{"dp_type": "Dataset", "free_text": "Dust"}
[{"awards": "2035580 Aarons, Sarah", "bounds_geometry": ["POINT(159.31 -76.7)"], "date_created": "Thu, 15 Aug 2024 00:00:00 GMT", "description": "This dataset contains Sr and Nd isotope compositions of ice core dust from ALHIC1903 spanning the transition from MIS 6 through 5e.", "east": 159.31, "geometry": ["POINT(159.31 -76.7)"], "keywords": "ALHIC1903; Allan Hills; Antarctica; Cryosphere; Dust; Ice Core Data; Isotope; Nd; Neodymium; Sr; Strontium", "locations": "Allan Hills; Antarctica; Antarctica", "north": -76.7, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Carter, Austin", "project_titles": "Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial", "projects": [{"proj_uid": "p0010270", "repository": "USAP-DC", "title": "Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.7, "title": "Strontium and neodymium isotope compositions of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area.", "uid": "601820", "west": 159.31}, {"awards": "2035580 Aarons, Sarah", "bounds_geometry": ["POINT(159.31 -76.7)"], "date_created": "Thu, 15 Aug 2024 00:00:00 GMT", "description": "This dataset contains rare earth elemental concentrations of leached ice core dust from ALHIC1903 spanning the transition from MIS 6 through 5e.", "east": 159.31, "geometry": ["POINT(159.31 -76.7)"], "keywords": "ALHIC1903; Allan Hills; Antarctica; Blue Ice; Cryosphere; Dust; Leach; Rare Earth Element", "locations": "Allan Hills; Antarctica", "north": -76.7, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Carter, Austin", "project_titles": "Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial", "projects": [{"proj_uid": "p0010270", "repository": "USAP-DC", "title": "Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.7, "title": "Rare earth elemental concentrations of leached ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area.", "uid": "601821", "west": 159.31}, {"awards": "2035580 Aarons, Sarah", "bounds_geometry": ["POINT(159.31 -76.7)"], "date_created": "Thu, 15 Aug 2024 00:00:00 GMT", "description": "This dataset contains dust mass concentrations, coarse particle fraction, interpolated accumulation rate, and dust flux from ALHIC1903 spanning the transition from MIS 6 through 5e.", "east": 159.31, "geometry": ["POINT(159.31 -76.7)"], "keywords": "Accumulation Rate; ALHIC1903; Allan Hills; Antarctica; Blue Ice; Concentration; Cryosphere; Dust; Flux", "locations": "Antarctica; Allan Hills", "north": -76.7, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Carter, Austin", "project_titles": "Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial", "projects": [{"proj_uid": "p0010270", "repository": "USAP-DC", "title": "Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.7, "title": "Concentration and flux of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "uid": "601825", "west": 159.31}, {"awards": "1745078 Brook, Edward J.", "bounds_geometry": ["POINT(-112.05 -79.28)"], "date_created": "Thu, 05 Oct 2023 00:00:00 GMT", "description": "This dataset includes measurements of atmospheric methane from samples from the NEEM, GISP2 and WAIS Divide ice cores. All measurements were made at the Oregon State University Ice Core and Quaternary Geochemistry Laboratory (Corvallis, OR) using an established analytical system. 433 samples from the NEEM ice core were measured between 1420 and 1560m depths. A measurement uncertainty ranging from 2.8 to 4.2 ppb, depending on the measurement year, was determined from replicate samples. 340 samples from the GISP2 ice core were measured between 1740 and 2060m depths. A measurement uncertainty ranging from 3.1 to 3.4 ppb, depending on the measurement year, was determined from replicate samples. All GISP2 and NEEM data were corrected for excess methane contamination using the established relationship between excess methane and Ca2+ (Lee et al., 2020). Both corrected and uncorrected data are included in the publication. 340 samples from the GISP2 ice core were measured between 1957 and 3081m depths. A measurement uncertainty ranging from 3.1 to 3.4 ppb, depending on the measurement year, was determined from replicate samples. Depths reflect the mid-points of the depth range of each samples, which is typically ~8cm. All replicate measurements are included in the dataset.\r\n\r\nLee, J. E. et al. Excess methane in Greenland ice cores associated with high dust concentrations. Geochimica et cosmochimica acta 270, 409-430 (2020).", "east": -112.05, "geometry": ["POINT(-112.05 -79.28)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Greenland; Ice Core Records; Methane; West Antarctic Ice Sheet", "locations": "West Antarctic Ice Sheet; Antarctica; Greenland", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Riddell-Young, Benjamin; Martin, Kaden; Rosen, Julia; Lee, James; Edwards, Jon S.; Brook, Edward J.", "project_titles": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores", "projects": [{"proj_uid": "p0010416", "repository": "USAP-DC", "title": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.28, "title": "Atmospheric methane across the Last Glacial Maximum and deglaciation from the GISP2, NEEM and WAIS Divide ice cores ", "uid": "601737", "west": -112.05}, {"awards": "1745078 Brook, Edward J.", "bounds_geometry": ["POINT(-112.05 -79.28)"], "date_created": "Mon, 02 Oct 2023 00:00:00 GMT", "description": "This dataset includes estimates of the atmospheric methane relative interpolar difference (rIPD) across the Last Glacial Maximum and Deglaciation. The rIPD was calculated using discrete, high-resolution methane measurements from the WAIS Divide, NEEM and GISP2 ice cores. Two independent IPD records were determined: One using NEEM and WAIS and one using GISP2 and WAIS. The dataset includes rIPD values calculated using both Greenland methane data both corrected and uncorrected for excess methane (Lee et al., 2020). The rIPD was calculated by smoothing each methane record and synchronizing them to the WD2014 gas age scale. 1-sigma rIPD uncertainties are included. This dataset also includes the output of the four-box troposphere model used to interpret the rIPD. For both excess methane-corrected records, the model output and 1-sigma uncertainty is provided for northern extratropical (30N - 90N) and total tropical (30S - 30N) sources in Tg yr-1. For the NEEM-derived rIPD, sections of the rIPD where atmospheric methane changed rapidly were deemed untrustworthy were removed from the dataset.\r\n\r\nLee, J. E. et al. Excess methane in Greenland ice cores associated with high dust concentrations. Geochimica et cosmochimica acta 270, 409-430 (2020).", "east": -112.05, "geometry": ["POINT(-112.05 -79.28)"], "keywords": "Antarctica; Greenland; Methane; Paleoclimate; West Antarctic Ice Sheet", "locations": "Greenland; West Antarctic Ice Sheet; Antarctica", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Riddell-Young, Benjamin; Rosen, Julia; Buizert, Christo; Martin, Kaden; Lee, James; Edwards, Jon S.; M\u00fchl, Michaela; Schmitt, Jochen; Fischer, Hubertus; Blunier, Thomas; Brook, Edward J.", "project_titles": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores", "projects": [{"proj_uid": "p0010416", "repository": "USAP-DC", "title": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.28, "title": "Atmospheric methane interpolar difference and four-box troposphere model output across the Last Glacial Maximum and Deglaciation", "uid": "601736", "west": -112.05}, {"awards": "0733025 Blankenship, Donald", "bounds_geometry": ["POLYGON((153 -79,153.9 -79,154.8 -79,155.7 -79,156.6 -79,157.5 -79,158.4 -79,159.3 -79,160.2 -79,161.1 -79,162 -79,162 -79.14,162 -79.28,162 -79.42,162 -79.56,162 -79.7,162 -79.84,162 -79.98,162 -80.12,162 -80.26,162 -80.4,161.1 -80.4,160.2 -80.4,159.3 -80.4,158.4 -80.4,157.5 -80.4,156.6 -80.4,155.7 -80.4,154.8 -80.4,153.9 -80.4,153 -80.4,153 -80.26,153 -80.12,153 -79.98,153 -79.84,153 -79.7,153 -79.56,153 -79.42,153 -79.28,153 -79.14,153 -79))"], "date_created": "Fri, 02 Sep 2022 00:00:00 GMT", "description": "HiCARS data collected over Darwin and Hatherton Glaciers during ICECAP Test Flight ICP1/F05", "east": 162.0, "geometry": ["POINT(157.5 -79.7)"], "keywords": "Airborne Radar; Antarctica; Basler; Darwin Glacier; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hatherton Glacier; Hicars; ICECAP; Ice Penetrating Radar; Ice Thickness; Transantarctic Mountains", "locations": "Darwin Glacier; Hatherton Glacier; Antarctica; Transantarctic Mountains", "north": -79.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Gillespie, Mette; Blankenship, Donald D.; Young, Duncan A.; Siegert, Martin; Holt, John W.; Greenbaum, Jamin; Schroeder, Dustin", "project_titles": "IPY Research: Investigating the Cryospheric Evolution of the Central Antarctic Plate (ICECAP)", "projects": [{"proj_uid": "p0000719", "repository": "USAP-DC", "title": "IPY Research: Investigating the Cryospheric Evolution of the Central Antarctic Plate (ICECAP)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.4, "title": "ICECAP ice thickness data over the Darwin and Hatherton Glaciers, Transantarctic Mountains, Antarctica", "uid": "601605", "west": 153.0}, {"awards": "1443397 Kreutz, Karl", "bounds_geometry": ["POINT(0 -90)"], "date_created": "Fri, 01 Apr 2022 00:00:00 GMT", "description": "This dataset contains particle metrics for the South Pole Ice Core (SPICEcore) intermediate core (SPC14), from the surface to 1751 m depth (~54,000 years before present [BP]). Data were collected via Klotz Abakus laser particle counter via continuous-flow-analysis (CFA), Beckman Coulter Multisizer 3 using Coulter Counter (CC) principles, and dynamic particle imaging using a FlowCAM instrument. CFA measurements were made at Dartmouth College, CC measurements were made at Colby College, and FlowCAM measurements were made at the University of Maine.", "east": 0.0, "geometry": ["POINT(0 -90)"], "keywords": "Antarctica; Dust; Ice Core; South Pole", "locations": "Antarctica; South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Kreutz, Karl", "project_titles": "Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements", "projects": [{"proj_uid": "p0010051", "repository": "USAP-DC", "title": "Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "South Pole (SPC14) microparticle concentration, mass concentration, flux, particle-size-distribution mode, and aspect ratio measurements", "uid": "601553", "west": 0.0}, {"awards": "1656518 Gumport, Patricia; 1543441 Fricker, Helen", "bounds_geometry": null, "date_created": "Tue, 14 Sep 2021 00:00:00 GMT", "description": "This dataset includes raw, uncalibrated voltage vs time measurements from a bistatic radar receiver. We also include some processed data including upsampled matched filtered data, GPS receiver position, antenna separation", "east": null, "geometry": null, "keywords": "Antarctica; Bistatic Radar; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS Data; Greenland; Lake Whillans; Radar; Store Glacier; Whillans Ice Stream; WISSARD", "locations": "Antarctica; Greenland; Store Glacier; Whillans Ice Stream; Lake Whillans", "north": null, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science", "persons": "Bienert, Nicole; Schroeder, Dustin; Siegfried, Matthew; Peters, Sean; MacKie, Emma; Dawson, Eliza; Christoffersen, Poul", "project_titles": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments", "projects": [{"proj_uid": "p0010119", "repository": "USAP-DC", "title": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WISSARD", "south": null, "title": "Bistatic Radar Sounding of Whillans Ice Stream, Antarctica and Store Glacier, Greenland", "uid": "601472", "west": null}, {"awards": "1745137 Schroeder, Dustin", "bounds_geometry": ["POLYGON((-130 -72.9,-125.27 -72.9,-120.54 -72.9,-115.81 -72.9,-111.08 -72.9,-106.35 -72.9,-101.62 -72.9,-96.89 -72.9,-92.16 -72.9,-87.43 -72.9,-82.7 -72.9,-82.7 -73.76,-82.7 -74.62,-82.7 -75.48,-82.7 -76.34,-82.7 -77.2,-82.7 -78.06,-82.7 -78.92,-82.7 -79.78,-82.7 -80.64,-82.7 -81.5,-87.43 -81.5,-92.16 -81.5,-96.89 -81.5,-101.62 -81.5,-106.35 -81.5,-111.08 -81.5,-115.81 -81.5,-120.54 -81.5,-125.27 -81.5,-130 -81.5,-130 -80.64,-130 -79.78,-130 -78.92,-130 -78.06,-130 -77.2,-130 -76.34,-130 -75.48,-130 -74.62,-130 -73.76,-130 -72.9))"], "date_created": "Fri, 05 Mar 2021 00:00:00 GMT", "description": "The dataset contains radargrams from the 2004-2005 airborne radar sounding surveys on Pine Island Glacier and Thwaites Glacier as part of the BBAS and AGASEA projects. It also includes basal reflectivity and one-way attenuation rates derived from these radargrams. Radar data from the Pine Island Ice Shelf inland to the Bentley Sublglacial Trench were collected by the British Antarctica Survey (BAS) with the Polarimetric-radar Airborne Science INstrument (PASIN) radar sounder, operating at a center frequency of 150 MHz and 15 MHz bandwidth. Data over Thwaites Glacier were collected by the University of Texas Institute for Geophysics (UTIG) High Capability Airborne Radar Sounder (HiCARS) operating at a center frequency of 60 MHz with 15 MHz of bandwidth. Data are provided as 50km segments in NetCDF files, along with kml location files, and pdf files for browsing radargrams images by flight transect. Details of the processing methods are included in the associated README file. The processed data sets (reflectivity and attenuation) are provided as a single NetCDF file for each flight transect. Details of the calibration and processing procedures are provided in Chu, et al (in review).", "east": -82.7, "geometry": ["POINT(-106.35 -77.2)"], "keywords": "Amundsen Sea; Antarctica; Bed Reflectivity; Ice Penetrating Radar; Radar Echo Sounder", "locations": "Amundsen Sea; Antarctica", "north": -72.9, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Chu, Winnie; Hilger, Andrew M.; Culberg, Riley; Schroeder, Dustin; Jordan, Thomas M.; Seroussi, Helene; Young, Duncan A.; Vaughan, David G.", "project_titles": "CAREER: Cross-Instrument Synthesis of Antarctic Radar Sounding Observations", "projects": [{"proj_uid": "p0010058", "repository": "USAP-DC", "title": "CAREER: Cross-Instrument Synthesis of Antarctic Radar Sounding Observations"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -81.5, "title": "Radar Sounding Observations of the Amundsen Sea Embayment, 2004-2005", "uid": "601436", "west": -130.0}, {"awards": "0941678 ; 0424589 Gogineni, S. Prasad; 0733025 Blankenship, Donald; 1443690 Young, Duncan", "bounds_geometry": ["POLYGON((114 -74,115.2 -74,116.4 -74,117.6 -74,118.8 -74,120 -74,121.2 -74,122.4 -74,123.6 -74,124.8 -74,126 -74,126 -74.3,126 -74.6,126 -74.9,126 -75.2,126 -75.5,126 -75.8,126 -76.1,126 -76.4,126 -76.7,126 -77,124.8 -77,123.6 -77,122.4 -77,121.2 -77,120 -77,118.8 -77,117.6 -77,116.4 -77,115.2 -77,114 -77,114 -76.7,114 -76.4,114 -76.1,114 -75.8,114 -75.5,114 -75.2,114 -74.9,114 -74.6,114 -74.3,114 -74))"], "date_created": "Fri, 18 Dec 2020 00:00:00 GMT", "description": "The data set published here consists of 26 ice-penetrating radar IRHs (internal reflecting horizons) which were traced across multiple ice-penetrating radar surveys that deployed several generations of modern ice-penetrating radar sounders over a decade, between 2008 and 2018, over the Dome C region of the East Antarctic Plateau. The data set is associated to publication: Cavitte, M. G. P, Young, D. A, Mulvaney, R., Ritz, C., Greenbaum, J. S., Ng, G., Kempf, S. D., Quartini, E., Muldoon, G. R., Paden, J., Frezzotti, M., Roberts, J. L. , Tozer, C. R. , Schroeder, D. M. and Blankenship, D. D. A detailed radiostratigraphic data set for the central East Antarctic Plateau spanning from the Holocene to the mid-Pleistocene, Earth Syst. Sci. Data, 13, 4759\u20134777, 2021, https://doi.org/10.5194/essd-13-4759-2021.\r\n\r\nWe can subdivide the radar sounders used into three sets. The primary set was collected by the University of Texas at Austin Institute for Geophysics (UTIG) and the Australian Antarctic Division (AAD) as part of the ICECAP project) between 2008 and 2015. This includes the Oldest Ice candidate A (OIA) survey flown by ICECAP in January 2016. Data were collected with the High Capacity Airborne Radar Sounder (HiCARS) 1 \u0026 2 and its Multifrequency Airborne Radar-sounder for Full-phase Assessment (MARFA) descendant. The data was collected from a DC-3T Basler which operated from Concordia Station. \r\n\r\nThe second set consists of the Vostok-Dome C airborne radar transect was flown by the Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas using the Multi-Channel Coherent Radar Depth Sounder (MCoRDS) in a single flight line in 2013. A P-3 Orion operating from McMurdo Station collected these data as part of NASA Operation Ice Bridge. \r\n\r\nThe third set consists of a subset of the LDC ground-based radar survey, towed behind a PistenBully PB300 tractor, collected by the Beyond EPICA - Oldest Ice (BE-OI) European Consortium using the British Antarctic Survey\u2019s (BAS) Deep Looking Radio Echo Sounder (DELORES) radar system. Each IRH has been traced in all three radar sets and is published here as a single csv and netcdf file. Formats are self-documented in these csv/netcdf files. \r\n\r\nWhere HiCARS and MCoRDS radar transects are used, the IRH is provided at a 1 km spatial resolution, where DELORES radar transects are used, the IRH is provided at a 250 m spatial resolution. \r\n\r\nThe 26 IRHs published here were traced semi-automatically by first author Marie Cavitte, using Landmark\u0027s Decision Space Desktop software and its built-in picker. \r\n\r\nThe IRHs are dated at the EDC ice core using the AICC2012 timescale (Veres et al., 2013; Bazin et al., 2013). \r\n\r\nIce core ages are transferred onto the IRHs on radar transect MCM/JKB1a/EDMC01a at distance_m (column in the data sets) = 110.153 m along the transect. That radar point of closest approach is 94\u2009m away from the ice core site. Depth and age uncertainties associated to each IRH are quantified n the associated publication: Cavitte, M. G. P, Young, D. A, Mulvaney, R., Ritz, C., Greenbaum, J. S., Ng, G., Kempf, S. D., Quartini, E., Muldoon, G. R., Paden, J., Frezzotti, M., Roberts, J. L. , Tozer, C. R. , Schroeder, D. M. and Blankenship, D. D. A detailed radiostratigraphic data set for the central East Antarctic Plateau spanning from the Holocene to the mid-Pleistocene, Earth Syst. Sci. Data, 13, 4759\u20134777, 2021, https://doi.org/10.5194/essd-13-4759-2021. \r\n\n\r\n\r\nBesides NSF this dataset is the result of additional support from NERC grant - NE/D003733/1, NASA grants - NX08AN68G, NNX09AR52G, NNX11AD33G, NNX13AD53A, and funding from the G. Unger Vetlesen Foundation.\n\n\\nNote that the dataset was archived before the accompanying paper was officially published. The abstract and dataset description has been updated to cite the correct reference to the ESSD paper (Cavitte et al., 2021) after the paper was published. The headers of the actual data files contain only a placeholder to this reference.", "east": 126.0, "geometry": ["POINT(120 -75.5)"], "keywords": "Antarctica; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; ICECAP; Ice Penetrating Radar; Internal Reflecting Horizons", "locations": "Antarctica; East Antarctic Plateau", "north": -74.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences", "persons": "Cavitte, Marie G. P; Young, Duncan A.; Mulvaney, Robert; Ritz, Catherine; Greenbaum, Jamin; Ng, Gregory; Kempf, Scott D.; Quartini, Enrica; Muldoon, Gail R.; Paden, John; Frezzotti, Massimo; Roberts, Jason; Tozer, Carly; Schroeder, Dustin; Blankenship, Donald D.", "project_titles": "Center for Remote Sensing of Ice Sheets (CReSIS); Collaborative Research: Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP); IPY Research: Investigating the Cryospheric Evolution of the Central Antarctic Plate (ICECAP)", "projects": [{"proj_uid": "p0000102", "repository": "USAP-DC", "title": "Center for Remote Sensing of Ice Sheets (CReSIS)"}, {"proj_uid": "p0000719", "repository": "USAP-DC", "title": "IPY Research: Investigating the Cryospheric Evolution of the Central Antarctic Plate (ICECAP)"}, {"proj_uid": "p0010115", "repository": "USAP-DC", "title": "Collaborative Research: Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Dome C Ice Core", "south": -77.0, "title": "Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau", "uid": "601411", "west": 114.0}, {"awards": "0733025 Blankenship, Donald; 1543452 Blankenship, Donald; 0636724 Blankenship, Donald; 1443690 Young, Duncan", "bounds_geometry": ["POLYGON((80 -65,89 -65,98 -65,107 -65,116 -65,125 -65,134 -65,143 -65,152 -65,161 -65,170 -65,170 -66.5,170 -68,170 -69.5,170 -71,170 -72.5,170 -74,170 -75.5,170 -77,170 -78.5,170 -80,161 -80,152 -80,143 -80,134 -80,125 -80,116 -80,107 -80,98 -80,89 -80,80 -80,80 -78.5,80 -77,80 -75.5,80 -74,80 -72.5,80 -71,80 -69.5,80 -68,80 -66.5,80 -65))"], "date_created": "Mon, 24 Aug 2020 00:00:00 GMT", "description": "The International Collaborative Exploration of the Cryosphere though Airborne Profiling (ICECAP) collected five seasons of aerogeophysical data data through the NSFs International Polar Year and NASAs Operation Ice Bridge programs in East Antarctica, using the coherent HiCARS 60 MHz radar system. By comparing echo strengths for different focusing apertures, and accounting for the ranges and angles involved, we can derive the \"specularity content\" of the bed echo, a proxy for small scale bed roughness and a good indicator for subglacial water pressure in regions of distributed subglacial water (Schroeder et al., 2014, IEEE GRSL, 10.1109/LGRS.2014.2337878; IEEE; Dow et al., 2019, EPSL https://doi.org/10.1016/j.epsl.2019.115961). Specularity data are inherently noisy, so these products have been smoothed with a 1 km filter.", "east": 170.0, "geometry": ["POINT(125 -72.5)"], "keywords": "Antarctica; East Antarctica; ICECAP; Ice Penetrating Radar; Radar Echo Sounder; Radar Echo Sounding; Subglacial Hydrology", "locations": "Antarctica; East Antarctica", "north": -65.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "Young, Duncan A.; Blankenship, Donald D.; Roberts, Jason; Siegert, Martin; van Ommen, Tas; Greenbaum, Jamin; Schroeder, Dustin", "project_titles": "Collaborative Research: Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP); Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System; East Antarctic Grounding Line Experiment (EAGLE); IPY Research: Investigating the Cryospheric Evolution of the Central Antarctic Plate (ICECAP)", "projects": [{"proj_uid": "p0000174", "repository": "USAP-DC", "title": "Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System"}, {"proj_uid": "p0000254", "repository": "USAP-DC", "title": "East Antarctic Grounding Line Experiment (EAGLE)"}, {"proj_uid": "p0010115", "repository": "USAP-DC", "title": "Collaborative Research: Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP)"}, {"proj_uid": "p0000719", "repository": "USAP-DC", "title": "IPY Research: Investigating the Cryospheric Evolution of the Central Antarctic Plate (ICECAP)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "uid": "601371", "west": 80.0}, {"awards": "1443464 Sowers, Todd", "bounds_geometry": ["POINT(0 -90)"], "date_created": "Wed, 11 Dec 2019 00:00:00 GMT", "description": "The total air content in ice core samples are a fundamental indication of the multitude of processes that impact densification of snow in polar regions. In addition, variations in the elevation of the ice sheet directly control the pressure in the bubble close off region and thereby the total gas content. Attempts to remove the physical factors (temperature, accumulation rate, dust content, seasonality) impacting the total air content could provide a means of assessing variations in the elevation of the South Pole over the last 50,000 years.", "east": 0.0, "geometry": ["POINT(0 -90)"], "keywords": "Air Content; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Snow/ice; Snow/Ice; South Pole; SPICEcore", "locations": "Antarctica; South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Sowers, Todd A.", "project_titles": "Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core", "projects": [{"proj_uid": "p0010005", "repository": "USAP-DC", "title": "Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "South Pole ice core total air content", "uid": "601231", "west": 0.0}, {"awards": "1443566 Bay, Ryan", "bounds_geometry": ["POINT(0 -90)"], "date_created": "Sun, 03 Nov 2019 00:00:00 GMT", "description": "We deployed an oriented laser dust logger in the SPICEcore borehole in order to study the particulate stratigraphy, volcanology, glaciology and climatology of South Pole. We obtained a detailed record of dust and ash, SPICEcore age versus depth, and measurements of the optical anisotropy indicated by IceCube analyses.", "east": 0.0, "geometry": ["POINT(0 -90)"], "keywords": "Antarctica; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; SPICEcore", "locations": "Antarctica; Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Bay, Ryan", "project_titles": "Laser Dust Logging of a South Pole Ice Core", "projects": [{"proj_uid": "p0010061", "repository": "USAP-DC", "title": "Laser Dust Logging of a South Pole Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Laser Dust Logging of the South Pole Ice Core (SPICE)", "uid": "601222", "west": 0.0}, {"awards": "1745137 Schroeder, Dustin", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Wed, 02 Oct 2019 00:00:00 GMT", "description": "These data accompany the paper \"Antarctic Topographic Realizations and Geostatistical Modeling Used to Map Subglacial Lakes\" (MacKie et al., in review). This dataset contains 100 geostatistically generated subglacial topographic realizations for Antarctica. Data science techniques were used to calculate the probability of the occurrence of radar-detected lakes and altimetry-detected (active) lakes across the continent, using each topographic realization as a parameter. This generated 100 probability maps of the likelihood of radar-detected lake occurrence and 100 probability maps of active lake occurrence. Further statistics were used to generate 100 binary maps showing expected radar-detected lake locations. The ensemble of realizations can be used for uncertainty quantification.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Active Lakes; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; Model Data; Snow/ice; Snow/Ice; Subglacial Lakes; Topography", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "MacKie, Emma; Schroeder, Dustin; Caers, Jef; Siegfried, Matt; Scheidt, Celine", "project_titles": "CAREER: Cross-Instrument Synthesis of Antarctic Radar Sounding Observations", "projects": [{"proj_uid": "p0010058", "repository": "USAP-DC", "title": "CAREER: Cross-Instrument Synthesis of Antarctic Radar Sounding Observations"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Antarctic topographic and subglacial lake geostatistical simulations", "uid": "601213", "west": -180.0}, {"awards": "1246148 Severinghaus, Jeffrey; 1245821 Brook, Edward J.; 1245659 Petrenko, Vasilii", "bounds_geometry": ["POINT(162.167 -77.733)"], "date_created": "Mon, 12 Aug 2019 00:00:00 GMT", "description": "New ice cores retrieved from the Taylor Glacier (Antarctica) blue ice area contain ice and air spanning the Marine Isotope Stage (MIS) 5-4 transition, a period of global cooling and ice sheet expansion. We determine chronologies for the ice and air bubbles in the new ice cores by visually matching variations in gas- and ice- phase tracers to preexisting ice core records. The chronologies reveal an ice age-gas age difference (\u0394age) approaching 10 ka during MIS 4, implying very low snow accumulation in the Taylor Glacier accumulation zone. A revised chronology for the analagous section of the Taylor Dome ice core (84 to 55 ka), located to the south of the Taylor Glacier accumulation zone, shows that \u0394age did not exceed 3 ka. The difference in \u0394age between the two records during MIS 4 is similar in magnitude but opposite in direction to what is observed at the Last Glacial Maximum. This relationship implies that a spatial gradient in snow accumulation existed across the Taylor Dome region during MIS 4 that was oriented in the opposite direction of the accumulation gradient during the Last Glacial Maximum.", "east": 162.167, "geometry": ["POINT(162.167 -77.733)"], "keywords": "Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; CO2; Dust; Gas; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Mass Spectrometer; Methane; Nitrogen Isotopes; Oxygen Isotope; Paleoclimate; Snow/ice; Snow/Ice; Taylor Dome; Taylor Dome Ice Core", "locations": "Taylor Dome; Antarctica", "north": -77.733, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "persons": "Menking, James; Brook, Edward J.; Marcott, Shaun; Barker, Stephen; Shackleton, Sarah; Dyonisius, Michael; Petrenko, Vasilii; McConnell, Joseph; Rhodes, Rachel; Bauska, Thomas; Baggenstos, Daniel; Severinghaus, Jeffrey P.", "project_titles": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "projects": [{"proj_uid": "p0000283", "repository": "USAP-DC", "title": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.733, "title": "Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores", "uid": "601198", "west": 162.167}, {"awards": "1543229 Severinghaus, Jeffrey", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Fri, 02 Aug 2019 00:00:00 GMT", "description": "This data comprises a survey of Recent ice from multiple sites in Antarctica using shallow ice cores to examine noble gas values in ice that nominally has the same Mean Ocean Temperature as today. The goal is to elucidate fractionation that occurs in the firn before air is trapped in bubbles in the ice, by making the assumption that the atmosphere noble gas content has not changed since this air was trappped. The ages of the air samples are typically early Industrial Revolution or late Holocene.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Krypton; Noble Gas; Xenon", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.; Shackleton, Sarah", "project_titles": "Collaborative research: Kr-86 as a proxy for barometric pressure variability and movement of the SH westerlies during the last\r\ndeglaciation", "projects": [{"proj_uid": "p0010037", "repository": "USAP-DC", "title": "Collaborative research: Kr-86 as a proxy for barometric pressure variability and movement of the SH westerlies during the last\r\ndeglaciation"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Noble Gas Data from recent ice in Antarctica for 86Kr problem", "uid": "601195", "west": -180.0}, {"awards": "1425989 Sarmiento, Jorge", "bounds_geometry": ["POLYGON((-180 -20,-144 -20,-108 -20,-72 -20,-36 -20,0 -20,36 -20,72 -20,108 -20,144 -20,180 -20,180 -27,180 -34,180 -41,180 -48,180 -55,180 -62,180 -69,180 -76,180 -83,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -83,-180 -76,-180 -69,-180 -62,-180 -55,-180 -48,-180 -41,-180 -34,-180 -27,-180 -20))"], "date_created": "Fri, 14 Dec 2018 00:00:00 GMT", "description": "This dataset include the budget terms for heat, carbon and phosphate storage tendency in \r\npre-industrial simulation and climate change simulation forced with atmospheric CO2 increasing at a rate of 1% per year run following 120 years of the pre-industrial simulation. \r\nThe results are zonally integrated. The dataset also include the meridional overturning circulation in the control and climate simulations. ", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Anthropogenic Heat; Atmosphere; Carbon Storage; Climate Change; Eddy; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Heat Budget; Modeling; Model Output; Oceans; Paleoclimate; Snow/ice; Snow/Ice; Southern Ocean", "locations": "Southern Ocean; Antarctica", "north": -20.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science", "persons": "Chen, Haidi", "project_titles": "Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM)", "projects": [{"proj_uid": "p0000197", "repository": "USAP-DC", "title": "Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Model output NOAA GFDL CM2_6 Cant Hant storage", "uid": "601144", "west": -180.0}, {"awards": "1246148 Severinghaus, Jeffrey; 0839031 Severinghaus, Jeffrey", "bounds_geometry": ["POLYGON((161.41425 -77.73489,161.486884 -77.73489,161.559518 -77.73489,161.632152 -77.73489,161.704786 -77.73489,161.77742 -77.73489,161.850054 -77.73489,161.922688 -77.73489,161.995322 -77.73489,162.067956 -77.73489,162.14059 -77.73489,162.14059 -77.747868,162.14059 -77.760846,162.14059 -77.773824,162.14059 -77.786802,162.14059 -77.79978,162.14059 -77.812758,162.14059 -77.825736,162.14059 -77.838714,162.14059 -77.851692,162.14059 -77.86467,162.067956 -77.86467,161.995322 -77.86467,161.922688 -77.86467,161.850054 -77.86467,161.77742 -77.86467,161.704786 -77.86467,161.632152 -77.86467,161.559518 -77.86467,161.486884 -77.86467,161.41425 -77.86467,161.41425 -77.851692,161.41425 -77.838714,161.41425 -77.825736,161.41425 -77.812758,161.41425 -77.79978,161.41425 -77.786802,161.41425 -77.773824,161.41425 -77.760846,161.41425 -77.747868,161.41425 -77.73489))"], "date_created": "Fri, 08 Jun 2018 00:00:00 GMT", "description": "This dataset contains the chemistry and dust measurements from Taylor Glacier as well as the new Taylor Dome TD2015 time scale described in Baggenstos et al. (2018). ", "east": 162.14059, "geometry": ["POINT(161.77742 -77.79978)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Horizontal Ice Core; Ice Core Records; Taylor Dome; Taylor Dome Ice Core", "locations": "Taylor Dome; Antarctica", "north": -77.73489, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.", "project_titles": "Collaborative Research: A \"Horizontal Ice Core\" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica", "projects": [{"proj_uid": "p0000099", "repository": "USAP-DC", "title": "Collaborative Research: A \"Horizontal Ice Core\" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.86467, "title": "Taylor Glacier chemistry data and Taylor Dome TD2015 time scale", "uid": "601103", "west": 161.41425}, {"awards": "1043471 Kaplan, Michael", "bounds_geometry": ["POLYGON((-112.5 -79.468,-112.4586 -79.468,-112.4172 -79.468,-112.3758 -79.468,-112.3344 -79.468,-112.293 -79.468,-112.2516 -79.468,-112.2102 -79.468,-112.1688 -79.468,-112.1274 -79.468,-112.086 -79.468,-112.086 -79.4712,-112.086 -79.4744,-112.086 -79.4776,-112.086 -79.4808,-112.086 -79.484,-112.086 -79.4872,-112.086 -79.4904,-112.086 -79.4936,-112.086 -79.4968,-112.086 -79.5,-112.1274 -79.5,-112.1688 -79.5,-112.2102 -79.5,-112.2516 -79.5,-112.293 -79.5,-112.3344 -79.5,-112.3758 -79.5,-112.4172 -79.5,-112.4586 -79.5,-112.5 -79.5,-112.5 -79.4968,-112.5 -79.4936,-112.5 -79.4904,-112.5 -79.4872,-112.5 -79.484,-112.5 -79.4808,-112.5 -79.4776,-112.5 -79.4744,-112.5 -79.4712,-112.5 -79.468))"], "date_created": "Fri, 27 Oct 2017 00:00:00 GMT", "description": "Listed are samples of WAIS Divide and Byrd (deep) ice that were analyzed for radiogenic isotopes at LDEO.", "east": -112.086, "geometry": ["POINT(-112.293 -79.484)"], "keywords": "Antarctica; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Sample/collection Description; Sample/Collection Description; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.468, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Kaplan, Michael", "project_titles": "A Study of Atmospheric Dust in the WAIS Divide Ice Core Based on Sr-Nd-Pb-He Isotopes", "projects": [{"proj_uid": "p0000081", "repository": "USAP-DC", "title": "A Study of Atmospheric Dust in the WAIS Divide Ice Core Based on Sr-Nd-Pb-He Isotopes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.5, "title": "List of samples of WAIS Divide and Byrd (deep) ice that were analyzed for radiogenic isotopes at LDEO", "uid": "601065", "west": -112.5}, {"awards": "0636740 Kreutz, Karl", "bounds_geometry": ["POINT(-112.086 -79.468)"], "date_created": "Tue, 11 Jul 2017 00:00:00 GMT", "description": "We present several related datasets from a 2012 snow pit and a 2013 firn core collected near the WAIS Divide field camp in West Antarctica. The data include soluble ions (sodium and non-sea-salt sulfate) and dust particle concentrations, as well as major oxide geochemistry of tephra grains isolated from snow samples. Based on these data, we found evidence of deposition from the 2011 Puyehue Cordon-Caulle (Chile) volcanic eruption at WAIS Divide.", "east": -112.086, "geometry": ["POINT(-112.086 -79.468)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Intracontinental Magmatism; IntraContinental Magmatism; Snow Pit; Tephra; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.468, "nsf_funding_programs": null, "persons": "Koffman, Bess; Kreutz, Karl", "project_titles": "Collaborative Research: Microparticle/tephra analysis of the WAIS Divide ice core", "projects": [{"proj_uid": "p0000040", "repository": "USAP-DC", "title": "Collaborative Research: Microparticle/tephra analysis of the WAIS Divide ice core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.468, "title": "Snowpit evidence of the 2011 Puyehue-Cordon Caulle (Chile) eruption in West Antarctica", "uid": "601036", "west": -112.086}, {"awards": "0839093 McConnell, Joseph", "bounds_geometry": ["POLYGON((161.41425 -77.73489,161.486884 -77.73489,161.559518 -77.73489,161.632152 -77.73489,161.704786 -77.73489,161.77742 -77.73489,161.850054 -77.73489,161.922688 -77.73489,161.995322 -77.73489,162.067956 -77.73489,162.14059 -77.73489,162.14059 -77.747868,162.14059 -77.760846,162.14059 -77.773824,162.14059 -77.786802,162.14059 -77.79978,162.14059 -77.812758,162.14059 -77.825736,162.14059 -77.838714,162.14059 -77.851692,162.14059 -77.86467,162.067956 -77.86467,161.995322 -77.86467,161.922688 -77.86467,161.850054 -77.86467,161.77742 -77.86467,161.704786 -77.86467,161.632152 -77.86467,161.559518 -77.86467,161.486884 -77.86467,161.41425 -77.86467,161.41425 -77.851692,161.41425 -77.838714,161.41425 -77.825736,161.41425 -77.812758,161.41425 -77.79978,161.41425 -77.786802,161.41425 -77.773824,161.41425 -77.760846,161.41425 -77.747868,161.41425 -77.73489))"], "date_created": "Mon, 19 Jun 2017 00:00:00 GMT", "description": "Black carbon (BC) and other biomass-burning (BB) aerosols are critical components of climate forcing but quantification, predictive climate modeling, and policy decisions have been hampered by limited understanding of the climate drivers of BB and by the lack of long-term records. Prior modeling studies suggested that increased Northern Hemisphere anthropogenic BC emissions increased recent temperatures and regional precipitation, including a northward shift in the Inter-Tropical Convergence Zone (ITCZ). Two Antarctic ice cores were analyzed for BC and the longest record shows that the highest BC deposition during the Holocene occurred ~8-6k years before present in a period of relatively high austral burning season and low growing season insolation. Atmospheric transport modeling suggests South America (SA) as the dominant source of modern Antarctic BC and, consistent with the ice-core record, climate model experiments using mid-Holocene and preindustrial insolation simulate comparable increases in carbon loss due to fires in SA during the mid-Holocene. SA climate proxies document a northward shifted ITCZ and weakened SA Summer Monsoon (SASM) during this period, with associated impacts on hydroclimate and burning. A second Antarctic ice core spanning the last 2.5k years documents similar linkages between hydroclimate and BC, with the lowest deposition during the Little Ice Age characterized by a southerly shifted ITCZ and strengthened SASM. These new results indicate that insolation-driven changes in SA hydroclimate and BB, likely linked to the position of the ITCZ, modulated Antarctic BC deposition during most of the Holocene and suggests connections and feedbacks between future BC emissions and hydroclimate.", "east": 162.14059, "geometry": ["POINT(161.77742 -77.79978)"], "keywords": "Antarctica; Atmosphere; Black Carbon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -77.73489, "nsf_funding_programs": null, "persons": "McConnell, Joseph; Arienzo, Monica", "project_titles": "Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core", "projects": [{"proj_uid": "p0000273", "repository": "USAP-DC", "title": "Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -77.86467, "title": "Holocene Black Carbon in Antarctica", "uid": "601034", "west": 161.41425}, {"awards": "0944197 Waddington, Edwin", "bounds_geometry": ["POINT(-112.1115 -79.481)"], "date_created": "Tue, 28 Mar 2017 00:00:00 GMT", "description": "The West Antarctic Ice Sheet Divide (WAIS Divide, WD) ice core is a newly drilled, high-accumulation deep ice core that provides Antarctic climate records of the past ~68 ka at unprecedented temporal resolution. The upper 2850 m (back to 31.2 ka BP) have been dated using annual-layer counting. Here we present a chronology for the deep part of the core (67.8-31.2 ka BP), which is based on stratigraphic matching to annual-layer-counted Greenland ice cores using globally well-mixed atmospheric methane. We calculate the WD gas age-ice age difference (Delta age) using a combination of firn densification modeling, ice-flow modeling, and a data set of d15N-N2, a proxy for past firn column thickness. The largest Delta age at WD occurs during the Last Glacial Maximum, and is 525 +/- 120 years. Internally consistent solutions can be found only when assuming little to no influence of impurity content on densification rates, contrary to a recently proposed hypothesis. We synchronize the WD chronology to a linearly scaled version of the layer-counted Greenland Ice Core Chronology (GICC05), which brings the age of Dansgaard-Oeschger (DO) events into agreement with the U/Th absolutely dated Hulu Cave speleothem record. The small Delta age at WD provides valuable opportunities to investigate the timing of atmospheric greenhouse gas variations relative to Antarctic climate, as well as the interhemispheric phasing of the \\\"bipolar seesaw\\\".\n\nWe present the WD2014 chronology for the upper part (0-2850 m; 31.2 ka BP) of the West Antarctic Ice Sheet (WAIS) Divide (WD) ice core. The chronology is based on counting of annual layers observed in the chemical, dust and electrical conductivity records. These layers are caused by seasonal changes in the source, transport, and deposition of aerosols. The measurements were interpreted manually and with the aid of two automated methods. We validated the chronology by comparing to two high-accuracy, absolutely dated chronologies. For the Holocene, the cosmogenic isotope records of 10Be from WAIS Divide and 14C for IntCal13 demonstrated that WD2014 was consistently accurate to better than 0.5% of the age. For the glacial period, comparisons to the Hulu Cave chronology demonstrated that WD2014 had an accuracy of better than 1% of the age at three abrupt climate change events between 27 and 31ka. WD2014 has consistently younger ages than Greenland ice core chronologies during most of the Holocene. For the Younger Dryas-Preboreal transition (11.595 ka; 24 years younger) and the Bolling-Allerod Warming (14.621 ka; 7 years younger), WD2014 ages are within the combined uncertainties of the timescales. Given its high accuracy, WD2014 can become a reference chronology for the Southern Hemisphere, with synchronization to other chronologies feasible using high-quality proxies of volcanism, solar activity, atmospheric mineral dust, and atmospheric methane concentrations.", "east": -112.1115, "geometry": ["POINT(-112.1115 -79.481)"], "keywords": "Antarctica; Depth-Age-Model; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.481, "nsf_funding_programs": null, "persons": "Fudge, T. J.", "project_titles": "Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core", "projects": [{"proj_uid": "p0000026", "repository": "USAP-DC", "title": "Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "WD2014: Timescale for WAIS Divide Core 2006 A (WDC-06A)", "uid": "601015", "west": -112.1115}, {"awards": "0636740 Kreutz, Karl", "bounds_geometry": ["POINT(-112.5 -79.28)"], "date_created": "Mon, 29 Jun 2015 00:00:00 GMT", "description": "This data set includes raw dust microparticle data for the WAIS Divide deep core, WDC06A, from the surface to 577 m. Data were collected in 2010 using a Klotz Abakus laser particle counter connected to a continuous ice core melter system at the University of Maine (Breton et al., 2012).", "east": -112.5, "geometry": ["POINT(-112.5 -79.28)"], "keywords": "Antarctica; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Particle Size; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Koffman, Bess; Kreutz, Karl", "project_titles": "Collaborative Research: Microparticle/tephra analysis of the WAIS Divide ice core", "projects": [{"proj_uid": "p0000040", "repository": "USAP-DC", "title": "Collaborative Research: Microparticle/tephra analysis of the WAIS Divide ice core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.28, "title": "WAIS Divide Microparticle Concentration and Size Distribution, 0-2400 ka", "uid": "609616", "west": -112.5}, {"awards": "1142010 Talghader, Joseph", "bounds_geometry": ["POLYGON((-148.81 -79.42,-145.111 -79.42,-141.412 -79.42,-137.713 -79.42,-134.014 -79.42,-130.315 -79.42,-126.616 -79.42,-122.917 -79.42,-119.218 -79.42,-115.519 -79.42,-111.82 -79.42,-111.82 -79.643,-111.82 -79.866,-111.82 -80.089,-111.82 -80.312,-111.82 -80.535,-111.82 -80.758,-111.82 -80.981,-111.82 -81.204,-111.82 -81.427,-111.82 -81.65,-115.519 -81.65,-119.218 -81.65,-122.917 -81.65,-126.616 -81.65,-130.315 -81.65,-134.014 -81.65,-137.713 -81.65,-141.412 -81.65,-145.111 -81.65,-148.81 -81.65,-148.81 -81.427,-148.81 -81.204,-148.81 -80.981,-148.81 -80.758,-148.81 -80.535,-148.81 -80.312,-148.81 -80.089,-148.81 -79.866,-148.81 -79.643,-148.81 -79.42))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "This award supports a project to combine the expertise of both glaciologists and optical engineers to develop polarization- preserving optical scattering techniques for borehole tools to identify changes in high-resolution crystal structure (fabric) and dust content of glacial ice. The intellectual merit of this work is that the fabric and impurity content of the ice contain details on climate, volcanic activity and ice flow history. Such fabric measurements are currently taken by slicing an ice core into sections after it has started to depressurize which is an extremely time-intensive process that damages the core and does not always preserve the properties of ice in its in-situ state. In addition the ice core usually must be consumed in order to measure the components of the dust. The fabric measurements of this study utilize the concept that singly-scattered light in ice preserves most of its polarization when it is backscattered once from bubbles or dust; therefore, changes to the polarization of singly-backscattered light must originate with the birefringence. Measurements based on this concept will enable this program to obtain continuous records of fabric and correlate them to chronology and dust content. The project will also develop advanced borehole instruments to replace current logging tools, which require optical sources, detectors and power cables to be submerged in borehole fluid and lowered into the ice sheet at temperatures of -50oC. The use of telecommunications fiber will allow all sources and detectors to remain at the surface and enable low-noise signal processing techniques such as lock-in amplification that increase signal integrity and reduce needed power. Further, fiber logging systems would be much smaller and more flexible than current tools and capable of navigating most boreholes without a heavy winch. In order to assess fabric in situ and test fiber-optic borehole tools, field measurements will be made at WAIS Divide and a deep log will also be made at Siple Dome, both in West Antarctica. If successful, the broader impacts of the proposed research would include the development of new analytical methods and lightweight logging tools for ice drilling research that can operate in boreholes drilled in ice. Eventually the work could result in the development of better prehistoric records of glacier flow, atmospheric particulates, precipitation, and climate forcing. The project encompasses a broad base of theoretical, experimental, and design work, which makes it ideal for training graduate students and advanced undergraduates. Collaboration with schools and classroom teachers will help bring aspects of optics, climate, and polar science to an existing Middle School curriculum.", "east": -111.82, "geometry": ["POINT(-130.315 -80.535)"], "keywords": "Antarctica; Ash Layer; Borehole Camera; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.42, "nsf_funding_programs": null, "persons": "Talghader, Joseph", "project_titles": "Optical Fabric and Fiber Logging of Glacial Ice", "projects": [{"proj_uid": "p0000339", "repository": "USAP-DC", "title": "Optical Fabric and Fiber Logging of Glacial Ice"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -81.65, "title": "Optical Fabric and Fiber Logging of Glacial Ice (1142010)", "uid": "600172", "west": -148.81}, {"awards": "0738658 Price, P. Buford", "bounds_geometry": ["POINT(-112.135833 -79.482778)"], "date_created": "Thu, 03 Apr 2014 00:00:00 GMT", "description": "This data set consists of data from optical logs made at the WAIS Divide with a laser dust logger in clear ice at depths between 1403.58 meters and 3329.8 meters.", "east": -112.135833, "geometry": ["POINT(-112.135833 -79.482778)"], "keywords": "Antarctica; Atmosphere; Chemistry:ice; Chemistry:Ice; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Laser Dust Logger; WAIS Divide Ice Core", "locations": "Antarctica", "north": -79.482778, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Bay, Ryan", "project_titles": "Climatology, Meteorology, and Microbial Metabolism in Ice with Dust Loggers and Fluorimetry", "projects": [{"proj_uid": "p0000009", "repository": "USAP-DC", "title": "Climatology, Meteorology, and Microbial Metabolism in Ice with Dust Loggers and Fluorimetry"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.482778, "title": "WAIS Divide Laser Dust Logger Data", "uid": "609540", "west": -112.135833}, {"awards": "0944743 Buckley, Bradley", "bounds_geometry": ["POINT(166.66667 -77.83333)"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "The research will investigate a novel mechanism by which cold-adapted fishes of the Southern Ocean sense and respond to elevated temperatures. It is hypothesized that sub-lethal heat stress may induce cell cycle arrest and/or programmed cell death through apoptosis. The study will use genome-enabled technologies to examine the environmental control over gene expression in Antarctic species and will build direct mechanistic links between the expression of a specific signaling pathway gene and heat-induced changes in cells. Prior results support the hypothesis that heat stress results in cell cycle arrest and, in some cases, programmed cell death in Antarctic fishes. If so, this represents a novel, modified version of the well-conserved cellular stress response found in essentially all other species and suggests that warming ocean temperatures may have profound cellular and physiological impacts on these extremely stenothermal species. The P.I. conducts outreach activities with the Oregon Museum of Science and Industry, will be involved in developing a science curriculum for the Native American Youth and Family Center (NAYA) Early College Academy in Portland, and supports the educational and professional development of both undergraduate and graduate students at Portland State University.\n", "east": 166.66667, "geometry": ["POINT(166.66667 -77.83333)"], "keywords": "Biota; Southern Ocean", "locations": "Southern Ocean", "north": -77.83333, "nsf_funding_programs": null, "persons": "Buckley, Bradley", "project_titles": "The Cellular Stress Response in Cold-adapted Organisms: Building Novel Mechanistic Links between Heat Stress, Cell Cycle Arrest and Apoptosis in Antarctic Fishes.", "projects": [{"proj_uid": "p0000493", "repository": "USAP-DC", "title": "The Cellular Stress Response in Cold-adapted Organisms: Building Novel Mechanistic Links between Heat Stress, Cell Cycle Arrest and Apoptosis in Antarctic Fishes."}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.83333, "title": "The Cellular Stress Response in Cold-adapted Organisms: Building Novel Mechanistic Links between Heat Stress, Cell Cycle Arrest and Apoptosis in Antarctic Fishes.", "uid": "600118", "west": 166.66667}, {"awards": "0538520 Thiemens, Mark", "bounds_geometry": ["POINT(-114.216667 -78.916667)"], "date_created": "Mon, 01 Nov 2010 00:00:00 GMT", "description": "This data set contains measurements of multiple sulfur and oxygen isotopes from sulfates, from an ice core drilled at the West Antarctic Ice Sheet (WAIS) Divide site in 2005. The initial sulfate measurements, analyzed in 2008 from the 70 meter WAIS 2005A core, are 12 meter averages and span the pre-industrial to industrial transition, from the late 1700s to 2005. This data set is part of the West Antarctic Ice Sheet Divide Ice Core (WAISCORES) project.\n\nData are available via FTP in Microsoft Excel (.xlsx) format.", "east": -114.216667, "geometry": ["POINT(-114.216667 -78.916667)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -78.916667, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Thiemens, Mark H.", "project_titles": "Collaborative Research: Multiple-isotope Analysis of Nitrate and Sulfate in the West Antarctic Ice Sheet Divide Ice Core", "projects": [{"proj_uid": "p0000020", "repository": "USAP-DC", "title": "Collaborative Research: Multiple-isotope Analysis of Nitrate and Sulfate in the West Antarctic Ice Sheet Divide Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.916667, "title": "Multiple Isotope Analysis of Sulfate in the West Antarctic Ice Sheet Divide Ice Core", "uid": "609479", "west": -114.216667}, {"awards": "0125794 Price, P. Buford", "bounds_geometry": ["POINT(148.816667 -81.65)"], "date_created": "Wed, 29 Jul 2009 00:00:00 GMT", "description": "This data set contains high-resolution logs of dust and microbes measured at the Siple Dome A borehole in Antarctica. The data were obtained using a newly developed optical borehole logger, which fits into a fluid-filled borehole in glacial ice. It can detect dust and microbes in ice out to several meters from the borehole, and measure optical properties of those particles. The data set contains information on depth and optical signal. Data are available via FTP in data file format (.dat).", "east": 148.816667, "geometry": ["POINT(148.816667 -81.65)"], "keywords": "Antarctica; Dust; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Microbiology; Optical Backscatter", "locations": "Antarctica", "north": -81.65, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Bay, Ryan", "project_titles": "Optical Logging for Dust and Microbes in Boreholes in Glacial Ice", "projects": [{"proj_uid": "p0000156", "repository": "USAP-DC", "title": "Optical Logging for Dust and Microbes in Boreholes in Glacial Ice"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -81.65, "title": "Optical Logging for Dust and Microbes in Boreholes in Glacial Ice", "uid": "609403", "west": 148.816667}, {"awards": "0126057 Brook, Edward J.", "bounds_geometry": null, "date_created": "Tue, 16 Dec 2008 00:00:00 GMT", "description": "Ice Core Interplanetary Dust Helium Isotope Data Helium isotope data from Ice Cores at GISP2 (Greenland) and Vostok (Antarctica) as a proxy for extraterrestrial dust flux.\n", "east": null, "geometry": null, "keywords": "Antarctica; Arctic; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Lake Vostok; Paleoclimate; Vostok Ice Core", "locations": "Lake Vostok; Arctic; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Brook, Edward J.; Kurz, Mark D.", "project_titles": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change", "projects": [{"proj_uid": "p0000034", "repository": "USAP-DC", "title": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "GISP2 (D Core) Helium Isotopes from Interplanetary Dust", "uid": "609361", "west": null}, {"awards": "0338359 Saltzman, Eric", "bounds_geometry": ["POINT(-148.81 -81.65)"], "date_created": "Wed, 16 Nov 2005 00:00:00 GMT", "description": "This data set is part of the WAISCORES (West Antarctic Ice Sheet cores) project, research funded by the National Science Foundation (NSF) and designed to improve understanding of how the West Antarctic ice sheet influences climate and sea level change. WAISCORES investigators acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. These data provide researchers with a record of natural climatic variability and anthropogenic influence on biogeochemical cycles. Because ice cores contain an archive of preindustrial air, a baseline can be established, and the extent of human impact on the climate can be ascertained. \n\nThis data set includes mixing ratios of carbonyl sulfide (COS), methyl chloride (CH3Cl), and methyl bromide (CH3Br). Data samples were retrieved from the Siple C ice core, which was drilled at 81.65\u00b0 S, 148.81\u00b0 W in December 1995. The core site sits 620 m above sea level near the edge of the Ross Ice Shelf where there is a mean annual temperature of -25.4 \u00b0C.\n\nData are available via FTP.", "east": -148.81, "geometry": ["POINT(-148.81 -81.65)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "locations": "Antarctica; Siple Dome", "north": -81.65, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Saltzman, Eric; Aydin, Murat", "project_titles": "Methyl chloride and methyl bromide in Antarctic ice cores", "projects": [{"proj_uid": "p0000032", "repository": "USAP-DC", "title": "Methyl chloride and methyl bromide in Antarctic ice cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.65, "title": "Analysis of Siple Dome Ice Core: Carbonyl Sulfide (COS), Methyl Chloride (CH3Cl), and Methyl Bromide (CH3Br)", "uid": "609279", "west": -148.81}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": null, "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "This data set is a collection of analyses done on the the European Project for Ice Coring in Antarctica (EPICA)Dome C ice cores. The data include deuterium and other chemistry, insoluble dust, ice grain radius, dielectric profiling, electrical conductivity, and timescales.\n\nEPICA has completed one core in the Dome Concordia region (Core EDC96, started in 1996, 788 m length). Drilling is ongoing on a second core EDC99 (started in 1999, reached a depth of 3200 m during the 2002/2003 field season. The ice at this depth is estimated to be about 700,000 years old.)", "east": null, "geometry": null, "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Dome C Ice Core; Epica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Physical Properties", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Wolff, Eric W.; Monnin, Eric; Fluckiger, Jacqueline", "project_titles": null, "projects": null, "repositories": null, "science_programs": "Dome C Ice Core", "south": null, "title": "European Project for Ice Coring in Antarctica (EPICA) Dome C Ice Core Data", "uid": "609244", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Strontium and neodymium isotope compositions of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area.
|
2035580 |
2024-08-15 | Carter, Austin |
Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial |
This dataset contains Sr and Nd isotope compositions of ice core dust from ALHIC1903 spanning the transition from MIS 6 through 5e. | ["POINT(159.31 -76.7)"] | ["POINT(159.31 -76.7)"] | false | false |
Rare earth elemental concentrations of leached ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area.
|
2035580 |
2024-08-15 | Carter, Austin |
Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial |
This dataset contains rare earth elemental concentrations of leached ice core dust from ALHIC1903 spanning the transition from MIS 6 through 5e. | ["POINT(159.31 -76.7)"] | ["POINT(159.31 -76.7)"] | false | false |
Concentration and flux of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area
|
2035580 |
2024-08-15 | Carter, Austin |
Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial |
This dataset contains dust mass concentrations, coarse particle fraction, interpolated accumulation rate, and dust flux from ALHIC1903 spanning the transition from MIS 6 through 5e. | ["POINT(159.31 -76.7)"] | ["POINT(159.31 -76.7)"] | false | false |
Atmospheric methane across the Last Glacial Maximum and deglaciation from the GISP2, NEEM and WAIS Divide ice cores
|
1745078 |
2023-10-05 | Riddell-Young, Benjamin; Martin, Kaden; Rosen, Julia; Lee, James; Edwards, Jon S.; Brook, Edward J. |
Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores |
This dataset includes measurements of atmospheric methane from samples from the NEEM, GISP2 and WAIS Divide ice cores. All measurements were made at the Oregon State University Ice Core and Quaternary Geochemistry Laboratory (Corvallis, OR) using an established analytical system. 433 samples from the NEEM ice core were measured between 1420 and 1560m depths. A measurement uncertainty ranging from 2.8 to 4.2 ppb, depending on the measurement year, was determined from replicate samples. 340 samples from the GISP2 ice core were measured between 1740 and 2060m depths. A measurement uncertainty ranging from 3.1 to 3.4 ppb, depending on the measurement year, was determined from replicate samples. All GISP2 and NEEM data were corrected for excess methane contamination using the established relationship between excess methane and Ca2+ (Lee et al., 2020). Both corrected and uncorrected data are included in the publication. 340 samples from the GISP2 ice core were measured between 1957 and 3081m depths. A measurement uncertainty ranging from 3.1 to 3.4 ppb, depending on the measurement year, was determined from replicate samples. Depths reflect the mid-points of the depth range of each samples, which is typically ~8cm. All replicate measurements are included in the dataset. Lee, J. E. et al. Excess methane in Greenland ice cores associated with high dust concentrations. Geochimica et cosmochimica acta 270, 409-430 (2020). | ["POINT(-112.05 -79.28)"] | ["POINT(-112.05 -79.28)"] | false | false |
Atmospheric methane interpolar difference and four-box troposphere model output across the Last Glacial Maximum and Deglaciation
|
1745078 |
2023-10-02 | Riddell-Young, Benjamin; Rosen, Julia; Buizert, Christo; Martin, Kaden; Lee, James; Edwards, Jon S.; Mühl, Michaela; Schmitt, Jochen; Fischer, Hubertus; Blunier, Thomas; Brook, Edward J. |
Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores |
This dataset includes estimates of the atmospheric methane relative interpolar difference (rIPD) across the Last Glacial Maximum and Deglaciation. The rIPD was calculated using discrete, high-resolution methane measurements from the WAIS Divide, NEEM and GISP2 ice cores. Two independent IPD records were determined: One using NEEM and WAIS and one using GISP2 and WAIS. The dataset includes rIPD values calculated using both Greenland methane data both corrected and uncorrected for excess methane (Lee et al., 2020). The rIPD was calculated by smoothing each methane record and synchronizing them to the WD2014 gas age scale. 1-sigma rIPD uncertainties are included. This dataset also includes the output of the four-box troposphere model used to interpret the rIPD. For both excess methane-corrected records, the model output and 1-sigma uncertainty is provided for northern extratropical (30N - 90N) and total tropical (30S - 30N) sources in Tg yr-1. For the NEEM-derived rIPD, sections of the rIPD where atmospheric methane changed rapidly were deemed untrustworthy were removed from the dataset. Lee, J. E. et al. Excess methane in Greenland ice cores associated with high dust concentrations. Geochimica et cosmochimica acta 270, 409-430 (2020). | ["POINT(-112.05 -79.28)"] | ["POINT(-112.05 -79.28)"] | false | false |
ICECAP ice thickness data over the Darwin and Hatherton Glaciers, Transantarctic Mountains, Antarctica
|
0733025 |
2022-09-02 | Gillespie, Mette; Blankenship, Donald D.; Young, Duncan A.; Siegert, Martin; Holt, John W.; Greenbaum, Jamin; Schroeder, Dustin |
IPY Research: Investigating the Cryospheric Evolution of the Central Antarctic Plate (ICECAP) |
HiCARS data collected over Darwin and Hatherton Glaciers during ICECAP Test Flight ICP1/F05 | ["POLYGON((153 -79,153.9 -79,154.8 -79,155.7 -79,156.6 -79,157.5 -79,158.4 -79,159.3 -79,160.2 -79,161.1 -79,162 -79,162 -79.14,162 -79.28,162 -79.42,162 -79.56,162 -79.7,162 -79.84,162 -79.98,162 -80.12,162 -80.26,162 -80.4,161.1 -80.4,160.2 -80.4,159.3 -80.4,158.4 -80.4,157.5 -80.4,156.6 -80.4,155.7 -80.4,154.8 -80.4,153.9 -80.4,153 -80.4,153 -80.26,153 -80.12,153 -79.98,153 -79.84,153 -79.7,153 -79.56,153 -79.42,153 -79.28,153 -79.14,153 -79))"] | ["POINT(157.5 -79.7)"] | false | false |
South Pole (SPC14) microparticle concentration, mass concentration, flux, particle-size-distribution mode, and aspect ratio measurements
|
1443397 |
2022-04-01 | Kreutz, Karl |
Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements |
This dataset contains particle metrics for the South Pole Ice Core (SPICEcore) intermediate core (SPC14), from the surface to 1751 m depth (~54,000 years before present [BP]). Data were collected via Klotz Abakus laser particle counter via continuous-flow-analysis (CFA), Beckman Coulter Multisizer 3 using Coulter Counter (CC) principles, and dynamic particle imaging using a FlowCAM instrument. CFA measurements were made at Dartmouth College, CC measurements were made at Colby College, and FlowCAM measurements were made at the University of Maine. | ["POINT(0 -90)"] | ["POINT(0 -90)"] | false | false |
Bistatic Radar Sounding of Whillans Ice Stream, Antarctica and Store Glacier, Greenland
|
1656518 1543441 |
2021-09-14 | Bienert, Nicole; Schroeder, Dustin; Siegfried, Matthew; Peters, Sean; MacKie, Emma; Dawson, Eliza; Christoffersen, Poul |
Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments |
This dataset includes raw, uncalibrated voltage vs time measurements from a bistatic radar receiver. We also include some processed data including upsampled matched filtered data, GPS receiver position, antenna separation | [] | [] | false | false |
Radar Sounding Observations of the Amundsen Sea Embayment, 2004-2005
|
1745137 |
2021-03-05 | Chu, Winnie; Hilger, Andrew M.; Culberg, Riley; Schroeder, Dustin; Jordan, Thomas M.; Seroussi, Helene; Young, Duncan A.; Vaughan, David G. |
CAREER: Cross-Instrument Synthesis of Antarctic Radar Sounding Observations |
The dataset contains radargrams from the 2004-2005 airborne radar sounding surveys on Pine Island Glacier and Thwaites Glacier as part of the BBAS and AGASEA projects. It also includes basal reflectivity and one-way attenuation rates derived from these radargrams. Radar data from the Pine Island Ice Shelf inland to the Bentley Sublglacial Trench were collected by the British Antarctica Survey (BAS) with the Polarimetric-radar Airborne Science INstrument (PASIN) radar sounder, operating at a center frequency of 150 MHz and 15 MHz bandwidth. Data over Thwaites Glacier were collected by the University of Texas Institute for Geophysics (UTIG) High Capability Airborne Radar Sounder (HiCARS) operating at a center frequency of 60 MHz with 15 MHz of bandwidth. Data are provided as 50km segments in NetCDF files, along with kml location files, and pdf files for browsing radargrams images by flight transect. Details of the processing methods are included in the associated README file. The processed data sets (reflectivity and attenuation) are provided as a single NetCDF file for each flight transect. Details of the calibration and processing procedures are provided in Chu, et al (in review). | ["POLYGON((-130 -72.9,-125.27 -72.9,-120.54 -72.9,-115.81 -72.9,-111.08 -72.9,-106.35 -72.9,-101.62 -72.9,-96.89 -72.9,-92.16 -72.9,-87.43 -72.9,-82.7 -72.9,-82.7 -73.76,-82.7 -74.62,-82.7 -75.48,-82.7 -76.34,-82.7 -77.2,-82.7 -78.06,-82.7 -78.92,-82.7 -79.78,-82.7 -80.64,-82.7 -81.5,-87.43 -81.5,-92.16 -81.5,-96.89 -81.5,-101.62 -81.5,-106.35 -81.5,-111.08 -81.5,-115.81 -81.5,-120.54 -81.5,-125.27 -81.5,-130 -81.5,-130 -80.64,-130 -79.78,-130 -78.92,-130 -78.06,-130 -77.2,-130 -76.34,-130 -75.48,-130 -74.62,-130 -73.76,-130 -72.9))"] | ["POINT(-106.35 -77.2)"] | false | false |
Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau
|
0941678 0424589 0733025 1443690 |
2020-12-18 | Cavitte, Marie G. P; Young, Duncan A.; Mulvaney, Robert; Ritz, Catherine; Greenbaum, Jamin; Ng, Gregory; Kempf, Scott D.; Quartini, Enrica; Muldoon, Gail R.; Paden, John; Frezzotti, Massimo; Roberts, Jason; Tozer, Carly; Schroeder, Dustin; Blankenship, Donald D. |
Center for Remote Sensing of Ice Sheets (CReSIS) IPY Research: Investigating the Cryospheric Evolution of the Central Antarctic Plate (ICECAP) Collaborative Research: Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP) |
The data set published here consists of 26 ice-penetrating radar IRHs (internal reflecting horizons) which were traced across multiple ice-penetrating radar surveys that deployed several generations of modern ice-penetrating radar sounders over a decade, between 2008 and 2018, over the Dome C region of the East Antarctic Plateau. The data set is associated to publication: Cavitte, M. G. P, Young, D. A, Mulvaney, R., Ritz, C., Greenbaum, J. S., Ng, G., Kempf, S. D., Quartini, E., Muldoon, G. R., Paden, J., Frezzotti, M., Roberts, J. L. , Tozer, C. R. , Schroeder, D. M. and Blankenship, D. D. A detailed radiostratigraphic data set for the central East Antarctic Plateau spanning from the Holocene to the mid-Pleistocene, Earth Syst. Sci. Data, 13, 4759–4777, 2021, https://doi.org/10.5194/essd-13-4759-2021. We can subdivide the radar sounders used into three sets. The primary set was collected by the University of Texas at Austin Institute for Geophysics (UTIG) and the Australian Antarctic Division (AAD) as part of the ICECAP project) between 2008 and 2015. This includes the Oldest Ice candidate A (OIA) survey flown by ICECAP in January 2016. Data were collected with the High Capacity Airborne Radar Sounder (HiCARS) 1 & 2 and its Multifrequency Airborne Radar-sounder for Full-phase Assessment (MARFA) descendant. The data was collected from a DC-3T Basler which operated from Concordia Station. The second set consists of the Vostok-Dome C airborne radar transect was flown by the Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas using the Multi-Channel Coherent Radar Depth Sounder (MCoRDS) in a single flight line in 2013. A P-3 Orion operating from McMurdo Station collected these data as part of NASA Operation Ice Bridge. The third set consists of a subset of the LDC ground-based radar survey, towed behind a PistenBully PB300 tractor, collected by the Beyond EPICA - Oldest Ice (BE-OI) European Consortium using the British Antarctic Survey’s (BAS) Deep Looking Radio Echo Sounder (DELORES) radar system. Each IRH has been traced in all three radar sets and is published here as a single csv and netcdf file. Formats are self-documented in these csv/netcdf files. Where HiCARS and MCoRDS radar transects are used, the IRH is provided at a 1 km spatial resolution, where DELORES radar transects are used, the IRH is provided at a 250 m spatial resolution. The 26 IRHs published here were traced semi-automatically by first author Marie Cavitte, using Landmark's Decision Space Desktop software and its built-in picker. The IRHs are dated at the EDC ice core using the AICC2012 timescale (Veres et al., 2013; Bazin et al., 2013). Ice core ages are transferred onto the IRHs on radar transect MCM/JKB1a/EDMC01a at distance_m (column in the data sets) = 110.153 m along the transect. That radar point of closest approach is 94 m away from the ice core site. Depth and age uncertainties associated to each IRH are quantified n the associated publication: Cavitte, M. G. P, Young, D. A, Mulvaney, R., Ritz, C., Greenbaum, J. S., Ng, G., Kempf, S. D., Quartini, E., Muldoon, G. R., Paden, J., Frezzotti, M., Roberts, J. L. , Tozer, C. R. , Schroeder, D. M. and Blankenship, D. D. A detailed radiostratigraphic data set for the central East Antarctic Plateau spanning from the Holocene to the mid-Pleistocene, Earth Syst. Sci. Data, 13, 4759–4777, 2021, https://doi.org/10.5194/essd-13-4759-2021. Besides NSF this dataset is the result of additional support from NERC grant - NE/D003733/1, NASA grants - NX08AN68G, NNX09AR52G, NNX11AD33G, NNX13AD53A, and funding from the G. Unger Vetlesen Foundation. \nNote that the dataset was archived before the accompanying paper was officially published. The abstract and dataset description has been updated to cite the correct reference to the ESSD paper (Cavitte et al., 2021) after the paper was published. The headers of the actual data files contain only a placeholder to this reference. | ["POLYGON((114 -74,115.2 -74,116.4 -74,117.6 -74,118.8 -74,120 -74,121.2 -74,122.4 -74,123.6 -74,124.8 -74,126 -74,126 -74.3,126 -74.6,126 -74.9,126 -75.2,126 -75.5,126 -75.8,126 -76.1,126 -76.4,126 -76.7,126 -77,124.8 -77,123.6 -77,122.4 -77,121.2 -77,120 -77,118.8 -77,117.6 -77,116.4 -77,115.2 -77,114 -77,114 -76.7,114 -76.4,114 -76.1,114 -75.8,114 -75.5,114 -75.2,114 -74.9,114 -74.6,114 -74.3,114 -74))"] | ["POINT(120 -75.5)"] | false | false |
ICECAP Basal Interface Specularity Content Profiles: IPY and OIB
|
0733025 1543452 0636724 1443690 |
2020-08-24 | Young, Duncan A.; Blankenship, Donald D.; Roberts, Jason; Siegert, Martin; van Ommen, Tas; Greenbaum, Jamin; Schroeder, Dustin |
Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System East Antarctic Grounding Line Experiment (EAGLE) Collaborative Research: Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP) IPY Research: Investigating the Cryospheric Evolution of the Central Antarctic Plate (ICECAP) |
The International Collaborative Exploration of the Cryosphere though Airborne Profiling (ICECAP) collected five seasons of aerogeophysical data data through the NSFs International Polar Year and NASAs Operation Ice Bridge programs in East Antarctica, using the coherent HiCARS 60 MHz radar system. By comparing echo strengths for different focusing apertures, and accounting for the ranges and angles involved, we can derive the "specularity content" of the bed echo, a proxy for small scale bed roughness and a good indicator for subglacial water pressure in regions of distributed subglacial water (Schroeder et al., 2014, IEEE GRSL, 10.1109/LGRS.2014.2337878; IEEE; Dow et al., 2019, EPSL https://doi.org/10.1016/j.epsl.2019.115961). Specularity data are inherently noisy, so these products have been smoothed with a 1 km filter. | ["POLYGON((80 -65,89 -65,98 -65,107 -65,116 -65,125 -65,134 -65,143 -65,152 -65,161 -65,170 -65,170 -66.5,170 -68,170 -69.5,170 -71,170 -72.5,170 -74,170 -75.5,170 -77,170 -78.5,170 -80,161 -80,152 -80,143 -80,134 -80,125 -80,116 -80,107 -80,98 -80,89 -80,80 -80,80 -78.5,80 -77,80 -75.5,80 -74,80 -72.5,80 -71,80 -69.5,80 -68,80 -66.5,80 -65))"] | ["POINT(125 -72.5)"] | false | false |
South Pole ice core total air content
|
1443464 |
2019-12-11 | Sowers, Todd A. |
Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core |
The total air content in ice core samples are a fundamental indication of the multitude of processes that impact densification of snow in polar regions. In addition, variations in the elevation of the ice sheet directly control the pressure in the bubble close off region and thereby the total gas content. Attempts to remove the physical factors (temperature, accumulation rate, dust content, seasonality) impacting the total air content could provide a means of assessing variations in the elevation of the South Pole over the last 50,000 years. | ["POINT(0 -90)"] | ["POINT(0 -90)"] | false | false |
Laser Dust Logging of the South Pole Ice Core (SPICE)
|
1443566 |
2019-11-03 | Bay, Ryan |
Laser Dust Logging of a South Pole Ice Core |
We deployed an oriented laser dust logger in the SPICEcore borehole in order to study the particulate stratigraphy, volcanology, glaciology and climatology of South Pole. We obtained a detailed record of dust and ash, SPICEcore age versus depth, and measurements of the optical anisotropy indicated by IceCube analyses. | ["POINT(0 -90)"] | ["POINT(0 -90)"] | false | false |
Antarctic topographic and subglacial lake geostatistical simulations
|
1745137 |
2019-10-02 | MacKie, Emma; Schroeder, Dustin; Caers, Jef; Siegfried, Matt; Scheidt, Celine |
CAREER: Cross-Instrument Synthesis of Antarctic Radar Sounding Observations |
These data accompany the paper "Antarctic Topographic Realizations and Geostatistical Modeling Used to Map Subglacial Lakes" (MacKie et al., in review). This dataset contains 100 geostatistically generated subglacial topographic realizations for Antarctica. Data science techniques were used to calculate the probability of the occurrence of radar-detected lakes and altimetry-detected (active) lakes across the continent, using each topographic realization as a parameter. This generated 100 probability maps of the likelihood of radar-detected lake occurrence and 100 probability maps of active lake occurrence. Further statistics were used to generate 100 binary maps showing expected radar-detected lake locations. The ensemble of realizations can be used for uncertainty quantification. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores
|
1246148 1245821 1245659 |
2019-08-12 | Menking, James; Brook, Edward J.; Marcott, Shaun; Barker, Stephen; Shackleton, Sarah; Dyonisius, Michael; Petrenko, Vasilii; McConnell, Joseph; Rhodes, Rachel; Bauska, Thomas; Baggenstos, Daniel; Severinghaus, Jeffrey P. |
Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive |
New ice cores retrieved from the Taylor Glacier (Antarctica) blue ice area contain ice and air spanning the Marine Isotope Stage (MIS) 5-4 transition, a period of global cooling and ice sheet expansion. We determine chronologies for the ice and air bubbles in the new ice cores by visually matching variations in gas- and ice- phase tracers to preexisting ice core records. The chronologies reveal an ice age-gas age difference (Δage) approaching 10 ka during MIS 4, implying very low snow accumulation in the Taylor Glacier accumulation zone. A revised chronology for the analagous section of the Taylor Dome ice core (84 to 55 ka), located to the south of the Taylor Glacier accumulation zone, shows that Δage did not exceed 3 ka. The difference in Δage between the two records during MIS 4 is similar in magnitude but opposite in direction to what is observed at the Last Glacial Maximum. This relationship implies that a spatial gradient in snow accumulation existed across the Taylor Dome region during MIS 4 that was oriented in the opposite direction of the accumulation gradient during the Last Glacial Maximum. | ["POINT(162.167 -77.733)"] | ["POINT(162.167 -77.733)"] | false | false |
Noble Gas Data from recent ice in Antarctica for 86Kr problem
|
1543229 |
2019-08-02 | Severinghaus, Jeffrey P.; Shackleton, Sarah |
Collaborative research: Kr-86 as a proxy for barometric pressure variability and movement of the SH westerlies during the last
deglaciation |
This data comprises a survey of Recent ice from multiple sites in Antarctica using shallow ice cores to examine noble gas values in ice that nominally has the same Mean Ocean Temperature as today. The goal is to elucidate fractionation that occurs in the firn before air is trapped in bubbles in the ice, by making the assumption that the atmosphere noble gas content has not changed since this air was trappped. The ages of the air samples are typically early Industrial Revolution or late Holocene. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Model output NOAA GFDL CM2_6 Cant Hant storage
|
1425989 |
2018-12-14 | Chen, Haidi |
Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) |
This dataset include the budget terms for heat, carbon and phosphate storage tendency in pre-industrial simulation and climate change simulation forced with atmospheric CO2 increasing at a rate of 1% per year run following 120 years of the pre-industrial simulation. The results are zonally integrated. The dataset also include the meridional overturning circulation in the control and climate simulations. | ["POLYGON((-180 -20,-144 -20,-108 -20,-72 -20,-36 -20,0 -20,36 -20,72 -20,108 -20,144 -20,180 -20,180 -27,180 -34,180 -41,180 -48,180 -55,180 -62,180 -69,180 -76,180 -83,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -83,-180 -76,-180 -69,-180 -62,-180 -55,-180 -48,-180 -41,-180 -34,-180 -27,-180 -20))"] | ["POINT(0 -89.999)"] | false | false |
Taylor Glacier chemistry data and Taylor Dome TD2015 time scale
|
1246148 0839031 |
2018-06-08 | Severinghaus, Jeffrey P. |
Collaborative Research: A "Horizontal Ice Core" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica |
This dataset contains the chemistry and dust measurements from Taylor Glacier as well as the new Taylor Dome TD2015 time scale described in Baggenstos et al. (2018). | ["POLYGON((161.41425 -77.73489,161.486884 -77.73489,161.559518 -77.73489,161.632152 -77.73489,161.704786 -77.73489,161.77742 -77.73489,161.850054 -77.73489,161.922688 -77.73489,161.995322 -77.73489,162.067956 -77.73489,162.14059 -77.73489,162.14059 -77.747868,162.14059 -77.760846,162.14059 -77.773824,162.14059 -77.786802,162.14059 -77.79978,162.14059 -77.812758,162.14059 -77.825736,162.14059 -77.838714,162.14059 -77.851692,162.14059 -77.86467,162.067956 -77.86467,161.995322 -77.86467,161.922688 -77.86467,161.850054 -77.86467,161.77742 -77.86467,161.704786 -77.86467,161.632152 -77.86467,161.559518 -77.86467,161.486884 -77.86467,161.41425 -77.86467,161.41425 -77.851692,161.41425 -77.838714,161.41425 -77.825736,161.41425 -77.812758,161.41425 -77.79978,161.41425 -77.786802,161.41425 -77.773824,161.41425 -77.760846,161.41425 -77.747868,161.41425 -77.73489))"] | ["POINT(161.77742 -77.79978)"] | false | false |
List of samples of WAIS Divide and Byrd (deep) ice that were analyzed for radiogenic isotopes at LDEO
|
1043471 |
2017-10-27 | Kaplan, Michael |
A Study of Atmospheric Dust in the WAIS Divide Ice Core Based on Sr-Nd-Pb-He Isotopes |
Listed are samples of WAIS Divide and Byrd (deep) ice that were analyzed for radiogenic isotopes at LDEO. | ["POLYGON((-112.5 -79.468,-112.4586 -79.468,-112.4172 -79.468,-112.3758 -79.468,-112.3344 -79.468,-112.293 -79.468,-112.2516 -79.468,-112.2102 -79.468,-112.1688 -79.468,-112.1274 -79.468,-112.086 -79.468,-112.086 -79.4712,-112.086 -79.4744,-112.086 -79.4776,-112.086 -79.4808,-112.086 -79.484,-112.086 -79.4872,-112.086 -79.4904,-112.086 -79.4936,-112.086 -79.4968,-112.086 -79.5,-112.1274 -79.5,-112.1688 -79.5,-112.2102 -79.5,-112.2516 -79.5,-112.293 -79.5,-112.3344 -79.5,-112.3758 -79.5,-112.4172 -79.5,-112.4586 -79.5,-112.5 -79.5,-112.5 -79.4968,-112.5 -79.4936,-112.5 -79.4904,-112.5 -79.4872,-112.5 -79.484,-112.5 -79.4808,-112.5 -79.4776,-112.5 -79.4744,-112.5 -79.4712,-112.5 -79.468))"] | ["POINT(-112.293 -79.484)"] | false | false |
Snowpit evidence of the 2011 Puyehue-Cordon Caulle (Chile) eruption in West Antarctica
|
0636740 |
2017-07-11 | Koffman, Bess; Kreutz, Karl |
Collaborative Research: Microparticle/tephra analysis of the WAIS Divide ice core |
We present several related datasets from a 2012 snow pit and a 2013 firn core collected near the WAIS Divide field camp in West Antarctica. The data include soluble ions (sodium and non-sea-salt sulfate) and dust particle concentrations, as well as major oxide geochemistry of tephra grains isolated from snow samples. Based on these data, we found evidence of deposition from the 2011 Puyehue Cordon-Caulle (Chile) volcanic eruption at WAIS Divide. | ["POINT(-112.086 -79.468)"] | ["POINT(-112.086 -79.468)"] | false | false |
Holocene Black Carbon in Antarctica
|
0839093 |
2017-06-19 | McConnell, Joseph; Arienzo, Monica |
Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core |
Black carbon (BC) and other biomass-burning (BB) aerosols are critical components of climate forcing but quantification, predictive climate modeling, and policy decisions have been hampered by limited understanding of the climate drivers of BB and by the lack of long-term records. Prior modeling studies suggested that increased Northern Hemisphere anthropogenic BC emissions increased recent temperatures and regional precipitation, including a northward shift in the Inter-Tropical Convergence Zone (ITCZ). Two Antarctic ice cores were analyzed for BC and the longest record shows that the highest BC deposition during the Holocene occurred ~8-6k years before present in a period of relatively high austral burning season and low growing season insolation. Atmospheric transport modeling suggests South America (SA) as the dominant source of modern Antarctic BC and, consistent with the ice-core record, climate model experiments using mid-Holocene and preindustrial insolation simulate comparable increases in carbon loss due to fires in SA during the mid-Holocene. SA climate proxies document a northward shifted ITCZ and weakened SA Summer Monsoon (SASM) during this period, with associated impacts on hydroclimate and burning. A second Antarctic ice core spanning the last 2.5k years documents similar linkages between hydroclimate and BC, with the lowest deposition during the Little Ice Age characterized by a southerly shifted ITCZ and strengthened SASM. These new results indicate that insolation-driven changes in SA hydroclimate and BB, likely linked to the position of the ITCZ, modulated Antarctic BC deposition during most of the Holocene and suggests connections and feedbacks between future BC emissions and hydroclimate. | ["POLYGON((161.41425 -77.73489,161.486884 -77.73489,161.559518 -77.73489,161.632152 -77.73489,161.704786 -77.73489,161.77742 -77.73489,161.850054 -77.73489,161.922688 -77.73489,161.995322 -77.73489,162.067956 -77.73489,162.14059 -77.73489,162.14059 -77.747868,162.14059 -77.760846,162.14059 -77.773824,162.14059 -77.786802,162.14059 -77.79978,162.14059 -77.812758,162.14059 -77.825736,162.14059 -77.838714,162.14059 -77.851692,162.14059 -77.86467,162.067956 -77.86467,161.995322 -77.86467,161.922688 -77.86467,161.850054 -77.86467,161.77742 -77.86467,161.704786 -77.86467,161.632152 -77.86467,161.559518 -77.86467,161.486884 -77.86467,161.41425 -77.86467,161.41425 -77.851692,161.41425 -77.838714,161.41425 -77.825736,161.41425 -77.812758,161.41425 -77.79978,161.41425 -77.786802,161.41425 -77.773824,161.41425 -77.760846,161.41425 -77.747868,161.41425 -77.73489))"] | ["POINT(161.77742 -77.79978)"] | false | false |
WD2014: Timescale for WAIS Divide Core 2006 A (WDC-06A)
|
0944197 |
2017-03-28 | Fudge, T. J. |
Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core |
The West Antarctic Ice Sheet Divide (WAIS Divide, WD) ice core is a newly drilled, high-accumulation deep ice core that provides Antarctic climate records of the past ~68 ka at unprecedented temporal resolution. The upper 2850 m (back to 31.2 ka BP) have been dated using annual-layer counting. Here we present a chronology for the deep part of the core (67.8-31.2 ka BP), which is based on stratigraphic matching to annual-layer-counted Greenland ice cores using globally well-mixed atmospheric methane. We calculate the WD gas age-ice age difference (Delta age) using a combination of firn densification modeling, ice-flow modeling, and a data set of d15N-N2, a proxy for past firn column thickness. The largest Delta age at WD occurs during the Last Glacial Maximum, and is 525 +/- 120 years. Internally consistent solutions can be found only when assuming little to no influence of impurity content on densification rates, contrary to a recently proposed hypothesis. We synchronize the WD chronology to a linearly scaled version of the layer-counted Greenland Ice Core Chronology (GICC05), which brings the age of Dansgaard-Oeschger (DO) events into agreement with the U/Th absolutely dated Hulu Cave speleothem record. The small Delta age at WD provides valuable opportunities to investigate the timing of atmospheric greenhouse gas variations relative to Antarctic climate, as well as the interhemispheric phasing of the \"bipolar seesaw\". We present the WD2014 chronology for the upper part (0-2850 m; 31.2 ka BP) of the West Antarctic Ice Sheet (WAIS) Divide (WD) ice core. The chronology is based on counting of annual layers observed in the chemical, dust and electrical conductivity records. These layers are caused by seasonal changes in the source, transport, and deposition of aerosols. The measurements were interpreted manually and with the aid of two automated methods. We validated the chronology by comparing to two high-accuracy, absolutely dated chronologies. For the Holocene, the cosmogenic isotope records of 10Be from WAIS Divide and 14C for IntCal13 demonstrated that WD2014 was consistently accurate to better than 0.5% of the age. For the glacial period, comparisons to the Hulu Cave chronology demonstrated that WD2014 had an accuracy of better than 1% of the age at three abrupt climate change events between 27 and 31ka. WD2014 has consistently younger ages than Greenland ice core chronologies during most of the Holocene. For the Younger Dryas-Preboreal transition (11.595 ka; 24 years younger) and the Bolling-Allerod Warming (14.621 ka; 7 years younger), WD2014 ages are within the combined uncertainties of the timescales. Given its high accuracy, WD2014 can become a reference chronology for the Southern Hemisphere, with synchronization to other chronologies feasible using high-quality proxies of volcanism, solar activity, atmospheric mineral dust, and atmospheric methane concentrations. | ["POINT(-112.1115 -79.481)"] | ["POINT(-112.1115 -79.481)"] | false | false |
WAIS Divide Microparticle Concentration and Size Distribution, 0-2400 ka
|
0636740 |
2015-06-29 | Koffman, Bess; Kreutz, Karl |
Collaborative Research: Microparticle/tephra analysis of the WAIS Divide ice core |
This data set includes raw dust microparticle data for the WAIS Divide deep core, WDC06A, from the surface to 577 m. Data were collected in 2010 using a Klotz Abakus laser particle counter connected to a continuous ice core melter system at the University of Maine (Breton et al., 2012). | ["POINT(-112.5 -79.28)"] | ["POINT(-112.5 -79.28)"] | false | false |
Optical Fabric and Fiber Logging of Glacial Ice (1142010)
|
1142010 |
2015-01-01 | Talghader, Joseph |
Optical Fabric and Fiber Logging of Glacial Ice |
This award supports a project to combine the expertise of both glaciologists and optical engineers to develop polarization- preserving optical scattering techniques for borehole tools to identify changes in high-resolution crystal structure (fabric) and dust content of glacial ice. The intellectual merit of this work is that the fabric and impurity content of the ice contain details on climate, volcanic activity and ice flow history. Such fabric measurements are currently taken by slicing an ice core into sections after it has started to depressurize which is an extremely time-intensive process that damages the core and does not always preserve the properties of ice in its in-situ state. In addition the ice core usually must be consumed in order to measure the components of the dust. The fabric measurements of this study utilize the concept that singly-scattered light in ice preserves most of its polarization when it is backscattered once from bubbles or dust; therefore, changes to the polarization of singly-backscattered light must originate with the birefringence. Measurements based on this concept will enable this program to obtain continuous records of fabric and correlate them to chronology and dust content. The project will also develop advanced borehole instruments to replace current logging tools, which require optical sources, detectors and power cables to be submerged in borehole fluid and lowered into the ice sheet at temperatures of -50oC. The use of telecommunications fiber will allow all sources and detectors to remain at the surface and enable low-noise signal processing techniques such as lock-in amplification that increase signal integrity and reduce needed power. Further, fiber logging systems would be much smaller and more flexible than current tools and capable of navigating most boreholes without a heavy winch. In order to assess fabric in situ and test fiber-optic borehole tools, field measurements will be made at WAIS Divide and a deep log will also be made at Siple Dome, both in West Antarctica. If successful, the broader impacts of the proposed research would include the development of new analytical methods and lightweight logging tools for ice drilling research that can operate in boreholes drilled in ice. Eventually the work could result in the development of better prehistoric records of glacier flow, atmospheric particulates, precipitation, and climate forcing. The project encompasses a broad base of theoretical, experimental, and design work, which makes it ideal for training graduate students and advanced undergraduates. Collaboration with schools and classroom teachers will help bring aspects of optics, climate, and polar science to an existing Middle School curriculum. | ["POLYGON((-148.81 -79.42,-145.111 -79.42,-141.412 -79.42,-137.713 -79.42,-134.014 -79.42,-130.315 -79.42,-126.616 -79.42,-122.917 -79.42,-119.218 -79.42,-115.519 -79.42,-111.82 -79.42,-111.82 -79.643,-111.82 -79.866,-111.82 -80.089,-111.82 -80.312,-111.82 -80.535,-111.82 -80.758,-111.82 -80.981,-111.82 -81.204,-111.82 -81.427,-111.82 -81.65,-115.519 -81.65,-119.218 -81.65,-122.917 -81.65,-126.616 -81.65,-130.315 -81.65,-134.014 -81.65,-137.713 -81.65,-141.412 -81.65,-145.111 -81.65,-148.81 -81.65,-148.81 -81.427,-148.81 -81.204,-148.81 -80.981,-148.81 -80.758,-148.81 -80.535,-148.81 -80.312,-148.81 -80.089,-148.81 -79.866,-148.81 -79.643,-148.81 -79.42))"] | ["POINT(-130.315 -80.535)"] | false | false |
WAIS Divide Laser Dust Logger Data
|
0738658 |
2014-04-03 | Bay, Ryan |
Climatology, Meteorology, and Microbial Metabolism in Ice with Dust Loggers and Fluorimetry |
This data set consists of data from optical logs made at the WAIS Divide with a laser dust logger in clear ice at depths between 1403.58 meters and 3329.8 meters. | ["POINT(-112.135833 -79.482778)"] | ["POINT(-112.135833 -79.482778)"] | false | false |
The Cellular Stress Response in Cold-adapted Organisms: Building Novel Mechanistic Links between Heat Stress, Cell Cycle Arrest and Apoptosis in Antarctic Fishes.
|
0944743 |
2013-01-01 | Buckley, Bradley |
The Cellular Stress Response in Cold-adapted Organisms: Building Novel Mechanistic Links between Heat Stress, Cell Cycle Arrest and Apoptosis in Antarctic Fishes. |
The research will investigate a novel mechanism by which cold-adapted fishes of the Southern Ocean sense and respond to elevated temperatures. It is hypothesized that sub-lethal heat stress may induce cell cycle arrest and/or programmed cell death through apoptosis. The study will use genome-enabled technologies to examine the environmental control over gene expression in Antarctic species and will build direct mechanistic links between the expression of a specific signaling pathway gene and heat-induced changes in cells. Prior results support the hypothesis that heat stress results in cell cycle arrest and, in some cases, programmed cell death in Antarctic fishes. If so, this represents a novel, modified version of the well-conserved cellular stress response found in essentially all other species and suggests that warming ocean temperatures may have profound cellular and physiological impacts on these extremely stenothermal species. The P.I. conducts outreach activities with the Oregon Museum of Science and Industry, will be involved in developing a science curriculum for the Native American Youth and Family Center (NAYA) Early College Academy in Portland, and supports the educational and professional development of both undergraduate and graduate students at Portland State University. | ["POINT(166.66667 -77.83333)"] | ["POINT(166.66667 -77.83333)"] | false | false |
Multiple Isotope Analysis of Sulfate in the West Antarctic Ice Sheet Divide Ice Core
|
0538520 |
2010-11-01 | Thiemens, Mark H. |
Collaborative Research: Multiple-isotope Analysis of Nitrate and Sulfate in the West Antarctic Ice Sheet Divide Ice Core |
This data set contains measurements of multiple sulfur and oxygen isotopes from sulfates, from an ice core drilled at the West Antarctic Ice Sheet (WAIS) Divide site in 2005. The initial sulfate measurements, analyzed in 2008 from the 70 meter WAIS 2005A core, are 12 meter averages and span the pre-industrial to industrial transition, from the late 1700s to 2005. This data set is part of the West Antarctic Ice Sheet Divide Ice Core (WAISCORES) project. Data are available via FTP in Microsoft Excel (.xlsx) format. | ["POINT(-114.216667 -78.916667)"] | ["POINT(-114.216667 -78.916667)"] | false | false |
Optical Logging for Dust and Microbes in Boreholes in Glacial Ice
|
0125794 |
2009-07-29 | Bay, Ryan |
Optical Logging for Dust and Microbes in Boreholes in Glacial Ice |
This data set contains high-resolution logs of dust and microbes measured at the Siple Dome A borehole in Antarctica. The data were obtained using a newly developed optical borehole logger, which fits into a fluid-filled borehole in glacial ice. It can detect dust and microbes in ice out to several meters from the borehole, and measure optical properties of those particles. The data set contains information on depth and optical signal. Data are available via FTP in data file format (.dat). | ["POINT(148.816667 -81.65)"] | ["POINT(148.816667 -81.65)"] | false | false |
GISP2 (D Core) Helium Isotopes from Interplanetary Dust
|
0126057 |
2008-12-16 | Brook, Edward J.; Kurz, Mark D. |
High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change |
Ice Core Interplanetary Dust Helium Isotope Data Helium isotope data from Ice Cores at GISP2 (Greenland) and Vostok (Antarctica) as a proxy for extraterrestrial dust flux. | [] | [] | false | false |
Analysis of Siple Dome Ice Core: Carbonyl Sulfide (COS), Methyl Chloride (CH3Cl), and Methyl Bromide (CH3Br)
|
0338359 |
2005-11-16 | Saltzman, Eric; Aydin, Murat |
Methyl chloride and methyl bromide in Antarctic ice cores |
This data set is part of the WAISCORES (West Antarctic Ice Sheet cores) project, research funded by the National Science Foundation (NSF) and designed to improve understanding of how the West Antarctic ice sheet influences climate and sea level change. WAISCORES investigators acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. These data provide researchers with a record of natural climatic variability and anthropogenic influence on biogeochemical cycles. Because ice cores contain an archive of preindustrial air, a baseline can be established, and the extent of human impact on the climate can be ascertained. This data set includes mixing ratios of carbonyl sulfide (COS), methyl chloride (CH3Cl), and methyl bromide (CH3Br). Data samples were retrieved from the Siple C ice core, which was drilled at 81.65° S, 148.81° W in December 1995. The core site sits 620 m above sea level near the edge of the Ross Ice Shelf where there is a mean annual temperature of -25.4 °C. Data are available via FTP. | ["POINT(-148.81 -81.65)"] | ["POINT(-148.81 -81.65)"] | false | false |
European Project for Ice Coring in Antarctica (EPICA) Dome C Ice Core Data
|
None | 2004-08-26 | Wolff, Eric W.; Monnin, Eric; Fluckiger, Jacqueline | No project link provided | This data set is a collection of analyses done on the the European Project for Ice Coring in Antarctica (EPICA)Dome C ice cores. The data include deuterium and other chemistry, insoluble dust, ice grain radius, dielectric profiling, electrical conductivity, and timescales. EPICA has completed one core in the Dome Concordia region (Core EDC96, started in 1996, 788 m length). Drilling is ongoing on a second core EDC99 (started in 1999, reached a depth of 3200 m during the 2002/2003 field season. The ice at this depth is estimated to be about 700,000 years old.) | [] | [] | false | false |