{"dp_type": "Dataset", "free_text": "Continental Shelf"}
[{"awards": "1443386 Emslie, Steven; 2135695 Emslie, Steven", "bounds_geometry": null, "date_created": "Tue, 11 Mar 2025 00:00:00 GMT", "description": "We completed multiple-stable isotope analyses (d13C, d15N, and d34S) of Ad\u00e9lie penguin Pygoscelis adeliae chick-bone collagen to characterize differences in foraging behavior among 15 colony locations across the Ross Sea region. Foraging behavior was represented by d13C, d15N, and d34S values and classified into groups using k-means cluster analyses. Additionally, we report the first stable isotope values for the Ad\u00e9lie penguin colony on Sabrina Island, Balleny Islands. Cluster analyses revealed distinct isotopic signatures for the northernmost and central colonies; however, owing to spatial and temporal variability, isotopic signatures were not strong enough to distinguish the southernmost colonies. Results also indicated that d15N values increased with latitude (66\u201377\u00b0 S), corresponding to higher krill consumption at colonies that foraged in sensible heat polynyas or the open ocean and increased fish consumption for those foraging in latent heat polynyas to the south. Generally, d34S values are used to distinguish foraging grounds, specifically inshore/offshore foraging or foraging over the continental slope versus the continental shelf, in marine animals. Although the southern and central colonies currently forage along the continental shelf and the northern colonies forage over the shelf, slope, and/or open ocean, we found no significant difference in d34S values among colonies. While a positive correlation between d15N and d34S values was evident, d34S signatures did not exhibit distinct patterns specific to individual colonies or regions. The absence of a clear trend reflecting inshore/offshore foraging underscores the need for additional research to bridge this knowledge gap.", "east": null, "geometry": null, "keywords": "Adelie Penguin; Antarctica; Cryosphere; Foraging; Polynya; Pygoscelis Adeliae; Ross Sea; Stable Isotopes", "locations": "Antarctica; Ross Sea", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Emslie, Steven D.; Reaves, Megan; Powers, Shannon", "project_titles": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators; Collaborative Research: Using Multiple Stable Isotopes to Investigate Middle to Late Holocene Ecological Responses by Adelie Penguins in the Ross Sea", "projects": [{"proj_uid": "p0010388", "repository": "USAP-DC", "title": "Collaborative Research: Using Multiple Stable Isotopes to Investigate Middle to Late Holocene Ecological Responses by Adelie Penguins in the Ross Sea"}, {"proj_uid": "p0010047", "repository": "USAP-DC", "title": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Stable isotopes of Adelie Penguin chick bone collagen", "uid": "601913", "west": null}, {"awards": "1143836 Leventer, Amy", "bounds_geometry": ["POLYGON((117 -66,119.9 -66,122.8 -66,125.7 -66,128.6 -66,131.5 -66,134.4 -66,137.3 -66,140.2 -66,143.1 -66,146 -66,146 -66.1,146 -66.2,146 -66.3,146 -66.4,146 -66.5,146 -66.6,146 -66.7,146 -66.8,146 -66.9,146 -67,143.1 -67,140.2 -67,137.3 -67,134.4 -67,131.5 -67,128.6 -67,125.7 -67,122.8 -67,119.9 -67,117 -67,117 -66.9,117 -66.8,117 -66.7,117 -66.6,117 -66.5,117 -66.4,117 -66.3,117 -66.2,117 -66.1,117 -66))"], "date_created": "Mon, 21 Oct 2024 00:00:00 GMT", "description": "Totten Glacier is the termination of the largest marine-based portion of the East Antarctic Ice Sheet, the Aurora Subglacial Basin. Yet little is known about the glacial evolution of the catchment and the factors influencing its present and past behavior. Due its remote location and heavy sea ice, the continental shelf in front of the Totten Glacier had not been comprehensively surveyed prior to this study. Satellite observations indicate that the Totten ice drainage system is thinning, and it has been hypothesized that this thinning is in response to undermelting by warm ocean waters over the continental shelf. While this process is observed elsewhere in Antarctica (e.g. the rapidly retreating Pine Island Glacier in West Antarctica), the Totten Glacier system is potentially Antarcticas most important glacial drainage system due to its large size; it is three times larger than any system in West Antarctica. \u003c/br\u003eThe main goals of this proposal were: \u003c/br\u003eTo generate multibeam bathymetric maps of the continental shelf proximal to the Totten Glacier system to understand the recent regional glacial history and to document the pathways, if any, for circumpolar deep water to move onto the shelf. \u003c/br\u003eTo conduct a physical oceanographic survey of the region proximal to the Totten Glacier system, to determine the presence, if any, of warm ocean waters over the continental shelf.\u003c/br\u003eTo conduct a seismic survey of the continental shelf to assess the long-term evolution of the glacial system in the Aurora Subglacial Basin.\u003c/br\u003eTo collect marine sediment cores to determine the regional deglacial to Holocene climate history and the influence of warm circumpolar deep water.", "east": 146.0, "geometry": ["POINT(131.5 -66.5)"], "keywords": "Antarctica; Cryosphere; Diatom; NBP1402; Totten Glacier", "locations": "Antarctica; Antarctica; Totten Glacier", "north": -66.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Leventer, Amy; NBP1402 science party, ", "project_titles": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics", "projects": [{"proj_uid": "p0000008", "repository": "USAP-DC", "title": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.0, "title": "NBP1402 diatom data", "uid": "601845", "west": 117.0}, {"awards": "0440775 Jacobs, Stanley; 0632282 Jacobs, Stanley", "bounds_geometry": ["POLYGON((-116.9985 -67.6776,-112.63225 -67.6776,-108.266 -67.6776,-103.89975000000001 -67.6776,-99.5335 -67.6776,-95.16725 -67.6776,-90.801 -67.6776,-86.43475000000001 -67.6776,-82.0685 -67.6776,-77.70224999999999 -67.6776,-73.336 -67.6776,-73.336 -68.37069,-73.336 -69.06378,-73.336 -69.75687,-73.336 -70.44996,-73.336 -71.14305,-73.336 -71.83614,-73.336 -72.52923,-73.336 -73.22232000000001,-73.336 -73.91541000000001,-73.336 -74.6085,-77.70224999999999 -74.6085,-82.0685 -74.6085,-86.43475000000001 -74.6085,-90.801 -74.6085,-95.16725 -74.6085,-99.5335 -74.6085,-103.89975000000001 -74.6085,-108.266 -74.6085,-112.63225 -74.6085,-116.9985 -74.6085,-116.9985 -73.91541000000001,-116.9985 -73.22232000000001,-116.9985 -72.52923,-116.9985 -71.83614,-116.9985 -71.14305,-116.9985 -70.44996,-116.9985 -69.75687,-116.9985 -69.06378,-116.9985 -68.37069,-116.9985 -67.6776))"], "date_created": "Mon, 22 Jul 2024 00:00:00 GMT", "description": "Ocean currents, temperature, salinity and pressure time series from five oceanographic moorings deployed in the Amundsen and Bellingshausen Seas, Antarctica. The moorings were deployed during the 2006 expedition ANT-XXIII/4 aboard the R/V Polarstern and retrieved during the R/V Nathaniel B. Palmer cruise NBP0702 in 2007. The deployments were part of a multidisciplinary effort to study the upwelling of relatively warm deep water onto the Amundsen Sea continental shelf and how it relates to atmospheric forcing and bottom bathymetry and how the warm waters interact with both glacial and sea ice. This study constitutes a contribution of a coordinated research effort in the region known as the Amundsen Sea Embayment Project or ASEP.", "east": -73.336, "geometry": ["POINT(-95.16725 -71.14305)"], "keywords": "Amundsen Sea; Antarctica; Cryosphere; Mooring; Ocean Currents; Pressure; Salinity; Temperature", "locations": "Antarctica; Amundsen Sea", "north": -67.6776, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "persons": "Jacobs, Stanley; Giulivi, Claudia F.", "project_titles": "Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise - IPY/ASEP; The Amundsen Continental Shelf and the Antarctic Ice Sheet", "projects": [{"proj_uid": "p0000836", "repository": "USAP-DC", "title": "The Amundsen Continental Shelf and the Antarctic Ice Sheet"}, {"proj_uid": "p0000332", "repository": "USAP-DC", "title": "Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise - IPY/ASEP"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -74.6085, "title": "Amundsen Sea Continental Shelf Mooring Data (2006-2007)", "uid": "601809", "west": -116.9985}, {"awards": "1744789 Padman, Laurence; 1744792 Little, Christopher", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Tue, 01 Feb 2022 00:00:00 GMT", "description": "This dataset contains NetCDF files of two-dimensional gridded fields of hydrographic properties, Conservative Temperature (CT) and Absolute Salinity (SA), around Antarctica, depth-averaged for the depth range 300 m to min([water depth, 1000]) m from 38 CMIP6 models, the World Ocean Atlas 2018, and our own product developed from the World Ocean Database. These fields are designed to represent the hydrography of deeper water masses on the Antarctic Continental Shelf (ACS), where typical water depths are 400-600 m, and the intermediate-depth water off the continental shelf. The dataset includes a high-resolution polar-stereographic grid (2 x 2 km) of Southern Ocean geometry, including water depth, elevation of the land and ice-sheet surface (including ice shelves), a mask (identifying water, land and grounded ice, and ice shelves), and offshore distance from the continental shelf break. An example MATLAB script for accessing the grids and plotting them is included. The primary purpose of this dataset is to provide simplified 2-D hydrographic fields that can be used to assess the performance of climate models for the ACS, focusing on the depth range that affects most basal melting of Antarctica\u2019s ice shelves.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Antarctic Continental Shelf; CMIP6; Oceans; Physical Oceanography; Salinity; Southern Ocean; Temperature", "locations": "Antarctica; Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "persons": "Howard, Susan L.; Little, Chris; Sun, Qiang; Padman, Laurence", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Gridded Values of Conservative Temperature and Absolute Salinity Around Antarctica averaged for the depth range 300 m to min([water depth, 1000]) m", "uid": "601516", "west": -180.0}, {"awards": "1246353 Anderson, John; 1745055 Stearns, Leigh; 1745043 Simkins, Lauren", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Wed, 10 Nov 2021 00:00:00 GMT", "description": "The dataset here allows exploration of the causes and significance of Antarctic grounding-line sinuosity by coupling observations of contemporary Antarctic grounding lines and paleo-grounding lines expressed as ice-marginal landforms on the Ross Sea continental shelf. Modern grounding lines are derived from the MEaSUREs Version 2 Differential Satellite Radar Interferometry dataset with spatial resolutions of 25-120 m spanning February 1992 to December 2014 (Rignot et al., 2016; Mouginot et al., 2017). The boundaries of individual grounding lines representative of individual glacial catchments (n=664) were delineated by the inflection points of the shear strain rate, \u03b5xy (c.f Van der Veen et al., 2011). Sinuosity was calculated as the ratio of the true length, orthogonal to ice-flow direction, of the grounding lines and the straight line length between end-points and in units of km/km. Raster data were extracted at 1-km points along each grounding line; the mean was calculated for each grounding line and merged in a table with sinuosity data. A dataset of 6,275 paleo-grounding lines expressed as ice-marginal landforms on the deglaciated western Ross Sea continental shelf are used in this study, originally published by Simkins et al., 2018. The ice-marginal landforms were mapped from multibeam echo sounder data that was collected onboard the RVIB Nathaniel B. Palmer (NBP) 15-02 cruise using a Kongsberg EM122 operating in dual swath mode at 12 kHz frequency with 30-60% swath overlap (Cruise DOI: 10.7284/901477). The resulting bathymetry data was gridded at 20-40 m with decimeter vertical elevation resolution depending on water depth and sea-state. Sinuosity is calculated as a ratio of true (mapped) landform length, measured in the across paleo-ice flow direction at the crest of the landform, to the straight line distance between the mapped landform endpoints and in units of km/km. \r\n\r\nTo compare modern and paleo-grounding lines, we use a consistent length scale by segmenting the grounding lines into 2-km sections for the two datasets (modern, n=12,966; paleo, n=5,832), even though this eliminates grounding lines that are less than 2-km long and thus results in 1 modern and 3,873 paleo-grounding lines removed. The full-length and 2-km segmented groundings lines are provided as shapefiles \"InSAR_groundinglines_full\" and \"InSAR_groundinglines_2km\", the paleo-grounding lines are provided as shapefiles \"RossSea_icemarginal_full\" and \"RossSea_icemarginal_2km\", and points marking modern grounding lines retreat from repeat InSAR surveys are provided as shapefile \"InSAR_retreat_points\", all stored together in a geodatabase named \"Antarctic_groundinglines.gbd\". Additional grounding line metrics, including length, sinuosity, bed roughness, and bed slope for modern and paleo-grounding lines, and height-above-buoyancy gradient, ice-flow velocity, presence of pinning points and ice shelves are provided for modern grounding lines. \r\n\r\nThe published dataset was compiled and analyzed in the article \"Controls on circum-Antarctic grounding-line sinuosity \" by Simkins, L.M., Stearns, L.A., and Riverman, K.L, which will be submitted to a peer-review journal in November 2021.\r\n\r\nReferences\r\nMouginot, J., B. Scheuchl, and E. Rignot. 2017. MEaSUREs Antarctic Boundaries for IPY 2007-2009 from Satellite Radar, Version 2. [Indicate subset used]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. \r\n\r\nRignot, E., J. Mouginot, and B. Scheuchl. 2016. MEaSUREs Antarctic Grounding Line from Differential Satellite Radar Interferometry, Version 2. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. \r\n\r\nSimkins, L. M., Greenwood, S. L., \u0026 Anderson, J. B. (2018). Diagnosing ice sheet grounding line stability from landform morphology. The Cryosphere, 12(8), 2707-2726.\r\n\r\nVan der Veen, C. J., J. C. Plummer, \u0026 L. A. Stearns. (2011). Controls on the recent speed up of Jakobshavn Isbr\u00e6, West Greenland. Journal of Glaciology, 57(204), 770-782", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Bed Roughness; Bed Slope; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Pinning Points", "locations": "Antarctica; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "Simkins, Lauren; Stearns, Leigh; Riverman, Kiya", "project_titles": "Collaborative Research: Topographic controls on Antarctic Ice Sheet grounding line retreat - integrating models and observations; Evidence for Paleo Ice Stream Collapse in the Western Ross Sea since the Last Glacial Maximum.", "projects": [{"proj_uid": "p0000395", "repository": "USAP-DC", "title": "Evidence for Paleo Ice Stream Collapse in the Western Ross Sea since the Last Glacial Maximum."}, {"proj_uid": "p0010269", "repository": "USAP-DC", "title": "Collaborative Research: Topographic controls on Antarctic Ice Sheet grounding line retreat - integrating models and observations"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Circum-Antarctic grounding-line sinuosity", "uid": "601484", "west": -180.0}, {"awards": "0440775 Jacobs, Stanley", "bounds_geometry": ["POLYGON((-180 -71.12,-172.34 -71.12,-164.68 -71.12,-157.02 -71.12,-149.36 -71.12,-141.7 -71.12,-134.04 -71.12,-126.38 -71.12,-118.72 -71.12,-111.06 -71.12,-103.4 -71.12,-103.4 -71.833,-103.4 -72.546,-103.4 -73.259,-103.4 -73.972,-103.4 -74.685,-103.4 -75.398,-103.4 -76.111,-103.4 -76.824,-103.4 -77.537,-103.4 -78.25,-111.06 -78.25,-118.72 -78.25,-126.38 -78.25,-134.04 -78.25,-141.7 -78.25,-149.36 -78.25,-157.02 -78.25,-164.68 -78.25,-172.34 -78.25,180 -78.25,178.657 -78.25,177.314 -78.25,175.971 -78.25,174.628 -78.25,173.285 -78.25,171.942 -78.25,170.599 -78.25,169.256 -78.25,167.913 -78.25,166.57 -78.25,166.57 -77.537,166.57 -76.824,166.57 -76.111,166.57 -75.398,166.57 -74.685,166.57 -73.972,166.57 -73.259,166.57 -72.546,166.57 -71.833,166.57 -71.12,167.913 -71.12,169.256 -71.12,170.599 -71.12,171.942 -71.12,173.285 -71.12,174.628 -71.12,175.971 -71.12,177.314 -71.12,178.657 -71.12,-180 -71.12))"], "date_created": "Fri, 17 Sep 2021 00:00:00 GMT", "description": "This dataset contains images and field description of Smith-McIntyre sediment grab samples from Expedition NBP0702 between the Ross Sea and the Amundsen Sea. ", "east": -103.4, "geometry": ["POINT(-148.415 -74.685)"], "keywords": "Amundsen Sea; Antarctica; Marine Geoscience; Marine Sediments; NBP0702; Photo; R/v Nathaniel B. Palmer; Seafloor Sampling; Sediment Description; Smith-Mcintyre Grab", "locations": "Amundsen Sea; Antarctica; Amundsen Sea", "north": -71.12, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Leventer, Amy; Jacobs, Stanley", "project_titles": "The Amundsen Continental Shelf and the Antarctic Ice Sheet", "projects": [{"proj_uid": "p0000836", "repository": "USAP-DC", "title": "The Amundsen Continental Shelf and the Antarctic Ice Sheet"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.25, "title": "NBP0702 surface sediment sample information and images", "uid": "601473", "west": 166.57}, {"awards": "0342484 Harwood, David", "bounds_geometry": ["POINT(167 -78)"], "date_created": "Mon, 14 Jun 2021 00:00:00 GMT", "description": "This dataset contains measurements of particle-size distributions on sediment from ANDRILL Site AND-2A. Carbonate, and organic matter were removed through addition of 10mL aliquots of 30% H2O2 and 2mL aliquots of 10% HCl to ~50-100mL suspension on a hot plate. Dispersion was through heating with sodium pyrophosphate. Samples were measured on a Malvern Mastersizer 2000 with a Hydro 2000MU (A) accessory, using a Refractive index of 1.544 (Quartz) and an absorption coefficient of 0.9. Results are in (vol. %) per size class, with diameter range equivalent to the diameter of spheres with the same volume as measured particles.", "east": 167.0, "geometry": ["POINT(167 -78)"], "keywords": "Andrill; Antarctica; Continental Shelf; Diamict; McMurdo Sound; Miocene; Paleoclimate; Particle Size", "locations": "McMurdo Sound; Antarctica", "north": -78.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Passchier, Sandra; Candice, Falk", "project_titles": "Collaborative Research: ANDRILL - - Investigating Antarcticas Role in Cenozoic Global Environmental Change", "projects": [{"proj_uid": "p0010297", "repository": "USAP-DC", "title": "Collaborative Research: ANDRILL - - Investigating Antarcticas Role in Cenozoic Global Environmental Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ANDRILL", "south": -78.0, "title": "Particle-size measurements at 3-m intervals for AND-2A sediment core, McMurdo Sound", "uid": "601451", "west": 167.0}, {"awards": "1443386 Emslie, Steven", "bounds_geometry": ["POLYGON((-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -61.130769444,-180 -62.261538888,-180 -63.392308332,-180 -64.523077776,-180 -65.65384722,-180 -66.784616664,-180 -67.915386108,-180 -69.046155552,-180 -70.176924996,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,180 -71.30769444,179.019305556 -71.30769444,178.038611112 -71.30769444,177.057916668 -71.30769444,176.077222224 -71.30769444,175.09652778 -71.30769444,174.115833336 -71.30769444,173.135138892 -71.30769444,172.154444448 -71.30769444,171.173750004 -71.30769444,170.19305556 -71.30769444,170.19305556 -70.176924996,170.19305556 -69.046155552,170.19305556 -67.915386108,170.19305556 -66.784616664,170.19305556 -65.65384722,170.19305556 -64.523077776,170.19305556 -63.392308332,170.19305556 -62.261538888,170.19305556 -61.130769444,170.19305556 -60,171.173750004 -60,172.154444448 -60,173.135138892 -60,174.115833336 -60,175.09652778 -60,176.077222224 -60,177.057916668 -60,178.038611112 -60,179.019305556 -60,-180 -60))"], "date_created": "Tue, 02 Jun 2020 00:00:00 GMT", "description": "We report new discoveries and radiocarbon dates on active and abandoned Ad\u00e9lie penguin (Pygoscelis adeliae) colonies at Cape Adare, Antarctica. This colony, first established at approximately 2000 BP (calendar years before present, i.e. 1950), is currently the largest for this species with approximately 338 000 breeding pairs, most located on lowlying Ridley Beach. We hypothesize that this colony first formed after fast ice began blocking open-water access by breeding penguins to the Scott Coast in the southern Ross Sea during a cooling period also at approximately 2000 BP. Our results suggest that the new colony at Cape Adare continued to grow, expanding to a large upper terrace above Ridley Beach, until it exceeded approximately 500 000 breeding pairs (a \u0027supercolony\u0027) by approximately 1200 BP. The high marine productivity associated with the Ross Sea polynya and continental shelf break supported this growth, but the colony collapsed to its present size for unknown reasons after approximately 1200 BP. Ridley Beach will probably be abandoned in the near future due to rising sea level in this region. We predict that penguins will retreat to higher elevations at Cape Adare and that the Scott Coast will be reoccupied by breeding penguins as fast ice continues to dissipate earlier each summer, restoring open-water access to beaches there.", "east": 170.19305556, "geometry": ["POINT(175.09652778 -65.65384722)"], "keywords": "Adelie Penguin; Antarctica; Biota; Cape Adare; East Antarctica; Population Movement; Pygoscelis Adeliae; Radiocarbon; Ross Sea; Sea Level Rise; Stable Isotopes", "locations": "Cape Adare; Antarctica; Ross Sea; East Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "McKenzie, Ashley; Patterson, William; Emslie, Steven D.", "project_titles": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators", "projects": [{"proj_uid": "p0010047", "repository": "USAP-DC", "title": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -71.30769444, "title": "The rise and fall of an ancient Adelie penguin \u0027supercolony\u0027 at Cape Adare, Antarctica", "uid": "601327", "west": -180.0}, {"awards": "1443680 Smith, Craig", "bounds_geometry": ["POLYGON((-66 -64,-65.6 -64,-65.2 -64,-64.8 -64,-64.4 -64,-64 -64,-63.6 -64,-63.2 -64,-62.8 -64,-62.4 -64,-62 -64,-62 -64.1,-62 -64.2,-62 -64.3,-62 -64.4,-62 -64.5,-62 -64.6,-62 -64.7,-62 -64.8,-62 -64.9,-62 -65,-62.4 -65,-62.8 -65,-63.2 -65,-63.6 -65,-64 -65,-64.4 -65,-64.8 -65,-65.2 -65,-65.6 -65,-66 -65,-66 -64.9,-66 -64.8,-66 -64.7,-66 -64.6,-66 -64.5,-66 -64.4,-66 -64.3,-66 -64.2,-66 -64.1,-66 -64))"], "date_created": "Tue, 31 Dec 2019 00:00:00 GMT", "description": "Sediment macrofaunal data collected by megacore (10-cm diameter sample tubes) along a down-fjord transect from inner Andvord Bay out onto the open continental shelf on the West Antarctic Peninsula. Sediment core samples from 0 - 10 cm depths were fixed in 4% formaldehyde, sieved on a 300 micron seive, and sorted with a dissecting microscope. ", "east": -62.0, "geometry": ["POINT(-64 -64.5)"], "keywords": "Abundance; Andvord Bay; Antarctica; Antarctic Peninsula; Biota; Fjord; LMG1510; Marine Sediments; Oceans; Polychaete; Polychaete Family Richness; R/v Laurence M. Gould; Sediment Core Data; Sediment Macrofauna", "locations": "Antarctica; Andvord Bay; Antarctic Peninsula", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Smith, Craig", "project_titles": "Collaborative Research: Fjord Ecosystem Structure and Function on the West Antarctic Peninsula - Hotspots of Productivity and Biodiversity? (FjordEco)", "projects": [{"proj_uid": "p0010010", "repository": "USAP-DC", "title": "Collaborative Research: Fjord Ecosystem Structure and Function on the West Antarctic Peninsula - Hotspots of Productivity and Biodiversity? (FjordEco)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "FjordEco", "south": -65.0, "title": "Sediment macrofaunal abundance and family richness from inner Andvord Bay to the open continental shelf", "uid": "601236", "west": -66.0}, {"awards": "9896041 Padman, Laurence; 1443677 Padman, Laurence", "bounds_geometry": ["POLYGON((-180 -40.231,-144 -40.231,-108 -40.231,-72 -40.231,-36 -40.231,0 -40.231,36 -40.231,72 -40.231,108 -40.231,144 -40.231,180 -40.231,180 -45.2079,180 -50.1848,180 -55.1617,180 -60.1386,180 -65.1155,180 -70.0924,180 -75.0693,180 -80.0462,180 -85.0231,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.0231,-180 -80.0462,-180 -75.0693,-180 -70.0924,-180 -65.1155,-180 -60.1386,-180 -55.1617,-180 -50.1848,-180 -45.2079,-180 -40.231))"], "date_created": "Thu, 19 Dec 2019 00:00:00 GMT", "description": "CATS2008 is a regional inverse barotropic tide model for the circum-Antarctic ocean on a 4 km grid. The model domain includes ocean cavities under the floating ice shelves. The coastline is based on the MODIS MOA [Scambos et al., 2007; Remote Sensing of Environment] feature identification files, adjusted to match ICESat-derived grounding lines for the Ross and Filchner-Ronne ice shelves and Interferometric Synthetic Aperture Radar (InSAR) grounding lines. The water depth map for open water is based on the 2007 release update to Smith and Sandwell [1997; Science]. Adjustments to this map have been made in various regions, including the open continental shelf in front of the Larsen-C Ice Shelf which has been blended with GEBCO bathymetry.\r\n\nModel type: Tides only; Inverse (data assimilation); barotropic (no vertical variation of currents). \nGrid: 4-km uniform polar stereographic (centered at 71 degrees S, 70 degrees W) \nConstituents: M2, S2, N2, K2, K1, O1, P1, Q1, Mf, Mm. \nUnits: z (sea surface height; meters); u,v (currents; cm/s); U,V (transports; m2/s). \nCoordinates: Currents (u, v) and depth-integrated transports (U, V) are given as East (u, U) and North (v, V) components. \nCitation: \"\u2026 an update to the inverse model described by Padman et al. [2002].\" \n\nSee CATS2008_README.pdf for further details.\r", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Inverse Modeling; Model Data; Ocean Currents; Sea Surface; Tidal Models; Tides", "locations": "Antarctica; Sea Surface", "north": -40.231, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Howard, Susan L.; Padman, Laurence; Erofeeva, Svetlana", "project_titles": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE); Ocean Tides around Antarctica and in the Southern Ocean", "projects": [{"proj_uid": "p0010116", "repository": "USAP-DC", "title": "Ocean Tides around Antarctica and in the Southern Ocean"}, {"proj_uid": "p0010035", "repository": "USAP-DC", "title": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "CATS2008: Circum-Antarctic Tidal Simulation version 2008", "uid": "601235", "west": -180.0}, {"awards": "1246357 Bart, Philip", "bounds_geometry": ["POLYGON((-171 -75.8,-170.5 -75.8,-170 -75.8,-169.5 -75.8,-169 -75.8,-168.5 -75.8,-168 -75.8,-167.5 -75.8,-167 -75.8,-166.5 -75.8,-166 -75.8,-166 -75.99,-166 -76.18,-166 -76.37,-166 -76.56,-166 -76.75,-166 -76.94,-166 -77.13,-166 -77.32,-166 -77.51,-166 -77.7,-166.5 -77.7,-167 -77.7,-167.5 -77.7,-168 -77.7,-168.5 -77.7,-169 -77.7,-169.5 -77.7,-170 -77.7,-170.5 -77.7,-171 -77.7,-171 -77.51,-171 -77.32,-171 -77.13,-171 -76.94,-171 -76.75,-171 -76.56,-171 -76.37,-171 -76.18,-171 -75.99,-171 -75.8))"], "date_created": "Mon, 03 Jun 2019 00:00:00 GMT", "description": "Still and video benthic images collected during expedition NBP1502 in the Ross Sea using a YoYo camera system.", "east": -166.0, "geometry": ["POINT(-168.5 -76.75)"], "keywords": "Antarctica; Benthic; Benthic Images; Benthos; Bentic Fauna; Camera Tow; Marine Geoscience; Marine Sediments; NBP1502; Photo; Photo/video; Photo/Video; Ross Sea; R/v Nathaniel B. Palmer; Southern Ocean; Yoyo Camera", "locations": "Antarctica; Ross Sea; Southern Ocean", "north": -75.8, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Bart, Philip", "project_titles": "Timing and Duration of the LGM and Post-LGM Grounding Events in Whales Deep Paleo Ice Stream, Eastern Ross Sea Middle Continental Shelf", "projects": [{"proj_uid": "p0000877", "repository": "USAP-DC", "title": "Timing and Duration of the LGM and Post-LGM Grounding Events in Whales Deep Paleo Ice Stream, Eastern Ross Sea Middle Continental Shelf"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.7, "title": "NBP1502 YoYo camera benthic images from Ross Sea", "uid": "601182", "west": -171.0}, {"awards": "1443680 Smith, Craig", "bounds_geometry": ["POLYGON((-65 -64,-64.7 -64,-64.4 -64,-64.1 -64,-63.8 -64,-63.5 -64,-63.2 -64,-62.9 -64,-62.6 -64,-62.3 -64,-62 -64,-62 -64.1,-62 -64.2,-62 -64.3,-62 -64.4,-62 -64.5,-62 -64.6,-62 -64.7,-62 -64.8,-62 -64.9,-62 -65,-62.3 -65,-62.6 -65,-62.9 -65,-63.2 -65,-63.5 -65,-63.8 -65,-64.1 -65,-64.4 -65,-64.7 -65,-65 -65,-65 -64.9,-65 -64.8,-65 -64.7,-65 -64.6,-65 -64.5,-65 -64.4,-65 -64.3,-65 -64.2,-65 -64.1,-65 -64))"], "date_created": "Wed, 13 Feb 2019 00:00:00 GMT", "description": "Sediment organic carbon and organic nitrogen content (percent mass) in 6 depth intervals (0-1cm, 1-2cm, 3-4cm, 5-6cm, 7-8cm , 9-10cm) in sediment cores collected by OSIL Megacore (10 cm diameter tubes) along the five-station FjordEco Transect from inner Andvord Bay to the open continental shelf at FOODBANCS Station B. \r\n", "east": -62.0, "geometry": ["POINT(-63.5 -64.5)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Snow/ice; Snow/Ice", "locations": "Antarctica", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Smith, Craig", "project_titles": "Collaborative Research: Fjord Ecosystem Structure and Function on the West Antarctic Peninsula - Hotspots of Productivity and Biodiversity? (FjordEco)", "projects": [{"proj_uid": "p0010010", "repository": "USAP-DC", "title": "Collaborative Research: Fjord Ecosystem Structure and Function on the West Antarctic Peninsula - Hotspots of Productivity and Biodiversity? (FjordEco)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "FjordEco", "south": -65.0, "title": "Fjord-Eco_Sediment_OrgC_OrgN_Data - Craig Smith", "uid": "601157", "west": -65.0}, {"awards": "1313826 Orsi, Alejandro", "bounds_geometry": ["POLYGON((119 -66,119.3 -66,119.6 -66,119.9 -66,120.2 -66,120.5 -66,120.8 -66,121.1 -66,121.4 -66,121.7 -66,122 -66,122 -66.1,122 -66.2,122 -66.3,122 -66.4,122 -66.5,122 -66.6,122 -66.7,122 -66.8,122 -66.9,122 -67,121.7 -67,121.4 -67,121.1 -67,120.8 -67,120.5 -67,120.2 -67,119.9 -67,119.6 -67,119.3 -67,119 -67,119 -66.9,119 -66.8,119 -66.7,119 -66.6,119 -66.5,119 -66.4,119 -66.3,119 -66.2,119 -66.1,119 -66))"], "date_created": "Mon, 24 Dec 2018 00:00:00 GMT", "description": "An array of three moorings (M1-M3) with current meters, temperature, conductivity, and pressure (TCP) recorders were deployed along the eastern flank of the continental shelf off Sabrina Coast, at the main path of the Antarctic Coastal Current indicated by the uCTD data collected earlier during the cruise.\r\n\r\nThese three US mooring were deployed at the 625-m (M1), 620-m (M2) and 1051-m (M3) isobaths.\r\n M1 was recovered on 25 February 2014, with a full data return from all of its instruments; whereas M2 and M3 were recovered in early 2015 on board of the Australian RVI Aurora Australis next year (cruise AU1402).\r\n\r\nThe location and schematics of the mooring array design is described below, and also provided among the uploaded files.\r\n", "east": 122.0, "geometry": ["POINT(120.5 -66.5)"], "keywords": "Antarctica; Au1402; Mooring; NBP1402; Oceans; Ocean Temperature; Physical Oceanography; R/v Aurora Australis; R/v Nathaniel B. Palmer; Sabrina Coast; Salinity; Southern Ocean; Temperature", "locations": "Southern Ocean; Antarctica; Sabrina Coast", "north": -66.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Orsi, Alejandro", "project_titles": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics", "projects": [{"proj_uid": "p0000008", "repository": "USAP-DC", "title": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.0, "title": "AU1402 mooring data", "uid": "601148", "west": 119.0}, {"awards": "1430550 Domack, Eugene", "bounds_geometry": ["POLYGON((120 -66,120.1 -66,120.2 -66,120.3 -66,120.4 -66,120.5 -66,120.6 -66,120.7 -66,120.8 -66,120.9 -66,121 -66,121 -66.4,121 -66.8,121 -67.2,121 -67.6,121 -68,121 -68.4,121 -68.8,121 -69.2,121 -69.6,121 -70,120.9 -70,120.8 -70,120.7 -70,120.6 -70,120.5 -70,120.4 -70,120.3 -70,120.2 -70,120.1 -70,120 -70,120 -69.6,120 -69.2,120 -68.8,120 -68.4,120 -68,120 -67.6,120 -67.2,120 -66.8,120 -66.4,120 -66))"], "date_created": "Fri, 18 Aug 2017 00:00:00 GMT", "description": "Bulk sediment carbon and nitrogen data data for Paleocene sediments collected on Totten continental shelf, East Antarctica. ", "east": 121.0, "geometry": ["POINT(120.5 -68)"], "keywords": "Antarctica; Carbon; Chemistry:sediment; Chemistry:Sediment; Geochemistry; Marine Sediments; NBP1402; Nitrogen; Oceans; Sabrina Coast; Sediment Core; Southern Ocean; Totten Glacier", "locations": "Sabrina Coast; Antarctica; Southern Ocean; Totten Glacier", "north": -66.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Smith, Catherine; Shevenell, Amelia; Domack, Eugene Walter", "project_titles": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics", "projects": [{"proj_uid": "p0000008", "repository": "USAP-DC", "title": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "NBP14-02 JPC-55 Bulk Sediment Carbon and Nitrogen data", "uid": "601044", "west": 120.0}, {"awards": "1430550 Domack, Eugene", "bounds_geometry": ["POLYGON((120 -66,120.1 -66,120.2 -66,120.3 -66,120.4 -66,120.5 -66,120.6 -66,120.7 -66,120.8 -66,120.9 -66,121 -66,121 -66.4,121 -66.8,121 -67.2,121 -67.6,121 -68,121 -68.4,121 -68.8,121 -69.2,121 -69.6,121 -70,120.9 -70,120.8 -70,120.7 -70,120.6 -70,120.5 -70,120.4 -70,120.3 -70,120.2 -70,120.1 -70,120 -70,120 -69.6,120 -69.2,120 -68.8,120 -68.4,120 -68,120 -67.6,120 -67.2,120 -66.8,120 -66.4,120 -66))"], "date_created": "Fri, 18 Aug 2017 00:00:00 GMT", "description": "Pollen assemblage data for Paleocene to early to middle Eocene sediments collected on Totten continental shelf, East Antarctica. ", "east": 121.0, "geometry": ["POINT(120.5 -68)"], "keywords": "Antarctica; Biota; Marine Sediments; NBP1402; Oceans; Paleoclimate; Pollen; Sabrina Coast; Sediment Core; Southern Ocean; Totten Glacier", "locations": "Antarctica; Southern Ocean; Totten Glacier; Sabrina Coast", "north": -66.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Shevenell, Amelia; Smith, Catherine; Domack, Eugene Walter", "project_titles": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics", "projects": [{"proj_uid": "p0000008", "repository": "USAP-DC", "title": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "NBP14-02 JPC-54 and JPC-55 Pollen Assemblage data", "uid": "601046", "west": 120.0}, {"awards": "1143836 Leventer, Amy", "bounds_geometry": ["POLYGON((120 -66,120.1 -66,120.2 -66,120.3 -66,120.4 -66,120.5 -66,120.6 -66,120.7 -66,120.8 -66,120.9 -66,121 -66,121 -66.4,121 -66.8,121 -67.2,121 -67.6,121 -68,121 -68.4,121 -68.8,121 -69.2,121 -69.6,121 -70,120.9 -70,120.8 -70,120.7 -70,120.6 -70,120.5 -70,120.4 -70,120.3 -70,120.2 -70,120.1 -70,120 -70,120 -69.6,120 -69.2,120 -68.8,120 -68.4,120 -68,120 -67.6,120 -67.2,120 -66.8,120 -66.4,120 -66))"], "date_created": "Fri, 18 Aug 2017 00:00:00 GMT", "description": "Foraminifer assemblage data for Paleocene sediments collected on Totten continental shelf, East Antarctica.", "east": 121.0, "geometry": ["POINT(120.5 -68)"], "keywords": "Antarctica; Biota; Continental Margin; Foraminifera; NBP1402; Oceans; Paleoclimate; Sabrina Coast; Sample/collection Description; Sample/Collection Description; Southern Ocean; Totten Glacier", "locations": "Southern Ocean; Sabrina Coast; Totten Glacier; Antarctica", "north": -66.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Shevenell, Amelia; Leventer, Amy", "project_titles": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics", "projects": [{"proj_uid": "p0000008", "repository": "USAP-DC", "title": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "NBP14-02 JPC-55 foraminifer assemblage data", "uid": "601042", "west": 120.0}, {"awards": "1141877 Aronson, Richard", "bounds_geometry": null, "date_created": "Tue, 10 Jan 2017 00:00:00 GMT", "description": "Elevated temperatures and ocean acidification are both threatening the Southern Ocean. The effects of these environmental changes are poorly understood, but preliminary data suggest that they are driving a biological invasion. Specifically, large populations of skeleton-crushing king crabs, Paralomis birsteini, have been detected off Marguerite Bay on the West Antarctic Peninsula. These crabs appear to be invading the continental shelf region where benthic communities have evolved in the absence of such top-predators. Thus, this invasion could result in a wholesale restructuring of the Antarctic benthic ecosystem. The proposed work seeks to document this invasion and better understand the effects of the introduction of P. birsteini on the ecology of this region. A towed underwater vehicle will be used to photographically image communities, and communities with and without P. birsteini will be compared quantitatively. Additionally, crabs will trapped and various aspects of their morphology and physiology will be assessed. This research is unique in that it will document a biological invasion in real-time and it will therefore enhance our general understandings of the drivers of invasion and resilience in biological communities. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of undergraduate and graduate students and will foster an international collaboration with British scientists. Researchers on this project will participate in outreach thorough the development of K-12 curricular materials.", "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula; Anvers Island; Benthos; Biota; Camera Tow; LMG1502; Marguerite Bay; NBP1002; NBP1310; Oceans; Photo/video; Photo/Video; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Anvers Island; Southern Ocean; Antarctica; Antarctic Peninsula; Marguerite Bay", "north": null, "nsf_funding_programs": null, "persons": "Aronson, Richard", "project_titles": "Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos", "projects": [{"proj_uid": "p0000303", "repository": "USAP-DC", "title": "Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Climate Change and Predatory Invasion of the Antarctic Benthos", "uid": "600385", "west": null}, {"awards": "1141877 Aronson, Richard", "bounds_geometry": ["POLYGON((-111.18 -49.98,-105.429 -49.98,-99.678 -49.98,-93.927 -49.98,-88.176 -49.98,-82.425 -49.98,-76.674 -49.98,-70.923 -49.98,-65.172 -49.98,-59.421 -49.98,-53.67 -49.98,-53.67 -52.826,-53.67 -55.672,-53.67 -58.518,-53.67 -61.364,-53.67 -64.21,-53.67 -67.056,-53.67 -69.902,-53.67 -72.748,-53.67 -75.594,-53.67 -78.44,-59.421 -78.44,-65.172 -78.44,-70.923 -78.44,-76.674 -78.44,-82.425 -78.44,-88.176 -78.44,-93.927 -78.44,-99.678 -78.44,-105.429 -78.44,-111.18 -78.44,-111.18 -75.594,-111.18 -72.748,-111.18 -69.902,-111.18 -67.056,-111.18 -64.21,-111.18 -61.364,-111.18 -58.518,-111.18 -55.672,-111.18 -52.826,-111.18 -49.98))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "Elevated temperatures and ocean acidification are both threatening the Southern Ocean. The effects of these environmental changes are poorly understood, but preliminary data suggest that they are driving a biological invasion. Specifically, large populations of skeleton-crushing king crabs, Paralomis birsteini, have been detected off Marguerite Bay on the West Antarctic Peninsula. These crabs appear to be invading the continental shelf region where benthic communities have evolved in the absence of such top-predators. Thus, this invasion could result in a wholesale restructuring of the Antarctic benthic ecosystem. The proposed work seeks to document this invasion and better understand the effects of the introduction of P. birsteini on the ecology of this region. A towed underwater vehicle will be used to photographically image communities, and communities with and without P. birsteini will be compared quantitatively. Additionally, crabs will trapped and various aspects of their morphology and physiology will be assessed. This research is unique in that it will document a biological invasion in real-time and it will therefore enhance our general understandings of the drivers of invasion and resilience in biological communities. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of undergraduate and graduate students and will foster an international collaboration with British scientists. Researchers on this project will participate in outreach thorough the development of K-12 curricular materials.", "east": -53.67, "geometry": ["POINT(-82.425 -64.21)"], "keywords": "Antarctica; Antarctic Peninsula; Anvers Island; Benthos; Biota; Camera Tow; LMG1502; Marguerite Bay; NBP1002; NBP1310; Oceans; Photo/video; Photo/Video; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Antarctica; Antarctic Peninsula; Marguerite Bay; Anvers Island; Southern Ocean", "north": -49.98, "nsf_funding_programs": null, "persons": "Aronson, Richard", "project_titles": "Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos", "projects": [{"proj_uid": "p0000303", "repository": "USAP-DC", "title": "Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.44, "title": "Climate Change and Predatory Invasion of the Antarctic Benthos", "uid": "600171", "west": -111.18}, {"awards": "1043669 Yuan, Xiaojun", "bounds_geometry": ["POLYGON((70 -64,71 -64,72 -64,73 -64,74 -64,75 -64,76 -64,77 -64,78 -64,79 -64,80 -64,80 -64.6,80 -65.2,80 -65.8,80 -66.4,80 -67,80 -67.6,80 -68.2,80 -68.8,80 -69.4,80 -70,79 -70,78 -70,77 -70,76 -70,75 -70,74 -70,73 -70,72 -70,71 -70,70 -70,70 -69.4,70 -68.8,70 -68.2,70 -67.6,70 -67,70 -66.4,70 -65.8,70 -65.2,70 -64.6,70 -64))"], "date_created": "Sun, 01 Jan 2012 00:00:00 GMT", "description": "Processess governing the formation of Antarctic bottom water (AABW) in the Indian Ocean sector of the Southern Ocean remain poorly described. As with AABW formation in more well studied regions of the Antarctic continent, global climate impacts of the source regions of this dense, cold water that help drive the global ocean thermohaline circulation are uncertain. A combination of (annual) continental shelf and slope moorings, seasonal (summer) hydrographic surveys on board the Chinese icebreaker M/V Xuelong, together with synthesis of historic and satellite data will be used to better constrain shelf processes and the atmosphere-ocean-ice interactions in the Prydz Bay region. Despite the seeming remoteness of the study site, changes in the formation rate of AABW could potentially have impact on northern hemisphere climate via effects on the global heat budget and through sea-level rise in the coming decades. The project additionally seeks to promote international collaboration between Chinese and US researchers. The data collected will be broadly disseminated to the oceanographic community through the National Oceanography Data Center and Chinese Arctic and Antarctic Data Center.", "east": 80.0, "geometry": ["POINT(75 -67)"], "keywords": "Antarctica; CTD Data; Mooring; Oceans; Physical Oceanography; Prydz Bay; Southern Ocean", "locations": "Southern Ocean; Antarctica; Prydz Bay", "north": -64.0, "nsf_funding_programs": null, "persons": "Yuan, Xiaojun", "project_titles": "US/Chinese Collaborative Study: Investigation of Bottom Water Formation in Prydz Bay, Antarctica", "projects": [{"proj_uid": "p0000439", "repository": "USAP-DC", "title": "US/Chinese Collaborative Study: Investigation of Bottom Water Formation in Prydz Bay, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "US/Chinese Collaborative Study: Investigation of Bottom Water Formation in Prydz Bay, Antarctica", "uid": "600126", "west": 70.0}, {"awards": "0440687 Costa, Daniel", "bounds_geometry": ["POLYGON((-64 -60,-63 -60,-62 -60,-61 -60,-60 -60,-59 -60,-58 -60,-57 -60,-56 -60,-55 -60,-54 -60,-54 -60.4,-54 -60.8,-54 -61.2,-54 -61.6,-54 -62,-54 -62.4,-54 -62.8,-54 -63.2,-54 -63.6,-54 -64,-55 -64,-56 -64,-57 -64,-58 -64,-59 -64,-60 -64,-61 -64,-62 -64,-63 -64,-64 -64,-64 -63.6,-64 -63.2,-64 -62.8,-64 -62.4,-64 -62,-64 -61.6,-64 -61.2,-64 -60.8,-64 -60.4,-64 -60))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "As long-lived animals, marine mammals must be capable of accommodating broad variations in food resources over large spatial and temporal scales. While this is true of all marine mammals, variation in the physical and biological environmental is particularly profound in the Southern Ocean. A basic understanding of the foraging behavior and habitat utilization of pelagic predators requires knowledge of this spatial and temporal variation, coupled with information of how they respond to these changes. Current understanding of these associations is primarily limited to population level studies where animal abundance has been correlated with oceanography. Although these studies are informative, they cannot provide insights into the strategies employed by individual animals nor can they provide insights into the spatial or temporal course of these interactions. Recent technological advances in instrumentation make it possible to extend an understanding beyond the simple linkage of prey and predator distributions with environmental features. The key to understanding the processes that lead to high predator abundance is the identification of the specific foraging behaviors associated with different features of the water column. This study will accomplish these objectives by combining accurate positional data, measures of diving and foraging behavior, animal-derived water-column temperature and salinity data, and available oceanographic data. This project will examine the foraging behavior and habitat utilization of two species of contrasting foraging ecology, the southern elephant seal, Mirounga leonina, and the crabeater seal, Lobodon carcinophagus in the Western Antarctic Peninsula, a region of strong environmental gradients. Although these two species are phylogenetically related, they utilize substantially different but adjacent habitat types. Southern elephant seals are predominantly pelagic, moving throughout the southern ocean, venturing occasionally into the seasonal pack ice whereas crabeater seals range throughout the seasonal pack ice, venturing occasionally into open water. The relationship of specific foraging behaviors and animal movement patterns to oceanographic and bathymetric features develop and test models of the importance of these features in defining habitat use will be determined along with a comparison of how individuals of each species respond to annual variability in the marine environment. The physical oceanography of the Southern Ocean is inherently complex as are the biological processes that are intrinsically linked to oceanographic processes. Significant resources are currently being directed toward developing mathematical models of physical oceanographic processes with the goals of better understanding the role that the Southern Ocean plays in global climate processes, predicting the responses of ocean and global scale processes to climate change, and understanding the linkages between physical and biological oceanographic processes. These efforts have been limited by the scarcity of oceanographic data in the region, especially at high latitudes in the winter months. This study will provide new and significant oceanographic data on temperature and salinity profiles in to further the understanding of the dynamics of the upper water column of west Antarctic Peninsula continental shelf waters. Outreach activities include website development and an association with a marine education program at the Monterrey Bay Aquarium Research Institute.\n", "east": -54.0, "geometry": ["POINT(-59 -62)"], "keywords": "Bellingshausen Sea; Biota; Oceans; Seals; Southern Ocean", "locations": "Southern Ocean; Bellingshausen Sea", "north": -60.0, "nsf_funding_programs": null, "persons": "Klinck, John M.; Crocker, Daniel; Goebel, Michael; Hofmann, Eileen; Costa, Daniel", "project_titles": "Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection", "projects": [{"proj_uid": "p0000082", "repository": "USAP-DC", "title": "Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.0, "title": "Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection", "uid": "600044", "west": -64.0}, {"awards": "0436190 Eastman, Joseph", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "Patterns of biodiversity, as revealed by basic research in organismal biology, may be derived from ecological and evolutionary processes expressed in unique settings, such as Antarctica. The polar regions and their faunas are commanding increased attention as declining species diversity, environmental change, commercial fisheries, and resource management are now being viewed in a global context. Commercial fishing is known to have a direct and pervasive effect on marine biodiversity, and occurs in the Southern Ocean as far south as the Ross Sea. The nature of fish biodiversity in the Antarctic is different than in all other ocean shelf areas. Waters of the Antarctic continental shelf are ice covered for most of the year and water temperatures are nearly constant at -1.5 C. In these waters components of the phyletically derived Antarctic clade of Notothenioids dominate fish diversity. In some regions, including the southwestern Ross Sea, Notothenioids are overwhelmingly dominant in terms of number of species, abundance, and biomass. Such dominance by a single taxonomic group is unique among shelf faunas of the world. In the absence of competition from a taxonomically diverse fauna, Notothenioids underwent a habitat or depth related diversification keyed to the utilization of unfilled niches in the water column, especially pelagic or partially pelagic zooplanktivory and piscivory. This has been accomplished in the absence of a swim bladder for buoyancy control. They also may form a special type of adaptive radiation known as a species flock, which is an assemblage of a disproportionately high number of related species that have evolved rapidly within a defined area where most species are endemic. Diversification in buoyancy is the hallmark of the notothenioid radiation. Buoyancy is the feature of notothenioid biology that determines whether a species lives on the substrate, in the water column or both. Buoyancy also influences other key aspects of life history including swimming, feeding and reproduction and thus has implications for the role of the species in the ecosystem. With similarities to classic evolutionary hot spots, the Antarctic shelf and its Notothenioid radiation merit further exploration. The 2004 \u0027International Collaborative Expedition to collect and study Fish Indigenous to Sub-Antarctic Habitats,\u0027 or, \u0027ICEFISH,\u0027 provided a platform for collection of notothenioid fishes from sub-Antarctic waters between South America and Africa, which will be examined in this project. This study will determine buoyancy for samples of all notothenioid species captured during the ICEFISH cruise. This essential aspect of the biology is known for only 19% of the notothenioid fauna. Also, the gross and microscopic anatomy of brains and sense organs of the phyletically basal families Bovichtidae, Eleginopidae, and of the non-Antarctic species of the primarily Antarctic family Nototheniidae will be examined. The fish biodiversity and endemicity in poorly known localities along the ICEFISH cruise track, seamounts and deep trenches will be quantified. Broader impacts include improved information for comprehending and conserving biodiversity, a scientific and societal priority.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Biota; NBP0404; Oceans; R/v Nathaniel B. Palmer; Southern Ocean", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Eastman, Joseph", "project_titles": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0000106", "repository": "USAP-DC", "title": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes", "uid": "600038", "west": -180.0}, {"awards": "0739496 Miller, Molly", "bounds_geometry": ["POLYGON((163.41667 -77.33333,163.46667 -77.33333,163.51667 -77.33333,163.56667 -77.33333,163.61667 -77.33333,163.66667 -77.33333,163.71667 -77.33333,163.76667 -77.33333,163.81667 -77.33333,163.86667 -77.33333,163.91667 -77.33333,163.91667 -77.369997,163.91667 -77.406664,163.91667 -77.443331,163.91667 -77.479998,163.91667 -77.516665,163.91667 -77.553332,163.91667 -77.589999,163.91667 -77.626666,163.91667 -77.663333,163.91667 -77.7,163.86667 -77.7,163.81667 -77.7,163.76667 -77.7,163.71667 -77.7,163.66667 -77.7,163.61667 -77.7,163.56667 -77.7,163.51667 -77.7,163.46667 -77.7,163.41667 -77.7,163.41667 -77.663333,163.41667 -77.626666,163.41667 -77.589999,163.41667 -77.553332,163.41667 -77.516665,163.41667 -77.479998,163.41667 -77.443331,163.41667 -77.406664,163.41667 -77.369997,163.41667 -77.33333))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project answers a simple question: why are there so few fossils in sediment cores from Antarctica\u0027s continental shelf? Antarctica\u0027s benthos are as biologically rich as those of the tropics. Shell-secreting organisms should have left a trail throughout geologic time, but have not. This trail is particularly important because these organisms record regional climate in ways that are critical to interpreting the global climate record. This study uses field experiments and targeted observations of modern benthic systems to examine the biases inflicted by fossil preservation. By examining a spectrum of ice-affected habitats, this project provides paleoenvironmental insights into carbonate preservation, sedimentation rates, and burial processes; and will provide new approaches to reconstructing the Cenozoic history of Antarctica. Broader impacts include graduate and undergraduate research and education, development of undergraduate curricula to link art and science, K12 outreach, public outreach via the web, and societal relevance through improved understanding of records of global climate change.", "east": 163.91667, "geometry": ["POINT(163.66667 -77.516665)"], "keywords": "Biota; Geochronology; Marine Sediments; Oceans; Southern Ocean", "locations": "Southern Ocean", "north": -77.33333, "nsf_funding_programs": null, "persons": "Furbish, David; Miller, Molly", "project_titles": "Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores", "projects": [{"proj_uid": "p0000203", "repository": "USAP-DC", "title": "Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.7, "title": "Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores", "uid": "600076", "west": 163.41667}, {"awards": "0739512 Walker, Sally", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project answers a simple question: why are there so few fossils in sediment cores from Antarctica\u0027s continental shelf? Antarctica\u0027s benthos are as biologically rich as those of the tropics. Shell-secreting organisms should have left a trail throughout geologic time, but have not. This trail is particularly important because these organisms record regional climate in ways that are critical to interpreting the global climate record. This study uses field experiments and targeted observations of modern benthic systems to examine the biases inflicted by fossil preservation. By examining a spectrum of ice-affected habitats, this project provides paleoenvironmental insights into carbonate preservation, sedimentation rates, and burial processes; and will provide new approaches to reconstructing the Cenozoic history of Antarctica. Broader impacts include graduate and undergraduate research and education, development of undergraduate curricula to link art and science, K12 outreach, public outreach via the web, and societal relevance through improved understanding of records of global climate change.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Biota; Glaciers/ice Sheet; Glaciers/Ice Sheet; McMurdo Sound; Oceans; Sample/collection Description; Sample/Collection Description", "locations": "Antarctica; McMurdo Sound", "north": -60.0, "nsf_funding_programs": null, "persons": "Walker, Sally", "project_titles": "Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores; Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past", "projects": [{"proj_uid": "p0010238", "repository": "USAP-DC", "title": "Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past"}, {"proj_uid": "p0000203", "repository": "USAP-DC", "title": "Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores", "uid": "600077", "west": -180.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Stable isotopes of Adelie Penguin chick bone collagen
|
1443386 2135695 |
2025-03-11 | Emslie, Steven D.; Reaves, Megan; Powers, Shannon |
Collaborative Research: Using Multiple Stable Isotopes to Investigate Middle to Late Holocene Ecological Responses by Adelie Penguins in the Ross Sea Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators |
We completed multiple-stable isotope analyses (d13C, d15N, and d34S) of Adélie penguin Pygoscelis adeliae chick-bone collagen to characterize differences in foraging behavior among 15 colony locations across the Ross Sea region. Foraging behavior was represented by d13C, d15N, and d34S values and classified into groups using k-means cluster analyses. Additionally, we report the first stable isotope values for the Adélie penguin colony on Sabrina Island, Balleny Islands. Cluster analyses revealed distinct isotopic signatures for the northernmost and central colonies; however, owing to spatial and temporal variability, isotopic signatures were not strong enough to distinguish the southernmost colonies. Results also indicated that d15N values increased with latitude (66–77° S), corresponding to higher krill consumption at colonies that foraged in sensible heat polynyas or the open ocean and increased fish consumption for those foraging in latent heat polynyas to the south. Generally, d34S values are used to distinguish foraging grounds, specifically inshore/offshore foraging or foraging over the continental slope versus the continental shelf, in marine animals. Although the southern and central colonies currently forage along the continental shelf and the northern colonies forage over the shelf, slope, and/or open ocean, we found no significant difference in d34S values among colonies. While a positive correlation between d15N and d34S values was evident, d34S signatures did not exhibit distinct patterns specific to individual colonies or regions. The absence of a clear trend reflecting inshore/offshore foraging underscores the need for additional research to bridge this knowledge gap. | [] | [] | false | false |
NBP1402 diatom data
|
1143836 |
2024-10-21 | Leventer, Amy; NBP1402 science party, |
Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics |
Totten Glacier is the termination of the largest marine-based portion of the East Antarctic Ice Sheet, the Aurora Subglacial Basin. Yet little is known about the glacial evolution of the catchment and the factors influencing its present and past behavior. Due its remote location and heavy sea ice, the continental shelf in front of the Totten Glacier had not been comprehensively surveyed prior to this study. Satellite observations indicate that the Totten ice drainage system is thinning, and it has been hypothesized that this thinning is in response to undermelting by warm ocean waters over the continental shelf. While this process is observed elsewhere in Antarctica (e.g. the rapidly retreating Pine Island Glacier in West Antarctica), the Totten Glacier system is potentially Antarcticas most important glacial drainage system due to its large size; it is three times larger than any system in West Antarctica. </br>The main goals of this proposal were: </br>To generate multibeam bathymetric maps of the continental shelf proximal to the Totten Glacier system to understand the recent regional glacial history and to document the pathways, if any, for circumpolar deep water to move onto the shelf. </br>To conduct a physical oceanographic survey of the region proximal to the Totten Glacier system, to determine the presence, if any, of warm ocean waters over the continental shelf.</br>To conduct a seismic survey of the continental shelf to assess the long-term evolution of the glacial system in the Aurora Subglacial Basin.</br>To collect marine sediment cores to determine the regional deglacial to Holocene climate history and the influence of warm circumpolar deep water. | ["POLYGON((117 -66,119.9 -66,122.8 -66,125.7 -66,128.6 -66,131.5 -66,134.4 -66,137.3 -66,140.2 -66,143.1 -66,146 -66,146 -66.1,146 -66.2,146 -66.3,146 -66.4,146 -66.5,146 -66.6,146 -66.7,146 -66.8,146 -66.9,146 -67,143.1 -67,140.2 -67,137.3 -67,134.4 -67,131.5 -67,128.6 -67,125.7 -67,122.8 -67,119.9 -67,117 -67,117 -66.9,117 -66.8,117 -66.7,117 -66.6,117 -66.5,117 -66.4,117 -66.3,117 -66.2,117 -66.1,117 -66))"] | ["POINT(131.5 -66.5)"] | false | false |
Amundsen Sea Continental Shelf Mooring Data (2006-2007)
|
0440775 0632282 |
2024-07-22 | Jacobs, Stanley; Giulivi, Claudia F. |
The Amundsen Continental Shelf and the Antarctic Ice Sheet Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise - IPY/ASEP |
Ocean currents, temperature, salinity and pressure time series from five oceanographic moorings deployed in the Amundsen and Bellingshausen Seas, Antarctica. The moorings were deployed during the 2006 expedition ANT-XXIII/4 aboard the R/V Polarstern and retrieved during the R/V Nathaniel B. Palmer cruise NBP0702 in 2007. The deployments were part of a multidisciplinary effort to study the upwelling of relatively warm deep water onto the Amundsen Sea continental shelf and how it relates to atmospheric forcing and bottom bathymetry and how the warm waters interact with both glacial and sea ice. This study constitutes a contribution of a coordinated research effort in the region known as the Amundsen Sea Embayment Project or ASEP. | ["POLYGON((-116.9985 -67.6776,-112.63225 -67.6776,-108.266 -67.6776,-103.89975000000001 -67.6776,-99.5335 -67.6776,-95.16725 -67.6776,-90.801 -67.6776,-86.43475000000001 -67.6776,-82.0685 -67.6776,-77.70224999999999 -67.6776,-73.336 -67.6776,-73.336 -68.37069,-73.336 -69.06378,-73.336 -69.75687,-73.336 -70.44996,-73.336 -71.14305,-73.336 -71.83614,-73.336 -72.52923,-73.336 -73.22232000000001,-73.336 -73.91541000000001,-73.336 -74.6085,-77.70224999999999 -74.6085,-82.0685 -74.6085,-86.43475000000001 -74.6085,-90.801 -74.6085,-95.16725 -74.6085,-99.5335 -74.6085,-103.89975000000001 -74.6085,-108.266 -74.6085,-112.63225 -74.6085,-116.9985 -74.6085,-116.9985 -73.91541000000001,-116.9985 -73.22232000000001,-116.9985 -72.52923,-116.9985 -71.83614,-116.9985 -71.14305,-116.9985 -70.44996,-116.9985 -69.75687,-116.9985 -69.06378,-116.9985 -68.37069,-116.9985 -67.6776))"] | ["POINT(-95.16725 -71.14305)"] | false | false |
Gridded Values of Conservative Temperature and Absolute Salinity Around Antarctica averaged for the depth range 300 m to min([water depth, 1000]) m
|
1744789 1744792 |
2022-02-01 | Howard, Susan L.; Little, Chris; Sun, Qiang; Padman, Laurence | No project link provided | This dataset contains NetCDF files of two-dimensional gridded fields of hydrographic properties, Conservative Temperature (CT) and Absolute Salinity (SA), around Antarctica, depth-averaged for the depth range 300 m to min([water depth, 1000]) m from 38 CMIP6 models, the World Ocean Atlas 2018, and our own product developed from the World Ocean Database. These fields are designed to represent the hydrography of deeper water masses on the Antarctic Continental Shelf (ACS), where typical water depths are 400-600 m, and the intermediate-depth water off the continental shelf. The dataset includes a high-resolution polar-stereographic grid (2 x 2 km) of Southern Ocean geometry, including water depth, elevation of the land and ice-sheet surface (including ice shelves), a mask (identifying water, land and grounded ice, and ice shelves), and offshore distance from the continental shelf break. An example MATLAB script for accessing the grids and plotting them is included. The primary purpose of this dataset is to provide simplified 2-D hydrographic fields that can be used to assess the performance of climate models for the ACS, focusing on the depth range that affects most basal melting of Antarctica’s ice shelves. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Circum-Antarctic grounding-line sinuosity
|
1246353 1745055 1745043 |
2021-11-10 | Simkins, Lauren; Stearns, Leigh; Riverman, Kiya |
Evidence for Paleo Ice Stream Collapse in the Western Ross Sea since the Last Glacial Maximum. Collaborative Research: Topographic controls on Antarctic Ice Sheet grounding line retreat - integrating models and observations |
The dataset here allows exploration of the causes and significance of Antarctic grounding-line sinuosity by coupling observations of contemporary Antarctic grounding lines and paleo-grounding lines expressed as ice-marginal landforms on the Ross Sea continental shelf. Modern grounding lines are derived from the MEaSUREs Version 2 Differential Satellite Radar Interferometry dataset with spatial resolutions of 25-120 m spanning February 1992 to December 2014 (Rignot et al., 2016; Mouginot et al., 2017). The boundaries of individual grounding lines representative of individual glacial catchments (n=664) were delineated by the inflection points of the shear strain rate, εxy (c.f Van der Veen et al., 2011). Sinuosity was calculated as the ratio of the true length, orthogonal to ice-flow direction, of the grounding lines and the straight line length between end-points and in units of km/km. Raster data were extracted at 1-km points along each grounding line; the mean was calculated for each grounding line and merged in a table with sinuosity data. A dataset of 6,275 paleo-grounding lines expressed as ice-marginal landforms on the deglaciated western Ross Sea continental shelf are used in this study, originally published by Simkins et al., 2018. The ice-marginal landforms were mapped from multibeam echo sounder data that was collected onboard the RVIB Nathaniel B. Palmer (NBP) 15-02 cruise using a Kongsberg EM122 operating in dual swath mode at 12 kHz frequency with 30-60% swath overlap (Cruise DOI: 10.7284/901477). The resulting bathymetry data was gridded at 20-40 m with decimeter vertical elevation resolution depending on water depth and sea-state. Sinuosity is calculated as a ratio of true (mapped) landform length, measured in the across paleo-ice flow direction at the crest of the landform, to the straight line distance between the mapped landform endpoints and in units of km/km. To compare modern and paleo-grounding lines, we use a consistent length scale by segmenting the grounding lines into 2-km sections for the two datasets (modern, n=12,966; paleo, n=5,832), even though this eliminates grounding lines that are less than 2-km long and thus results in 1 modern and 3,873 paleo-grounding lines removed. The full-length and 2-km segmented groundings lines are provided as shapefiles "InSAR_groundinglines_full" and "InSAR_groundinglines_2km", the paleo-grounding lines are provided as shapefiles "RossSea_icemarginal_full" and "RossSea_icemarginal_2km", and points marking modern grounding lines retreat from repeat InSAR surveys are provided as shapefile "InSAR_retreat_points", all stored together in a geodatabase named "Antarctic_groundinglines.gbd". Additional grounding line metrics, including length, sinuosity, bed roughness, and bed slope for modern and paleo-grounding lines, and height-above-buoyancy gradient, ice-flow velocity, presence of pinning points and ice shelves are provided for modern grounding lines. The published dataset was compiled and analyzed in the article "Controls on circum-Antarctic grounding-line sinuosity " by Simkins, L.M., Stearns, L.A., and Riverman, K.L, which will be submitted to a peer-review journal in November 2021. References Mouginot, J., B. Scheuchl, and E. Rignot. 2017. MEaSUREs Antarctic Boundaries for IPY 2007-2009 from Satellite Radar, Version 2. [Indicate subset used]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. Rignot, E., J. Mouginot, and B. Scheuchl. 2016. MEaSUREs Antarctic Grounding Line from Differential Satellite Radar Interferometry, Version 2. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. Simkins, L. M., Greenwood, S. L., & Anderson, J. B. (2018). Diagnosing ice sheet grounding line stability from landform morphology. The Cryosphere, 12(8), 2707-2726. Van der Veen, C. J., J. C. Plummer, & L. A. Stearns. (2011). Controls on the recent speed up of Jakobshavn Isbræ, West Greenland. Journal of Glaciology, 57(204), 770-782 | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
NBP0702 surface sediment sample information and images
|
0440775 |
2021-09-17 | Leventer, Amy; Jacobs, Stanley |
The Amundsen Continental Shelf and the Antarctic Ice Sheet |
This dataset contains images and field description of Smith-McIntyre sediment grab samples from Expedition NBP0702 between the Ross Sea and the Amundsen Sea. | ["POLYGON((-180 -71.12,-172.34 -71.12,-164.68 -71.12,-157.02 -71.12,-149.36 -71.12,-141.7 -71.12,-134.04 -71.12,-126.38 -71.12,-118.72 -71.12,-111.06 -71.12,-103.4 -71.12,-103.4 -71.833,-103.4 -72.546,-103.4 -73.259,-103.4 -73.972,-103.4 -74.685,-103.4 -75.398,-103.4 -76.111,-103.4 -76.824,-103.4 -77.537,-103.4 -78.25,-111.06 -78.25,-118.72 -78.25,-126.38 -78.25,-134.04 -78.25,-141.7 -78.25,-149.36 -78.25,-157.02 -78.25,-164.68 -78.25,-172.34 -78.25,180 -78.25,178.657 -78.25,177.314 -78.25,175.971 -78.25,174.628 -78.25,173.285 -78.25,171.942 -78.25,170.599 -78.25,169.256 -78.25,167.913 -78.25,166.57 -78.25,166.57 -77.537,166.57 -76.824,166.57 -76.111,166.57 -75.398,166.57 -74.685,166.57 -73.972,166.57 -73.259,166.57 -72.546,166.57 -71.833,166.57 -71.12,167.913 -71.12,169.256 -71.12,170.599 -71.12,171.942 -71.12,173.285 -71.12,174.628 -71.12,175.971 -71.12,177.314 -71.12,178.657 -71.12,-180 -71.12))"] | ["POINT(-148.415 -74.685)"] | false | false |
Particle-size measurements at 3-m intervals for AND-2A sediment core, McMurdo Sound
|
0342484 |
2021-06-14 | Passchier, Sandra; Candice, Falk |
Collaborative Research: ANDRILL - - Investigating Antarcticas Role in Cenozoic Global Environmental Change |
This dataset contains measurements of particle-size distributions on sediment from ANDRILL Site AND-2A. Carbonate, and organic matter were removed through addition of 10mL aliquots of 30% H2O2 and 2mL aliquots of 10% HCl to ~50-100mL suspension on a hot plate. Dispersion was through heating with sodium pyrophosphate. Samples were measured on a Malvern Mastersizer 2000 with a Hydro 2000MU (A) accessory, using a Refractive index of 1.544 (Quartz) and an absorption coefficient of 0.9. Results are in (vol. %) per size class, with diameter range equivalent to the diameter of spheres with the same volume as measured particles. | ["POINT(167 -78)"] | ["POINT(167 -78)"] | false | false |
The rise and fall of an ancient Adelie penguin 'supercolony' at Cape Adare, Antarctica
|
1443386 |
2020-06-02 | McKenzie, Ashley; Patterson, William; Emslie, Steven D. |
Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators |
We report new discoveries and radiocarbon dates on active and abandoned Adélie penguin (Pygoscelis adeliae) colonies at Cape Adare, Antarctica. This colony, first established at approximately 2000 BP (calendar years before present, i.e. 1950), is currently the largest for this species with approximately 338 000 breeding pairs, most located on lowlying Ridley Beach. We hypothesize that this colony first formed after fast ice began blocking open-water access by breeding penguins to the Scott Coast in the southern Ross Sea during a cooling period also at approximately 2000 BP. Our results suggest that the new colony at Cape Adare continued to grow, expanding to a large upper terrace above Ridley Beach, until it exceeded approximately 500 000 breeding pairs (a 'supercolony') by approximately 1200 BP. The high marine productivity associated with the Ross Sea polynya and continental shelf break supported this growth, but the colony collapsed to its present size for unknown reasons after approximately 1200 BP. Ridley Beach will probably be abandoned in the near future due to rising sea level in this region. We predict that penguins will retreat to higher elevations at Cape Adare and that the Scott Coast will be reoccupied by breeding penguins as fast ice continues to dissipate earlier each summer, restoring open-water access to beaches there. | ["POLYGON((-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -61.130769444,-180 -62.261538888,-180 -63.392308332,-180 -64.523077776,-180 -65.65384722,-180 -66.784616664,-180 -67.915386108,-180 -69.046155552,-180 -70.176924996,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,180 -71.30769444,179.019305556 -71.30769444,178.038611112 -71.30769444,177.057916668 -71.30769444,176.077222224 -71.30769444,175.09652778 -71.30769444,174.115833336 -71.30769444,173.135138892 -71.30769444,172.154444448 -71.30769444,171.173750004 -71.30769444,170.19305556 -71.30769444,170.19305556 -70.176924996,170.19305556 -69.046155552,170.19305556 -67.915386108,170.19305556 -66.784616664,170.19305556 -65.65384722,170.19305556 -64.523077776,170.19305556 -63.392308332,170.19305556 -62.261538888,170.19305556 -61.130769444,170.19305556 -60,171.173750004 -60,172.154444448 -60,173.135138892 -60,174.115833336 -60,175.09652778 -60,176.077222224 -60,177.057916668 -60,178.038611112 -60,179.019305556 -60,-180 -60))"] | ["POINT(175.09652778 -65.65384722)"] | false | false |
Sediment macrofaunal abundance and family richness from inner Andvord Bay to the open continental shelf
|
1443680 |
2019-12-31 | Smith, Craig |
Collaborative Research: Fjord Ecosystem Structure and Function on the West Antarctic Peninsula - Hotspots of Productivity and Biodiversity? (FjordEco) |
Sediment macrofaunal data collected by megacore (10-cm diameter sample tubes) along a down-fjord transect from inner Andvord Bay out onto the open continental shelf on the West Antarctic Peninsula. Sediment core samples from 0 - 10 cm depths were fixed in 4% formaldehyde, sieved on a 300 micron seive, and sorted with a dissecting microscope. | ["POLYGON((-66 -64,-65.6 -64,-65.2 -64,-64.8 -64,-64.4 -64,-64 -64,-63.6 -64,-63.2 -64,-62.8 -64,-62.4 -64,-62 -64,-62 -64.1,-62 -64.2,-62 -64.3,-62 -64.4,-62 -64.5,-62 -64.6,-62 -64.7,-62 -64.8,-62 -64.9,-62 -65,-62.4 -65,-62.8 -65,-63.2 -65,-63.6 -65,-64 -65,-64.4 -65,-64.8 -65,-65.2 -65,-65.6 -65,-66 -65,-66 -64.9,-66 -64.8,-66 -64.7,-66 -64.6,-66 -64.5,-66 -64.4,-66 -64.3,-66 -64.2,-66 -64.1,-66 -64))"] | ["POINT(-64 -64.5)"] | false | false |
CATS2008: Circum-Antarctic Tidal Simulation version 2008
|
9896041 1443677 |
2019-12-19 | Howard, Susan L.; Padman, Laurence; Erofeeva, Svetlana |
Ocean Tides around Antarctica and in the Southern Ocean Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE) |
CATS2008 is a regional inverse barotropic tide model for the circum-Antarctic ocean on a 4 km grid. The model domain includes ocean cavities under the floating ice shelves. The coastline is based on the MODIS MOA [Scambos et al., 2007; Remote Sensing of Environment] feature identification files, adjusted to match ICESat-derived grounding lines for the Ross and Filchner-Ronne ice shelves and Interferometric Synthetic Aperture Radar (InSAR) grounding lines. The water depth map for open water is based on the 2007 release update to Smith and Sandwell [1997; Science]. Adjustments to this map have been made in various regions, including the open continental shelf in front of the Larsen-C Ice Shelf which has been blended with GEBCO bathymetry. Model type: Tides only; Inverse (data assimilation); barotropic (no vertical variation of currents). Grid: 4-km uniform polar stereographic (centered at 71 degrees S, 70 degrees W) Constituents: M2, S2, N2, K2, K1, O1, P1, Q1, Mf, Mm. Units: z (sea surface height; meters); u,v (currents; cm/s); U,V (transports; m2/s). Coordinates: Currents (u, v) and depth-integrated transports (U, V) are given as East (u, U) and North (v, V) components. Citation: "… an update to the inverse model described by Padman et al. [2002]." See CATS2008_README.pdf for further details. | ["POLYGON((-180 -40.231,-144 -40.231,-108 -40.231,-72 -40.231,-36 -40.231,0 -40.231,36 -40.231,72 -40.231,108 -40.231,144 -40.231,180 -40.231,180 -45.2079,180 -50.1848,180 -55.1617,180 -60.1386,180 -65.1155,180 -70.0924,180 -75.0693,180 -80.0462,180 -85.0231,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.0231,-180 -80.0462,-180 -75.0693,-180 -70.0924,-180 -65.1155,-180 -60.1386,-180 -55.1617,-180 -50.1848,-180 -45.2079,-180 -40.231))"] | ["POINT(0 -89.999)"] | false | false |
NBP1502 YoYo camera benthic images from Ross Sea
|
1246357 |
2019-06-03 | Bart, Philip |
Timing and Duration of the LGM and Post-LGM Grounding Events in Whales Deep Paleo Ice Stream, Eastern Ross Sea Middle Continental Shelf |
Still and video benthic images collected during expedition NBP1502 in the Ross Sea using a YoYo camera system. | ["POLYGON((-171 -75.8,-170.5 -75.8,-170 -75.8,-169.5 -75.8,-169 -75.8,-168.5 -75.8,-168 -75.8,-167.5 -75.8,-167 -75.8,-166.5 -75.8,-166 -75.8,-166 -75.99,-166 -76.18,-166 -76.37,-166 -76.56,-166 -76.75,-166 -76.94,-166 -77.13,-166 -77.32,-166 -77.51,-166 -77.7,-166.5 -77.7,-167 -77.7,-167.5 -77.7,-168 -77.7,-168.5 -77.7,-169 -77.7,-169.5 -77.7,-170 -77.7,-170.5 -77.7,-171 -77.7,-171 -77.51,-171 -77.32,-171 -77.13,-171 -76.94,-171 -76.75,-171 -76.56,-171 -76.37,-171 -76.18,-171 -75.99,-171 -75.8))"] | ["POINT(-168.5 -76.75)"] | false | false |
Fjord-Eco_Sediment_OrgC_OrgN_Data - Craig Smith
|
1443680 |
2019-02-13 | Smith, Craig |
Collaborative Research: Fjord Ecosystem Structure and Function on the West Antarctic Peninsula - Hotspots of Productivity and Biodiversity? (FjordEco) |
Sediment organic carbon and organic nitrogen content (percent mass) in 6 depth intervals (0-1cm, 1-2cm, 3-4cm, 5-6cm, 7-8cm , 9-10cm) in sediment cores collected by OSIL Megacore (10 cm diameter tubes) along the five-station FjordEco Transect from inner Andvord Bay to the open continental shelf at FOODBANCS Station B. | ["POLYGON((-65 -64,-64.7 -64,-64.4 -64,-64.1 -64,-63.8 -64,-63.5 -64,-63.2 -64,-62.9 -64,-62.6 -64,-62.3 -64,-62 -64,-62 -64.1,-62 -64.2,-62 -64.3,-62 -64.4,-62 -64.5,-62 -64.6,-62 -64.7,-62 -64.8,-62 -64.9,-62 -65,-62.3 -65,-62.6 -65,-62.9 -65,-63.2 -65,-63.5 -65,-63.8 -65,-64.1 -65,-64.4 -65,-64.7 -65,-65 -65,-65 -64.9,-65 -64.8,-65 -64.7,-65 -64.6,-65 -64.5,-65 -64.4,-65 -64.3,-65 -64.2,-65 -64.1,-65 -64))"] | ["POINT(-63.5 -64.5)"] | false | false |
AU1402 mooring data
|
1313826 |
2018-12-24 | Orsi, Alejandro |
Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics |
An array of three moorings (M1-M3) with current meters, temperature, conductivity, and pressure (TCP) recorders were deployed along the eastern flank of the continental shelf off Sabrina Coast, at the main path of the Antarctic Coastal Current indicated by the uCTD data collected earlier during the cruise. These three US mooring were deployed at the 625-m (M1), 620-m (M2) and 1051-m (M3) isobaths. M1 was recovered on 25 February 2014, with a full data return from all of its instruments; whereas M2 and M3 were recovered in early 2015 on board of the Australian RVI Aurora Australis next year (cruise AU1402). The location and schematics of the mooring array design is described below, and also provided among the uploaded files. | ["POLYGON((119 -66,119.3 -66,119.6 -66,119.9 -66,120.2 -66,120.5 -66,120.8 -66,121.1 -66,121.4 -66,121.7 -66,122 -66,122 -66.1,122 -66.2,122 -66.3,122 -66.4,122 -66.5,122 -66.6,122 -66.7,122 -66.8,122 -66.9,122 -67,121.7 -67,121.4 -67,121.1 -67,120.8 -67,120.5 -67,120.2 -67,119.9 -67,119.6 -67,119.3 -67,119 -67,119 -66.9,119 -66.8,119 -66.7,119 -66.6,119 -66.5,119 -66.4,119 -66.3,119 -66.2,119 -66.1,119 -66))"] | ["POINT(120.5 -66.5)"] | false | false |
NBP14-02 JPC-55 Bulk Sediment Carbon and Nitrogen data
|
1430550 |
2017-08-18 | Smith, Catherine; Shevenell, Amelia; Domack, Eugene Walter |
Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics |
Bulk sediment carbon and nitrogen data data for Paleocene sediments collected on Totten continental shelf, East Antarctica. | ["POLYGON((120 -66,120.1 -66,120.2 -66,120.3 -66,120.4 -66,120.5 -66,120.6 -66,120.7 -66,120.8 -66,120.9 -66,121 -66,121 -66.4,121 -66.8,121 -67.2,121 -67.6,121 -68,121 -68.4,121 -68.8,121 -69.2,121 -69.6,121 -70,120.9 -70,120.8 -70,120.7 -70,120.6 -70,120.5 -70,120.4 -70,120.3 -70,120.2 -70,120.1 -70,120 -70,120 -69.6,120 -69.2,120 -68.8,120 -68.4,120 -68,120 -67.6,120 -67.2,120 -66.8,120 -66.4,120 -66))"] | ["POINT(120.5 -68)"] | false | false |
NBP14-02 JPC-54 and JPC-55 Pollen Assemblage data
|
1430550 |
2017-08-18 | Shevenell, Amelia; Smith, Catherine; Domack, Eugene Walter |
Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics |
Pollen assemblage data for Paleocene to early to middle Eocene sediments collected on Totten continental shelf, East Antarctica. | ["POLYGON((120 -66,120.1 -66,120.2 -66,120.3 -66,120.4 -66,120.5 -66,120.6 -66,120.7 -66,120.8 -66,120.9 -66,121 -66,121 -66.4,121 -66.8,121 -67.2,121 -67.6,121 -68,121 -68.4,121 -68.8,121 -69.2,121 -69.6,121 -70,120.9 -70,120.8 -70,120.7 -70,120.6 -70,120.5 -70,120.4 -70,120.3 -70,120.2 -70,120.1 -70,120 -70,120 -69.6,120 -69.2,120 -68.8,120 -68.4,120 -68,120 -67.6,120 -67.2,120 -66.8,120 -66.4,120 -66))"] | ["POINT(120.5 -68)"] | false | false |
NBP14-02 JPC-55 foraminifer assemblage data
|
1143836 |
2017-08-18 | Shevenell, Amelia; Leventer, Amy |
Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics |
Foraminifer assemblage data for Paleocene sediments collected on Totten continental shelf, East Antarctica. | ["POLYGON((120 -66,120.1 -66,120.2 -66,120.3 -66,120.4 -66,120.5 -66,120.6 -66,120.7 -66,120.8 -66,120.9 -66,121 -66,121 -66.4,121 -66.8,121 -67.2,121 -67.6,121 -68,121 -68.4,121 -68.8,121 -69.2,121 -69.6,121 -70,120.9 -70,120.8 -70,120.7 -70,120.6 -70,120.5 -70,120.4 -70,120.3 -70,120.2 -70,120.1 -70,120 -70,120 -69.6,120 -69.2,120 -68.8,120 -68.4,120 -68,120 -67.6,120 -67.2,120 -66.8,120 -66.4,120 -66))"] | ["POINT(120.5 -68)"] | false | false |
Climate Change and Predatory Invasion of the Antarctic Benthos
|
1141877 |
2017-01-10 | Aronson, Richard |
Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos |
Elevated temperatures and ocean acidification are both threatening the Southern Ocean. The effects of these environmental changes are poorly understood, but preliminary data suggest that they are driving a biological invasion. Specifically, large populations of skeleton-crushing king crabs, Paralomis birsteini, have been detected off Marguerite Bay on the West Antarctic Peninsula. These crabs appear to be invading the continental shelf region where benthic communities have evolved in the absence of such top-predators. Thus, this invasion could result in a wholesale restructuring of the Antarctic benthic ecosystem. The proposed work seeks to document this invasion and better understand the effects of the introduction of P. birsteini on the ecology of this region. A towed underwater vehicle will be used to photographically image communities, and communities with and without P. birsteini will be compared quantitatively. Additionally, crabs will trapped and various aspects of their morphology and physiology will be assessed. This research is unique in that it will document a biological invasion in real-time and it will therefore enhance our general understandings of the drivers of invasion and resilience in biological communities. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of undergraduate and graduate students and will foster an international collaboration with British scientists. Researchers on this project will participate in outreach thorough the development of K-12 curricular materials. | [] | [] | false | false |
Climate Change and Predatory Invasion of the Antarctic Benthos
|
1141877 |
2016-01-01 | Aronson, Richard |
Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos |
Elevated temperatures and ocean acidification are both threatening the Southern Ocean. The effects of these environmental changes are poorly understood, but preliminary data suggest that they are driving a biological invasion. Specifically, large populations of skeleton-crushing king crabs, Paralomis birsteini, have been detected off Marguerite Bay on the West Antarctic Peninsula. These crabs appear to be invading the continental shelf region where benthic communities have evolved in the absence of such top-predators. Thus, this invasion could result in a wholesale restructuring of the Antarctic benthic ecosystem. The proposed work seeks to document this invasion and better understand the effects of the introduction of P. birsteini on the ecology of this region. A towed underwater vehicle will be used to photographically image communities, and communities with and without P. birsteini will be compared quantitatively. Additionally, crabs will trapped and various aspects of their morphology and physiology will be assessed. This research is unique in that it will document a biological invasion in real-time and it will therefore enhance our general understandings of the drivers of invasion and resilience in biological communities. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of undergraduate and graduate students and will foster an international collaboration with British scientists. Researchers on this project will participate in outreach thorough the development of K-12 curricular materials. | ["POLYGON((-111.18 -49.98,-105.429 -49.98,-99.678 -49.98,-93.927 -49.98,-88.176 -49.98,-82.425 -49.98,-76.674 -49.98,-70.923 -49.98,-65.172 -49.98,-59.421 -49.98,-53.67 -49.98,-53.67 -52.826,-53.67 -55.672,-53.67 -58.518,-53.67 -61.364,-53.67 -64.21,-53.67 -67.056,-53.67 -69.902,-53.67 -72.748,-53.67 -75.594,-53.67 -78.44,-59.421 -78.44,-65.172 -78.44,-70.923 -78.44,-76.674 -78.44,-82.425 -78.44,-88.176 -78.44,-93.927 -78.44,-99.678 -78.44,-105.429 -78.44,-111.18 -78.44,-111.18 -75.594,-111.18 -72.748,-111.18 -69.902,-111.18 -67.056,-111.18 -64.21,-111.18 -61.364,-111.18 -58.518,-111.18 -55.672,-111.18 -52.826,-111.18 -49.98))"] | ["POINT(-82.425 -64.21)"] | false | false |
US/Chinese Collaborative Study: Investigation of Bottom Water Formation in Prydz Bay, Antarctica
|
1043669 |
2012-01-01 | Yuan, Xiaojun |
US/Chinese Collaborative Study: Investigation of Bottom Water Formation in Prydz Bay, Antarctica |
Processess governing the formation of Antarctic bottom water (AABW) in the Indian Ocean sector of the Southern Ocean remain poorly described. As with AABW formation in more well studied regions of the Antarctic continent, global climate impacts of the source regions of this dense, cold water that help drive the global ocean thermohaline circulation are uncertain. A combination of (annual) continental shelf and slope moorings, seasonal (summer) hydrographic surveys on board the Chinese icebreaker M/V Xuelong, together with synthesis of historic and satellite data will be used to better constrain shelf processes and the atmosphere-ocean-ice interactions in the Prydz Bay region. Despite the seeming remoteness of the study site, changes in the formation rate of AABW could potentially have impact on northern hemisphere climate via effects on the global heat budget and through sea-level rise in the coming decades. The project additionally seeks to promote international collaboration between Chinese and US researchers. The data collected will be broadly disseminated to the oceanographic community through the National Oceanography Data Center and Chinese Arctic and Antarctic Data Center. | ["POLYGON((70 -64,71 -64,72 -64,73 -64,74 -64,75 -64,76 -64,77 -64,78 -64,79 -64,80 -64,80 -64.6,80 -65.2,80 -65.8,80 -66.4,80 -67,80 -67.6,80 -68.2,80 -68.8,80 -69.4,80 -70,79 -70,78 -70,77 -70,76 -70,75 -70,74 -70,73 -70,72 -70,71 -70,70 -70,70 -69.4,70 -68.8,70 -68.2,70 -67.6,70 -67,70 -66.4,70 -65.8,70 -65.2,70 -64.6,70 -64))"] | ["POINT(75 -67)"] | false | false |
Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection
|
0440687 |
2010-01-01 | Klinck, John M.; Crocker, Daniel; Goebel, Michael; Hofmann, Eileen; Costa, Daniel |
Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection |
As long-lived animals, marine mammals must be capable of accommodating broad variations in food resources over large spatial and temporal scales. While this is true of all marine mammals, variation in the physical and biological environmental is particularly profound in the Southern Ocean. A basic understanding of the foraging behavior and habitat utilization of pelagic predators requires knowledge of this spatial and temporal variation, coupled with information of how they respond to these changes. Current understanding of these associations is primarily limited to population level studies where animal abundance has been correlated with oceanography. Although these studies are informative, they cannot provide insights into the strategies employed by individual animals nor can they provide insights into the spatial or temporal course of these interactions. Recent technological advances in instrumentation make it possible to extend an understanding beyond the simple linkage of prey and predator distributions with environmental features. The key to understanding the processes that lead to high predator abundance is the identification of the specific foraging behaviors associated with different features of the water column. This study will accomplish these objectives by combining accurate positional data, measures of diving and foraging behavior, animal-derived water-column temperature and salinity data, and available oceanographic data. This project will examine the foraging behavior and habitat utilization of two species of contrasting foraging ecology, the southern elephant seal, Mirounga leonina, and the crabeater seal, Lobodon carcinophagus in the Western Antarctic Peninsula, a region of strong environmental gradients. Although these two species are phylogenetically related, they utilize substantially different but adjacent habitat types. Southern elephant seals are predominantly pelagic, moving throughout the southern ocean, venturing occasionally into the seasonal pack ice whereas crabeater seals range throughout the seasonal pack ice, venturing occasionally into open water. The relationship of specific foraging behaviors and animal movement patterns to oceanographic and bathymetric features develop and test models of the importance of these features in defining habitat use will be determined along with a comparison of how individuals of each species respond to annual variability in the marine environment. The physical oceanography of the Southern Ocean is inherently complex as are the biological processes that are intrinsically linked to oceanographic processes. Significant resources are currently being directed toward developing mathematical models of physical oceanographic processes with the goals of better understanding the role that the Southern Ocean plays in global climate processes, predicting the responses of ocean and global scale processes to climate change, and understanding the linkages between physical and biological oceanographic processes. These efforts have been limited by the scarcity of oceanographic data in the region, especially at high latitudes in the winter months. This study will provide new and significant oceanographic data on temperature and salinity profiles in to further the understanding of the dynamics of the upper water column of west Antarctic Peninsula continental shelf waters. Outreach activities include website development and an association with a marine education program at the Monterrey Bay Aquarium Research Institute. | ["POLYGON((-64 -60,-63 -60,-62 -60,-61 -60,-60 -60,-59 -60,-58 -60,-57 -60,-56 -60,-55 -60,-54 -60,-54 -60.4,-54 -60.8,-54 -61.2,-54 -61.6,-54 -62,-54 -62.4,-54 -62.8,-54 -63.2,-54 -63.6,-54 -64,-55 -64,-56 -64,-57 -64,-58 -64,-59 -64,-60 -64,-61 -64,-62 -64,-63 -64,-64 -64,-64 -63.6,-64 -63.2,-64 -62.8,-64 -62.4,-64 -62,-64 -61.6,-64 -61.2,-64 -60.8,-64 -60.4,-64 -60))"] | ["POINT(-59 -62)"] | false | false |
Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes
|
0436190 |
2009-01-01 | Eastman, Joseph |
Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes |
Patterns of biodiversity, as revealed by basic research in organismal biology, may be derived from ecological and evolutionary processes expressed in unique settings, such as Antarctica. The polar regions and their faunas are commanding increased attention as declining species diversity, environmental change, commercial fisheries, and resource management are now being viewed in a global context. Commercial fishing is known to have a direct and pervasive effect on marine biodiversity, and occurs in the Southern Ocean as far south as the Ross Sea. The nature of fish biodiversity in the Antarctic is different than in all other ocean shelf areas. Waters of the Antarctic continental shelf are ice covered for most of the year and water temperatures are nearly constant at -1.5 C. In these waters components of the phyletically derived Antarctic clade of Notothenioids dominate fish diversity. In some regions, including the southwestern Ross Sea, Notothenioids are overwhelmingly dominant in terms of number of species, abundance, and biomass. Such dominance by a single taxonomic group is unique among shelf faunas of the world. In the absence of competition from a taxonomically diverse fauna, Notothenioids underwent a habitat or depth related diversification keyed to the utilization of unfilled niches in the water column, especially pelagic or partially pelagic zooplanktivory and piscivory. This has been accomplished in the absence of a swim bladder for buoyancy control. They also may form a special type of adaptive radiation known as a species flock, which is an assemblage of a disproportionately high number of related species that have evolved rapidly within a defined area where most species are endemic. Diversification in buoyancy is the hallmark of the notothenioid radiation. Buoyancy is the feature of notothenioid biology that determines whether a species lives on the substrate, in the water column or both. Buoyancy also influences other key aspects of life history including swimming, feeding and reproduction and thus has implications for the role of the species in the ecosystem. With similarities to classic evolutionary hot spots, the Antarctic shelf and its Notothenioid radiation merit further exploration. The 2004 'International Collaborative Expedition to collect and study Fish Indigenous to Sub-Antarctic Habitats,' or, 'ICEFISH,' provided a platform for collection of notothenioid fishes from sub-Antarctic waters between South America and Africa, which will be examined in this project. This study will determine buoyancy for samples of all notothenioid species captured during the ICEFISH cruise. This essential aspect of the biology is known for only 19% of the notothenioid fauna. Also, the gross and microscopic anatomy of brains and sense organs of the phyletically basal families Bovichtidae, Eleginopidae, and of the non-Antarctic species of the primarily Antarctic family Nototheniidae will be examined. The fish biodiversity and endemicity in poorly known localities along the ICEFISH cruise track, seamounts and deep trenches will be quantified. Broader impacts include improved information for comprehending and conserving biodiversity, a scientific and societal priority. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores
|
0739496 |
2009-01-01 | Furbish, David; Miller, Molly |
Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores |
This project answers a simple question: why are there so few fossils in sediment cores from Antarctica's continental shelf? Antarctica's benthos are as biologically rich as those of the tropics. Shell-secreting organisms should have left a trail throughout geologic time, but have not. This trail is particularly important because these organisms record regional climate in ways that are critical to interpreting the global climate record. This study uses field experiments and targeted observations of modern benthic systems to examine the biases inflicted by fossil preservation. By examining a spectrum of ice-affected habitats, this project provides paleoenvironmental insights into carbonate preservation, sedimentation rates, and burial processes; and will provide new approaches to reconstructing the Cenozoic history of Antarctica. Broader impacts include graduate and undergraduate research and education, development of undergraduate curricula to link art and science, K12 outreach, public outreach via the web, and societal relevance through improved understanding of records of global climate change. | ["POLYGON((163.41667 -77.33333,163.46667 -77.33333,163.51667 -77.33333,163.56667 -77.33333,163.61667 -77.33333,163.66667 -77.33333,163.71667 -77.33333,163.76667 -77.33333,163.81667 -77.33333,163.86667 -77.33333,163.91667 -77.33333,163.91667 -77.369997,163.91667 -77.406664,163.91667 -77.443331,163.91667 -77.479998,163.91667 -77.516665,163.91667 -77.553332,163.91667 -77.589999,163.91667 -77.626666,163.91667 -77.663333,163.91667 -77.7,163.86667 -77.7,163.81667 -77.7,163.76667 -77.7,163.71667 -77.7,163.66667 -77.7,163.61667 -77.7,163.56667 -77.7,163.51667 -77.7,163.46667 -77.7,163.41667 -77.7,163.41667 -77.663333,163.41667 -77.626666,163.41667 -77.589999,163.41667 -77.553332,163.41667 -77.516665,163.41667 -77.479998,163.41667 -77.443331,163.41667 -77.406664,163.41667 -77.369997,163.41667 -77.33333))"] | ["POINT(163.66667 -77.516665)"] | false | false |
Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores
|
0739512 |
2009-01-01 | Walker, Sally |
Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores |
This project answers a simple question: why are there so few fossils in sediment cores from Antarctica's continental shelf? Antarctica's benthos are as biologically rich as those of the tropics. Shell-secreting organisms should have left a trail throughout geologic time, but have not. This trail is particularly important because these organisms record regional climate in ways that are critical to interpreting the global climate record. This study uses field experiments and targeted observations of modern benthic systems to examine the biases inflicted by fossil preservation. By examining a spectrum of ice-affected habitats, this project provides paleoenvironmental insights into carbonate preservation, sedimentation rates, and burial processes; and will provide new approaches to reconstructing the Cenozoic history of Antarctica. Broader impacts include graduate and undergraduate research and education, development of undergraduate curricula to link art and science, K12 outreach, public outreach via the web, and societal relevance through improved understanding of records of global climate change. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |