{"dp_type": "Dataset", "free_text": "LTER"}
[{"awards": "1744961 Olesik, John", "bounds_geometry": ["POLYGON((161.71158 -77.75758,161.7127687 -77.75758,161.7139574 -77.75758,161.7151461 -77.75758,161.7163348 -77.75758,161.7175235 -77.75758,161.7187122 -77.75758,161.7199009 -77.75758,161.7210896 -77.75758,161.7222783 -77.75758,161.723467 -77.75758,161.723467 -77.75784200000001,161.723467 -77.758104,161.723467 -77.758366,161.723467 -77.758628,161.723467 -77.75889000000001,161.723467 -77.759152,161.723467 -77.75941399999999,161.723467 -77.759676,161.723467 -77.759938,161.723467 -77.7602,161.7222783 -77.7602,161.7210896 -77.7602,161.7199009 -77.7602,161.7187122 -77.7602,161.7175235 -77.7602,161.7163348 -77.7602,161.7151461 -77.7602,161.7139574 -77.7602,161.7127687 -77.7602,161.71158 -77.7602,161.71158 -77.759938,161.71158 -77.759676,161.71158 -77.75941399999999,161.71158 -77.759152,161.71158 -77.75889000000001,161.71158 -77.758628,161.71158 -77.758366,161.71158 -77.758104,161.71158 -77.75784200000001,161.71158 -77.75758))"], "date_created": "Tue, 07 Jan 2025 00:00:00 GMT", "description": "This data set includes measurements of the amounts of each detectable element in thousands of individual nanoparticles and fine microparticles in 28 Taylor Glacier samples from 9076 to 44374 yr BP using a single particle Inductively Coupled Plasma-Time of Flight Mass Spectrometer. Particle number concentrations measured by spICP-TOFMS and Coulter Counter are also included.", "east": 161.723467, "geometry": ["POINT(161.7175235 -77.75889000000001)"], "keywords": "Antarctica; Cryosphere; Particle Size; Taylor Glacier", "locations": "Antarctica; Taylor Glacier", "north": -77.75758, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Olesik, John; Gabrielli, Paolo; Kutuzov, Stanislav; Lomax-Vogt, Madeleine; Carter, Lucas; Sullivan, Ryan; Lowry, Greg", "project_titles": "Atmospheric Mineral Nanoparticles in Antarctic Ice during the last Climatic Cycle", "projects": [{"proj_uid": "p0010492", "repository": "USAP-DC", "title": "Atmospheric Mineral Nanoparticles in Antarctic Ice during the last Climatic Cycle"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.7602, "title": "Elemental composition of individual nanoparticles and fine particles in 28 Taylor Glacier ice core samples 9000 to 44000 yrs BP", "uid": "601879", "west": 161.71158}, {"awards": "0838892 Burns, Jennifer; 0838937 Costa, Daniel; 1853377 Shero, Michelle", "bounds_geometry": ["POLYGON((-180 -72,-179.8 -72,-179.6 -72,-179.4 -72,-179.2 -72,-179 -72,-178.8 -72,-178.6 -72,-178.4 -72,-178.2 -72,-178 -72,-178 -72.7,-178 -73.4,-178 -74.1,-178 -74.8,-178 -75.5,-178 -76.2,-178 -76.9,-178 -77.6,-178 -78.3,-178 -79,-178.2 -79,-178.4 -79,-178.6 -79,-178.8 -79,-179 -79,-179.2 -79,-179.4 -79,-179.6 -79,-179.8 -79,180 -79,178.2 -79,176.4 -79,174.6 -79,172.8 -79,171 -79,169.2 -79,167.4 -79,165.6 -79,163.8 -79,162 -79,162 -78.3,162 -77.6,162 -76.9,162 -76.2,162 -75.5,162 -74.8,162 -74.1,162 -73.4,162 -72.7,162 -72,163.8 -72,165.6 -72,167.4 -72,169.2 -72,171 -72,172.8 -72,174.6 -72,176.4 -72,178.2 -72,-180 -72))"], "date_created": "Fri, 20 Sep 2024 00:00:00 GMT", "description": "Diel vertical migrations (DVM) have been well-documented across numerous taxa, with prey descend through the water column during daylight hours to avoid visual predators and feed at the surface at night. However, the ability of marine mammals such as Weddell seals (Leptonychotes weddellii) to follow prey to depths is likely constrained by limited breath-hold capacities and the physiological consequences of pushing aerobic thresholds. In particular, dives that exceed the aerobic dive limit require exponentially longer surface recuperation times to clear lactate byproducts from circulation. This is time that the animals then cannot spend foraging. In this study, we assess the circadian organization of the Weddell seal\u0027s dive efforts and when animals make their longest/deepest (most \u0027extreme\u0027) dives that far exceed aerobic thresholds. Sixty-two adult Weddell seals were instrumented with satellite linked relay loggers in the Ross Sea to collect behavioral information across the austral winter. Daily activities are likely to shift across the year in a highly-seasonal polar environment, and through this \u0027natural experiment\u0027 we test how free-ranging seals alter foraging behavior during Polar Day and Night (continuous light, LL and dark, DD, respectively) and varying light/dark (LD) cycling across the year.", "east": -178.0, "geometry": ["POINT(172 -75.5)"], "keywords": "Aerobic; Antarctica; Cryosphere; Weddell Seal", "locations": "Antarctica; Antarctica", "north": -72.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Shero, Michelle", "project_titles": "Collaborative Research: Physiological and Genetic Correlates of Reproductive Success in High- versus Low-Quality Weddell seals; Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea", "projects": [{"proj_uid": "p0000661", "repository": "USAP-DC", "title": "Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea"}, {"proj_uid": "p0010369", "repository": "USAP-DC", "title": "Collaborative Research: Physiological and Genetic Correlates of Reproductive Success in High- versus Low-Quality Weddell seals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "Weddell seal dive behavior and rhythmicity from 2010-2012 in the Ross Sea", "uid": "601835", "west": 162.0}, {"awards": null, "bounds_geometry": null, "date_created": "Thu, 05 Sep 2024 00:00:00 GMT", "description": "The effects of soluble impurities on the flow of glaciers and ice sheets as well as the effects of ice flow on impurities migration are not well understood. This study investigates the effects of sulfuric acid (H2SO4) concentrations ranging from 10 to 25 ppm on the flow and fabric of polycrystalline ice under compression at temperatures of -3\u00b0C and -12\u00b0C. The results show that H2SO4-doped polycrystalline ice deforms significantly faster than high-purity polycrystalline ice, with the deformation rate being 1.5 to 3 times higher. At -12\u00b0C, the presence of H2SO4 within the grains induces the most ice softening, whereas at -3\u00b0C, H2SO4\u0027s softening effects are observed both within the grains and at grain boundaries. The migration of H2SO4 to grain boundaries during deformation leads to the formation of a liquid-like layer, with increased solubility at higher temperatures potentially homogenizing the impurities within the ice matrix. This homogenization at -3\u00b0C suggests that post-depositional processes near the bed of ice sheets could significantly alter sulfate records. At -12\u00b0C, where homogenization is absent, impurity-induced dislocation processes may heavily influence deformation and impurity migration. Additionally, the comparison of natural ice with lab-grown samples indicates that fabric development significantly impacts compressive strength and creep rates, with implications for the understanding of impurity-induced deformation processes in polar ice.", "east": null, "geometry": null, "keywords": "Antarctica; Cryosphere", "locations": "Antarctica", "north": null, "nsf_funding_programs": null, "persons": "Ogunmolasuyi, Ayobami", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": null, "title": "The Impacts of the Microstructural Location of H2SO4 on the Flow of Polycrystalline Ice", "uid": "601831", "west": null}, {"awards": "1142158 Cheng, Chi-Hing; 0636696 DeVries, Arthur; 2026045 Schofield, Oscar; 1440435 Ducklow, Hugh; 1543383 Postlethwait, John", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Mon, 22 Jul 2024 00:00:00 GMT", "description": "This data set includes photographs and metadata from phylogenetic analyses associated with the description of Akarotaxis gouldae n. sp., or the Banded Dragonfish (Bathydraconidae).", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Bellingshausen Sea; Cryosphere; Southern Ocean", "locations": "Southern Ocean; Bellingshausen Sea; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Corso, Andrew; Desvignes, Thomas; McDowell, Jan; Cheng, Chi-Hing; Biesack, Ellen; Steinberg, Deborah; Hilton, Eric", "project_titles": "Antarctic Notothenioid Fish Freeze Avoidance and Genome-wide Evolution for Life in the Cold; Environmental, Organismal and Evolutionary Physiology of Freeze Avoidance in Antarctic Notothenioid Fishes; LTER Palmer, Antarctica (PAL): Land-Shelf-Ocean Connectivity, Ecosystem Resilience and Transformation in a Sea-Ice Influenced Pelagic Ecosystem", "projects": [{"proj_uid": "p0000560", "repository": "USAP-DC", "title": "Environmental, Organismal and Evolutionary Physiology of Freeze Avoidance in Antarctic Notothenioid Fishes"}, {"proj_uid": "p0010091", "repository": "USAP-DC", "title": "Antarctic Notothenioid Fish Freeze Avoidance and Genome-wide Evolution for Life in the Cold"}, {"proj_uid": "p0000133", "repository": "USAP-DC", "title": "LTER Palmer, Antarctica (PAL): Land-Shelf-Ocean Connectivity, Ecosystem Resilience and Transformation in a Sea-Ice Influenced Pelagic Ecosystem"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LTER", "south": -90.0, "title": "Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)", "uid": "601811", "west": -180.0}, {"awards": "0087144 Conway, Howard", "bounds_geometry": ["POLYGON((-150 -83.5,-148 -83.5,-146 -83.5,-144 -83.5,-142 -83.5,-140 -83.5,-138 -83.5,-136 -83.5,-134 -83.5,-132 -83.5,-130 -83.5,-130 -83.65,-130 -83.8,-130 -83.95,-130 -84.1,-130 -84.25,-130 -84.4,-130 -84.55,-130 -84.7,-130 -84.85,-130 -85,-132 -85,-134 -85,-136 -85,-138 -85,-140 -85,-142 -85,-144 -85,-146 -85,-148 -85,-150 -85,-150 -84.85,-150 -84.7,-150 -84.55,-150 -84.4,-150 -84.25,-150 -84.1,-150 -83.95,-150 -83.8,-150 -83.65,-150 -83.5))"], "date_created": "Mon, 22 Jul 2024 00:00:00 GMT", "description": "Marine ice sheets are low-pass filters of climate variability that take centuries to adjust to interior and near-terminus changes in mass balance. Constraining these century-scale changes from satellite observations that span only the last 40 years is challenging. Here, we take a different approach of carefully synthesizing different data sets to infer changes in the configurations of van der Veen and Mercer Ice Streams on the Siple Coast over the past 3000 years from englacial features encoded in ice-penetrating radar data. Englacial radar data from Conway Ridge reveal smooth, surface conformal layers overlying disrupted stratigraphy that suggest the van der Veen Ice Stream was 40 km wider over 3000 years ago. Englacial layer dating indicates that the ice stream narrowed to its present configuration between $\\sim3000$ and $\\sim1000$ years ago. Similarly disrupted stratigraphy and buried crevasses suggest that ice flowing from Mercer to Whillans Ice Stream across the northwestern tip of the ridge slowed shortly after. Using an ice-flow model capable of simulating shear margin migration, we evaluate whether small changes in ice thickness can lead to large changes in shear margin location. Our results suggest that the tip of Conway Ridge is sensitive to thinning and thickening, and that when the basal strength at the tip of the ridge increases with the height above flotation, the ice sheet shear margins can change quickly.", "east": -130.0, "geometry": ["POINT(-140 -84.25)"], "keywords": "Antarctica; Cryosphere; Siple Coast", "locations": "Siple Coast; Antarctica", "north": -83.5, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Hoffman, Andrew; Conway, Howard; Christianson, Knut", "project_titles": "Glacial History of Ridge AB, West Antarctica", "projects": [{"proj_uid": "p0010470", "repository": "USAP-DC", "title": "Glacial History of Ridge AB, West Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Impulse HF radar data from Conway Ridge", "uid": "601810", "west": -150.0}, {"awards": "1644171 Blackburn, Terrence; 2042495 Blackburn, Terrence", "bounds_geometry": ["POLYGON((161.9 -77.65,161.96 -77.65,162.02 -77.65,162.08 -77.65,162.14000000000001 -77.65,162.2 -77.65,162.26 -77.65,162.32 -77.65,162.38 -77.65,162.44 -77.65,162.5 -77.65,162.5 -77.66000000000001,162.5 -77.67,162.5 -77.68,162.5 -77.69,162.5 -77.7,162.5 -77.71000000000001,162.5 -77.72,162.5 -77.73,162.5 -77.74,162.5 -77.75,162.44 -77.75,162.38 -77.75,162.32 -77.75,162.26 -77.75,162.2 -77.75,162.14000000000001 -77.75,162.08 -77.75,162.02 -77.75,161.96 -77.75,161.9 -77.75,161.9 -77.74,161.9 -77.73,161.9 -77.72,161.9 -77.71000000000001,161.9 -77.7,161.9 -77.69,161.9 -77.68,161.9 -77.67,161.9 -77.66000000000001,161.9 -77.65))"], "date_created": "Mon, 01 Jul 2024 00:00:00 GMT", "description": "This dataset contains uranium and thorium isotopic compositions (U-234, U-235, U-238, Th-230, Th-232) and major element compositions (Al, K, Na, Ca, Fe, Mn, reported as oxides) for silicate sediments from glaciogenic drifts associated with advances of Taylor Glacier in Taylor Valley, Antarctica. Isotopic measurements were obtained by ID-TIMS in the Keck Isotope Facility at UC Santa Cruz and elemental measurements were obtained by ICP-OES in the Plasma Analytical Laboratory. All measurements include fully propagated analytical and systematic (e.g. isotopic tracer) uncertainties. Chemical index of alteration was calculated from major element data. Prior to measurements, sediments were sieved to \u2264125 \u03bcm grain sizes, separated into quartz-feldspar-rich and clay-rich aliquots by hydraulic settling, and subjected to sequential chemical extractions (\"leaching\") prior to silicate digestion.", "east": 162.5, "geometry": ["POINT(162.2 -77.7)"], "keywords": "Antarctica; Cryosphere; Erosion; Isotope Data; Major Elements; Soil; Taylor Glacier; Taylor Valley", "locations": "Taylor Valley; Taylor Glacier; Antarctica", "north": -77.65, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "Edwards, Graham; Piccione, Gavin; Blackburn, Terrence; Tulaczyk, Slawek", "project_titles": "Collaborative Research: Reconstructing East Antarctica\u2019s Past Response to Climate using Subglacial Precipitates; U-Series Comminution Age Constraints on Taylor Valley Erosion", "projects": [{"proj_uid": "p0010192", "repository": "USAP-DC", "title": "Collaborative Research: Reconstructing East Antarctica\u2019s Past Response to Climate using Subglacial Precipitates"}, {"proj_uid": "p0010243", "repository": "USAP-DC", "title": "U-Series Comminution Age Constraints on Taylor Valley Erosion"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.75, "title": "U-Th isotopes and major elements in sediments from Taylor Valley, Antarctica", "uid": "601806", "west": 161.9}, {"awards": "1914698 Hansen, Samantha", "bounds_geometry": ["POLYGON((148 -71.5,150.4 -71.5,152.8 -71.5,155.2 -71.5,157.6 -71.5,160 -71.5,162.4 -71.5,164.8 -71.5,167.2 -71.5,169.6 -71.5,172 -71.5,172 -72.15,172 -72.8,172 -73.45,172 -74.1,172 -74.75,172 -75.4,172 -76.05,172 -76.7,172 -77.35,172 -78,169.6 -78,167.2 -78,164.8 -78,162.4 -78,160 -78,157.6 -78,155.2 -78,152.8 -78,150.4 -78,148 -78,148 -77.35,148 -76.7,148 -76.05,148 -75.4,148 -74.75,148 -74.1,148 -73.45,148 -72.8,148 -72.15,148 -71.5))"], "date_created": "Wed, 24 Jan 2024 00:00:00 GMT", "description": "As seismic data availability increases, the necessity for automated processing techniques has become increasingly evident. Expanded geophysical datasets collected over the past several decades across Antarctica provide excellent resources to evaluate different event detection approaches. We have used the traditional Short-Term Average/Long-Term Average (STA/LTA) algorithm to catalogue seismic data recorded by 19 stations in East Antarctica between 2012 and 2015. However, the complexities of the East Antarctic dataset, including low magnitude events and phenomena such as icequakes, warrant more advanced automated detection techniques. Therefore, we have also applied template matching as well as several deep learning algorithms, including Generalized Phase Detection (GPD), PhaseNet, BasicPhaseAE, and EQTransformer (EQT), to identify seismic phases within our dataset. Our goal was not only to increase the volume of detectable seismic events but also to gain insights into the effectiveness of these different automated approaches. Our assessment evaluated the completeness of the newly generated catalogs, the precision of identified event locations, and the quality of the picks. The final events corresponding to each of our three catalogs (based on STA/LTA, template matching, and machine learning, respectively) are listed in the provided files.", "east": 172.0, "geometry": ["POINT(160 -74.75)"], "keywords": "Antarctica; Geoscientificinformation; Machine Learning; Seismic Event Detection; Seismology; Seismometer", "locations": "Antarctica", "north": -71.5, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Hansen, Samantha; Ho, Long; Walter, Jacob", "project_titles": "Collaborative Research: Resolving earth structure influence on ice-sheet stability in the Wilkes\r\nSubglacial Basin (RESISSt)", "projects": [{"proj_uid": "p0010204", "repository": "USAP-DC", "title": "Collaborative Research: Resolving earth structure influence on ice-sheet stability in the Wilkes\r\nSubglacial Basin (RESISSt)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "East Antarctic Seismicity from different Automated Event Detection Algorithms", "uid": "601762", "west": 148.0}, {"awards": "1543450 Countway, Peter", "bounds_geometry": ["POLYGON((-66 -63,-65.7 -63,-65.4 -63,-65.1 -63,-64.8 -63,-64.5 -63,-64.2 -63,-63.9 -63,-63.6 -63,-63.3 -63,-63 -63,-63 -63.3,-63 -63.6,-63 -63.9,-63 -64.2,-63 -64.5,-63 -64.8,-63 -65.1,-63 -65.4,-63 -65.7,-63 -66,-63.3 -66,-63.6 -66,-63.9 -66,-64.2 -66,-64.5 -66,-64.8 -66,-65.1 -66,-65.4 -66,-65.7 -66,-66 -66,-66 -65.7,-66 -65.4,-66 -65.1,-66 -64.8,-66 -64.5,-66 -64.2,-66 -63.9,-66 -63.6,-66 -63.3,-66 -63))"], "date_created": "Tue, 03 Jan 2023 00:00:00 GMT", "description": "Rates of heterotrophic bacterial production (BP) via 3H-Leu uptake were estimated for samples collected from Station E (Palmer Station, Antarctica) and associated incubation experiments. Rates of BP in seawater incubations greatly exceeded BP rates in the environment, likely due to stimulation of phytoplankton blooms and addition of DMSP in experimental treatments. \r\nMethods for determining BP were identical to those used by Palmer LTER investigators. References for the analytical methods used for these analyses are included in a secondary tab with the uploaded data. ", "east": -63.0, "geometry": ["POINT(-64.5 -64.5)"], "keywords": "3H-Leu; Antarctica; Bacteria; Biota; DMSP; Heterotrophic Bacterial Production; Palmer Station", "locations": "Palmer Station; Antarctica", "north": -63.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Countway, Peter; Matrai, Patricia", "project_titles": "Microbial Community Structure and Expression of Functional Genes Involved in the Seasonal Cycling of DMSP in the Southern Ocean", "projects": [{"proj_uid": "p0010120", "repository": "USAP-DC", "title": "Microbial Community Structure and Expression of Functional Genes Involved in the Seasonal Cycling of DMSP in the Southern Ocean"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -66.0, "title": "Heterotrophic Bacterial Production Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments", "uid": "601644", "west": -66.0}, {"awards": "1443397 Kreutz, Karl", "bounds_geometry": ["POINT(0 -90)"], "date_created": "Fri, 01 Apr 2022 00:00:00 GMT", "description": "This dataset contains particle metrics for the South Pole Ice Core (SPICEcore) intermediate core (SPC14), from the surface to 1751 m depth (~54,000 years before present [BP]). Data were collected via Klotz Abakus laser particle counter via continuous-flow-analysis (CFA), Beckman Coulter Multisizer 3 using Coulter Counter (CC) principles, and dynamic particle imaging using a FlowCAM instrument. CFA measurements were made at Dartmouth College, CC measurements were made at Colby College, and FlowCAM measurements were made at the University of Maine.", "east": 0.0, "geometry": ["POINT(0 -90)"], "keywords": "Antarctica; Dust; Ice Core; South Pole", "locations": "South Pole; Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Kreutz, Karl", "project_titles": "Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements", "projects": [{"proj_uid": "p0010051", "repository": "USAP-DC", "title": "Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "South Pole (SPC14) microparticle concentration, mass concentration, flux, particle-size-distribution mode, and aspect ratio measurements", "uid": "601553", "west": 0.0}, {"awards": "1947040 Postlethwait, John", "bounds_geometry": ["POLYGON((-63.1 -63.9,-63.02 -63.9,-62.94 -63.9,-62.86 -63.9,-62.78 -63.9,-62.7 -63.9,-62.62 -63.9,-62.54 -63.9,-62.46 -63.9,-62.38 -63.9,-62.3 -63.9,-62.3 -64.01,-62.3 -64.12,-62.3 -64.23,-62.3 -64.34,-62.3 -64.45,-62.3 -64.56,-62.3 -64.67,-62.3 -64.78,-62.3 -64.89,-62.3 -65,-62.38 -65,-62.46 -65,-62.54 -65,-62.62 -65,-62.7 -65,-62.78 -65,-62.86 -65,-62.94 -65,-63.02 -65,-63.1 -65,-63.1 -64.89,-63.1 -64.78,-63.1 -64.67,-63.1 -64.56,-63.1 -64.45,-63.1 -64.34,-63.1 -64.23,-63.1 -64.12,-63.1 -64.01,-63.1 -63.9))"], "date_created": "Tue, 15 Mar 2022 00:00:00 GMT", "description": "In situ hybridization of Notoxcellia coronata and host fish Trematomus scotti 18S SSU rRNA and of Notoxcellia picta and host fish Nototheniops larseni in alternate sections of tumor xenomas.", "east": -62.3, "geometry": ["POINT(-62.7 -64.45)"], "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "locations": "Antarctica; Antarctic Peninsula", "north": -63.9, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Postlethwait, John", "project_titles": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish ", "projects": [{"proj_uid": "p0010221", "repository": "USAP-DC", "title": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "In situ hybridization of X-cell and host fish 18S SSU rRNA in alternate sections of tumor xenomas.", "uid": "601539", "west": -63.1}, {"awards": "1341464 Robinson, Rebecca", "bounds_geometry": ["POLYGON((-170.4 -60.8,-170.36 -60.8,-170.32 -60.8,-170.28 -60.8,-170.24 -60.8,-170.2 -60.8,-170.16 -60.8,-170.12 -60.8,-170.08 -60.8,-170.04 -60.8,-170 -60.8,-170 -61.34,-170 -61.88,-170 -62.42,-170 -62.96,-170 -63.5,-170 -64.04,-170 -64.58,-170 -65.12,-170 -65.66,-170 -66.2,-170.04 -66.2,-170.08 -66.2,-170.12 -66.2,-170.16 -66.2,-170.2 -66.2,-170.24 -66.2,-170.28 -66.2,-170.32 -66.2,-170.36 -66.2,-170.4 -66.2,-170.4 -65.66,-170.4 -65.12,-170.4 -64.58,-170.4 -64.04,-170.4 -63.5,-170.4 -62.96,-170.4 -62.42,-170.4 -61.88,-170.4 -61.34,-170.4 -60.8))"], "date_created": "Mon, 14 Feb 2022 00:00:00 GMT", "description": "Tracking variations in the surface ocean supply and demand of nitrate, a key marine nutrient, can help constrain the contribution of biological production in driving past climate shifts. The nitrogen isotopic composition (as \u03b415N) of organic matter in marine sediments is a proxy for surface ocean nitrate supply and demand over time but it may be subject to alteration during sinking and burial. The isotopic composition of nitrogen contained in the shells, or frustules, of diatoms (\u03b415NDB) is protected and is therefore a potentially more robust tracer of nitrate use in the past. Here we show that \u03b415NDB in Southern Ocean community cultures does not depend on species composition. We found the \u03b5DB (= biomass \u03b415N - \u03b415NDB) of the community growouts was -4.8 \u00b1 0.8\u2030, more than 10\u2030 different from previous monospecific growouts, but statistically indistinguishable from previous Southern Ocean and North Pacific surface ocean observations. The two community growouts, seeded with populations from 66\u00b0 and 61\u00b0S, had distinct community compositions but indistinguishable \u03b5DB, suggesting species composition does not primarily set \u03b415NDB values in the Southern Ocean. Our results demonstrate that under nitrate-replete conditions, \u03b415NDB values of frustules sinking from the surface ocean robustly track surface ocean nitrate \u03b415N values and therefore nitrate supply and demand. ", "east": -170.0, "geometry": ["POINT(-170.2 -63.5)"], "keywords": "Antarctica; Nitrogen Isotopes; Oceans; Paleoproxies; Southern Ocean", "locations": "Antarctica; Southern Ocean", "north": -60.8, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Jones, Colin; Robinson, Rebecca; Brzezinski, Mark; Riesselman, Christina; Closset, Ivia; Kelly, Roger; Robinson, Rebecca ", "project_titles": "Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump", "projects": [{"proj_uid": "p0010083", "repository": "USAP-DC", "title": "Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -66.2, "title": "Surface Southern Ocean community growouts to evaluate the diatom bound N isotope proxy", "uid": "601522", "west": -170.4}, {"awards": "1946326 Doran, Peter", "bounds_geometry": ["POLYGON((163.093642 -77.592484,163.1049267 -77.592484,163.1162114 -77.592484,163.1274961 -77.592484,163.1387808 -77.592484,163.1500655 -77.592484,163.1613502 -77.592484,163.1726349 -77.592484,163.1839196 -77.592484,163.1952043 -77.592484,163.206489 -77.592484,163.206489 -77.5986389,163.206489 -77.6047938,163.206489 -77.6109487,163.206489 -77.6171036,163.206489 -77.6232585,163.206489 -77.6294134,163.206489 -77.6355683,163.206489 -77.6417232,163.206489 -77.6478781,163.206489 -77.654033,163.1952043 -77.654033,163.1839196 -77.654033,163.1726349 -77.654033,163.1613502 -77.654033,163.1500655 -77.654033,163.1387808 -77.654033,163.1274961 -77.654033,163.1162114 -77.654033,163.1049267 -77.654033,163.093642 -77.654033,163.093642 -77.6478781,163.093642 -77.6417232,163.093642 -77.6355683,163.093642 -77.6294134,163.093642 -77.6232585,163.093642 -77.6171036,163.093642 -77.6109487,163.093642 -77.6047938,163.093642 -77.5986389,163.093642 -77.592484))"], "date_created": "Wed, 09 Feb 2022 00:00:00 GMT", "description": "Location and metadata of samples collected from perched delta deposits along modern stream channels in lower Taylor Valley. Sample collection used equipment and followed procedures from the Desert Research Institute Luminescence Laboratory in Reno, NV.", "east": 163.206489, "geometry": ["POINT(163.1500655 -77.6232585)"], "keywords": "Antarctica; Sample/collection Description; Sample/Collection Description; Sample Location; Taylor Valley", "locations": "Taylor Valley; Antarctica", "north": -77.592484, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Doran, Peter; Stone, Michael", "project_titles": "EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers", "projects": [{"proj_uid": "p0010294", "repository": "USAP-DC", "title": "EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LTER", "south": -77.654033, "title": "EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers: Infrared Stimulated Luminescence data", "uid": "601520", "west": 163.093642}, {"awards": "1946326 Doran, Peter", "bounds_geometry": ["POLYGON((163.079602 -77.585467,163.1197073 -77.585467,163.1598126 -77.585467,163.1999179 -77.585467,163.2400232 -77.585467,163.2801285 -77.585467,163.3202338 -77.585467,163.3603391 -77.585467,163.4004444 -77.585467,163.4405497 -77.585467,163.480655 -77.585467,163.480655 -77.5924303,163.480655 -77.5993936,163.480655 -77.6063569,163.480655 -77.6133202,163.480655 -77.6202835,163.480655 -77.6272468,163.480655 -77.6342101,163.480655 -77.6411734,163.480655 -77.6481367,163.480655 -77.6551,163.4405497 -77.6551,163.4004444 -77.6551,163.3603391 -77.6551,163.3202338 -77.6551,163.2801285 -77.6551,163.2400232 -77.6551,163.1999179 -77.6551,163.1598126 -77.6551,163.1197073 -77.6551,163.079602 -77.6551,163.079602 -77.6481367,163.079602 -77.6411734,163.079602 -77.6342101,163.079602 -77.6272468,163.079602 -77.6202835,163.079602 -77.6133202,163.079602 -77.6063569,163.079602 -77.5993936,163.079602 -77.5924303,163.079602 -77.585467))"], "date_created": "Wed, 09 Feb 2022 00:00:00 GMT", "description": "Location and metadata of C-14 samples from Taylor Valley, East Antarctica", "east": 163.480655, "geometry": ["POINT(163.2801285 -77.6202835)"], "keywords": "Antarctica; Carbon-14; Sample/collection Description; Sample/Collection Description; Sample Location; Taylor Valley", "locations": "Antarctica; Taylor Valley", "north": -77.585467, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Doran, Peter; Stone, Michael", "project_titles": "EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers", "projects": [{"proj_uid": "p0010294", "repository": "USAP-DC", "title": "EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.6551, "title": "EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers: in situ 14C data", "uid": "601521", "west": 163.079602}, {"awards": "1245871 McCarthy, Christine", "bounds_geometry": null, "date_created": "Thu, 23 Dec 2021 00:00:00 GMT", "description": "This data set contains text files for the experimental logs of ice-on-rock friction experiments that were conducted in a double direct shear apparatus at temperatures of -16.4 C to -2 C. There are eleven files (C28-C34, C39-C41, and C44). Each file contains 4 columns of data that correspond to time (s), vertical displacement (microns), friction, and velocity. The data were prepared by converting voltages from experimental feedbacks, to appropriate units using calibrations, as conducted separate. Miscellaneous loading and unloading data were removed and the data was filtered modestly (100 point moving average filter in matlab). The data set includes all information needed to plot friction or velocity vs. time or displacement from the beginning to end of the run. ", "east": null, "geometry": null, "keywords": "Antarctica", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "McCarthy, Christine M.; Skarbek, Rob; Savage, Heather", "project_titles": "Laboratory Study of Ice Deformation under Tidal Loading Conditions with Application to Antarctic Glaciers", "projects": [{"proj_uid": "p0010186", "repository": "USAP-DC", "title": "Laboratory Study of Ice Deformation under Tidal Loading Conditions with Application to Antarctic Glaciers"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Dataset for Tidal modulation of ice streams: Effect of periodic sliding velocity on ice friction and healing", "uid": "601497", "west": null}, {"awards": "2037561 Jenouvrier, Stephanie; 1744794 Jenouvrier, Stephanie", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Wed, 08 Dec 2021 00:00:00 GMT", "description": "Climate impacts are not always easily discerned in wild populations as detecting climate change signals in populations is challenged by stochastic noise associated with natural climate variability, variability in biotic and abiotic processes, and observation error in demographic rates. Detection of the impact of climate change on populations requires making a formal distinction between signals in the population associated with long-term climate trends from those generated by stochastic noise. The time of emergence (ToE) identifies when the signal of anthropogenic climate change can be quantitatively distinguished from natural climate variability. This concept has been applied extensively in the climate sciences, but has not been explored in the context of population dynamics. \r\n\r\nIn Jenouvrier et al. (Global Change Biology, accepted), we outline an approach to detecting climate-driven signals in populations based on an assessment of when climate change drives population dynamics beyond the envelope characteristic of stochastic variations in an unperturbed state. \r\n\r\nThis data set is the code of a theoretical assessment of the time of emergence of climate-driven signals in population dynamics. We identify the dependence of time of emergence in populations on the magnitude of both trends and variability in climate and also explore the effect of intrinsic demographic controls on the time of emergence in population. We demonstrate that different life histories (fast species vs. slow species), demographic processes (survival, reproduction) and the relationships between climate and demographic rates, yield population dynamics that filter climate trends and variability differently. \r\n\r\nIn Jenouvrier et al. (accepted), we also illustrate empirically how to detect the point in time when anthropogenic signals in populations emerge from stochastic noise for a species threatened by climate change: the emperor penguin. This data set also includes a detailed Table and code to analyze those results.\r\n", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica", "locations": "Antarctica; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems", "persons": "Jenouvrier, Stephanie", "project_titles": "A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins; Integrating Antarctic Environmental and Biological Predictability to Obtain Optimal Forecasts", "projects": [{"proj_uid": "p0010229", "repository": "USAP-DC", "title": "A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins"}, {"proj_uid": "p0010447", "repository": "USAP-DC", "title": "A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins"}, {"proj_uid": "p0010282", "repository": "USAP-DC", "title": "Integrating Antarctic Environmental and Biological Predictability to Obtain Optimal Forecasts"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Detecting climate signals in populations: case of emperor penguin", "uid": "601491", "west": -180.0}, {"awards": "1543441 Fricker, Helen; 1656518 Gumport, Patricia", "bounds_geometry": null, "date_created": "Tue, 14 Sep 2021 00:00:00 GMT", "description": "This dataset includes raw, uncalibrated voltage vs time measurements from a bistatic radar receiver. We also include some processed data including upsampled matched filtered data, GPS receiver position, antenna separation", "east": null, "geometry": null, "keywords": "Antarctica; Bistatic Radar; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS Data; Greenland; Lake Whillans; Radar; Store Glacier; Whillans Ice Stream; WISSARD", "locations": "Greenland; Antarctica; Whillans Ice Stream; Store Glacier; Lake Whillans", "north": null, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science", "persons": "Bienert, Nicole; Schroeder, Dustin; Siegfried, Matthew; Peters, Sean; MacKie, Emma; Dawson, Eliza; Christoffersen, Poul", "project_titles": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments", "projects": [{"proj_uid": "p0010119", "repository": "USAP-DC", "title": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WISSARD", "south": null, "title": "Bistatic Radar Sounding of Whillans Ice Stream, Antarctica and Store Glacier, Greenland", "uid": "601472", "west": null}, {"awards": "1341736 Adams, Byron; 1341631 Lyons, W. Berry", "bounds_geometry": ["POLYGON((-177.4213 -84.4647,-177.08802 -84.4647,-176.75474 -84.4647,-176.42146 -84.4647,-176.08818 -84.4647,-175.7549 -84.4647,-175.42162 -84.4647,-175.08834 -84.4647,-174.75506 -84.4647,-174.42178 -84.4647,-174.0885 -84.4647,-174.0885 -84.56732,-174.0885 -84.66994,-174.0885 -84.77256,-174.0885 -84.87518,-174.0885 -84.9778,-174.0885 -85.08042,-174.0885 -85.18304,-174.0885 -85.28566,-174.0885 -85.38828,-174.0885 -85.4909,-174.42178 -85.4909,-174.75506 -85.4909,-175.08834 -85.4909,-175.42162 -85.4909,-175.7549 -85.4909,-176.08818 -85.4909,-176.42146 -85.4909,-176.75474 -85.4909,-177.08802 -85.4909,-177.4213 -85.4909,-177.4213 -85.38828,-177.4213 -85.28566,-177.4213 -85.18304,-177.4213 -85.08042,-177.4213 -84.9778,-177.4213 -84.87518,-177.4213 -84.77256,-177.4213 -84.66994,-177.4213 -84.56732,-177.4213 -84.4647))"], "date_created": "Sat, 02 Jan 2021 00:00:00 GMT", "description": "During the 2017-2018 austral summer, 220 surface soil samples (~top 5 cm) were collected from 11 distinct ice-free areas (Roberts Massif, Schroeder Hill, Mt. Augustana, Bennett Platform, Mt. Heekin, Thanksgiving Valley, Taylor Nunatak, Mt. Franke, Mt. Wasko, Nilsen Peak, and Mt. Speed) along the Shackleton Glacier. Dried soils were leached at a 1:5 soil to DI water ratio, and the leachate was filtered through 0.4 \u00b5m Nucleopore membrane filters. The leachate was analyzed for anions (F-, Cl-, Br-, and SO42-) which were measured on a Dionex ICS-2100 ion chromatograph, cations (K+, Na+, Ca2+, Mg2+, and Sr2+) which were measured on a PerkinElmer Optima 8300 Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES), and nutrients (NO3- + NO2-, PO43-, H4SiO4, and NH3) which were measured on a Skalar San++ Automated Wet Chemistry Analyzer at The Ohio State University. Perchlorate (ClO4-) and chlorate (ClO3-) were measured using an ion chromatograph-tandem mass spectrometry technique (IC-MS/MS) at Texas Tech University. Accuracy was typically better than 5% for all major anions, cations, and nutrients, as determined by the NIST 1643e external reference standard and the 2015 USGS interlaboratory calibration standard (M-216), and better than 10% for perchlorate and chlorate, as determined by spike recoveries.", "east": -174.0885, "geometry": ["POINT(-175.7549 -84.9778)"], "keywords": "Antarctica; Geochemistry; Shackleton Glacier", "locations": "Antarctica; Shackleton Glacier", "north": -84.4647, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Diaz, Melisa A.; Lyons, W. Berry; Gardner, Christopher B.", "project_titles": "Collaborative Research: The Role of Glacial History on the Structure and Functioning of Ecological Communities in the Shackleton Glacier Region of the Transantarctic Mountains", "projects": [{"proj_uid": "p0010140", "repository": "USAP-DC", "title": "Collaborative Research: The Role of Glacial History on the Structure and Functioning of Ecological Communities in the Shackleton Glacier Region of the Transantarctic Mountains"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.4909, "title": "Shackleton Glacier region soil water-soluble geochemical data", "uid": "601418", "west": -177.4213}, {"awards": "0733025 Blankenship, Donald; 1543452 Blankenship, Donald; 0636724 Blankenship, Donald; 1443690 Young, Duncan", "bounds_geometry": ["POLYGON((80 -65,89 -65,98 -65,107 -65,116 -65,125 -65,134 -65,143 -65,152 -65,161 -65,170 -65,170 -66.5,170 -68,170 -69.5,170 -71,170 -72.5,170 -74,170 -75.5,170 -77,170 -78.5,170 -80,161 -80,152 -80,143 -80,134 -80,125 -80,116 -80,107 -80,98 -80,89 -80,80 -80,80 -78.5,80 -77,80 -75.5,80 -74,80 -72.5,80 -71,80 -69.5,80 -68,80 -66.5,80 -65))"], "date_created": "Mon, 24 Aug 2020 00:00:00 GMT", "description": "The International Collaborative Exploration of the Cryosphere though Airborne Profiling (ICECAP) collected five seasons of aerogeophysical data data through the NSFs International Polar Year and NASAs Operation Ice Bridge programs in East Antarctica, using the coherent HiCARS 60 MHz radar system. By comparing echo strengths for different focusing apertures, and accounting for the ranges and angles involved, we can derive the \"specularity content\" of the bed echo, a proxy for small scale bed roughness and a good indicator for subglacial water pressure in regions of distributed subglacial water (Schroeder et al., 2014, IEEE GRSL, 10.1109/LGRS.2014.2337878; IEEE; Dow et al., 2019, EPSL https://doi.org/10.1016/j.epsl.2019.115961). Specularity data are inherently noisy, so these products have been smoothed with a 1 km filter.", "east": 170.0, "geometry": ["POINT(125 -72.5)"], "keywords": "Antarctica; East Antarctica; ICECAP; Ice Penetrating Radar; Radar Echo Sounder; Radar Echo Sounding; Subglacial Hydrology", "locations": "East Antarctica; Antarctica", "north": -65.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Earth Sciences", "persons": "Young, Duncan A.; Blankenship, Donald D.; Roberts, Jason; Siegert, Martin; van Ommen, Tas; Greenbaum, Jamin; Schroeder, Dustin", "project_titles": "Collaborative Research: Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP); Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System; East Antarctic Grounding Line Experiment (EAGLE); IPY Research: Investigating the Cryospheric Evolution of the Central Antarctic Plate (ICECAP)", "projects": [{"proj_uid": "p0000254", "repository": "USAP-DC", "title": "East Antarctic Grounding Line Experiment (EAGLE)"}, {"proj_uid": "p0000719", "repository": "USAP-DC", "title": "IPY Research: Investigating the Cryospheric Evolution of the Central Antarctic Plate (ICECAP)"}, {"proj_uid": "p0010115", "repository": "USAP-DC", "title": "Collaborative Research: Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP)"}, {"proj_uid": "p0000174", "repository": "USAP-DC", "title": "Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "uid": "601371", "west": 80.0}, {"awards": "1644209 Goldbogen, Jeremy; 1440435 Ducklow, Hugh", "bounds_geometry": ["POLYGON((-64.5 -63,-63.95 -63,-63.4 -63,-62.85 -63,-62.3 -63,-61.75 -63,-61.2 -63,-60.65 -63,-60.1 -63,-59.55 -63,-59 -63,-59 -63.22,-59 -63.44,-59 -63.66,-59 -63.88,-59 -64.1,-59 -64.32,-59 -64.54,-59 -64.76,-59 -64.98,-59 -65.2,-59.55 -65.2,-60.1 -65.2,-60.65 -65.2,-61.2 -65.2,-61.75 -65.2,-62.3 -65.2,-62.85 -65.2,-63.4 -65.2,-63.95 -65.2,-64.5 -65.2,-64.5 -64.98,-64.5 -64.76,-64.5 -64.54,-64.5 -64.32,-64.5 -64.1,-64.5 -63.88,-64.5 -63.66,-64.5 -63.44,-64.5 -63.22,-64.5 -63))"], "date_created": "Sun, 10 May 2020 00:00:00 GMT", "description": "This dataset contains UAV (drone) still images and video footage from whales in the Antarctic Peninsula region taken from LM Gould expedition (LMG1802) and small zodiacs. It also contains flight tracks as kml files.", "east": -59.0, "geometry": ["POINT(-61.75 -64.1)"], "keywords": "Aerial Imagery; Antarctica; Antarctic Peninsula; Biota; Camera; Humpback Whales; LMG1802; LTER; Minke Whales; Oceans; Palmer Station; Photo; Photo/video; Photo/Video; R/v Laurence M. Gould; Species Size; UAV; Video Data; Whales", "locations": "Antarctica; Palmer Station; Antarctic Peninsula", "north": -63.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Friedlaender, Ari; Dale, Julian; Nowacek, Douglas; Bierlich, KC", "project_titles": "LTER Palmer, Antarctica (PAL): Land-Shelf-Ocean Connectivity, Ecosystem Resilience and Transformation in a Sea-Ice Influenced Pelagic Ecosystem", "projects": [{"proj_uid": "p0000133", "repository": "USAP-DC", "title": "LTER Palmer, Antarctica (PAL): Land-Shelf-Ocean Connectivity, Ecosystem Resilience and Transformation in a Sea-Ice Influenced Pelagic Ecosystem"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LTER", "south": -65.2, "title": "UAV images and video of whales in the Antarctic Penisula during LMG1802", "uid": "601318", "west": -64.5}, {"awards": "1143836 Leventer, Amy", "bounds_geometry": ["POLYGON((118 -65.5,118.3 -65.5,118.6 -65.5,118.9 -65.5,119.2 -65.5,119.5 -65.5,119.8 -65.5,120.1 -65.5,120.4 -65.5,120.7 -65.5,121 -65.5,121 -65.65,121 -65.8,121 -65.95,121 -66.1,121 -66.25,121 -66.4,121 -66.55,121 -66.7,121 -66.85,121 -67,120.7 -67,120.4 -67,120.1 -67,119.8 -67,119.5 -67,119.2 -67,118.9 -67,118.6 -67,118.3 -67,118 -67,118 -66.85,118 -66.7,118 -66.55,118 -66.4,118 -66.25,118 -66.1,118 -65.95,118 -65.8,118 -65.65,118 -65.5))"], "date_created": "Fri, 01 May 2020 00:00:00 GMT", "description": "This Biology Species Abundance data set was acquired with a ship-based Camera during Nathaniel B. Palmer expedition NBP1001 conducted in 2010 (Chief Scientist: Dr. Eugene Domack; Investigator: Dr. Craig Smith). The data file is in XLS format and includes Biology Species Abundance Biology data that has not been processed. The data was acquired as part of the project called Collaborative Research in IPY: Abrupt Environmental Change in the LARsen Ice Shelf System, Antarctica (LARISSA).", "east": 121.0, "geometry": ["POINT(119.5 -66.25)"], "keywords": "Antarctica; Benthic Images; Camera; East Antarctica; Marine Geoscience; NBP1402; Photo/video; Photo/Video; R/v Nathaniel B. Palmer; Sabrina Coast; Totten Glacier; Video Data; Yoyo Camera", "locations": "Totten Glacier; East Antarctica; Antarctica; Sabrina Coast", "north": -65.5, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Leventer, Amy; Post, Alexandra; Blankenship, Donald D.; Domack, Eugene Walter; Gulick, Sean; Huber, Bruce; Orsi, Alejandro; Shevenell, Amelia", "project_titles": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics", "projects": [{"proj_uid": "p0000008", "repository": "USAP-DC", "title": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.0, "title": "Near-bottom Videos from the Southern Ocean acquired during R/V Nathaniel B. Palmer expedition NBP1402", "uid": "601312", "west": 118.0}, {"awards": "1143836 Leventer, Amy", "bounds_geometry": ["POLYGON((118 -65.5,118.3 -65.5,118.6 -65.5,118.9 -65.5,119.2 -65.5,119.5 -65.5,119.8 -65.5,120.1 -65.5,120.4 -65.5,120.7 -65.5,121 -65.5,121 -65.65,121 -65.8,121 -65.95,121 -66.1,121 -66.25,121 -66.4,121 -66.55,121 -66.7,121 -66.85,121 -67,120.7 -67,120.4 -67,120.1 -67,119.8 -67,119.5 -67,119.2 -67,118.9 -67,118.6 -67,118.3 -67,118 -67,118 -66.85,118 -66.7,118 -66.55,118 -66.4,118 -66.25,118 -66.1,118 -65.95,118 -65.8,118 -65.65,118 -65.5))"], "date_created": "Fri, 01 May 2020 00:00:00 GMT", "description": "This data set was acquired with a Nikon D80 Digital Camera on a towed Yoyo camera system during R/V Nathaniel B. Palmer expedition NBP1402 conducted in 2014. These data files are of JPEG Image format and include Photograph data that have not been processed.", "east": 121.0, "geometry": ["POINT(119.5 -66.25)"], "keywords": "Antarctica; Benthic Images; Benthos; East Antarctica; Marine Geoscience; NBP1402; Photo; Photo/video; Photo/Video; R/v Nathaniel B. Palmer; Totten Glacier; Yoyo Camera", "locations": "Totten Glacier; Antarctica; East Antarctica", "north": -65.5, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Leventer, Amy; Post, Alexandra; Domack, Eugene Walter; Gulick, Sean; Huber, Bruce; Orsi, Alejandro; Shevenell, Amelia", "project_titles": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics", "projects": [{"proj_uid": "p0000008", "repository": "USAP-DC", "title": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.0, "title": "Bottom photos from the Southern Ocean acquired during R/V Nathaniel B. Palmer expedition NBP1402 ", "uid": "601310", "west": 118.0}, {"awards": "1143981 Domack, Eugene", "bounds_geometry": ["POLYGON((-66.5 -61.5,-65.85 -61.5,-65.2 -61.5,-64.55 -61.5,-63.9 -61.5,-63.25 -61.5,-62.6 -61.5,-61.95 -61.5,-61.3 -61.5,-60.65 -61.5,-60 -61.5,-60 -61.87,-60 -62.24,-60 -62.61,-60 -62.98,-60 -63.35,-60 -63.72,-60 -64.09,-60 -64.46,-60 -64.83,-60 -65.2,-60.65 -65.2,-61.3 -65.2,-61.95 -65.2,-62.6 -65.2,-63.25 -65.2,-63.9 -65.2,-64.55 -65.2,-65.2 -65.2,-65.85 -65.2,-66.5 -65.2,-66.5 -64.83,-66.5 -64.46,-66.5 -64.09,-66.5 -63.72,-66.5 -63.35,-66.5 -62.98,-66.5 -62.61,-66.5 -62.24,-66.5 -61.87,-66.5 -61.5))"], "date_created": "Fri, 01 May 2020 00:00:00 GMT", "description": "This data set was acquired with a camera during Laurence M. Gould expedition LMG1311 conducted in 2013. These data files are of JPEG format and include Photograph images that have not been processed", "east": -60.0, "geometry": ["POINT(-63.25 -63.35)"], "keywords": "Antarctica; Antarctic Peninsula; Benthic Images; Camera; LARISSA; LMG1311; Marine Geoscience; Photo; Photo/video; Photo/Video; R/v Laurence M. Gould", "locations": "Antarctic Peninsula; Antarctica", "north": -61.5, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Domack, Eugene Walter", "project_titles": "Continuation of the LARISSA Continuous GPS Network in View of Observed Dynamic Response to Antarctic Peninsula Ice Mass Balance and Required Geologic Constraints", "projects": [{"proj_uid": "p0000233", "repository": "USAP-DC", "title": "Continuation of the LARISSA Continuous GPS Network in View of Observed Dynamic Response to Antarctic Peninsula Ice Mass Balance and Required Geologic Constraints"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LARISSA", "south": -65.2, "title": "Processed Camera Images acquired during the Laurence M. Gould expedition LMG1311", "uid": "601311", "west": -66.5}, {"awards": "1144176 Lyons, W. Berry", "bounds_geometry": ["POLYGON((162.250099 -77.719928,162.2519358 -77.719928,162.2537726 -77.719928,162.2556094 -77.719928,162.2574462 -77.719928,162.259283 -77.719928,162.2611198 -77.719928,162.2629566 -77.719928,162.2647934 -77.719928,162.2666302 -77.719928,162.268467 -77.719928,162.268467 -77.7201251,162.268467 -77.7203222,162.268467 -77.7205193,162.268467 -77.7207164,162.268467 -77.7209135,162.268467 -77.7211106,162.268467 -77.7213077,162.268467 -77.7215048,162.268467 -77.7217019,162.268467 -77.721899,162.2666302 -77.721899,162.2647934 -77.721899,162.2629566 -77.721899,162.2611198 -77.721899,162.259283 -77.721899,162.2574462 -77.721899,162.2556094 -77.721899,162.2537726 -77.721899,162.2519358 -77.721899,162.250099 -77.721899,162.250099 -77.7217019,162.250099 -77.7215048,162.250099 -77.7213077,162.250099 -77.7211106,162.250099 -77.7209135,162.250099 -77.7207164,162.250099 -77.7205193,162.250099 -77.7203222,162.250099 -77.7201251,162.250099 -77.719928))"], "date_created": "Tue, 07 May 2019 00:00:00 GMT", "description": "Blood Falls is a hypersaline, iron\u2010rich discharge at the terminus of the Taylor Glacier in the McMurdo Dry Valleys, Antarctica. In November 2014, brine in a conduit within the glacier was penetrated and sampled using clean\u2010entry techniques and a thermoelectric melting probe called the IceMole. We analyzed the englacial brine sample for filterable iron (fFe), total Fe, major cations and anions, nutrients, organic carbon, and perchlorate. In addition, aliquots were analyzed for minor and trace elements and isotopes including \u03b4D and \u03b418O of water, \u03b434S and \u03b418O of sulfate, 234U, 238U, \u03b411B, 87Sr/86Sr, and \u03b481Br. These measurements were made in order to (1) determine the source and geochemical evolution of the brine and (2) compare the chemistry of the brine to that of nearby hypersaline lake waters and previous supraglacially sampled collections of Blood Falls outflow that were interpreted as end\u2010member brines.", "east": 162.268467, "geometry": ["POINT(162.259283 -77.7209135)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Subglacial Brine", "locations": "Antarctica", "north": -77.719928, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Lyons, W. Berry; Gardner, Christopher B.", "project_titles": "Collaborative Research: MIDGE: Minimally Invasive Direct Glacial Exploration of Biogeochemistry, Hydrology and Glaciology of Blood Falls, McMurdo Dry Valleys", "projects": [{"proj_uid": "p0000002", "repository": "USAP-DC", "title": "Collaborative Research: MIDGE: Minimally Invasive Direct Glacial Exploration of Biogeochemistry, Hydrology and Glaciology of Blood Falls, McMurdo Dry Valleys"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.721899, "title": "The Geochemistry of englacial brine from Taylor Glacier, Antarctica.", "uid": "601179", "west": 162.250099}, {"awards": "1822289 Vernet, Maria", "bounds_geometry": ["POLYGON((-59.402149 -62.131908,-58.9639887 -62.131908,-58.5258284 -62.131908,-58.0876681 -62.131908,-57.6495078 -62.131908,-57.2113475 -62.131908,-56.7731872 -62.131908,-56.3350269 -62.131908,-55.8968666 -62.131908,-55.4587063 -62.131908,-55.020546 -62.131908,-55.020546 -62.384829,-55.020546 -62.63775,-55.020546 -62.890671,-55.020546 -63.143592,-55.020546 -63.396513,-55.020546 -63.649434,-55.020546 -63.902355,-55.020546 -64.155276,-55.020546 -64.408197,-55.020546 -64.661118,-55.4587063 -64.661118,-55.8968666 -64.661118,-56.3350269 -64.661118,-56.7731872 -64.661118,-57.2113475 -64.661118,-57.6495078 -64.661118,-58.0876681 -64.661118,-58.5258284 -64.661118,-58.9639887 -64.661118,-59.402149 -64.661118,-59.402149 -64.408197,-59.402149 -64.155276,-59.402149 -63.902355,-59.402149 -63.649434,-59.402149 -63.396513,-59.402149 -63.143592,-59.402149 -62.890671,-59.402149 -62.63775,-59.402149 -62.384829,-59.402149 -62.131908))"], "date_created": "Mon, 29 Apr 2019 00:00:00 GMT", "description": "Marine ecosystems under large ice shelves are thought to contain sparse, low-diversity plankton and seafloor communities due the low supply of food from productive sunlight waters. Past studies have shown sub-ice shelf ecosystems to change in response to altered oceanographic processes resulting from ice-shelve retreat. However, information on community changes and ecosystem structure under ice shelves are limited because sub-ice-shelf ecosystems have either been sampled many years after ice-shelf breakout, or have been sampled through small boreholes, yielding extremely limited spatial information. The recent breakout of the A-68 iceberg from the Larsen C ice shelf in the western Weddell Sea provides an opportunity to use a ship-based study to evaluate benthic communities and water column characteristics in an area recently vacated by a large overlying ice shelf. The opportunity will allow spatial assessments at the time of transition from an under ice-shelf environment to one initially exposed to conditions more typical of a coastal Antarctic marine setting. \r\n\r\n\r\n\r\nThis RAPID project will help determine the state of a coastal Antarctic ecosystem newly exposed from ice-shelf cover and will aid in understanding of rates of community change during transition. The project will conduct a 10-day field program, allowing contrasts to be made of phytoplankton and seafloor megafaunal communities in areas recently exposed by ice-shelf loss to areas exposed for many decades. The project will be undertaken in a collaborative manner with the South Korean Antarctic Agency, KOPRI, by participating in a cruise in March/May 2018. Combining new information in the area of Larsen C with existing observations after the Larsen A and B ice shelf breakups further to the north, the project is expected to generate a dataset that can elucidate fundamental processes of planktonic and benthic community development in transition from food-poor to food-rich ecosystems. The project will provide field experience to two graduate students, a post-doctoral associate and an undergraduate student. Material from the project will be incorporated into graduate courses and the project will communicate daily work and unfolding events through social media and blogs while they explore this area of the world that is largely underexplored.", "east": -55.020546, "geometry": ["POINT(-57.2113475 -63.396513)"], "keywords": "Antarctica; Biota; Chlorophyll; CTD; Glacier; Iceberg; Ice Shelf; Larsen C Ice Shelf; Oceans; Physical Oceanography; Phytoplankton; Sample Location; Sea Ice; Southern Ocean; Station List", "locations": "Antarctica; Larsen C Ice Shelf; Southern Ocean", "north": -62.131908, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Pan, B. Jack; Vernet, Maria", "project_titles": "RAPID: Collaborative Research: Marine Ecosystem Response to the Larsen C Ice-Shelf Breakout: \"Time zero\"", "projects": [{"proj_uid": "p0010029", "repository": "USAP-DC", "title": "RAPID: Collaborative Research: Marine Ecosystem Response to the Larsen C Ice-Shelf Breakout: \"Time zero\""}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.661118, "title": "CTD stations and logs for Araon 2018 ANA08D expedition to Larson C", "uid": "601178", "west": -59.402149}, {"awards": "1543412 Reinfelder, John", "bounds_geometry": ["POLYGON((-69.9043 -65.8708,-69.74203 -65.8708,-69.57976 -65.8708,-69.41749 -65.8708,-69.25522 -65.8708,-69.09295 -65.8708,-68.93068 -65.8708,-68.76841 -65.8708,-68.60614 -65.8708,-68.44387 -65.8708,-68.2816 -65.8708,-68.2816 -66.05698,-68.2816 -66.24316,-68.2816 -66.42934,-68.2816 -66.61552,-68.2816 -66.8017,-68.2816 -66.98788,-68.2816 -67.17406,-68.2816 -67.36024,-68.2816 -67.54642,-68.2816 -67.7326,-68.44387 -67.7326,-68.60614 -67.7326,-68.76841 -67.7326,-68.93068 -67.7326,-69.09295 -67.7326,-69.25522 -67.7326,-69.41749 -67.7326,-69.57976 -67.7326,-69.74203 -67.7326,-69.9043 -67.7326,-69.9043 -67.54642,-69.9043 -67.36024,-69.9043 -67.17406,-69.9043 -66.98788,-69.9043 -66.8017,-69.9043 -66.61552,-69.9043 -66.42934,-69.9043 -66.24316,-69.9043 -66.05698,-69.9043 -65.8708))"], "date_created": "Sun, 31 Mar 2019 00:00:00 GMT", "description": "This dataset includes 16S rRNA gene libraries produced from DNA extracted from pooled digestive tracts of Antarctic krill (Euphausia superba) collected in coastal waters west of the Antarctic Peninsula in 2014.", "east": -68.2816, "geometry": ["POINT(-69.09295 -66.8017)"], "keywords": "Antarctica; Biota; Krill; LTER Palmer Station; Microbiome; Oceans; Southern Ocean", "locations": "Antarctica; Southern Ocean", "north": -65.8708, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Reinfelder, John", "project_titles": "Methylmercury in Antarctic Krill Microbiomes", "projects": [{"proj_uid": "p0010023", "repository": "USAP-DC", "title": "Methylmercury in Antarctic Krill Microbiomes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LTER", "south": -67.7326, "title": "16S rRNA gene libraries of krill gut microbial communities", "uid": "601171", "west": -69.9043}, {"awards": "1656344 Bowman, Jeff", "bounds_geometry": ["POLYGON((-64.1 -64.75,-64.08 -64.75,-64.06 -64.75,-64.04 -64.75,-64.02 -64.75,-64 -64.75,-63.98 -64.75,-63.96 -64.75,-63.94 -64.75,-63.92 -64.75,-63.9 -64.75,-63.9 -64.775,-63.9 -64.8,-63.9 -64.825,-63.9 -64.85,-63.9 -64.875,-63.9 -64.9,-63.9 -64.925,-63.9 -64.95,-63.9 -64.975,-63.9 -65,-63.92 -65,-63.94 -65,-63.96 -65,-63.98 -65,-64 -65,-64.02 -65,-64.04 -65,-64.06 -65,-64.08 -65,-64.1 -65,-64.1 -64.975,-64.1 -64.95,-64.1 -64.925,-64.1 -64.9,-64.1 -64.875,-64.1 -64.85,-64.1 -64.825,-64.1 -64.8,-64.1 -64.775,-64.1 -64.75))"], "date_created": "Mon, 04 Feb 2019 00:00:00 GMT", "description": "This dataset contains bacterial production, primary production, chlorophyll biomass, and photosynthetic parameters for samples archived in NCBI SRA as SUB4579142.", "east": -63.9, "geometry": ["POINT(-64 -64.875)"], "keywords": "Antarctic; Antarctica; Bacteria; Bacteria Production; Biota; Chlorophyll; LTER Palmer Station; Primary Production; Sea Ice; Southern Ocean", "locations": "Antarctic; Antarctica; Southern Ocean", "north": -64.75, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Bowman, Jeff", "project_titles": "A Preliminary Assessment of the Influence of Ice Cover on Microbial Carbon and Energy Acquisition during the Antarctic Winter-spring Seasonal Transition", "projects": [{"proj_uid": "p0010003", "repository": "USAP-DC", "title": "A Preliminary Assessment of the Influence of Ice Cover on Microbial Carbon and Energy Acquisition during the Antarctic Winter-spring Seasonal Transition"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Metadata accompanying BioProject SUB4579142", "uid": "601153", "west": -64.1}, {"awards": "1246296 Yen, Jeannette", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 26 Jul 2018 00:00:00 GMT", "description": "A portable tomographic particle image velocimetry (tomographic PIV) system is described. The system was successfully deployed in Antarctica to study shelled Antarctic pteropods (Limacina helicina antarctica) \u2013 a delicate organism with an unusual propulsion mechanism. The experimental setup consists of a free-standing frame assembled with optical rails, thus avoiding the need for heavy and bulky equipment (e.g. an optical table). The cameras, lasers, optics, and tanks are all rigidly supported within the frame assembly. The results indicate that the pteropods flap their parapodia (or \u201cwings\u201d) downward during both power and recovery strokes, which is facilitated by the pitching of their shell. Shell pitching significantly alters the flapping trajectory, allowing the pteropod to move vertically and/or horizontally. The pronation and supination of the parapodia, together with the figure eight motion during flapping, suggest similarities with insect flight. The volumetric velocity field surrounding the freely-swimming pteropod reveals the generation of an attached vortex ring connecting the leading edge vortex to the trailing edge vortex during power stroke, and a presence of a leading-edge vortex during recovery stroke. These vortex structures play a major role in accelerating the organism vertically and indicate that forces generated on the parapodia during flapping constitute both lift and drag. After completing each stroke, two vortex rings are shed into the wake of the pteropod. The complex combination of body kinematics (parapodia flapping, shell pitch, saw-tooth trajectory), flow structures, and resulting force balance may be significantly altered by thinning of the pteropod shell, thus making pteropods an indicator of the detrimental effects of ocean acidification.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Biota; Glaciology", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Adhikari, Deepak; Webster, Donald R; Yen, Jeannette", "project_titles": "Collaborative Research: Pteropod Swimming Behavior as a Bio Assay for Ocean Acidification", "projects": [{"proj_uid": "p0000139", "repository": "USAP-DC", "title": "Collaborative Research: Pteropod Swimming Behavior as a Bio Assay for Ocean Acidification"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Tomographic PIV measurements of swimming shelled Antarctic pteropod", "uid": "601108", "west": -180.0}, {"awards": "1141978 Foreman, Christine", "bounds_geometry": ["POLYGON((161.1667 -77.117,161.21673 -77.117,161.26676 -77.117,161.31679 -77.117,161.36682 -77.117,161.41685 -77.117,161.46688 -77.117,161.51691 -77.117,161.56694 -77.117,161.61697 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.61697 -77.117,161.56694 -77.117,161.51691 -77.117,161.46688 -77.117,161.41685 -77.117,161.36682 -77.117,161.31679 -77.117,161.26676 -77.117,161.21673 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117))"], "date_created": "Fri, 23 Mar 2018 00:00:00 GMT", "description": "Mass spectra of external metabolites were obtained with a 1290 Ultra Performance Liquid Chromatography system coupled to a 6538 Ultra High Definition Accurate-Mass Quadrupole-Time of Flight mass spectrometer operated in positive mode with an electrospray ionization source (Agilent Technologies). 30 mL of filtered media was concentrated per sample by solid phase extraction. External metabolites were re-suspended in 50% (v/v) acetonitrile, and were separated using a reverse-phase Kinetix 1.7 um C18, 100A, 150 mm - 2.1 mm column. Data presented are from UPLC-Q-TOF measurements of mass to charge ratio, retention time, and replicate-averaged extracted ion chromatogram abundance values (counts) of molecular species that demonstrated a significant change in abundance (Two-way ANOVA, adjusted P\u003c0.01) during incubations based on time point (T0: d0, T1: d27, T2: d63, T3: d98) and carbon source (Cotton Glacier: CG, Pony Lake: PL, Suwannee River: SR).", "east": 161.667, "geometry": ["POINT(161.41685 -77.117)"], "keywords": "Antarctica; Biota; Exometabolites; Mass Spectrometry; Microbes; Microbiology", "locations": "Antarctica", "north": -77.117, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Foreman, Christine; Tigges, Michelle; Bothner, Brian", "project_titles": "Multidimensional \"omics\" characterization of microbial metabolism and dissolved organic matter in Antarctica", "projects": [{"proj_uid": "p0000408", "repository": "USAP-DC", "title": "Multidimensional \"omics\" characterization of microbial metabolism and dissolved organic matter in Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.117, "title": "UPLC-Q-TOF data of Cotton Glacier exometabolites", "uid": "601089", "west": 161.1667}, {"awards": "1430550 Domack, Eugene", "bounds_geometry": ["POLYGON((120 -66,120.1 -66,120.2 -66,120.3 -66,120.4 -66,120.5 -66,120.6 -66,120.7 -66,120.8 -66,120.9 -66,121 -66,121 -66.4,121 -66.8,121 -67.2,121 -67.6,121 -68,121 -68.4,121 -68.8,121 -69.2,121 -69.6,121 -70,120.9 -70,120.8 -70,120.7 -70,120.6 -70,120.5 -70,120.4 -70,120.3 -70,120.2 -70,120.1 -70,120 -70,120 -69.6,120 -69.2,120 -68.8,120 -68.4,120 -68,120 -67.6,120 -67.2,120 -66.8,120 -66.4,120 -66))"], "date_created": "Fri, 18 Aug 2017 00:00:00 GMT", "description": "Bulk sediment carbon and nitrogen data data for Paleocene sediments collected on Totten continental shelf, East Antarctica. ", "east": 121.0, "geometry": ["POINT(120.5 -68)"], "keywords": "Antarctica; Carbon; Chemistry:sediment; Chemistry:Sediment; Geochemistry; Marine Sediments; NBP1402; Nitrogen; Oceans; Sabrina Coast; Sediment Core; Southern Ocean; Totten Glacier", "locations": "Totten Glacier; Southern Ocean; Antarctica; Sabrina Coast", "north": -66.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Smith, Catherine; Shevenell, Amelia; Domack, Eugene Walter", "project_titles": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics", "projects": [{"proj_uid": "p0000008", "repository": "USAP-DC", "title": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "NBP14-02 JPC-55 Bulk Sediment Carbon and Nitrogen data", "uid": "601044", "west": 120.0}, {"awards": "1430550 Domack, Eugene", "bounds_geometry": ["POLYGON((120 -66,120.1 -66,120.2 -66,120.3 -66,120.4 -66,120.5 -66,120.6 -66,120.7 -66,120.8 -66,120.9 -66,121 -66,121 -66.4,121 -66.8,121 -67.2,121 -67.6,121 -68,121 -68.4,121 -68.8,121 -69.2,121 -69.6,121 -70,120.9 -70,120.8 -70,120.7 -70,120.6 -70,120.5 -70,120.4 -70,120.3 -70,120.2 -70,120.1 -70,120 -70,120 -69.6,120 -69.2,120 -68.8,120 -68.4,120 -68,120 -67.6,120 -67.2,120 -66.8,120 -66.4,120 -66))"], "date_created": "Fri, 18 Aug 2017 00:00:00 GMT", "description": "Pollen assemblage data for Paleocene to early to middle Eocene sediments collected on Totten continental shelf, East Antarctica. ", "east": 121.0, "geometry": ["POINT(120.5 -68)"], "keywords": "Antarctica; Biota; Marine Sediments; NBP1402; Oceans; Paleoclimate; Pollen; Sabrina Coast; Sediment Core; Southern Ocean; Totten Glacier", "locations": "Sabrina Coast; Southern Ocean; Antarctica; Totten Glacier", "north": -66.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Shevenell, Amelia; Smith, Catherine; Domack, Eugene Walter", "project_titles": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics", "projects": [{"proj_uid": "p0000008", "repository": "USAP-DC", "title": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "NBP14-02 JPC-54 and JPC-55 Pollen Assemblage data", "uid": "601046", "west": 120.0}, {"awards": "0636740 Kreutz, Karl", "bounds_geometry": ["POINT(-112.1115 -79.481)"], "date_created": "Thu, 27 Apr 2017 00:00:00 GMT", "description": "This dataset includes discrete ICP-MS chemistry data generated at the University of Maine for the top 577 m of the WAIS Divide deep ice core (WDC06A). There are two parallel datasets, produced from a single set of samples that were melted continuously, collected by fraction collector and split manually (by pouring). The first set was acidified to 10% v/v nitric acid and allowed to leach for one month prior to analysis. These are referred to as \"total\" samples (see below). The second set were filtered using individual hand-held 0.45 um filters and syringes, then acidified to 10% v/v nitric acid and analyzed. These are referred to as \"dissolved\" samples. Reported depths are based on values assigned during melting; please note that these are subject to change. Please contact Karl and Bess if you plan to use the data or have any questions.", "east": -112.1115, "geometry": ["POINT(-112.1115 -79.481)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; ICP-MS; Isotope; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.481, "nsf_funding_programs": null, "persons": "Kreutz, Karl", "project_titles": "Collaborative Research: Microparticle/tephra analysis of the WAIS Divide ice core", "projects": [{"proj_uid": "p0000040", "repository": "USAP-DC", "title": "Collaborative Research: Microparticle/tephra analysis of the WAIS Divide ice core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "WAIS Divide WDC06A Discrete ICP-MS Chemistry", "uid": "601023", "west": -112.1115}, {"awards": "0632399 Jefferies, Stuart", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "The ultimate goal of this project is to determine the structure and dynamics of the Sun\u0027s atmosphere, assess the role of MHD waves in heating the chromosphere/corona and driving the solar wind, and better understand how the Sun\u0027s atmosphere couples to the solar interior. As the solar atmosphere is \u0027home\u0027 to many of the solar phenomena that can have a direct impact on the biosphere, including flares, coronal mass ejections, and the solar wind, the broader impact of such studies is that they will lead to an improved understanding of the Sun-Earth connection. \nUnder the current award we have developed a suite of instruments that can simultaneously image the line-of-sight Doppler velocity and longitudinal magnetic field at four heights in the solar atmosphere at high temporal cadence. The instruments use magneto-optical filters (see Cacciani, Moretti and Rodgers, Solar Physics 174, p.115, 2004) tuned to the solar absorption lines at 422 nm (Ca I), 589 nm (Na D2), 770 nm (K) and 1083 nm (He). These lines sample the solar atmosphere from the mid-photosphere to the high-chromosphere. \nA proof-of-concept run was made in the Austral summer of 2007/2008 using the Na and K versions of the instruments. Here we recorded over 40 hours of full-disk, intensity images of the Sun in the red and blue wings of the Na and K Fraunhofer lines, in both right- and left-circularly polarized light. The images were obtained at a rate of one every five seconds with a nominal spatial resolution of 4 arc-seconds. The run started at 09:44 UT on February 2, 2008 and ended at 03:30 UT on February 4, 2008.\nData Quality Assessment:\nThe temperature controls of the instrument housings were unable to fully compensate for the harse Antartic winds encountered during the observing run. This led to large (~15 C) temperature swings which adversely affected the instruments (and thus data quality) in two ways: 1) Crystals of Na and K were deposited on the magneto-optical filter windows leading to \"hot spots\" in the images. These \"hot spots\" come and go with time as the temperature changes. 2) The changing temperature caused the optical rails to contract and expand causing the final images to go in- and out-of-focus, thus reducing the resolution to greater than 4 arc-seconds. Both these effect are worse in the K data.\nDespite these problems, the intensity images can be combined to provide magnetic images that show a very high sensitivity (\u003c 5 Gauss in a 5 second integration).\nData Description:\nThe raw data are stored as a series of 1024x1024x4 FITS images. The format is: blue image (left circulary polarized light), blue image (right circularly polarized light), red image (left circulary polarized light), red image (right circularly polarized light).\nThe naming convention for the images is: Type_Instrument_Day_hour_minutes_seconds\nwhere Type is I (intensity), F (flatfield), D (dark)\n Instrument is 0 (Na), 1 (K)\n Day is the day number from the beginning of the year where January 1 is day 0\nFor example, I_0_32_12_34_40.fits is an intensity image taken with the Na instrument at 12:34.40 UT on February 2, 2008.\nNotes: \n1) The flatfield images were acquired by moving a diffuser in front of the Sun during the integration. The resulting images therefore have to be corrected for residual low-spatial frequencies due to the non-flat nature of the light source.\n2) Each FITS file header contains a variety of information on the observation, e.g.,\nF_CNTO\t: number of summed frames in each 5 second integration (*)\nFPS\t\t: Camera frame rate (Frames Per Second)\nFLIP\t: Rate at which the half-wave rotator (magnetic switch) was switched\nINT_PER\t: Integration time (in seconds)\nMOF\t\t: Temperature of magneto-optical filter cell\nWS\t\t: Temperature of wing selector cell\nTEMP_0\t: Temperature of camera 0\nTEMP_1\t: Temperature of camera 1\nTEMP_2\t: Temperature inside instrument (location 1)\nTEMP_3\t: Temperature of narrowband filter\nTEMP_5\t: Temperature of magnets surrounding MOF cell\nTEMP_6\t: Temperature inside instrument (location 2)\nTEMP_7\t: Temperature of housing for magnetic switch\n(*) This is the frame count for the camera. The number of frames in each image for the two different polarization states, is half this number.\nThe measured temperatures are only coarse measurements.\n3) Due to reflection in the final polarizing beam splitter (which separates the \"red\" and \"blue\" signals into the two cameras), the camera 1 data need to \"reversed\" along the x-axis (i.e. listed as [1024:1] instead of [1:1024])\n4) Line-of-sight velocity and magnetic field images are generated from the observed intensity images. Doppler images as (red-blue)/(red+blue), magnetic images as the difference between the Doppler images\nfor right- and left-circularly polarized light.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cosmos; Satellite Remote Sensing; Sun", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Jefferies, Stuart M.", "project_titles": "Tomographic Imaging of the Velocity and Magnetic Fields in the Sun\u0027s Atmosphere", "projects": [{"proj_uid": "p0000526", "repository": "USAP-DC", "title": "Tomographic Imaging of the Velocity and Magnetic Fields in the Sun\u0027s Atmosphere"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Tomographic Imaging of the Velocity and Magnetic Fields in the Sun\u0027s Atmosphere", "uid": "600152", "west": -180.0}, {"awards": "1250208 Friedlaender, Ari", "bounds_geometry": ["POLYGON((-80 -63,-78 -63,-76 -63,-74 -63,-72 -63,-70 -63,-68 -63,-66 -63,-64 -63,-62 -63,-60 -63,-60 -63.7,-60 -64.4,-60 -65.1,-60 -65.8,-60 -66.5,-60 -67.2,-60 -67.9,-60 -68.6,-60 -69.3,-60 -70,-62 -70,-64 -70,-66 -70,-68 -70,-70 -70,-72 -70,-74 -70,-76 -70,-78 -70,-80 -70,-80 -69.3,-80 -68.6,-80 -67.9,-80 -67.2,-80 -66.5,-80 -65.8,-80 -65.1,-80 -64.4,-80 -63.7,-80 -63))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "Whales play a central role in the ecology and biogeochemistry of the Southern Ocean. However, little is known regarding their distribution and behavior, in part because of challenges associated with studying these organisms from large research vessels. This research will take advantage of the unique opportunity presented by the 2012-2013 test run of the smaller, more mobile R/V Point Sur. This work will use the Point Sur to investigate humpback whales in the waters studied by the Palmer Long Term Ecological Research (LTER) Station off the Western Antarctic Peninsula (WAP). Employing a combination of long-term satellite-linked tags and short-term suction cup tags, researchers will investigate the distribution, abundance and foraging behaviors of whales in this region. Whale biogeography will then be related to quantitative surveys of krill, their primary food source. Hypotheses regarding whale distribution and foraging strategies as well as physical oceanographic features will be tested. The WAP is undergoing some of the most dramatic warming on the planet, and a better understanding of the ecology of top predators is central to developing an understanding of the impacts of this change. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. Finally, this work will be coordinated with the extensive infrastructure of the Palmer LTER site, enabling outreach and educational activities.\n", "east": -60.0, "geometry": ["POINT(-70 -66.5)"], "keywords": "Antarctica; Antarctic Peninsula; Biota; Oceans; Sample/collection Description; Sample/Collection Description; Southern Ocean; Whales", "locations": "Antarctica; Southern Ocean; Antarctic Peninsula", "north": -63.0, "nsf_funding_programs": null, "persons": "Friedlaender, Ari; Johnston, David; Nowacek, Douglas", "project_titles": "RAPID: Linking the Movement Patterns and Foraging Behavior of Humpback Whales to their Prey across Multiple Spatial Scales within the LTER Study Region", "projects": [{"proj_uid": "p0000666", "repository": "USAP-DC", "title": "RAPID: Linking the Movement Patterns and Foraging Behavior of Humpback Whales to their Prey across Multiple Spatial Scales within the LTER Study Region"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "Linking the Movement Patterns and Foraging Behavior of Humpback Whales to their Prey across Multiple Spatial Scales within the LTER Study Region", "uid": "600151", "west": -80.0}, {"awards": "1043145 Obbard, Rachel", "bounds_geometry": ["POLYGON((164.1005 -77.1188,164.36443 -77.1188,164.62836 -77.1188,164.89229 -77.1188,165.15622 -77.1188,165.42015 -77.1188,165.68408 -77.1188,165.94801 -77.1188,166.21194 -77.1188,166.47587 -77.1188,166.7398 -77.1188,166.7398 -77.19337,166.7398 -77.26794,166.7398 -77.34251,166.7398 -77.41708,166.7398 -77.49165,166.7398 -77.56622,166.7398 -77.64079,166.7398 -77.71536,166.7398 -77.78993,166.7398 -77.8645,166.47587 -77.8645,166.21194 -77.8645,165.94801 -77.8645,165.68408 -77.8645,165.42015 -77.8645,165.15622 -77.8645,164.89229 -77.8645,164.62836 -77.8645,164.36443 -77.8645,164.1005 -77.8645,164.1005 -77.78993,164.1005 -77.71536,164.1005 -77.64079,164.1005 -77.56622,164.1005 -77.49165,164.1005 -77.41708,164.1005 -77.34251,164.1005 -77.26794,164.1005 -77.19337,164.1005 -77.1188))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "A range of chemical and microphysical pathways in polar latitudes, including spring time (tropospheric) ozone depletion, oxidative pathways for mercury, and cloud condensation nuclei (CCN) production leading to changes in the cloud cover and attendant surface energy budgets, have been invoked as being dependent upon the emission of halogen gases formed in sea-ice.\nThe prospects for climate warming induced reductions in sea ice extent causing alteration of these incompletely known surface-atmospheric feedbacks and interactions requires confirmation of mechanistic details in both laboratory studies and field campaigns. One such mechanistic question is how bromine (BrO and Br) enriched snow migrates or is formed through processes in sea-ice, prior to its subsequent mobilization as an aerosol fraction into the atmosphere by strong winds. Once aloft, it may react with ozone and other atmospheric species. Dartmouth researchers will collect snow from the surface of sea ice, from freely blowing snow and in sea-ice cores from Cape Byrd, Ross Sea. A range of spectroscopic, microanalytic and and microstructural approaches will be subsequently used to determine the Br distribution gradients through sea-ice, in order to shed light on how sea-ice first forms and then releases bromine species into the polar atmospheric boundary layer.", "east": 166.7398, "geometry": ["POINT(165.42015 -77.49165)"], "keywords": "Atmosphere; Chemistry:ice; Chemistry:Ice; Critical Zone; Crystals; Glaciology; Oceans; Photo/video; Photo/Video; Ross Sea; Sea Ice; Sea Surface; Snow; Southern Ocean", "locations": "Ross Sea; Southern Ocean; Sea Surface", "north": -77.1188, "nsf_funding_programs": null, "persons": "Obbard, Rachel", "project_titles": "Bromide in Snow in the Sea Ice Zone", "projects": [{"proj_uid": "p0000414", "repository": "USAP-DC", "title": "Bromide in Snow in the Sea Ice Zone"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.8645, "title": "Bromide in Snow in the Sea Ice Zone", "uid": "600158", "west": 164.1005}, {"awards": "0636740 Kreutz, Karl", "bounds_geometry": ["POINT(-112.5 -79.28)"], "date_created": "Mon, 29 Jun 2015 00:00:00 GMT", "description": "This data set includes raw dust microparticle data for the WAIS Divide deep core, WDC06A, from the surface to 577 m. Data were collected in 2010 using a Klotz Abakus laser particle counter connected to a continuous ice core melter system at the University of Maine (Breton et al., 2012).", "east": -112.5, "geometry": ["POINT(-112.5 -79.28)"], "keywords": "Antarctica; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Particle Size; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Koffman, Bess; Kreutz, Karl", "project_titles": "Collaborative Research: Microparticle/tephra analysis of the WAIS Divide ice core", "projects": [{"proj_uid": "p0000040", "repository": "USAP-DC", "title": "Collaborative Research: Microparticle/tephra analysis of the WAIS Divide ice core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.28, "title": "WAIS Divide Microparticle Concentration and Size Distribution, 0-2400 ka", "uid": "609616", "west": -112.5}, {"awards": "0838996 Hollibaugh, James", "bounds_geometry": ["POLYGON((-79 -63,-77.5 -63,-76 -63,-74.5 -63,-73 -63,-71.5 -63,-70 -63,-68.5 -63,-67 -63,-65.5 -63,-64 -63,-64 -63.8,-64 -64.6,-64 -65.4,-64 -66.2,-64 -67,-64 -67.8,-64 -68.6,-64 -69.4,-64 -70.2,-64 -71,-65.5 -71,-67 -71,-68.5 -71,-70 -71,-71.5 -71,-73 -71,-74.5 -71,-76 -71,-77.5 -71,-79 -71,-79 -70.2,-79 -69.4,-79 -68.6,-79 -67.8,-79 -67,-79 -66.2,-79 -65.4,-79 -64.6,-79 -63.8,-79 -63))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Ammonia oxidation is the first step in the conversion of regenerated nitrogen to dinitrogen gas, a 3-step pathway mediated by 3 distinct guilds of bacteria and archaea. Ammonia oxidation and the overall process of nitrification-denitrification have received relatively little attention in polar oceans where the effects of climate change on biogeochemical rates are likely to be pronounced. Previous work on Ammonia Oxidizing Archaea (AOA) in the Palmer LTER study area West of the Antarctic Peninsula (WAP), has suggested strong vertical segregation of crenarchaeote metabolism, with the \u0027winter water\u0027 (WW, ~50-100 m depth range) dominated by non-AOA crenarchaeotes, while Crenarchaeota populations in the \u0027circumpolar deep water\u0027 (CDW), which lies immediately below the winter water (150-3500 m), are dominated by AOA. Analysis of a limited number of samples from the Arctic Ocean did not reveal a comparable vertical segregation of AOA, and suggested that AOA and Crenarchaeota abundance is much lower there than in the Antarctic. These findings led to 3 hypotheses that will be tested in this project: 1) the apparent low abundance of Crenarchaeota and AOA in Arctic Ocean samples may be due to spatial or temporal variability in populations; 2) the WW population of Crenarchaeota in the WAP is dominated by a heterotroph; 3) the WW population of Crenarchaeota in the WAP \u0027grows in\u0027 during spring and summer after this water mass forms.\n\nThe study will contribute substantially to understanding an important aspect of the nitrogen cycle in the Palmer LTER (Long Term Ecological Research) study area by providing insights into the ecology and physiology of AOA. The natural segregation of crenarchaeote phenotypes in waters of the WAP, coupled with metagenomic studies in progress in the same area by others (A. Murray, H. Ducklow), offers the possibility of major breakthroughs in understanding of the metabolic capabilities of these organisms. This knowledge is needed to model how water column nitrification will respond to changes in polar ecosystems accompanying global climate change. The Principal Investigator will participate fully in the education and outreach efforts of the Palmer LTER, including making highlights of our findings available for posting to their project web site and participating in outreach (for example, Schoolyard LTER). The research also will involve undergraduates (including the field work if possible) and will support high school interns in the P.I.\u0027s laboratory over the summer.\n", "east": -64.0, "geometry": ["POINT(-71.5 -67)"], "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; LMG1006; LMG1101; LTER Palmer Station; Oceans; Southern Ocean", "locations": "Southern Ocean", "north": -63.0, "nsf_funding_programs": null, "persons": "Hollibaugh, James T.", "project_titles": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula", "projects": [{"proj_uid": "p0000359", "repository": "USAP-DC", "title": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -71.0, "title": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula", "uid": "600105", "west": -79.0}, {"awards": "1019305 Grim, Jeffrey", "bounds_geometry": null, "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Survival of Antarctic notothenioid fishes in the context of global climate change will depend upon the impact of rising oceanic temperatures on their embryonic development, yet little is known regarding the molecular mechanisms underlying this complex suite of processes. Many notothenioids are characterized by secondary pelagicism, which enables them to exploit food sources in the water column and is supported in part by skeletal pedomorphism. Here the PI proposes to examine the hypothesis that reactive oxygen species (ROS) regulate notothenioid skeletal pedomorphism. The research objectives are : 1) To quantify and localize ROS production and identify the point(s) of origin of ROS production in embryonic Antarctic fishes that differ in skeletal phenotypes 2) To determine whether the time course of embryogenesis and the extent of osteological development in embryonic Antarctic fishes can be altered by changing the oxidative status of the animal during embryogenesis 3) To evaluate whether transgenic alteration of oxidative status can induce skeletal pedomorphism in a fish model. Broader Impacts will include teaching undergraduate lectures, recruiting undergraduate students to help with lab analyses (and possibly field work), lectures and demonstrations to high school students, and allowing secondary educators access to personal photos and videos of research animals for curriculum development.", "east": null, "geometry": null, "keywords": "Biota; Fish Logs; LMG1203; LMG1204; LMG1205; Oceans; Pot; Southern Ocean; Trawl", "locations": "Southern Ocean", "north": null, "nsf_funding_programs": null, "persons": "Grim, Jeffrey", "project_titles": "PostDoctoral Research Fellowship", "projects": [{"proj_uid": "p0000482", "repository": "USAP-DC", "title": "PostDoctoral Research Fellowship"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Impact of Rising Oceanic Temperatures on the Embryonic Development of Antarctic Notothenioid Fishes", "uid": "600119", "west": null}, {"awards": "0838955 Gast, Rebecca", "bounds_geometry": ["POLYGON((71.504166 -76.159164,71.5142214 -76.159164,71.5242768 -76.159164,71.5343322 -76.159164,71.5443876 -76.159164,71.554443 -76.159164,71.5644984 -76.159164,71.5745538 -76.159164,71.5846092 -76.159164,71.5946646 -76.159164,71.60472 -76.159164,71.60472 -76.2018032,71.60472 -76.2444424,71.60472 -76.2870816,71.60472 -76.3297208,71.60472 -76.37236,71.60472 -76.4149992,71.60472 -76.4576384,71.60472 -76.5002776,71.60472 -76.5429168,71.60472 -76.585556,71.5946646 -76.585556,71.5846092 -76.585556,71.5745538 -76.585556,71.5644984 -76.585556,71.554443 -76.585556,71.5443876 -76.585556,71.5343322 -76.585556,71.5242768 -76.585556,71.5142214 -76.585556,71.504166 -76.585556,71.504166 -76.5429168,71.504166 -76.5002776,71.504166 -76.4576384,71.504166 -76.4149992,71.504166 -76.37236,71.504166 -76.3297208,71.504166 -76.2870816,71.504166 -76.2444424,71.504166 -76.2018032,71.504166 -76.159164))"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\n\nMost organisms meet their carbon and energy needs using photosynthesis (phototrophy) or ingestion/assimilation of organic substances (heterotrophy). However, a nutritional strategy that combines phototrophy and heterotrophy - mixotrophy - is geographically and taxonomically widespread in aquatic systems. While the presence of mixotrophs in the Southern Ocean is known only recently, preliminary evidence indicates a significant role in Southern Ocean food webs. Recent work on Southern Ocean dinoflagellate, Kleptodinium, suggests that it sequesters functional chloroplasts of the bloom-forming haptophyte, Phaeocystis antarctica. This dinoflagellate is abundant in the Ross Sea, has been reported elsewhere in the Southern Ocean, and may have a circumpolar distribution. By combining nutritional modes. mixotrophy may offer competitive advantages over pure autotrophs and heterotrophs.\n\nThe goals of this project are to understand the importance of alternative nutritional strategies for Antarctic species that combine phototrophic and phagotrophic processes in the same organism. The research will combine field investigations of plankton and ice communities in the Southern Ocean with laboratory experiments on Kleptodinium and recently identified mixotrophs from our Antarctic culture collections. The research will address: 1) the relative contributions of phototrophy and phagotrophy in Antarctic mixotrophs; 2) the nature of the relationship between Kleptodinium and its kleptoplastids; 3) the distributions and abundances of mixotrophs and Kleptodinium in the Southern Ocean during austral spring/summer; and 4) the impacts of mixotrophs and Kleptodinium on prey populations, the factors influencing these behaviors and the physiological conditions of these groups in their natural environment. \n\nThe project will contribute to the maintenance of a culture collection of heterotrophic, phototrophic and mixotrophic Antarctic protists that are available to the scientific community, and it will train graduate and undergraduate students at Temple University. Research findings and activities will be summarized for non-scientific audiences through the PIs\u0027 websites and through other public forums, and will involve middle school teachers via collaboration with COSEE-New England.\n", "east": 71.60472, "geometry": ["POINT(71.554443 -76.37236)"], "keywords": "Biota; Microbiology; NBP0305; NBP0405; NBP0508; NBP1101; Oceans; Southern Ocean", "locations": "Southern Ocean", "north": -76.159164, "nsf_funding_programs": null, "persons": "Gast, Rebecca", "project_titles": "Collaborative Research: Alternative Nutritional Strategies in Antarctic Protists", "projects": [{"proj_uid": "p0000490", "repository": "USAP-DC", "title": "Collaborative Research: Alternative Nutritional Strategies in Antarctic Protists"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.585556, "title": "Alternative Nutritional Strategies in Antarctic Protists", "uid": "600103", "west": 71.504166}, {"awards": "0838850 Gooseff, Michael", "bounds_geometry": ["POLYGON((-163.3 -77.62,-163.202 -77.62,-163.104 -77.62,-163.006 -77.62,-162.908 -77.62,-162.81 -77.62,-162.712 -77.62,-162.614 -77.62,-162.516 -77.62,-162.418 -77.62,-162.32 -77.62,-162.32 -77.631,-162.32 -77.642,-162.32 -77.653,-162.32 -77.664,-162.32 -77.675,-162.32 -77.686,-162.32 -77.697,-162.32 -77.708,-162.32 -77.719,-162.32 -77.73,-162.418 -77.73,-162.516 -77.73,-162.614 -77.73,-162.712 -77.73,-162.81 -77.73,-162.908 -77.73,-163.006 -77.73,-163.104 -77.73,-163.202 -77.73,-163.3 -77.73,-163.3 -77.719,-163.3 -77.708,-163.3 -77.697,-163.3 -77.686,-163.3 -77.675,-163.3 -77.664,-163.3 -77.653,-163.3 -77.642,-163.3 -77.631,-163.3 -77.62))"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "Two models have been proposed to describe controls over microbial biogeography. One model proposes that microbes are ubiquitously distributed across the global environment, and that environmental conditions select for taxa physiologically adapted to local physical conditions. An alternative model predicts that dispersal is the important limitation to the distribution of microorganisms and that spatial heterogeneity of microbial communities is a result of both dispersal and local environmental limitations. According to both models, spatial heterogeneity of microbial communities may be especially pronounced in extreme ecosystems where the environmental selection for organisms with suitable physiology is most strongly manifest. We propose that Antarctic terrestrial environments are ideal places to examine microbial biogeography for 3 reasons: 1) the pristine nature and remoteness of Antarctica minimizes the prevalence of exotic species dispersed through human vectors; 2) the extreme conditions of Antarctic environments provide a strong environmental filter which limits the establishment of non-indigenous taxa; and 3) extreme heterogeneity in the terrestrial environment provides natural gradients of soil conditions (temperature, water and nutrient availability). In the proposed research we will investigate the influence of snow on the composition and spatial distribution of soil microbial communities and linked biogeochemical cycling in the McMurdo Dry Valleys. We will conduct fieldwork at the landscape scale (repeated remote sensing to characterize snow distribution), at the valley and patch scales (quantify snow patch ablation, microbial communities and biogeochemical cycling in subnivian soils). We hypothesize that snow patches play an important role in structuring the spatial distribution of soil microbial communities and their associated ecosystem functioning because of the physical and hydrological influences that snow patches have on the soil environment. The research will contribute to greater public awareness of the importance of polar research to fundamental questions of biology, ecology and hydrology through direct linkages with International Antarctic Institute public outreach activities, including dissemination of web-based learning units on environmental science and microbiology, targeted as resources for secondary and post-secondary educators. Three graduate students, one postdoctoral scholar and multiple undergraduates will participate in the research activities.\n", "east": -162.32, "geometry": ["POINT(-162.81 -77.675)"], "keywords": "Antarctica; Critical Zone; Mps-1 Water Potential Sensor; Physical Properties; Soil Moisture; Soil Temperature", "locations": "Antarctica", "north": -77.62, "nsf_funding_programs": null, "persons": "Gooseff, Michael N.", "project_titles": "Collaborative Research: The Role of Snow Patches on the Spatial Distribution of Soil Microbial Communities and Biogeochemical Cycling in the Antarctic Dry Valleys", "projects": [{"proj_uid": "p0000489", "repository": "USAP-DC", "title": "Collaborative Research: The Role of Snow Patches on the Spatial Distribution of Soil Microbial Communities and Biogeochemical Cycling in the Antarctic Dry Valleys"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.73, "title": "The Role of Snow Patches on the Spatial Distribution of Soil Microbial Communities and Biogeochemical Cycling in the Antarctic Dry Valleys", "uid": "600100", "west": -163.3}, {"awards": "0838830 Cottrell, Matthew", "bounds_geometry": ["POLYGON((-64.079666 -64.77966,-64.0757659 -64.77966,-64.0718658 -64.77966,-64.0679657 -64.77966,-64.0640656 -64.77966,-64.0601655 -64.77966,-64.0562654 -64.77966,-64.0523653 -64.77966,-64.0484652 -64.77966,-64.0445651 -64.77966,-64.040665 -64.77966,-64.040665 -64.783261,-64.040665 -64.786862,-64.040665 -64.790463,-64.040665 -64.794064,-64.040665 -64.797665,-64.040665 -64.801266,-64.040665 -64.804867,-64.040665 -64.808468,-64.040665 -64.812069,-64.040665 -64.81567,-64.0445651 -64.81567,-64.0484652 -64.81567,-64.0523653 -64.81567,-64.0562654 -64.81567,-64.0601655 -64.81567,-64.0640656 -64.81567,-64.0679657 -64.81567,-64.0718658 -64.81567,-64.0757659 -64.81567,-64.079666 -64.81567,-64.079666 -64.812069,-64.079666 -64.808468,-64.079666 -64.804867,-64.079666 -64.801266,-64.079666 -64.797665,-64.079666 -64.794064,-64.079666 -64.790463,-64.079666 -64.786862,-64.079666 -64.783261,-64.079666 -64.77966))"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "Light quality and availability are likely to change in polar ecosystems as ice coverage and thickness decrease. How microbes adjust to these and other changes will have huge impacts on the polar marine ecosystems. Little is known about photoheterotrophic prokaryotes, which are hypothesized to gain a metabolic advantage by harvesting light energy in addition to utilizing dissolved organic matter (DOM). Photoheterotrophy is not included in current models of carbon cycling and energy flow. This research will examine three questions: 1. Are photoheterotrophic microbes present and active in Antarctic waters in winter and summer? 2. Does community structure of photoheterotrophs shift between summer and winter? 3. Which microbial groups assimilate more DOM in light than in the dark? The research will test hypotheses about activity of photoheterotrophs in winter and in summer, shifts in community structure between light and dark seasons and the potentially unique impacts of photoheterotrophs on biogeochemical processes in the Antarctic. The project will directly support a graduate student, will positively impact the NSF REU program at the College of Marine and Earth Studies, and will include students from the nation\u0027s oldest historical minority college. The results will be featured during weekly tours of Lewes facilities (about 1000 visitors per year) and during Coast Day, an annual open-house that attracts about 10,000 visitors.", "east": -64.040665, "geometry": ["POINT(-64.0601655 -64.797665)"], "keywords": "Antarctic Peninsula; Biota; LTER Palmer Station; Microbiology; Oceans; Southern Ocean", "locations": "Southern Ocean; Antarctic Peninsula", "north": -64.77966, "nsf_funding_programs": null, "persons": "Cottrell, Matthew; Kirchman, David", "project_titles": "Photoheterotrophic Microbes in the West Antarctic Peninsula Marine Ecosystem", "projects": [{"proj_uid": "p0000473", "repository": "USAP-DC", "title": "Photoheterotrophic Microbes in the West Antarctic Peninsula Marine Ecosystem"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.81567, "title": "Photoheterotrophic Microbes in the West Antarctic Peninsula Marine Ecosystem", "uid": "600097", "west": -64.079666}, {"awards": "0739698 Doran, Peter; 0739681 Murray, Alison", "bounds_geometry": ["POINT(161.931 -77.3885)"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "Lake Vida is the largest lake of the McMurdo Dry Valleys, with an approximately 20 m ice cover overlaying a brine of unknown depth with at least 7 times seawater salinity and temperatures below -10 degrees C year-round. Samples of brine collected from ice above the main water body contain 1) the highest nitrous oxide levels of any natural water body on Earth, 2) unusual geochemistry including anomalously high ammonia and iron concentrations, 3) high microbial counts with an unusual proportion (99%) of ultramicrobacteria. The microbial community is unique even compared to other Dry Valley Lakes. The research proposes to enter, for the first time the main brine body below the thick ice of Lake Vida and perform in situ measurements, collect samples of the brine column, and collect sediment cores from the lake bottom for detailed geochemical and microbiological analyses. The results will allow the characterization of present and past life in the lake, assessment of modern and past sedimentary processes, and determination of the lake\u0027s history. The research will be conducted by a multidisciplinary team that will uncover the biogeochemical processes associated with a non-photosynthetic microbial community isolated for a significant period of time. This research will address diversity, adaptive mechanisms and evolutionary processes in the context of the physical evolution of the environment of Lake Vida. Results will be widely disseminated through publications, presentations at national and international meetings, through the Subglacial Antarctic Lake Exploration (SALE) web site and the McMurdo LTER web site. The research will support three graduate students and three undergraduate research assistants. The results will be incorporated into a new undergraduate biogeosciences course at the University of Illinois at Chicago which has an extremely diverse student body, dominated by minorities.", "east": 161.931, "geometry": ["POINT(161.931 -77.3885)"], "keywords": "Antarctica; Biota; Carbon-14; Chemistry:fluid; Chemistry:Fluid; Chemistry:ice; Chemistry:Ice; Dry Valleys; Geochronology; Ice Core Records; Lake Vida; Microbiology", "locations": "Dry Valleys; Lake Vida; Antarctica", "north": -77.3885, "nsf_funding_programs": null, "persons": "Murray, Alison", "project_titles": "Collaborative Research: Geochemistry and Microbiology of the Extreme Aquatic Environment in Lake Vida, East Antarctica", "projects": [{"proj_uid": "p0000485", "repository": "USAP-DC", "title": "Collaborative Research: Geochemistry and Microbiology of the Extreme Aquatic Environment in Lake Vida, East Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.3885, "title": "Geochemistry and Microbiology of the Extreme Aquatic Environment in Lake Vida, East Antarctica", "uid": "600080", "west": 161.931}, {"awards": "1019838 Wendt, Dean", "bounds_geometry": null, "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "The Antarctic Peninsula is among the most rapidly warming regions on earth. Increased heat from the Antarctic Circumpolar Current has elevated the temperature of the 300 m of shelf water below the permanent pycnocline by 0.7 degrees C. This trend has displaced the once dominant cold, dry continental Antarctic climate, and is causing multi-level responses in the marine ecosystem. One striking example of the ecosystem response to warming has been the local declines in ice-dependent Ad\u00e9lie penguins. The changes in these apex predators are thought to be driven by alterations in phytoplankton and zooplankton community composition, and the foraging limitations and diet differences between these species. One of the most elusive questions facing researchers interested in the foraging ecology of the Ad\u00e9lie penguin, namely, what are the biophysical properties that characterize the three dimensional foraging space of this top predator? The research will combine the real-time site and diving information from the Ad\u00e9lie penguin satellite tags with the full characterization of the oceanography and the penguins prey field using an autonomous underwater vehicle (AUV). While some of these changes have been documented over large spatial scales of the WAP, it is now thought that the causal mechanisms that favor of one life history strategy over another may actually operate over much smaller scales than previously thought, specifically on the scale of local breeding sites and over-wintering areas. Characterization of prey fields on these local scales has yet to be done and one that the AUV is ideally suited. The results will have a direct tie to the climate induced changes that are occurring in the West Antarctic Peninsula. This study will also highlight a new approach to linking an autonomous platform to bird behavior that could be expanded to include the other two species of penguins and examine the seasonal differences in their foraging behavior and prey selection. From a vehicle perspective, this effort will inform the AUV user community of new sensor suites and/or data processing approaches that are required to better evaluate foraging habitat. The project also will help transition AUV platforms into routine investigative tools for this region, which is chronically under sampled and will remain difficult to access\n", "east": null, "geometry": null, "keywords": "Biota; Oceans; Southern Ocean", "locations": "Southern Ocean", "north": null, "nsf_funding_programs": null, "persons": "Wendt, Dean; Moline, Mark", "project_titles": "Real-Time Characterization of Adelie Penguin Foraging Environment Using an Autonomous Underwater Vehicle", "projects": [{"proj_uid": "p0000662", "repository": "USAP-DC", "title": "Real-Time Characterization of Adelie Penguin Foraging Environment Using an Autonomous Underwater Vehicle"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Real-Time Characterization of Adelie Penguin Foraging Environment Using an Autonomous Underwater Vehicle", "uid": "600120", "west": null}, {"awards": "0739780 Taylor, Kendrick", "bounds_geometry": ["POINT(-112.117 -79.666)"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "This award supports a project to develop a 2,000-year high-temporal resolution record of biomass burning from the analysis of black carbon in the WAIS Divide bedrock ice core. Pilot data for the WAIS WD05A core demonstrates that we now have the ability to reconstruct this record with minimal impact on the amount of ice available for other projects. The intellectual merit of this project is that black carbon (BC) aerosols result solely from combustion and play a critical but poorly quantified role in global climate forcing and the carbon cycle. When incorporated into snow and ice, BC increases absorption of solar radiation making seasonal snow packs, mountain glaciers, polar ice sheets, and sea ice much more vulnerable to climate warming. BC emissions in the Southern Hemisphere are dominated by biomass burning in the tropical regions of Southern Africa, South America and South Asia. Biomass burning, which results from both climate and human activities, alters the atmospheric composition of greenhouse gases, aerosols and perturbs key biogeochemical cycles. A long-term record of biomass burning is needed to aid in the interpretation of ice core gas composition and will provide important information regarding human impacts on the environment and climate before instrumental records.", "east": -112.117, "geometry": ["POINT(-112.117 -79.666)"], "keywords": "Antarctica; Atmosphere; Black Carbon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.666, "nsf_funding_programs": null, "persons": "Taylor, Kendrick C.", "project_titles": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "projects": [{"proj_uid": "p0000022", "repository": "USAP-DC", "title": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.666, "title": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "uid": "600142", "west": -112.117}, {"awards": "0542164 Taylor, Michael", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "A focused plan is presented to investigate the role and importance of short period (\u003c1 hour) gravity waves on the dynamics of the Antarctic Mesosphere and Lower Thermosphere (MLT) region (~80-100 km). Excited primarily by deep convection, frontal activity, topography, and strong wind shears in the lower atmosphere, these waves transport energy and momentum upwards where they have a profound influence on the MLT dynamics. Most of the wave forcing is expected to occur at mid-and low-latitudes where such sources predominate. However, short-period waves (exhibiting similar characteristics to mid-latitude events) have now been detected in copious quantities from research sites on the Antarctic Peninsula and the coastal regions exhibiting strong anisotropy in their dominant horizontal motions (and hence their momentum fluxes). Radiosonde measurements have established the existence of ubiquitous gravity wave activity at South Pole but, to date, there have been no detailed measurements of the properties of short-period waves at MLT heights deep in the Antarctic interior. In particular, the South Pole Station is uniquely situated to investigate the filtering and penetration of these waves into the MLT region, a substantial fraction of which may be ducted waves traveling over vast geographic distances (several thousand km). Novel image measurements at South Pole Station combined with existing measurement programs will provide an unprecedented capability for quantifying the role of these gravity waves on the regional MLT dynamics over central Antarctica. This research also contributes to the training and education of both the graduate and undergraduate students.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Atmosphere; Meteorology; Radiosonde; South Pole", "locations": "South Pole; Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Taylor, Michael", "project_titles": "Quantifying the Role of Short-Period Gravity Waves on the Antarctic Mesospheric Dynamics Using an Advanced Mesospheric Temperature Mapper", "projects": [{"proj_uid": "p0000684", "repository": "USAP-DC", "title": "Quantifying the Role of Short-Period Gravity Waves on the Antarctic Mesospheric Dynamics Using an Advanced Mesospheric Temperature Mapper"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Quantifying the Role of Short-Period Gravity Waves on the Antarctic Mesospheric Dynamics Using an Advanced Mesospheric Temperature Mapper", "uid": "600060", "west": -180.0}, {"awards": "0632389 Murray, Alison", "bounds_geometry": ["POLYGON((-65.3827 -64.4213,-65.13333 -64.4213,-64.88396 -64.4213,-64.63459 -64.4213,-64.38522 -64.4213,-64.13585 -64.4213,-63.88648 -64.4213,-63.63711 -64.4213,-63.38774 -64.4213,-63.13837 -64.4213,-62.889 -64.4213,-62.889 -64.47176,-62.889 -64.52222,-62.889 -64.57268,-62.889 -64.62314,-62.889 -64.6736,-62.889 -64.72406,-62.889 -64.77452,-62.889 -64.82498,-62.889 -64.87544,-62.889 -64.9259,-63.13837 -64.9259,-63.38774 -64.9259,-63.63711 -64.9259,-63.88648 -64.9259,-64.13585 -64.9259,-64.38522 -64.9259,-64.63459 -64.9259,-64.88396 -64.9259,-65.13333 -64.9259,-65.3827 -64.9259,-65.3827 -64.87544,-65.3827 -64.82498,-65.3827 -64.77452,-65.3827 -64.72406,-65.3827 -64.6736,-65.3827 -64.62314,-65.3827 -64.57268,-65.3827 -64.52222,-65.3827 -64.47176,-65.3827 -64.4213))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "The Western Antarctic Peninsula is experiencing one of the most rapid rates of climate warming on Earth, with an increase of 5degrees C in the mean winter temperature in 50 years. Impacts on upper trophic levels are evident, though there have been few, if any studies that have considered the impacts on bacterioplankton in the Southern Ocean. This proposal will characterize the winter bacterioplankton genome, transcriptome, and proteome and discover those features (community composition, genes up-regulated, and proteins expressed) that are essential to winter bacterioplankton survival and livelihood. We have assembled a polar ocean ecology and genomics network including strategic partnerships with Palmer LTER, the British Antarctic Survey\u0027s ocean metagenome program, US and Canadian scientists studying the Arctic Ocean genome, an Australian colleague who specialized in archaeal proteomics, and French colleagues studying Sub-Antarctic and Coastal Adelie Land marine bacterioplankton. The primary objectives of this program are: 1 Describe the differences in diversity and genomic content between austral winter and summer bacterioplankton communities. 2. Investigate the winter-time bacterioplankton growth and cellular signals (mRNA and proteins expressed) in order to understand the specific adaptations key to survival. Our results will extend from the Antarctic to the Arctic - as the cold, dark, carbon-limited deep seas linking these two systems have many common features. Education and outreach activities target (i) undergraduate and graduate students, hopefully including minority students recruited through the Diversity in Research in Environmental and Marine Sciences (DREAMS) Program at VIMS; (ii) a broad audience with our education and outreach partnerships with The Cousteau Society and with the Census for Antarctic Marine Life program. Data and links to external databases will be listed on the http://genex2.dri.edu website. Sequence data will be publicly accessible in GenBank and IMG-M databases.", "east": -62.889, "geometry": ["POINT(-64.13585 -64.6736)"], "keywords": "Antarctica; Antarctic Peninsula; Biota; Chemistry:fluid; Chemistry:Fluid; Oceans; Southern Ocean", "locations": "Antarctic Peninsula; Southern Ocean; Antarctica", "north": -64.4213, "nsf_funding_programs": null, "persons": "Grzymski, Joseph; Murray, Alison", "project_titles": "IPY: Bacterioplankton Genomic Adaptations to Antarctic Winter", "projects": [{"proj_uid": "p0000091", "repository": "USAP-DC", "title": "IPY: Bacterioplankton Genomic Adaptations to Antarctic Winter"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.9259, "title": "IPY: Bacterioplankton Genomic Adaptations to Antarctic Winter", "uid": "600061", "west": -65.3827}, {"awards": "0338163 Leventer, Amy", "bounds_geometry": ["POLYGON((-70.90391 -52.35262,-68.130917 -52.35262,-65.357924 -52.35262,-62.584931 -52.35262,-59.811938 -52.35262,-57.038945 -52.35262,-54.265952 -52.35262,-51.492959 -52.35262,-48.719966 -52.35262,-45.946973 -52.35262,-43.17398 -52.35262,-43.17398 -53.75776,-43.17398 -55.1629,-43.17398 -56.56804,-43.17398 -57.97318,-43.17398 -59.37832,-43.17398 -60.78346,-43.17398 -62.1886,-43.17398 -63.59374,-43.17398 -64.99888,-43.17398 -66.40402,-45.946973 -66.40402,-48.719966 -66.40402,-51.492959 -66.40402,-54.265952 -66.40402,-57.038945 -66.40402,-59.811938 -66.40402,-62.584931 -66.40402,-65.357924 -66.40402,-68.130917 -66.40402,-70.90391 -66.40402,-70.90391 -64.99888,-70.90391 -63.59374,-70.90391 -62.1886,-70.90391 -60.78346,-70.90391 -59.37832,-70.90391 -57.97318,-70.90391 -56.56804,-70.90391 -55.1629,-70.90391 -53.75776,-70.90391 -52.35262))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "The NSF-supported research icebreaker Nathaniel B. Palmer operates year-round in support of the U.S. Antarctic Program, carrying out global change studies in biological, chemical, physical, and oceanographic disciplines. \n This data set consists of underway data from leg NBP0603 on the R/V Nathaniel B. Palmer. This leg started at Punta Arenas, Chile and ended at Punta Arenas, Chile.", "east": -43.17398, "geometry": ["POINT(-57.038945 -59.37832)"], "keywords": "ADCP Acoustic Doppler Current Profiler; Antarctic Peninsula; Biota; Diatom; Electromagnetic Data; Flask Glacier; Foehn Winds; Larsen Ice Shelf; Marine Sediments; NBP0603; Oceans; Physical Ice Properties; R/v Nathaniel B. Palmer; Scar Inlet; Southern Ocean", "locations": "Antarctic Peninsula; Larsen Ice Shelf; Scar Inlet; Flask Glacier; Southern Ocean", "north": -52.35262, "nsf_funding_programs": null, "persons": "Domack, Eugene Walter", "project_titles": "Collaborative Research: Paleohistory of the Larsen Ice Shelf System: Phase II", "projects": [{"proj_uid": "p0000215", "repository": "USAP-DC", "title": "Collaborative Research: Paleohistory of the Larsen Ice Shelf System: Phase II"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -66.40402, "title": "R/V Nathaniel B. Palmer NBP0603 - Paleohistory of the Larsen Ice Shelf System", "uid": "600027", "west": -70.90391}, {"awards": "0086645 Fountain, Andrew", "bounds_geometry": ["POLYGON((161.04 -77.3,161.239 -77.3,161.438 -77.3,161.637 -77.3,161.836 -77.3,162.035 -77.3,162.234 -77.3,162.433 -77.3,162.632 -77.3,162.831 -77.3,163.03 -77.3,163.03 -77.378,163.03 -77.456,163.03 -77.534,163.03 -77.612,163.03 -77.69,163.03 -77.768,163.03 -77.846,163.03 -77.924,163.03 -78.002,163.03 -78.08,162.831 -78.08,162.632 -78.08,162.433 -78.08,162.234 -78.08,162.035 -78.08,161.836 -78.08,161.637 -78.08,161.438 -78.08,161.239 -78.08,161.04 -78.08,161.04 -78.002,161.04 -77.924,161.04 -77.846,161.04 -77.768,161.04 -77.69,161.04 -77.612,161.04 -77.534,161.04 -77.456,161.04 -77.378,161.04 -77.3))"], "date_created": "Mon, 31 Aug 2009 00:00:00 GMT", "description": "As part of the Long Term Ecological Research (LTER) project in the McMurdo Dry Valleys of Antarctica, a systematic sampling program has been undertaken to monitor mass balance of the Taylor Valley glaciers. Data were collected from the Canada, Commonwealth, Howard, Hughes, Suess and Taylor glaciers, located in the Taylor Valley of Antarctica. Monitoring the changes in these measurements over time provides a record of mass balance, and aids in determining the role of glaciers in the polar hydrologic cycle.", "east": 163.03, "geometry": ["POINT(162.035 -77.69)"], "keywords": "Antarctica; Dry Valleys; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; LTER; LTER Mcmurdo Dry Valleys", "locations": "Dry Valleys; Antarctica", "north": -77.3, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Fountain, Andrew; Nylen, Thomas; Basagic, Hassan; Lyons, W. Berry; Langevin, Paul", "project_titles": "SGER Proposal:Glaciological change in the McMurdo Dry Valleys, Antarctica", "projects": [{"proj_uid": "p0000541", "repository": "USAP-DC", "title": "SGER Proposal:Glaciological change in the McMurdo Dry Valleys, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.08, "title": "McMurdo Dry Valleys Long-Term Ecological Research (MCM LTER) Core Glacier Mass Balance Data, Antarctica", "uid": "609421", "west": 161.04}, {"awards": "0440478 Tang, Kam", "bounds_geometry": ["POINT(166.66267 -77.85067)"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "Phaeocystis Antarctica is a widely distributed phytoplankton that forms dense blooms and aggregates in the Southern Ocean. This phytoplankton and plays important roles in polar ecology and biogeochemistry, in part because it is a dominant primary producer, a main component of organic matter vertical fluxes, and the principal producer of volatile organic sulfur in the region. Yet P. Antarctica is also one of the lesser known species in terms of its physiology, life history and trophic relationships with other organisms; furthermore, information collected on other Phaeocystis species and from different locations may not be applicable to P. Antarctica in the Ross Sea. P. Antarctica occurs mainly as two morphotypes: solitary cells and mucilaginous colonies, which differ significantly in size, architecture and chemical composition. Relative dominance between solitary cells and colonies determines not only the size spectrum of the population, but also its carbon dynamics, nutrient uptake and utilization. Conventional thinking of the planktonic trophic processes is also challenged by the fact that colony formation could effectively alter the predator-prey interactions and interspecific competition. However, the factors that regulate the differences between solitary and colonial forms of P. Antarctica are not well-understood. \n\nThe research objective of this proposal is therefore to address these over-arching questions: \n1. Do P. Antarctica solitary cells and colonies differ in growth, composition and photosynthetic rates? 2. How do nutrients and grazers affect colony development and size distribution of P. Antarctica? \n3. How do nutrients and grazers act synergistically to affect the long-term population dynamics of P. Antarctica? \n\nExperiments will be conducted in the McMurdo station with natural P. Antarctica assemblages and co-occurring grazers. Laboratory experiments will be conducted to study size-specific growth and photosynthetic rates of P. Antarctica, size-specific grazing mortality due to microzooplankton and mesozooplankton, the effects of macronutrients on the (nitrogen compounds) relative dominance of solitary cells and colonies, and the effects of micronutrient (Fe) and grazing related chemical signals on P. Antarctica colony development. Because this species is of critical importance in the Southern Ocean, and because this research will provide critical information on factors that regulate the role of P.Antarctica in food webs and biogeochemical cycles, a major gap in knowledge will be addressed. This project will train two marine science Ph.D. students. The investigators will also collaborate with the School of Education and a marine science museum to communicate polar science to a broader audience.", "east": 166.66267, "geometry": ["POINT(166.66267 -77.85067)"], "keywords": "Biota; McMurdo Sound; Oceans; Phytoplankton; Ross Sea; Southern Ocean; Zooplankton", "locations": "Ross Sea; Southern Ocean; McMurdo Sound", "north": -77.85067, "nsf_funding_programs": null, "persons": "Smith, Walker; Tang, Kam", "project_titles": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial forms of Phaeocystis antarctica", "projects": [{"proj_uid": "p0000214", "repository": "USAP-DC", "title": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial forms of Phaeocystis antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.85067, "title": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial Forms of Phaeocystis Antarctica", "uid": "600043", "west": 166.66267}, {"awards": "0125098 Emslie, Steven", "bounds_geometry": ["POLYGON((-50 -60,-29 -60,-8 -60,13 -60,34 -60,55 -60,76 -60,97 -60,118 -60,139 -60,160 -60,160 -63,160 -66,160 -69,160 -72,160 -75,160 -78,160 -81,160 -84,160 -87,160 -90,139 -90,118 -90,97 -90,76 -90,55 -90,34 -90,13 -90,-8 -90,-29 -90,-50 -90,-50 -87,-50 -84,-50 -81,-50 -78,-50 -75,-50 -72,-50 -69,-50 -66,-50 -63,-50 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project will build on previous studies to investigate the occupation history and diet of Adelie penguins (Pygoscelis adeliae) in the Ross Sea region, Antarctica, with excavations of abandoned and active penguin colonies. Numerous active and abandoned colonies exist on the Victoria Land coast, from Cape Adare to Marble Point will be sampled. Some of these sites have been radiocarbon-dated and indicate a long occupation history for Adelie penguins extending to 13,000 years before present (B. P.). The material recovered from excavations, as demonstrated from previous investigations, will include penguin bones, tissue, and eggshell fragments as well as abundant remains of prey (fish bones, otoliths, squid beaks) preserved in ornithogenic (formed from bird guano) soils. These organic remains will be quantified and subjected to radiocarbon analyses to obtain a colonization history of penguins in this region. Identification of prey remains in the sediments will allow assessment of penguin diet. \n\nOther data (ancient DNA) from these sites will be analyzed through collaboration with New Zealand scientists. Past climatic conditions will be interpreted from published ice-core and marine-sediment records. These data will be used to test the hypothesis that Adelie penguins respond to climate change, past and present, in a predictable manner. In addition, the hypothesis that Adelie penguins alter their diet in accordance with climate, sea-ice conditions, and other marine environmental variables along a latitudinal gradient will be tested. Graduate and undergraduate students will be involved in this project and a project Web site will be developed to report results and maintain educational interaction between the PI and students at local middle and high schools in Wilmington, NC.", "east": 160.0, "geometry": ["POINT(55 -75)"], "keywords": "Antarctica; Biota; Geochronology; Oceans; Paleoclimate; Penguin; Radiocarbon; Ross Sea; Southern Ocean", "locations": "Southern Ocean; Antarctica; Ross Sea", "north": -60.0, "nsf_funding_programs": null, "persons": "Emslie, Steven D.", "project_titles": "Occupation History and Diet of Adelie Penguins in the Ross Sea Region", "projects": [{"proj_uid": "p0000220", "repository": "USAP-DC", "title": "Occupation History and Diet of Adelie Penguins in the Ross Sea Region"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Occupation History and Diet of Adelie Penguins in the Ross Sea Region", "uid": "600028", "west": -50.0}, {"awards": "0741380 Smith, Walker", "bounds_geometry": ["POLYGON((-160 -65,-154 -65,-148 -65,-142 -65,-136 -65,-130 -65,-124 -65,-118 -65,-112 -65,-106 -65,-100 -65,-100 -66.1,-100 -67.2,-100 -68.3,-100 -69.4,-100 -70.5,-100 -71.6,-100 -72.7,-100 -73.8,-100 -74.9,-100 -76,-106 -76,-112 -76,-118 -76,-124 -76,-130 -76,-136 -76,-142 -76,-148 -76,-154 -76,-160 -76,-160 -74.9,-160 -73.8,-160 -72.7,-160 -71.6,-160 -70.5,-160 -69.4,-160 -68.3,-160 -67.2,-160 -66.1,-160 -65))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "The research will examine the relative importance of the physical and chemical controls on phytoplankton dynamics and carbon flux in continental margin regions of the Southern Ocean, and elucidate mechanisms by which plankton populations and carbon export might be altered by climate change. We specifically will address (1) how the phytoplankton on the continental margins of the southern Ocean respond to spatial and temporal changes in temperature, light, iron supply, and carbon dioxide levels, (2) how these factors initiate changes in phytoplankton assemblage structure, and (3) how carbon export and the efficiency of the biological pump are impacted by the biomass and composition of the phytoplankton. Two regions of study (the Amundsen and Ross Seas) will be investigated, one well studied (Ross Sea) and one poorly described (Amundsen Sea). It is hypothesized that each region will have markedly different physical forcing, giving rise to distinct chemical conditions and therefore biological responses. As such, the comparison of the two may give us insights into the mechanisms of how Antarctic continental margins will respond under changing environmental conditions. Broader impacts include participation by an international graduate student from Brazil, outreach via seminars to the general public, collaboration with the teachers-in-residence on the cruise, development of a cruise web site and interactive email exchanges with local middle school students while at sea.", "east": -100.0, "geometry": ["POINT(-130 -70.5)"], "keywords": "Amundsen Sea; Chemistry:fluid; Chemistry:Fluid; CTD Data; Geochemistry; Oceans; Oden; OSO2007; Sea Surface; Southern Ocean", "locations": "Southern Ocean; Sea Surface; Amundsen Sea", "north": -65.0, "nsf_funding_programs": null, "persons": "Smith, Walker", "project_titles": "Small Grants for Exploratory Research - Oceanographic Research in the Amundsen and Ross Seas:", "projects": [{"proj_uid": "p0000217", "repository": "USAP-DC", "title": "Small Grants for Exploratory Research - Oceanographic Research in the Amundsen and Ross Seas:"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.0, "title": "Small Grants for Exploratory Research - Oceanographic Research in the Amundsen and Ross Seas", "uid": "600085", "west": -160.0}, {"awards": "0225992 Fahnestock, Mark; 0125570 Scambos, Ted", "bounds_geometry": ["POLYGON((124.4345 -80.77546,124.443718 -80.77546,124.452936 -80.77546,124.462154 -80.77546,124.471372 -80.77546,124.48059 -80.77546,124.489808 -80.77546,124.499026 -80.77546,124.508244 -80.77546,124.517462 -80.77546,124.52668 -80.77546,124.52668 -80.776922,124.52668 -80.778384,124.52668 -80.779846,124.52668 -80.781308,124.52668 -80.78277,124.52668 -80.784232,124.52668 -80.785694,124.52668 -80.787156,124.52668 -80.788618,124.52668 -80.79008,124.517462 -80.79008,124.508244 -80.79008,124.499026 -80.79008,124.489808 -80.79008,124.48059 -80.79008,124.471372 -80.79008,124.462154 -80.79008,124.452936 -80.79008,124.443718 -80.79008,124.4345 -80.79008,124.4345 -80.788618,124.4345 -80.787156,124.4345 -80.785694,124.4345 -80.784232,124.4345 -80.78277,124.4345 -80.781308,124.4345 -80.779846,124.4345 -80.778384,124.4345 -80.776922,124.4345 -80.77546))"], "date_created": "Thu, 05 Oct 2006 00:00:00 GMT", "description": "The Antarctic megadune research was conducted during two field seasons, one in November 2002 and the other during the period of December 2003 through January 2004. The megadune field site is located on the East Antarctic Plateau, southeast of Vostok station. The objectives of this multi-facetted research are 1) to determine the physical characteristics of the firn across the dunes including typical climate indicators such as stable isotopes and major chemical species and 2) to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. It is important to improve our current understanding of the megadunes because of their extreme nature, their broad extent, and their potential impact on the climate record. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on the past terrestrial climate or on processes active on other planets.\n\nSnow megadunes are undulating variations in accumulation and surface texture with wavelengths of 2 to 5 km and amplitudes up to 5 meters. The features cover 500,000 km\u003csup\u003e2\u003c/sup\u003e of the East Antarctic plateau, occurring in areas of moderate regional slope and low accumulation on the flanks of the ice sheet between 2500 and 3800 meters elevation. Landsat images and aerial photography indicate the dunes consist of alternating surfaces of glaze and rough sastrugi, with gradational boundaries. This pattern is oriented perpendicular to the mean wind direction, as modeled in katabatic wind studies. Glazed surfaces cover the leeward faces and troughs; rough sastrugi cover the windward faces and crests. The megadune pattern is crossed by smooth to eroded wind-parallel longitudinal dunes. Wind-eroded longitudinal dunes form spectacular 1-meter-high sastrugi in nearby areas.\n\nThis data set contains automated weather station (AWS) data from two sites. The Mac site was oriented on the rough sastrugi-covered windward face and the Zoe site was on the glazed leeward face. The AWSs collected data throughout the year from 16 January 2004 to 17 November 2004. Investigators received data from the two field sites via the ARGOS Satellite System (http://www.argosinc.com/). Data are provided in space-delimited ASCII text format and are available via FTP.", "east": 124.52668, "geometry": ["POINT(124.48059 -80.78277)"], "keywords": "Antarctica; Atmosphere; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Meteorology; Snow/ice; Snow/Ice", "locations": "Antarctica; East Antarctic Plateau", "north": -80.77546, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Fahnestock, Mark; Scambos, Ted; Haran, Terry; Bauer, Rob", "project_titles": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "projects": [{"proj_uid": "p0000587", "repository": "USAP-DC", "title": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.79008, "title": "AWS Data: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "uid": "609283", "west": 124.4345}, {"awards": "0125276 Albert, Mary", "bounds_geometry": ["POLYGON((124.0218 -80.5304,124.22264 -80.5304,124.42348 -80.5304,124.62432 -80.5304,124.82516 -80.5304,125.026 -80.5304,125.22684 -80.5304,125.42768 -80.5304,125.62852 -80.5304,125.82936 -80.5304,126.0302 -80.5304,126.0302 -80.55538,126.0302 -80.58036,126.0302 -80.60534,126.0302 -80.63032,126.0302 -80.6553,126.0302 -80.68028,126.0302 -80.70526,126.0302 -80.73024,126.0302 -80.75522,126.0302 -80.7802,125.82936 -80.7802,125.62852 -80.7802,125.42768 -80.7802,125.22684 -80.7802,125.026 -80.7802,124.82516 -80.7802,124.62432 -80.7802,124.42348 -80.7802,124.22264 -80.7802,124.0218 -80.7802,124.0218 -80.75522,124.0218 -80.73024,124.0218 -80.70526,124.0218 -80.68028,124.0218 -80.6553,124.0218 -80.63032,124.0218 -80.60534,124.0218 -80.58036,124.0218 -80.55538,124.0218 -80.5304))"], "date_created": "Sat, 10 Jun 2006 00:00:00 GMT", "description": "The Antarctic megadune research was conducted during two field seasons, one in November 2002 and the other in December 2003 through January 2004. The megadune field site is located on the East Antarctic Plateau, southeast of Vostok station. The objectives of this multi-facetted research are to determine the physical characteristics of the firn across the dunes including typical climate indicators such as stable isotopes and major chemical species and to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. It is important to improve our current understanding of the megadunes because of their extreme nature, their broad extent, and their potential impact on the climate record. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on past terrestrial climate or on processes active on other planets.\n\nSnow megadunes are undulating variations in accumulation and surface texture with wavelengths of 2 to 5 km and amplitudes up to 5 meters. The features cover 500,000 km\u003csup\u003e2\u003c/sup\u003e of the East Antarctic plateau, occurring in areas of moderate regional slope and low accumulation on the flanks of the ice sheet between 2500 and 3800 meters elevation. Landsat images and aerial photography indicate the dunes consist of alternating surfaces of glaze and rough sastrugi, with gradational boundaries. This pattern is oriented perpendicular to the mean wind direction, as modeled in katabatic wind studies. Glaze surfaces cover the leeward faces and troughs; rough sastrugi cover the windward faces and crests. The megadune pattern is crossed by smooth to eroded wind-parallel longitudinal dunes. Wind-eroded longitudinal dunes form spectacular 1-meter-high sastrugi in nearby areas.\n\nThis data set contains ground penetrating radar (GPR) data showing surface morphology and internal layering structure along with global positioning system (GPS) data collected within an area of 60 km\u003csup\u003e2\u003c/sup\u003e. GPS data are provided in space-delimited ASCII text Microsoft Excel formats, while GPR data are in JPEG format. Data are available via FTP.", "east": 126.0302, "geometry": ["POINT(125.026 -80.6553)"], "keywords": "Antarctica; East Antarctic Plateau; Glaciology; GPR; GPS; Navigation; Paleoclimate; Snow/ice; Snow/Ice", "locations": "East Antarctic Plateau; Antarctica", "north": -80.5304, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Scambos, Ted; Bauer, Rob", "project_titles": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "projects": [{"proj_uid": "p0000587", "repository": "USAP-DC", "title": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.7802, "title": "GPR and GPS Data: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation", "uid": "609282", "west": 124.0218}, {"awards": "9909167 Rust, David", "bounds_geometry": null, "date_created": "Wed, 19 Oct 2005 00:00:00 GMT", "description": null, "east": null, "geometry": null, "keywords": null, "locations": null, "north": null, "nsf_funding_programs": null, "persons": "Rust, David M.", "project_titles": "Flare Genesis Experiment", "projects": [{"proj_uid": "p0000245", "repository": "USAP-DC", "title": "Flare Genesis Experiment"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Solar Magnetograms and Filtergrams", "uid": "600022", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Elemental composition of individual nanoparticles and fine particles in 28 Taylor Glacier ice core samples 9000 to 44000 yrs BP
|
1744961 |
2025-01-07 | Olesik, John; Gabrielli, Paolo; Kutuzov, Stanislav; Lomax-Vogt, Madeleine; Carter, Lucas; Sullivan, Ryan; Lowry, Greg |
Atmospheric Mineral Nanoparticles in Antarctic Ice during the last Climatic Cycle |
This data set includes measurements of the amounts of each detectable element in thousands of individual nanoparticles and fine microparticles in 28 Taylor Glacier samples from 9076 to 44374 yr BP using a single particle Inductively Coupled Plasma-Time of Flight Mass Spectrometer. Particle number concentrations measured by spICP-TOFMS and Coulter Counter are also included. | ["POLYGON((161.71158 -77.75758,161.7127687 -77.75758,161.7139574 -77.75758,161.7151461 -77.75758,161.7163348 -77.75758,161.7175235 -77.75758,161.7187122 -77.75758,161.7199009 -77.75758,161.7210896 -77.75758,161.7222783 -77.75758,161.723467 -77.75758,161.723467 -77.75784200000001,161.723467 -77.758104,161.723467 -77.758366,161.723467 -77.758628,161.723467 -77.75889000000001,161.723467 -77.759152,161.723467 -77.75941399999999,161.723467 -77.759676,161.723467 -77.759938,161.723467 -77.7602,161.7222783 -77.7602,161.7210896 -77.7602,161.7199009 -77.7602,161.7187122 -77.7602,161.7175235 -77.7602,161.7163348 -77.7602,161.7151461 -77.7602,161.7139574 -77.7602,161.7127687 -77.7602,161.71158 -77.7602,161.71158 -77.759938,161.71158 -77.759676,161.71158 -77.75941399999999,161.71158 -77.759152,161.71158 -77.75889000000001,161.71158 -77.758628,161.71158 -77.758366,161.71158 -77.758104,161.71158 -77.75784200000001,161.71158 -77.75758))"] | ["POINT(161.7175235 -77.75889000000001)"] | false | false |
Weddell seal dive behavior and rhythmicity from 2010-2012 in the Ross Sea
|
0838892 0838937 1853377 |
2024-09-20 | Shero, Michelle |
Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea Collaborative Research: Physiological and Genetic Correlates of Reproductive Success in High- versus Low-Quality Weddell seals |
Diel vertical migrations (DVM) have been well-documented across numerous taxa, with prey descend through the water column during daylight hours to avoid visual predators and feed at the surface at night. However, the ability of marine mammals such as Weddell seals (Leptonychotes weddellii) to follow prey to depths is likely constrained by limited breath-hold capacities and the physiological consequences of pushing aerobic thresholds. In particular, dives that exceed the aerobic dive limit require exponentially longer surface recuperation times to clear lactate byproducts from circulation. This is time that the animals then cannot spend foraging. In this study, we assess the circadian organization of the Weddell seal's dive efforts and when animals make their longest/deepest (most 'extreme') dives that far exceed aerobic thresholds. Sixty-two adult Weddell seals were instrumented with satellite linked relay loggers in the Ross Sea to collect behavioral information across the austral winter. Daily activities are likely to shift across the year in a highly-seasonal polar environment, and through this 'natural experiment' we test how free-ranging seals alter foraging behavior during Polar Day and Night (continuous light, LL and dark, DD, respectively) and varying light/dark (LD) cycling across the year. | ["POLYGON((-180 -72,-179.8 -72,-179.6 -72,-179.4 -72,-179.2 -72,-179 -72,-178.8 -72,-178.6 -72,-178.4 -72,-178.2 -72,-178 -72,-178 -72.7,-178 -73.4,-178 -74.1,-178 -74.8,-178 -75.5,-178 -76.2,-178 -76.9,-178 -77.6,-178 -78.3,-178 -79,-178.2 -79,-178.4 -79,-178.6 -79,-178.8 -79,-179 -79,-179.2 -79,-179.4 -79,-179.6 -79,-179.8 -79,180 -79,178.2 -79,176.4 -79,174.6 -79,172.8 -79,171 -79,169.2 -79,167.4 -79,165.6 -79,163.8 -79,162 -79,162 -78.3,162 -77.6,162 -76.9,162 -76.2,162 -75.5,162 -74.8,162 -74.1,162 -73.4,162 -72.7,162 -72,163.8 -72,165.6 -72,167.4 -72,169.2 -72,171 -72,172.8 -72,174.6 -72,176.4 -72,178.2 -72,-180 -72))"] | ["POINT(172 -75.5)"] | false | false |
The Impacts of the Microstructural Location of H2SO4 on the Flow of Polycrystalline Ice
|
None | 2024-09-05 | Ogunmolasuyi, Ayobami | No project link provided | The effects of soluble impurities on the flow of glaciers and ice sheets as well as the effects of ice flow on impurities migration are not well understood. This study investigates the effects of sulfuric acid (H2SO4) concentrations ranging from 10 to 25 ppm on the flow and fabric of polycrystalline ice under compression at temperatures of -3°C and -12°C. The results show that H2SO4-doped polycrystalline ice deforms significantly faster than high-purity polycrystalline ice, with the deformation rate being 1.5 to 3 times higher. At -12°C, the presence of H2SO4 within the grains induces the most ice softening, whereas at -3°C, H2SO4's softening effects are observed both within the grains and at grain boundaries. The migration of H2SO4 to grain boundaries during deformation leads to the formation of a liquid-like layer, with increased solubility at higher temperatures potentially homogenizing the impurities within the ice matrix. This homogenization at -3°C suggests that post-depositional processes near the bed of ice sheets could significantly alter sulfate records. At -12°C, where homogenization is absent, impurity-induced dislocation processes may heavily influence deformation and impurity migration. Additionally, the comparison of natural ice with lab-grown samples indicates that fabric development significantly impacts compressive strength and creep rates, with implications for the understanding of impurity-induced deformation processes in polar ice. | [] | [] | false | false |
Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)
|
1142158 0636696 2026045 1440435 1543383 |
2024-07-22 | Corso, Andrew; Desvignes, Thomas; McDowell, Jan; Cheng, Chi-Hing; Biesack, Ellen; Steinberg, Deborah; Hilton, Eric |
Environmental, Organismal and Evolutionary Physiology of Freeze Avoidance in Antarctic Notothenioid Fishes Antarctic Notothenioid Fish Freeze Avoidance and Genome-wide Evolution for Life in the Cold LTER Palmer, Antarctica (PAL): Land-Shelf-Ocean Connectivity, Ecosystem Resilience and Transformation in a Sea-Ice Influenced Pelagic Ecosystem |
This data set includes photographs and metadata from phylogenetic analyses associated with the description of Akarotaxis gouldae n. sp., or the Banded Dragonfish (Bathydraconidae). | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Impulse HF radar data from Conway Ridge
|
0087144 |
2024-07-22 | Hoffman, Andrew; Conway, Howard; Christianson, Knut |
Glacial History of Ridge AB, West Antarctica |
Marine ice sheets are low-pass filters of climate variability that take centuries to adjust to interior and near-terminus changes in mass balance. Constraining these century-scale changes from satellite observations that span only the last 40 years is challenging. Here, we take a different approach of carefully synthesizing different data sets to infer changes in the configurations of van der Veen and Mercer Ice Streams on the Siple Coast over the past 3000 years from englacial features encoded in ice-penetrating radar data. Englacial radar data from Conway Ridge reveal smooth, surface conformal layers overlying disrupted stratigraphy that suggest the van der Veen Ice Stream was 40 km wider over 3000 years ago. Englacial layer dating indicates that the ice stream narrowed to its present configuration between $\sim3000$ and $\sim1000$ years ago. Similarly disrupted stratigraphy and buried crevasses suggest that ice flowing from Mercer to Whillans Ice Stream across the northwestern tip of the ridge slowed shortly after. Using an ice-flow model capable of simulating shear margin migration, we evaluate whether small changes in ice thickness can lead to large changes in shear margin location. Our results suggest that the tip of Conway Ridge is sensitive to thinning and thickening, and that when the basal strength at the tip of the ridge increases with the height above flotation, the ice sheet shear margins can change quickly. | ["POLYGON((-150 -83.5,-148 -83.5,-146 -83.5,-144 -83.5,-142 -83.5,-140 -83.5,-138 -83.5,-136 -83.5,-134 -83.5,-132 -83.5,-130 -83.5,-130 -83.65,-130 -83.8,-130 -83.95,-130 -84.1,-130 -84.25,-130 -84.4,-130 -84.55,-130 -84.7,-130 -84.85,-130 -85,-132 -85,-134 -85,-136 -85,-138 -85,-140 -85,-142 -85,-144 -85,-146 -85,-148 -85,-150 -85,-150 -84.85,-150 -84.7,-150 -84.55,-150 -84.4,-150 -84.25,-150 -84.1,-150 -83.95,-150 -83.8,-150 -83.65,-150 -83.5))"] | ["POINT(-140 -84.25)"] | false | false |
U-Th isotopes and major elements in sediments from Taylor Valley, Antarctica
|
1644171 2042495 |
2024-07-01 | Edwards, Graham; Piccione, Gavin; Blackburn, Terrence; Tulaczyk, Slawek |
Collaborative Research: Reconstructing East Antarctica’s Past Response to Climate using Subglacial Precipitates U-Series Comminution Age Constraints on Taylor Valley Erosion |
This dataset contains uranium and thorium isotopic compositions (U-234, U-235, U-238, Th-230, Th-232) and major element compositions (Al, K, Na, Ca, Fe, Mn, reported as oxides) for silicate sediments from glaciogenic drifts associated with advances of Taylor Glacier in Taylor Valley, Antarctica. Isotopic measurements were obtained by ID-TIMS in the Keck Isotope Facility at UC Santa Cruz and elemental measurements were obtained by ICP-OES in the Plasma Analytical Laboratory. All measurements include fully propagated analytical and systematic (e.g. isotopic tracer) uncertainties. Chemical index of alteration was calculated from major element data. Prior to measurements, sediments were sieved to ≤125 μm grain sizes, separated into quartz-feldspar-rich and clay-rich aliquots by hydraulic settling, and subjected to sequential chemical extractions ("leaching") prior to silicate digestion. | ["POLYGON((161.9 -77.65,161.96 -77.65,162.02 -77.65,162.08 -77.65,162.14000000000001 -77.65,162.2 -77.65,162.26 -77.65,162.32 -77.65,162.38 -77.65,162.44 -77.65,162.5 -77.65,162.5 -77.66000000000001,162.5 -77.67,162.5 -77.68,162.5 -77.69,162.5 -77.7,162.5 -77.71000000000001,162.5 -77.72,162.5 -77.73,162.5 -77.74,162.5 -77.75,162.44 -77.75,162.38 -77.75,162.32 -77.75,162.26 -77.75,162.2 -77.75,162.14000000000001 -77.75,162.08 -77.75,162.02 -77.75,161.96 -77.75,161.9 -77.75,161.9 -77.74,161.9 -77.73,161.9 -77.72,161.9 -77.71000000000001,161.9 -77.7,161.9 -77.69,161.9 -77.68,161.9 -77.67,161.9 -77.66000000000001,161.9 -77.65))"] | ["POINT(162.2 -77.7)"] | false | false |
East Antarctic Seismicity from different Automated Event Detection Algorithms
|
1914698 |
2024-01-24 | Hansen, Samantha; Ho, Long; Walter, Jacob |
Collaborative Research: Resolving earth structure influence on ice-sheet stability in the Wilkes
Subglacial Basin (RESISSt) |
As seismic data availability increases, the necessity for automated processing techniques has become increasingly evident. Expanded geophysical datasets collected over the past several decades across Antarctica provide excellent resources to evaluate different event detection approaches. We have used the traditional Short-Term Average/Long-Term Average (STA/LTA) algorithm to catalogue seismic data recorded by 19 stations in East Antarctica between 2012 and 2015. However, the complexities of the East Antarctic dataset, including low magnitude events and phenomena such as icequakes, warrant more advanced automated detection techniques. Therefore, we have also applied template matching as well as several deep learning algorithms, including Generalized Phase Detection (GPD), PhaseNet, BasicPhaseAE, and EQTransformer (EQT), to identify seismic phases within our dataset. Our goal was not only to increase the volume of detectable seismic events but also to gain insights into the effectiveness of these different automated approaches. Our assessment evaluated the completeness of the newly generated catalogs, the precision of identified event locations, and the quality of the picks. The final events corresponding to each of our three catalogs (based on STA/LTA, template matching, and machine learning, respectively) are listed in the provided files. | ["POLYGON((148 -71.5,150.4 -71.5,152.8 -71.5,155.2 -71.5,157.6 -71.5,160 -71.5,162.4 -71.5,164.8 -71.5,167.2 -71.5,169.6 -71.5,172 -71.5,172 -72.15,172 -72.8,172 -73.45,172 -74.1,172 -74.75,172 -75.4,172 -76.05,172 -76.7,172 -77.35,172 -78,169.6 -78,167.2 -78,164.8 -78,162.4 -78,160 -78,157.6 -78,155.2 -78,152.8 -78,150.4 -78,148 -78,148 -77.35,148 -76.7,148 -76.05,148 -75.4,148 -74.75,148 -74.1,148 -73.45,148 -72.8,148 -72.15,148 -71.5))"] | ["POINT(160 -74.75)"] | false | false |
Heterotrophic Bacterial Production Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments
|
1543450 |
2023-01-03 | Countway, Peter; Matrai, Patricia |
Microbial Community Structure and Expression of Functional Genes Involved in the Seasonal Cycling of DMSP in the Southern Ocean |
Rates of heterotrophic bacterial production (BP) via 3H-Leu uptake were estimated for samples collected from Station E (Palmer Station, Antarctica) and associated incubation experiments. Rates of BP in seawater incubations greatly exceeded BP rates in the environment, likely due to stimulation of phytoplankton blooms and addition of DMSP in experimental treatments. Methods for determining BP were identical to those used by Palmer LTER investigators. References for the analytical methods used for these analyses are included in a secondary tab with the uploaded data. | ["POLYGON((-66 -63,-65.7 -63,-65.4 -63,-65.1 -63,-64.8 -63,-64.5 -63,-64.2 -63,-63.9 -63,-63.6 -63,-63.3 -63,-63 -63,-63 -63.3,-63 -63.6,-63 -63.9,-63 -64.2,-63 -64.5,-63 -64.8,-63 -65.1,-63 -65.4,-63 -65.7,-63 -66,-63.3 -66,-63.6 -66,-63.9 -66,-64.2 -66,-64.5 -66,-64.8 -66,-65.1 -66,-65.4 -66,-65.7 -66,-66 -66,-66 -65.7,-66 -65.4,-66 -65.1,-66 -64.8,-66 -64.5,-66 -64.2,-66 -63.9,-66 -63.6,-66 -63.3,-66 -63))"] | ["POINT(-64.5 -64.5)"] | false | false |
South Pole (SPC14) microparticle concentration, mass concentration, flux, particle-size-distribution mode, and aspect ratio measurements
|
1443397 |
2022-04-01 | Kreutz, Karl |
Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements |
This dataset contains particle metrics for the South Pole Ice Core (SPICEcore) intermediate core (SPC14), from the surface to 1751 m depth (~54,000 years before present [BP]). Data were collected via Klotz Abakus laser particle counter via continuous-flow-analysis (CFA), Beckman Coulter Multisizer 3 using Coulter Counter (CC) principles, and dynamic particle imaging using a FlowCAM instrument. CFA measurements were made at Dartmouth College, CC measurements were made at Colby College, and FlowCAM measurements were made at the University of Maine. | ["POINT(0 -90)"] | ["POINT(0 -90)"] | false | false |
In situ hybridization of X-cell and host fish 18S SSU rRNA in alternate sections of tumor xenomas.
|
1947040 |
2022-03-15 | Desvignes, Thomas; Postlethwait, John |
EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish |
In situ hybridization of Notoxcellia coronata and host fish Trematomus scotti 18S SSU rRNA and of Notoxcellia picta and host fish Nototheniops larseni in alternate sections of tumor xenomas. | ["POLYGON((-63.1 -63.9,-63.02 -63.9,-62.94 -63.9,-62.86 -63.9,-62.78 -63.9,-62.7 -63.9,-62.62 -63.9,-62.54 -63.9,-62.46 -63.9,-62.38 -63.9,-62.3 -63.9,-62.3 -64.01,-62.3 -64.12,-62.3 -64.23,-62.3 -64.34,-62.3 -64.45,-62.3 -64.56,-62.3 -64.67,-62.3 -64.78,-62.3 -64.89,-62.3 -65,-62.38 -65,-62.46 -65,-62.54 -65,-62.62 -65,-62.7 -65,-62.78 -65,-62.86 -65,-62.94 -65,-63.02 -65,-63.1 -65,-63.1 -64.89,-63.1 -64.78,-63.1 -64.67,-63.1 -64.56,-63.1 -64.45,-63.1 -64.34,-63.1 -64.23,-63.1 -64.12,-63.1 -64.01,-63.1 -63.9))"] | ["POINT(-62.7 -64.45)"] | false | false |
Surface Southern Ocean community growouts to evaluate the diatom bound N isotope proxy
|
1341464 |
2022-02-14 | Jones, Colin; Robinson, Rebecca; Brzezinski, Mark; Riesselman, Christina; Closset, Ivia; Kelly, Roger; Robinson, Rebecca |
Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump |
Tracking variations in the surface ocean supply and demand of nitrate, a key marine nutrient, can help constrain the contribution of biological production in driving past climate shifts. The nitrogen isotopic composition (as δ15N) of organic matter in marine sediments is a proxy for surface ocean nitrate supply and demand over time but it may be subject to alteration during sinking and burial. The isotopic composition of nitrogen contained in the shells, or frustules, of diatoms (δ15NDB) is protected and is therefore a potentially more robust tracer of nitrate use in the past. Here we show that δ15NDB in Southern Ocean community cultures does not depend on species composition. We found the εDB (= biomass δ15N - δ15NDB) of the community growouts was -4.8 ± 0.8‰, more than 10‰ different from previous monospecific growouts, but statistically indistinguishable from previous Southern Ocean and North Pacific surface ocean observations. The two community growouts, seeded with populations from 66° and 61°S, had distinct community compositions but indistinguishable εDB, suggesting species composition does not primarily set δ15NDB values in the Southern Ocean. Our results demonstrate that under nitrate-replete conditions, δ15NDB values of frustules sinking from the surface ocean robustly track surface ocean nitrate δ15N values and therefore nitrate supply and demand. | ["POLYGON((-170.4 -60.8,-170.36 -60.8,-170.32 -60.8,-170.28 -60.8,-170.24 -60.8,-170.2 -60.8,-170.16 -60.8,-170.12 -60.8,-170.08 -60.8,-170.04 -60.8,-170 -60.8,-170 -61.34,-170 -61.88,-170 -62.42,-170 -62.96,-170 -63.5,-170 -64.04,-170 -64.58,-170 -65.12,-170 -65.66,-170 -66.2,-170.04 -66.2,-170.08 -66.2,-170.12 -66.2,-170.16 -66.2,-170.2 -66.2,-170.24 -66.2,-170.28 -66.2,-170.32 -66.2,-170.36 -66.2,-170.4 -66.2,-170.4 -65.66,-170.4 -65.12,-170.4 -64.58,-170.4 -64.04,-170.4 -63.5,-170.4 -62.96,-170.4 -62.42,-170.4 -61.88,-170.4 -61.34,-170.4 -60.8))"] | ["POINT(-170.2 -63.5)"] | false | false |
EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers: Infrared Stimulated Luminescence data
|
1946326 |
2022-02-09 | Doran, Peter; Stone, Michael |
EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers |
Location and metadata of samples collected from perched delta deposits along modern stream channels in lower Taylor Valley. Sample collection used equipment and followed procedures from the Desert Research Institute Luminescence Laboratory in Reno, NV. | ["POLYGON((163.093642 -77.592484,163.1049267 -77.592484,163.1162114 -77.592484,163.1274961 -77.592484,163.1387808 -77.592484,163.1500655 -77.592484,163.1613502 -77.592484,163.1726349 -77.592484,163.1839196 -77.592484,163.1952043 -77.592484,163.206489 -77.592484,163.206489 -77.5986389,163.206489 -77.6047938,163.206489 -77.6109487,163.206489 -77.6171036,163.206489 -77.6232585,163.206489 -77.6294134,163.206489 -77.6355683,163.206489 -77.6417232,163.206489 -77.6478781,163.206489 -77.654033,163.1952043 -77.654033,163.1839196 -77.654033,163.1726349 -77.654033,163.1613502 -77.654033,163.1500655 -77.654033,163.1387808 -77.654033,163.1274961 -77.654033,163.1162114 -77.654033,163.1049267 -77.654033,163.093642 -77.654033,163.093642 -77.6478781,163.093642 -77.6417232,163.093642 -77.6355683,163.093642 -77.6294134,163.093642 -77.6232585,163.093642 -77.6171036,163.093642 -77.6109487,163.093642 -77.6047938,163.093642 -77.5986389,163.093642 -77.592484))"] | ["POINT(163.1500655 -77.6232585)"] | false | false |
EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers: in situ 14C data
|
1946326 |
2022-02-09 | Doran, Peter; Stone, Michael |
EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers |
Location and metadata of C-14 samples from Taylor Valley, East Antarctica | ["POLYGON((163.079602 -77.585467,163.1197073 -77.585467,163.1598126 -77.585467,163.1999179 -77.585467,163.2400232 -77.585467,163.2801285 -77.585467,163.3202338 -77.585467,163.3603391 -77.585467,163.4004444 -77.585467,163.4405497 -77.585467,163.480655 -77.585467,163.480655 -77.5924303,163.480655 -77.5993936,163.480655 -77.6063569,163.480655 -77.6133202,163.480655 -77.6202835,163.480655 -77.6272468,163.480655 -77.6342101,163.480655 -77.6411734,163.480655 -77.6481367,163.480655 -77.6551,163.4405497 -77.6551,163.4004444 -77.6551,163.3603391 -77.6551,163.3202338 -77.6551,163.2801285 -77.6551,163.2400232 -77.6551,163.1999179 -77.6551,163.1598126 -77.6551,163.1197073 -77.6551,163.079602 -77.6551,163.079602 -77.6481367,163.079602 -77.6411734,163.079602 -77.6342101,163.079602 -77.6272468,163.079602 -77.6202835,163.079602 -77.6133202,163.079602 -77.6063569,163.079602 -77.5993936,163.079602 -77.5924303,163.079602 -77.585467))"] | ["POINT(163.2801285 -77.6202835)"] | false | false |
Dataset for Tidal modulation of ice streams: Effect of periodic sliding velocity on ice friction and healing
|
1245871 |
2021-12-23 | McCarthy, Christine M.; Skarbek, Rob; Savage, Heather |
Laboratory Study of Ice Deformation under Tidal Loading Conditions with Application to Antarctic Glaciers |
This data set contains text files for the experimental logs of ice-on-rock friction experiments that were conducted in a double direct shear apparatus at temperatures of -16.4 C to -2 C. There are eleven files (C28-C34, C39-C41, and C44). Each file contains 4 columns of data that correspond to time (s), vertical displacement (microns), friction, and velocity. The data were prepared by converting voltages from experimental feedbacks, to appropriate units using calibrations, as conducted separate. Miscellaneous loading and unloading data were removed and the data was filtered modestly (100 point moving average filter in matlab). The data set includes all information needed to plot friction or velocity vs. time or displacement from the beginning to end of the run. | [] | [] | false | false |
Detecting climate signals in populations: case of emperor penguin
|
2037561 1744794 |
2021-12-08 | Jenouvrier, Stephanie |
A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins Integrating Antarctic Environmental and Biological Predictability to Obtain Optimal Forecasts |
Climate impacts are not always easily discerned in wild populations as detecting climate change signals in populations is challenged by stochastic noise associated with natural climate variability, variability in biotic and abiotic processes, and observation error in demographic rates. Detection of the impact of climate change on populations requires making a formal distinction between signals in the population associated with long-term climate trends from those generated by stochastic noise. The time of emergence (ToE) identifies when the signal of anthropogenic climate change can be quantitatively distinguished from natural climate variability. This concept has been applied extensively in the climate sciences, but has not been explored in the context of population dynamics. In Jenouvrier et al. (Global Change Biology, accepted), we outline an approach to detecting climate-driven signals in populations based on an assessment of when climate change drives population dynamics beyond the envelope characteristic of stochastic variations in an unperturbed state. This data set is the code of a theoretical assessment of the time of emergence of climate-driven signals in population dynamics. We identify the dependence of time of emergence in populations on the magnitude of both trends and variability in climate and also explore the effect of intrinsic demographic controls on the time of emergence in population. We demonstrate that different life histories (fast species vs. slow species), demographic processes (survival, reproduction) and the relationships between climate and demographic rates, yield population dynamics that filter climate trends and variability differently. In Jenouvrier et al. (accepted), we also illustrate empirically how to detect the point in time when anthropogenic signals in populations emerge from stochastic noise for a species threatened by climate change: the emperor penguin. This data set also includes a detailed Table and code to analyze those results. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Bistatic Radar Sounding of Whillans Ice Stream, Antarctica and Store Glacier, Greenland
|
1543441 1656518 |
2021-09-14 | Bienert, Nicole; Schroeder, Dustin; Siegfried, Matthew; Peters, Sean; MacKie, Emma; Dawson, Eliza; Christoffersen, Poul |
Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments |
This dataset includes raw, uncalibrated voltage vs time measurements from a bistatic radar receiver. We also include some processed data including upsampled matched filtered data, GPS receiver position, antenna separation | [] | [] | false | false |
Shackleton Glacier region soil water-soluble geochemical data
|
1341736 1341631 |
2021-01-02 | Diaz, Melisa A.; Lyons, W. Berry; Gardner, Christopher B. |
Collaborative Research: The Role of Glacial History on the Structure and Functioning of Ecological Communities in the Shackleton Glacier Region of the Transantarctic Mountains |
During the 2017-2018 austral summer, 220 surface soil samples (~top 5 cm) were collected from 11 distinct ice-free areas (Roberts Massif, Schroeder Hill, Mt. Augustana, Bennett Platform, Mt. Heekin, Thanksgiving Valley, Taylor Nunatak, Mt. Franke, Mt. Wasko, Nilsen Peak, and Mt. Speed) along the Shackleton Glacier. Dried soils were leached at a 1:5 soil to DI water ratio, and the leachate was filtered through 0.4 µm Nucleopore membrane filters. The leachate was analyzed for anions (F-, Cl-, Br-, and SO42-) which were measured on a Dionex ICS-2100 ion chromatograph, cations (K+, Na+, Ca2+, Mg2+, and Sr2+) which were measured on a PerkinElmer Optima 8300 Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES), and nutrients (NO3- + NO2-, PO43-, H4SiO4, and NH3) which were measured on a Skalar San++ Automated Wet Chemistry Analyzer at The Ohio State University. Perchlorate (ClO4-) and chlorate (ClO3-) were measured using an ion chromatograph-tandem mass spectrometry technique (IC-MS/MS) at Texas Tech University. Accuracy was typically better than 5% for all major anions, cations, and nutrients, as determined by the NIST 1643e external reference standard and the 2015 USGS interlaboratory calibration standard (M-216), and better than 10% for perchlorate and chlorate, as determined by spike recoveries. | ["POLYGON((-177.4213 -84.4647,-177.08802 -84.4647,-176.75474 -84.4647,-176.42146 -84.4647,-176.08818 -84.4647,-175.7549 -84.4647,-175.42162 -84.4647,-175.08834 -84.4647,-174.75506 -84.4647,-174.42178 -84.4647,-174.0885 -84.4647,-174.0885 -84.56732,-174.0885 -84.66994,-174.0885 -84.77256,-174.0885 -84.87518,-174.0885 -84.9778,-174.0885 -85.08042,-174.0885 -85.18304,-174.0885 -85.28566,-174.0885 -85.38828,-174.0885 -85.4909,-174.42178 -85.4909,-174.75506 -85.4909,-175.08834 -85.4909,-175.42162 -85.4909,-175.7549 -85.4909,-176.08818 -85.4909,-176.42146 -85.4909,-176.75474 -85.4909,-177.08802 -85.4909,-177.4213 -85.4909,-177.4213 -85.38828,-177.4213 -85.28566,-177.4213 -85.18304,-177.4213 -85.08042,-177.4213 -84.9778,-177.4213 -84.87518,-177.4213 -84.77256,-177.4213 -84.66994,-177.4213 -84.56732,-177.4213 -84.4647))"] | ["POINT(-175.7549 -84.9778)"] | false | false |
ICECAP Basal Interface Specularity Content Profiles: IPY and OIB
|
0733025 1543452 0636724 1443690 |
2020-08-24 | Young, Duncan A.; Blankenship, Donald D.; Roberts, Jason; Siegert, Martin; van Ommen, Tas; Greenbaum, Jamin; Schroeder, Dustin |
East Antarctic Grounding Line Experiment (EAGLE) IPY Research: Investigating the Cryospheric Evolution of the Central Antarctic Plate (ICECAP) Collaborative Research: Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP) Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System |
The International Collaborative Exploration of the Cryosphere though Airborne Profiling (ICECAP) collected five seasons of aerogeophysical data data through the NSFs International Polar Year and NASAs Operation Ice Bridge programs in East Antarctica, using the coherent HiCARS 60 MHz radar system. By comparing echo strengths for different focusing apertures, and accounting for the ranges and angles involved, we can derive the "specularity content" of the bed echo, a proxy for small scale bed roughness and a good indicator for subglacial water pressure in regions of distributed subglacial water (Schroeder et al., 2014, IEEE GRSL, 10.1109/LGRS.2014.2337878; IEEE; Dow et al., 2019, EPSL https://doi.org/10.1016/j.epsl.2019.115961). Specularity data are inherently noisy, so these products have been smoothed with a 1 km filter. | ["POLYGON((80 -65,89 -65,98 -65,107 -65,116 -65,125 -65,134 -65,143 -65,152 -65,161 -65,170 -65,170 -66.5,170 -68,170 -69.5,170 -71,170 -72.5,170 -74,170 -75.5,170 -77,170 -78.5,170 -80,161 -80,152 -80,143 -80,134 -80,125 -80,116 -80,107 -80,98 -80,89 -80,80 -80,80 -78.5,80 -77,80 -75.5,80 -74,80 -72.5,80 -71,80 -69.5,80 -68,80 -66.5,80 -65))"] | ["POINT(125 -72.5)"] | false | false |
UAV images and video of whales in the Antarctic Penisula during LMG1802
|
1644209 1440435 |
2020-05-10 | Friedlaender, Ari; Dale, Julian; Nowacek, Douglas; Bierlich, KC |
LTER Palmer, Antarctica (PAL): Land-Shelf-Ocean Connectivity, Ecosystem Resilience and Transformation in a Sea-Ice Influenced Pelagic Ecosystem |
This dataset contains UAV (drone) still images and video footage from whales in the Antarctic Peninsula region taken from LM Gould expedition (LMG1802) and small zodiacs. It also contains flight tracks as kml files. | ["POLYGON((-64.5 -63,-63.95 -63,-63.4 -63,-62.85 -63,-62.3 -63,-61.75 -63,-61.2 -63,-60.65 -63,-60.1 -63,-59.55 -63,-59 -63,-59 -63.22,-59 -63.44,-59 -63.66,-59 -63.88,-59 -64.1,-59 -64.32,-59 -64.54,-59 -64.76,-59 -64.98,-59 -65.2,-59.55 -65.2,-60.1 -65.2,-60.65 -65.2,-61.2 -65.2,-61.75 -65.2,-62.3 -65.2,-62.85 -65.2,-63.4 -65.2,-63.95 -65.2,-64.5 -65.2,-64.5 -64.98,-64.5 -64.76,-64.5 -64.54,-64.5 -64.32,-64.5 -64.1,-64.5 -63.88,-64.5 -63.66,-64.5 -63.44,-64.5 -63.22,-64.5 -63))"] | ["POINT(-61.75 -64.1)"] | false | false |
Near-bottom Videos from the Southern Ocean acquired during R/V Nathaniel B. Palmer expedition NBP1402
|
1143836 |
2020-05-01 | Leventer, Amy; Post, Alexandra; Blankenship, Donald D.; Domack, Eugene Walter; Gulick, Sean; Huber, Bruce; Orsi, Alejandro; Shevenell, Amelia |
Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics |
This Biology Species Abundance data set was acquired with a ship-based Camera during Nathaniel B. Palmer expedition NBP1001 conducted in 2010 (Chief Scientist: Dr. Eugene Domack; Investigator: Dr. Craig Smith). The data file is in XLS format and includes Biology Species Abundance Biology data that has not been processed. The data was acquired as part of the project called Collaborative Research in IPY: Abrupt Environmental Change in the LARsen Ice Shelf System, Antarctica (LARISSA). | ["POLYGON((118 -65.5,118.3 -65.5,118.6 -65.5,118.9 -65.5,119.2 -65.5,119.5 -65.5,119.8 -65.5,120.1 -65.5,120.4 -65.5,120.7 -65.5,121 -65.5,121 -65.65,121 -65.8,121 -65.95,121 -66.1,121 -66.25,121 -66.4,121 -66.55,121 -66.7,121 -66.85,121 -67,120.7 -67,120.4 -67,120.1 -67,119.8 -67,119.5 -67,119.2 -67,118.9 -67,118.6 -67,118.3 -67,118 -67,118 -66.85,118 -66.7,118 -66.55,118 -66.4,118 -66.25,118 -66.1,118 -65.95,118 -65.8,118 -65.65,118 -65.5))"] | ["POINT(119.5 -66.25)"] | false | false |
Bottom photos from the Southern Ocean acquired during R/V Nathaniel B. Palmer expedition NBP1402
|
1143836 |
2020-05-01 | Leventer, Amy; Post, Alexandra; Domack, Eugene Walter; Gulick, Sean; Huber, Bruce; Orsi, Alejandro; Shevenell, Amelia |
Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics |
This data set was acquired with a Nikon D80 Digital Camera on a towed Yoyo camera system during R/V Nathaniel B. Palmer expedition NBP1402 conducted in 2014. These data files are of JPEG Image format and include Photograph data that have not been processed. | ["POLYGON((118 -65.5,118.3 -65.5,118.6 -65.5,118.9 -65.5,119.2 -65.5,119.5 -65.5,119.8 -65.5,120.1 -65.5,120.4 -65.5,120.7 -65.5,121 -65.5,121 -65.65,121 -65.8,121 -65.95,121 -66.1,121 -66.25,121 -66.4,121 -66.55,121 -66.7,121 -66.85,121 -67,120.7 -67,120.4 -67,120.1 -67,119.8 -67,119.5 -67,119.2 -67,118.9 -67,118.6 -67,118.3 -67,118 -67,118 -66.85,118 -66.7,118 -66.55,118 -66.4,118 -66.25,118 -66.1,118 -65.95,118 -65.8,118 -65.65,118 -65.5))"] | ["POINT(119.5 -66.25)"] | false | false |
Processed Camera Images acquired during the Laurence M. Gould expedition LMG1311
|
1143981 |
2020-05-01 | Domack, Eugene Walter |
Continuation of the LARISSA Continuous GPS Network in View of Observed Dynamic Response to Antarctic Peninsula Ice Mass Balance and Required Geologic Constraints |
This data set was acquired with a camera during Laurence M. Gould expedition LMG1311 conducted in 2013. These data files are of JPEG format and include Photograph images that have not been processed | ["POLYGON((-66.5 -61.5,-65.85 -61.5,-65.2 -61.5,-64.55 -61.5,-63.9 -61.5,-63.25 -61.5,-62.6 -61.5,-61.95 -61.5,-61.3 -61.5,-60.65 -61.5,-60 -61.5,-60 -61.87,-60 -62.24,-60 -62.61,-60 -62.98,-60 -63.35,-60 -63.72,-60 -64.09,-60 -64.46,-60 -64.83,-60 -65.2,-60.65 -65.2,-61.3 -65.2,-61.95 -65.2,-62.6 -65.2,-63.25 -65.2,-63.9 -65.2,-64.55 -65.2,-65.2 -65.2,-65.85 -65.2,-66.5 -65.2,-66.5 -64.83,-66.5 -64.46,-66.5 -64.09,-66.5 -63.72,-66.5 -63.35,-66.5 -62.98,-66.5 -62.61,-66.5 -62.24,-66.5 -61.87,-66.5 -61.5))"] | ["POINT(-63.25 -63.35)"] | false | false |
The Geochemistry of englacial brine from Taylor Glacier, Antarctica.
|
1144176 |
2019-05-07 | Lyons, W. Berry; Gardner, Christopher B. |
Collaborative Research: MIDGE: Minimally Invasive Direct Glacial Exploration of Biogeochemistry, Hydrology and Glaciology of Blood Falls, McMurdo Dry Valleys |
Blood Falls is a hypersaline, iron‐rich discharge at the terminus of the Taylor Glacier in the McMurdo Dry Valleys, Antarctica. In November 2014, brine in a conduit within the glacier was penetrated and sampled using clean‐entry techniques and a thermoelectric melting probe called the IceMole. We analyzed the englacial brine sample for filterable iron (fFe), total Fe, major cations and anions, nutrients, organic carbon, and perchlorate. In addition, aliquots were analyzed for minor and trace elements and isotopes including δD and δ18O of water, δ34S and δ18O of sulfate, 234U, 238U, δ11B, 87Sr/86Sr, and δ81Br. These measurements were made in order to (1) determine the source and geochemical evolution of the brine and (2) compare the chemistry of the brine to that of nearby hypersaline lake waters and previous supraglacially sampled collections of Blood Falls outflow that were interpreted as end‐member brines. | ["POLYGON((162.250099 -77.719928,162.2519358 -77.719928,162.2537726 -77.719928,162.2556094 -77.719928,162.2574462 -77.719928,162.259283 -77.719928,162.2611198 -77.719928,162.2629566 -77.719928,162.2647934 -77.719928,162.2666302 -77.719928,162.268467 -77.719928,162.268467 -77.7201251,162.268467 -77.7203222,162.268467 -77.7205193,162.268467 -77.7207164,162.268467 -77.7209135,162.268467 -77.7211106,162.268467 -77.7213077,162.268467 -77.7215048,162.268467 -77.7217019,162.268467 -77.721899,162.2666302 -77.721899,162.2647934 -77.721899,162.2629566 -77.721899,162.2611198 -77.721899,162.259283 -77.721899,162.2574462 -77.721899,162.2556094 -77.721899,162.2537726 -77.721899,162.2519358 -77.721899,162.250099 -77.721899,162.250099 -77.7217019,162.250099 -77.7215048,162.250099 -77.7213077,162.250099 -77.7211106,162.250099 -77.7209135,162.250099 -77.7207164,162.250099 -77.7205193,162.250099 -77.7203222,162.250099 -77.7201251,162.250099 -77.719928))"] | ["POINT(162.259283 -77.7209135)"] | false | false |
CTD stations and logs for Araon 2018 ANA08D expedition to Larson C
|
1822289 |
2019-04-29 | Pan, B. Jack; Vernet, Maria |
RAPID: Collaborative Research: Marine Ecosystem Response to the Larsen C Ice-Shelf Breakout: "Time zero" |
Marine ecosystems under large ice shelves are thought to contain sparse, low-diversity plankton and seafloor communities due the low supply of food from productive sunlight waters. Past studies have shown sub-ice shelf ecosystems to change in response to altered oceanographic processes resulting from ice-shelve retreat. However, information on community changes and ecosystem structure under ice shelves are limited because sub-ice-shelf ecosystems have either been sampled many years after ice-shelf breakout, or have been sampled through small boreholes, yielding extremely limited spatial information. The recent breakout of the A-68 iceberg from the Larsen C ice shelf in the western Weddell Sea provides an opportunity to use a ship-based study to evaluate benthic communities and water column characteristics in an area recently vacated by a large overlying ice shelf. The opportunity will allow spatial assessments at the time of transition from an under ice-shelf environment to one initially exposed to conditions more typical of a coastal Antarctic marine setting. This RAPID project will help determine the state of a coastal Antarctic ecosystem newly exposed from ice-shelf cover and will aid in understanding of rates of community change during transition. The project will conduct a 10-day field program, allowing contrasts to be made of phytoplankton and seafloor megafaunal communities in areas recently exposed by ice-shelf loss to areas exposed for many decades. The project will be undertaken in a collaborative manner with the South Korean Antarctic Agency, KOPRI, by participating in a cruise in March/May 2018. Combining new information in the area of Larsen C with existing observations after the Larsen A and B ice shelf breakups further to the north, the project is expected to generate a dataset that can elucidate fundamental processes of planktonic and benthic community development in transition from food-poor to food-rich ecosystems. The project will provide field experience to two graduate students, a post-doctoral associate and an undergraduate student. Material from the project will be incorporated into graduate courses and the project will communicate daily work and unfolding events through social media and blogs while they explore this area of the world that is largely underexplored. | ["POLYGON((-59.402149 -62.131908,-58.9639887 -62.131908,-58.5258284 -62.131908,-58.0876681 -62.131908,-57.6495078 -62.131908,-57.2113475 -62.131908,-56.7731872 -62.131908,-56.3350269 -62.131908,-55.8968666 -62.131908,-55.4587063 -62.131908,-55.020546 -62.131908,-55.020546 -62.384829,-55.020546 -62.63775,-55.020546 -62.890671,-55.020546 -63.143592,-55.020546 -63.396513,-55.020546 -63.649434,-55.020546 -63.902355,-55.020546 -64.155276,-55.020546 -64.408197,-55.020546 -64.661118,-55.4587063 -64.661118,-55.8968666 -64.661118,-56.3350269 -64.661118,-56.7731872 -64.661118,-57.2113475 -64.661118,-57.6495078 -64.661118,-58.0876681 -64.661118,-58.5258284 -64.661118,-58.9639887 -64.661118,-59.402149 -64.661118,-59.402149 -64.408197,-59.402149 -64.155276,-59.402149 -63.902355,-59.402149 -63.649434,-59.402149 -63.396513,-59.402149 -63.143592,-59.402149 -62.890671,-59.402149 -62.63775,-59.402149 -62.384829,-59.402149 -62.131908))"] | ["POINT(-57.2113475 -63.396513)"] | false | false |
16S rRNA gene libraries of krill gut microbial communities
|
1543412 |
2019-03-31 | Reinfelder, John |
Methylmercury in Antarctic Krill Microbiomes |
This dataset includes 16S rRNA gene libraries produced from DNA extracted from pooled digestive tracts of Antarctic krill (Euphausia superba) collected in coastal waters west of the Antarctic Peninsula in 2014. | ["POLYGON((-69.9043 -65.8708,-69.74203 -65.8708,-69.57976 -65.8708,-69.41749 -65.8708,-69.25522 -65.8708,-69.09295 -65.8708,-68.93068 -65.8708,-68.76841 -65.8708,-68.60614 -65.8708,-68.44387 -65.8708,-68.2816 -65.8708,-68.2816 -66.05698,-68.2816 -66.24316,-68.2816 -66.42934,-68.2816 -66.61552,-68.2816 -66.8017,-68.2816 -66.98788,-68.2816 -67.17406,-68.2816 -67.36024,-68.2816 -67.54642,-68.2816 -67.7326,-68.44387 -67.7326,-68.60614 -67.7326,-68.76841 -67.7326,-68.93068 -67.7326,-69.09295 -67.7326,-69.25522 -67.7326,-69.41749 -67.7326,-69.57976 -67.7326,-69.74203 -67.7326,-69.9043 -67.7326,-69.9043 -67.54642,-69.9043 -67.36024,-69.9043 -67.17406,-69.9043 -66.98788,-69.9043 -66.8017,-69.9043 -66.61552,-69.9043 -66.42934,-69.9043 -66.24316,-69.9043 -66.05698,-69.9043 -65.8708))"] | ["POINT(-69.09295 -66.8017)"] | false | false |
Metadata accompanying BioProject SUB4579142
|
1656344 |
2019-02-04 | Bowman, Jeff |
A Preliminary Assessment of the Influence of Ice Cover on Microbial Carbon and Energy Acquisition during the Antarctic Winter-spring Seasonal Transition |
This dataset contains bacterial production, primary production, chlorophyll biomass, and photosynthetic parameters for samples archived in NCBI SRA as SUB4579142. | ["POLYGON((-64.1 -64.75,-64.08 -64.75,-64.06 -64.75,-64.04 -64.75,-64.02 -64.75,-64 -64.75,-63.98 -64.75,-63.96 -64.75,-63.94 -64.75,-63.92 -64.75,-63.9 -64.75,-63.9 -64.775,-63.9 -64.8,-63.9 -64.825,-63.9 -64.85,-63.9 -64.875,-63.9 -64.9,-63.9 -64.925,-63.9 -64.95,-63.9 -64.975,-63.9 -65,-63.92 -65,-63.94 -65,-63.96 -65,-63.98 -65,-64 -65,-64.02 -65,-64.04 -65,-64.06 -65,-64.08 -65,-64.1 -65,-64.1 -64.975,-64.1 -64.95,-64.1 -64.925,-64.1 -64.9,-64.1 -64.875,-64.1 -64.85,-64.1 -64.825,-64.1 -64.8,-64.1 -64.775,-64.1 -64.75))"] | ["POINT(-64 -64.875)"] | false | false |
Tomographic PIV measurements of swimming shelled Antarctic pteropod
|
1246296 |
2018-07-26 | Adhikari, Deepak; Webster, Donald R; Yen, Jeannette |
Collaborative Research: Pteropod Swimming Behavior as a Bio Assay for Ocean Acidification |
A portable tomographic particle image velocimetry (tomographic PIV) system is described. The system was successfully deployed in Antarctica to study shelled Antarctic pteropods (Limacina helicina antarctica) – a delicate organism with an unusual propulsion mechanism. The experimental setup consists of a free-standing frame assembled with optical rails, thus avoiding the need for heavy and bulky equipment (e.g. an optical table). The cameras, lasers, optics, and tanks are all rigidly supported within the frame assembly. The results indicate that the pteropods flap their parapodia (or “wings”) downward during both power and recovery strokes, which is facilitated by the pitching of their shell. Shell pitching significantly alters the flapping trajectory, allowing the pteropod to move vertically and/or horizontally. The pronation and supination of the parapodia, together with the figure eight motion during flapping, suggest similarities with insect flight. The volumetric velocity field surrounding the freely-swimming pteropod reveals the generation of an attached vortex ring connecting the leading edge vortex to the trailing edge vortex during power stroke, and a presence of a leading-edge vortex during recovery stroke. These vortex structures play a major role in accelerating the organism vertically and indicate that forces generated on the parapodia during flapping constitute both lift and drag. After completing each stroke, two vortex rings are shed into the wake of the pteropod. The complex combination of body kinematics (parapodia flapping, shell pitch, saw-tooth trajectory), flow structures, and resulting force balance may be significantly altered by thinning of the pteropod shell, thus making pteropods an indicator of the detrimental effects of ocean acidification. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
UPLC-Q-TOF data of Cotton Glacier exometabolites
|
1141978 |
2018-03-23 | Foreman, Christine; Tigges, Michelle; Bothner, Brian |
Multidimensional "omics" characterization of microbial metabolism and dissolved organic matter in Antarctica |
Mass spectra of external metabolites were obtained with a 1290 Ultra Performance Liquid Chromatography system coupled to a 6538 Ultra High Definition Accurate-Mass Quadrupole-Time of Flight mass spectrometer operated in positive mode with an electrospray ionization source (Agilent Technologies). 30 mL of filtered media was concentrated per sample by solid phase extraction. External metabolites were re-suspended in 50% (v/v) acetonitrile, and were separated using a reverse-phase Kinetix 1.7 um C18, 100A, 150 mm - 2.1 mm column. Data presented are from UPLC-Q-TOF measurements of mass to charge ratio, retention time, and replicate-averaged extracted ion chromatogram abundance values (counts) of molecular species that demonstrated a significant change in abundance (Two-way ANOVA, adjusted P<0.01) during incubations based on time point (T0: d0, T1: d27, T2: d63, T3: d98) and carbon source (Cotton Glacier: CG, Pony Lake: PL, Suwannee River: SR). | ["POLYGON((161.1667 -77.117,161.21673 -77.117,161.26676 -77.117,161.31679 -77.117,161.36682 -77.117,161.41685 -77.117,161.46688 -77.117,161.51691 -77.117,161.56694 -77.117,161.61697 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.61697 -77.117,161.56694 -77.117,161.51691 -77.117,161.46688 -77.117,161.41685 -77.117,161.36682 -77.117,161.31679 -77.117,161.26676 -77.117,161.21673 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117))"] | ["POINT(161.41685 -77.117)"] | false | false |
NBP14-02 JPC-55 Bulk Sediment Carbon and Nitrogen data
|
1430550 |
2017-08-18 | Smith, Catherine; Shevenell, Amelia; Domack, Eugene Walter |
Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics |
Bulk sediment carbon and nitrogen data data for Paleocene sediments collected on Totten continental shelf, East Antarctica. | ["POLYGON((120 -66,120.1 -66,120.2 -66,120.3 -66,120.4 -66,120.5 -66,120.6 -66,120.7 -66,120.8 -66,120.9 -66,121 -66,121 -66.4,121 -66.8,121 -67.2,121 -67.6,121 -68,121 -68.4,121 -68.8,121 -69.2,121 -69.6,121 -70,120.9 -70,120.8 -70,120.7 -70,120.6 -70,120.5 -70,120.4 -70,120.3 -70,120.2 -70,120.1 -70,120 -70,120 -69.6,120 -69.2,120 -68.8,120 -68.4,120 -68,120 -67.6,120 -67.2,120 -66.8,120 -66.4,120 -66))"] | ["POINT(120.5 -68)"] | false | false |
NBP14-02 JPC-54 and JPC-55 Pollen Assemblage data
|
1430550 |
2017-08-18 | Shevenell, Amelia; Smith, Catherine; Domack, Eugene Walter |
Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics |
Pollen assemblage data for Paleocene to early to middle Eocene sediments collected on Totten continental shelf, East Antarctica. | ["POLYGON((120 -66,120.1 -66,120.2 -66,120.3 -66,120.4 -66,120.5 -66,120.6 -66,120.7 -66,120.8 -66,120.9 -66,121 -66,121 -66.4,121 -66.8,121 -67.2,121 -67.6,121 -68,121 -68.4,121 -68.8,121 -69.2,121 -69.6,121 -70,120.9 -70,120.8 -70,120.7 -70,120.6 -70,120.5 -70,120.4 -70,120.3 -70,120.2 -70,120.1 -70,120 -70,120 -69.6,120 -69.2,120 -68.8,120 -68.4,120 -68,120 -67.6,120 -67.2,120 -66.8,120 -66.4,120 -66))"] | ["POINT(120.5 -68)"] | false | false |
WAIS Divide WDC06A Discrete ICP-MS Chemistry
|
0636740 |
2017-04-27 | Kreutz, Karl |
Collaborative Research: Microparticle/tephra analysis of the WAIS Divide ice core |
This dataset includes discrete ICP-MS chemistry data generated at the University of Maine for the top 577 m of the WAIS Divide deep ice core (WDC06A). There are two parallel datasets, produced from a single set of samples that were melted continuously, collected by fraction collector and split manually (by pouring). The first set was acidified to 10% v/v nitric acid and allowed to leach for one month prior to analysis. These are referred to as "total" samples (see below). The second set were filtered using individual hand-held 0.45 um filters and syringes, then acidified to 10% v/v nitric acid and analyzed. These are referred to as "dissolved" samples. Reported depths are based on values assigned during melting; please note that these are subject to change. Please contact Karl and Bess if you plan to use the data or have any questions. | ["POINT(-112.1115 -79.481)"] | ["POINT(-112.1115 -79.481)"] | false | false |
Tomographic Imaging of the Velocity and Magnetic Fields in the Sun's Atmosphere
|
0632399 |
2016-01-01 | Jefferies, Stuart M. |
Tomographic Imaging of the Velocity and Magnetic Fields in the Sun's Atmosphere |
The ultimate goal of this project is to determine the structure and dynamics of the Sun's atmosphere, assess the role of MHD waves in heating the chromosphere/corona and driving the solar wind, and better understand how the Sun's atmosphere couples to the solar interior. As the solar atmosphere is 'home' to many of the solar phenomena that can have a direct impact on the biosphere, including flares, coronal mass ejections, and the solar wind, the broader impact of such studies is that they will lead to an improved understanding of the Sun-Earth connection. Under the current award we have developed a suite of instruments that can simultaneously image the line-of-sight Doppler velocity and longitudinal magnetic field at four heights in the solar atmosphere at high temporal cadence. The instruments use magneto-optical filters (see Cacciani, Moretti and Rodgers, Solar Physics 174, p.115, 2004) tuned to the solar absorption lines at 422 nm (Ca I), 589 nm (Na D2), 770 nm (K) and 1083 nm (He). These lines sample the solar atmosphere from the mid-photosphere to the high-chromosphere. A proof-of-concept run was made in the Austral summer of 2007/2008 using the Na and K versions of the instruments. Here we recorded over 40 hours of full-disk, intensity images of the Sun in the red and blue wings of the Na and K Fraunhofer lines, in both right- and left-circularly polarized light. The images were obtained at a rate of one every five seconds with a nominal spatial resolution of 4 arc-seconds. The run started at 09:44 UT on February 2, 2008 and ended at 03:30 UT on February 4, 2008. Data Quality Assessment: The temperature controls of the instrument housings were unable to fully compensate for the harse Antartic winds encountered during the observing run. This led to large (~15 C) temperature swings which adversely affected the instruments (and thus data quality) in two ways: 1) Crystals of Na and K were deposited on the magneto-optical filter windows leading to "hot spots" in the images. These "hot spots" come and go with time as the temperature changes. 2) The changing temperature caused the optical rails to contract and expand causing the final images to go in- and out-of-focus, thus reducing the resolution to greater than 4 arc-seconds. Both these effect are worse in the K data. Despite these problems, the intensity images can be combined to provide magnetic images that show a very high sensitivity (< 5 Gauss in a 5 second integration). Data Description: The raw data are stored as a series of 1024x1024x4 FITS images. The format is: blue image (left circulary polarized light), blue image (right circularly polarized light), red image (left circulary polarized light), red image (right circularly polarized light). The naming convention for the images is: Type_Instrument_Day_hour_minutes_seconds where Type is I (intensity), F (flatfield), D (dark) Instrument is 0 (Na), 1 (K) Day is the day number from the beginning of the year where January 1 is day 0 For example, I_0_32_12_34_40.fits is an intensity image taken with the Na instrument at 12:34.40 UT on February 2, 2008. Notes: 1) The flatfield images were acquired by moving a diffuser in front of the Sun during the integration. The resulting images therefore have to be corrected for residual low-spatial frequencies due to the non-flat nature of the light source. 2) Each FITS file header contains a variety of information on the observation, e.g., F_CNTO : number of summed frames in each 5 second integration (*) FPS : Camera frame rate (Frames Per Second) FLIP : Rate at which the half-wave rotator (magnetic switch) was switched INT_PER : Integration time (in seconds) MOF : Temperature of magneto-optical filter cell WS : Temperature of wing selector cell TEMP_0 : Temperature of camera 0 TEMP_1 : Temperature of camera 1 TEMP_2 : Temperature inside instrument (location 1) TEMP_3 : Temperature of narrowband filter TEMP_5 : Temperature of magnets surrounding MOF cell TEMP_6 : Temperature inside instrument (location 2) TEMP_7 : Temperature of housing for magnetic switch (*) This is the frame count for the camera. The number of frames in each image for the two different polarization states, is half this number. The measured temperatures are only coarse measurements. 3) Due to reflection in the final polarizing beam splitter (which separates the "red" and "blue" signals into the two cameras), the camera 1 data need to "reversed" along the x-axis (i.e. listed as [1024:1] instead of [1:1024]) 4) Line-of-sight velocity and magnetic field images are generated from the observed intensity images. Doppler images as (red-blue)/(red+blue), magnetic images as the difference between the Doppler images for right- and left-circularly polarized light. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Linking the Movement Patterns and Foraging Behavior of Humpback Whales to their Prey across Multiple Spatial Scales within the LTER Study Region
|
1250208 |
2016-01-01 | Friedlaender, Ari; Johnston, David; Nowacek, Douglas |
RAPID: Linking the Movement Patterns and Foraging Behavior of Humpback Whales to their Prey across Multiple Spatial Scales within the LTER Study Region |
Whales play a central role in the ecology and biogeochemistry of the Southern Ocean. However, little is known regarding their distribution and behavior, in part because of challenges associated with studying these organisms from large research vessels. This research will take advantage of the unique opportunity presented by the 2012-2013 test run of the smaller, more mobile R/V Point Sur. This work will use the Point Sur to investigate humpback whales in the waters studied by the Palmer Long Term Ecological Research (LTER) Station off the Western Antarctic Peninsula (WAP). Employing a combination of long-term satellite-linked tags and short-term suction cup tags, researchers will investigate the distribution, abundance and foraging behaviors of whales in this region. Whale biogeography will then be related to quantitative surveys of krill, their primary food source. Hypotheses regarding whale distribution and foraging strategies as well as physical oceanographic features will be tested. The WAP is undergoing some of the most dramatic warming on the planet, and a better understanding of the ecology of top predators is central to developing an understanding of the impacts of this change. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. Finally, this work will be coordinated with the extensive infrastructure of the Palmer LTER site, enabling outreach and educational activities. | ["POLYGON((-80 -63,-78 -63,-76 -63,-74 -63,-72 -63,-70 -63,-68 -63,-66 -63,-64 -63,-62 -63,-60 -63,-60 -63.7,-60 -64.4,-60 -65.1,-60 -65.8,-60 -66.5,-60 -67.2,-60 -67.9,-60 -68.6,-60 -69.3,-60 -70,-62 -70,-64 -70,-66 -70,-68 -70,-70 -70,-72 -70,-74 -70,-76 -70,-78 -70,-80 -70,-80 -69.3,-80 -68.6,-80 -67.9,-80 -67.2,-80 -66.5,-80 -65.8,-80 -65.1,-80 -64.4,-80 -63.7,-80 -63))"] | ["POINT(-70 -66.5)"] | false | false |
Bromide in Snow in the Sea Ice Zone
|
1043145 |
2016-01-01 | Obbard, Rachel |
Bromide in Snow in the Sea Ice Zone |
A range of chemical and microphysical pathways in polar latitudes, including spring time (tropospheric) ozone depletion, oxidative pathways for mercury, and cloud condensation nuclei (CCN) production leading to changes in the cloud cover and attendant surface energy budgets, have been invoked as being dependent upon the emission of halogen gases formed in sea-ice. The prospects for climate warming induced reductions in sea ice extent causing alteration of these incompletely known surface-atmospheric feedbacks and interactions requires confirmation of mechanistic details in both laboratory studies and field campaigns. One such mechanistic question is how bromine (BrO and Br) enriched snow migrates or is formed through processes in sea-ice, prior to its subsequent mobilization as an aerosol fraction into the atmosphere by strong winds. Once aloft, it may react with ozone and other atmospheric species. Dartmouth researchers will collect snow from the surface of sea ice, from freely blowing snow and in sea-ice cores from Cape Byrd, Ross Sea. A range of spectroscopic, microanalytic and and microstructural approaches will be subsequently used to determine the Br distribution gradients through sea-ice, in order to shed light on how sea-ice first forms and then releases bromine species into the polar atmospheric boundary layer. | ["POLYGON((164.1005 -77.1188,164.36443 -77.1188,164.62836 -77.1188,164.89229 -77.1188,165.15622 -77.1188,165.42015 -77.1188,165.68408 -77.1188,165.94801 -77.1188,166.21194 -77.1188,166.47587 -77.1188,166.7398 -77.1188,166.7398 -77.19337,166.7398 -77.26794,166.7398 -77.34251,166.7398 -77.41708,166.7398 -77.49165,166.7398 -77.56622,166.7398 -77.64079,166.7398 -77.71536,166.7398 -77.78993,166.7398 -77.8645,166.47587 -77.8645,166.21194 -77.8645,165.94801 -77.8645,165.68408 -77.8645,165.42015 -77.8645,165.15622 -77.8645,164.89229 -77.8645,164.62836 -77.8645,164.36443 -77.8645,164.1005 -77.8645,164.1005 -77.78993,164.1005 -77.71536,164.1005 -77.64079,164.1005 -77.56622,164.1005 -77.49165,164.1005 -77.41708,164.1005 -77.34251,164.1005 -77.26794,164.1005 -77.19337,164.1005 -77.1188))"] | ["POINT(165.42015 -77.49165)"] | false | false |
WAIS Divide Microparticle Concentration and Size Distribution, 0-2400 ka
|
0636740 |
2015-06-29 | Koffman, Bess; Kreutz, Karl |
Collaborative Research: Microparticle/tephra analysis of the WAIS Divide ice core |
This data set includes raw dust microparticle data for the WAIS Divide deep core, WDC06A, from the surface to 577 m. Data were collected in 2010 using a Klotz Abakus laser particle counter connected to a continuous ice core melter system at the University of Maine (Breton et al., 2012). | ["POINT(-112.5 -79.28)"] | ["POINT(-112.5 -79.28)"] | false | false |
Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula
|
0838996 |
2014-01-01 | Hollibaugh, James T. |
Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula |
Ammonia oxidation is the first step in the conversion of regenerated nitrogen to dinitrogen gas, a 3-step pathway mediated by 3 distinct guilds of bacteria and archaea. Ammonia oxidation and the overall process of nitrification-denitrification have received relatively little attention in polar oceans where the effects of climate change on biogeochemical rates are likely to be pronounced. Previous work on Ammonia Oxidizing Archaea (AOA) in the Palmer LTER study area West of the Antarctic Peninsula (WAP), has suggested strong vertical segregation of crenarchaeote metabolism, with the 'winter water' (WW, ~50-100 m depth range) dominated by non-AOA crenarchaeotes, while Crenarchaeota populations in the 'circumpolar deep water' (CDW), which lies immediately below the winter water (150-3500 m), are dominated by AOA. Analysis of a limited number of samples from the Arctic Ocean did not reveal a comparable vertical segregation of AOA, and suggested that AOA and Crenarchaeota abundance is much lower there than in the Antarctic. These findings led to 3 hypotheses that will be tested in this project: 1) the apparent low abundance of Crenarchaeota and AOA in Arctic Ocean samples may be due to spatial or temporal variability in populations; 2) the WW population of Crenarchaeota in the WAP is dominated by a heterotroph; 3) the WW population of Crenarchaeota in the WAP 'grows in' during spring and summer after this water mass forms. The study will contribute substantially to understanding an important aspect of the nitrogen cycle in the Palmer LTER (Long Term Ecological Research) study area by providing insights into the ecology and physiology of AOA. The natural segregation of crenarchaeote phenotypes in waters of the WAP, coupled with metagenomic studies in progress in the same area by others (A. Murray, H. Ducklow), offers the possibility of major breakthroughs in understanding of the metabolic capabilities of these organisms. This knowledge is needed to model how water column nitrification will respond to changes in polar ecosystems accompanying global climate change. The Principal Investigator will participate fully in the education and outreach efforts of the Palmer LTER, including making highlights of our findings available for posting to their project web site and participating in outreach (for example, Schoolyard LTER). The research also will involve undergraduates (including the field work if possible) and will support high school interns in the P.I.'s laboratory over the summer. | ["POLYGON((-79 -63,-77.5 -63,-76 -63,-74.5 -63,-73 -63,-71.5 -63,-70 -63,-68.5 -63,-67 -63,-65.5 -63,-64 -63,-64 -63.8,-64 -64.6,-64 -65.4,-64 -66.2,-64 -67,-64 -67.8,-64 -68.6,-64 -69.4,-64 -70.2,-64 -71,-65.5 -71,-67 -71,-68.5 -71,-70 -71,-71.5 -71,-73 -71,-74.5 -71,-76 -71,-77.5 -71,-79 -71,-79 -70.2,-79 -69.4,-79 -68.6,-79 -67.8,-79 -67,-79 -66.2,-79 -65.4,-79 -64.6,-79 -63.8,-79 -63))"] | ["POINT(-71.5 -67)"] | false | false |
Impact of Rising Oceanic Temperatures on the Embryonic Development of Antarctic Notothenioid Fishes
|
1019305 |
2014-01-01 | Grim, Jeffrey |
PostDoctoral Research Fellowship |
Survival of Antarctic notothenioid fishes in the context of global climate change will depend upon the impact of rising oceanic temperatures on their embryonic development, yet little is known regarding the molecular mechanisms underlying this complex suite of processes. Many notothenioids are characterized by secondary pelagicism, which enables them to exploit food sources in the water column and is supported in part by skeletal pedomorphism. Here the PI proposes to examine the hypothesis that reactive oxygen species (ROS) regulate notothenioid skeletal pedomorphism. The research objectives are : 1) To quantify and localize ROS production and identify the point(s) of origin of ROS production in embryonic Antarctic fishes that differ in skeletal phenotypes 2) To determine whether the time course of embryogenesis and the extent of osteological development in embryonic Antarctic fishes can be altered by changing the oxidative status of the animal during embryogenesis 3) To evaluate whether transgenic alteration of oxidative status can induce skeletal pedomorphism in a fish model. Broader Impacts will include teaching undergraduate lectures, recruiting undergraduate students to help with lab analyses (and possibly field work), lectures and demonstrations to high school students, and allowing secondary educators access to personal photos and videos of research animals for curriculum development. | [] | [] | false | false |
Alternative Nutritional Strategies in Antarctic Protists
|
0838955 |
2013-01-01 | Gast, Rebecca |
Collaborative Research: Alternative Nutritional Strategies in Antarctic Protists |
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Most organisms meet their carbon and energy needs using photosynthesis (phototrophy) or ingestion/assimilation of organic substances (heterotrophy). However, a nutritional strategy that combines phototrophy and heterotrophy - mixotrophy - is geographically and taxonomically widespread in aquatic systems. While the presence of mixotrophs in the Southern Ocean is known only recently, preliminary evidence indicates a significant role in Southern Ocean food webs. Recent work on Southern Ocean dinoflagellate, Kleptodinium, suggests that it sequesters functional chloroplasts of the bloom-forming haptophyte, Phaeocystis antarctica. This dinoflagellate is abundant in the Ross Sea, has been reported elsewhere in the Southern Ocean, and may have a circumpolar distribution. By combining nutritional modes. mixotrophy may offer competitive advantages over pure autotrophs and heterotrophs. The goals of this project are to understand the importance of alternative nutritional strategies for Antarctic species that combine phototrophic and phagotrophic processes in the same organism. The research will combine field investigations of plankton and ice communities in the Southern Ocean with laboratory experiments on Kleptodinium and recently identified mixotrophs from our Antarctic culture collections. The research will address: 1) the relative contributions of phototrophy and phagotrophy in Antarctic mixotrophs; 2) the nature of the relationship between Kleptodinium and its kleptoplastids; 3) the distributions and abundances of mixotrophs and Kleptodinium in the Southern Ocean during austral spring/summer; and 4) the impacts of mixotrophs and Kleptodinium on prey populations, the factors influencing these behaviors and the physiological conditions of these groups in their natural environment. The project will contribute to the maintenance of a culture collection of heterotrophic, phototrophic and mixotrophic Antarctic protists that are available to the scientific community, and it will train graduate and undergraduate students at Temple University. Research findings and activities will be summarized for non-scientific audiences through the PIs' websites and through other public forums, and will involve middle school teachers via collaboration with COSEE-New England. | ["POLYGON((71.504166 -76.159164,71.5142214 -76.159164,71.5242768 -76.159164,71.5343322 -76.159164,71.5443876 -76.159164,71.554443 -76.159164,71.5644984 -76.159164,71.5745538 -76.159164,71.5846092 -76.159164,71.5946646 -76.159164,71.60472 -76.159164,71.60472 -76.2018032,71.60472 -76.2444424,71.60472 -76.2870816,71.60472 -76.3297208,71.60472 -76.37236,71.60472 -76.4149992,71.60472 -76.4576384,71.60472 -76.5002776,71.60472 -76.5429168,71.60472 -76.585556,71.5946646 -76.585556,71.5846092 -76.585556,71.5745538 -76.585556,71.5644984 -76.585556,71.554443 -76.585556,71.5443876 -76.585556,71.5343322 -76.585556,71.5242768 -76.585556,71.5142214 -76.585556,71.504166 -76.585556,71.504166 -76.5429168,71.504166 -76.5002776,71.504166 -76.4576384,71.504166 -76.4149992,71.504166 -76.37236,71.504166 -76.3297208,71.504166 -76.2870816,71.504166 -76.2444424,71.504166 -76.2018032,71.504166 -76.159164))"] | ["POINT(71.554443 -76.37236)"] | false | false |
The Role of Snow Patches on the Spatial Distribution of Soil Microbial Communities and Biogeochemical Cycling in the Antarctic Dry Valleys
|
0838850 |
2013-01-01 | Gooseff, Michael N. |
Collaborative Research: The Role of Snow Patches on the Spatial Distribution of Soil Microbial Communities and Biogeochemical Cycling in the Antarctic Dry Valleys |
Two models have been proposed to describe controls over microbial biogeography. One model proposes that microbes are ubiquitously distributed across the global environment, and that environmental conditions select for taxa physiologically adapted to local physical conditions. An alternative model predicts that dispersal is the important limitation to the distribution of microorganisms and that spatial heterogeneity of microbial communities is a result of both dispersal and local environmental limitations. According to both models, spatial heterogeneity of microbial communities may be especially pronounced in extreme ecosystems where the environmental selection for organisms with suitable physiology is most strongly manifest. We propose that Antarctic terrestrial environments are ideal places to examine microbial biogeography for 3 reasons: 1) the pristine nature and remoteness of Antarctica minimizes the prevalence of exotic species dispersed through human vectors; 2) the extreme conditions of Antarctic environments provide a strong environmental filter which limits the establishment of non-indigenous taxa; and 3) extreme heterogeneity in the terrestrial environment provides natural gradients of soil conditions (temperature, water and nutrient availability). In the proposed research we will investigate the influence of snow on the composition and spatial distribution of soil microbial communities and linked biogeochemical cycling in the McMurdo Dry Valleys. We will conduct fieldwork at the landscape scale (repeated remote sensing to characterize snow distribution), at the valley and patch scales (quantify snow patch ablation, microbial communities and biogeochemical cycling in subnivian soils). We hypothesize that snow patches play an important role in structuring the spatial distribution of soil microbial communities and their associated ecosystem functioning because of the physical and hydrological influences that snow patches have on the soil environment. The research will contribute to greater public awareness of the importance of polar research to fundamental questions of biology, ecology and hydrology through direct linkages with International Antarctic Institute public outreach activities, including dissemination of web-based learning units on environmental science and microbiology, targeted as resources for secondary and post-secondary educators. Three graduate students, one postdoctoral scholar and multiple undergraduates will participate in the research activities. | ["POLYGON((-163.3 -77.62,-163.202 -77.62,-163.104 -77.62,-163.006 -77.62,-162.908 -77.62,-162.81 -77.62,-162.712 -77.62,-162.614 -77.62,-162.516 -77.62,-162.418 -77.62,-162.32 -77.62,-162.32 -77.631,-162.32 -77.642,-162.32 -77.653,-162.32 -77.664,-162.32 -77.675,-162.32 -77.686,-162.32 -77.697,-162.32 -77.708,-162.32 -77.719,-162.32 -77.73,-162.418 -77.73,-162.516 -77.73,-162.614 -77.73,-162.712 -77.73,-162.81 -77.73,-162.908 -77.73,-163.006 -77.73,-163.104 -77.73,-163.202 -77.73,-163.3 -77.73,-163.3 -77.719,-163.3 -77.708,-163.3 -77.697,-163.3 -77.686,-163.3 -77.675,-163.3 -77.664,-163.3 -77.653,-163.3 -77.642,-163.3 -77.631,-163.3 -77.62))"] | ["POINT(-162.81 -77.675)"] | false | false |
Photoheterotrophic Microbes in the West Antarctic Peninsula Marine Ecosystem
|
0838830 |
2013-01-01 | Cottrell, Matthew; Kirchman, David |
Photoheterotrophic Microbes in the West Antarctic Peninsula Marine Ecosystem |
Light quality and availability are likely to change in polar ecosystems as ice coverage and thickness decrease. How microbes adjust to these and other changes will have huge impacts on the polar marine ecosystems. Little is known about photoheterotrophic prokaryotes, which are hypothesized to gain a metabolic advantage by harvesting light energy in addition to utilizing dissolved organic matter (DOM). Photoheterotrophy is not included in current models of carbon cycling and energy flow. This research will examine three questions: 1. Are photoheterotrophic microbes present and active in Antarctic waters in winter and summer? 2. Does community structure of photoheterotrophs shift between summer and winter? 3. Which microbial groups assimilate more DOM in light than in the dark? The research will test hypotheses about activity of photoheterotrophs in winter and in summer, shifts in community structure between light and dark seasons and the potentially unique impacts of photoheterotrophs on biogeochemical processes in the Antarctic. The project will directly support a graduate student, will positively impact the NSF REU program at the College of Marine and Earth Studies, and will include students from the nation's oldest historical minority college. The results will be featured during weekly tours of Lewes facilities (about 1000 visitors per year) and during Coast Day, an annual open-house that attracts about 10,000 visitors. | ["POLYGON((-64.079666 -64.77966,-64.0757659 -64.77966,-64.0718658 -64.77966,-64.0679657 -64.77966,-64.0640656 -64.77966,-64.0601655 -64.77966,-64.0562654 -64.77966,-64.0523653 -64.77966,-64.0484652 -64.77966,-64.0445651 -64.77966,-64.040665 -64.77966,-64.040665 -64.783261,-64.040665 -64.786862,-64.040665 -64.790463,-64.040665 -64.794064,-64.040665 -64.797665,-64.040665 -64.801266,-64.040665 -64.804867,-64.040665 -64.808468,-64.040665 -64.812069,-64.040665 -64.81567,-64.0445651 -64.81567,-64.0484652 -64.81567,-64.0523653 -64.81567,-64.0562654 -64.81567,-64.0601655 -64.81567,-64.0640656 -64.81567,-64.0679657 -64.81567,-64.0718658 -64.81567,-64.0757659 -64.81567,-64.079666 -64.81567,-64.079666 -64.812069,-64.079666 -64.808468,-64.079666 -64.804867,-64.079666 -64.801266,-64.079666 -64.797665,-64.079666 -64.794064,-64.079666 -64.790463,-64.079666 -64.786862,-64.079666 -64.783261,-64.079666 -64.77966))"] | ["POINT(-64.0601655 -64.797665)"] | false | false |
Geochemistry and Microbiology of the Extreme Aquatic Environment in Lake Vida, East Antarctica
|
0739698 0739681 |
2013-01-01 | Murray, Alison |
Collaborative Research: Geochemistry and Microbiology of the Extreme Aquatic Environment in Lake Vida, East Antarctica |
Lake Vida is the largest lake of the McMurdo Dry Valleys, with an approximately 20 m ice cover overlaying a brine of unknown depth with at least 7 times seawater salinity and temperatures below -10 degrees C year-round. Samples of brine collected from ice above the main water body contain 1) the highest nitrous oxide levels of any natural water body on Earth, 2) unusual geochemistry including anomalously high ammonia and iron concentrations, 3) high microbial counts with an unusual proportion (99%) of ultramicrobacteria. The microbial community is unique even compared to other Dry Valley Lakes. The research proposes to enter, for the first time the main brine body below the thick ice of Lake Vida and perform in situ measurements, collect samples of the brine column, and collect sediment cores from the lake bottom for detailed geochemical and microbiological analyses. The results will allow the characterization of present and past life in the lake, assessment of modern and past sedimentary processes, and determination of the lake's history. The research will be conducted by a multidisciplinary team that will uncover the biogeochemical processes associated with a non-photosynthetic microbial community isolated for a significant period of time. This research will address diversity, adaptive mechanisms and evolutionary processes in the context of the physical evolution of the environment of Lake Vida. Results will be widely disseminated through publications, presentations at national and international meetings, through the Subglacial Antarctic Lake Exploration (SALE) web site and the McMurdo LTER web site. The research will support three graduate students and three undergraduate research assistants. The results will be incorporated into a new undergraduate biogeosciences course at the University of Illinois at Chicago which has an extremely diverse student body, dominated by minorities. | ["POINT(161.931 -77.3885)"] | ["POINT(161.931 -77.3885)"] | false | false |
Real-Time Characterization of Adelie Penguin Foraging Environment Using an Autonomous Underwater Vehicle
|
1019838 |
2013-01-01 | Wendt, Dean; Moline, Mark |
Real-Time Characterization of Adelie Penguin Foraging Environment Using an Autonomous Underwater Vehicle |
The Antarctic Peninsula is among the most rapidly warming regions on earth. Increased heat from the Antarctic Circumpolar Current has elevated the temperature of the 300 m of shelf water below the permanent pycnocline by 0.7 degrees C. This trend has displaced the once dominant cold, dry continental Antarctic climate, and is causing multi-level responses in the marine ecosystem. One striking example of the ecosystem response to warming has been the local declines in ice-dependent Adélie penguins. The changes in these apex predators are thought to be driven by alterations in phytoplankton and zooplankton community composition, and the foraging limitations and diet differences between these species. One of the most elusive questions facing researchers interested in the foraging ecology of the Adélie penguin, namely, what are the biophysical properties that characterize the three dimensional foraging space of this top predator? The research will combine the real-time site and diving information from the Adélie penguin satellite tags with the full characterization of the oceanography and the penguins prey field using an autonomous underwater vehicle (AUV). While some of these changes have been documented over large spatial scales of the WAP, it is now thought that the causal mechanisms that favor of one life history strategy over another may actually operate over much smaller scales than previously thought, specifically on the scale of local breeding sites and over-wintering areas. Characterization of prey fields on these local scales has yet to be done and one that the AUV is ideally suited. The results will have a direct tie to the climate induced changes that are occurring in the West Antarctic Peninsula. This study will also highlight a new approach to linking an autonomous platform to bird behavior that could be expanded to include the other two species of penguins and examine the seasonal differences in their foraging behavior and prey selection. From a vehicle perspective, this effort will inform the AUV user community of new sensor suites and/or data processing approaches that are required to better evaluate foraging habitat. The project also will help transition AUV platforms into routine investigative tools for this region, which is chronically under sampled and will remain difficult to access | [] | [] | false | false |
WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning
|
0739780 |
2011-01-01 | Taylor, Kendrick C. |
WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning |
This award supports a project to develop a 2,000-year high-temporal resolution record of biomass burning from the analysis of black carbon in the WAIS Divide bedrock ice core. Pilot data for the WAIS WD05A core demonstrates that we now have the ability to reconstruct this record with minimal impact on the amount of ice available for other projects. The intellectual merit of this project is that black carbon (BC) aerosols result solely from combustion and play a critical but poorly quantified role in global climate forcing and the carbon cycle. When incorporated into snow and ice, BC increases absorption of solar radiation making seasonal snow packs, mountain glaciers, polar ice sheets, and sea ice much more vulnerable to climate warming. BC emissions in the Southern Hemisphere are dominated by biomass burning in the tropical regions of Southern Africa, South America and South Asia. Biomass burning, which results from both climate and human activities, alters the atmospheric composition of greenhouse gases, aerosols and perturbs key biogeochemical cycles. A long-term record of biomass burning is needed to aid in the interpretation of ice core gas composition and will provide important information regarding human impacts on the environment and climate before instrumental records. | ["POINT(-112.117 -79.666)"] | ["POINT(-112.117 -79.666)"] | false | false |
Quantifying the Role of Short-Period Gravity Waves on the Antarctic Mesospheric Dynamics Using an Advanced Mesospheric Temperature Mapper
|
0542164 |
2011-01-01 | Taylor, Michael |
Quantifying the Role of Short-Period Gravity Waves on the Antarctic Mesospheric Dynamics Using an Advanced Mesospheric Temperature Mapper |
A focused plan is presented to investigate the role and importance of short period (<1 hour) gravity waves on the dynamics of the Antarctic Mesosphere and Lower Thermosphere (MLT) region (~80-100 km). Excited primarily by deep convection, frontal activity, topography, and strong wind shears in the lower atmosphere, these waves transport energy and momentum upwards where they have a profound influence on the MLT dynamics. Most of the wave forcing is expected to occur at mid-and low-latitudes where such sources predominate. However, short-period waves (exhibiting similar characteristics to mid-latitude events) have now been detected in copious quantities from research sites on the Antarctic Peninsula and the coastal regions exhibiting strong anisotropy in their dominant horizontal motions (and hence their momentum fluxes). Radiosonde measurements have established the existence of ubiquitous gravity wave activity at South Pole but, to date, there have been no detailed measurements of the properties of short-period waves at MLT heights deep in the Antarctic interior. In particular, the South Pole Station is uniquely situated to investigate the filtering and penetration of these waves into the MLT region, a substantial fraction of which may be ducted waves traveling over vast geographic distances (several thousand km). Novel image measurements at South Pole Station combined with existing measurement programs will provide an unprecedented capability for quantifying the role of these gravity waves on the regional MLT dynamics over central Antarctica. This research also contributes to the training and education of both the graduate and undergraduate students. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
IPY: Bacterioplankton Genomic Adaptations to Antarctic Winter
|
0632389 |
2011-01-01 | Grzymski, Joseph; Murray, Alison |
IPY: Bacterioplankton Genomic Adaptations to Antarctic Winter |
The Western Antarctic Peninsula is experiencing one of the most rapid rates of climate warming on Earth, with an increase of 5degrees C in the mean winter temperature in 50 years. Impacts on upper trophic levels are evident, though there have been few, if any studies that have considered the impacts on bacterioplankton in the Southern Ocean. This proposal will characterize the winter bacterioplankton genome, transcriptome, and proteome and discover those features (community composition, genes up-regulated, and proteins expressed) that are essential to winter bacterioplankton survival and livelihood. We have assembled a polar ocean ecology and genomics network including strategic partnerships with Palmer LTER, the British Antarctic Survey's ocean metagenome program, US and Canadian scientists studying the Arctic Ocean genome, an Australian colleague who specialized in archaeal proteomics, and French colleagues studying Sub-Antarctic and Coastal Adelie Land marine bacterioplankton. The primary objectives of this program are: 1 Describe the differences in diversity and genomic content between austral winter and summer bacterioplankton communities. 2. Investigate the winter-time bacterioplankton growth and cellular signals (mRNA and proteins expressed) in order to understand the specific adaptations key to survival. Our results will extend from the Antarctic to the Arctic - as the cold, dark, carbon-limited deep seas linking these two systems have many common features. Education and outreach activities target (i) undergraduate and graduate students, hopefully including minority students recruited through the Diversity in Research in Environmental and Marine Sciences (DREAMS) Program at VIMS; (ii) a broad audience with our education and outreach partnerships with The Cousteau Society and with the Census for Antarctic Marine Life program. Data and links to external databases will be listed on the http://genex2.dri.edu website. Sequence data will be publicly accessible in GenBank and IMG-M databases. | ["POLYGON((-65.3827 -64.4213,-65.13333 -64.4213,-64.88396 -64.4213,-64.63459 -64.4213,-64.38522 -64.4213,-64.13585 -64.4213,-63.88648 -64.4213,-63.63711 -64.4213,-63.38774 -64.4213,-63.13837 -64.4213,-62.889 -64.4213,-62.889 -64.47176,-62.889 -64.52222,-62.889 -64.57268,-62.889 -64.62314,-62.889 -64.6736,-62.889 -64.72406,-62.889 -64.77452,-62.889 -64.82498,-62.889 -64.87544,-62.889 -64.9259,-63.13837 -64.9259,-63.38774 -64.9259,-63.63711 -64.9259,-63.88648 -64.9259,-64.13585 -64.9259,-64.38522 -64.9259,-64.63459 -64.9259,-64.88396 -64.9259,-65.13333 -64.9259,-65.3827 -64.9259,-65.3827 -64.87544,-65.3827 -64.82498,-65.3827 -64.77452,-65.3827 -64.72406,-65.3827 -64.6736,-65.3827 -64.62314,-65.3827 -64.57268,-65.3827 -64.52222,-65.3827 -64.47176,-65.3827 -64.4213))"] | ["POINT(-64.13585 -64.6736)"] | false | false |
R/V Nathaniel B. Palmer NBP0603 - Paleohistory of the Larsen Ice Shelf System
|
0338163 |
2010-01-01 | Domack, Eugene Walter |
Collaborative Research: Paleohistory of the Larsen Ice Shelf System: Phase II |
The NSF-supported research icebreaker Nathaniel B. Palmer operates year-round in support of the U.S. Antarctic Program, carrying out global change studies in biological, chemical, physical, and oceanographic disciplines. This data set consists of underway data from leg NBP0603 on the R/V Nathaniel B. Palmer. This leg started at Punta Arenas, Chile and ended at Punta Arenas, Chile. | ["POLYGON((-70.90391 -52.35262,-68.130917 -52.35262,-65.357924 -52.35262,-62.584931 -52.35262,-59.811938 -52.35262,-57.038945 -52.35262,-54.265952 -52.35262,-51.492959 -52.35262,-48.719966 -52.35262,-45.946973 -52.35262,-43.17398 -52.35262,-43.17398 -53.75776,-43.17398 -55.1629,-43.17398 -56.56804,-43.17398 -57.97318,-43.17398 -59.37832,-43.17398 -60.78346,-43.17398 -62.1886,-43.17398 -63.59374,-43.17398 -64.99888,-43.17398 -66.40402,-45.946973 -66.40402,-48.719966 -66.40402,-51.492959 -66.40402,-54.265952 -66.40402,-57.038945 -66.40402,-59.811938 -66.40402,-62.584931 -66.40402,-65.357924 -66.40402,-68.130917 -66.40402,-70.90391 -66.40402,-70.90391 -64.99888,-70.90391 -63.59374,-70.90391 -62.1886,-70.90391 -60.78346,-70.90391 -59.37832,-70.90391 -57.97318,-70.90391 -56.56804,-70.90391 -55.1629,-70.90391 -53.75776,-70.90391 -52.35262))"] | ["POINT(-57.038945 -59.37832)"] | false | false |
McMurdo Dry Valleys Long-Term Ecological Research (MCM LTER) Core Glacier Mass Balance Data, Antarctica
|
0086645 |
2009-08-31 | Fountain, Andrew; Nylen, Thomas; Basagic, Hassan; Lyons, W. Berry; Langevin, Paul |
SGER Proposal:Glaciological change in the McMurdo Dry Valleys, Antarctica |
As part of the Long Term Ecological Research (LTER) project in the McMurdo Dry Valleys of Antarctica, a systematic sampling program has been undertaken to monitor mass balance of the Taylor Valley glaciers. Data were collected from the Canada, Commonwealth, Howard, Hughes, Suess and Taylor glaciers, located in the Taylor Valley of Antarctica. Monitoring the changes in these measurements over time provides a record of mass balance, and aids in determining the role of glaciers in the polar hydrologic cycle. | ["POLYGON((161.04 -77.3,161.239 -77.3,161.438 -77.3,161.637 -77.3,161.836 -77.3,162.035 -77.3,162.234 -77.3,162.433 -77.3,162.632 -77.3,162.831 -77.3,163.03 -77.3,163.03 -77.378,163.03 -77.456,163.03 -77.534,163.03 -77.612,163.03 -77.69,163.03 -77.768,163.03 -77.846,163.03 -77.924,163.03 -78.002,163.03 -78.08,162.831 -78.08,162.632 -78.08,162.433 -78.08,162.234 -78.08,162.035 -78.08,161.836 -78.08,161.637 -78.08,161.438 -78.08,161.239 -78.08,161.04 -78.08,161.04 -78.002,161.04 -77.924,161.04 -77.846,161.04 -77.768,161.04 -77.69,161.04 -77.612,161.04 -77.534,161.04 -77.456,161.04 -77.378,161.04 -77.3))"] | ["POINT(162.035 -77.69)"] | false | false |
Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial Forms of Phaeocystis Antarctica
|
0440478 |
2009-01-01 | Smith, Walker; Tang, Kam |
Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial forms of Phaeocystis antarctica |
Phaeocystis Antarctica is a widely distributed phytoplankton that forms dense blooms and aggregates in the Southern Ocean. This phytoplankton and plays important roles in polar ecology and biogeochemistry, in part because it is a dominant primary producer, a main component of organic matter vertical fluxes, and the principal producer of volatile organic sulfur in the region. Yet P. Antarctica is also one of the lesser known species in terms of its physiology, life history and trophic relationships with other organisms; furthermore, information collected on other Phaeocystis species and from different locations may not be applicable to P. Antarctica in the Ross Sea. P. Antarctica occurs mainly as two morphotypes: solitary cells and mucilaginous colonies, which differ significantly in size, architecture and chemical composition. Relative dominance between solitary cells and colonies determines not only the size spectrum of the population, but also its carbon dynamics, nutrient uptake and utilization. Conventional thinking of the planktonic trophic processes is also challenged by the fact that colony formation could effectively alter the predator-prey interactions and interspecific competition. However, the factors that regulate the differences between solitary and colonial forms of P. Antarctica are not well-understood. The research objective of this proposal is therefore to address these over-arching questions: 1. Do P. Antarctica solitary cells and colonies differ in growth, composition and photosynthetic rates? 2. How do nutrients and grazers affect colony development and size distribution of P. Antarctica? 3. How do nutrients and grazers act synergistically to affect the long-term population dynamics of P. Antarctica? Experiments will be conducted in the McMurdo station with natural P. Antarctica assemblages and co-occurring grazers. Laboratory experiments will be conducted to study size-specific growth and photosynthetic rates of P. Antarctica, size-specific grazing mortality due to microzooplankton and mesozooplankton, the effects of macronutrients on the (nitrogen compounds) relative dominance of solitary cells and colonies, and the effects of micronutrient (Fe) and grazing related chemical signals on P. Antarctica colony development. Because this species is of critical importance in the Southern Ocean, and because this research will provide critical information on factors that regulate the role of P.Antarctica in food webs and biogeochemical cycles, a major gap in knowledge will be addressed. This project will train two marine science Ph.D. students. The investigators will also collaborate with the School of Education and a marine science museum to communicate polar science to a broader audience. | ["POINT(166.66267 -77.85067)"] | ["POINT(166.66267 -77.85067)"] | false | false |
Occupation History and Diet of Adelie Penguins in the Ross Sea Region
|
0125098 |
2009-01-01 | Emslie, Steven D. |
Occupation History and Diet of Adelie Penguins in the Ross Sea Region |
This project will build on previous studies to investigate the occupation history and diet of Adelie penguins (Pygoscelis adeliae) in the Ross Sea region, Antarctica, with excavations of abandoned and active penguin colonies. Numerous active and abandoned colonies exist on the Victoria Land coast, from Cape Adare to Marble Point will be sampled. Some of these sites have been radiocarbon-dated and indicate a long occupation history for Adelie penguins extending to 13,000 years before present (B. P.). The material recovered from excavations, as demonstrated from previous investigations, will include penguin bones, tissue, and eggshell fragments as well as abundant remains of prey (fish bones, otoliths, squid beaks) preserved in ornithogenic (formed from bird guano) soils. These organic remains will be quantified and subjected to radiocarbon analyses to obtain a colonization history of penguins in this region. Identification of prey remains in the sediments will allow assessment of penguin diet. Other data (ancient DNA) from these sites will be analyzed through collaboration with New Zealand scientists. Past climatic conditions will be interpreted from published ice-core and marine-sediment records. These data will be used to test the hypothesis that Adelie penguins respond to climate change, past and present, in a predictable manner. In addition, the hypothesis that Adelie penguins alter their diet in accordance with climate, sea-ice conditions, and other marine environmental variables along a latitudinal gradient will be tested. Graduate and undergraduate students will be involved in this project and a project Web site will be developed to report results and maintain educational interaction between the PI and students at local middle and high schools in Wilmington, NC. | ["POLYGON((-50 -60,-29 -60,-8 -60,13 -60,34 -60,55 -60,76 -60,97 -60,118 -60,139 -60,160 -60,160 -63,160 -66,160 -69,160 -72,160 -75,160 -78,160 -81,160 -84,160 -87,160 -90,139 -90,118 -90,97 -90,76 -90,55 -90,34 -90,13 -90,-8 -90,-29 -90,-50 -90,-50 -87,-50 -84,-50 -81,-50 -78,-50 -75,-50 -72,-50 -69,-50 -66,-50 -63,-50 -60))"] | ["POINT(55 -75)"] | false | false |
Small Grants for Exploratory Research - Oceanographic Research in the Amundsen and Ross Seas
|
0741380 |
2009-01-01 | Smith, Walker |
Small Grants for Exploratory Research - Oceanographic Research in the Amundsen and Ross Seas: |
The research will examine the relative importance of the physical and chemical controls on phytoplankton dynamics and carbon flux in continental margin regions of the Southern Ocean, and elucidate mechanisms by which plankton populations and carbon export might be altered by climate change. We specifically will address (1) how the phytoplankton on the continental margins of the southern Ocean respond to spatial and temporal changes in temperature, light, iron supply, and carbon dioxide levels, (2) how these factors initiate changes in phytoplankton assemblage structure, and (3) how carbon export and the efficiency of the biological pump are impacted by the biomass and composition of the phytoplankton. Two regions of study (the Amundsen and Ross Seas) will be investigated, one well studied (Ross Sea) and one poorly described (Amundsen Sea). It is hypothesized that each region will have markedly different physical forcing, giving rise to distinct chemical conditions and therefore biological responses. As such, the comparison of the two may give us insights into the mechanisms of how Antarctic continental margins will respond under changing environmental conditions. Broader impacts include participation by an international graduate student from Brazil, outreach via seminars to the general public, collaboration with the teachers-in-residence on the cruise, development of a cruise web site and interactive email exchanges with local middle school students while at sea. | ["POLYGON((-160 -65,-154 -65,-148 -65,-142 -65,-136 -65,-130 -65,-124 -65,-118 -65,-112 -65,-106 -65,-100 -65,-100 -66.1,-100 -67.2,-100 -68.3,-100 -69.4,-100 -70.5,-100 -71.6,-100 -72.7,-100 -73.8,-100 -74.9,-100 -76,-106 -76,-112 -76,-118 -76,-124 -76,-130 -76,-136 -76,-142 -76,-148 -76,-154 -76,-160 -76,-160 -74.9,-160 -73.8,-160 -72.7,-160 -71.6,-160 -70.5,-160 -69.4,-160 -68.3,-160 -67.2,-160 -66.1,-160 -65))"] | ["POINT(-130 -70.5)"] | false | false |
AWS Data: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation
|
0225992 0125570 |
2006-10-05 | Fahnestock, Mark; Scambos, Ted; Haran, Terry; Bauer, Rob |
Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation |
The Antarctic megadune research was conducted during two field seasons, one in November 2002 and the other during the period of December 2003 through January 2004. The megadune field site is located on the East Antarctic Plateau, southeast of Vostok station. The objectives of this multi-facetted research are 1) to determine the physical characteristics of the firn across the dunes including typical climate indicators such as stable isotopes and major chemical species and 2) to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. It is important to improve our current understanding of the megadunes because of their extreme nature, their broad extent, and their potential impact on the climate record. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on the past terrestrial climate or on processes active on other planets. Snow megadunes are undulating variations in accumulation and surface texture with wavelengths of 2 to 5 km and amplitudes up to 5 meters. The features cover 500,000 km<sup>2</sup> of the East Antarctic plateau, occurring in areas of moderate regional slope and low accumulation on the flanks of the ice sheet between 2500 and 3800 meters elevation. Landsat images and aerial photography indicate the dunes consist of alternating surfaces of glaze and rough sastrugi, with gradational boundaries. This pattern is oriented perpendicular to the mean wind direction, as modeled in katabatic wind studies. Glazed surfaces cover the leeward faces and troughs; rough sastrugi cover the windward faces and crests. The megadune pattern is crossed by smooth to eroded wind-parallel longitudinal dunes. Wind-eroded longitudinal dunes form spectacular 1-meter-high sastrugi in nearby areas. This data set contains automated weather station (AWS) data from two sites. The Mac site was oriented on the rough sastrugi-covered windward face and the Zoe site was on the glazed leeward face. The AWSs collected data throughout the year from 16 January 2004 to 17 November 2004. Investigators received data from the two field sites via the ARGOS Satellite System (http://www.argosinc.com/). Data are provided in space-delimited ASCII text format and are available via FTP. | ["POLYGON((124.4345 -80.77546,124.443718 -80.77546,124.452936 -80.77546,124.462154 -80.77546,124.471372 -80.77546,124.48059 -80.77546,124.489808 -80.77546,124.499026 -80.77546,124.508244 -80.77546,124.517462 -80.77546,124.52668 -80.77546,124.52668 -80.776922,124.52668 -80.778384,124.52668 -80.779846,124.52668 -80.781308,124.52668 -80.78277,124.52668 -80.784232,124.52668 -80.785694,124.52668 -80.787156,124.52668 -80.788618,124.52668 -80.79008,124.517462 -80.79008,124.508244 -80.79008,124.499026 -80.79008,124.489808 -80.79008,124.48059 -80.79008,124.471372 -80.79008,124.462154 -80.79008,124.452936 -80.79008,124.443718 -80.79008,124.4345 -80.79008,124.4345 -80.788618,124.4345 -80.787156,124.4345 -80.785694,124.4345 -80.784232,124.4345 -80.78277,124.4345 -80.781308,124.4345 -80.779846,124.4345 -80.778384,124.4345 -80.776922,124.4345 -80.77546))"] | ["POINT(124.48059 -80.78277)"] | false | false |
GPR and GPS Data: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation
|
0125276 |
2006-06-10 | Scambos, Ted; Bauer, Rob |
Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation |
The Antarctic megadune research was conducted during two field seasons, one in November 2002 and the other in December 2003 through January 2004. The megadune field site is located on the East Antarctic Plateau, southeast of Vostok station. The objectives of this multi-facetted research are to determine the physical characteristics of the firn across the dunes including typical climate indicators such as stable isotopes and major chemical species and to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. It is important to improve our current understanding of the megadunes because of their extreme nature, their broad extent, and their potential impact on the climate record. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on past terrestrial climate or on processes active on other planets. Snow megadunes are undulating variations in accumulation and surface texture with wavelengths of 2 to 5 km and amplitudes up to 5 meters. The features cover 500,000 km<sup>2</sup> of the East Antarctic plateau, occurring in areas of moderate regional slope and low accumulation on the flanks of the ice sheet between 2500 and 3800 meters elevation. Landsat images and aerial photography indicate the dunes consist of alternating surfaces of glaze and rough sastrugi, with gradational boundaries. This pattern is oriented perpendicular to the mean wind direction, as modeled in katabatic wind studies. Glaze surfaces cover the leeward faces and troughs; rough sastrugi cover the windward faces and crests. The megadune pattern is crossed by smooth to eroded wind-parallel longitudinal dunes. Wind-eroded longitudinal dunes form spectacular 1-meter-high sastrugi in nearby areas. This data set contains ground penetrating radar (GPR) data showing surface morphology and internal layering structure along with global positioning system (GPS) data collected within an area of 60 km<sup>2</sup>. GPS data are provided in space-delimited ASCII text Microsoft Excel formats, while GPR data are in JPEG format. Data are available via FTP. | ["POLYGON((124.0218 -80.5304,124.22264 -80.5304,124.42348 -80.5304,124.62432 -80.5304,124.82516 -80.5304,125.026 -80.5304,125.22684 -80.5304,125.42768 -80.5304,125.62852 -80.5304,125.82936 -80.5304,126.0302 -80.5304,126.0302 -80.55538,126.0302 -80.58036,126.0302 -80.60534,126.0302 -80.63032,126.0302 -80.6553,126.0302 -80.68028,126.0302 -80.70526,126.0302 -80.73024,126.0302 -80.75522,126.0302 -80.7802,125.82936 -80.7802,125.62852 -80.7802,125.42768 -80.7802,125.22684 -80.7802,125.026 -80.7802,124.82516 -80.7802,124.62432 -80.7802,124.42348 -80.7802,124.22264 -80.7802,124.0218 -80.7802,124.0218 -80.75522,124.0218 -80.73024,124.0218 -80.70526,124.0218 -80.68028,124.0218 -80.6553,124.0218 -80.63032,124.0218 -80.60534,124.0218 -80.58036,124.0218 -80.55538,124.0218 -80.5304))"] | ["POINT(125.026 -80.6553)"] | false | false |
Solar Magnetograms and Filtergrams
|
9909167 |
2005-10-19 | Rust, David M. |
Flare Genesis Experiment |
None | [] | [] | false | false |