{"dp_type": "Project", "free_text": "Antarctic Ice Core"}
[{"awards": "2423761 Blackburn, Terrence", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 14 May 2024 00:00:00 GMT", "description": "Non-technical abstract\u003cbr/\u003e\u003cbr/\u003eEarth\u2019s climatic changes have been recorded in the ice core collected from the Antarctic ice sheet. While these records provide a high resolution view of how polar temperatures changed through time, it is not always clear what Earth process influence Antarctic climate. One likely contributor to Antarctic temperature changes is the cyclic changes in Earth\u2019s orientation as it orbits the sun. These so-called Milankovitch cycles control the amount and pattern of sunlight reaching the polar regions, that in turn result in periods of climatic warming or cooling. While the orbital variations and control on incoming solar energy remain well understood, how they influence Antarctic climate remains unresolved. It is the goal of this project to determine how variations in Earth\u2019s orbit may be locally influencing Antarctic temperatures. The researchers on this project are pursing this goal by identifying periods of past ice melting on the surface of Antarctica using minerals that precipitate from the meltwaters that resulted from past warm periods. The timing of this past melting will be determined by radioisotopic dating of the minerals using the natural radioactive decay of uranium to thorium. By dating numerous samples, collected in past scientific expeditions throughout the Antarctic continent, these researchers aim to reconstruct the frequency and spatial pattern of past warming and in doing so, determine what aspect of Earth\u2019s orbital variations influences Antarctic ice loss.\u003cbr/\u003e\u003cbr/\u003eTechnical abstract\u003cbr/\u003e\u003cbr/\u003eAntarctic ice cores provide high resolution records of Pleistocene Southern Hemisphere temperatures that show an overall coherence with Northern Hemisphere temperature variations. One explanation for this bi-hemispheric temperature covariance relies on changes in atmospheric CO2 that result from varying northern hemisphere insolation. An alternative posits that the apparent coherence of polar temperatures is due to the misleading covariance between northern hemisphere summer insolation and, the southern hemisphere summer duration. At present there is an insufficient understanding of the role that local insolation plays in Antarctic climate. The goal of this research project is to identify the temporal spatial patterns of solar forcing in Antarctica. To reach this goal, the project team will: 1) develop a way to identify periods of past surface melt production in Antarctica using U-Th dating of pedogenic carbonates; and 2) utilize the evidence of past surface melting to calibrate energy balance models and interrogate past Antarctic surface temperatures and; 3) compare the timing of Antarctic warm periods to potential solar forcing mechanisms such as peak summer insolation or summer duration. A means of identifying the spatial and temporal pattern at which local insolation influences Antarctic temperature would provide a transformative solution to the contradiction in current climate records.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctic Ice Sheet; PALEOCLIMATE RECONSTRUCTIONS", "locations": "Antarctic Ice Sheet", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Blackburn, Terrence", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "EAGER: Pedogenic Carbonates Record Insolation Driven Surface Melting in Antarctica", "uid": "p0010459", "west": -180.0}, {"awards": "1745078 Brook, Edward J.", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Atmospheric methane across the Last Glacial Maximum and deglaciation from the GISP2, NEEM and WAIS Divide ice cores ; Atmospheric methane interpolar difference and four-box troposphere model output across the Last Glacial Maximum and Deglaciation; Carbon-13 and Deuterium isotopic composition of atmospheric methane across Heinrich Stadial 4, and Dansgaard Oesgher Event 8, WAIS Divide Replicate Ice Core, Antarctica; Carbon-13 isotopic composition of atmospheric methane across Heinrich Stadials 1 and 5, and Dansgaard Oesgher Event 12, WAIS Divide Ice Core, Antarctica", "datasets": [{"dataset_uid": "601683", "doi": "10.15784/601683", "keywords": "Antarctica; Methane; West Antarctic Ice Sheet", "people": "Riddell-Young, Benjamin", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Carbon-13 isotopic composition of atmospheric methane across Heinrich Stadials 1 and 5, and Dansgaard Oesgher Event 12, WAIS Divide Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601683"}, {"dataset_uid": "601813", "doi": "10.15784/601813", "keywords": "Abrupt Climate Change; Antarctica; Atmospheric Gases; Biogeochemical Cycles; Carbon Cycle; Cryosphere; Greenhouse Gas; Methane; West Antarctic Ice Sheet Divide", "people": "Bauska, Thomas; Iseli, Rene; Clark, Reid; Brook, Edward J.; Riddell-Young, Benjamin; Lee, James; Schmitt, Jochen; Fischer, Hubertus; Menking, Andy", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Carbon-13 and Deuterium isotopic composition of atmospheric methane across Heinrich Stadial 4, and Dansgaard Oesgher Event 8, WAIS Divide Replicate Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601813"}, {"dataset_uid": "601737", "doi": "10.15784/601737", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Greenland; Ice Core Records; Methane; West Antarctic Ice Sheet", "people": "Riddell-Young, Benjamin; Martin, Kaden; Brook, Edward J.; Edwards, Jon S.; Lee, James; Rosen, Julia", "repository": "USAP-DC", "science_program": null, "title": "Atmospheric methane across the Last Glacial Maximum and deglaciation from the GISP2, NEEM and WAIS Divide ice cores ", "url": "https://www.usap-dc.org/view/dataset/601737"}, {"dataset_uid": "601736", "doi": "10.15784/601736", "keywords": "Antarctica; Greenland; Methane; Paleoclimate; West Antarctic Ice Sheet", "people": "M\u00fchl, Michaela; Lee, James; Martin, Kaden; Buizert, Christo; Rosen, Julia; Riddell-Young, Benjamin; Brook, Edward J.; Blunier, Thomas; Fischer, Hubertus; Schmitt, Jochen; Edwards, Jon S.", "repository": "USAP-DC", "science_program": null, "title": "Atmospheric methane interpolar difference and four-box troposphere model output across the Last Glacial Maximum and Deglaciation", "url": "https://www.usap-dc.org/view/dataset/601736"}], "date_created": "Mon, 01 May 2023 00:00:00 GMT", "description": "This project will develop methods to measure the ratios of carbon-13 to carbon-12, and heavy to light hydrogen in methane in air trapped in ice cores. The ratios of the different forms of carbon and hydrogen are \"fingerprints\" of different sources of this gas in the past--for example wetlands in the tropics versus methane frozen in the sea floor. Once the analysis method is developed, the measurements will be used to examine why methane changed abruptly in the past, both during the last ice age, and during previous warm periods. The data will be used to understand how methane sources like wildfires, methane hydrates, and wetlands respond to climate change. This information is needed to understand future risks of large changes in methane in the atmosphere as Earth warms. \u003cbr/\u003e\u003cbr/\u003eThe project involves two tasks. First, the investigators will build and test a gas extraction system for methane isotopic measurements using continuous flow methods, with the goal of equaling or bettering the precision attained by the few other laboratories that make these measurements. The system will be interfaced with existing mass spectrometers at Oregon State University. The system consists of a vacuum chamber and sequence of traps, purification columns, and furnaces that separate methane from other gases and convert it to carbon dioxide or hydrogen for mass spectrometry. Second, the team will measure the isotopic composition of methane across large changes in concentration associated with two past interglacial periods and during abrupt methane changes of the last ice age. These measurements will be used to understand if the main reason for these concentration changes is climate-driven changes in emissions from wetlands, or whether other sources are involved, for example methane hydrates or wildfires.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctic Ice Sheet; TRACE GASES/TRACE SPECIES; METHANE", "locations": "Antarctic Ice Sheet", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Brook, Edward", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores", "uid": "p0010416", "west": -180.0}, {"awards": "1542723 Alexander, Becky", "bounds_geometry": "POINT(-112.05 -79.28)", "dataset_titles": "WAIS Divide ice core nitrate isotopes", "datasets": [{"dataset_uid": "601456", "doi": "10.15784/601456", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Chemistry; Ice Core Records; Nitrate; Nitrate Isotopes; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Alexander, Becky", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide ice core nitrate isotopes", "url": "https://www.usap-dc.org/view/dataset/601456"}], "date_created": "Mon, 13 Feb 2023 00:00:00 GMT", "description": "The Earth\u0027s atmosphere is a highly oxidizing medium. The abundance of oxidants such as ozone in the atmosphere strongly influences the concentrations of pollutants and greenhouse gases, with implications for human health and welfare. Because oxidants are not preserved in geological archives, knowledge of how oxidants have varied in the past under changing climate conditions is extremely limited. This award will measure a proxy for oxidant concentrations in a West Antarctic ice core over several major climate transitions over the past 50,000 years. These measurements will complement similar measurements from a Greenland ice core, which showed significant changes in atmospheric oxidants over major climate transitions covering this same time period. The addition of measurements from Antarctica will allow researchers to examine if the oxidant changes suggested by the Greenland ice core record are regional or global in scale. Knowledge of how oxidants vary naturally with climate will better inform predictions of the composition of the future atmosphere under a warming climate.\u003cbr/\u003e\u003cbr/\u003eThis award will support measurements of the isotopic composition of nitrate in a West Antarctic ice core as a proxy for oxidant concentrations in the past atmosphere. The nitrogen isotopes of nitrate provide information on the degree of preservation of nitrate in the ice core record, and thus aid in the interpretation of the observed variability in the observed nitrate concentrations and oxygen isotopes in ice core records. By providing information about the spatial scale of oxidant changes over abrupt climate change events during the last glacial period, this project may also improve our understanding of mechanisms driving these abrupt events. Insight from this project will prove valuable for forecasting the response of stratospheric circulation to climate change, which has large implications for climate feedbacks and tropospheric composition. In addition, the information gleaned from this project on the mechanisms and feedbacks during abrupt climate change events will help determine the likelihood of such rapid events occurring in the future, which would have dramatic impacts on humankind. This award will provide training for one graduate and one undergraduate student, and will support the development of a hands-on activity related to rapid climate change to be used at the annual Polar Science Weekend at the Pacific Science Center in Seattle, WA.", "east": -112.05, "geometry": "POINT(-112.05 -79.28)", "instruments": null, "is_usap_dc": true, "keywords": "Nitrate Isotopes; ICE CORE RECORDS; WAIS Divide; LABORATORY", "locations": "WAIS Divide", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Alexander, Becky", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.28, "title": "Measuring an Ice-core Proxy for Relative Oxidant Abundances over Glacial-interglacial and Rapid Climate changes in a West Antarctic Ice Core", "uid": "p0010403", "west": -112.05}, {"awards": "1643716 Buizert, Christo; 1643664 Severinghaus, Jeffrey; 1643669 Petrenko, Vasilii", "bounds_geometry": "POLYGON((112 -66,112.2 -66,112.4 -66,112.6 -66,112.8 -66,113 -66,113.2 -66,113.4 -66,113.6 -66,113.8 -66,114 -66,114 -66.1,114 -66.2,114 -66.3,114 -66.4,114 -66.5,114 -66.6,114 -66.7,114 -66.8,114 -66.9,114 -67,113.8 -67,113.6 -67,113.4 -67,113.2 -67,113 -67,112.8 -67,112.6 -67,112.4 -67,112.2 -67,112 -67,112 -66.9,112 -66.8,112 -66.7,112 -66.6,112 -66.5,112 -66.4,112 -66.3,112 -66.2,112 -66.1,112 -66))", "dataset_titles": "Concentration and isotopic composition of atmospheric N2O over the last century; Law Dome DE08-OH firn air 15N, O2/N2, Ar/N2, 18O of O2; Law Dome DE08-OH site noble gases in ice: testing the 86Krexcess proxy; Law Dome firn air and ice core 14CO concentration", "datasets": [{"dataset_uid": "601693", "doi": "10.15784/601693", "keywords": "Antarctic; Antarctica; Anthropogenic Emission; Atmosphere; Greenhouse Gas; Greenland; Ice Core Data; Nitrification And Denitrification Processes; Nitrous Oxide; Site-Specific 15N Isotopomer; Styx Glacier", "people": "Joong Kim, Seong; Yoshida, Naohiro ; Toyoda, Sakae ; Buizert, Christo ; Langenfelds, Ray L ; Ghosh, Sambit; Etheridge, David; Ahn, Jinho ", "repository": "USAP-DC", "science_program": null, "title": "Concentration and isotopic composition of atmospheric N2O over the last century", "url": "https://www.usap-dc.org/view/dataset/601693"}, {"dataset_uid": "601846", "doi": "10.15784/601846", "keywords": "Antarctica; Carbon-14; Cryosphere; Firn Air; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Law Dome; Snow/ice; Snow/Ice", "people": "Petrenko, Vasilii", "repository": "USAP-DC", "science_program": null, "title": "Law Dome firn air and ice core 14CO concentration", "url": "https://www.usap-dc.org/view/dataset/601846"}, {"dataset_uid": "601598", "doi": "10.15784/601598", "keywords": "Antarctica; Firn; Firn Density; Gravitational Settling; Inert Gases; Law Dome", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Law Dome DE08-OH firn air 15N, O2/N2, Ar/N2, 18O of O2", "url": "https://www.usap-dc.org/view/dataset/601598"}, {"dataset_uid": "601597", "doi": "10.15784/601597", "keywords": "Antarctica; Ice Core; Law Dome; Noble Gas", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Law Dome DE08-OH site noble gases in ice: testing the 86Krexcess proxy", "url": "https://www.usap-dc.org/view/dataset/601597"}], "date_created": "Fri, 17 Jun 2022 00:00:00 GMT", "description": "Hydroxyl radicals are responsible for removal of most atmospheric trace gases, including pollutants and important greenhouse gases. They have been called the \"detergent of the atmosphere\". Changes in hydroxyl radical concentration in response to large changes in reactive trace gas emissions, which may happen in the future, are uncertain. This project aims to provide the first estimates of the variability of atmospheric hydroxyl radicals since about 1880 AD when anthropogenic emissions of reactive trace gases were minimal. This will improve understanding of their stability in response to large changes in emissions. The project will also investigate whether ice cores record past changes in Southern Hemisphere westerly winds. These winds are a key component of the global climate system, and have an important influence on ocean circulation and possibly on atmospheric carbon dioxide concentrations. The project team will include three early career scientists, a postdoctoral researcher, and graduate and undergraduate students, working in collaboration with senior scientists and Australian collaborators. \u003cbr/\u003e \u003cbr/\u003eFirn air and shallow ice to a depth of about 233 m will be sampled at the Law Dome high-accumulation coastal site in East Antarctica. Trapped air will be extracted from the ice cores on site immediately after drilling. Carbon-14 of carbon monoxide (14CO) will be analyzed in firn and ice-core air samples. Corrections will be made for the in situ cosmogenic 14CO component in the ice, allowing for the atmospheric 14CO history to be reconstructed. This 14CO history will be interpreted with the aid of a chemistry-transport model to place the first observational constraints on the variability of Southern Hemisphere hydroxyl radical concentration after about 1880 AD. An additional component of the project will analyze Krypton-86 in the firn-air and ice-core samples. These measurements will explore whether ice-core Krypton-86 acts as a proxy for barometric pressure variability, and whether this proxy can be used in Antarctic ice cores to infer past movement of the Southern Hemisphere westerly winds.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 114.0, "geometry": "POINT(113 -66.5)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; TRACE GASES/TRACE SPECIES; Law Dome; Amd/Us; USAP-DC; LABORATORY; ICE CORE AIR BUBBLES; USA/NSF", "locations": "Law Dome", "north": -66.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Petrenko, Vasilii; Murray, Lee T; Buizert, Christo; Petrenko, Vasilii; Murray, Lee T", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.0, "title": "Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability", "uid": "p0010341", "west": 112.0}, {"awards": "1543454 Dunbar, Nelia; 1543361 Kurbatov, Andrei", "bounds_geometry": "POINT(0 -90)", "dataset_titles": "Cryptotephra in SPC-14 ice core; SPICEcore visable tephra", "datasets": [{"dataset_uid": "601667", "doi": "10.15784/601667", "keywords": "Antarctica; Electron Microprobe; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; South Pole; Tephra", "people": "Iverson, Nels", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SPICEcore visable tephra", "url": "https://www.usap-dc.org/view/dataset/601667"}, {"dataset_uid": "601666", "doi": "10.15784/601666", "keywords": "Antarctica; Cryptotephra; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; South Pole; SPICEcore; Tephra", "people": "Helmick, Meredith; Hartman, Laura; Yates, Martin; Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Cryptotephra in SPC-14 ice core", "url": "https://www.usap-dc.org/view/dataset/601666"}], "date_created": "Fri, 01 Apr 2022 00:00:00 GMT", "description": "Antarctic ice core tephra records tend to be dominated by proximal volcanism and infrequently contain tephra from distal volcanoes within and off of the continent. Tephra layers in East Antarctic ice cores are largely derived from Northern Victoria Land volcanoes. For example, 43 out of 55 tephra layers in Talos Dome ice core are from local volcanoes. West Antarctic ice cores are dominated by tephra from Marie Byrd Land volcanoes. Thirty-six out of the 52 tephra layers in WAIS are from Mt. Berlin or Mt.Takahe. It would be expected that the majority of the tephra layers found in cores on and adjacent to the Antarctic Peninsula and Weddell Sea should be from Sub-Antarctic islands (e.g., South Sandwich and South Shetland Islands). Unfortunately, these records are poorly characterized, making correlations to the source volcanoes very unlikely.\r\n\r\nThe South Pole ice core (SPICEcore) is uniquely situated to capture the volcanic records from all of these regions of the continent, as well as sub-tropical eruptions with significant global climate signatures. Twelve visible tephra layers have been characterized in SPICEcore and represent tephra produced by volcanoes from the Sub-Antarctic Islands (6), Marie Byrd Land (5), and one from an unknown sub-tropical eruption, likely from South America. Three of these tephra layers correlate to other ice core tephra providing important \u201cpinning points\u201d for timescale calibrations, recently published (Winski et al, 2019). Two tephra layers from Marie Byrd Land correlate to WAIS Divide ice core tephra (15.226ka and 44.864ka), and one tephra eruptive from the South Sandwich Island can be correlated EPICA Dome C, Vostok, and RICE (3.559ka). An additional eight cryptotephra have been characterized, and one layer geochemically correlates with the 1257 C.E. eruption of Samalas volcano in Indonesia.\r\n\r\nSPICEcore does not have a tephra record dominated by one volcanic region. Instead, it contains more of the tephra layers derived from off-continent volcanic sources. The far-travelled tephra layers from non-Antarctic sources improve our understanding of tephra transport to the interior of Antarctica. The location in the middle of the continent along with the longer transport distances from the local volcanoes has allowed for a unique tephra record to be produced that begins to link more of future ice core records together.\r\n\r\n", "east": 0.0, "geometry": "POINT(0 -90)", "instruments": null, "is_usap_dc": true, "keywords": "VOLCANIC DEPOSITS; South Pole", "locations": "South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Dunbar, Nelia; Iverson, Nels; Kurbatov, Andrei V.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: Tephrochronology of a South Pole Ice Core", "uid": "p0010311", "west": 0.0}, {"awards": "1643394 Buizert, Christo", "bounds_geometry": "POLYGON((-180 -65,-144 -65,-108 -65,-72 -65,-36 -65,0 -65,36 -65,72 -65,108 -65,144 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.5,-180 -85,-180 -82.5,-180 -80,-180 -77.5,-180 -75,-180 -72.5,-180 -70,-180 -67.5,-180 -65))", "dataset_titles": "Antarctica 40,000 Year Temperature and Elevation Reconstructions; GISP2 and WAIS Divide Ice Cores 60,000 Year Surface Temperature Reconstructions; WAIS Divide 67-6ka nssS Data and EDML, EDC and TALDICE Volcanic Tie Points", "datasets": [{"dataset_uid": "200257", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "GISP2 and WAIS Divide Ice Cores 60,000 Year Surface Temperature Reconstructions", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/34133"}, {"dataset_uid": "200256", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "WAIS Divide 67-6ka nssS Data and EDML, EDC and TALDICE Volcanic Tie Points", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/24530"}, {"dataset_uid": "200255", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Antarctica 40,000 Year Temperature and Elevation Reconstructions", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/32632"}], "date_created": "Wed, 10 Nov 2021 00:00:00 GMT", "description": "This award supports a project to use ice cores to study teleconnections between the northern hemisphere, tropics, and Antarctica during very abrupt climate events that occurred during the last ice age (from 70,000 to 11,000 years ago). The observations can be used to test scientific theories about the role of the westerly winds on atmospheric carbon dioxide. In a warming world, snow fall in Antarctica is expected to increase, which can reduce the Antarctic contribution to sea level rise, all else being equal. The study will investigate how snow fall changed in the past in response to changes in temperature and atmospheric circulation, which can help improve projections of future sea level rise. Antarctica is important for the future evolution of our planet in several ways; it has the largest inventory of land-based ice, equivalent to about 58 m of global sea level and currently contributes about 0.3 mm per year to global sea level rise, which is expected to increase in the future due to global warming. The oceans surrounding Antarctica help regulate the uptake of human-produced carbon dioxide. Shifts in the position and strength of the southern hemisphere westerly winds could change the amount of carbon dioxide that is absorbed by the ocean, which will influence the rate of global warming. The climate and winds near and over Antarctica are linked to the rest of our planet via so-called climatic teleconnections. This means that climate changes in remote places can influence the climate of Antarctica. Understanding how these climatic teleconnections work in both the ocean and atmosphere is an important goal of climate research. The funds will further contribute towards training of a postdoctoral researcher and an early-career researcher; outreach to public schools; and the communication of research findings to the general public via the media, local events, and a series of Wikipedia articles.\r\n\r\nThe project will help to fully characterize the timing and spatial pattern of millennial-scale Antarctic climate change during the deglaciation and Dansgaard-Oeschger (DO) cycles using multiple synchronized Antarctic ice cores. The phasing of Antarctic climate change relative to Greenland DO events can distinguish between fast atmospheric teleconnections on sub-decadal timescales, and slow oceanic ones on centennial time scales. Preliminary work suggests that the spatial pattern of Antarctic change can fingerprint specific changes to the atmospheric circulation; in particular, the proposed work will clarify past movements of the Southern Hemisphere westerly winds during the DO cycle, which have been hypothesized. The project will help resolve a discrepancy between two previous seminal studies on the precise timing of interhemispheric coupling between ice cores in both hemispheres. The study will further provide state-of-the-art, internally-consistent ice core chronologies for all US Antarctic ice cores, as well as stratigraphic ties that can be used to integrate them into a next-generation Antarctic-wide ice core chronological framework. Combined with ice-flow modeling, these chronologies will be used for a continent-wide study of the relationship between ice sheet accumulation and temperature during the last deglaciation.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "ISOTOPES; Antarctica; USA/NSF; AMD; ICE CORE RECORDS; USAP-DC; VOLCANIC DEPOSITS; MODELS; Amd/Us", "locations": "Antarctica", "north": -65.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Buizert, Christo; Wettstein, Justin", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repo": "NCEI", "repositories": "NCEI", "science_programs": null, "south": -90.0, "title": "Collaborative Research: The Timing and Spatial Expression of the Bipolar Seesaw in Antarctica from Synchronized Ice Cores", "uid": "p0010279", "west": -180.0}, {"awards": null, "bounds_geometry": null, "dataset_titles": "Common-era black carbon deposition and atmospheric modeling for 6 Antarctic ice cores", "datasets": [{"dataset_uid": "601464", "doi": "10.15784/601464", "repository": "USAP-DC", "science_program": null, "title": "Common-era black carbon deposition and atmospheric modeling for 6 Antarctic ice cores", "url": "http://www.usap-dc.org/view/dataset/601464"}], "date_created": "Fri, 16 Jul 2021 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Antarctic Peninsula; Biomass Burning; Black Carbon; Dronning Maud Land; East Antarctic Plateau; Ice Core", "locations": "Antarctica; East Antarctic Plateau; Dronning Maud Land; Antarctic Peninsula", "north": null, "nsf_funding_programs": null, "paleo_time": null, "persons": "Chellman, Nathan; McConnell, Joseph", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": "1643355 Steig, Eric; 1643394 Buizert, Christo", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctica 40,000 Year Temperature and Elevation Reconstructions; Layer and Thinning based Accumulation Rate Reconstructions; WAIS Divide 67-6ka nssS Data and EDML, EDC and TALDICE Volcanic Tie Points", "datasets": [{"dataset_uid": "601448", "doi": "10.15784/601448", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Snow/ice; Snow/Ice", "people": "Fudge, T. J.", "repository": "USAP-DC", "science_program": null, "title": "Layer and Thinning based Accumulation Rate Reconstructions", "url": "https://www.usap-dc.org/view/dataset/601448"}, {"dataset_uid": "200220", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "WAIS Divide 67-6ka nssS Data and EDML, EDC and TALDICE Volcanic Tie Points", "url": "https://www.ncdc.noaa.gov/paleo/study/24530"}, {"dataset_uid": "200219", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Antarctica 40,000 Year Temperature and Elevation Reconstructions", "url": "https://www.ncdc.noaa.gov/paleo-search/study/32632"}], "date_created": "Fri, 28 May 2021 00:00:00 GMT", "description": "The main objectives of the proposed work are twofold: (1) to fully characterize the timing and spatial pattern of millennial-scale Antarctic climate change during the deglaciation and Dansgaard-Oeschger (DO) cycles using multiple synchronized Antarctic ice cores; (2) to provide state-of-the-art, internally-consistent ice core chronologies for all US Antarctic ice cores. The WAIS Divide, Siple Dome, Byrd, Taylor Dome and South Pole ice cores will be synchronized using volcanic, dust and gas (CH4 and d18Oatm) markers; this synchronization will be combined with ice-flow and firn densification modeling to create gas-age and ice-age scales for these ice cores, consistent with the highly accurate WAIS Divide chronology. The grant will support ongoing efforts to synchronize the WAIS Divide core to the Dome C and Dronning Maud Land cores, which in turn have been synchronized to several East Antarctic ice cores. Using this chronological framework, the interpolar phasing of millennial-scale climate change will be investigated during the DO cycles using 6 Antarctic ice cores, and during the last deglaciation using 11 ice cores. The relationship between accumulation rate and site temperature during the natural warming of the last deglaciation will be investigated for all the Antarctic ice cores included in the framework.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Fudge, T. J.; Steig, Eric J.; Buizert, Christo", "platforms": null, "repo": "USAP-DC", "repositories": "NCEI; USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: The Timing and Spatial Expression of the Bipolar Seesaw", "uid": "p0010183", "west": -180.0}, {"awards": "1401489 Sigman, Daniel", "bounds_geometry": "POLYGON((-180 -45,-144 -45,-108 -45,-72 -45,-36 -45,0 -45,36 -45,72 -45,108 -45,144 -45,180 -45,180 -47.5,180 -50,180 -52.5,180 -55,180 -57.5,180 -60,180 -62.5,180 -65,180 -67.5,180 -70,144 -70,108 -70,72 -70,36 -70,0 -70,-36 -70,-72 -70,-108 -70,-144 -70,-180 -70,-180 -67.5,-180 -65,-180 -62.5,-180 -60,-180 -57.5,-180 -55,-180 -52.5,-180 -50,-180 -47.5,-180 -45))", "dataset_titles": "Deep-sea coral evidence for lower Southern Ocean surface nitrate concentrations during the last ice age; Diatom-bound N isotope records over the last two glacial cycles in sediment core PS75/072-4.; Diatom-bound nitrogen isotope and opal flux records over the Holocene period in Southern Ocean sediment cores MD12-3396, MD11-3353 and PS75/072-4.; GOSHIP section IO8S and P18S", "datasets": [{"dataset_uid": "200048", "doi": "doi.pangaea.de/10.1594/PANGAEA.891436.", "keywords": null, "people": null, "repository": "PANGAEA", "science_program": null, "title": "Diatom-bound nitrogen isotope and opal flux records over the Holocene period in Southern Ocean sediment cores MD12-3396, MD11-3353 and PS75/072-4.", "url": "https://doi.pangaea.de/10.1594/PANGAEA.891436"}, {"dataset_uid": "200050", "doi": "", "keywords": null, "people": null, "repository": "CLIVAR", "science_program": null, "title": "GOSHIP section IO8S and P18S", "url": "https://cchdo.ucsd.edu/"}, {"dataset_uid": "200051", "doi": "", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Deep-sea coral evidence for lower Southern Ocean surface nitrate concentrations during the last ice age", "url": "https://www.pnas.org/content/suppl/2017/03/14/1615718114.DCSupplemental"}, {"dataset_uid": "200049", "doi": "doi.org/10.1594/PANGAEA.848271", "keywords": null, "people": null, "repository": "PANGAEA", "science_program": null, "title": "Diatom-bound N isotope records over the last two glacial cycles in sediment core PS75/072-4.", "url": "https://doi.org/10.1594/PANGAEA.848271"}], "date_created": "Thu, 08 Aug 2019 00:00:00 GMT", "description": "ABSTRACT\u003cbr/\u003eIntellectual Merit:\u003cbr/\u003eThe high concentration of the major nutrients nitrate and phosphate is a fundamental characteristic of the Antarctic Zone in the Southern Ocean and is central to its role in global ocean fertility and the global carbon cycle. The isotopic composition of diatom-bound organic nitrogen is one of the best hopes for reconstructing the nutrient status of polar surface waters over glacial cycles, which in turn may hold the explanation for the decline in atmospheric carbon dioxide during ice ages. The PIs propose to generate detailed diatom-bound nitrogen isotope (\u0026#948;15Ndb) records from high sedimentation rate cores from the Kerguelen Plateau. Because the cores were collected at relatively shallow seafloor depths, they have adequate planktonic and benthic foraminifera to develop accurate age models. The resulting data could be compared with climate records from Antarctic ice cores and other archives to investigate climate-related changes, including the major steps into and out of ice ages and the millennial-scale events that occur during ice ages and at their ends. The records generated in this project will provide a critical test of hypotheses for the cause of lower ice age CO2.\u003cbr/\u003e\u003cbr/\u003eBroader impacts:\u003cbr/\u003eThis study will contribute to the goal of understanding ice ages and past CO2 changes, which both have broad implications for future climate. Undergraduates will undertake summer internships, with the possibility of extending their work into junior year projects and senior theses. In addition, the PI will lead modules for two Princeton programs for middle school teachers and will host a teacher for a six-week summer research project.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "BIOGEOCHEMICAL CYCLES; South Pacific Ocean; USAP-DC; NOT APPLICABLE", "locations": "South Pacific Ocean", "north": -45.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Sigman, Daniel", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "PANGAEA", "repositories": "CLIVAR; PANGAEA; Publication", "science_programs": null, "south": -70.0, "title": "High-resolution, Assemblage-specific Records of Diatom-bound N Isotopes from the Indian Sector of the Antarctic Ocean", "uid": "p0010046", "west": -180.0}, {"awards": "1543267 Brook, Edward J.; 1543229 Severinghaus, Jeffrey", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Multi-site ice core Krypton stable isotope ratios; Noble Gas Data from recent ice in Antarctica for 86Kr problem", "datasets": [{"dataset_uid": "601394", "doi": "10.15784/601394", "keywords": "Antarctica; Bruce Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland Ice Cap; Ice Core; Ice Core Chemistry; Ice Core Records; James Ross Island; Krypton; Law Dome; Low Dome Ice Core; Roosevelt Island; Siple Dome; Siple Dome Ice Core; South Pole; SPICEcore; WAIS Divide; WAIS Divide Ice Core", "people": "Severinghaus, Jeffrey P.; Brook, Edward J.; Baggenstos, Daniel; Bereiter, Bernhard; Etheridge, David; Bertler, Nancy; Pyne, Rebecca L.; Mulvaney, Robert; Mosley-Thompson, Ellen; Buizert, Christo; Shackleton, Sarah", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Multi-site ice core Krypton stable isotope ratios", "url": "https://www.usap-dc.org/view/dataset/601394"}, {"dataset_uid": "601195", "doi": "10.15784/601195", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Krypton; Noble Gas; Xenon", "people": "Severinghaus, Jeffrey P.; Shackleton, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Noble Gas Data from recent ice in Antarctica for 86Kr problem", "url": "https://www.usap-dc.org/view/dataset/601195"}, {"dataset_uid": "601394", "doi": "10.15784/601394", "keywords": "Antarctica; Bruce Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland Ice Cap; Ice Core; Ice Core Chemistry; Ice Core Records; James Ross Island; Krypton; Law Dome; Low Dome Ice Core; Roosevelt Island; Siple Dome; Siple Dome Ice Core; South Pole; SPICEcore; WAIS Divide; WAIS Divide Ice Core", "people": "Shackleton, Sarah; Buizert, Christo; Severinghaus, Jeffrey P.; Brook, Edward J.; Baggenstos, Daniel; Bereiter, Bernhard; Etheridge, David; Bertler, Nancy; Pyne, Rebecca L.; Mulvaney, Robert; Mosley-Thompson, Ellen", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Multi-site ice core Krypton stable isotope ratios", "url": "https://www.usap-dc.org/view/dataset/601394"}, {"dataset_uid": "601394", "doi": "10.15784/601394", "keywords": "Antarctica; Bruce Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland Ice Cap; Ice Core; Ice Core Chemistry; Ice Core Records; James Ross Island; Krypton; Law Dome; Low Dome Ice Core; Roosevelt Island; Siple Dome; Siple Dome Ice Core; South Pole; SPICEcore; WAIS Divide; WAIS Divide Ice Core", "people": "Mulvaney, Robert; Etheridge, David; Severinghaus, Jeffrey P.; Pyne, Rebecca L.; Bertler, Nancy; Buizert, Christo; Baggenstos, Daniel; Shackleton, Sarah; Mosley-Thompson, Ellen; Bereiter, Bernhard; Brook, Edward J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Multi-site ice core Krypton stable isotope ratios", "url": "https://www.usap-dc.org/view/dataset/601394"}], "date_created": "Wed, 10 Jul 2019 00:00:00 GMT", "description": "Overview: The funded work investigated whether ice core 86Kr acts as a proxy for barometric pressure variability, and whether this proxy can be used in Antarctic ice cores to infer past movement of the Southern Hemisphere (SH) westerly winds. Pressure variations drive macroscopic air movement in the firn column, which reduces the gravitational isotopic enrichment of slow-diffusing gases (such as Kr). The 86Kr deviation from gravitational equilibrium (denoted D86Kr) thus reflects the magnitude of pressure variations (among other things). Atmospheric reanalysis data suggest that pressure variability over Antarctica is linked to the Southern Annular Mode (SAM) index and the position of the SH westerly winds. Preliminary data from the WAIS Divide ice core show a large excursion in D86Kr during the last deglaciation (20-9 ka before present). In this project the investigators (1) performed high-precision 86Kr analysis on ice core and firn air samples to establish whether D86Kr is linked to pressure variability; (2) Refined the deglacial WAIS Divide record of Kr isotopes; (3) Investigated the role of pressure variability in firn air transport using firn air models with firn microtomography data and Lattice- Boltzmann modeling; and (4) Investigated how barometric pressure variability in Antarctica is linked to the SAM index and the position/strength of the SH westerlies in past and present climates using GCM and reanalysis data. A key finding was that D86Kr in recent ice samples (e.g. last 50 years) from a broad spatial array of sites in Antarctica and Greenland showed a significant correlation with directly measured barometric pressure variability at the ice core site. This strongly supports the hypothesis that 86Kr can be used as a paleo-proxy for storminess.\r\nIntellectual Merit: The SH westerlies are a key component of the global climate system; they are an important control on the global oceanic overturning circulation and possibly on atmospheric CO2 concentrations. Poleward movement of the SH westerlies during the last deglaciation has been hypothesized, yet evidence from proxy and modeling studies remains inconclusive. The funded work could provide valuable new constraints on deglacial movement of the SH westerlies. This record can be compared to high-resolution CO2 data from the same core, allowing us to test hypotheses that link CO2 to the SH westerlies. Climate proxies are at the heart of paleoclimate research. The funded work has apparently led to the discovery of a completely new proxy, opening up exciting new research possibilities and increasing the scientific value of existing ice cores. Once validated, the 86Kr proxy could be applied to other time periods as well, providing a long-term perspective on the movement of the SH westerlies. The funded work has furthermore provided valuable new insights into firn air transport. \r\n\r\nBroader impact: The Southern Ocean is presently an important sink of atmospheric CO2, thereby reducing the warming associated with anthropogenic CO2 emissions. Stratospheric ozone depletion and greenhouse warming have displaced the SH westerlies poleward, with potential consequences for the future magnitude of this oceanic carbon uptake. The funded work may provide a paleo-perspective on past movement of the SH westerlies and its link to atmospheric CO2, which could guide projections of future oceanic CO2 uptake, with strong societal benefits. The awarded funds supported and trained an early-career postdoctoral scholar at OSU, and fostered (international) collaboration. Data from the study will be available to the scientific community and the broad public through recognized data centers. During this project the PI and senior personnel have continued their commitment to public outreach through media interviews and speaking to schools and the public about their work. The PI provides services to the community by chairing the IPICS (International Partnership in Ice Core Sciences) working group and organizing annual PIRE (Partnerships in International Research and Education) workshops.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USA/NSF; FIRN; ICE CORE RECORDS; USAP-DC; Greenland; Xenon; Noble Gas; Ice Core; Amd/Us; Antarctica; AMD; LABORATORY; Krypton; ATMOSPHERIC PRESSURE", "locations": "Greenland; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.; Brook, Edward J.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative research: Kr-86 as a proxy for barometric pressure variability and movement of the SH westerlies during the last\r\ndeglaciation", "uid": "p0010037", "west": -180.0}, {"awards": "1443472 Brook, Edward J.; 1443464 Sowers, Todd; 1443710 Severinghaus, Jeffrey", "bounds_geometry": "POINT(0 -90)", "dataset_titles": "South Pole CH4 data for termination; South Pole Ice Core Isotopes of N2 and Ar; South Pole ice core (SPC14) discrete methane data; South Pole ice core total air content; South Pole (SPICECORE) 15N, 18O, O2/N2 and Ar/N2; SP19 Gas Chronology", "datasets": [{"dataset_uid": "601231", "doi": "10.15784/601231", "keywords": "Air Content; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Snow/ice; Snow/Ice; South Pole; SPICEcore", "people": "Sowers, Todd A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice core total air content", "url": "https://www.usap-dc.org/view/dataset/601231"}, {"dataset_uid": "601230", "doi": "10.15784/601230", "keywords": "Antarctica; Atmospheric CH4; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Data; Methane; Methane Concentration; Snow/ice; Snow/Ice; South Pole; SPICEcore", "people": "Sowers, Todd A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole CH4 data for termination", "url": "https://www.usap-dc.org/view/dataset/601230"}, {"dataset_uid": "601381", "doi": "10.15784/601381", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Methane; South Pole; SPICEcore", "people": "Severinghaus, Jeffrey P.; Hood, Ekaterina; Fudge, T. J.; Kennedy, Joshua A.; Osterberg, Erich; Winski, Dominic A.; Steig, Eric J.; Kahle, Emma; Sowers, Todd A.; Edwards, Jon S.; Aydin, Murat; Kreutz, Karl; Buizert, Christo; Brook, Edward J.; Epifanio, Jenna; Ferris, David G.; Kalk, Michael", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice core (SPC14) discrete methane data", "url": "https://www.usap-dc.org/view/dataset/601381"}, {"dataset_uid": "601152", "doi": "10.15784/601152", "keywords": "Antarctica; Antarctic Ice Sheet; Chemistry:gas; Chemistry:Gas; Chemistry:ice; Chemistry:Ice; Delta 18O; Dole Effect; Firn Thickness; Gas Isotopes; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Gravitational Settling; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Inert Gases; Nitrogen; Nitrogen Isotopes; Oxygen; Oxygen Isotope; Snow/ice; Snow/Ice; South Pole; SPICEcore", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole (SPICECORE) 15N, 18O, O2/N2 and Ar/N2", "url": "https://www.usap-dc.org/view/dataset/601152"}, {"dataset_uid": "601517", "doi": "10.15784/601517", "keywords": "Antarctica; Argon; Argon Isotopes; Firn; Firn Temperature Gradient; Firn Thickness; Gas Isotopes; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Nitrogen; Nitrogen Isotopes; South Pole; SPICEcore", "people": "Morgan, Jacob; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Isotopes of N2 and Ar", "url": "https://www.usap-dc.org/view/dataset/601517"}, {"dataset_uid": "601380", "doi": "10.15784/601380", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Core Stratigraphy; Methane; South Pole; SPICEcore", "people": "Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SP19 Gas Chronology", "url": "https://www.usap-dc.org/view/dataset/601380"}], "date_created": "Sat, 02 Feb 2019 00:00:00 GMT", "description": "Gases trapped in ice cores have revealed astonishing things about the greenhouse gas composition of the past atmosphere, including the fact that carbon dioxide concentrations never rose above 300 parts per million during the last 800,000 years. This places today\u0027s concentration of 400 parts per million in stark contrast. Furthermore, these gas records show that natural sources of greenhouse gas such as oceans and ecosystems act as amplifiers of climate change by increasing emissions of gases during warmer periods. Such amplification is expected to occur in the future, adding to the human-produced gas burden. The South Pole ice core will build upon these prior findings by expanding the suite of gases to include, for the first time, those potent trace gases that both trapped heat and depleted ozone during the past 40,000 years. The present project on inert gases and methane in the South Pole ice core will improve the dating of this crucial record, to unprecedented precision, so that the relative timing of events can be used to learn about the mechanism of trace gas production and destruction, and consequent climate change amplification. Ultimately, this information will inform predictions of future atmospheric chemical cleansing mechanisms and climate in the context of our rapidly changing atmosphere. This award also engages young people in the excitement of discovery and polar research, helping to entrain the next generations of scientists and educators. Education of graduate students, a young researcher (Buizert), and training of technicians, will add to the nation?s human resource base. \u003cbr/\u003e \u003cbr/\u003eThis award funds the construction of the gas chronology for the South Pole 1500m ice core, using measured inert gases (d15N and d40Ar--Nitrogen and Argon isotope ratios, respectively) and methane in combination with a next-generation firn densification model that treats the stochastic nature of air trapping and the role of impurities on densification. The project addresses fundamental gaps in scientific understanding that limit the accuracy of gas chronologies, specifically a poor knowledge of the controls on ice-core d15N and the possible role of layering and impurities in firn densification. These gaps will be addressed by studying the gas enclosure process in modern firn at the deep core site. The work will comprise the first-ever firn air pumping experiment that has tightly co-located measurements of firn structural properties on the core taken from the same borehole.\u003cbr/\u003e\u003cbr/\u003eThe project will test the hypothesis that the lock-in horizon as defined by firn air d15N, CO2, and methane is structurally controlled by impermeable layers, which are in turn created by high-impurity content horizons in which densification is enhanced. Thermal signals will be sought using the inert gas measurements, which improve the temperature record with benefits to the firn densification modeling. Neon, argon, and oxygen will be measured in firn air and a limited number of deep core samples to test whether glacial period layering was enhanced, which could explain low observed d15N in the last glacial period. Drawing on separate volcanic and methane synchronization to well-dated ice cores to create independent ice and gas tie points, independent empirical estimates of the gas age-ice age difference will be made to check the validity of the firn densification model-inert gas approach to calculating the gas age-ice age difference. These points will also be used to test whether the anomalously low d15N seen during the last glacial period in east Antarctic ice cores is due to deep air convection in the firn, or a missing impurity dependence in the firn densification models. \u003cbr/\u003e\u003cbr/\u003eThe increased physical understanding gained from these studies, combined with new high-precision measurements, will lead to improved accuracy of the gas chronology of the South Pole ice core, which will enhance the overall science return from this gas-oriented core. This will lead to clarification of timing of atmospheric gas variations and temperature, and aid in efforts to understand the biogeochemical feedbacks among trace gases. These feedbacks bear on the future response of the Earth System to anthropogenic forcing. Ozone-depleting substances will be measured in the South Pole ice core record, and a precise gas chronology will add value. Lastly, by seeking a better understanding of the physics of gas entrapment, the project aims to have an impact on ice-core science in general.", "east": 0.0, "geometry": "POINT(0 -90)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "USAP-DC; AMD; LABORATORY; Antarctica; NITROGEN ISOTOPES; USA/NSF; METHANE; Amd/Us; FIELD INVESTIGATION", "locations": "Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.; Sowers, Todd A.; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core", "uid": "p0010005", "west": 0.0}, {"awards": "1443341 Hawley, Robert; 1443471 Koutnik, Michelle", "bounds_geometry": "POLYGON((110 -89,117 -89,124 -89,131 -89,138 -89,145 -89,152 -89,159 -89,166 -89,173 -89,180 -89,180 -89.1,180 -89.2,180 -89.3,180 -89.4,180 -89.5,180 -89.6,180 -89.7,180 -89.8,180 -89.9,180 -90,173 -90,166 -90,159 -90,152 -90,145 -90,138 -90,131 -90,124 -90,117 -90,110 -90,110 -89.9,110 -89.8,110 -89.7,110 -89.6,110 -89.5,110 -89.4,110 -89.3,110 -89.2,110 -89.1,110 -89))", "dataset_titles": "7MHz radar in the vicinity of South Pole; Firn density and compaction rates 50km upstream of South Pole; Firn temperatures 50km upstream of South Pole; Shallow radar near South Pole; South Pole area GPS velocities; SPICEcore Advection", "datasets": [{"dataset_uid": "601099", "doi": "10.15784/601099", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Radar; Snow Accumulation; Snow/ice; Snow/Ice", "people": "Lilien, David; Waddington, Edwin D.; Fudge, T. J.; Koutnik, Michelle; Conway, Howard", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Shallow radar near South Pole", "url": "https://www.usap-dc.org/view/dataset/601099"}, {"dataset_uid": "601680", "doi": "10.15784/601680", "keywords": "Antarctica; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Snow/ice; Snow/Ice; South Pole; Temperature", "people": "Stevens, Christopher Max; Lilien, David; Conway, Howard; Waddington, Edwin D.; Koutnik, Michelle; Fudge, T. J.", "repository": "USAP-DC", "science_program": null, "title": "Firn density and compaction rates 50km upstream of South Pole", "url": "https://www.usap-dc.org/view/dataset/601680"}, {"dataset_uid": "601100", "doi": "10.15784/601100", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ice Velocity", "people": "Lilien, David; Waddington, Edwin D.; Fudge, T. J.; Koutnik, Michelle; Conway, Howard", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole area GPS velocities", "url": "https://www.usap-dc.org/view/dataset/601100"}, {"dataset_uid": "601525", "doi": "10.15784/601525", "keywords": "Antarctica; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Snow/ice; Snow/Ice; South Pole; SPICEcore; Temperature", "people": "Conway, Howard; Koutnik, Michelle; Lilien, David; Waddington, Edwin D.; Fudge, T. J.; Stevens, Christopher Max", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Firn temperatures 50km upstream of South Pole", "url": "https://www.usap-dc.org/view/dataset/601525"}, {"dataset_uid": "601266", "doi": "10.15784/601266", "keywords": "Antarctica; Ice Core Data; South Pole; SPICEcore", "people": "Fudge, T. J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SPICEcore Advection", "url": "https://www.usap-dc.org/view/dataset/601266"}, {"dataset_uid": "601369", "doi": "10.15784/601369", "keywords": "Antarctica; Ice Sheet", "people": "Fudge, T. J.; Koutnik, Michelle; Stevens, Max; Conway, Howard; Lilien, David; Waddington, Edwin D.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "7MHz radar in the vicinity of South Pole", "url": "https://www.usap-dc.org/view/dataset/601369"}], "date_created": "Thu, 14 Jun 2018 00:00:00 GMT", "description": "Ice-core records are critical to understanding past climate variations. An Antarctic ice core currently being drilled at the South Pole will allow detailed investigation of atmospheric gases and fill an important gap in understanding the pattern of climate variability across Antarctica. Critical to the interpretation of any ice core are: 1) accurate chronologies for both the ice and the trapped gas and 2) demonstration that records from the ice core reliably reflect climate. The proposed research will improve the ice and gas chronologies by making measurements of snow compaction in the upstream catchment in order to constrain age models of the ice. These measurements will be a key data set needed for better understanding and predicting time-varying conditions in the upper part of the ice sheet. The research team will measure the modern spatial gradients in accumulation rate, surface temperature, and water stable isotopes from shallow ice cores in the upstream catchment in order to determine the climate history from the ice-core record. The new ice-flow measurements will make it possible to define the path of ice from upstream to the South Pole ice-core drill site to assess spatial gradients in snowfall and to infer histories of snowfall from internal layers within the ice sheet. The project will be led by an early-career scientist, provide broad training to graduate students, and engage in public outreach on polar science.\u003cbr/\u003e\u003cbr/\u003eIce-core records of stable isotopes, aerosol-born particles, and atmospheric gases are critical to understanding past climate variations. The proposed research will improve the ice and gas chronologies in the South Pole ice core by making in situ measurements of firn compaction in the upstream catchment to constrain models of the gas-age ice-age difference. The firn measurements will be a key data set needed to form a constitutive relationship for firn, and will drive better understanding and prediction of transient firn evolution. The research team will measure the modern gradients in accumulation rate, surface temperature, and water stable isotopes in the upstream catchment to separate spatial (advection) variations from temporal (climate) variations in the ice-core records. The ice-flow measurements will define the flowline upstream of the drill site, assess spatial gradients in accumulation, and infer histories of accumulation from radar-observed internal layers. Results will directly enhance interpretation of South Pole ice-core records, and also advance understanding of firn densification and drive next-generation firn models.", "east": 180.0, "geometry": "POINT(145 -89.5)", "instruments": null, "is_usap_dc": true, "keywords": "FIRN; Firn; USAP-DC; South Pole; Radar; FIELD SURVEYS; ICE CORE RECORDS", "locations": "South Pole", "north": -89.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Koutnik, Michelle; Conway, Howard; Waddington, Edwin D.; Fudge, T. J.; Hawley, Robert L.; Osterberg, Erich", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: Characterization of Upstream Ice and Firn Dynamics affecting the South Pole Ice Core", "uid": "p0000200", "west": 110.0}, {"awards": "1443232 Waddington, Edwin", "bounds_geometry": "POLYGON((110 -89,117 -89,124 -89,131 -89,138 -89,145 -89,152 -89,159 -89,166 -89,173 -89,180 -89,180 -89.1,180 -89.2,180 -89.3,180 -89.4,180 -89.5,180 -89.6,180 -89.7,180 -89.8,180 -89.9,180 -90,173 -90,166 -90,159 -90,152 -90,145 -90,138 -90,131 -90,124 -90,117 -90,110 -90,110 -89.9,110 -89.8,110 -89.7,110 -89.6,110 -89.5,110 -89.4,110 -89.3,110 -89.2,110 -89.1,110 -89))", "dataset_titles": "AC-ECM for SPICEcore; ECM (DC and AC) multi-track data and images from 2016 processing season", "datasets": [{"dataset_uid": "601189", "doi": " 10.15784/601189 ", "keywords": "Antarctica; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Physical Properties; Snow/ice; Snow/Ice; South Pole; SPICEcore; Volcanic", "people": "Waddington, Edwin D.; Fudge, T. J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "AC-ECM for SPICEcore", "url": "https://www.usap-dc.org/view/dataset/601189"}, {"dataset_uid": "601366", "doi": "10.15784/601366", "keywords": "Antarctica", "people": "Fudge, T. J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "ECM (DC and AC) multi-track data and images from 2016 processing season", "url": "https://www.usap-dc.org/view/dataset/601366"}], "date_created": "Tue, 08 May 2018 00:00:00 GMT", "description": "Ice cores record detailed histories of past climate variations. The South Pole ice core will allow investigation of atmospheric trace gases and fill an important gap in understanding the pattern of climate variability across Antarctica. An accurate timescale that assigns an age to the ice at each depth in the core is essential to interpretation of the ice-core records. This work will use electrical methods to identify volcanic eruptions throughout the past ~40,000 years in the core by detecting the enhanced electrical conductance in those layers due to volcanic impurities in the ice. These eruptions will be pattern-matched to other cores across Antarctica, synchronizing the timing of climate variations among cores and allowing the precise timescales developed for other Antarctic ice cores to be transferred to the South Pole ice core. The well-dated records of volcanic forcing will be combined with records of atmospheric gases, stable water-isotopes, and aerosols to better understand the large natural climate variations of the past 40,000 years. \u003cbr/\u003e \u003cbr/\u003eThe electrical conductance method and dielectric profiling measurements will be made along the length of each section of the South Pole ice core at the National Ice Core Lab. These measurements will help to establish a timescale for the core. Electrical measurements will provide a continuous record of volcanic events for the entire core including through the brittle ice (550-1250m representing ~10,000-20,000 year-old ice) where the core quality and thin annual layers may prevent continuous melt analysis and cause discrete measurements to miss volcanic events. The electrical measurements also produce a 2-D image of the electrical layering on a longitudinal cut surface of each core. These data will be used to identify any irregular or absent layering that would indicate a stratigraphic disturbance in the core. A robust chronology is essential to interpretation of the paleoclimate records from the South Pole ice core. The investigators will engage teachers through talks and webinars with the National Science Teachers Association and will share information with the public at events such as Polar Science Weekend at the Pacific Science Center. Results will be disseminated through publications and conference presentations and the data will be archived and publicly available.", "east": 180.0, "geometry": "POINT(145 -89.5)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; USA/NSF; Amd/Us; AMD; LABORATORY", "locations": null, "north": -89.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Fudge, T. J.; Waddington, Edwin D.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Using Electrical Conductance Measurements to Develop the South Pole Ice Core Chronology", "uid": "p0000378", "west": 110.0}, {"awards": "1043471 Kaplan, Michael", "bounds_geometry": "POLYGON((-112.5 -79.468,-112.4586 -79.468,-112.4172 -79.468,-112.3758 -79.468,-112.3344 -79.468,-112.293 -79.468,-112.2516 -79.468,-112.2102 -79.468,-112.1688 -79.468,-112.1274 -79.468,-112.086 -79.468,-112.086 -79.4712,-112.086 -79.4744,-112.086 -79.4776,-112.086 -79.4808,-112.086 -79.484,-112.086 -79.4872,-112.086 -79.4904,-112.086 -79.4936,-112.086 -79.4968,-112.086 -79.5,-112.1274 -79.5,-112.1688 -79.5,-112.2102 -79.5,-112.2516 -79.5,-112.293 -79.5,-112.3344 -79.5,-112.3758 -79.5,-112.4172 -79.5,-112.4586 -79.5,-112.5 -79.5,-112.5 -79.4968,-112.5 -79.4936,-112.5 -79.4904,-112.5 -79.4872,-112.5 -79.484,-112.5 -79.4808,-112.5 -79.4776,-112.5 -79.4744,-112.5 -79.4712,-112.5 -79.468))", "dataset_titles": "List of samples of WAIS Divide and Byrd (deep) ice that were analyzed for radiogenic isotopes at LDEO", "datasets": [{"dataset_uid": "601065", "doi": "10.15784/601065", "keywords": "Antarctica; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Sample/collection Description; Sample/Collection Description; WAIS Divide; WAIS Divide Ice Core", "people": "Kaplan, Michael", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "List of samples of WAIS Divide and Byrd (deep) ice that were analyzed for radiogenic isotopes at LDEO", "url": "https://www.usap-dc.org/view/dataset/601065"}], "date_created": "Sun, 29 Oct 2017 00:00:00 GMT", "description": "This award supports a project to obtain the first set of isotopic-based provenance data from the WAIS divide ice core. A lack of data from the WAIS prevents even a basic knowledge of whether different sources of dust blew around the Pacific and Atlantic sectors of the southern latitudes. Precise isotopic measurements on dust in the new WAIS ice divide core are specifically warranted because the data will be synergistically integrated with other high frequency proxies, such as dust concentration and flux, and carbon dioxide, for example. Higher resolution proxies will bridge gaps between our observations on the same well-dated, well-preserved core. The intellectual merit of the project is that the proposed analyses will contribute to the WAIS Divide Project science themes. Whether an active driver or passive recorder, dust is one of the most important but least understood components of regional and global climate. Collaborative and expert discussion with dust-climate modelers will lead to an important progression in understanding of dust and past atmospheric circulation patterns and climate around the southern latitudes, and help to exclude unlikely air trajectories to the ice sheets. The project will provide data to help evaluate models that simulate the dust patterns and cycle and the relative importance of changes in the sources, air trajectories and transport processes, and deposition to the ice sheet under different climate states. The results will be of broad interest to a range of disciplines beyond those directly associated with the WAIS ice core project, including the paleoceanography and dust- paleoclimatology communities. The broader impacts of the project include infrastructure and professional development, as the proposed research will initiate collaborations between LDEO and other WAIS scientists and modelers with expertise in climate and dust. Most of the researchers are still in the early phase of their careers and hence the project will facilitate long-term relationships. This includes a graduate student from UMaine, an undergraduate student from Columbia University who will be involved in lab work, in addition to a LDEO Postdoctoral scientist, and possibly an additional student involved in the international project PIRE-ICETRICS. The proposed research will broaden the scientific outlooks of three PIs, who come to Antarctic ice core science from a variety of other terrestrial and marine geology perspectives. Outreach activities include interaction with the science writers of the Columbia\u0027s Earth Institute for news releases and associated blog websites, public speaking, and involvement in an arts/science initiative between New York City\u0027s arts and science communities to bridge the gap between scientific knowledge and public perception.", "east": -112.086, "geometry": "POINT(-112.293 -79.484)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.468, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Kaplan, Michael; Winckler, Gisela; Goldstein, Steven L.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.5, "title": "A Study of Atmospheric Dust in the WAIS Divide Ice Core Based on Sr-Nd-Pb-He Isotopes", "uid": "p0000081", "west": -112.5}, {"awards": "1142007 Kurbatov, Andrei", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctic Ice Core Tephra Analysis; Antarctic Tephra Data Base AntT static web site", "datasets": [{"dataset_uid": "601052", "doi": "10.15784/601052", "keywords": "Antarctica; Geochemistry; Geochronology; Glaciology; Intracontinental Magmatism; IntraContinental Magmatism; Sample/collection Description; Sample/Collection Description; Tephra", "people": "Kurbatov, Andrei V.; Dunbar, Nelia", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Tephra Data Base AntT static web site", "url": "https://www.usap-dc.org/view/dataset/601052"}, {"dataset_uid": "601038", "doi": "10.15784/601038", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Intracontinental Magmatism; IntraContinental Magmatism; Tephra", "people": "Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Antarctic Ice Core Tephra Analysis", "url": "https://www.usap-dc.org/view/dataset/601038"}], "date_created": "Fri, 06 Oct 2017 00:00:00 GMT", "description": "Many key questions in climate research (e.g. relative timing of climate events in different geographic areas, climate-forcing mechanisms, natural threshold levels in the climate system) are dependent on accurate reconstructions of the temporal and spatial distribution of past rapid climate change events in continental, atmospheric, marine and polar realms. This collaborative interdisciplinary research project aims to consolidate, into a single user-friendly database, information about volcanic products detected in Antarctica. By consolidating information about volcanic sources, and physical and geochemical characteristics of volcanic products, this systematic data collection approach will improve the ability of researchers to identify volcanic ash, or tephra, from specific volcanic eruptions that may be spread over large areas in a geologically instantaneous amount of time. Development of this database will assist in the identification and cross-correlation of time intervals in various paleoclimate archives that contain volcanic layers from often unknown sources. The AntT project relies on a cyberinfrastructure framework developed in house through NSF funded CDI-Type I: CiiWork for data assimilation, interpretation and open distribution model. In addition to collection and integration of existing information about volcanic products, this project will focus on filling the information gaps about unique physico-chemical characteristics of very fine (\u003c3 micrometer) volcanic particles (cryptotephra) that are present in Antarctic ice cores. This component of research will involve improving analytical methodology for detecting cryptotephra layers in ice, and will train a new generation of scientists to apply an array of modern state?of?the-art instrumentation available to the project team. \u003cbr/\u003e\u003cbr/\u003eThe recognized importance of tephra in establishing a chronological framework for volcanic and sedimentary successions has already resulted in the development of robust regional tephrochronological frameworks (e.g. Europe, Kamchatka, New Zealand, Western North America). The AntT project will provide this framework for Antarctic tephrochronology, as needed for precise correlation records between Antarctic ice cores (e.g. WAIS Divide, RICE, ITASE) and global paleoclimate archives. The results of AntT will be of particular significance to climatologists, paleoclimatologists, atmospheric chemists, geochemists, climate modelers, solar-terrestrial physicists, environmental statisticians, and policy makers for designing solutions to mitigate or cope with likely future impacts of climate change events on modern society.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Hartman, Laura; Wheatley, Sarah D.; Kurbatov, Andrei V.", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Developing an Antarctic Tephra Database for Interdisciplinary Paleoclimate Research (AntT)", "uid": "p0000328", "west": -180.0}, {"awards": "0944348 Taylor, Kendrick; 0944266 Twickler, Mark", "bounds_geometry": "POINT(-112.1115 -79.481)", "dataset_titles": "Summary of Results from the WAIS Divide Ice Core Project; WAIS Divide WDC06A Core Quality Versus Depth", "datasets": [{"dataset_uid": "601021", "doi": "10.15784/601021", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide Ice Core", "people": "Taylor, Kendrick C.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Summary of Results from the WAIS Divide Ice Core Project", "url": "https://www.usap-dc.org/view/dataset/601021"}, {"dataset_uid": "601030", "doi": "10.15784/601030", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide Ice Core", "people": "Twickler, Mark; Taylor, Kendrick C.; Souney, Joseph Jr.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide WDC06A Core Quality Versus Depth", "url": "https://www.usap-dc.org/view/dataset/601030"}], "date_created": "Fri, 09 Jun 2017 00:00:00 GMT", "description": "Taylor/0944348\u003cbr/\u003e\u003cbr/\u003eThis award supports renewal of funding of the WAIS Divide Science Coordination Office (SCO). The Science Coordination Office (SCO) was established to represent the research community and facilitates the project by working with support organizations responsible for logistics, drilling, and core curation. During the last five years, 26 projects have been individually funded to work on this effort and 1,511 m of the total 3,470 m of ice at the site has been collected. This proposal seeks funding to continue the SCO and related field operations needed to complete the WAIS Divide ice core project. Tasks for the SCO during the second five years include planning and oversight of logistics, drilling, and core curation; coordinating research activities in the field; assisting in curation of the core in the field; allocating samples to individual projects; coordinating the sampling effort; collecting, archiving, and distributing data and other information about the project; hosting an annual science meeting; and facilitating collaborative efforts among the research groups. The intellectual merit of the WAIS Divide project is to better predict how human-caused increases in greenhouse gases will alter climate requires an improved understanding of how previous natural changes in greenhouse gases influenced climate in the past. Information on previous climate changes is used to validate the physics and results of climate models that are used to predict future climate. Antarctic ice cores are the only source of samples of the paleo-atmosphere that can be used to determine previous concentrations of carbon dioxide. Ice cores also contain records of other components of the climate system such as the paleo air and ocean temperature, atmospheric loading of aerosols, and indicators of atmospheric transport. The WAIS Divide ice core project has been designed to obtain the best possible record of greenhouse gases during the last glacial cycle (last ~100,000 years). The site was selected because it has the best balance of high annual snowfall (23 cm of ice equivalent/year), low dust Antarctic ice that does not compromise the carbon dioxide record, and favorable glaciology. The main science objectives of the project are to investigate climate forcing by greenhouse gases, initiation of climate changes, stability of the West Antarctic Ice Sheet, and cryobiology in the ice core. The project has numerous broader impacts. An established provider of educational material (Teachers? Domain) will develop and distribute web-based resources related to the project and climate change for use in K?12 classrooms. These resources will consist of video and interactive graphics that explain how and why ice cores are collected, and what they tell us about future climate change. Members of the national media will be included in the field team and the SCO will assist in presenting information to the general public. Video of the project will be collected and made available for general use. Finally, an opportunity will be created for cryosphere students and early career scientists to participate in field activities and core analysis. An ice core archive will be available for future projects and scientific discoveries from the project can be used by policy makers to make informed decisions.", "east": -112.1115, "geometry": "POINT(-112.1115 -79.481)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.481, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Mark, Twickler; Taylor, Kendrick C.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Collaborative Research: Climate, Ice Dynamics and Biology using a Deep Ice Core from the West Antarctic Ice Sheet Ice Divide", "uid": "p0000080", "west": -112.1115}, {"awards": "1142166 McConnell, Joseph", "bounds_geometry": "POINT(-112.1115 -79.481)", "dataset_titles": "WAIS Divide Ice-Core Aerosol Records from 1300 to 3404 m", "datasets": [{"dataset_uid": "601008", "doi": "10.15784/601008", "keywords": "Aerosol; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Aerosol Records from 1300 to 3404 m", "url": "https://www.usap-dc.org/view/dataset/601008"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "McConnell/1142166\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to use unprecedented aerosol and continuous gas (methane, carbon monoxide) measurements of the deepest section of the West Antarctic Ice Sheet (WAIS) Divide ice core to investigate rapid climate changes in Antarctica during the ~60,000 year long Marine Isotope Stage 3 period of the late Pleistocene. These analyses, combined with others, will take advantage of the high snow accumulation of the WAIS Divide ice core to yield the highest time resolution glaciochemical and gas record of any deep Antarctic ice core for this time period. The research will expand already funded discrete gas measurements and extend currently funded continuous aerosol measurements on the WAIS Divide ice core from ~25,000 to ~60,000 years before present, spanning Heinrich events 3 to 6 and Antarctic Isotope Maximum (AIM, corresponding to the Northern Hemisphere Dansgaard-Oeschger) events 3 to 14. With other high resolution Greenland cores and lower resolution Antarctic cores, the combined record will yield new insights into worldwide climate dynamics and abrupt change. The intellectual merit of the work is that it will be used to address the science goals of the WAIS Divide project including the identification of dust and biomass burning tracers such as black carbon and carbon monoxide which reflect mid- and low-latitude climate and atmospheric circulation patterns, and fallout from these sources affects marine and terrestrial biogeochemical cycles. Similarly, sea salt and ocean productivity tracers reflect changes in sea ice extent, marine primary productivity, wind speeds above the ocean, and atmospheric circulation. Volcanic tracers address the relationship between northern, tropical, and southern climates as well as stability of the West Antarctic ice sheet and sea level change. When combined with other gas records from WAIS Divide, the records developed here will transform understanding of mid- and low-latitude drivers of Antarctic, Southern Hemisphere, and global climate rapid changes and the timing of such changes. The broader impacts of the work are that it will enhance infrastructure through expansion of continuous ice core analytical techniques, train students and support collaboration between two U.S. institutions (DRI and OSU). All data will be made available to the scientific community and the public and will include participation the WAIS Divide Outreach Program. Extensive graduate and undergraduate student involvement is planned. Student recruitment will be made from under-represented groups building on a long track record. Broad outreach will be achieved through collaborations with the global and radiative modeling communities, NESTA-related and other educational outreach efforts, and public lectures. This proposed project does not require field work in the Antarctic.", "east": -112.1115, "geometry": "POINT(-112.1115 -79.481)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "McConnell, Joseph", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Collaborative Research: Investigating Upper Pleistocene Rapid Climate Change using Continuous, Ultra-High-Resolution Aerosol and Gas Measurements in the WAIS Divide Ice Core", "uid": "p0000287", "west": -112.1115}, {"awards": "1141936 Foreman, Christine", "bounds_geometry": "POINT(112.085 -79.467)", "dataset_titles": "Molecular Level Characterization of Dissolved Organic Carbon and Microbial Diversity in the WAIS Divide Replicate Core", "datasets": [{"dataset_uid": "600133", "doi": "10.15784/600133", "keywords": "Antarctica; Biota; Genetic Sequences; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Foreman, Christine", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Molecular Level Characterization of Dissolved Organic Carbon and Microbial Diversity in the WAIS Divide Replicate Core", "url": "https://www.usap-dc.org/view/dataset/600133"}], "date_created": "Thu, 05 Nov 2015 00:00:00 GMT", "description": "This award supports a detailed, molecular level characterization of dissolved organic carbon and microbes in Antarctic ice cores. Using the most modern biological (genomic), geochemical techniques, and advanced chemical instrumentation researchers will 1) optimize protocols for collecting, extracting and amplifying DNA from deep ice cores suitable for use in next generation pyrosequencing; 2) determine the microbial diversity within the ice core; and 3) obtain and analyze detailed molecular characterizations of the carbon in the ice by ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS). With this pilot study investigators will be able to quantify the amount of material (microbial biomass and carbon) required to perform these characterizations, which is needed to inform future ice coring projects. The ultimate goal will be to develop protocols that maximize the yield, while minimizing the amount of ice required. The broader impacts include education and outreach at both the local and national levels. As a faculty mentor with the American Indian Research Opportunities and BRIDGES programs at Montana State University, Foreman will serve as a mentor to a Native American student in the lab during the summer months. Susan Kelly is an Education and Outreach Coordinator with a MS degree in Geology and over 10 years of experience in science outreach. She will coordinate efforts for comprehensive educational collaboration with the Hardin School District on the Crow Indian Reservation in South-central Montana.", "east": 112.085, "geometry": "POINT(112.085 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ADS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Dissolved Organic Carbon; Microbes; Ice Core; Not provided; Pyrosequencing; Microbial Diversity; Molecular; WAIS Divide; LABORATORY; FIELD SURVEYS; Antarctic; FIELD INVESTIGATION; DNA", "locations": "Antarctic; WAIS Divide", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Foreman, Christine", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Molecular Level Characterization of Dissolved Organic Carbon and Microbial Diversity in the WAIS Divide Replicate Core", "uid": "p0000342", "west": 112.085}, {"awards": "0838843 Kurbatov, Andrei; 0838849 Bender, Michael", "bounds_geometry": "POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667))", "dataset_titles": "Allan Hills Stable Water Isotopes; Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "datasets": [{"dataset_uid": "609541", "doi": "10.7265/N5NP22DF", "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Isotope", "people": "Kurbatov, Andrei V.; Introne, Douglas; Mayewski, Paul A.; Spaulding, Nicole", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills Stable Water Isotopes", "url": "https://www.usap-dc.org/view/dataset/609541"}, {"dataset_uid": "600099", "doi": "10.15784/600099", "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Ice Core Records; Paleoclimate; Solid Earth", "people": "Bender, Michael", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "url": "https://www.usap-dc.org/view/dataset/600099"}], "date_created": "Wed, 10 Dec 2014 00:00:00 GMT", "description": "This award supports a project to generate an absolute timescale for the Allan Hills Blue Ice Area (BIA), and then to reconstruct details of past climate changes and greenhouse gas concentrations for certain time periods back to 2.5 Ma. Ice ages will be determined by applying emerging methods for absolute and relative dating of trapped air bubbles (based on Argon-40/Argon-38, delta-18O of O2, and the O2/N2 ratio). To demonstrate the potential of the Allan Hills BIAs as a paleoclimate archive trenches and ice cores will be collected for age intervals corresponding to 110-140 ka, 1 Ma, and 2.5 Ma. During the proposed two field seasons a total of 6x100 m and additional 15 m cores will be combined with trenching. The intellectual merit of the proposed activity is that the results of this work will extend the landmark work of EPICA and other deep ice coring efforts, which give records dating back to 0.8 Ma, and will complement work planned by IPICS to drill a continuous Antarctic ice core extending to 1.5 Ma. The results will help to advance understanding of major climate regimes and transitions that took place between 0-2.5 Ma, including the 40 kyr world and the mid-Pleistocene climate transition. A major long-term scientific goal is to provide a transformative approach to the collection of paleoclimate records by establishing an \"International Climate Park\" in the Allan Hills BIA that would enable sampling of large quantities of known age ice as old as 2.5 Ma, by any interested American or foreign investigator. The broader impacts resulting from the proposed activity include training students who are well versed in advanced field, laboratory and numerical modeling methods combining geochemistry, glaciology, and paleoclimatology. We will include material relevant to our proposed research in our ongoing efforts in local education and in our outreach efforts for media. The University of Maine already has cyberinfrastructure, using state of the art web-based technology, which can provide a wide community of scientists with fast access to the results of our research. The work will contribute to the broad array of climate change studies that is informing worldwide understanding of natural and anthropogenic forced climate change, and the options for responding. This award has field work in Antarctica.", "east": 159.41667, "geometry": "POINT(159.29167 -76.7)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "GROUND-BASED OBSERVATIONS; LABORATORY; Deuterium Isotopes; Not provided; Oxygen Isotope", "locations": null, "north": -76.66667, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Spaulding, Nicole; Introne, Douglas; Bender, Michael; Kurbatov, Andrei V.; Mayewski, Paul A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73333, "title": "Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "uid": "p0000046", "west": 159.16667}, {"awards": "0087345 Conway, Howard", "bounds_geometry": "POINT(112 79)", "dataset_titles": null, "datasets": null, "date_created": "Fri, 15 Aug 2014 00:00:00 GMT", "description": "This award supports a program of ground-based geophysical measurements to map in detail the spatial variations of ice flow, accumulation rate, internal layering and ice thickness at the sites which have been identified as promising locations to drill the next deep ice core in West Antarctica. The main investigative tools are a high- and low-frequency ice penetrating radar to image the topography of internal layers and the bed, repeat GPS surveys to calculate the present day surface velocity field, synthetic aperture radar (SAR) interferometry to calculate the regional velocity field, and short firn cores to calculate present day accumulation rates. The data which will be collected will be used to as input to time-dependent ice flow and temperature models that will predict depth variation of age, layer thickness, and temperature. As well as yielding an estimate of expected conditions before drilling, the mismatch between the model prediction and data eventually recovered from the core will help infer thinning and climate (accumulation and temperature) histories for the region. The Western Divide, between the Ross Sea Embayment and the Amundsen Sea, has been identified as the region which best satisfies the criteria which have been established for a deep drilling site. Preliminary site selection using airborne geophysical methods has identified several potential drill sites on the Western Divide where the climate record should be best preserved. This work will contribute in a major way to the final site selection for the next deep ice core in West Antarctica.", "east": -112.0, "geometry": "POINT(-112 -79)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR", "is_usap_dc": false, "keywords": "FIELD SURVEYS; Internal Layering; Radar; Accumulation Rate; FIELD INVESTIGATION; LABORATORY; Not provided; Internal Layers; Antarctica; Ice Flow; Interferometry; Ice Thickness", "locations": "Antarctica", "north": -79.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -79.0, "title": "Collaborative Research: Western Divide West Antarctic Ice Cores (WAISCORES) Site Selection", "uid": "p0000557", "west": -112.0}, {"awards": "0839122 Saltzman, Eric; 0839093 McConnell, Joseph; 0839075 Priscu, John", "bounds_geometry": "POINT(112.05 -79.28)", "dataset_titles": "Fluorescence spectroscopy data from the West Antarctic Ice Sheet (WAIS) Divide ice core, WDC06A; Holocene Black Carbon in Antarctica; Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core; Prokaryotic cell concentration record from the WAIS Divide ice core", "datasets": [{"dataset_uid": "601072", "doi": "10.15784/601072", "keywords": "Antarctica; Biota; Cell Counts; Glaciology; Microbiology; WAIS Divide; WAIS Divide Ice Core", "people": "Santibanez, Pamela; Priscu, John", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Prokaryotic cell concentration record from the WAIS Divide ice core", "url": "https://www.usap-dc.org/view/dataset/601072"}, {"dataset_uid": "601006", "doi": "10.15784/601006", "keywords": "Antarctica; Fluorescence Spectroscopy; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "people": "Priscu, John; D\u0027Andrilli, Juliana", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Fluorescence spectroscopy data from the West Antarctic Ice Sheet (WAIS) Divide ice core, WDC06A", "url": "https://www.usap-dc.org/view/dataset/601006"}, {"dataset_uid": "601034", "doi": "10.15784/601034", "keywords": "Antarctica; Atmosphere; Black Carbon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph; Arienzo, Monica", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Holocene Black Carbon in Antarctica", "url": "https://www.usap-dc.org/view/dataset/601034"}, {"dataset_uid": "601361", "doi": "10.15784/601361", "keywords": "Antarctica; Carbonyl Sulfide; Trace Gases", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/601361"}], "date_created": "Fri, 30 May 2014 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to use the WAIS Divide deep core to investigate the Last Deglaciation at sub-annual resolution through an integrated set of chemical and biological analyses. The intellectual merit of the project is that these analyses, combined with others, will take advantage of the high snow accumulation WAIS Divide site yielding the highest time resolution glacio-biogeochemical and gas record of any deep Antarctic ice core. With other high resolution Greenland cores (GISP2 and GRIP) and lower resolution Antarctic cores, the combined record will yield new insights into worldwide climate dynamics and abrupt change. The proposed chemical, biological, and elemental tracer measurements will also be used to address all of the WAIS Divide science themes. The broader impacts of the project include education and outreach activities such as numerous presentations to local K-12 students; opportunities for student and teacher involvement in the laboratory work; a teacher training program in Earth sciences in the heavily minority Santa Ana, Compton, and Costa Mesa, California school districts; and development of high school curricula. Extensive graduate and undergraduate student involvement also is planned and will include one post doctoral associate, one graduate student, and undergraduate hourly involvement at DRI; a graduate student and undergraduates at University of California, Irvine (UCI); and a post doctoral fellow at MSU. Student recruitment will be made from underrepresented groups building on a long track record of involvement and will include the NSF funded California Alliance for Minority Participation (CAMP) and the Montana American Indian Research Opportunities (AIRO).\u003cbr/\u003e\u003cbr/\u003eThis award does not involve field work in Antarctica.", "east": 112.05, "geometry": "POINT(112.05 -79.28)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e CARBON ANALYZERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e WAS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e ICE CORE MELTER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PHOTOMETERS \u003e SPECTROPHOTOMETERS", "is_usap_dc": true, "keywords": "FIELD SURVEYS; Bacteria Ice Core; LABORATORY; Ice Core; FIELD INVESTIGATION; West Antarctica; Not provided; Dissolved Organic Carbon", "locations": "West Antarctica", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "Foreman, Christine; Skidmore, Mark; Saltzman, Eric; McConnell, Joseph; Priscu, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.28, "title": "Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core", "uid": "p0000273", "west": 112.05}, {"awards": "0440819 Taylor, Kendrick", "bounds_geometry": "POINT(112.1 -79.46667)", "dataset_titles": null, "datasets": null, "date_created": "Tue, 19 Jun 2012 00:00:00 GMT", "description": "This award supports a project that is part of the West Antarctic Ice Sheet Divide (WAIS Divide) program; which is a multi-disciplinary multi-institutional program to investigate the causes of natural changes in climate, the influence of the West Antarctic ice sheet on sea level, and the biology of deep ice. The WAIS Divide core will be unique among Antarctic ice cores in that it will have discernable annual layers for the last 40,000 years. A critical element of the program is to determine the age of the ice so that the climate proxies measured on the core can be interpreted in terms of age, not just depth. This project will make electrical measurements that can identify the annual layers. This information will be combined with information from other investigators to develop an annually resolved timescale over the last 40,000 years. This timescale will be the foundation on which the recent climate records are interpreted. Electrical measurements will also be used to produce two-dimensional images of the ice core stratigraphy; allowing sections of the core with abnormal stratigraphy to be identified. The broader impacts of this project include exposing a diverse group of undergraduate and graduate students to ice core research and assisting the Smithsonian National Museum of Natural History in Washington, D.C to develop a paleoclimate/ice core display.", "east": 112.1, "geometry": "POINT(112.1 -79.46667)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": false, "keywords": "Annual Layers; Time Scale; FIELD INVESTIGATION; Stratigraphy; FIELD SURVEYS; Glaciology; Electrical Measurements; Antarctic; Not provided; Ice Sheet; Ice Core; LABORATORY; Climate Proxies", "locations": "Antarctic", "north": -79.46667, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Taylor, Kendrick C.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -79.46667, "title": "Investigation of the Stratigraphy and Time Scale of the WAIS Divide Ice Core Using Electrical Methods", "uid": "p0000373", "west": 112.1}, {"awards": "0739766 Brook, Edward J.", "bounds_geometry": "POINT(-112.08 -79.47)", "dataset_titles": "WAIS Divide Ice Core CO2", "datasets": [{"dataset_uid": "609651", "doi": "10.7265/N5DV1GTZ", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Brook, Edward J.; Marcott, Shaun", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core CO2", "url": "https://www.usap-dc.org/view/dataset/609651"}], "date_created": "Wed, 30 May 2012 00:00:00 GMT", "description": "Brook 0739766\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to create a 25,000-year high-resolution record of atmospheric CO2 from the WAIS Divide ice core. The site has high ice accumulation rate, relatively cold temperatures, and annual layering that should be preserved back to 40,000 years, all prerequisite for preserving a high quality, well-dated CO2 record. The new record will be used to examine relationships between Antarctic climate, Northern Hemisphere climate, and atmospheric CO2 on glacial-interglacial to centennial time scales, at unprecedented temporal resolution. The intellectual merit of the proposed work is simply that CO2 is the most important greenhouse gas that humans directly impact, and understanding the sources, sinks, and controls of atmospheric CO2 is a major goal for the global scientific community. Accurate chronology and detailed records are primary requirements for developing and testing models that explain and predict CO2 variability. The proposed work has several broader impacts. It contributes to the training of a post-doctoral researcher, who will transfer to a research faculty position during the award period and who will participate in graduate teaching and guest lecture in undergraduate courses. An undergraduate researcher will gain valuable lab training and conduct independent research. Bringing the results of\u003cbr/\u003ethe proposed work to the classroom will enrich courses taught by the PI. Outreach efforts will expose pre-college students to ice core research. The proposed work will enhance the laboratory facilities for ice core research at OSU, insuring that the capability for CO2 measurements exists for future projects. All data will be archived at the National Snow and Ice Data Center and other similar archives, per OPP policy. Highly significant results will be disseminated to the news media through OSU?s very effective News and Communications group. Carbon dioxide is the most important greenhouse gas that humans are directly changing. Understanding how CO2 and climate are linked on all time scales is necessary for predicting the future behavior of the carbon cycle and climate system, primarily to insure that the appropriate processes are represented in carbon cycle/climate models. Part of the proposed work emphasizes the relationship of CO2 and abrupt climate change. Understanding how future abrupt change might impact the carbon cycle is an important issue for society.", "east": -112.08, "geometry": "POINT(-112.08 -79.47)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Carbon Dioxide; FIELD INVESTIGATION; CO2; Wais Divide-project; Ice Core; Antarctica; Climate; Gas Chromatography; Antarctic Ice Core; LABORATORY", "locations": "Antarctica", "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Marcott, Shaun; Ahn, Jinho; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.47, "title": "Atmospheric Carbon Dioxide and Climate Change: The WAIS Divide Ice Core Record", "uid": "p0000044", "west": -112.08}, {"awards": "0636898 Winckler, Gisela", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 30 Nov 2011 00:00:00 GMT", "description": "Winckler/0636898\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to study dust sources in Antarctic ice cores. Atmospheric aerosols play an important role both in global biogeochemical cycles as well as in the climate system of the Earth. Records extracted from Antarctic ice cores inform us that dust deposition from the atmosphere to the ice sheet was 15-20 times greater during glacial periods than during interglacials, which raises the possibility that dust may be a key player in climate change on glacial-interglacial timescales. By characterizing potential source areas from South America, South Africa, and Australia as well as fresh glacial flour from Patagonia, the project will determine if the interglacial dust was mobilized from a distinct geographical region (e.g., Australia) or from a more heavily weathered source region in South America. The intellectual merit of the project is that it will contribute to reconstructing climate-related changes in the rate of dust deposition, and in the provenance of the dust, it will provide critical constraints on hydrology and vegetation in the source regions, as well as on the nature of the atmospheric circulation transporting dust to the archive location. In a recent pilot study it was found that there is a dramatic glacial to Holocene change in the 4He/Ca ratio in the dust extracted from ice from Dronning Maud Land, Antarctica, indicating a shift in the source of dust transported to Antarctica. The broader impacts of the project are that Helium isotopes and calcium measurements provide a wealth of information that can then be turned into critical input for dust-climate models. Improved models, which are able to accurately reconstruct paleo dust distribution, will help us to predict changes in dust in response to future climate variability. This information will contribute to an improvement of our integrated understanding of the Earth\u0027s climate system and, in turn, will better inform policy makers of those processes and conditions most susceptible to perturbation by climate change, thereby leading to more meaningful climate-change policy. The project will support a graduate student in the dual masters Earth and Environmental Science Journalism program. The lead-PI manages the rock noble gas laboratory at Lamont. Her leadership role in this facility impacts the training of undergraduate and graduate students as well as visiting scientists.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": false, "keywords": "Deposition; LABORATORY; Dust; Climate; Not provided; Climate Change; Helium Isotopes; FIELD INVESTIGATION; Biogeochemical Cycles", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Winckler, Gisela", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Tracing Glacial-interglacial Changes in the Dust Source to Antarctica using Helium Isotopes", "uid": "p0000265", "west": null}, {"awards": "0338151 Raymond, Charles", "bounds_geometry": "POINT(-112.086 -79.468)", "dataset_titles": "Englacial Layers and Attenuation Rates across the Ross and Amundsen Sea Ice-Flow Divide (WAIS Divide), West Antarctica; Surface Elevation and Ice Thickness, Western Marie Byrd Land, Antarctica", "datasets": [{"dataset_uid": "609470", "doi": "10.7265/N5416V0W", "keywords": "Airborne Radar; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Radar; WAIS Divide", "people": "Raymond, Charles; Matsuoka, Kenichi", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Englacial Layers and Attenuation Rates across the Ross and Amundsen Sea Ice-Flow Divide (WAIS Divide), West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609470"}, {"dataset_uid": "609119", "doi": "10.7265/N5BZ63ZH", "keywords": "Airborne Radar; Airplane; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marie Byrd Land", "people": "Luyendyk, Bruce P.; Wilson, Douglas S.", "repository": "USAP-DC", "science_program": null, "title": "Surface Elevation and Ice Thickness, Western Marie Byrd Land, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609119"}], "date_created": "Tue, 11 May 2010 00:00:00 GMT", "description": "This award supports an investigation of spatial variations of ice temperature and subglacial conditions using available ice-penetrating radar data around a future deep ice coring site near the Ross and Amundsen flow divide of West Antarctic Ice Sheet. Besides geometry of reflection layers the focus will be on intensities of radar echoes from within ice deeper than several hundred meters and will also examine echoes from the bed. Preliminary studies on theory and comparison with Japanese radar data from East Antarctica suggest that large spatial variations of the vertical gradient of radar echoes from within ice exist and are caused primarily by ice temperature and secondarily by crystal-orientation fabric. The hypothesis that the vertical gradient is a proxy of ice temperature will be tested. The project will utilize an existing data set from the Support Office for Aerogeophysical Research in Antarctica (SOAR) and will complement work already underway at University of Texas to analyze the radar data. The project will provide undergraduate research experience with an emphasis on computer analysis of time series and large data sets as well as development of web-based resource of results and methods and will support an international collaboration between US and Japan through discussions on the preliminary results from their study sites. Practical procedures developed through this study will be downloadable from the project\u0027s web site in the third year and will allow investigation of other ice sheets using existing radar data sets. This project will contribute to the interpretation of the future inland West Antarctic ice core and will help in the understanding of ice sheet history and climate change.", "east": -112.086, "geometry": "POINT(-112.086 -79.468)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LASERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e RADAR ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR", "is_usap_dc": true, "keywords": "SOAR; Ice Sheet Elevation; Antarctic Ice Sheet; Layers; USAP-DC; West Antarctic; FIELD INVESTIGATION; Amundsen; Ice Sheet; Airborne Laser Altimetry; Ice Surface; Not provided; Ice Penetrating Radar; Ice Sheet Thickness; Ice Extent; Ice Surface Elevation; Ice Cover; Ice Deformation; FIELD SURVEYS; Antarctica; Ground Ice; Subglacial; Reflection Layers; West Antarctic Ice Sheet; Ice Surface Temperature; LABORATORY; Amundsen Flow Divide; Radar Echo Sounding; Internal Layering; Radar Altimetry; Ice; Radar Echoes; Englacial; Crystal Orientation Fabric; Ice Thickness; Altimetry; Ice Temperature; Radar Echo Sounder; Ice Thickness Distribution", "locations": "Antarctic Ice Sheet; Antarctica; West Antarctic; Amundsen; Amundsen Flow Divide; West Antarctic Ice Sheet", "north": -79.468, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Raymond, Charles; Matsuoka, Kenichi; Luyendyk, Bruce P.; Wilson, Douglas S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.468, "title": "Glaciological Characteristics of the Ross/Amundsen Sea Ice-flow Divide Deduced by a New Analysis of Ice-penetrating Radar Data", "uid": "p0000017", "west": -112.086}, {"awards": "0230268 Anderson, Robert", "bounds_geometry": "POLYGON((-180 -50,-169 -50,-158 -50,-147 -50,-136 -50,-125 -50,-114 -50,-103 -50,-92 -50,-81 -50,-70 -50,-70 -51.5,-70 -53,-70 -54.5,-70 -56,-70 -57.5,-70 -59,-70 -60.5,-70 -62,-70 -63.5,-70 -65,-81 -65,-92 -65,-103 -65,-114 -65,-125 -65,-136 -65,-147 -65,-158 -65,-169 -65,180 -65,177 -65,174 -65,171 -65,168 -65,165 -65,162 -65,159 -65,156 -65,153 -65,150 -65,150 -63.5,150 -62,150 -60.5,150 -59,150 -57.5,150 -56,150 -54.5,150 -53,150 -51.5,150 -50,153 -50,156 -50,159 -50,162 -50,165 -50,168 -50,171 -50,174 -50,177 -50,-180 -50))", "dataset_titles": "Southern Ocean Deglacial Opal, Radionuclide, and Diatom Upwelling Data", "datasets": [{"dataset_uid": "000199", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Southern Ocean Deglacial Opal, Radionuclide, and Diatom Upwelling Data", "url": "https://www.ncdc.noaa.gov/paleo/study/8439"}], "date_created": "Mon, 12 Jan 2009 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the \"Silicic Acid Leakage Hypothesis\" as it relates to global carbon dioxide fluctuations during glacial-interglacial cycles.\u003cbr/\u003e\u003cbr/\u003eIntellectual Merit\u003cbr/\u003eThis project will evaluate the burial rate of biogenic opal in the Pacific sector of the Southern Ocean, both during the Last Glacial Maximum (LGM) and during the Holocene, as a critical test of the \"Silicic Acid Leakage Hypothesis\". \u003cbr/\u003e\u003cbr/\u003eThe \"Silicic Acid Leakage Hypothesis\" has been proposed recently to explain the glacial reduction in the carbon dioxide content of the atmosphere that has been reconstructed from Antarctic ice cores. Vast amounts of dissolved Si (silicic acid) are supplied to surface waters of the Southern Ocean by wind-driven upwelling of deep waters. Today, that dissolved Si is consumed almost quantitatively by diatoms who form skeletal structures composed of biogenic opal (a mineral form of silicon). According to the \"Silicic Acid Leakage Hypothesis\", environmental conditions in the Southern Ocean during glacial periods were unfavorable for diatom growth, leading to reduced (compared to interglacials) efficiency of dissolved Si utilization. Dissolved Si that was not consumed biologically in the glacial Southern ocean was then exported to the tropics in waters that sink in winter to depths of a few hundred meters along the northern fringes of the Antarctic Circumpolar Current, and return some decades later to the sunlit surface in tropical regions of wind-driven upwelling. \u003cbr/\u003e\u003cbr/\u003eAn increase in the amount of dissolved Si that \"leaks\" out of the Southern Ocean and later upwells at low latitudes could shift the global average composition of phytoplankton toward a greater abundance of diatoms and fewer CaCO3-secreting taxa (especially coccolithophorids). Consequences of such a taxonomic shift in the ocean\u0027s phytoplankton assemblage include:\u003cbr/\u003e a) an increase in the global average organic carbon/calcium carbonate ratio of particulate biogenic material sinking into the deep sea;\u003cbr/\u003e b) a reduction in the preservation and burial of calcium carbonate in marine sediments;\u003cbr/\u003e c) an increase in ocean alkalinity as a consequence of the first two changes mentioned above, and;\u003cbr/\u003e d) a lowering of atmospheric CO2 concentrations in response to increased alkalinity of ocean waters. \u003cbr/\u003e\u003cbr/\u003eA complete assessment of the Silicic acid leakage hypothesis will require an evaluation of: (1) Si utilization efficiencies using newly-developed stable isotopic techniques; (2) opal burial rates in low-latitude upwelling regions; and (3) opal burial rates in the Southern Ocean. This project addresses the last of these topics. \u003cbr/\u003e\u003cbr/\u003ePrevious work has shown that there was little change in opal burial rate between the LGM and the Holocene in the Atlantic and Indian sectors of the Southern Ocean. Preliminary results (summarized in this proposal) suggest that the Pacific may have been different, however, in that opal burial rates in the Pacific sector seem to have been lower during the LGM than during the Holocene, allowing for the possibility of \"Si leakage\" from this region. However, available results are too sparse to make any quantitative conclusions at this time. For that reason, we propose to make a comprehensive evaluation of opal burial rates in the Pacific sector of the Southern Ocean. \u003cbr/\u003e\u003cbr/\u003eSignificance and Broader Impacts\u003cbr/\u003eDetermining the mechanism(s) by which the ocean has regulated climate-related changes in the CO2 content of the atmosphere has been the focus of a substantial effort by paleoceanographers over the past two decades. The Silicic Acid Leakage Hypothesis is a viable new candidate mechanism that warrants further exploration and testing. Completion of the proposed work will contribute significantly to that effort. \u003cbr/\u003e\u003cbr/\u003eDuring the course of this work, several undergraduates will be exposed to paleoclimate research through their involvement in this project. Burckle and Anderson are both dedicated to the education and training of young scientists, and to the recruitment of women and under-represented minorities. To illustrate, two summer students (undergraduates) worked in Burckle\u0027s lab during the summer of 2002. One was a woman and the other (male) was a member of an under-represented minority. Anderson and Burckle will continue with similar recruitment efforts during the course of the proposed study. A minority student who has expressed an interest in working on this research during the summer of 2003 has already been identified.", "east": -70.0, "geometry": "POINT(-140 -57.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -50.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, Robert; Burckle, Lloyd", "platforms": "Not provided", "repo": "NCEI", "repositories": "NCEI", "science_programs": null, "south": -65.0, "title": "Opal Burial in the Pacific Sector of the Southern Ocean: A Test of the \"Silicic Acid Leakage Hypothesis.\"", "uid": "p0000457", "west": 150.0}, {"awards": "0636953 Saltzman, Eric", "bounds_geometry": "POINT(-148.82 -81.66)", "dataset_titles": "Carbonyl Sulfide Measurements in the Taylor Dome M3C1 Ice Core; Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core; Methyl Bromide Measurements in the Taylor Dome M3C1 Ice Core; Methyl Chloride Measurements from the Siple Dome A Deep Core, Antarctica; Methyl Chloride Measurements in the Taylor Dome M3C1 Ice Core", "datasets": [{"dataset_uid": "609598", "doi": "10.7265/N5X0650D", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Taylor Dome; Taylor Dome Ice Core", "people": "Aydin, Murat; Saltzman, Eric", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Methyl Bromide Measurements in the Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/609598"}, {"dataset_uid": "609599", "doi": "10.7265/N5S75D8P", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Taylor Dome; Taylor Dome Ice Core", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Carbonyl Sulfide Measurements in the Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/609599"}, {"dataset_uid": "609356", "doi": "10.7265/N56W9807", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Saltzman, Eric; Aydin, Murat; Williams, Margaret", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Methyl Chloride Measurements from the Siple Dome A Deep Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609356"}, {"dataset_uid": "609600", "doi": "10.7265/N5PG1PPB", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Taylor Dome; Taylor Dome Ice Core", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Methyl Chloride Measurements in the Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/609600"}, {"dataset_uid": "601361", "doi": "10.15784/601361", "keywords": "Antarctica; Carbonyl Sulfide; Trace Gases", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/601361"}], "date_created": "Wed, 22 Oct 2008 00:00:00 GMT", "description": "Saltzman/0636953\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to measure methyl chloride, methyl bromide, and carbonyl sulfide in air extracted from Antarctic ice cores. Previous measurements in firn air and shallow ice cores suggest that the ice archive contains paleo-atmospheric signals for these gases. The goal of this study is to extend these records throughout the Holocene and into the last Glacial period to examine the behavior of these trace gases over longer time scales and a wider range of climatic conditions. These studies are exploratory, and both the stability of these trace gases and the extent to which they may be impacted by in situ processes will be assessed. This project will involve sampling and analyzing archived ice core samples from the Siple Dome, Taylor Dome, Byrd, and Vostok ice cores. The ice core samples will be analyzed by dry extraction, with gas chromatography/mass spectrometry with isotope dilution. The ice core measurements will generate new information about the range of natural variability of these trace gases in the atmosphere. The intellectual merit of this project is that this work will provide an improved basis for assessing the impact of anthropogenic activities on biogeochemical cycles, and new insight into the climatic sensitivity of the biogeochemical processes controlling atmospheric composition. The broader impact of this project is that there is a strong societal interest in understanding how man\u0027s activities impact the atmosphere, and how atmospheric chemistry may be altered by future climate change. The results of this study will contribute to the development of scenarios used for future projections of stratospheric ozone and climate change. In terms of human development, this project will support the doctoral dissertation of a graduate student in Earth System Science, and undergraduate research on polar ice core chemistry. This project will also contribute to the development of an Earth Sciences teacher training curriculum for high school teachers in the Orange County school system in collaboration with an established, NSF-sponsored Math and Science Partnership program (FOCUS).", "east": -148.82, "geometry": "POINT(-148.82 -81.66)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Antarctica; Methyl Bromide; Antarctic; Ice Core Gas Records; Ice Core Data; Carbonyl Sulfide; Methyl Chloride; Antarctic Ice Sheet; Siple Dome; Trace Gases; Ice Core Chemistry; Biogeochemical; Atmospheric Chemistry; West Antarctic Ice Sheet; LABORATORY; Ice Core; West Antarctica", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; Siple Dome; West Antarctica; West Antarctic Ice Sheet", "north": -81.66, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Saltzman, Eric; Aydin, Murat; Williams, Margaret", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core; Siple Dome Ice Core", "south": -81.66, "title": "Methyl Chloride, Methyl Bromide, and Carbonyl Sulfide in Deep Antarctic Ice Cores", "uid": "p0000042", "west": -148.82}, {"awards": "0124049 Berger, Glenn", "bounds_geometry": "POLYGON((161.4 -77.5,161.6 -77.5,161.8 -77.5,162 -77.5,162.20000000000002 -77.5,162.4 -77.5,162.6 -77.5,162.8 -77.5,163 -77.5,163.20000000000002 -77.5,163.4 -77.5,163.4 -77.52,163.4 -77.54,163.4 -77.56,163.4 -77.58,163.4 -77.6,163.4 -77.62,163.4 -77.64,163.4 -77.66,163.4 -77.68,163.4 -77.7,163.20000000000002 -77.7,163 -77.7,162.8 -77.7,162.6 -77.7,162.4 -77.7,162.20000000000002 -77.7,162 -77.7,161.8 -77.7,161.6 -77.7,161.4 -77.7,161.4 -77.68,161.4 -77.66,161.4 -77.64,161.4 -77.62,161.4 -77.6,161.4 -77.58,161.4 -77.56,161.4 -77.54,161.4 -77.52,161.4 -77.5))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 25 Aug 2008 00:00:00 GMT", "description": "0124049\u003cbr/\u003eBerger\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to add to the understanding of what drives glacial cycles. Most researchers agree that Milankovitch seasonal forcing paces the ice ages but how these insolation changes are leveraged into abrupt global climate change remains unknown. A current popular view is that the climate of Antarctica and the Southern Ocean leads that of the rest of the world by a couple thousand years at Termination I and by even greater margins during previous terminations. This project will integrate the geomorphological record of glacial history with a series of cores taken from the lake bottoms in the Dry Valleys of the McMurdo Sound region of Antarctica. Using a modified Livingstone corer, transects of long cores will be obtained from Lakes Fryxell, Bonney, Joyce, and Vanda. A multiparameter approach will be employed which is designed to extract the greatest possible amount of former water-level, glaciological, and paleoenvironmental data from Dry Valleys lakes. Estimates of hydrologic changes will come from different proxies, including grain size, stratigraphy, evaporite mineralogy, stable isotope and trace element chemistry, and diatom assemblage analysis. The chronology, necessary to integrate the cores with the geomorphological record, as well as for comparisons with Antarctic ice-core and glacial records, will come from Uranium-Thorium, Uranium-Helium, and Carbon-14 dating of carbonates, as well as luminescence sediment dating. Evaluation of the link between lake-level and climate will come from hydrological and energy-balance modelling. Combination of the more continuous lake-core sequences with the spatially extensive geomorphological record will result in an integrated Antarctic lake-level and paleoclimate dataset that extends back at least 30,000 years. This record will be compared to Dry Valleys glacier records and to the Antarctic ice cores to address questions of regional climate variability, and then to other Southern Hemisphere and Northern Hemisphere records to assess interhemispheric synchrony or asynchrony of climate change.", "east": 163.4, "geometry": "POINT(162.4 -77.6)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LASERS", "is_usap_dc": false, "keywords": "Stratigraphy; Climate Variability; Shoreline Deposits; Dry Valleys; Antarctic Lake-level; Luminescence Geochronology; Grain Size; Paleoclimate; Antarctica; LABORATORY; Lake Cores", "locations": "Dry Valleys; Antarctica", "north": -77.5, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Berger, Glenn; Hall, Brenda; Doran, Peter", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -77.7, "title": "Collaborative Research: Millennial Scale Fluctuations of Dry Valleys Lakes: Implications for Regional Climate Variability and the Interhemispheric (a)Synchrony of Climate Change", "uid": "p0000219", "west": 161.4}, {"awards": "0337948 Bromwich, David", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Access to data", "datasets": [{"dataset_uid": "001778", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to data", "url": "http://polarmet.mps.ohio-state.edu/PolarMet/ant_hindcast.html"}], "date_created": "Thu, 02 Aug 2007 00:00:00 GMT", "description": "This award supports a comprehensive investigation of the spatial and temporal characteristics of the surface mass balance of the Antarctic ice sheet and the governing mechanisms that affect it. A mesoscale atmospheric model, adapted for Antarctic conditions (Polar MM5), will be used in conjunction with the newly available reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) to resolve the surface mass balance of Antarctica at a time resolution of 3 hours and a spatial resolution of 60 km from 1957 to 2001. Polar MM5 will be upgraded to account for key processes in the simulation, including explicit consideration of blowing snow transport and sublimation as well as surface melting/runoff. The proposed 45-y hindcast of all Antarctic surface mass balance components with a limited area model has not previously been attempted and will provide a dataset of unprecedented scope to complement existing ice core measurements of recent climate, especially those collected by the International Transantarctic Scientific Expedition (ITASE). The trends and variability in space and time over 4.5 decades will be resolved and the impact of the dominant modes of atmospheric variability (Antarctic Oscillation, El Nino-Southern Oscillation, etc.) will be isolated. Hypotheses concerning the Antarctic surface mass balance response to climate change will be tested. The research will provide a sound basis for evaluating the impact of future climate change on Antarctic surface mass balance and its contribution to global sea level change as well as providing an important perspective for the interpretation of Antarctic ice core records. The broader impacts include the education of a Ph.D. student, the development of material for use in university classes, and construction of an interactive educational webpage on Antarctic surface mass balance.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e MMS", "is_usap_dc": false, "keywords": "El Nino-Southern Oscillation; ITASE; Atmospheric Model; Enso; Not provided; Antarctic Oscillation; Mesoscale; Antarctic; Polar Mm5; Climate", "locations": "Antarctic", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bromwich, David; Monaghan, Andrew", "platforms": "Not provided", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": -90.0, "title": "A 45-Y Hindcast of Antarctic Surface Mass Balance Using Polar MM5", "uid": "p0000722", "west": -180.0}, {"awards": "0126343 Nishiizumi, Kunihiko", "bounds_geometry": "POINT(-148.812 -81.6588)", "dataset_titles": "Cosmogenic Radionuclides in the Siple Dome A Ice Core", "datasets": [{"dataset_uid": "609307", "doi": "10.7265/N5XK8CGS", "keywords": "Antarctica; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Finkel, R. C.; Nishiizumi, Kunihiko", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Cosmogenic Radionuclides in the Siple Dome A Ice Core", "url": "https://www.usap-dc.org/view/dataset/609307"}], "date_created": "Mon, 12 Jun 2006 00:00:00 GMT", "description": "This award supports a three-year renewal project to complete measurement of cosmogenic nuclides in the Siple Dome ice core as part of the West Antarctic ice core program. The investigators will continue to measure profiles of Beryllium-10 (half-life = 1.5x10 6 years) and Chlorine-36 (half-life = 3.0x10 5 years) in the entire ice core which spans the time period from the present to about 100 kyr. It will be particularly instructive to compare the Antarctic record with the detailed Arctic record that was measured by these investigators as part of the GISP2 project. This comparison will help separate global from local effects at the different drill sites. Cosmogenic radionuclides in polar ice cores have been used to study the long-term variations in several important geophysical variables, including solar activity, geomagnetic field strength, atmospheric circulation, snow accumulation rates, and others. The time series of nuclide concentrations resulting from this work will be applied to several problem areas: perfecting the ice core chronology, deducing the history of solar activity, deducing the history of variations in the geomagnetic field, and studying the possible role of solar variations on climate. Comparison of Beryllium-10 and Chlorine-36 profiles in different cores will allow us to improve the ice core chronology and directly compare ice cores from different regions of the globe. Additional comparison with the Carbon-14 record will allow correlation of the ice core paleoenvironment record to other, Carbon-14 dated, paleoclimate records.", "east": -148.812, "geometry": "POINT(-148.812 -81.6588)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e AMS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Ice Core Chemistry; Antarctica; Ice Core; Cosmogenic Radionuclides; Chlorine-36; GROUND STATIONS; Beryllium-10; Siple Dome; West Antarctica", "locations": "Antarctica; Siple Dome; West Antarctica", "north": -81.6588, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Finkel, R. C.; Nishiizumi, Kunihiko", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.6588, "title": "Cosmogenic Radionuclides in the Siple Dome Ice Core", "uid": "p0000358", "west": -148.812}, {"awards": "0338359 Saltzman, Eric", "bounds_geometry": "POINT(-148.81 -81.65)", "dataset_titles": "Analysis of Siple Dome Ice Core: Carbonyl Sulfide (COS), Methyl Chloride (CH3Cl), and Methyl Bromide (CH3Br); Antarctic Ice Cores: Methyl Chloride and Methyl Bromide; Ice Core Air Carbonyl Sulfide Measurements - SPRESSO Ice Core; Methane and Carbonyl Sulfide Analysis of Siple Dome Ice Core Subsamples", "datasets": [{"dataset_uid": "609279", "doi": "10.7265/N53B5X3G", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Aydin, Murat; Saltzman, Eric", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Analysis of Siple Dome Ice Core: Carbonyl Sulfide (COS), Methyl Chloride (CH3Cl), and Methyl Bromide (CH3Br)", "url": "https://www.usap-dc.org/view/dataset/609279"}, {"dataset_uid": "609131", "doi": "10.7265/N5P848VP", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Aydin, Murat; Saltzman, Eric", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Methane and Carbonyl Sulfide Analysis of Siple Dome Ice Core Subsamples", "url": "https://www.usap-dc.org/view/dataset/609131"}, {"dataset_uid": "601357", "doi": "10.15784/601357", "keywords": "Antarctica; Atmospheric Gases; Gas Measurement; Ice Core; Ice Core Gas Records; Trace Gases", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - SPRESSO Ice Core", "url": "https://www.usap-dc.org/view/dataset/601357"}, {"dataset_uid": "609313", "doi": "10.7265/N5DN430Q", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; ITASE; Paleoclimate; Siple Dome Ice Core; South Pole; SPRESSO; SPRESSO Ice Core", "people": "Williams, Margaret; Saltzman, Eric; Aydin, Murat; Tatum, Cheryl", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Ice Cores: Methyl Chloride and Methyl Bromide", "url": "https://www.usap-dc.org/view/dataset/609313"}], "date_created": "Wed, 16 Nov 2005 00:00:00 GMT", "description": "This award supports the analysis, in Antarctic ice cores, of the ozone depleting substances methyl bromide (CH3Br) and methyl chloride (CH3Cl), and the sulfur-containing gas, carbonyl sulfide (OCS). The broad scientific goal is to assess the level and variability of these gases in the preindustrial atmosphere. This information will allow testing of current models for sources and sinks of these gases from the atmosphere, and to indirectly assess the impact of anthropogenic activities on their biogeochemical cycles. Longer-term records will shed light on the climatic sensitivity of the atmospheric burden of these gases, and ultimately on the biogeochemical processes controlling them. These gases are present in ice at parts per trillion levels, and the current database consists entirely of a small number of measurements made in from a shallow ice core from Siple Dome, Antarctica. This project will involve studies of ice core samples from three Antarctic sites: Siple Station, Siple Dome, and South Pole. The sampling strategy is designed to accomplish several objectives: 1) to verify the atmospheric mixing ratios previously observed in shallow Siple Dome ice for OCS, CH3Br, and CH3Cl at sites with very different accumulation rates and surface temperatures; 2) to obtain a well-dated, high resolution record from a high accumulation rate site (Siple Station), that can provide overlap in mean gas age with Antarctic firn air samples; 3) explore Holocene variability in trace gas mixing ratios; and 4) to make the first measurements of these trace gases in Antarctic glacial ice. In terms of broader impact on society, this research will help to provide a stronger scientific basis for policy decisions regulating the production and use of ozone-depleting and climate-active gases. Specifically, the methyl bromide results will contribute to the current debate on the impact of recent regulation (via the Montreal Protocol and its Amendments) on atmospheric levels. Determination of pre-industrial atmospheric variability of ozone-depleting substances will help place more realistic constraints on scenarios used for future projections of stratospheric ozone and its climatic impacts. This research will involve the participation of both graduate and undergraduate students.", "east": -148.81, "geometry": "POINT(-148.81 -81.65)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Ice Core Gas Records; Carbonyl Sulfide; Siple Coast; Chloride; Trapped Gases; Snow; Ice Core Chemistry; Chromatography; Siple; GROUND STATIONS; Atmospheric Gases; Ozone Depletion; AWS Siple; Ice Sheet; Ice Core Data; Antarctica; Glaciology; West Antarctica; Atmospheric Chemistry; Ice Core; Stratigraphy; LABORATORY; Methane; Mass Spectrometer; GROUND-BASED OBSERVATIONS; WAISCORES; Msa; Mass Spectrometry; Not provided; Siple Dome; Gas Measurement", "locations": "Antarctica; Siple Coast; Siple Dome; West Antarctica; Siple", "north": -81.65, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Saltzman, Eric; Aydin, Murat; Williams, Margaret; Tatum, Cheryl", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.65, "title": "Methyl chloride and methyl bromide in Antarctic ice cores", "uid": "p0000032", "west": -148.81}, {"awards": "9714687 Brook, Edward J.", "bounds_geometry": null, "dataset_titles": "Byrd Ice Core Microparticle and Chemistry Data", "datasets": [{"dataset_uid": "609247", "doi": "", "keywords": "Antarctica; Byrd; Byrd Ice Core; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate", "people": "Fluckiger, Jacqueline; Blunier, Thomas; Brook, Edward J.; Thompson, Lonnie G.", "repository": "USAP-DC", "science_program": "Byrd Ice Core", "title": "Byrd Ice Core Microparticle and Chemistry Data", "url": "https://www.usap-dc.org/view/dataset/609247"}], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "This award is for support for a program to make high resolution studies of variations in the concentration of methane, the oxygenisotope composition of paleoatmospheric oxygen, and the total gas content of deep Antarctic ice cores. Studies of the concentration and isotopic composition of air in the firn of the Antarctic ice sheet will also be continued. One objective of this work is to use the methane concentration and oxygen-isotope composition of oxygen of air in ice as time-stratigraphic markers for the precise intercorrelation of Greenland and Antarctic ice cores as well as the correlation of ice cores to other climatic records. A second objective is to use variations in the concentration and interhemispheric gradient of methane measured in Greenland and Antarctic ice cores to deduce changes in continental climates and biogeochemistry on which the atmospheric methane distribution depends. A third objective is to use data on the variability of total gas content in the Siple Dome ice core to reconstruct aspects of the glacial history of West Antarctica during the last glacial maximum. The fourth objective is to participate in collaborative studies of firn air chemistry at Vostok, Siple Dome, and South Pole which will yield much new information about gas trapping in ice as well as the concentration history and isotopic composition of greenhouse gases, oxygen, trace biogenic gases and trace anthropogenic gases during the last 100 years.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "GROUND STATIONS", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Blunier, Thomas; Fluckiger, Jacqueline; Thompson, Lonnie G.; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Studies of Trapped Gases in Firn and Ice from Antarctic Deep Ice Cores", "uid": "p0000168", "west": null}, {"awards": "0087380 Alley, Richard", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 01 Jul 2004 00:00:00 GMT", "description": "0087380\u003cbr/\u003eAlley\u003cbr/\u003e\u003cbr/\u003eThis award provides three years of support to use a broad, adaptable, multi-parameter approach, using a range of techniques including artificial neural networks to seek the relations between meteorological conditions and the snow pit and ice core records they produce. Multi-parameter, high resolution, ice core data already in hand or now being collected reflect snow accumulation, atmospheric chemistry, isotopic fractionation, and other processes, often with subannual resolution. The West Antarctic sites from which such data are available will be used as starting points for back-trajectory analyses in reanalysis data products to determine the meteorological conditions feeding the data stream. The artificial neural nets will then be used to look for optimal relations between these meteorological conditions and their products. Previous work has demonstrated the value of reanalysis products in determining snow accumulation, of back trajectory analyses in understanding glaciochemistry, and of artificial neural nets in linking meteorological conditions and their products. Preliminary work shows that neural nets are successful in downscaling from reanalysis products to automatic weather station data in West Antarctica, enabling interpolation of site-specific data to improve understanding of recent changes in West Antarctic climate.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": false, "keywords": "Climate; Not provided; Feed-Forward Artificial Neural Networks; Ff-Anns", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Reusch, David", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -90.0, "title": "Relating West Antarctic Ice Cores to Climate with Artificial Neural Networks", "uid": "p0000747", "west": -180.0}, {"awards": "9980691 Wahlen, Martin", "bounds_geometry": null, "dataset_titles": "Atmospheric CO2 Trapped in the Ice Core from Siple Dome, Antarctica", "datasets": [{"dataset_uid": "609202", "doi": "10.7265/N5N877Q9", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; CO2; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Deck, Bruce; Ahn, Jinho; Wahlen, Martin", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Atmospheric CO2 Trapped in the Ice Core from Siple Dome, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609202"}], "date_created": "Thu, 11 Dec 2003 00:00:00 GMT", "description": "9980691\u003cbr/\u003eWahlen\u003cbr/\u003e\u003cbr/\u003eThis award is for support for three years of funding to reconstruct the atmospheric carbon dioxide (CO2) and carbon-13 isotope (d13C) concentration in ice cores from Antarctica over several climatic periods. Samples from the Holocene, the Last Glacial Maximum (LGM)-Holocene transition and glacial stadial/interstadial episodes will be examined. Samples from the Siple Dome ice core drilled in 1998/99 will be made, in addition to measurements from the Taylor Dome and Vostok ice cores. The major objectives are to investigate the phase relationships between variations in the concentration of atmospheric CO2, its carbon isotope composition, and temperature changes (indicated by 18dO and dD of the ice) during deglaciations as well as across rapid climate change events (e.g. Dansgaard-Oeschger events). This will help to determine systematic changes in the global carbon cycle during and between different climatic periods, and to ascertain if the widely spread northern hemisphere temperature stadial/interstadial events produced a global atmospheric carbon dioxide signal. Proven experimental techniques will be used.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "FIELD SURVEYS; Siple Dome; Ice Core; USAP-DC; Carbon Dioxide", "locations": "Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Wahlen, Martin; Ahn, Jinho; Deck, Bruce", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "CO2 and Delta 13CO2 in Antarctic Ice Cores", "uid": "p0000166", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EAGER: Pedogenic Carbonates Record Insolation Driven Surface Melting in Antarctica
|
2423761 |
2024-05-14 | Blackburn, Terrence | No dataset link provided | Non-technical abstract<br/><br/>Earth’s climatic changes have been recorded in the ice core collected from the Antarctic ice sheet. While these records provide a high resolution view of how polar temperatures changed through time, it is not always clear what Earth process influence Antarctic climate. One likely contributor to Antarctic temperature changes is the cyclic changes in Earth’s orientation as it orbits the sun. These so-called Milankovitch cycles control the amount and pattern of sunlight reaching the polar regions, that in turn result in periods of climatic warming or cooling. While the orbital variations and control on incoming solar energy remain well understood, how they influence Antarctic climate remains unresolved. It is the goal of this project to determine how variations in Earth’s orbit may be locally influencing Antarctic temperatures. The researchers on this project are pursing this goal by identifying periods of past ice melting on the surface of Antarctica using minerals that precipitate from the meltwaters that resulted from past warm periods. The timing of this past melting will be determined by radioisotopic dating of the minerals using the natural radioactive decay of uranium to thorium. By dating numerous samples, collected in past scientific expeditions throughout the Antarctic continent, these researchers aim to reconstruct the frequency and spatial pattern of past warming and in doing so, determine what aspect of Earth’s orbital variations influences Antarctic ice loss.<br/><br/>Technical abstract<br/><br/>Antarctic ice cores provide high resolution records of Pleistocene Southern Hemisphere temperatures that show an overall coherence with Northern Hemisphere temperature variations. One explanation for this bi-hemispheric temperature covariance relies on changes in atmospheric CO2 that result from varying northern hemisphere insolation. An alternative posits that the apparent coherence of polar temperatures is due to the misleading covariance between northern hemisphere summer insolation and, the southern hemisphere summer duration. At present there is an insufficient understanding of the role that local insolation plays in Antarctic climate. The goal of this research project is to identify the temporal spatial patterns of solar forcing in Antarctica. To reach this goal, the project team will: 1) develop a way to identify periods of past surface melt production in Antarctica using U-Th dating of pedogenic carbonates; and 2) utilize the evidence of past surface melting to calibrate energy balance models and interrogate past Antarctic surface temperatures and; 3) compare the timing of Antarctic warm periods to potential solar forcing mechanisms such as peak summer insolation or summer duration. A means of identifying the spatial and temporal pattern at which local insolation influences Antarctic temperature would provide a transformative solution to the contradiction in current climate records.<br/><br/>This award reflects NSF''s statutory mission and has been deemed worthy of support through evaluation using the Foundation''s intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||
Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores
|
1745078 |
2023-05-01 | Brook, Edward | This project will develop methods to measure the ratios of carbon-13 to carbon-12, and heavy to light hydrogen in methane in air trapped in ice cores. The ratios of the different forms of carbon and hydrogen are "fingerprints" of different sources of this gas in the past--for example wetlands in the tropics versus methane frozen in the sea floor. Once the analysis method is developed, the measurements will be used to examine why methane changed abruptly in the past, both during the last ice age, and during previous warm periods. The data will be used to understand how methane sources like wildfires, methane hydrates, and wetlands respond to climate change. This information is needed to understand future risks of large changes in methane in the atmosphere as Earth warms. <br/><br/>The project involves two tasks. First, the investigators will build and test a gas extraction system for methane isotopic measurements using continuous flow methods, with the goal of equaling or bettering the precision attained by the few other laboratories that make these measurements. The system will be interfaced with existing mass spectrometers at Oregon State University. The system consists of a vacuum chamber and sequence of traps, purification columns, and furnaces that separate methane from other gases and convert it to carbon dioxide or hydrogen for mass spectrometry. Second, the team will measure the isotopic composition of methane across large changes in concentration associated with two past interglacial periods and during abrupt methane changes of the last ice age. These measurements will be used to understand if the main reason for these concentration changes is climate-driven changes in emissions from wetlands, or whether other sources are involved, for example methane hydrates or wildfires.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||
Measuring an Ice-core Proxy for Relative Oxidant Abundances over Glacial-interglacial and Rapid Climate changes in a West Antarctic Ice Core
|
1542723 |
2023-02-13 | Alexander, Becky |
|
The Earth's atmosphere is a highly oxidizing medium. The abundance of oxidants such as ozone in the atmosphere strongly influences the concentrations of pollutants and greenhouse gases, with implications for human health and welfare. Because oxidants are not preserved in geological archives, knowledge of how oxidants have varied in the past under changing climate conditions is extremely limited. This award will measure a proxy for oxidant concentrations in a West Antarctic ice core over several major climate transitions over the past 50,000 years. These measurements will complement similar measurements from a Greenland ice core, which showed significant changes in atmospheric oxidants over major climate transitions covering this same time period. The addition of measurements from Antarctica will allow researchers to examine if the oxidant changes suggested by the Greenland ice core record are regional or global in scale. Knowledge of how oxidants vary naturally with climate will better inform predictions of the composition of the future atmosphere under a warming climate.<br/><br/>This award will support measurements of the isotopic composition of nitrate in a West Antarctic ice core as a proxy for oxidant concentrations in the past atmosphere. The nitrogen isotopes of nitrate provide information on the degree of preservation of nitrate in the ice core record, and thus aid in the interpretation of the observed variability in the observed nitrate concentrations and oxygen isotopes in ice core records. By providing information about the spatial scale of oxidant changes over abrupt climate change events during the last glacial period, this project may also improve our understanding of mechanisms driving these abrupt events. Insight from this project will prove valuable for forecasting the response of stratospheric circulation to climate change, which has large implications for climate feedbacks and tropospheric composition. In addition, the information gleaned from this project on the mechanisms and feedbacks during abrupt climate change events will help determine the likelihood of such rapid events occurring in the future, which would have dramatic impacts on humankind. This award will provide training for one graduate and one undergraduate student, and will support the development of a hands-on activity related to rapid climate change to be used at the annual Polar Science Weekend at the Pacific Science Center in Seattle, WA. | POINT(-112.05 -79.28) | POINT(-112.05 -79.28) | false | false | |||||
Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability
|
1643716 1643664 1643669 |
2022-06-17 | Petrenko, Vasilii; Murray, Lee T; Buizert, Christo; Petrenko, Vasilii; Murray, Lee T | Hydroxyl radicals are responsible for removal of most atmospheric trace gases, including pollutants and important greenhouse gases. They have been called the "detergent of the atmosphere". Changes in hydroxyl radical concentration in response to large changes in reactive trace gas emissions, which may happen in the future, are uncertain. This project aims to provide the first estimates of the variability of atmospheric hydroxyl radicals since about 1880 AD when anthropogenic emissions of reactive trace gases were minimal. This will improve understanding of their stability in response to large changes in emissions. The project will also investigate whether ice cores record past changes in Southern Hemisphere westerly winds. These winds are a key component of the global climate system, and have an important influence on ocean circulation and possibly on atmospheric carbon dioxide concentrations. The project team will include three early career scientists, a postdoctoral researcher, and graduate and undergraduate students, working in collaboration with senior scientists and Australian collaborators. <br/> <br/>Firn air and shallow ice to a depth of about 233 m will be sampled at the Law Dome high-accumulation coastal site in East Antarctica. Trapped air will be extracted from the ice cores on site immediately after drilling. Carbon-14 of carbon monoxide (14CO) will be analyzed in firn and ice-core air samples. Corrections will be made for the in situ cosmogenic 14CO component in the ice, allowing for the atmospheric 14CO history to be reconstructed. This 14CO history will be interpreted with the aid of a chemistry-transport model to place the first observational constraints on the variability of Southern Hemisphere hydroxyl radical concentration after about 1880 AD. An additional component of the project will analyze Krypton-86 in the firn-air and ice-core samples. These measurements will explore whether ice-core Krypton-86 acts as a proxy for barometric pressure variability, and whether this proxy can be used in Antarctic ice cores to infer past movement of the Southern Hemisphere westerly winds.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((112 -66,112.2 -66,112.4 -66,112.6 -66,112.8 -66,113 -66,113.2 -66,113.4 -66,113.6 -66,113.8 -66,114 -66,114 -66.1,114 -66.2,114 -66.3,114 -66.4,114 -66.5,114 -66.6,114 -66.7,114 -66.8,114 -66.9,114 -67,113.8 -67,113.6 -67,113.4 -67,113.2 -67,113 -67,112.8 -67,112.6 -67,112.4 -67,112.2 -67,112 -67,112 -66.9,112 -66.8,112 -66.7,112 -66.6,112 -66.5,112 -66.4,112 -66.3,112 -66.2,112 -66.1,112 -66)) | POINT(113 -66.5) | false | false | ||||||
Collaborative Research: Tephrochronology of a South Pole Ice Core
|
1543454 1543361 |
2022-04-01 | Dunbar, Nelia; Iverson, Nels; Kurbatov, Andrei V. |
|
Antarctic ice core tephra records tend to be dominated by proximal volcanism and infrequently contain tephra from distal volcanoes within and off of the continent. Tephra layers in East Antarctic ice cores are largely derived from Northern Victoria Land volcanoes. For example, 43 out of 55 tephra layers in Talos Dome ice core are from local volcanoes. West Antarctic ice cores are dominated by tephra from Marie Byrd Land volcanoes. Thirty-six out of the 52 tephra layers in WAIS are from Mt. Berlin or Mt.Takahe. It would be expected that the majority of the tephra layers found in cores on and adjacent to the Antarctic Peninsula and Weddell Sea should be from Sub-Antarctic islands (e.g., South Sandwich and South Shetland Islands). Unfortunately, these records are poorly characterized, making correlations to the source volcanoes very unlikely. The South Pole ice core (SPICEcore) is uniquely situated to capture the volcanic records from all of these regions of the continent, as well as sub-tropical eruptions with significant global climate signatures. Twelve visible tephra layers have been characterized in SPICEcore and represent tephra produced by volcanoes from the Sub-Antarctic Islands (6), Marie Byrd Land (5), and one from an unknown sub-tropical eruption, likely from South America. Three of these tephra layers correlate to other ice core tephra providing important “pinning points” for timescale calibrations, recently published (Winski et al, 2019). Two tephra layers from Marie Byrd Land correlate to WAIS Divide ice core tephra (15.226ka and 44.864ka), and one tephra eruptive from the South Sandwich Island can be correlated EPICA Dome C, Vostok, and RICE (3.559ka). An additional eight cryptotephra have been characterized, and one layer geochemically correlates with the 1257 C.E. eruption of Samalas volcano in Indonesia. SPICEcore does not have a tephra record dominated by one volcanic region. Instead, it contains more of the tephra layers derived from off-continent volcanic sources. The far-travelled tephra layers from non-Antarctic sources improve our understanding of tephra transport to the interior of Antarctica. The location in the middle of the continent along with the longer transport distances from the local volcanoes has allowed for a unique tephra record to be produced that begins to link more of future ice core records together. | POINT(0 -90) | POINT(0 -90) | false | false | |||||
Collaborative Research: The Timing and Spatial Expression of the Bipolar Seesaw in Antarctica from Synchronized Ice Cores
|
1643394 |
2021-11-10 | Buizert, Christo; Wettstein, Justin | This award supports a project to use ice cores to study teleconnections between the northern hemisphere, tropics, and Antarctica during very abrupt climate events that occurred during the last ice age (from 70,000 to 11,000 years ago). The observations can be used to test scientific theories about the role of the westerly winds on atmospheric carbon dioxide. In a warming world, snow fall in Antarctica is expected to increase, which can reduce the Antarctic contribution to sea level rise, all else being equal. The study will investigate how snow fall changed in the past in response to changes in temperature and atmospheric circulation, which can help improve projections of future sea level rise. Antarctica is important for the future evolution of our planet in several ways; it has the largest inventory of land-based ice, equivalent to about 58 m of global sea level and currently contributes about 0.3 mm per year to global sea level rise, which is expected to increase in the future due to global warming. The oceans surrounding Antarctica help regulate the uptake of human-produced carbon dioxide. Shifts in the position and strength of the southern hemisphere westerly winds could change the amount of carbon dioxide that is absorbed by the ocean, which will influence the rate of global warming. The climate and winds near and over Antarctica are linked to the rest of our planet via so-called climatic teleconnections. This means that climate changes in remote places can influence the climate of Antarctica. Understanding how these climatic teleconnections work in both the ocean and atmosphere is an important goal of climate research. The funds will further contribute towards training of a postdoctoral researcher and an early-career researcher; outreach to public schools; and the communication of research findings to the general public via the media, local events, and a series of Wikipedia articles. The project will help to fully characterize the timing and spatial pattern of millennial-scale Antarctic climate change during the deglaciation and Dansgaard-Oeschger (DO) cycles using multiple synchronized Antarctic ice cores. The phasing of Antarctic climate change relative to Greenland DO events can distinguish between fast atmospheric teleconnections on sub-decadal timescales, and slow oceanic ones on centennial time scales. Preliminary work suggests that the spatial pattern of Antarctic change can fingerprint specific changes to the atmospheric circulation; in particular, the proposed work will clarify past movements of the Southern Hemisphere westerly winds during the DO cycle, which have been hypothesized. The project will help resolve a discrepancy between two previous seminal studies on the precise timing of interhemispheric coupling between ice cores in both hemispheres. The study will further provide state-of-the-art, internally-consistent ice core chronologies for all US Antarctic ice cores, as well as stratigraphic ties that can be used to integrate them into a next-generation Antarctic-wide ice core chronological framework. Combined with ice-flow modeling, these chronologies will be used for a continent-wide study of the relationship between ice sheet accumulation and temperature during the last deglaciation. | POLYGON((-180 -65,-144 -65,-108 -65,-72 -65,-36 -65,0 -65,36 -65,72 -65,108 -65,144 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.5,-180 -85,-180 -82.5,-180 -80,-180 -77.5,-180 -75,-180 -72.5,-180 -70,-180 -67.5,-180 -65)) | POINT(0 -89.999) | false | false | ||||||
None
|
None | 2021-07-16 | Chellman, Nathan; McConnell, Joseph |
|
None | None | None | false | false | |||||
Collaborative Research: The Timing and Spatial Expression of the Bipolar Seesaw
|
1643355 1643394 |
2021-05-28 | Fudge, T. J.; Steig, Eric J.; Buizert, Christo | The main objectives of the proposed work are twofold: (1) to fully characterize the timing and spatial pattern of millennial-scale Antarctic climate change during the deglaciation and Dansgaard-Oeschger (DO) cycles using multiple synchronized Antarctic ice cores; (2) to provide state-of-the-art, internally-consistent ice core chronologies for all US Antarctic ice cores. The WAIS Divide, Siple Dome, Byrd, Taylor Dome and South Pole ice cores will be synchronized using volcanic, dust and gas (CH4 and d18Oatm) markers; this synchronization will be combined with ice-flow and firn densification modeling to create gas-age and ice-age scales for these ice cores, consistent with the highly accurate WAIS Divide chronology. The grant will support ongoing efforts to synchronize the WAIS Divide core to the Dome C and Dronning Maud Land cores, which in turn have been synchronized to several East Antarctic ice cores. Using this chronological framework, the interpolar phasing of millennial-scale climate change will be investigated during the DO cycles using 6 Antarctic ice cores, and during the last deglaciation using 11 ice cores. The relationship between accumulation rate and site temperature during the natural warming of the last deglaciation will be investigated for all the Antarctic ice cores included in the framework. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||
High-resolution, Assemblage-specific Records of Diatom-bound N Isotopes from the Indian Sector of the Antarctic Ocean
|
1401489 |
2019-08-08 | Sigman, Daniel | ABSTRACT<br/>Intellectual Merit:<br/>The high concentration of the major nutrients nitrate and phosphate is a fundamental characteristic of the Antarctic Zone in the Southern Ocean and is central to its role in global ocean fertility and the global carbon cycle. The isotopic composition of diatom-bound organic nitrogen is one of the best hopes for reconstructing the nutrient status of polar surface waters over glacial cycles, which in turn may hold the explanation for the decline in atmospheric carbon dioxide during ice ages. The PIs propose to generate detailed diatom-bound nitrogen isotope (δ15Ndb) records from high sedimentation rate cores from the Kerguelen Plateau. Because the cores were collected at relatively shallow seafloor depths, they have adequate planktonic and benthic foraminifera to develop accurate age models. The resulting data could be compared with climate records from Antarctic ice cores and other archives to investigate climate-related changes, including the major steps into and out of ice ages and the millennial-scale events that occur during ice ages and at their ends. The records generated in this project will provide a critical test of hypotheses for the cause of lower ice age CO2.<br/><br/>Broader impacts:<br/>This study will contribute to the goal of understanding ice ages and past CO2 changes, which both have broad implications for future climate. Undergraduates will undertake summer internships, with the possibility of extending their work into junior year projects and senior theses. In addition, the PI will lead modules for two Princeton programs for middle school teachers and will host a teacher for a six-week summer research project. | POLYGON((-180 -45,-144 -45,-108 -45,-72 -45,-36 -45,0 -45,36 -45,72 -45,108 -45,144 -45,180 -45,180 -47.5,180 -50,180 -52.5,180 -55,180 -57.5,180 -60,180 -62.5,180 -65,180 -67.5,180 -70,144 -70,108 -70,72 -70,36 -70,0 -70,-36 -70,-72 -70,-108 -70,-144 -70,-180 -70,-180 -67.5,-180 -65,-180 -62.5,-180 -60,-180 -57.5,-180 -55,-180 -52.5,-180 -50,-180 -47.5,-180 -45)) | POINT(0 -89.999) | false | false | ||||||
Collaborative research: Kr-86 as a proxy for barometric pressure variability and movement of the SH westerlies during the last
deglaciation
|
1543267 1543229 |
2019-07-10 | Severinghaus, Jeffrey P.; Brook, Edward J. | Overview: The funded work investigated whether ice core 86Kr acts as a proxy for barometric pressure variability, and whether this proxy can be used in Antarctic ice cores to infer past movement of the Southern Hemisphere (SH) westerly winds. Pressure variations drive macroscopic air movement in the firn column, which reduces the gravitational isotopic enrichment of slow-diffusing gases (such as Kr). The 86Kr deviation from gravitational equilibrium (denoted D86Kr) thus reflects the magnitude of pressure variations (among other things). Atmospheric reanalysis data suggest that pressure variability over Antarctica is linked to the Southern Annular Mode (SAM) index and the position of the SH westerly winds. Preliminary data from the WAIS Divide ice core show a large excursion in D86Kr during the last deglaciation (20-9 ka before present). In this project the investigators (1) performed high-precision 86Kr analysis on ice core and firn air samples to establish whether D86Kr is linked to pressure variability; (2) Refined the deglacial WAIS Divide record of Kr isotopes; (3) Investigated the role of pressure variability in firn air transport using firn air models with firn microtomography data and Lattice- Boltzmann modeling; and (4) Investigated how barometric pressure variability in Antarctica is linked to the SAM index and the position/strength of the SH westerlies in past and present climates using GCM and reanalysis data. A key finding was that D86Kr in recent ice samples (e.g. last 50 years) from a broad spatial array of sites in Antarctica and Greenland showed a significant correlation with directly measured barometric pressure variability at the ice core site. This strongly supports the hypothesis that 86Kr can be used as a paleo-proxy for storminess. Intellectual Merit: The SH westerlies are a key component of the global climate system; they are an important control on the global oceanic overturning circulation and possibly on atmospheric CO2 concentrations. Poleward movement of the SH westerlies during the last deglaciation has been hypothesized, yet evidence from proxy and modeling studies remains inconclusive. The funded work could provide valuable new constraints on deglacial movement of the SH westerlies. This record can be compared to high-resolution CO2 data from the same core, allowing us to test hypotheses that link CO2 to the SH westerlies. Climate proxies are at the heart of paleoclimate research. The funded work has apparently led to the discovery of a completely new proxy, opening up exciting new research possibilities and increasing the scientific value of existing ice cores. Once validated, the 86Kr proxy could be applied to other time periods as well, providing a long-term perspective on the movement of the SH westerlies. The funded work has furthermore provided valuable new insights into firn air transport. Broader impact: The Southern Ocean is presently an important sink of atmospheric CO2, thereby reducing the warming associated with anthropogenic CO2 emissions. Stratospheric ozone depletion and greenhouse warming have displaced the SH westerlies poleward, with potential consequences for the future magnitude of this oceanic carbon uptake. The funded work may provide a paleo-perspective on past movement of the SH westerlies and its link to atmospheric CO2, which could guide projections of future oceanic CO2 uptake, with strong societal benefits. The awarded funds supported and trained an early-career postdoctoral scholar at OSU, and fostered (international) collaboration. Data from the study will be available to the scientific community and the broad public through recognized data centers. During this project the PI and senior personnel have continued their commitment to public outreach through media interviews and speaking to schools and the public about their work. The PI provides services to the community by chairing the IPICS (International Partnership in Ice Core Sciences) working group and organizing annual PIRE (Partnerships in International Research and Education) workshops. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||
Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core
|
1443472 1443464 1443710 |
2019-02-02 | Severinghaus, Jeffrey P.; Sowers, Todd A.; Brook, Edward J. | Gases trapped in ice cores have revealed astonishing things about the greenhouse gas composition of the past atmosphere, including the fact that carbon dioxide concentrations never rose above 300 parts per million during the last 800,000 years. This places today's concentration of 400 parts per million in stark contrast. Furthermore, these gas records show that natural sources of greenhouse gas such as oceans and ecosystems act as amplifiers of climate change by increasing emissions of gases during warmer periods. Such amplification is expected to occur in the future, adding to the human-produced gas burden. The South Pole ice core will build upon these prior findings by expanding the suite of gases to include, for the first time, those potent trace gases that both trapped heat and depleted ozone during the past 40,000 years. The present project on inert gases and methane in the South Pole ice core will improve the dating of this crucial record, to unprecedented precision, so that the relative timing of events can be used to learn about the mechanism of trace gas production and destruction, and consequent climate change amplification. Ultimately, this information will inform predictions of future atmospheric chemical cleansing mechanisms and climate in the context of our rapidly changing atmosphere. This award also engages young people in the excitement of discovery and polar research, helping to entrain the next generations of scientists and educators. Education of graduate students, a young researcher (Buizert), and training of technicians, will add to the nation?s human resource base. <br/> <br/>This award funds the construction of the gas chronology for the South Pole 1500m ice core, using measured inert gases (d15N and d40Ar--Nitrogen and Argon isotope ratios, respectively) and methane in combination with a next-generation firn densification model that treats the stochastic nature of air trapping and the role of impurities on densification. The project addresses fundamental gaps in scientific understanding that limit the accuracy of gas chronologies, specifically a poor knowledge of the controls on ice-core d15N and the possible role of layering and impurities in firn densification. These gaps will be addressed by studying the gas enclosure process in modern firn at the deep core site. The work will comprise the first-ever firn air pumping experiment that has tightly co-located measurements of firn structural properties on the core taken from the same borehole.<br/><br/>The project will test the hypothesis that the lock-in horizon as defined by firn air d15N, CO2, and methane is structurally controlled by impermeable layers, which are in turn created by high-impurity content horizons in which densification is enhanced. Thermal signals will be sought using the inert gas measurements, which improve the temperature record with benefits to the firn densification modeling. Neon, argon, and oxygen will be measured in firn air and a limited number of deep core samples to test whether glacial period layering was enhanced, which could explain low observed d15N in the last glacial period. Drawing on separate volcanic and methane synchronization to well-dated ice cores to create independent ice and gas tie points, independent empirical estimates of the gas age-ice age difference will be made to check the validity of the firn densification model-inert gas approach to calculating the gas age-ice age difference. These points will also be used to test whether the anomalously low d15N seen during the last glacial period in east Antarctic ice cores is due to deep air convection in the firn, or a missing impurity dependence in the firn densification models. <br/><br/>The increased physical understanding gained from these studies, combined with new high-precision measurements, will lead to improved accuracy of the gas chronology of the South Pole ice core, which will enhance the overall science return from this gas-oriented core. This will lead to clarification of timing of atmospheric gas variations and temperature, and aid in efforts to understand the biogeochemical feedbacks among trace gases. These feedbacks bear on the future response of the Earth System to anthropogenic forcing. Ozone-depleting substances will be measured in the South Pole ice core record, and a precise gas chronology will add value. Lastly, by seeking a better understanding of the physics of gas entrapment, the project aims to have an impact on ice-core science in general. | POINT(0 -90) | POINT(0 -90) | false | false | ||||||
Collaborative Research: Characterization of Upstream Ice and Firn Dynamics affecting the South Pole Ice Core
|
1443341 1443471 |
2018-06-14 | Koutnik, Michelle; Conway, Howard; Waddington, Edwin D.; Fudge, T. J.; Hawley, Robert L.; Osterberg, Erich | Ice-core records are critical to understanding past climate variations. An Antarctic ice core currently being drilled at the South Pole will allow detailed investigation of atmospheric gases and fill an important gap in understanding the pattern of climate variability across Antarctica. Critical to the interpretation of any ice core are: 1) accurate chronologies for both the ice and the trapped gas and 2) demonstration that records from the ice core reliably reflect climate. The proposed research will improve the ice and gas chronologies by making measurements of snow compaction in the upstream catchment in order to constrain age models of the ice. These measurements will be a key data set needed for better understanding and predicting time-varying conditions in the upper part of the ice sheet. The research team will measure the modern spatial gradients in accumulation rate, surface temperature, and water stable isotopes from shallow ice cores in the upstream catchment in order to determine the climate history from the ice-core record. The new ice-flow measurements will make it possible to define the path of ice from upstream to the South Pole ice-core drill site to assess spatial gradients in snowfall and to infer histories of snowfall from internal layers within the ice sheet. The project will be led by an early-career scientist, provide broad training to graduate students, and engage in public outreach on polar science.<br/><br/>Ice-core records of stable isotopes, aerosol-born particles, and atmospheric gases are critical to understanding past climate variations. The proposed research will improve the ice and gas chronologies in the South Pole ice core by making in situ measurements of firn compaction in the upstream catchment to constrain models of the gas-age ice-age difference. The firn measurements will be a key data set needed to form a constitutive relationship for firn, and will drive better understanding and prediction of transient firn evolution. The research team will measure the modern gradients in accumulation rate, surface temperature, and water stable isotopes in the upstream catchment to separate spatial (advection) variations from temporal (climate) variations in the ice-core records. The ice-flow measurements will define the flowline upstream of the drill site, assess spatial gradients in accumulation, and infer histories of accumulation from radar-observed internal layers. Results will directly enhance interpretation of South Pole ice-core records, and also advance understanding of firn densification and drive next-generation firn models. | POLYGON((110 -89,117 -89,124 -89,131 -89,138 -89,145 -89,152 -89,159 -89,166 -89,173 -89,180 -89,180 -89.1,180 -89.2,180 -89.3,180 -89.4,180 -89.5,180 -89.6,180 -89.7,180 -89.8,180 -89.9,180 -90,173 -90,166 -90,159 -90,152 -90,145 -90,138 -90,131 -90,124 -90,117 -90,110 -90,110 -89.9,110 -89.8,110 -89.7,110 -89.6,110 -89.5,110 -89.4,110 -89.3,110 -89.2,110 -89.1,110 -89)) | POINT(145 -89.5) | false | false | ||||||
Using Electrical Conductance Measurements to Develop the South Pole Ice Core Chronology
|
1443232 |
2018-05-08 | Fudge, T. J.; Waddington, Edwin D. |
|
Ice cores record detailed histories of past climate variations. The South Pole ice core will allow investigation of atmospheric trace gases and fill an important gap in understanding the pattern of climate variability across Antarctica. An accurate timescale that assigns an age to the ice at each depth in the core is essential to interpretation of the ice-core records. This work will use electrical methods to identify volcanic eruptions throughout the past ~40,000 years in the core by detecting the enhanced electrical conductance in those layers due to volcanic impurities in the ice. These eruptions will be pattern-matched to other cores across Antarctica, synchronizing the timing of climate variations among cores and allowing the precise timescales developed for other Antarctic ice cores to be transferred to the South Pole ice core. The well-dated records of volcanic forcing will be combined with records of atmospheric gases, stable water-isotopes, and aerosols to better understand the large natural climate variations of the past 40,000 years. <br/> <br/>The electrical conductance method and dielectric profiling measurements will be made along the length of each section of the South Pole ice core at the National Ice Core Lab. These measurements will help to establish a timescale for the core. Electrical measurements will provide a continuous record of volcanic events for the entire core including through the brittle ice (550-1250m representing ~10,000-20,000 year-old ice) where the core quality and thin annual layers may prevent continuous melt analysis and cause discrete measurements to miss volcanic events. The electrical measurements also produce a 2-D image of the electrical layering on a longitudinal cut surface of each core. These data will be used to identify any irregular or absent layering that would indicate a stratigraphic disturbance in the core. A robust chronology is essential to interpretation of the paleoclimate records from the South Pole ice core. The investigators will engage teachers through talks and webinars with the National Science Teachers Association and will share information with the public at events such as Polar Science Weekend at the Pacific Science Center. Results will be disseminated through publications and conference presentations and the data will be archived and publicly available. | POLYGON((110 -89,117 -89,124 -89,131 -89,138 -89,145 -89,152 -89,159 -89,166 -89,173 -89,180 -89,180 -89.1,180 -89.2,180 -89.3,180 -89.4,180 -89.5,180 -89.6,180 -89.7,180 -89.8,180 -89.9,180 -90,173 -90,166 -90,159 -90,152 -90,145 -90,138 -90,131 -90,124 -90,117 -90,110 -90,110 -89.9,110 -89.8,110 -89.7,110 -89.6,110 -89.5,110 -89.4,110 -89.3,110 -89.2,110 -89.1,110 -89)) | POINT(145 -89.5) | false | false | |||||
A Study of Atmospheric Dust in the WAIS Divide Ice Core Based on Sr-Nd-Pb-He Isotopes
|
1043471 |
2017-10-29 | Kaplan, Michael; Winckler, Gisela; Goldstein, Steven L. |
|
This award supports a project to obtain the first set of isotopic-based provenance data from the WAIS divide ice core. A lack of data from the WAIS prevents even a basic knowledge of whether different sources of dust blew around the Pacific and Atlantic sectors of the southern latitudes. Precise isotopic measurements on dust in the new WAIS ice divide core are specifically warranted because the data will be synergistically integrated with other high frequency proxies, such as dust concentration and flux, and carbon dioxide, for example. Higher resolution proxies will bridge gaps between our observations on the same well-dated, well-preserved core. The intellectual merit of the project is that the proposed analyses will contribute to the WAIS Divide Project science themes. Whether an active driver or passive recorder, dust is one of the most important but least understood components of regional and global climate. Collaborative and expert discussion with dust-climate modelers will lead to an important progression in understanding of dust and past atmospheric circulation patterns and climate around the southern latitudes, and help to exclude unlikely air trajectories to the ice sheets. The project will provide data to help evaluate models that simulate the dust patterns and cycle and the relative importance of changes in the sources, air trajectories and transport processes, and deposition to the ice sheet under different climate states. The results will be of broad interest to a range of disciplines beyond those directly associated with the WAIS ice core project, including the paleoceanography and dust- paleoclimatology communities. The broader impacts of the project include infrastructure and professional development, as the proposed research will initiate collaborations between LDEO and other WAIS scientists and modelers with expertise in climate and dust. Most of the researchers are still in the early phase of their careers and hence the project will facilitate long-term relationships. This includes a graduate student from UMaine, an undergraduate student from Columbia University who will be involved in lab work, in addition to a LDEO Postdoctoral scientist, and possibly an additional student involved in the international project PIRE-ICETRICS. The proposed research will broaden the scientific outlooks of three PIs, who come to Antarctic ice core science from a variety of other terrestrial and marine geology perspectives. Outreach activities include interaction with the science writers of the Columbia's Earth Institute for news releases and associated blog websites, public speaking, and involvement in an arts/science initiative between New York City's arts and science communities to bridge the gap between scientific knowledge and public perception. | POLYGON((-112.5 -79.468,-112.4586 -79.468,-112.4172 -79.468,-112.3758 -79.468,-112.3344 -79.468,-112.293 -79.468,-112.2516 -79.468,-112.2102 -79.468,-112.1688 -79.468,-112.1274 -79.468,-112.086 -79.468,-112.086 -79.4712,-112.086 -79.4744,-112.086 -79.4776,-112.086 -79.4808,-112.086 -79.484,-112.086 -79.4872,-112.086 -79.4904,-112.086 -79.4936,-112.086 -79.4968,-112.086 -79.5,-112.1274 -79.5,-112.1688 -79.5,-112.2102 -79.5,-112.2516 -79.5,-112.293 -79.5,-112.3344 -79.5,-112.3758 -79.5,-112.4172 -79.5,-112.4586 -79.5,-112.5 -79.5,-112.5 -79.4968,-112.5 -79.4936,-112.5 -79.4904,-112.5 -79.4872,-112.5 -79.484,-112.5 -79.4808,-112.5 -79.4776,-112.5 -79.4744,-112.5 -79.4712,-112.5 -79.468)) | POINT(-112.293 -79.484) | false | false | |||||
Collaborative Research: Developing an Antarctic Tephra Database for Interdisciplinary Paleoclimate Research (AntT)
|
1142007 |
2017-10-06 | Hartman, Laura; Wheatley, Sarah D.; Kurbatov, Andrei V. |
|
Many key questions in climate research (e.g. relative timing of climate events in different geographic areas, climate-forcing mechanisms, natural threshold levels in the climate system) are dependent on accurate reconstructions of the temporal and spatial distribution of past rapid climate change events in continental, atmospheric, marine and polar realms. This collaborative interdisciplinary research project aims to consolidate, into a single user-friendly database, information about volcanic products detected in Antarctica. By consolidating information about volcanic sources, and physical and geochemical characteristics of volcanic products, this systematic data collection approach will improve the ability of researchers to identify volcanic ash, or tephra, from specific volcanic eruptions that may be spread over large areas in a geologically instantaneous amount of time. Development of this database will assist in the identification and cross-correlation of time intervals in various paleoclimate archives that contain volcanic layers from often unknown sources. The AntT project relies on a cyberinfrastructure framework developed in house through NSF funded CDI-Type I: CiiWork for data assimilation, interpretation and open distribution model. In addition to collection and integration of existing information about volcanic products, this project will focus on filling the information gaps about unique physico-chemical characteristics of very fine (<3 micrometer) volcanic particles (cryptotephra) that are present in Antarctic ice cores. This component of research will involve improving analytical methodology for detecting cryptotephra layers in ice, and will train a new generation of scientists to apply an array of modern state?of?the-art instrumentation available to the project team. <br/><br/>The recognized importance of tephra in establishing a chronological framework for volcanic and sedimentary successions has already resulted in the development of robust regional tephrochronological frameworks (e.g. Europe, Kamchatka, New Zealand, Western North America). The AntT project will provide this framework for Antarctic tephrochronology, as needed for precise correlation records between Antarctic ice cores (e.g. WAIS Divide, RICE, ITASE) and global paleoclimate archives. The results of AntT will be of particular significance to climatologists, paleoclimatologists, atmospheric chemists, geochemists, climate modelers, solar-terrestrial physicists, environmental statisticians, and policy makers for designing solutions to mitigate or cope with likely future impacts of climate change events on modern society. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||
Collaborative Research: Climate, Ice Dynamics and Biology using a Deep Ice Core from the West Antarctic Ice Sheet Ice Divide
|
0944348 0944266 |
2017-06-09 | Mark, Twickler; Taylor, Kendrick C. |
|
Taylor/0944348<br/><br/>This award supports renewal of funding of the WAIS Divide Science Coordination Office (SCO). The Science Coordination Office (SCO) was established to represent the research community and facilitates the project by working with support organizations responsible for logistics, drilling, and core curation. During the last five years, 26 projects have been individually funded to work on this effort and 1,511 m of the total 3,470 m of ice at the site has been collected. This proposal seeks funding to continue the SCO and related field operations needed to complete the WAIS Divide ice core project. Tasks for the SCO during the second five years include planning and oversight of logistics, drilling, and core curation; coordinating research activities in the field; assisting in curation of the core in the field; allocating samples to individual projects; coordinating the sampling effort; collecting, archiving, and distributing data and other information about the project; hosting an annual science meeting; and facilitating collaborative efforts among the research groups. The intellectual merit of the WAIS Divide project is to better predict how human-caused increases in greenhouse gases will alter climate requires an improved understanding of how previous natural changes in greenhouse gases influenced climate in the past. Information on previous climate changes is used to validate the physics and results of climate models that are used to predict future climate. Antarctic ice cores are the only source of samples of the paleo-atmosphere that can be used to determine previous concentrations of carbon dioxide. Ice cores also contain records of other components of the climate system such as the paleo air and ocean temperature, atmospheric loading of aerosols, and indicators of atmospheric transport. The WAIS Divide ice core project has been designed to obtain the best possible record of greenhouse gases during the last glacial cycle (last ~100,000 years). The site was selected because it has the best balance of high annual snowfall (23 cm of ice equivalent/year), low dust Antarctic ice that does not compromise the carbon dioxide record, and favorable glaciology. The main science objectives of the project are to investigate climate forcing by greenhouse gases, initiation of climate changes, stability of the West Antarctic Ice Sheet, and cryobiology in the ice core. The project has numerous broader impacts. An established provider of educational material (Teachers? Domain) will develop and distribute web-based resources related to the project and climate change for use in K?12 classrooms. These resources will consist of video and interactive graphics that explain how and why ice cores are collected, and what they tell us about future climate change. Members of the national media will be included in the field team and the SCO will assist in presenting information to the general public. Video of the project will be collected and made available for general use. Finally, an opportunity will be created for cryosphere students and early career scientists to participate in field activities and core analysis. An ice core archive will be available for future projects and scientific discoveries from the project can be used by policy makers to make informed decisions. | POINT(-112.1115 -79.481) | POINT(-112.1115 -79.481) | false | false | |||||
Collaborative Research: Investigating Upper Pleistocene Rapid Climate Change using Continuous, Ultra-High-Resolution Aerosol and Gas Measurements in the WAIS Divide Ice Core
|
1142166 |
2017-04-25 | McConnell, Joseph |
|
McConnell/1142166<br/><br/>This award supports a project to use unprecedented aerosol and continuous gas (methane, carbon monoxide) measurements of the deepest section of the West Antarctic Ice Sheet (WAIS) Divide ice core to investigate rapid climate changes in Antarctica during the ~60,000 year long Marine Isotope Stage 3 period of the late Pleistocene. These analyses, combined with others, will take advantage of the high snow accumulation of the WAIS Divide ice core to yield the highest time resolution glaciochemical and gas record of any deep Antarctic ice core for this time period. The research will expand already funded discrete gas measurements and extend currently funded continuous aerosol measurements on the WAIS Divide ice core from ~25,000 to ~60,000 years before present, spanning Heinrich events 3 to 6 and Antarctic Isotope Maximum (AIM, corresponding to the Northern Hemisphere Dansgaard-Oeschger) events 3 to 14. With other high resolution Greenland cores and lower resolution Antarctic cores, the combined record will yield new insights into worldwide climate dynamics and abrupt change. The intellectual merit of the work is that it will be used to address the science goals of the WAIS Divide project including the identification of dust and biomass burning tracers such as black carbon and carbon monoxide which reflect mid- and low-latitude climate and atmospheric circulation patterns, and fallout from these sources affects marine and terrestrial biogeochemical cycles. Similarly, sea salt and ocean productivity tracers reflect changes in sea ice extent, marine primary productivity, wind speeds above the ocean, and atmospheric circulation. Volcanic tracers address the relationship between northern, tropical, and southern climates as well as stability of the West Antarctic ice sheet and sea level change. When combined with other gas records from WAIS Divide, the records developed here will transform understanding of mid- and low-latitude drivers of Antarctic, Southern Hemisphere, and global climate rapid changes and the timing of such changes. The broader impacts of the work are that it will enhance infrastructure through expansion of continuous ice core analytical techniques, train students and support collaboration between two U.S. institutions (DRI and OSU). All data will be made available to the scientific community and the public and will include participation the WAIS Divide Outreach Program. Extensive graduate and undergraduate student involvement is planned. Student recruitment will be made from under-represented groups building on a long track record. Broad outreach will be achieved through collaborations with the global and radiative modeling communities, NESTA-related and other educational outreach efforts, and public lectures. This proposed project does not require field work in the Antarctic. | POINT(-112.1115 -79.481) | POINT(-112.1115 -79.481) | false | false | |||||
Molecular Level Characterization of Dissolved Organic Carbon and Microbial Diversity in the WAIS Divide Replicate Core
|
1141936 |
2015-11-05 | Foreman, Christine |
|
This award supports a detailed, molecular level characterization of dissolved organic carbon and microbes in Antarctic ice cores. Using the most modern biological (genomic), geochemical techniques, and advanced chemical instrumentation researchers will 1) optimize protocols for collecting, extracting and amplifying DNA from deep ice cores suitable for use in next generation pyrosequencing; 2) determine the microbial diversity within the ice core; and 3) obtain and analyze detailed molecular characterizations of the carbon in the ice by ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS). With this pilot study investigators will be able to quantify the amount of material (microbial biomass and carbon) required to perform these characterizations, which is needed to inform future ice coring projects. The ultimate goal will be to develop protocols that maximize the yield, while minimizing the amount of ice required. The broader impacts include education and outreach at both the local and national levels. As a faculty mentor with the American Indian Research Opportunities and BRIDGES programs at Montana State University, Foreman will serve as a mentor to a Native American student in the lab during the summer months. Susan Kelly is an Education and Outreach Coordinator with a MS degree in Geology and over 10 years of experience in science outreach. She will coordinate efforts for comprehensive educational collaboration with the Hardin School District on the Crow Indian Reservation in South-central Montana. | POINT(112.085 -79.467) | POINT(112.085 -79.467) | false | false | |||||
Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)
|
0838843 0838849 |
2014-12-10 | Spaulding, Nicole; Introne, Douglas; Bender, Michael; Kurbatov, Andrei V.; Mayewski, Paul A. |
|
This award supports a project to generate an absolute timescale for the Allan Hills Blue Ice Area (BIA), and then to reconstruct details of past climate changes and greenhouse gas concentrations for certain time periods back to 2.5 Ma. Ice ages will be determined by applying emerging methods for absolute and relative dating of trapped air bubbles (based on Argon-40/Argon-38, delta-18O of O2, and the O2/N2 ratio). To demonstrate the potential of the Allan Hills BIAs as a paleoclimate archive trenches and ice cores will be collected for age intervals corresponding to 110-140 ka, 1 Ma, and 2.5 Ma. During the proposed two field seasons a total of 6x100 m and additional 15 m cores will be combined with trenching. The intellectual merit of the proposed activity is that the results of this work will extend the landmark work of EPICA and other deep ice coring efforts, which give records dating back to 0.8 Ma, and will complement work planned by IPICS to drill a continuous Antarctic ice core extending to 1.5 Ma. The results will help to advance understanding of major climate regimes and transitions that took place between 0-2.5 Ma, including the 40 kyr world and the mid-Pleistocene climate transition. A major long-term scientific goal is to provide a transformative approach to the collection of paleoclimate records by establishing an "International Climate Park" in the Allan Hills BIA that would enable sampling of large quantities of known age ice as old as 2.5 Ma, by any interested American or foreign investigator. The broader impacts resulting from the proposed activity include training students who are well versed in advanced field, laboratory and numerical modeling methods combining geochemistry, glaciology, and paleoclimatology. We will include material relevant to our proposed research in our ongoing efforts in local education and in our outreach efforts for media. The University of Maine already has cyberinfrastructure, using state of the art web-based technology, which can provide a wide community of scientists with fast access to the results of our research. The work will contribute to the broad array of climate change studies that is informing worldwide understanding of natural and anthropogenic forced climate change, and the options for responding. This award has field work in Antarctica. | POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667)) | POINT(159.29167 -76.7) | false | false | |||||
Collaborative Research: Western Divide West Antarctic Ice Cores (WAISCORES) Site Selection
|
0087345 |
2014-08-15 | Conway, Howard; Waddington, Edwin D. | No dataset link provided | This award supports a program of ground-based geophysical measurements to map in detail the spatial variations of ice flow, accumulation rate, internal layering and ice thickness at the sites which have been identified as promising locations to drill the next deep ice core in West Antarctica. The main investigative tools are a high- and low-frequency ice penetrating radar to image the topography of internal layers and the bed, repeat GPS surveys to calculate the present day surface velocity field, synthetic aperture radar (SAR) interferometry to calculate the regional velocity field, and short firn cores to calculate present day accumulation rates. The data which will be collected will be used to as input to time-dependent ice flow and temperature models that will predict depth variation of age, layer thickness, and temperature. As well as yielding an estimate of expected conditions before drilling, the mismatch between the model prediction and data eventually recovered from the core will help infer thinning and climate (accumulation and temperature) histories for the region. The Western Divide, between the Ross Sea Embayment and the Amundsen Sea, has been identified as the region which best satisfies the criteria which have been established for a deep drilling site. Preliminary site selection using airborne geophysical methods has identified several potential drill sites on the Western Divide where the climate record should be best preserved. This work will contribute in a major way to the final site selection for the next deep ice core in West Antarctica. | POINT(112 79) | POINT(-112 -79) | false | false | |||||
Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core
|
0839122 0839093 0839075 |
2014-05-30 | Foreman, Christine; Skidmore, Mark; Saltzman, Eric; McConnell, Joseph; Priscu, John | This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>This award supports a project to use the WAIS Divide deep core to investigate the Last Deglaciation at sub-annual resolution through an integrated set of chemical and biological analyses. The intellectual merit of the project is that these analyses, combined with others, will take advantage of the high snow accumulation WAIS Divide site yielding the highest time resolution glacio-biogeochemical and gas record of any deep Antarctic ice core. With other high resolution Greenland cores (GISP2 and GRIP) and lower resolution Antarctic cores, the combined record will yield new insights into worldwide climate dynamics and abrupt change. The proposed chemical, biological, and elemental tracer measurements will also be used to address all of the WAIS Divide science themes. The broader impacts of the project include education and outreach activities such as numerous presentations to local K-12 students; opportunities for student and teacher involvement in the laboratory work; a teacher training program in Earth sciences in the heavily minority Santa Ana, Compton, and Costa Mesa, California school districts; and development of high school curricula. Extensive graduate and undergraduate student involvement also is planned and will include one post doctoral associate, one graduate student, and undergraduate hourly involvement at DRI; a graduate student and undergraduates at University of California, Irvine (UCI); and a post doctoral fellow at MSU. Student recruitment will be made from underrepresented groups building on a long track record of involvement and will include the NSF funded California Alliance for Minority Participation (CAMP) and the Montana American Indian Research Opportunities (AIRO).<br/><br/>This award does not involve field work in Antarctica. | POINT(112.05 -79.28) | POINT(112.05 -79.28) | false | false | ||||||
Investigation of the Stratigraphy and Time Scale of the WAIS Divide Ice Core Using Electrical Methods
|
0440819 |
2012-06-19 | Taylor, Kendrick C. | No dataset link provided | This award supports a project that is part of the West Antarctic Ice Sheet Divide (WAIS Divide) program; which is a multi-disciplinary multi-institutional program to investigate the causes of natural changes in climate, the influence of the West Antarctic ice sheet on sea level, and the biology of deep ice. The WAIS Divide core will be unique among Antarctic ice cores in that it will have discernable annual layers for the last 40,000 years. A critical element of the program is to determine the age of the ice so that the climate proxies measured on the core can be interpreted in terms of age, not just depth. This project will make electrical measurements that can identify the annual layers. This information will be combined with information from other investigators to develop an annually resolved timescale over the last 40,000 years. This timescale will be the foundation on which the recent climate records are interpreted. Electrical measurements will also be used to produce two-dimensional images of the ice core stratigraphy; allowing sections of the core with abnormal stratigraphy to be identified. The broader impacts of this project include exposing a diverse group of undergraduate and graduate students to ice core research and assisting the Smithsonian National Museum of Natural History in Washington, D.C to develop a paleoclimate/ice core display. | POINT(112.1 -79.46667) | POINT(112.1 -79.46667) | false | false | |||||
Atmospheric Carbon Dioxide and Climate Change: The WAIS Divide Ice Core Record
|
0739766 |
2012-05-30 | Marcott, Shaun; Ahn, Jinho; Brook, Edward J. |
|
Brook 0739766<br/><br/>This award supports a project to create a 25,000-year high-resolution record of atmospheric CO2 from the WAIS Divide ice core. The site has high ice accumulation rate, relatively cold temperatures, and annual layering that should be preserved back to 40,000 years, all prerequisite for preserving a high quality, well-dated CO2 record. The new record will be used to examine relationships between Antarctic climate, Northern Hemisphere climate, and atmospheric CO2 on glacial-interglacial to centennial time scales, at unprecedented temporal resolution. The intellectual merit of the proposed work is simply that CO2 is the most important greenhouse gas that humans directly impact, and understanding the sources, sinks, and controls of atmospheric CO2 is a major goal for the global scientific community. Accurate chronology and detailed records are primary requirements for developing and testing models that explain and predict CO2 variability. The proposed work has several broader impacts. It contributes to the training of a post-doctoral researcher, who will transfer to a research faculty position during the award period and who will participate in graduate teaching and guest lecture in undergraduate courses. An undergraduate researcher will gain valuable lab training and conduct independent research. Bringing the results of<br/>the proposed work to the classroom will enrich courses taught by the PI. Outreach efforts will expose pre-college students to ice core research. The proposed work will enhance the laboratory facilities for ice core research at OSU, insuring that the capability for CO2 measurements exists for future projects. All data will be archived at the National Snow and Ice Data Center and other similar archives, per OPP policy. Highly significant results will be disseminated to the news media through OSU?s very effective News and Communications group. Carbon dioxide is the most important greenhouse gas that humans are directly changing. Understanding how CO2 and climate are linked on all time scales is necessary for predicting the future behavior of the carbon cycle and climate system, primarily to insure that the appropriate processes are represented in carbon cycle/climate models. Part of the proposed work emphasizes the relationship of CO2 and abrupt climate change. Understanding how future abrupt change might impact the carbon cycle is an important issue for society. | POINT(-112.08 -79.47) | POINT(-112.08 -79.47) | false | false | |||||
Tracing Glacial-interglacial Changes in the Dust Source to Antarctica using Helium Isotopes
|
0636898 |
2011-11-30 | Winckler, Gisela | No dataset link provided | Winckler/0636898<br/><br/>This award supports a project to study dust sources in Antarctic ice cores. Atmospheric aerosols play an important role both in global biogeochemical cycles as well as in the climate system of the Earth. Records extracted from Antarctic ice cores inform us that dust deposition from the atmosphere to the ice sheet was 15-20 times greater during glacial periods than during interglacials, which raises the possibility that dust may be a key player in climate change on glacial-interglacial timescales. By characterizing potential source areas from South America, South Africa, and Australia as well as fresh glacial flour from Patagonia, the project will determine if the interglacial dust was mobilized from a distinct geographical region (e.g., Australia) or from a more heavily weathered source region in South America. The intellectual merit of the project is that it will contribute to reconstructing climate-related changes in the rate of dust deposition, and in the provenance of the dust, it will provide critical constraints on hydrology and vegetation in the source regions, as well as on the nature of the atmospheric circulation transporting dust to the archive location. In a recent pilot study it was found that there is a dramatic glacial to Holocene change in the 4He/Ca ratio in the dust extracted from ice from Dronning Maud Land, Antarctica, indicating a shift in the source of dust transported to Antarctica. The broader impacts of the project are that Helium isotopes and calcium measurements provide a wealth of information that can then be turned into critical input for dust-climate models. Improved models, which are able to accurately reconstruct paleo dust distribution, will help us to predict changes in dust in response to future climate variability. This information will contribute to an improvement of our integrated understanding of the Earth's climate system and, in turn, will better inform policy makers of those processes and conditions most susceptible to perturbation by climate change, thereby leading to more meaningful climate-change policy. The project will support a graduate student in the dual masters Earth and Environmental Science Journalism program. The lead-PI manages the rock noble gas laboratory at Lamont. Her leadership role in this facility impacts the training of undergraduate and graduate students as well as visiting scientists. | None | None | false | false | |||||
Glaciological Characteristics of the Ross/Amundsen Sea Ice-flow Divide Deduced by a New Analysis of Ice-penetrating Radar Data
|
0338151 |
2010-05-11 | Raymond, Charles; Matsuoka, Kenichi; Luyendyk, Bruce P.; Wilson, Douglas S. | This award supports an investigation of spatial variations of ice temperature and subglacial conditions using available ice-penetrating radar data around a future deep ice coring site near the Ross and Amundsen flow divide of West Antarctic Ice Sheet. Besides geometry of reflection layers the focus will be on intensities of radar echoes from within ice deeper than several hundred meters and will also examine echoes from the bed. Preliminary studies on theory and comparison with Japanese radar data from East Antarctica suggest that large spatial variations of the vertical gradient of radar echoes from within ice exist and are caused primarily by ice temperature and secondarily by crystal-orientation fabric. The hypothesis that the vertical gradient is a proxy of ice temperature will be tested. The project will utilize an existing data set from the Support Office for Aerogeophysical Research in Antarctica (SOAR) and will complement work already underway at University of Texas to analyze the radar data. The project will provide undergraduate research experience with an emphasis on computer analysis of time series and large data sets as well as development of web-based resource of results and methods and will support an international collaboration between US and Japan through discussions on the preliminary results from their study sites. Practical procedures developed through this study will be downloadable from the project's web site in the third year and will allow investigation of other ice sheets using existing radar data sets. This project will contribute to the interpretation of the future inland West Antarctic ice core and will help in the understanding of ice sheet history and climate change. | POINT(-112.086 -79.468) | POINT(-112.086 -79.468) | false | false | ||||||
Opal Burial in the Pacific Sector of the Southern Ocean: A Test of the "Silicic Acid Leakage Hypothesis."
|
0230268 |
2009-01-12 | Anderson, Robert; Burckle, Lloyd |
|
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the "Silicic Acid Leakage Hypothesis" as it relates to global carbon dioxide fluctuations during glacial-interglacial cycles.<br/><br/>Intellectual Merit<br/>This project will evaluate the burial rate of biogenic opal in the Pacific sector of the Southern Ocean, both during the Last Glacial Maximum (LGM) and during the Holocene, as a critical test of the "Silicic Acid Leakage Hypothesis". <br/><br/>The "Silicic Acid Leakage Hypothesis" has been proposed recently to explain the glacial reduction in the carbon dioxide content of the atmosphere that has been reconstructed from Antarctic ice cores. Vast amounts of dissolved Si (silicic acid) are supplied to surface waters of the Southern Ocean by wind-driven upwelling of deep waters. Today, that dissolved Si is consumed almost quantitatively by diatoms who form skeletal structures composed of biogenic opal (a mineral form of silicon). According to the "Silicic Acid Leakage Hypothesis", environmental conditions in the Southern Ocean during glacial periods were unfavorable for diatom growth, leading to reduced (compared to interglacials) efficiency of dissolved Si utilization. Dissolved Si that was not consumed biologically in the glacial Southern ocean was then exported to the tropics in waters that sink in winter to depths of a few hundred meters along the northern fringes of the Antarctic Circumpolar Current, and return some decades later to the sunlit surface in tropical regions of wind-driven upwelling. <br/><br/>An increase in the amount of dissolved Si that "leaks" out of the Southern Ocean and later upwells at low latitudes could shift the global average composition of phytoplankton toward a greater abundance of diatoms and fewer CaCO3-secreting taxa (especially coccolithophorids). Consequences of such a taxonomic shift in the ocean's phytoplankton assemblage include:<br/> a) an increase in the global average organic carbon/calcium carbonate ratio of particulate biogenic material sinking into the deep sea;<br/> b) a reduction in the preservation and burial of calcium carbonate in marine sediments;<br/> c) an increase in ocean alkalinity as a consequence of the first two changes mentioned above, and;<br/> d) a lowering of atmospheric CO2 concentrations in response to increased alkalinity of ocean waters. <br/><br/>A complete assessment of the Silicic acid leakage hypothesis will require an evaluation of: (1) Si utilization efficiencies using newly-developed stable isotopic techniques; (2) opal burial rates in low-latitude upwelling regions; and (3) opal burial rates in the Southern Ocean. This project addresses the last of these topics. <br/><br/>Previous work has shown that there was little change in opal burial rate between the LGM and the Holocene in the Atlantic and Indian sectors of the Southern Ocean. Preliminary results (summarized in this proposal) suggest that the Pacific may have been different, however, in that opal burial rates in the Pacific sector seem to have been lower during the LGM than during the Holocene, allowing for the possibility of "Si leakage" from this region. However, available results are too sparse to make any quantitative conclusions at this time. For that reason, we propose to make a comprehensive evaluation of opal burial rates in the Pacific sector of the Southern Ocean. <br/><br/>Significance and Broader Impacts<br/>Determining the mechanism(s) by which the ocean has regulated climate-related changes in the CO2 content of the atmosphere has been the focus of a substantial effort by paleoceanographers over the past two decades. The Silicic Acid Leakage Hypothesis is a viable new candidate mechanism that warrants further exploration and testing. Completion of the proposed work will contribute significantly to that effort. <br/><br/>During the course of this work, several undergraduates will be exposed to paleoclimate research through their involvement in this project. Burckle and Anderson are both dedicated to the education and training of young scientists, and to the recruitment of women and under-represented minorities. To illustrate, two summer students (undergraduates) worked in Burckle's lab during the summer of 2002. One was a woman and the other (male) was a member of an under-represented minority. Anderson and Burckle will continue with similar recruitment efforts during the course of the proposed study. A minority student who has expressed an interest in working on this research during the summer of 2003 has already been identified. | POLYGON((-180 -50,-169 -50,-158 -50,-147 -50,-136 -50,-125 -50,-114 -50,-103 -50,-92 -50,-81 -50,-70 -50,-70 -51.5,-70 -53,-70 -54.5,-70 -56,-70 -57.5,-70 -59,-70 -60.5,-70 -62,-70 -63.5,-70 -65,-81 -65,-92 -65,-103 -65,-114 -65,-125 -65,-136 -65,-147 -65,-158 -65,-169 -65,180 -65,177 -65,174 -65,171 -65,168 -65,165 -65,162 -65,159 -65,156 -65,153 -65,150 -65,150 -63.5,150 -62,150 -60.5,150 -59,150 -57.5,150 -56,150 -54.5,150 -53,150 -51.5,150 -50,153 -50,156 -50,159 -50,162 -50,165 -50,168 -50,171 -50,174 -50,177 -50,-180 -50)) | POINT(-140 -57.5) | false | false | |||||
Methyl Chloride, Methyl Bromide, and Carbonyl Sulfide in Deep Antarctic Ice Cores
|
0636953 |
2008-10-22 | Saltzman, Eric; Aydin, Murat; Williams, Margaret | Saltzman/0636953<br/><br/>This award supports a project to measure methyl chloride, methyl bromide, and carbonyl sulfide in air extracted from Antarctic ice cores. Previous measurements in firn air and shallow ice cores suggest that the ice archive contains paleo-atmospheric signals for these gases. The goal of this study is to extend these records throughout the Holocene and into the last Glacial period to examine the behavior of these trace gases over longer time scales and a wider range of climatic conditions. These studies are exploratory, and both the stability of these trace gases and the extent to which they may be impacted by in situ processes will be assessed. This project will involve sampling and analyzing archived ice core samples from the Siple Dome, Taylor Dome, Byrd, and Vostok ice cores. The ice core samples will be analyzed by dry extraction, with gas chromatography/mass spectrometry with isotope dilution. The ice core measurements will generate new information about the range of natural variability of these trace gases in the atmosphere. The intellectual merit of this project is that this work will provide an improved basis for assessing the impact of anthropogenic activities on biogeochemical cycles, and new insight into the climatic sensitivity of the biogeochemical processes controlling atmospheric composition. The broader impact of this project is that there is a strong societal interest in understanding how man's activities impact the atmosphere, and how atmospheric chemistry may be altered by future climate change. The results of this study will contribute to the development of scenarios used for future projections of stratospheric ozone and climate change. In terms of human development, this project will support the doctoral dissertation of a graduate student in Earth System Science, and undergraduate research on polar ice core chemistry. This project will also contribute to the development of an Earth Sciences teacher training curriculum for high school teachers in the Orange County school system in collaboration with an established, NSF-sponsored Math and Science Partnership program (FOCUS). | POINT(-148.82 -81.66) | POINT(-148.82 -81.66) | false | false | ||||||
Collaborative Research: Millennial Scale Fluctuations of Dry Valleys Lakes: Implications for Regional Climate Variability and the Interhemispheric (a)Synchrony of Climate Change
|
0124049 |
2008-08-25 | Berger, Glenn; Hall, Brenda; Doran, Peter | No dataset link provided | 0124049<br/>Berger<br/><br/>This award supports a project to add to the understanding of what drives glacial cycles. Most researchers agree that Milankovitch seasonal forcing paces the ice ages but how these insolation changes are leveraged into abrupt global climate change remains unknown. A current popular view is that the climate of Antarctica and the Southern Ocean leads that of the rest of the world by a couple thousand years at Termination I and by even greater margins during previous terminations. This project will integrate the geomorphological record of glacial history with a series of cores taken from the lake bottoms in the Dry Valleys of the McMurdo Sound region of Antarctica. Using a modified Livingstone corer, transects of long cores will be obtained from Lakes Fryxell, Bonney, Joyce, and Vanda. A multiparameter approach will be employed which is designed to extract the greatest possible amount of former water-level, glaciological, and paleoenvironmental data from Dry Valleys lakes. Estimates of hydrologic changes will come from different proxies, including grain size, stratigraphy, evaporite mineralogy, stable isotope and trace element chemistry, and diatom assemblage analysis. The chronology, necessary to integrate the cores with the geomorphological record, as well as for comparisons with Antarctic ice-core and glacial records, will come from Uranium-Thorium, Uranium-Helium, and Carbon-14 dating of carbonates, as well as luminescence sediment dating. Evaluation of the link between lake-level and climate will come from hydrological and energy-balance modelling. Combination of the more continuous lake-core sequences with the spatially extensive geomorphological record will result in an integrated Antarctic lake-level and paleoclimate dataset that extends back at least 30,000 years. This record will be compared to Dry Valleys glacier records and to the Antarctic ice cores to address questions of regional climate variability, and then to other Southern Hemisphere and Northern Hemisphere records to assess interhemispheric synchrony or asynchrony of climate change. | POLYGON((161.4 -77.5,161.6 -77.5,161.8 -77.5,162 -77.5,162.20000000000002 -77.5,162.4 -77.5,162.6 -77.5,162.8 -77.5,163 -77.5,163.20000000000002 -77.5,163.4 -77.5,163.4 -77.52,163.4 -77.54,163.4 -77.56,163.4 -77.58,163.4 -77.6,163.4 -77.62,163.4 -77.64,163.4 -77.66,163.4 -77.68,163.4 -77.7,163.20000000000002 -77.7,163 -77.7,162.8 -77.7,162.6 -77.7,162.4 -77.7,162.20000000000002 -77.7,162 -77.7,161.8 -77.7,161.6 -77.7,161.4 -77.7,161.4 -77.68,161.4 -77.66,161.4 -77.64,161.4 -77.62,161.4 -77.6,161.4 -77.58,161.4 -77.56,161.4 -77.54,161.4 -77.52,161.4 -77.5)) | POINT(162.4 -77.6) | false | false | |||||
A 45-Y Hindcast of Antarctic Surface Mass Balance Using Polar MM5
|
0337948 |
2007-08-02 | Bromwich, David; Monaghan, Andrew |
|
This award supports a comprehensive investigation of the spatial and temporal characteristics of the surface mass balance of the Antarctic ice sheet and the governing mechanisms that affect it. A mesoscale atmospheric model, adapted for Antarctic conditions (Polar MM5), will be used in conjunction with the newly available reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) to resolve the surface mass balance of Antarctica at a time resolution of 3 hours and a spatial resolution of 60 km from 1957 to 2001. Polar MM5 will be upgraded to account for key processes in the simulation, including explicit consideration of blowing snow transport and sublimation as well as surface melting/runoff. The proposed 45-y hindcast of all Antarctic surface mass balance components with a limited area model has not previously been attempted and will provide a dataset of unprecedented scope to complement existing ice core measurements of recent climate, especially those collected by the International Transantarctic Scientific Expedition (ITASE). The trends and variability in space and time over 4.5 decades will be resolved and the impact of the dominant modes of atmospheric variability (Antarctic Oscillation, El Nino-Southern Oscillation, etc.) will be isolated. Hypotheses concerning the Antarctic surface mass balance response to climate change will be tested. The research will provide a sound basis for evaluating the impact of future climate change on Antarctic surface mass balance and its contribution to global sea level change as well as providing an important perspective for the interpretation of Antarctic ice core records. The broader impacts include the education of a Ph.D. student, the development of material for use in university classes, and construction of an interactive educational webpage on Antarctic surface mass balance. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||
Cosmogenic Radionuclides in the Siple Dome Ice Core
|
0126343 |
2006-06-12 | Finkel, R. C.; Nishiizumi, Kunihiko |
|
This award supports a three-year renewal project to complete measurement of cosmogenic nuclides in the Siple Dome ice core as part of the West Antarctic ice core program. The investigators will continue to measure profiles of Beryllium-10 (half-life = 1.5x10 6 years) and Chlorine-36 (half-life = 3.0x10 5 years) in the entire ice core which spans the time period from the present to about 100 kyr. It will be particularly instructive to compare the Antarctic record with the detailed Arctic record that was measured by these investigators as part of the GISP2 project. This comparison will help separate global from local effects at the different drill sites. Cosmogenic radionuclides in polar ice cores have been used to study the long-term variations in several important geophysical variables, including solar activity, geomagnetic field strength, atmospheric circulation, snow accumulation rates, and others. The time series of nuclide concentrations resulting from this work will be applied to several problem areas: perfecting the ice core chronology, deducing the history of solar activity, deducing the history of variations in the geomagnetic field, and studying the possible role of solar variations on climate. Comparison of Beryllium-10 and Chlorine-36 profiles in different cores will allow us to improve the ice core chronology and directly compare ice cores from different regions of the globe. Additional comparison with the Carbon-14 record will allow correlation of the ice core paleoenvironment record to other, Carbon-14 dated, paleoclimate records. | POINT(-148.812 -81.6588) | POINT(-148.812 -81.6588) | false | false | |||||
Methyl chloride and methyl bromide in Antarctic ice cores
|
0338359 |
2005-11-16 | Saltzman, Eric; Aydin, Murat; Williams, Margaret; Tatum, Cheryl | This award supports the analysis, in Antarctic ice cores, of the ozone depleting substances methyl bromide (CH3Br) and methyl chloride (CH3Cl), and the sulfur-containing gas, carbonyl sulfide (OCS). The broad scientific goal is to assess the level and variability of these gases in the preindustrial atmosphere. This information will allow testing of current models for sources and sinks of these gases from the atmosphere, and to indirectly assess the impact of anthropogenic activities on their biogeochemical cycles. Longer-term records will shed light on the climatic sensitivity of the atmospheric burden of these gases, and ultimately on the biogeochemical processes controlling them. These gases are present in ice at parts per trillion levels, and the current database consists entirely of a small number of measurements made in from a shallow ice core from Siple Dome, Antarctica. This project will involve studies of ice core samples from three Antarctic sites: Siple Station, Siple Dome, and South Pole. The sampling strategy is designed to accomplish several objectives: 1) to verify the atmospheric mixing ratios previously observed in shallow Siple Dome ice for OCS, CH3Br, and CH3Cl at sites with very different accumulation rates and surface temperatures; 2) to obtain a well-dated, high resolution record from a high accumulation rate site (Siple Station), that can provide overlap in mean gas age with Antarctic firn air samples; 3) explore Holocene variability in trace gas mixing ratios; and 4) to make the first measurements of these trace gases in Antarctic glacial ice. In terms of broader impact on society, this research will help to provide a stronger scientific basis for policy decisions regulating the production and use of ozone-depleting and climate-active gases. Specifically, the methyl bromide results will contribute to the current debate on the impact of recent regulation (via the Montreal Protocol and its Amendments) on atmospheric levels. Determination of pre-industrial atmospheric variability of ozone-depleting substances will help place more realistic constraints on scenarios used for future projections of stratospheric ozone and its climatic impacts. This research will involve the participation of both graduate and undergraduate students. | POINT(-148.81 -81.65) | POINT(-148.81 -81.65) | false | false | ||||||
Collaborative Research: Studies of Trapped Gases in Firn and Ice from Antarctic Deep Ice Cores
|
9714687 |
2004-08-26 | Blunier, Thomas; Fluckiger, Jacqueline; Thompson, Lonnie G.; Brook, Edward J. |
|
This award is for support for a program to make high resolution studies of variations in the concentration of methane, the oxygenisotope composition of paleoatmospheric oxygen, and the total gas content of deep Antarctic ice cores. Studies of the concentration and isotopic composition of air in the firn of the Antarctic ice sheet will also be continued. One objective of this work is to use the methane concentration and oxygen-isotope composition of oxygen of air in ice as time-stratigraphic markers for the precise intercorrelation of Greenland and Antarctic ice cores as well as the correlation of ice cores to other climatic records. A second objective is to use variations in the concentration and interhemispheric gradient of methane measured in Greenland and Antarctic ice cores to deduce changes in continental climates and biogeochemistry on which the atmospheric methane distribution depends. A third objective is to use data on the variability of total gas content in the Siple Dome ice core to reconstruct aspects of the glacial history of West Antarctica during the last glacial maximum. The fourth objective is to participate in collaborative studies of firn air chemistry at Vostok, Siple Dome, and South Pole which will yield much new information about gas trapping in ice as well as the concentration history and isotopic composition of greenhouse gases, oxygen, trace biogenic gases and trace anthropogenic gases during the last 100 years. | None | None | false | false | |||||
Relating West Antarctic Ice Cores to Climate with Artificial Neural Networks
|
0087380 |
2004-07-01 | Reusch, David | No dataset link provided | 0087380<br/>Alley<br/><br/>This award provides three years of support to use a broad, adaptable, multi-parameter approach, using a range of techniques including artificial neural networks to seek the relations between meteorological conditions and the snow pit and ice core records they produce. Multi-parameter, high resolution, ice core data already in hand or now being collected reflect snow accumulation, atmospheric chemistry, isotopic fractionation, and other processes, often with subannual resolution. The West Antarctic sites from which such data are available will be used as starting points for back-trajectory analyses in reanalysis data products to determine the meteorological conditions feeding the data stream. The artificial neural nets will then be used to look for optimal relations between these meteorological conditions and their products. Previous work has demonstrated the value of reanalysis products in determining snow accumulation, of back trajectory analyses in understanding glaciochemistry, and of artificial neural nets in linking meteorological conditions and their products. Preliminary work shows that neural nets are successful in downscaling from reanalysis products to automatic weather station data in West Antarctica, enabling interpolation of site-specific data to improve understanding of recent changes in West Antarctic climate. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||
CO2 and Delta 13CO2 in Antarctic Ice Cores
|
9980691 |
2003-12-11 | Wahlen, Martin; Ahn, Jinho; Deck, Bruce |
|
9980691<br/>Wahlen<br/><br/>This award is for support for three years of funding to reconstruct the atmospheric carbon dioxide (CO2) and carbon-13 isotope (d13C) concentration in ice cores from Antarctica over several climatic periods. Samples from the Holocene, the Last Glacial Maximum (LGM)-Holocene transition and glacial stadial/interstadial episodes will be examined. Samples from the Siple Dome ice core drilled in 1998/99 will be made, in addition to measurements from the Taylor Dome and Vostok ice cores. The major objectives are to investigate the phase relationships between variations in the concentration of atmospheric CO2, its carbon isotope composition, and temperature changes (indicated by 18dO and dD of the ice) during deglaciations as well as across rapid climate change events (e.g. Dansgaard-Oeschger events). This will help to determine systematic changes in the global carbon cycle during and between different climatic periods, and to ascertain if the widely spread northern hemisphere temperature stadial/interstadial events produced a global atmospheric carbon dioxide signal. Proven experimental techniques will be used. | None | None | false | false |