effects of iron, light and CO2 on the physiology, ecology and relative dominance of Phaeocystis and diatoms in the Southern Ocean. The Ross Sea is an ideal system in which to investigate the environmental factors that regulate the distribution and production of these two algal groups, since it is characterized by seasonal blooms of both P. Antarctica and diatoms that are typically separated in both space and time. This study will take the form of an interdisciplinary investigation that includes a field survey and statistical analysis of algal assemblage composition, iron, mixed layer depth, and CO2 levels in the southern Ross Sea, coupled with shipboard experiments to examine the response of diatom and P. Antarctica assemblages to high and low levels of iron, light and CO2 during spring and summer. \u003cbr/\u003eThis project will provide information on some of the major factors controlling the production and distribution of the two major bloom forming phytoplankton in the Southern Ocean and the related biogeochemical cycling of carbon, sulfur and nutrient elements. The results may ultimately advance the ability to predict how the Southern Ocean will be affected by and possibly modulate future climate change. This project will also make significant educational contributions at several levels, including the planned research involvement of graduate and undergraduate students, postdoctoral associates, a student teacher, and community outreach and educational activities. A number of activities are planned to interface the project with K-12 education. Presentations will be made at local schools to discuss the research and events of the research cruise. During the cruise there will be daily interactive email contact with elementary classrooms. Established websites will be used to allow students to learn about the ongoing research, and to allow researchers to communicate with students through text and downloaded images.", "east": 177.71042, "geometry": "POINT(175.514375 -57.50998)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FRRF; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FRRF", "is_usap_dc": true, "keywords": "B-15J; OCEAN PLATFORMS; FIELD SURVEYS; R/V NBP", "locations": "B-15J", "north": -46.5719, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ditullio, Giacomo; Smith, Walker; Dryer, Jennifer; Neale, Patrick", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; WATER-BASED PLATFORMS \u003e FIXED PLATFORMS \u003e SURFACE \u003e OCEAN PLATFORMS; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -68.44806, "title": "Collaborative Research: Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea", "uid": "p0000540", "west": 173.31833}, {"awards": "9317538 Nelson, David", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP9406", "datasets": [{"dataset_uid": "002252", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9406"}, {"dataset_uid": "002591", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP9406", "url": "https://www.rvdata.us/search/cruise/NBP9406"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The growing season for phytoplankton in polar oceans is short, but intense. There is an increasing body of evidence that in many Antarctic habitats, the most active period may be very early in the season, a period that has not been emphasized in previous investigations. This project is part of an interdisciplinary program that focuses on the dynamics of the spring phytoplankton bloom in a highly productive subsystem of the Antarctic, the Ross Sea. The overall program will test hypotheses related to the initiation of the phytoplankton bloom shortly after the onset of ice melt, the mechanisms controlling phytoplankton growth and productivity in spring, the implications and short-term fate of high productivity in spring, and the transition from spring to midsummer conditions. This component will test the closely related hypotheses that: (1) phytoplankton growth is controlled primarily by the relationship between solar irradiance and mixed-layer depth throughout the spring (2) diatom growth rates are much higher in spring than at any other time of year, in response to the more favorable irradiance/mixing relationships, and (3) persistence of diatom blooms in summer results from the diatoms\u0027 ability to outcompete other groups under the light-limited conditions that develop in turbid, high-biomass waters. These hypotheses will be tested by (1) obtaining the first reliable estimates of the Sverdrup \"critical depth\" in the Antarctic so that the changing relationship between the critical depth and the mixed- layer depth in spring can be defined, and (2) estimating diatom growth rates and the gross and net production attributable to diatoms throughout the spring. The results will provide information critical to an understanding of phytoplankton bloom dynamics in the Ross Sea.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Smith, Walker", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Bloom Dynamics and Food-Web Structure in the Ross Sea: The Irradiance/Mixing Regime and Diatom Growith in Spring", "uid": "p0000810", "west": null}, {"awards": "0338164 Sedwick, Peter", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0601", "datasets": [{"dataset_uid": "001580", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0601"}, {"dataset_uid": "002619", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0601", "url": "https://www.rvdata.us/search/cruise/NBP0601"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The objectives of this proposal are to investigate the controls on the large-scale distribution and production of the two major bloom-forming phytoplankton taxa in the Southern Ocean, diatoms and Phaeocystis Antarctica. These two groups, through their involvement in the biogeochemical cycles of carbon, sulfur and nutrient elements, may have played important roles in the climate variations of the late Quaternary, and they also may be key players in future environmental change. A current paradigm is that irradiance and iron availability drive phytoplankton dynamics in the Southern Ocean. Recent work, however, suggests that carbon dioxide (CO2) concentrations may also be important in structuring algal assemblages, due to species-specific differences in the physiology. This proposal examines the interactive effects of iron, light and CO2 on the physiology, ecology and relative dominance of Phaeocystis and diatoms in the Southern Ocean. The Ross Sea is an ideal system in which to investigate the environmental factors that regulate the distribution and production of these two algal groups, since it is characterized by seasonal blooms of both P. Antarctica and diatoms that are typically separated in both space and time. This study will take the form of an interdisciplinary investigation that includes a field survey and statistical analysis of algal assemblage composition, iron, mixed layer depth, and CO2 levels in the southern Ross Sea, coupled with shipboard experiments to examine the response of diatom and P. Antarctica assemblages to high and low levels of iron, light and CO2 during spring and summer. \u003cbr/\u003eThis project will provide information on some of the major factors controlling the production and distribution of the two major bloom forming phytoplankton in the Southern Ocean and the related biogeochemical cycling of carbon, sulfur and nutrient elements. The results may ultimately advance the ability to predict how the Southern Ocean will be affected by and possibly modulate future climate change. This project will also make significant educational contributions at several levels, including the planned research involvement of graduate and undergraduate students, postdoctoral associates, a student teacher, and community outreach and educational activities. A number of activities are planned to interface the project with K-12 education. Presentations will be made at local schools to discuss the research and events of the research cruise. During the cruise there will be daily interactive email contact with elementary classrooms. Established websites will be used to allow students to learn about the ongoing research, and to allow researchers to communicate with students through text and downloaded images.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e WATER BOTTLES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ditullio, Giacomo", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Interactive Effects of Iron, Light and CO2 on Phytoplankton Community Dynamics in the Ross Sea", "uid": "p0000831", "west": null}, {"awards": "0440711 Marchant, David", "bounds_geometry": "POLYGON((160 -76.5,160.45 -76.5,160.9 -76.5,161.35 -76.5,161.8 -76.5,162.25 -76.5,162.7 -76.5,163.15 -76.5,163.6 -76.5,164.05 -76.5,164.5 -76.5,164.5 -76.7,164.5 -76.9,164.5 -77.1,164.5 -77.3,164.5 -77.5,164.5 -77.7,164.5 -77.9,164.5 -78.1,164.5 -78.3,164.5 -78.5,164.05 -78.5,163.6 -78.5,163.15 -78.5,162.7 -78.5,162.25 -78.5,161.8 -78.5,161.35 -78.5,160.9 -78.5,160.45 -78.5,160 -78.5,160 -78.3,160 -78.1,160 -77.9,160 -77.7,160 -77.5,160 -77.3,160 -77.1,160 -76.9,160 -76.7,160 -76.5))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 01 Jul 2009 00:00:00 GMT", "description": "This project studies ancient lake deposits from the western Dry Valleys of Antarctica. These deposits are particularly exciting because they preserve flora and fauna over seven million years in age that represent the last vestiges of ecosystems that dominated this area before formation of the modern East Antarctic ice sheet. Their unique nature offers a chance to bridge modern and ancient ecology. Formed along the margin of ancient alpine glaciers, these deposits contain layers of silt, clay, and volcanic ash; as well as freeze-dried remnants of mosses, insects, and diatoms. Geological and biological analyses provide a view of the ecological and environmental conditions during mid-to-late Miocene--seven to seventeen million years ago--which spans the critical period when the East Antarctic ice sheet transitioned to its present stable form. The results place the modern lakes of the Dry Valleys into a long-term evolutionary framework, and allow for correlation and dating comparisons with other fossil-rich deposits from the Transantarctic Mountains. Chemical fingerprinting and dating of volcanic glass shards will also help date fossil- and ash-bearing horizons in nearby marine cores, such as those to be collected under the ANDRILL program. \u003cbr/\u003e\u003cbr/\u003eThe broader impacts are education at the postdoctoral, graduate, and undergraduate levels; and collaboration between a research institution and primarily undergraduate institution. The work also improves our understanding of global climate change during a critical period in the Earth\u0027s history.", "east": 164.5, "geometry": "POINT(162.25 -77.5)", "instruments": null, "is_usap_dc": false, "keywords": "Paleoclimate; Not provided; Lacustrine; Tundra; Middle Miocene; McMurdo Dry Valleys; Vegetation; Fossil; Antarctica", "locations": "Antarctica; McMurdo Dry Valleys", "north": -76.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Marchant, David", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -78.5, "title": "Collaborative Research: Deducing Late Neogene Antarctic Climate from Fossil-Rich Lacustrine Sediments in the Dry Valleys", "uid": "p0000186", "west": 160.0}, {"awards": "0739700 Marchant, David; 0739693 Ashworth, Allan", "bounds_geometry": "POLYGON((160 -77,160.2 -77,160.4 -77,160.6 -77,160.8 -77,161 -77,161.2 -77,161.4 -77,161.6 -77,161.8 -77,162 -77,162 -77.1,162 -77.2,162 -77.3,162 -77.4,162 -77.5,162 -77.6,162 -77.7,162 -77.8,162 -77.9,162 -78,161.8 -78,161.6 -78,161.4 -78,161.2 -78,161 -78,160.8 -78,160.6 -78,160.4 -78,160.2 -78,160 -78,160 -77.9,160 -77.8,160 -77.7,160 -77.6,160 -77.5,160 -77.4,160 -77.3,160 -77.2,160 -77.1,160 -77))", "dataset_titles": "Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains", "datasets": [{"dataset_uid": "600081", "doi": "10.15784/600081", "keywords": "Antarctica; Geochronology; Geology/Geophysics - Other; GPS; Solid Earth", "people": "Lewis, Adam; Ashworth, Allan", "repository": "USAP-DC", "science_program": null, "title": "Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/600081"}], "date_created": "Mon, 22 Jun 2009 00:00:00 GMT", "description": "This project studies the last vestiges of life in Antarctica from exceptionally well-preserved fossils of tundra life--mosses, diatoms, ostracods, Nothofagus leaves, wood, and insect remains recently discovered in ancient lake sediments from the McMurdo Dry Valleys. The area will be studied by an interdisciplinary team to elucidate information about climate and biogeography. These deposits offer unique and direct information about the characteristics of Antarctica during a key period in its history, the time when it was freezing. This information is critical for correlation with indirect proxies, such as though obtained from drill cores, for climate and state of the ice sheet. The results will also help understand the origin and migration of similar organisms found in South America, India and Australia.\u003cbr/\u003e\u003cbr/\u003eIn terms of broader impacts, this project supports an early career researcher, undergraduate and graduate student research, various forms of outreach to K12 students, and extensive international collaboration. The work also has societal relevance in that the outcomes will offer direct constraints on Antarctica\u0027s ice sheet during a time with atmospheric CO2 contents similar to those of the earth in the coming centuries, and thus may help predictive models of sea level rise.", "east": 162.0, "geometry": "POINT(161 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided; Antarctica; Vegetation; Paleoclimate; Middle Miocene; Tundra; Bu/es Data Repository; McMurdo Dry Valleys; Lacustrine; Fossil", "locations": "Antarctica; McMurdo Dry Valleys", "north": -77.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Ashworth, Allan; Lewis, Adam", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains", "uid": "p0000188", "west": 160.0}, {"awards": "0453680 Sigman, Daniel", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Robinson et al. 2004 Southern Ocean Diatom-bound Nitrogen and d15N Data", "datasets": [{"dataset_uid": "000119", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Robinson et al. 2004 Southern Ocean Diatom-bound Nitrogen and d15N Data", "url": "https://www.ncdc.noaa.gov/paleo-search/study/8751"}], "date_created": "Wed, 20 May 2009 00:00:00 GMT", "description": "The Southern Ocean may play a central role in causing ice ages and general global climate change. This work will reveal key characteristics of the glacial ocean, and may explain the cause of glacial/interglacial cycles by measuring the abundances of certain isotopes of nitrogen found in fossil diatoms from Antarctic marine sediments. Diatom-bound N is a potentially important recorder of nutrient utilization. The Southern Ocean\u0027s nutrient status, productivity and circulation may be central to setting global atmospheric CO2 contents and other aspects of climate. Previous attempts to make these measurements have yielded ambiguous results. This project includes both technique development and analyses, including measurements on diatoms from both sediment traps and culture experiments. With regard to broader impacts, this grant is focused around the education and academic development of a graduate student, by coupling their research with mentorship of an undergraduate researcher", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Sigman, Daniel", "platforms": "Not provided", "repo": "NCEI", "repositories": "NCEI", "science_programs": null, "south": -90.0, "title": "Application of a New Method for Isotopic Analysis of Diatom Microfossil-bound Nitrogen", "uid": "p0000550", "west": -180.0}, {"awards": "0230268 Anderson, Robert", "bounds_geometry": "POLYGON((-180 -50,-169 -50,-158 -50,-147 -50,-136 -50,-125 -50,-114 -50,-103 -50,-92 -50,-81 -50,-70 -50,-70 -51.5,-70 -53,-70 -54.5,-70 -56,-70 -57.5,-70 -59,-70 -60.5,-70 -62,-70 -63.5,-70 -65,-81 -65,-92 -65,-103 -65,-114 -65,-125 -65,-136 -65,-147 -65,-158 -65,-169 -65,180 -65,177 -65,174 -65,171 -65,168 -65,165 -65,162 -65,159 -65,156 -65,153 -65,150 -65,150 -63.5,150 -62,150 -60.5,150 -59,150 -57.5,150 -56,150 -54.5,150 -53,150 -51.5,150 -50,153 -50,156 -50,159 -50,162 -50,165 -50,168 -50,171 -50,174 -50,177 -50,-180 -50))", "dataset_titles": "Southern Ocean Deglacial Opal, Radionuclide, and Diatom Upwelling Data", "datasets": [{"dataset_uid": "000199", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Southern Ocean Deglacial Opal, Radionuclide, and Diatom Upwelling Data", "url": "https://www.ncdc.noaa.gov/paleo/study/8439"}], "date_created": "Mon, 12 Jan 2009 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the \"Silicic Acid Leakage Hypothesis\" as it relates to global carbon dioxide fluctuations during glacial-interglacial cycles.\u003cbr/\u003e\u003cbr/\u003eIntellectual Merit\u003cbr/\u003eThis project will evaluate the burial rate of biogenic opal in the Pacific sector of the Southern Ocean, both during the Last Glacial Maximum (LGM) and during the Holocene, as a critical test of the \"Silicic Acid Leakage Hypothesis\". \u003cbr/\u003e\u003cbr/\u003eThe \"Silicic Acid Leakage Hypothesis\" has been proposed recently to explain the glacial reduction in the carbon dioxide content of the atmosphere that has been reconstructed from Antarctic ice cores. Vast amounts of dissolved Si (silicic acid) are supplied to surface waters of the Southern Ocean by wind-driven upwelling of deep waters. Today, that dissolved Si is consumed almost quantitatively by diatoms who form skeletal structures composed of biogenic opal (a mineral form of silicon). According to the \"Silicic Acid Leakage Hypothesis\", environmental conditions in the Southern Ocean during glacial periods were unfavorable for diatom growth, leading to reduced (compared to interglacials) efficiency of dissolved Si utilization. Dissolved Si that was not consumed biologically in the glacial Southern ocean was then exported to the tropics in waters that sink in winter to depths of a few hundred meters along the northern fringes of the Antarctic Circumpolar Current, and return some decades later to the sunlit surface in tropical regions of wind-driven upwelling. \u003cbr/\u003e\u003cbr/\u003eAn increase in the amount of dissolved Si that \"leaks\" out of the Southern Ocean and later upwells at low latitudes could shift the global average composition of phytoplankton toward a greater abundance of diatoms and fewer CaCO3-secreting taxa (especially coccolithophorids). Consequences of such a taxonomic shift in the ocean\u0027s phytoplankton assemblage include:\u003cbr/\u003e a) an increase in the global average organic carbon/calcium carbonate ratio of particulate biogenic material sinking into the deep sea;\u003cbr/\u003e b) a reduction in the preservation and burial of calcium carbonate in marine sediments;\u003cbr/\u003e c) an increase in ocean alkalinity as a consequence of the first two changes mentioned above, and;\u003cbr/\u003e d) a lowering of atmospheric CO2 concentrations in response to increased alkalinity of ocean waters. \u003cbr/\u003e\u003cbr/\u003eA complete assessment of the Silicic acid leakage hypothesis will require an evaluation of: (1) Si utilization efficiencies using newly-developed stable isotopic techniques; (2) opal burial rates in low-latitude upwelling regions; and (3) opal burial rates in the Southern Ocean. This project addresses the last of these topics. \u003cbr/\u003e\u003cbr/\u003ePrevious work has shown that there was little change in opal burial rate between the LGM and the Holocene in the Atlantic and Indian sectors of the Southern Ocean. Preliminary results (summarized in this proposal) suggest that the Pacific may have been different, however, in that opal burial rates in the Pacific sector seem to have been lower during the LGM than during the Holocene, allowing for the possibility of \"Si leakage\" from this region. However, available results are too sparse to make any quantitative conclusions at this time. For that reason, we propose to make a comprehensive evaluation of opal burial rates in the Pacific sector of the Southern Ocean. \u003cbr/\u003e\u003cbr/\u003eSignificance and Broader Impacts\u003cbr/\u003eDetermining the mechanism(s) by which the ocean has regulated climate-related changes in the CO2 content of the atmosphere has been the focus of a substantial effort by paleoceanographers over the past two decades. The Silicic Acid Leakage Hypothesis is a viable new candidate mechanism that warrants further exploration and testing. Completion of the proposed work will contribute significantly to that effort. \u003cbr/\u003e\u003cbr/\u003eDuring the course of this work, several undergraduates will be exposed to paleoclimate research through their involvement in this project. Burckle and Anderson are both dedicated to the education and training of young scientists, and to the recruitment of women and under-represented minorities. To illustrate, two summer students (undergraduates) worked in Burckle\u0027s lab during the summer of 2002. One was a woman and the other (male) was a member of an under-represented minority. Anderson and Burckle will continue with similar recruitment efforts during the course of the proposed study. A minority student who has expressed an interest in working on this research during the summer of 2003 has already been identified.", "east": -70.0, "geometry": "POINT(-140 -57.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -50.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, Robert; Burckle, Lloyd", "platforms": "Not provided", "repo": "NCEI", "repositories": "NCEI", "science_programs": null, "south": -65.0, "title": "Opal Burial in the Pacific Sector of the Southern Ocean: A Test of the \"Silicic Acid Leakage Hypothesis.\"", "uid": "p0000457", "west": 150.0}, {"awards": "0230469 Wise, Sherwood", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 31 Jul 2007 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports the development of a standardized diatom image catalog or database. Diatoms are considered by many to be the most important microfossil group used today in the study of Antarctic Cenozoic marine deposits south of the Polar Front, from the near shore to deep sea. These microfossils, with walls of silica called frustules, are produced by single-celled plants (algae of the Class Bacillariophyceae) in a great variety of forms. Consequently, they have great biostratigraphic importance in the Southern Ocean and elsewhere for determining the age of marine sediments. Also, paleoclimatic and paleoceanographic studies increasingly rely on fossil diatom data. Changing biogeographic distributions of given taxa indicate shifting paleoecological conditions and provide evidence of the surface productivity and temperatures of ancient oceans. The generality of conclusions, though, is limited by variation in species concepts among workers. The broad research community relies, directly or indirectly, on the accurate identification of diatom species. Current technology can be used to greatly improve upon the standard references that have been used in making these identifications.\u003cbr/\u003e\u003cbr/\u003eThis project will develop an interactive digital-image catalog of modern and Cenozoic fossil diatoms of the Southern Ocean called \"DiatomWare\" for use by specialists and educators as an aid in rapid, accurate, and consistent species identification. As such, this will be a researcher\u0027s resource. It will be especially useful where it is not possible to maintain standard library resources such as onboard research vessels or at remote stations such as McMurdo Station. Major Antarctic geological drilling initiatives such as the new SHALDRIL project and the pending ANDRILL project will benefit from this product because they will rely heavily on diatom biostratigraphy to achieve their research objectives. The DiatomWare image database will be modeled on NannoWare, which was released in October 2002 on CD-ROM as a publication of the International Nannoplankton Association. BugCam will be adapted and modified as necessary to run the DiatomWare database, which can then be run from desktop or laptop computers. Images and text for the database will be scanned from the literature or captured in digital form from light or scanning electron microscopes.\u003cbr/\u003e\u003cbr/\u003eThe software interface will include a number of data fields that can be accessed by the click of a mouse button. Primary information will be the images and descriptions of the holotypes. In addition, representative images of paratypes or hypotypes will be included whenever possible in plain transmitted, differential interference contrast light and, when available, as drawings and SEM images. Also included will be a 35-word or less English diagnosis (\"mini-description\"), the biostratigraphic range in terms of zones and linear time, bibliographic references, lists of species considered junior synonyms, and similar species. The list of similar species will be cross-referenced with their respective image files to enable quick access for direct visual comparison on the viewing screen. Multiple images can be brought to the viewing screen simultaneously, and a zoom feature will permit image examination at a wide range of magnifications. Buttons will allow range charts, a bibliography, and key public-domain publications from the literature to be called up from within the program. The DiatomWare/BugCam package will be distributed at a nominal cost through a major nonprofit society via CD-ROM and free to Internet users on the Worldwide Web. Quality control measures will include critical review of the finalized database by a network of qualified specialists. The completed database will include descriptions and images of between 350 and 400 species, including fossil as well as modern forms that have no fossil record.\u003cbr/\u003e\u003cbr/\u003eThe development of the proposed diatom image database will be important to all research fields that depend on accurate biostratigraphic dating and paleoenvironmental interpretation of Antarctic marine sediments and plankton. The database will also serve as a valuable teaching tool for micropaleontology students and their professors, will provide a rapid means of keying down species for micropaleontologists of varying experience and background, and will promote a uniformity of taxonomic concepts since it will be developed and continuously updated with the advice of a community of nannofossil fossil experts. Broad use of the database is anticipated since it will be widely available through the Internet and on CD-ROM for use on personal computers that do not require large amounts of memory, costly specialized programs, or additional hardware.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Wise, Sherwood", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "DiatomWare: An Interactive Digital Image Catalog for Antarctic Cenozoic Diatoms", "uid": "p0000062", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Collaborative Research: Testing the Linchpin of WAIS Collapse with Diatoms and IRD in Pleistocene and Late Pliocene Strata of the Resolution Drift, Amundsen Sea, Antarctica
|
1939146 1939139 |
2024-02-20 | Scherer, Reed Paul; Siddoway, Christine | Part I, Non-technical Abstract <br/>Concerns that the West Antarctic Ice Sheet (WAIS) might be susceptible to releasing its ice as giant icebergs into the Southern Ocean due to a warming climate, raising global sea level, were first expressed more than 40 years ago. To best-assess this threat, scientists need to know whether such events occurred in the geologically recent past, during warm intervals of past glacial-interglacial cycles. Ocean drilling near the most vulnerable sector of the WAIS, in 2019, yielded seafloor geologic records demonstrating times when icebergs dropped large volumes of sands and pebbles, called ice-rafted detritus (IRD) in deep water of the Amundsen Sea. Occurring together with IRD that was eroded from bedrock beneath the ice sheets, there are abundant microfossils of diatoms (algal plankton), which indicate high biological productivity in the open ocean. The new sediment cores provide a complete, uninterrupted record of a time of dramatic fluctuations of ice sheet extent that occurred over the last 3 million years. Therefore, they provide the means to obtain clear answers to the question whether ice sheet collapse occurred in the past and offering clues to its potential future. This project will investigate sediment intervals where IRD coincides with evidence of high diatom production, to test whether these two criteria indicate rapid ice sheet collapse. Geochemical analysis of IRD pebbles will help trace the source of the icebergs to likely on-land sites. By analyzing conditions of high diatom and IRD accumulation in deep ocean sediment, where local coastal influences can be avoided, we will assess oceanographic and climatic conditions associated with past ice sheet collapse events. Diatoms provide powerful evidence of temperature and ocean productivity changes in the past, that, when linked to time, can translate into rates of ice sheet drawdown. These results will provide critical data for designing, constraining and testing the next suite computer models that can determine the likelihood and timing of future ice sheet collapse in a warming world. The project will include training of undergraduate and graduate students from diverse backgrounds, and the public will be introduced to Antarctic science and engaged through several different outreach efforts.<br/><br/>Part 2, Technical Abstract<br/><br/>New drillcores from the Amundsen Sea, Antarctica (IODP Expedition 379) contain a continuous record of oceanographic changes and iceberg rafted debris (IRD) spanning the last 5 million years. This study aims to identify the signature of retreat/collapse of the West Antarctic Ice Sheet (WAIS) in these continental margin, deep-sea sediments by quantitatively analyzing, in detail, diatom and IRD records across glacial-interglacial lithostratigraphic transitions to establish the timing and frequency of Late Pliocene and Pleistocene WAIS collapse events. The investigators will secure age constraints and diagnostic observations of marine paleoenvironmental conditions for selected interglacial intervals of cores from sites U1532 and U1533, using high resolution micropaleontology of diatom assemblages coupled with microstratigraphic analysis of IRD depositional events, while petrography, geochronology and thermochronology of iceberg rafted clasts will provide evidence of iceberg sources and pathways. Depositional paleotemperatures will be assessed via a new paleotemperature proxy based on quantitative assessment of morphologic changes in the dominant Southern Ocean diatom Fragilariopsis kerguelensis. Their results will contribute to parameterization of new ice sheet models that seek to reconstruct and forecast West Antarctic Ice Sheet behavior. This project will directly contribute to undergraduate education at an undergraduate-only college and at a public university that serves a demographic typified by first generation university students and underrepresented groups. Spanning geology, geochemistry, sedimentology, paleontology and paleoceanography, the proposed work will allow undergraduate students to develop diverse skills through hands-on research within a collaborative team that is dedicated to societally relevant research. The two graduate students will conduct original research and work alongside/mentor undergraduates, making for a well-rounded research experience that prepares them for success in future academic or employment sectors. The discoveries that come from this deep-sea record from West Antarctica will be communicated by students and investigators at national and international conferences and an array of public science outreach events.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-120 -66,-117.5 -66,-115 -66,-112.5 -66,-110 -66,-107.5 -66,-105 -66,-102.5 -66,-100 -66,-97.5 -66,-95 -66,-95 -67.1,-95 -68.2,-95 -69.3,-95 -70.4,-95 -71.5,-95 -72.6,-95 -73.7,-95 -74.8,-95 -75.9,-95 -77,-97.5 -77,-100 -77,-102.5 -77,-105 -77,-107.5 -77,-110 -77,-112.5 -77,-115 -77,-117.5 -77,-120 -77,-120 -75.9,-120 -74.8,-120 -73.7,-120 -72.6,-120 -71.5,-120 -70.4,-120 -69.3,-120 -68.2,-120 -67.1,-120 -66)) | POINT(-107.5 -71.5) | false | false | ||||||||||||||
LTER: MCM6 - The Roles of Legacy and Ecological Connectivity in a Polar Desert Ecosystem
|
2224760 |
2023-11-14 | Gooseff, Michael N.; Adams, Byron; Barrett, John; Diaz, Melisa A.; Doran, Peter; Dugan, Hilary A.; Mackey, Tyler; Morgan-Kiss, Rachael; Salvatore, Mark; Takacs-Vesbach, Cristina; Zeglin, Lydia H. |
|
In this iteration of the McMurdo LTER project (MCM6), the project team will test ecological connectivity and stability theory in a system subject to strong physical drivers (geological legacies, extreme seasonality, and contemporary climate change) and driven by microbial organisms. Since microorganisms regulate most of the world's critical biogeochemical functions, these insights will be relevant far beyond polar ecosystems and will inform understanding and expectations of how natural and managed ecosystems respond to ongoing anthropogenic global change. MCM6 builds on previous foundational research, both in Antarctica and within the LTER network, to consider the temporal aspects of connectivity and how it relates to ecosystem stability. The project will examine how changes in the temporal variability of ecological connectivity interact with the legacies of the existing landscape that have defined habitats and biogeochemical cycling for millennia. The project team hypothesizes that the structure and functioning of the MDV ecosystem is dependent upon legacies and the contemporary frequency, duration, and magnitude of ecological connectivity. This hypothesis will be tested with new and continuing monitoring, experiments, and analyses of long-term datasets to examine: 1) the stability of these ecosystems as reflected by sentinel taxa, 2) the relationship between ecological legacies and ecosystem resilience, 3) the importance of material carryover during periods of low connectivity to maintaining biological activity and community stability, and 4) how changes in disturbance dynamics disrupt ecological cycles through the polar night. Tests of these hypotheses will occur in field and modeling activities using new and long-term datasets already collected. New datasets resulting from field activities will be made freely available via widely-known online databases (MCM LTER and EDI). The project team has also developed six Antarctic Core Ideas that encompass themes from data literacy to polar food webs and form a consistent thread across the education and outreach activities. Building on past success, collaborations will be established with teachers and artists embedded within the science teams, who will work to develop educational modules with science content informed by direct experience and artistic expression. Undergraduate mentoring efforts will incorporate computational methods through a new data-intensive scientific training program for MCM REU students. The project will also establish an Antarctic Research Experience for Community College Students at CU Boulder, to provide an immersive educational and research experience for students from diverse backgrounds in community colleges. MCM LTER will continue its mission of training and mentoring students, postdocs, and early career scientists as the next generation of leaders in polar ecosystem science and stewardship. Historically underrepresented participation will be expanded at each level of the project. To aid in these efforts, the project has established Education & Outreach and Diversity, Equity, and Inclusion committees to lead, coordinate, support, and integrate these activities through all aspects of MCM6. | POINT(162.87 -77) | POINT(162.87 -77) | false | false | |||||||||||||
ANT LIA: Collaborative Research: Adaptations of Southern Ocean Diatoms to Manganese Scarcity: Can Physiological Ingenuity Overcome Unfavorable Chemistry?
|
2149070 |
2023-03-13 | Hawco, Nicholas; Cohen, Natalie | No dataset link provided | This proposal represents collaborative research to explore manganese (Mn) limitation in Antarctic diatoms by two early career investigators. Diatoms are central players in the Southern Ocean carbon cycle, where the micronutrient chemistry is fundamentally different from other oceans. The Southern Ocean is characterized by widespread low Mn, coupled with high zinc (Zn). High Zn levels are potentially toxic to diatoms as Zn can competitively inhibit Mn uptake and metabolism, compromising the ability of building critical cellular components, thus impacting the biological pump. Using culture experiments with a matrix of micronutrient treatments (Mn, Zn, Fe) and irradiances, and using physiological and transcriptomic approaches, along with biochemical principles, the Principal Investigators will address the central hypothesis (that diatoms from the Southern Ocean possess unique physiological mechanisms to adapt to low Mn/high Zn) by quantifying rates of uptake and transporter binding constants. The transcriptomics approach will help to identify candidate genes that may provide Antarctic diatoms physiological mechanisms in low Mn/high Zn environment. The project does not require fieldwork but instead would make use of culture experiments with 4 diatom species (3 Antarctic, and 1 temperate). The proposed approach will also enable the goal of developing biomarker(s) for assessing Mn stress or Zn toxicity and results from the physiological experiments will help parameterize models of micronutrient limitation in the Southern Ocean. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||||
The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information?
|
1744871 |
2021-07-28 | Robinson, Rebecca | The chemical composition of diatom fossils in the Southern Ocean provides information about the environmental history of Antarctica, including sea ice extent, biological production, and ocean nutrient distribution. The sea ice zone is an important habitat for a group of diatoms, largely from the genus Chaetoceros, that have a unique life cycle stage under environmental stress, when they produce a structure called a resting spore. Resting spores are meant to reseed the surface ocean when conditions are more favorable. The production of these heavy resting spores tends to remove significant amounts of carbon and silicon, essential nutrients, out of the surface ocean. As a result, this group has the potential to remove carbon from the surface ocean and can impact the sedimentary record scientists use to reconstruct environmental change. This project explores the role of resting spores and nutrients in the sedimentary record using the nitrogen isotopic signature of these fossils and how those measurements are used to estimate carbon cycle changes. Measurements of nitrogen stable isotopes of nitrate, biomass, and diatom-bound nitrogen and silicon-to-nitrogen ratios of individual species grown in the laboratory are used to quantify how resting spores record nutrient drawdown in the water column and to what degree their signature is biased toward low nutrient conditions. Laboratory incubations were conducted with surface sediment containing Chaetoceros spp.. The emergence of vegetative cells and subsequent formation of resting spores is manipulated with the addition of nutrients, primarily nitrate. The resulting samples, both of vegetative cells and resting spores were measured for diatom-bound d15N. Resting spore d15N values are consistently lower than the vegetative d15N from the same incubations. The incubation results will be used to quantify nutrient drawdown in sea ice environments during two contrasting intervals in earth history, the last ice age and the warm Pliocene. The project provided training and research opportunities for undergraduate and graduate students. Research efforts in Antarctic earth sciences are disseminated through an interactive display at the home institution and during university sponsored events. This work addresses uncertainties in how Chaetoceros resting spores record surface nutrient conditions in their nitrogen stable isotopic composition, the relative impact of their specific signal with respect to the full sedimentary assemblage, and their potential to bias or enhance environmental reconstructions in the sea ice zone. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||||||||||
Production and Fate of Oxylipins in Waters of the Western Antarctic Peninsula: Linkages Between UV Radiation, Lipid Peroxidation, and Carbon Cycling
|
1543328 |
2020-06-19 | Van Mooy, Benjamin |
|
The depletion of stratospheric ozone over Antarctica leads to abnormally high levels of ultraviolet radiation (UVR) from the sun reaching the surface of the ocean. This phenomenon is predicted to continue for the next half century, despite bans on ozone-destroying pollutants. Phytoplankton in the near surface ocean are subjected to variable amounts of UVR and contain a lot of lipids (fats). Because phytoplankton are at the base of the food chain their lipids makes their way into the Antarctic marine ecosystem's food web. The molecular structures of phytoplankton lipids are easily altered by UVR. When this happens, their lipids can be transformed from healthy molecules into potentially harmful molecules(oxylipins) known to be disruptive to reproductive and developmental processes. This project will use state-of-the-art molecular methods to answer questions about extent to which UVR damages lipid molecules in phytoplankton, and how these resultant molecules might effect the food chain in the ocean near Antarctica. <br/><br/><br/>Lipid peroxidation is often invoked as consequence of increased exposure of phytoplankton to UVR-produced reactive oxygen species (ROS), but the literature is practically silent on peroxidized lipids and their byproducts (i.e. oxylipins) in the ocean. In waters of the West Antarctic Peninsula (WAP), spring-time blooms of diatoms contribute significantly to overall marine primary production. Oxylipins from diatoms can be highly bioactive; their impact on zooplankton grazers, bacteria, and other phytoplankton has been the subject of intense study. However, almost all of this work has focused on the production of oxylipins via enzymatic pathways, not by pathways involving UVR and/or ROS. Furthermore, rigorous experimental work on the effects of oxylipins has been confined almost exclusively to pure cultures and artificial communities. Thus, the true potential of these molecules to disrupt carbon cycling is very poorly-constrained, and is entirely unknown in the waters of the WAP. Armed with new highly-sensitive, state-of-the-art analytical techniques based on high-mass-resolution mass spectrometry, the principal investigator and his research group have begun to uncover an exquisite diversity of oxylipins in natural WAP planktonic communities. These techniques will be applied to understand the connections between UVR, ROS, oxylipins, and carbon cycling. The project will answer the question of how UVR, via ROS, affects oxylipin production by diatoms in WAP surface waters in controlled experiments conducted at a field station. With the answer to this question in hand, the project will also seek to answer how this phenomenon impacts the flow of carbon, particularly the export of organic carbon from the system, during a research cruise. The level of UVR-induced stresses experienced by oxylipin-rich planktonic communities in the WAP is unique, making Antarctica the only location for answering these fundamental questions. Major activities will include laboratory experiments with artificial membranes and diatom cultures, as well field experiments with phytoplankton, zooplankton, and bacteria in WAP waters. | None | None | false | false | |||||||||||||
Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump
|
1341464 1341432 |
2020-02-26 | Robinson, Rebecca; Brzezinski, Mark | The rise in atmospheric carbon dioxide concentrations and associated climate changes make understanding the role of the ocean in large scale carbon cycle a priority. Geologic samples allow exploration of potential mechanisms for carbon dioxide drawdown during glacial periods through the use of geochemical proxies. Nitrogen and silicon isotope signatures from fossil diatoms (microscopic plants) are used to investigate changes in the physical supply and biological demand for nutrients (like nitrogen and silicon and carbon) in the Southern Ocean. The project will evaluate the use the nitrogen and silicon isotope proxies through a series of laboratory experiments and Southern Ocean field sampling. The results will provide quantification of real relationships between nitrogen and silicon isotopes and nutrient usage in the Southern Ocean and allow exploration of the role of other factors, including biological diversity, ice cover, and mixing, in altering the chemical signatures recorded by diatoms. Seafloor sediment samples will be used to evaluate how well the signal created in the water column is recorded by fossil diatoms buried in the seafloor. Improving the nutrient isotope proxies will allow for a more quantitative understanding of the role of polar biology in regulating natural variation in atmospheric carbon dioxide. The project will also result in the training of a graduate student and development of outreach materials targeting a broad popular audience. This project seeks to test the fidelity of the diatom nitrogen and silicon isotope proxies, two commonly used paleoceanographic tools for investigating the role of the Southern Ocean biological pump in regulating atmospheric CO2 concentrations on glacial-interglacial timescales. Existing ground-truthing data, including culture experiments, surface sediment data and downcore reconstructions, all suggest that nutrient utilization is the primary driver of isotopic variation in the Southern Ocean. However, strong contribution of interspecific variation is implied by recent culture results. Moreover, field and laboratory studies present some contradictory results in terms of the relative importance of interspecific variation and of inferred post-depositional alteration of the nutrient isotope signals. Here, a first order test of the N and Si diatom nutrient isotope paleo-proxies, involving water column dissolved and particulate sampling and laboratory culturing of field-isolates, is proposed. Southern Ocean water, biomass, live diatoms and fossil diatom sampling will be conducted to investigate species and assemblage related variability in diatom nitrogen and silicon isotopes and their relationship to surface nutrient fields and early diagenesis. Access to fresh materials produced in an analogous environmental context to the sediments of primary interest is critical for making robust paleoceanographic reconstructions. Field sampling will occur along 175°W, transecting the Antarctic Circumpolar Current from the subtropics to the marginal ice edge. Collection of water, sinking/suspended particles and multi-core samples from 13 stations and 3 shipboard incubation experiments will be used to test four proposed hypotheses that together evaluate the significance of existing culture results and seek to allow the best use of diatom nutrient isotope proxies in evaluating the biological pump. | POLYGON((-175 -54,-174 -54,-173 -54,-172 -54,-171 -54,-170 -54,-169 -54,-168 -54,-167 -54,-166 -54,-165 -54,-165 -55.3,-165 -56.6,-165 -57.9,-165 -59.2,-165 -60.5,-165 -61.8,-165 -63.1,-165 -64.4,-165 -65.7,-165 -67,-166 -67,-167 -67,-168 -67,-169 -67,-170 -67,-171 -67,-172 -67,-173 -67,-174 -67,-175 -67,-175 -65.7,-175 -64.4,-175 -63.1,-175 -61.8,-175 -60.5,-175 -59.2,-175 -57.9,-175 -56.6,-175 -55.3,-175 -54)) | POINT(-170 -60.5) | false | false | ||||||||||||||
Collaborative Research: Cobalamin and Iron Co-Limitation Of Phytoplankton Species in Terra Nova Bay
|
1643684 1644073 |
2019-08-08 | DiTullio, Giacomo; Lee, Peter |
|
Phytoplankton blooms in the coastal waters of the Ross Sea, Antarctica are typically dominated by either diatoms or Phaeocystis Antarctica (a flagellated algae that often can form large colonies in a gelatinous matrix). The project seeks to determine if an association of bacterial populations with Phaeocystis antarctica colonies can directly supply Phaeocystis with Vitamin B12, which can be an important co-limiting micronutrient in the Ross Sea. The supply of an essential vitamin coupled with the ability to grow at lower iron concentrations may put Phaeocystis at a competitive advantage over diatoms. Because Phaeocystis cells can fix more carbon than diatoms and Phaeocystis are not grazed as efficiently as diatoms, the project will help in refining understanding of carbon dynamics in the region as well as the basis of the food web webs. Such understanding also has the potential to help refine predictive ecological models for the region. The project will conduct public outreach activities and will contribute to undergraduate and graduate research. Engagement of underrepresented students will occur during summer student internships. A collaboration with Italian Antarctic researchers, who have been studying the Terra Nova Bay ecosystem since the 1980s, aims to enhance the project and promote international scientific collaborations. <br/><br/>The study will test whether a mutualistic symbioses between attached bacteria and Phaeocystis provides colonial cells a mechanism for alleviating chronic Vitamin B12 co-limitation effects thereby conferring them with a competitive advantage over diatom communities. The use of drifters in a time series study will provide the opportunity to track in both space and time a developing algal bloom in Terra Nova Bay and to determine community structure and the physiological nutrient status of microbial populations. A combination of flow cytometry, proteomics, metatranscriptomics, radioisotopic and stable isotopic labeling experiments will determine carbon and nutrient uptake rates and the role of bacteria in mitigating potential vitamin B12 and iron limitation. Membrane inlet and proton transfer reaction mass spectrometry will also be used to estimate net community production and release of volatile organic carbon compounds that are climatically active. Understanding how environmental parameters can influence microbial community dynamics in Antarctic coastal waters will advance an understanding of how changes in ocean stratification and chemistry could impact the biogeochemistry and food web dynamics of Southern Ocean ecosystems. | POLYGON((-180 -72,-173.6 -72,-167.2 -72,-160.8 -72,-154.4 -72,-148 -72,-141.6 -72,-135.2 -72,-128.8 -72,-122.4 -72,-116 -72,-116 -72.7,-116 -73.4,-116 -74.1,-116 -74.8,-116 -75.5,-116 -76.2,-116 -76.9,-116 -77.6,-116 -78.3,-116 -79,-122.4 -79,-128.8 -79,-135.2 -79,-141.6 -79,-148 -79,-154.4 -79,-160.8 -79,-167.2 -79,-173.6 -79,180 -79,178 -79,176 -79,174 -79,172 -79,170 -79,168 -79,166 -79,164 -79,162 -79,160 -79,160 -78.3,160 -77.6,160 -76.9,160 -76.2,160 -75.5,160 -74.8,160 -74.1,160 -73.4,160 -72.7,160 -72,162 -72,164 -72,166 -72,168 -72,170 -72,172 -72,174 -72,176 -72,178 -72,-180 -72)) | POINT(-158 -75.5) | false | false | |||||||||||||
Spring Blooms of Sea Ice Algae Along the Western Antarctic Peninsula: Effects of Warming and Freshening on Cell Physiology and Biogeochemical Cycles.
|
1744645 |
2019-07-23 | Young, Jodi; Deming, Jody |
|
Rapid changes in the extent and thickness of sea ice during the austral spring subject microorganisms within or attached to the ice to large fluctuations in temperature, salinity, light and nutrients. This project aims to identify cellular responses in sea-ice algae to increasing temperature and decreasing salinity during the spring melt along the western Antarctic Peninsula and to determine how associated changes at the cellular level can potentially affect dynamic, biologically driven processes. Understanding how sea-ice algae cope with, and are adapted to, their environment will not only help predict how polar ecosystems may change as the extent and thickness of sea ice change, but will also provide a better understanding of the widespread success of photosynthetic life on Earth. The scientific context and resulting advances from the research will be communicated to the general public through outreach activities that includes work with Science Communication Fellows and the popular Polar Science Weekend at the Pacific Science Center in Seattle, Washington. The project will provide student training to college students as well as provide for educational experiences for K-12 school children. <br/><br/><br/>There is currently a poor understanding of feedback relationships that exist between the rapidly changing environment in the western Antarctic Peninsula region and sea-ice algal production. The large shifts in temperature and salinity that algae experience during the spring melt affect critical cellular processes, including rates of enzyme-catalyzed reactions involved in photosynthesis and respiration, and the production of stress-protective compounds. These changes in cellular processes are poorly constrained but can be large and may have impacts on local ecosystem productivity and biogeochemical cycles. In particular, this study will focus on the thermal sensitivity of enzymes and the cycling of compatible solutes and exopolymers used for halo- and cryo-protection, and how they influence primary production and the biogeochemical cycling of carbon and nitrogen. Approaches will include field sampling during spring melt, incubation experiments of natural sea-ice communities under variable temperature and salinity conditions, and controlled manipulation of sea-ice algal species in laboratory culture. Employment of a range of techniques, from fast repetition rate fluorometry and gross and net photosynthetic measurements to metabolomics and enzyme kinetics, will tease apart the mechanistic effects of temperature and salinity on cell metabolism and primary production with the goal of quantifying how these changes will impact biogeochemical processes along the western Antarctic Peninsula.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-64.4 -64.2,-64.38 -64.2,-64.36 -64.2,-64.34 -64.2,-64.32 -64.2,-64.3 -64.2,-64.28 -64.2,-64.26 -64.2,-64.24 -64.2,-64.22 -64.2,-64.2 -64.2,-64.2 -64.26,-64.2 -64.32,-64.2 -64.38,-64.2 -64.44,-64.2 -64.5,-64.2 -64.56,-64.2 -64.62,-64.2 -64.68,-64.2 -64.74,-64.2 -64.8,-64.22 -64.8,-64.24 -64.8,-64.26 -64.8,-64.28 -64.8,-64.3 -64.8,-64.32 -64.8,-64.34 -64.8,-64.36 -64.8,-64.38 -64.8,-64.4 -64.8,-64.4 -64.74,-64.4 -64.68,-64.4 -64.62,-64.4 -64.56,-64.4 -64.5,-64.4 -64.44,-64.4 -64.38,-64.4 -64.32,-64.4 -64.26,-64.4 -64.2)) | POINT(-64.3 -64.5) | false | false | |||||||||||||
Collaborative research: Antarctic diatom proteorhodopsins: Characterization and a potential role in the iron-limitation response
|
1745036 1744760 |
2019-06-16 | Marchetti, Adrian; Septer, Alecia; Hopkinson, Brian |
|
Proteorhodopsins (PR) are retinal-binding membrane proteins that can act as light-driven proton pumps to generate energy that can be used for metabolism and growth. The discovery of PRs in many diverse marine prokaryotic microbes has initiated extensive investigations into their distributions and functional roles. Recently, a rhodopsin-like gene of the proton-pumping variety was identified in diatoms thus revealing their presence within obligate marine eukaryotic photoautotrophs. Since this time, PRs have been identified in a number of diatom isolates although there appears to be a much higher frequency of PR in diatoms residing in cold, iron-limited regions of the ocean, particularly in the Southern Ocean (SO). PR is especially suited for use in SO phytoplankton since unlike conventional photosynthesis, it uses no iron and its reaction rate is insensitive to temperature. The overall objective of our proposed project is to characterize Antarctic diatom-PR and determine its role in the adaptation of SO diatoms to the prevailing conditions of low iron concentrations and extremely low temperatures. Our research objectives will be achieved through a combination of molecular, biochemical and physiological measurements in diatom isolates recently obtained from the Western Antarctic Peninsula region. We will determine the proton-pumping characteristics and pumping rates of PR as a function of light intensity and wavelength, the resultant PR-linked intracellular ATP production rates, and the cellular localization of the protein. We will examine under which environmental conditions Antarctic diatom-PR is most highly expressed and construct a cellular energy budget that includes diatom-PR when grown under these different growth conditions. Estimates of the energy flux generated by PR in PR-containing diatoms will be compared to total energy generation by the photosynthetic light reactions and metabolically coupled respiration rates. Finally, we will compare the characteristics and gene expression of diatom-PR in Antarctic diatoms to PR-containing diatoms isolated from temperate regions in order to investigate if there is a preferential dependence on energy production through diatom-PR in diatoms residing in cold, iron-limited regions of the ocean. | POLYGON((-77 -61,-75.2 -61,-73.4 -61,-71.6 -61,-69.8 -61,-68 -61,-66.2 -61,-64.4 -61,-62.6 -61,-60.8 -61,-59 -61,-59 -62.1,-59 -63.2,-59 -64.3,-59 -65.4,-59 -66.5,-59 -67.6,-59 -68.7,-59 -69.8,-59 -70.9,-59 -72,-60.8 -72,-62.6 -72,-64.4 -72,-66.2 -72,-68 -72,-69.8 -72,-71.6 -72,-73.4 -72,-75.2 -72,-77 -72,-77 -70.9,-77 -69.8,-77 -68.7,-77 -67.6,-77 -66.5,-77 -65.4,-77 -64.3,-77 -63.2,-77 -62.1,-77 -61)) | POINT(-68 -66.5) | false | false | |||||||||||||
Iron and Light Limitation in Ecologically Important Polar Diatoms: Comparative Transcriptomics and Development of Molecular Indicators
|
1341479 |
2019-03-11 | Marchetti, Adrian |
|
The Southern Ocean surrounding Antarctica is changing rapidly in response to Earth's warming climate. These changes will undoubtedly influence communities of primary producers (the organisms at the base of the food chain, particularly plant-like organisms using sunlight for energy) by altering conditions that influence their growth and composition. Because primary producers such as phytoplankton play an important role in global biogeochemical cycling, it is essential to understand how they will respond to changes in their environment. The growth of phytoplankton in certain regions of the Southern Ocean is constrained by steep gradients in chemical and physical properties that vary in both space and time. Light and iron have been identified as key variables influencing phytoplankton abundance and distribution within Antarctic waters. Microscopic algae known as diatoms are dominant members of the phytoplankton and sea ice communities, accounting for significant proportions of primary production. The overall objective of this project is to identify the molecular bases for the physiological responses of polar diatoms to varying light and iron conditions. The project should provide a means of evaluating the extent these factors regulate diatom growth and influence net community productivity in Antarctic waters. Although numerous studies have investigated how polar diatoms are affected by varying light and iron, the cellular mechanisms leading to their distinct physiological responses remain unknown. We observed several growth responses, but a majority of polar diatom growth rates and photophysiology did not appear to be co-limited by iron and light limitation. Using comparative transcriptomics, we have examined the expression patterns of key genes and metabolic pathways in several ecologically important polar diatoms isolated from Antarctic waters and grown under varying iron and irradiance conditions. In addition, molecular indicators for iron and light limitation will be developed within these polar diatoms through the identification of iron- and light-responsive genes -- the expression patterns of which can be used to determine their physiological status. Upon verification in laboratory cultures, these indicators will be utilized by way of metatranscriptomic sequencing to examine iron and light limitation in natural diatom assemblages collected along environmental gradients in Western Antarctic Peninsula waters. In order to fully understand the role phytoplankton play in Southern Ocean biogeochemical cycles, dependable methods that provide a means of elucidating the physiological status of phytoplankton at any given time and location are essential. | POLYGON((-72.8 -48,-67.12 -48,-61.44 -48,-55.76 -48,-50.08 -48,-44.4 -48,-38.72 -48,-33.04 -48,-27.36 -48,-21.68 -48,-16 -48,-16 -50.02,-16 -52.04,-16 -54.06,-16 -56.08,-16 -58.1,-16 -60.12,-16 -62.14,-16 -64.16,-16 -66.18,-16 -68.2,-21.68 -68.2,-27.36 -68.2,-33.04 -68.2,-38.72 -68.2,-44.4 -68.2,-50.08 -68.2,-55.76 -68.2,-61.44 -68.2,-67.12 -68.2,-72.8 -68.2,-72.8 -66.18,-72.8 -64.16,-72.8 -62.14,-72.8 -60.12,-72.8 -58.1,-72.8 -56.08,-72.8 -54.06,-72.8 -52.04,-72.8 -50.02,-72.8 -48)) | POINT(-44.4 -58.1) | false | false | |||||||||||||
NSFGEO-NERC: Evolutionary Response of Southern Ocean Diatoms to Environmental Change
|
1543245 |
2017-12-29 | Rynearson, Tatiana; Bishop, Ian | The research will examine how diatoms (an important group of plankton in the Southern Ocean) adapt to environmental change. Diatoms will be sampled from different regions of the Southern Ocean, including the Drake Passage, the Pacific Sector of the Southern Ocean and the Ross Sea and examined to determine the range of genetic variation among diatoms in these regions. Experiments on a range of diatoms will be conducted in home laboratories and will be aimed at measuring shifts in physiological capacities over many generations in response to directional changes in the environment (temperature and pH). The information on the genetic diversity of field populations combined with information on potential rates of adaptability and genome changes will provide insight into ways in which polar marine diatoms populations may respond to environmental changes that may occur in surface oceans in the future or may have occurred during past climate conditions. Such information allows better modeling of biogeochemical cycles in the ocean as well as improves our abilities to interpret records of past ocean conditions. The project will support a doctoral student and a postdoctoral researcher as well as several undergraduate students. These scientists will learn the fundamentals of experimental evolution, a skill set that is being sought in the fields of biology and oceanography. The project also includes a collaboration with the Metcalf Institute for Marine and Environmental Reporting that will design and facilitate a session focused on current research related to evolution and climate change to be held at the annual conference of the National Association of Science Writers (NASW). <br/><br/>Both physiological and genetic variation are key parameters for understanding evolutionary processes in phytoplankton but they are essentially unknown for Southern Ocean diatoms. The extent to which these two factors determine plasticity and adaptability in field populations and the interaction between them will influence how and whether cold-adapted diatoms can respond to changing environments. This project includes a combination of field work to identify genetic diversity within diatoms using molecular approaches and experiments in the lab to assess the range of physiological variation in contemporary populations of diatoms and evolution experiments in the lab to assess how the combination of genetic diversity and physiological variation influence the evolutionary potential of diatoms under a changing environment. This research will uncover general relationships between physiological variation, genetic diversity, and evolutionary potential that may apply across microbial taxa and geographical regions, substantially improving efforts to predict shifts in marine ecosystems. Results from this study can be integrated into developing models that incorporate evolution to predict ecosystem changes under future climate change scenarios. | None | None | false | false | ||||||||||||||
Collaborative Research: Investigating Iron-inding Ligands in Southern Ocean Diatom Communities: The Role of Diatom-Bacteria Associations
|
1443474 |
2017-12-29 | Jenkins, Bethany |
|
This project focuses on an important group of photosynthetic algae in the Southern Ocean (SO), diatoms, and the roles associated bacterial communities play in modulating their growth. Diatom growth fuels the SO food web and balances atmospheric carbon dioxide by sequestering the carbon used for growth to the deep ocean on long time scales as cells sink below the surface. The diatom growth is limited by the available iron in the seawater, most of which is not freely available to the diatoms but instead is tightly bound to other compounds. The nature of these compounds and how phytoplankton acquire iron from them is critical to understanding productivity in this region and globally. The investigators will conduct experiments to characterize the relationship between diatoms, their associated bacteria, and iron in open ocean and inshore waters. Experiments will involve supplying nutrients at varying nutrient ratios to natural phytoplankton assemblages to determine how diatoms and their associated bacteria respond to different conditions. This will provide valuable data that can be used by climate and food web modelers and it will help us better understand the relationship between iron, a key nutrient in the ocean, and the organisms at the base of the food web that use iron for photosynthetic growth and carbon uptake. The project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. The project supports early career senior investigators and the training of graduate and undergraduate students as well as outreach activities with middle school Girl Scouts in Rhode Island, inner city middle and high school age girls in Virginia, and middle school girls in Florida.<br/><br/>The project combines trace metal biogeochemistry, phytoplankton cultivation, and molecular biology to address questions regarding the production of iron-binding compounds and the role of diatom-bacterial interactions in this iron-limited region. Iron is an essential micronutrient for marine phytoplankton. Phytoplankton growth in the SO is limited by a lack of sufficient iron, with important consequences for carbon cycling and climate in this high latitude regime. Some of the major outstanding questions in iron biogeochemistry relate to the organic compounds that bind >99.9% of dissolved iron in surface oceans. The investigators' prior research in this region suggests that production of strong iron-binding compounds in the SO is linked to diatom blooms in waters with high nitrate to iron ratios. The sources of these compounds are unknown but the investigators hypothesize that they may be from bacteria, which are known to produce such compounds for their own use. The project will test three hypotheses concerning the production of these iron-binding compounds, limitations on the biological availability of iron even if present in high concentrations, and the roles of diatom-associated bacteria in these processes. Results from this project will provide fundamental information about the biogeochemical trigger, and biological sources and function, of natural strong iron-binding compound production in the SO, where iron plays a critical role in phytoplankton productivity, carbon cycling, and climate regulation. | None | None | false | false | |||||||||||||
Collaborative Research: Penguin Foraging Reveals Phytoplankton Spatial Structure in the Ross Sea
|
1142074 1142174 |
2015-12-14 | Smith, Walker; Ballard, Grant | Abstract<br/><br/>The Ross Sea is believed to contributes a huge portion (~1/3) of the primary productivity of the Southern Ocean and is home to a similar large portion of the top predators (e.g. 38% of Adelie, 28% of Emperor penguins) of the Antarctic sea ice ecosystem. The trophic pathways in this system are complex in both space and time. One scenario for the Ross Sea ecosystem is that diatoms are grazed by krill, which are in turn the preferred food of fish, penguins and other predators. Phaeocystis colonies, on the other hand lead to grazing by pteropods and other organisms that are a non-favoured food source for top predators. Remotely sensed chlorophyll, indicating all phytoplankton, is then suggested to be a relatively poor predictor of penguin foraging efforts. This is also consistent with notion that algal species composition is very important to penguin grazing pressure, mediated by krill, and perhaps resulting in selective depletion. <br/><br/>This collaborative research sets out to use an autonomous glider, equipped with a range of sensors, and informed by satellite chlorophyll imagery to be combined with 3-dimenisonal active penguin tracking to their preferred foraging sites. The effect of localized grazing pressure of krill on the appearance and disappearance of algal blooms will also be followed. Overall the objective of the research is to reconcile and explain several years of the study of the foraging habits and strategies of (top predator) penguins at the Cape Crozier site (Ross Island), with the dynamics of krill and their supporting algal food webs. The use of a glider to answer a primarily ecological questions is subject to moderate to high risk, and is potentially transformative. | POLYGON((165.9 -76.9,166.25 -76.9,166.6 -76.9,166.95 -76.9,167.3 -76.9,167.65 -76.9,168 -76.9,168.35 -76.9,168.7 -76.9,169.05 -76.9,169.4 -76.9,169.4 -76.97,169.4 -77.04,169.4 -77.11,169.4 -77.18,169.4 -77.25,169.4 -77.32,169.4 -77.39,169.4 -77.46,169.4 -77.53,169.4 -77.6,169.05 -77.6,168.7 -77.6,168.35 -77.6,168 -77.6,167.65 -77.6,167.3 -77.6,166.95 -77.6,166.6 -77.6,166.25 -77.6,165.9 -77.6,165.9 -77.53,165.9 -77.46,165.9 -77.39,165.9 -77.32,165.9 -77.25,165.9 -77.18,165.9 -77.11,165.9 -77.04,165.9 -76.97,165.9 -76.9)) | POINT(167.65 -77.25) | false | false | ||||||||||||||
Southern Ocean Diatom Taphonomy and Paleoproductivity: A Laboratory Study of Silica Degradation and Export
|
1043690 |
2014-02-14 | Haji-Sheikh, Michael; Scherer, Reed Paul |
|
Intellectual Merit: <br/>Diatom abundance in sediment cores is typically used as a proxy for paleo primary productivity. This record is complicated by variable preservation, with most loss occurring in the water column via dissolution and zooplankton grazing. This study will investigate preservational biases via a series of controlled experiments to create proxies of original productivity based on morphological changes associated with diatom dissolution and fracture. The PIs will utilize fresh diatoms from culture. Specific objectives include: (1) Linking changes in diatom morphology to availability of dissolved silica and other physical and chemical parameters; (2) Documenting the dissolution process under controlled conditions; (3) Assessment of changes in morphology and diatom surface roughness with increased dissolution; (4) Documenting the physical effects of grazing and fecal pellet formation on diatom fragmentation and dissolution; and (5) Analyzing the impact of diatom dissolution on silica and carbon export. These objectives will be achieved by growing Southern Ocean diatom species in the laboratory under differing physical and chemical conditions; controlled serial dissolution experiments on cultured diatoms; analysis of the dissolution process by imaging frustules under scanning electron microscopy (SEM) and with micro-analysis of surface texture by atomic force microscopy (AFM); making the cultures available to krill and other live zooplankton crustaceans in order to analyze the specific effects of grazing and pelletization on diatom morphology; and comparing experimental results with natural plankton, sediment trap material, and selected Holocene, Pleistocene and Pliocene sediment core material. <br/><br/>Broader impacts: <br/>This work will contribute to understanding of the use of diatom abundance as an indicator of paleoproductivity. The proposed experiments are multi-disciplinary in nature. Importantly, the project was designed, and the proposal largely written, by a Ph.D. candidate. The research proposed here will lead to peer-reviewed publications and provide a base for future studies over the course of an extremely promising scientific career. The project will also support an undergraduate research student at NIU. The PI is heavily involved in science outreach, including classroom visits, museum events and webinars related to evolution and climate change, and is active with NSF-funded outreach activities linked to the ANDRILL and WISSARD programs. He will continue these efforts with this project. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||||
IPY: Shedding dynamic light on iron limitation: The interplay of iron limitation and dynamic irradiance in governing the phytoplankton distribution in the Ross Sea
|
0732535 |
2011-02-24 | Arrigo, Kevin |
|
IPY: Shedding dynamic light on iron limitation: The interplay of iron<br/>limitation and dynamic irradiance in governing the phytoplankton<br/>distribution in the Ross Sea<br/><br/>The Southern Ocean plays an important role in the global carbon cycle, accounting for approximately 25% of total anthropogenic CO2 uptake by the oceans, mainly via primary production. In the Ross Sea, primary production is dominated by two taxa that are distinct in location and timing. Diatoms dominate in the shallow mixed layer of the continental shelf, whereas the colony forming Phaeocystis antarctica (Prymnesiophyceae) dominate in the more deeply mixed, open regions. Significantly, both groups have vastly different nutrient utilization characteristics, and support very different marine food webs. Their responses to climate change, and the implications for carbon export, are unclear. Previous studies show that light availability and the quality of the light climate (static versus dynamic) play a major role in defining where and when the different phytoplankton taxa bloom. However, iron (Fe) limitation of the algal communities in both the sub-Arctic and the Southern Ocean is now well documented. Moreover, phytoplankton Fe demand varies as a function of irradiance. The main hypothesis of the proposed research is: The interaction between Fe limitation and dynamic irradiance governs phytoplankton distributions in the Ross Sea. Our strategy to test this hypothesis is three-fold: 1) The photoacclimation of the different phytoplankton taxa to different light conditions under Fe limitation will be investigated in experiments in the laboratory under controlled Fe conditions. 2) The photophysiological mechanisms found in these laboratory experiments will then be tested in the field on two cruises with international IPY partners. 3) Finally, data generated during the lab and field parts of the project will be used to parameterize a dynamic light component of the Coupled Ice Atmosphere and Ocean (CIAO) model of the Ross Sea. Using the improved model, we will run future climate scenarios to test the impact of climate change on the phytoplankton community structure, distribution, primary production and carbon export in the Southern Ocean. The proposed research complies with IPY theme" Understanding Environmental change in Polar Regions" and includes participation in an international cruise. Detailed model descriptions and all of the results generated from these studies will be made public via a DynaLiFe website. Improving the CIAO model will give us and other IPY partners the opportunity to test the ecological consequences of physiological characteristics observed in Antarctic phytoplankton under current and future climate scenarios. Outreach will include participation in Stanford's Summer Program for Professional Development for Science Teachers, Stanford's School of Earth Sciences high school internship program, and development of curriculum for local science training centers, including the Chabot Space and Science Center. | POLYGON((-130 -67,-127.1 -67,-124.2 -67,-121.3 -67,-118.4 -67,-115.5 -67,-112.6 -67,-109.7 -67,-106.8 -67,-103.9 -67,-101 -67,-101 -67.9,-101 -68.8,-101 -69.7,-101 -70.6,-101 -71.5,-101 -72.4,-101 -73.3,-101 -74.2,-101 -75.1,-101 -76,-103.9 -76,-106.8 -76,-109.7 -76,-112.6 -76,-115.5 -76,-118.4 -76,-121.3 -76,-124.2 -76,-127.1 -76,-130 -76,-130 -75.1,-130 -74.2,-130 -73.3,-130 -72.4,-130 -71.5,-130 -70.6,-130 -69.7,-130 -68.8,-130 -67.9,-130 -67)) | POINT(-115.5 -71.5) | false | false | |||||||||||||
Collaborative Research: Do Crustacean Zooplankton Play a Pivotal Role in Structuring Heterotrophic Plankton Communities in the Ross Sea?
|
0542111 0542456 |
2010-05-04 | Lonsdale, Darcy; Caron, Bruce | Recent studies of marine ecosystems show conflicting evidence for trophic cascades, and in particular the relative strength of the crustacean zooplankton-phytoplankton link. The Ross Sea is a natural laboratory for investigating this apparent conflict. It is a site of seasonally high abundances of phytoplankton, characterized by regions of distinct phytoplankton taxa; the southcentral polynya is strongly dominated by the colony-forming prymnesiophyte Phaeocystis antarctica, while coastal regions of this sea are typically dominated by diatoms or flagellate species. Recent studies indicate that, while the south-central polynya exhibits a massive phytoplankton bloom, the poor food quality of P. antarctica for many crustacean zooplankton prevents direct utilization of much of this phytoplankton bloom. Rather, evidence suggests that indirect utilization of this production may be the primary mechanism by which carbon and energy become available to those higher trophic levels. Specifically, we hypothesize that nano and microzooplankton constitute an important food source for crustacean zooplankton (largely copepods and juvenile euphausiids) during the summer period in the Ross Sea where the phytoplankton assemblage is dominated by the prymnesiophyte. In turn, we also hypothesize that predation by copepods (and other Crustacea) controls and structures the species composition of these protistan assemblages. We will occupy stations in the south-central Ross Sea Polynya (RSP) and Terra Nova Bay (TNB) during austral summer to test these hypotheses. We hypothesize that the diatom species that dominate the phytoplankton assemblage in TNB constitute a direct source of nutrition to herbivorous/omnivorous zooplankton (relative to the situation in the south-central RSP). That is, the contribution of heterotrophic protists to crustacean diets will be reduced in TNB. Our research will address fundamental gaps in our knowledge of food web structure and trophic cascades, and provide better understanding of the flow of carbon and energy within the biological community of this perennially cold sea. The PIs will play active roles in public education (K-12) via curriculum development (on Antarctic biology) and teacher trainer activities in the Centers for Ocean Science Education Excellence (COSEE-West), an innovative, NSF-funded program centered at USC and UCLA. | POLYGON((-179.9999 -43.5663,-143.99993 -43.5663,-107.99996 -43.5663,-71.99999 -43.5663,-36.00002 -43.5663,-0.000050000000016 -43.5663,35.99992 -43.5663,71.99989 -43.5663,107.99986 -43.5663,143.99983 -43.5663,179.9998 -43.5663,179.9998 -46.99537,179.9998 -50.42444,179.9998 -53.85351,179.9998 -57.28258,179.9998 -60.71165,179.9998 -64.14072,179.9998 -67.56979,179.9998 -70.99886,179.9998 -74.42793,179.9998 -77.857,143.99983 -77.857,107.99986 -77.857,71.99989 -77.857,35.99992 -77.857,-0.000049999999987 -77.857,-36.00002 -77.857,-71.99999 -77.857,-107.99996 -77.857,-143.99993 -77.857,-179.9999 -77.857,-179.9999 -74.42793,-179.9999 -70.99886,-179.9999 -67.56979,-179.9999 -64.14072,-179.9999 -60.71165,-179.9999 -57.28258,-179.9999 -53.85351,-179.9999 -50.42444,-179.9999 -46.99537,-179.9999 -43.5663)) | POINT(0 -89.999) | false | false | ||||||||||||||
Interannual Variability in the Antarctic-Ross Sea (IVARS): Nutrients and Seasonal Production
|
0087401 |
2010-05-04 | Smith, Walker; Gordon, Arnold | During the past few decades of oceanographic research, it has been recognized that significant variations in biogeochemical processes occur among years. Interannual variations in the Southern Ocean are known to occur in ice extent and concentration, in the composition of herbivore communities, and in bird and marine mammal distributions and reproductive success. However, little is known about the interannual variations in production of phytoplankton or the role that these variations play in the food web. This project will collect time series data on the seasonal production of phytoplankton in the southern Ross Sea, Antarctica. Furthermore, it will assess the interannual variations of the production of the two major functional groups of the system, diatoms and Phaeocystis Antarctica, a colonial haptophyte. The Ross Sea provides a unique setting for this type of investigation for a number of reasons. For example, a de facto time-series has already been initiated in the Ross Sea through the concentration of a number of programs in the past ten years. It also is well known that the species diversity is reduced relative to other systems and its seasonal production is as great as anywhere in the Antarctic. Most importantly, seasonal production of both the total phytoplankton community (as well as its two functional groups) can be estimated from late summer nutrient profiles. The project will involve short cruises on the US Coast Guard ice breakers in the southern Ross Sea that will allow the collection of water column nutrient and particulate after data at specific locations in the late summer of each of five years. Additionally, two moorings with in situ nitrate analyzers moored at fifteen will be deployed, thus collecting for the first time in the in the Antarctic a time-series of euphotic zone nutrient concentrations over the entire growing season. All nutrient data will be used to calculate seasonal production for each year in the southern Ross Sea and compared to previously collected information, thereby providing an assessment of interannual variations in net community production. Particulate matter data will allow us to estimate the amount of export from the surface layer by late summer, and therefore calculate the interannual variability of this ecosystem process. Interannual variations of seasonal production (and of the major taxa of producers) are a potentially significant feature in the growth and survival of higher trophic levels within the food web of the Ross Sea. They are also important in order to understand the natural variability in biogeochemical processes of the region. Because polar regions such as the Ross Sea are predicted to be impacted by future climate change, biological changes are also anticipated. Placing these changes in the context of natural variability is an essential element of understanding and predicting such alterations. This research thus seeks to quantify the natural variability of an Antarctic coastal system, and ultimately understand its causes and impacts on food webs and biogeochemical cycles of the Ross Sea. | None | None | false | false | ||||||||||||||
Collaborative Research: Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea
|
0127037 0338350 0741411 0338097 0338157 |
2010-05-04 | Ditullio, Giacomo; Smith, Walker; Dryer, Jennifer; Neale, Patrick | The objectives of this proposal are to investigate the controls on the large-scale distribution and production of the two major bloom-forming phytoplankton taxa in the Southern Ocean, diatoms and Phaeocystis Antarctica. These two groups, through their involvement in the biogeochemical cycles of carbon, sulfur and nutrient elements, may have played important roles in the climate variations of the late Quaternary, and they also may be key players in future environmental change. A current paradigm is that irradiance and iron availability drive phytoplankton dynamics in the Southern Ocean. Recent work, however, suggests that carbon dioxide (CO2) concentrations may also be important in structuring algal assemblages, due to species-specific differences in the physiology. This proposal examines the interactive effects of iron, light and CO2 on the physiology, ecology and relative dominance of Phaeocystis and diatoms in the Southern Ocean. The Ross Sea is an ideal system in which to investigate the environmental factors that regulate the distribution and production of these two algal groups, since it is characterized by seasonal blooms of both P. Antarctica and diatoms that are typically separated in both space and time. This study will take the form of an interdisciplinary investigation that includes a field survey and statistical analysis of algal assemblage composition, iron, mixed layer depth, and CO2 levels in the southern Ross Sea, coupled with shipboard experiments to examine the response of diatom and P. Antarctica assemblages to high and low levels of iron, light and CO2 during spring and summer. <br/>This project will provide information on some of the major factors controlling the production and distribution of the two major bloom forming phytoplankton in the Southern Ocean and the related biogeochemical cycling of carbon, sulfur and nutrient elements. The results may ultimately advance the ability to predict how the Southern Ocean will be affected by and possibly modulate future climate change. This project will also make significant educational contributions at several levels, including the planned research involvement of graduate and undergraduate students, postdoctoral associates, a student teacher, and community outreach and educational activities. A number of activities are planned to interface the project with K-12 education. Presentations will be made at local schools to discuss the research and events of the research cruise. During the cruise there will be daily interactive email contact with elementary classrooms. Established websites will be used to allow students to learn about the ongoing research, and to allow researchers to communicate with students through text and downloaded images. | POLYGON((173.31833 -46.5719,173.757539 -46.5719,174.196748 -46.5719,174.635957 -46.5719,175.075166 -46.5719,175.514375 -46.5719,175.953584 -46.5719,176.392793 -46.5719,176.832002 -46.5719,177.271211 -46.5719,177.71042 -46.5719,177.71042 -48.759516,177.71042 -50.947132,177.71042 -53.134748,177.71042 -55.322364,177.71042 -57.50998,177.71042 -59.697596,177.71042 -61.885212,177.71042 -64.072828,177.71042 -66.260444,177.71042 -68.44806,177.271211 -68.44806,176.832002 -68.44806,176.392793 -68.44806,175.953584 -68.44806,175.514375 -68.44806,175.075166 -68.44806,174.635957 -68.44806,174.196748 -68.44806,173.757539 -68.44806,173.31833 -68.44806,173.31833 -66.260444,173.31833 -64.072828,173.31833 -61.885212,173.31833 -59.697596,173.31833 -57.50998,173.31833 -55.322364,173.31833 -53.134748,173.31833 -50.947132,173.31833 -48.759516,173.31833 -46.5719)) | POINT(175.514375 -57.50998) | false | false | ||||||||||||||
Collaborative Research: Bloom Dynamics and Food-Web Structure in the Ross Sea: The Irradiance/Mixing Regime and Diatom Growith in Spring
|
9317538 |
2010-05-04 | Smith, Walker |
|
The growing season for phytoplankton in polar oceans is short, but intense. There is an increasing body of evidence that in many Antarctic habitats, the most active period may be very early in the season, a period that has not been emphasized in previous investigations. This project is part of an interdisciplinary program that focuses on the dynamics of the spring phytoplankton bloom in a highly productive subsystem of the Antarctic, the Ross Sea. The overall program will test hypotheses related to the initiation of the phytoplankton bloom shortly after the onset of ice melt, the mechanisms controlling phytoplankton growth and productivity in spring, the implications and short-term fate of high productivity in spring, and the transition from spring to midsummer conditions. This component will test the closely related hypotheses that: (1) phytoplankton growth is controlled primarily by the relationship between solar irradiance and mixed-layer depth throughout the spring (2) diatom growth rates are much higher in spring than at any other time of year, in response to the more favorable irradiance/mixing relationships, and (3) persistence of diatom blooms in summer results from the diatoms' ability to outcompete other groups under the light-limited conditions that develop in turbid, high-biomass waters. These hypotheses will be tested by (1) obtaining the first reliable estimates of the Sverdrup "critical depth" in the Antarctic so that the changing relationship between the critical depth and the mixed- layer depth in spring can be defined, and (2) estimating diatom growth rates and the gross and net production attributable to diatoms throughout the spring. The results will provide information critical to an understanding of phytoplankton bloom dynamics in the Ross Sea. | None | None | false | false | |||||||||||||
Collaborative Research: Interactive Effects of Iron, Light and CO2 on Phytoplankton Community Dynamics in the Ross Sea
|
0338164 |
2010-05-04 | Ditullio, Giacomo |
|
The objectives of this proposal are to investigate the controls on the large-scale distribution and production of the two major bloom-forming phytoplankton taxa in the Southern Ocean, diatoms and Phaeocystis Antarctica. These two groups, through their involvement in the biogeochemical cycles of carbon, sulfur and nutrient elements, may have played important roles in the climate variations of the late Quaternary, and they also may be key players in future environmental change. A current paradigm is that irradiance and iron availability drive phytoplankton dynamics in the Southern Ocean. Recent work, however, suggests that carbon dioxide (CO2) concentrations may also be important in structuring algal assemblages, due to species-specific differences in the physiology. This proposal examines the interactive effects of iron, light and CO2 on the physiology, ecology and relative dominance of Phaeocystis and diatoms in the Southern Ocean. The Ross Sea is an ideal system in which to investigate the environmental factors that regulate the distribution and production of these two algal groups, since it is characterized by seasonal blooms of both P. Antarctica and diatoms that are typically separated in both space and time. This study will take the form of an interdisciplinary investigation that includes a field survey and statistical analysis of algal assemblage composition, iron, mixed layer depth, and CO2 levels in the southern Ross Sea, coupled with shipboard experiments to examine the response of diatom and P. Antarctica assemblages to high and low levels of iron, light and CO2 during spring and summer. <br/>This project will provide information on some of the major factors controlling the production and distribution of the two major bloom forming phytoplankton in the Southern Ocean and the related biogeochemical cycling of carbon, sulfur and nutrient elements. The results may ultimately advance the ability to predict how the Southern Ocean will be affected by and possibly modulate future climate change. This project will also make significant educational contributions at several levels, including the planned research involvement of graduate and undergraduate students, postdoctoral associates, a student teacher, and community outreach and educational activities. A number of activities are planned to interface the project with K-12 education. Presentations will be made at local schools to discuss the research and events of the research cruise. During the cruise there will be daily interactive email contact with elementary classrooms. Established websites will be used to allow students to learn about the ongoing research, and to allow researchers to communicate with students through text and downloaded images. | None | None | false | false | |||||||||||||
Collaborative Research: Deducing Late Neogene Antarctic Climate from Fossil-Rich Lacustrine Sediments in the Dry Valleys
|
0440711 |
2009-07-01 | Marchant, David | No dataset link provided | This project studies ancient lake deposits from the western Dry Valleys of Antarctica. These deposits are particularly exciting because they preserve flora and fauna over seven million years in age that represent the last vestiges of ecosystems that dominated this area before formation of the modern East Antarctic ice sheet. Their unique nature offers a chance to bridge modern and ancient ecology. Formed along the margin of ancient alpine glaciers, these deposits contain layers of silt, clay, and volcanic ash; as well as freeze-dried remnants of mosses, insects, and diatoms. Geological and biological analyses provide a view of the ecological and environmental conditions during mid-to-late Miocene--seven to seventeen million years ago--which spans the critical period when the East Antarctic ice sheet transitioned to its present stable form. The results place the modern lakes of the Dry Valleys into a long-term evolutionary framework, and allow for correlation and dating comparisons with other fossil-rich deposits from the Transantarctic Mountains. Chemical fingerprinting and dating of volcanic glass shards will also help date fossil- and ash-bearing horizons in nearby marine cores, such as those to be collected under the ANDRILL program. <br/><br/>The broader impacts are education at the postdoctoral, graduate, and undergraduate levels; and collaboration between a research institution and primarily undergraduate institution. The work also improves our understanding of global climate change during a critical period in the Earth's history. | POLYGON((160 -76.5,160.45 -76.5,160.9 -76.5,161.35 -76.5,161.8 -76.5,162.25 -76.5,162.7 -76.5,163.15 -76.5,163.6 -76.5,164.05 -76.5,164.5 -76.5,164.5 -76.7,164.5 -76.9,164.5 -77.1,164.5 -77.3,164.5 -77.5,164.5 -77.7,164.5 -77.9,164.5 -78.1,164.5 -78.3,164.5 -78.5,164.05 -78.5,163.6 -78.5,163.15 -78.5,162.7 -78.5,162.25 -78.5,161.8 -78.5,161.35 -78.5,160.9 -78.5,160.45 -78.5,160 -78.5,160 -78.3,160 -78.1,160 -77.9,160 -77.7,160 -77.5,160 -77.3,160 -77.1,160 -76.9,160 -76.7,160 -76.5)) | POINT(162.25 -77.5) | false | false | |||||||||||||
Collaborative Research: Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains
|
0739700 0739693 |
2009-06-22 | Ashworth, Allan; Lewis, Adam |
|
This project studies the last vestiges of life in Antarctica from exceptionally well-preserved fossils of tundra life--mosses, diatoms, ostracods, Nothofagus leaves, wood, and insect remains recently discovered in ancient lake sediments from the McMurdo Dry Valleys. The area will be studied by an interdisciplinary team to elucidate information about climate and biogeography. These deposits offer unique and direct information about the characteristics of Antarctica during a key period in its history, the time when it was freezing. This information is critical for correlation with indirect proxies, such as though obtained from drill cores, for climate and state of the ice sheet. The results will also help understand the origin and migration of similar organisms found in South America, India and Australia.<br/><br/>In terms of broader impacts, this project supports an early career researcher, undergraduate and graduate student research, various forms of outreach to K12 students, and extensive international collaboration. The work also has societal relevance in that the outcomes will offer direct constraints on Antarctica's ice sheet during a time with atmospheric CO2 contents similar to those of the earth in the coming centuries, and thus may help predictive models of sea level rise. | POLYGON((160 -77,160.2 -77,160.4 -77,160.6 -77,160.8 -77,161 -77,161.2 -77,161.4 -77,161.6 -77,161.8 -77,162 -77,162 -77.1,162 -77.2,162 -77.3,162 -77.4,162 -77.5,162 -77.6,162 -77.7,162 -77.8,162 -77.9,162 -78,161.8 -78,161.6 -78,161.4 -78,161.2 -78,161 -78,160.8 -78,160.6 -78,160.4 -78,160.2 -78,160 -78,160 -77.9,160 -77.8,160 -77.7,160 -77.6,160 -77.5,160 -77.4,160 -77.3,160 -77.2,160 -77.1,160 -77)) | POINT(161 -77.5) | false | false | |||||||||||||
Application of a New Method for Isotopic Analysis of Diatom Microfossil-bound Nitrogen
|
0453680 |
2009-05-20 | Sigman, Daniel |
|
The Southern Ocean may play a central role in causing ice ages and general global climate change. This work will reveal key characteristics of the glacial ocean, and may explain the cause of glacial/interglacial cycles by measuring the abundances of certain isotopes of nitrogen found in fossil diatoms from Antarctic marine sediments. Diatom-bound N is a potentially important recorder of nutrient utilization. The Southern Ocean's nutrient status, productivity and circulation may be central to setting global atmospheric CO2 contents and other aspects of climate. Previous attempts to make these measurements have yielded ambiguous results. This project includes both technique development and analyses, including measurements on diatoms from both sediment traps and culture experiments. With regard to broader impacts, this grant is focused around the education and academic development of a graduate student, by coupling their research with mentorship of an undergraduate researcher | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||||
Opal Burial in the Pacific Sector of the Southern Ocean: A Test of the "Silicic Acid Leakage Hypothesis."
|
0230268 |
2009-01-12 | Anderson, Robert; Burckle, Lloyd |
|
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the "Silicic Acid Leakage Hypothesis" as it relates to global carbon dioxide fluctuations during glacial-interglacial cycles.<br/><br/>Intellectual Merit<br/>This project will evaluate the burial rate of biogenic opal in the Pacific sector of the Southern Ocean, both during the Last Glacial Maximum (LGM) and during the Holocene, as a critical test of the "Silicic Acid Leakage Hypothesis". <br/><br/>The "Silicic Acid Leakage Hypothesis" has been proposed recently to explain the glacial reduction in the carbon dioxide content of the atmosphere that has been reconstructed from Antarctic ice cores. Vast amounts of dissolved Si (silicic acid) are supplied to surface waters of the Southern Ocean by wind-driven upwelling of deep waters. Today, that dissolved Si is consumed almost quantitatively by diatoms who form skeletal structures composed of biogenic opal (a mineral form of silicon). According to the "Silicic Acid Leakage Hypothesis", environmental conditions in the Southern Ocean during glacial periods were unfavorable for diatom growth, leading to reduced (compared to interglacials) efficiency of dissolved Si utilization. Dissolved Si that was not consumed biologically in the glacial Southern ocean was then exported to the tropics in waters that sink in winter to depths of a few hundred meters along the northern fringes of the Antarctic Circumpolar Current, and return some decades later to the sunlit surface in tropical regions of wind-driven upwelling. <br/><br/>An increase in the amount of dissolved Si that "leaks" out of the Southern Ocean and later upwells at low latitudes could shift the global average composition of phytoplankton toward a greater abundance of diatoms and fewer CaCO3-secreting taxa (especially coccolithophorids). Consequences of such a taxonomic shift in the ocean's phytoplankton assemblage include:<br/> a) an increase in the global average organic carbon/calcium carbonate ratio of particulate biogenic material sinking into the deep sea;<br/> b) a reduction in the preservation and burial of calcium carbonate in marine sediments;<br/> c) an increase in ocean alkalinity as a consequence of the first two changes mentioned above, and;<br/> d) a lowering of atmospheric CO2 concentrations in response to increased alkalinity of ocean waters. <br/><br/>A complete assessment of the Silicic acid leakage hypothesis will require an evaluation of: (1) Si utilization efficiencies using newly-developed stable isotopic techniques; (2) opal burial rates in low-latitude upwelling regions; and (3) opal burial rates in the Southern Ocean. This project addresses the last of these topics. <br/><br/>Previous work has shown that there was little change in opal burial rate between the LGM and the Holocene in the Atlantic and Indian sectors of the Southern Ocean. Preliminary results (summarized in this proposal) suggest that the Pacific may have been different, however, in that opal burial rates in the Pacific sector seem to have been lower during the LGM than during the Holocene, allowing for the possibility of "Si leakage" from this region. However, available results are too sparse to make any quantitative conclusions at this time. For that reason, we propose to make a comprehensive evaluation of opal burial rates in the Pacific sector of the Southern Ocean. <br/><br/>Significance and Broader Impacts<br/>Determining the mechanism(s) by which the ocean has regulated climate-related changes in the CO2 content of the atmosphere has been the focus of a substantial effort by paleoceanographers over the past two decades. The Silicic Acid Leakage Hypothesis is a viable new candidate mechanism that warrants further exploration and testing. Completion of the proposed work will contribute significantly to that effort. <br/><br/>During the course of this work, several undergraduates will be exposed to paleoclimate research through their involvement in this project. Burckle and Anderson are both dedicated to the education and training of young scientists, and to the recruitment of women and under-represented minorities. To illustrate, two summer students (undergraduates) worked in Burckle's lab during the summer of 2002. One was a woman and the other (male) was a member of an under-represented minority. Anderson and Burckle will continue with similar recruitment efforts during the course of the proposed study. A minority student who has expressed an interest in working on this research during the summer of 2003 has already been identified. | POLYGON((-180 -50,-169 -50,-158 -50,-147 -50,-136 -50,-125 -50,-114 -50,-103 -50,-92 -50,-81 -50,-70 -50,-70 -51.5,-70 -53,-70 -54.5,-70 -56,-70 -57.5,-70 -59,-70 -60.5,-70 -62,-70 -63.5,-70 -65,-81 -65,-92 -65,-103 -65,-114 -65,-125 -65,-136 -65,-147 -65,-158 -65,-169 -65,180 -65,177 -65,174 -65,171 -65,168 -65,165 -65,162 -65,159 -65,156 -65,153 -65,150 -65,150 -63.5,150 -62,150 -60.5,150 -59,150 -57.5,150 -56,150 -54.5,150 -53,150 -51.5,150 -50,153 -50,156 -50,159 -50,162 -50,165 -50,168 -50,171 -50,174 -50,177 -50,-180 -50)) | POINT(-140 -57.5) | false | false | |||||||||||||
DiatomWare: An Interactive Digital Image Catalog for Antarctic Cenozoic Diatoms
|
0230469 |
2007-07-31 | Wise, Sherwood | No dataset link provided | This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports the development of a standardized diatom image catalog or database. Diatoms are considered by many to be the most important microfossil group used today in the study of Antarctic Cenozoic marine deposits south of the Polar Front, from the near shore to deep sea. These microfossils, with walls of silica called frustules, are produced by single-celled plants (algae of the Class Bacillariophyceae) in a great variety of forms. Consequently, they have great biostratigraphic importance in the Southern Ocean and elsewhere for determining the age of marine sediments. Also, paleoclimatic and paleoceanographic studies increasingly rely on fossil diatom data. Changing biogeographic distributions of given taxa indicate shifting paleoecological conditions and provide evidence of the surface productivity and temperatures of ancient oceans. The generality of conclusions, though, is limited by variation in species concepts among workers. The broad research community relies, directly or indirectly, on the accurate identification of diatom species. Current technology can be used to greatly improve upon the standard references that have been used in making these identifications.<br/><br/>This project will develop an interactive digital-image catalog of modern and Cenozoic fossil diatoms of the Southern Ocean called "DiatomWare" for use by specialists and educators as an aid in rapid, accurate, and consistent species identification. As such, this will be a researcher's resource. It will be especially useful where it is not possible to maintain standard library resources such as onboard research vessels or at remote stations such as McMurdo Station. Major Antarctic geological drilling initiatives such as the new SHALDRIL project and the pending ANDRILL project will benefit from this product because they will rely heavily on diatom biostratigraphy to achieve their research objectives. The DiatomWare image database will be modeled on NannoWare, which was released in October 2002 on CD-ROM as a publication of the International Nannoplankton Association. BugCam will be adapted and modified as necessary to run the DiatomWare database, which can then be run from desktop or laptop computers. Images and text for the database will be scanned from the literature or captured in digital form from light or scanning electron microscopes.<br/><br/>The software interface will include a number of data fields that can be accessed by the click of a mouse button. Primary information will be the images and descriptions of the holotypes. In addition, representative images of paratypes or hypotypes will be included whenever possible in plain transmitted, differential interference contrast light and, when available, as drawings and SEM images. Also included will be a 35-word or less English diagnosis ("mini-description"), the biostratigraphic range in terms of zones and linear time, bibliographic references, lists of species considered junior synonyms, and similar species. The list of similar species will be cross-referenced with their respective image files to enable quick access for direct visual comparison on the viewing screen. Multiple images can be brought to the viewing screen simultaneously, and a zoom feature will permit image examination at a wide range of magnifications. Buttons will allow range charts, a bibliography, and key public-domain publications from the literature to be called up from within the program. The DiatomWare/BugCam package will be distributed at a nominal cost through a major nonprofit society via CD-ROM and free to Internet users on the Worldwide Web. Quality control measures will include critical review of the finalized database by a network of qualified specialists. The completed database will include descriptions and images of between 350 and 400 species, including fossil as well as modern forms that have no fossil record.<br/><br/>The development of the proposed diatom image database will be important to all research fields that depend on accurate biostratigraphic dating and paleoenvironmental interpretation of Antarctic marine sediments and plankton. The database will also serve as a valuable teaching tool for micropaleontology students and their professors, will provide a rapid means of keying down species for micropaleontologists of varying experience and background, and will promote a uniformity of taxonomic concepts since it will be developed and continuously updated with the advice of a community of nannofossil fossil experts. Broad use of the database is anticipated since it will be widely available through the Internet and on CD-ROM for use on personal computers that do not require large amounts of memory, costly specialized programs, or additional hardware. | None | None | false | false |