{"dp_type": "Project", "free_text": "Distributed Temperature Sensing"}
[{"awards": "2019719 Brook, Edward", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "2019-2020 Allan Hills Field Report; 2022-23 Allan Hills Intermediate Ice Core Site Selection Field Report; 2023-2024 Allan Hills End-of-Season Science Report; 2024-2025 I-187 End of season science report ; Airborne Radar Data: 2022-23 (CXA1) flight based HDF5/matlab format data; Airborne Radar Data: 2022-23 (CXA1) transect based (science organized) unfocused data; Airborne Radar Data: 2023-24 (CXA2) flight based data HDF5/matlab format; Airborne Radar Data: 2023-24 (CXA2) transect based (science organized) unfocused data; ALHIC2201 and ALHIC2302 3D ECM and Layer Orientations; Allan Hills 2022-23 Shallow Ice Core Field Report; Allan Hills ALHIC1901 ice core 2D bubble parameters; Allan Hills ALHIC1901 ice core 3D bubble parameters; Allan Hills ALHIC1901 ice core fabric data; Allan Hills ALHIC1901 ice core texture images; Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 \u0026 2022; Allan Hills dXeKr measurements and mean ocean temperature reconstruction; Allan Hills I-188 Field Season Report 2022-2023; Allan Hills ice water stable isotope record for dD, d18O; Basal Ice Unit Thickness Mapped by the NSF COLDEX MARFA Ice Penetrating Radar; Borehole temperature measurements using distributed temperature sensing in Allan Hills, Antarctica (2022-2024); CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903; COLDEX survey preliminary accumulation; COLDEX VHF MARFA Open Polar Radar radargrams; Concentration and flux of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area; Firn microstructure from micro-computer tomography of PICO2303, Allan Hills Blue Ice Area, Antarctica; Fractional Thickness of Incoherent Scattering Within the Basal Unit Mapped by the NSF COLDEX MARFA Ice-Penetrating Radar; GPS stake measurements of surface ice flow at the Allan Hills, Antarctica (2023-2025); Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903; I-165-M GPR Field Report 2019-2020; Magnetotelluric measurements of crustal structure at a potential old ice drilling site on the flank of Dome A, Antarctica; MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903; NSF COLDEX 2022-2023 Airborne Season (CXA1): Level 1B Serial Instrument Measurements; NSF COLDEX 2022-2023 Airborne Season (CXA1): Level 1 gravimeter instrument measurements; NSF COLDEX 2022-23 GNSS/IMU Level 1 instrument measurements from Dome A, East Antarctica; NSF COLDEX 2022-23 Level 2 Basal Specularity Content Profiles; NSF COLDEX 2022-23 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets; NSF COLDEX 2023-2024 Airborne Season (CXA2): Level 1B ; NSF COLDEX 2023-24 GNSS/IMU Level 1 instrument measurements from Dome A, East Antarctica; NSF COLDEX 2023-24 Level 2 Basal Specularity Content Profiles; NSF COLDEX 2023-24 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets; NSF COLDEX Ice Penetrating Radar Derived Grids of the Southern Flank of Dome C; NSF COLDEX/Open Polar Radar Example Delay Doppler Classification of Englacial Reflectors; NSF COLDEX Raw MARFA Ice Penetrating Radar data; Oxygen and hydrogen isotope compositions and associated d-excess of ice from ALHIC1903 drilled at the Allan Hills Blue Ice Area; Rare earth elemental concentrations of leached ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area; Replicate O-17-excess by continuous flow laser spectroscopy for an ice core section at Summit, Greenland; Rising Seas: Representations of Antarctica, Climate Change, and Sea Level Rise in U.S. Newspaper Coverage; Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old; Social network analysis to understand participant engagement in transdisciplinary team science: a large U.S. science and technology center case study; Strontium and neodymium isotope compositions of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "datasets": [{"dataset_uid": "200432", "doi": "10.18738/T8/XPMLCC", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "Airborne Radar Data: 2022-23 (CXA1) transect based (science organized) unfocused data", "url": "https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/XPMLCC"}, {"dataset_uid": "200433", "doi": "10.18738/T8/FV6VNT", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "Airborne Radar Data: 2023-24 (CXA2) transect based (science organized) unfocused data", "url": "https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/FV6VNT"}, {"dataset_uid": "200434", "doi": "10.18738/T8/99IEOG", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2022-23 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets", "url": "https://doi.org/10.18738/T8/99IEOG"}, {"dataset_uid": "601895", "doi": "10.15784/601895", "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Noble Gas", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601895"}, {"dataset_uid": "601896", "doi": "10.15784/601896", "keywords": "Allan Hills; Antarctica; Ch4; CO2; Cryosphere; Glaciology; Glaciology; Ice Core Data; Ice Core Records", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601896"}, {"dataset_uid": "200435", "doi": "10.18738/T8/PNBFOL", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2023-24 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets", "url": "https://doi.org/10.18738/T8/PNBFOL"}, {"dataset_uid": "601897", "doi": "10.15784/601897", "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciology; Ice Core Data; MOT; Ocean Temperature; Paleoclimate; Xe/Kr", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601897"}, {"dataset_uid": "601878", "doi": "10.15784/601878", "keywords": "Allan Hills; Antarctica; Blue Ice; Carbon Dioxide; Cryosphere; Methane", "people": "Marks Peterson, Julia; Severinghaus, Jeffrey P.; Shackleton, Sarah; Hishamunda, Valens; Kalk, Michael; Brook, Edward", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old", "url": "https://www.usap-dc.org/view/dataset/601878"}, {"dataset_uid": "200498", "doi": "10.18738/T8/ANTMMV", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2022-2023 Airborne Season (CXA1): Level 1B Serial Instrument Measurements", "url": "https://doi.org/10.18738/T8/ANTMMV"}, {"dataset_uid": "200497", "doi": "10.18738/T8/ANTMMV", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2022-2023 Airborne Season (CXA1): Level 1 gravimeter instrument measurements", "url": "https://doi.org/10.18738/T8/ANTMMV"}, {"dataset_uid": "601912", "doi": "10.15784/601912", "keywords": "Antarctica; Coldex; Cryosphere; East Antarctica; East Antarctic Plateau; Glaciology; Radar Echo Sounder", "people": "Yan, Shuai; Young, Duncan A.; Blankenship, Donald D.; Singh, Shivangini; Kerr, Megan E.; Vega Gonzalez, Alejandra", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Basal Ice Unit Thickness Mapped by the NSF COLDEX MARFA Ice Penetrating Radar", "url": "https://www.usap-dc.org/view/dataset/601912"}, {"dataset_uid": "200421", "doi": "10.18738/T8/J38CO5", "keywords": null, "people": null, "repository": "OPR", "science_program": null, "title": "Airborne Radar Data: 2023-24 (CXA2) flight based data HDF5/matlab format", "url": "https://data.cresis.ku.edu/data/rds/2023_Antarctica_BaslerMKB/"}, {"dataset_uid": "200420", "doi": "10.18738/T8/J38CO5", "keywords": null, "people": null, "repository": "OPR", "science_program": null, "title": "Airborne Radar Data: 2022-23 (CXA1) flight based HDF5/matlab format data", "url": "https://data.cresis.ku.edu/data/rds/2022_Antarctica_BaslerMKB/"}, {"dataset_uid": "200419", "doi": "", "keywords": null, "people": null, "repository": "University Digital Conservancy", "science_program": null, "title": "Rising Seas: Representations of Antarctica, Climate Change, and Sea Level Rise in U.S. Newspaper Coverage", "url": "https://hdl.handle.net/11299/265195"}, {"dataset_uid": "601933", "doi": "10.15784/601933", "keywords": "Aerogeophysics; Antarctica; Cryosphere; South Pole", "people": "Ng, Gregory; Young, Duncan A.; Buhl, Dillon P.; Greenbaum, Jamin Stevens; Chan, Kristian; Echeverry, Gonzalo; Singh, Shivangini; Kerr, Megan E.; Kempf, Scott D.; Blankenship, Donald D.; Young, Duncan", "repository": "USAP-DC", "science_program": "COLDEX", "title": "NSF COLDEX 2022-23 GNSS/IMU Level 1 instrument measurements from Dome A, East Antarctica", "url": "https://www.usap-dc.org/view/dataset/601933"}, {"dataset_uid": "601697", "doi": "10.15784/601697", "keywords": "Allan Hills; Antarctica; Apres; Ice Core; Ice Penetrating Radar; Temperature Profiles", "people": "Brook, Edward J.; Conway, Howard", "repository": "USAP-DC", "science_program": "COLDEX", "title": "2022-23 Allan Hills Intermediate Ice Core Site Selection Field Report", "url": "https://www.usap-dc.org/view/dataset/601697"}, {"dataset_uid": "601863", "doi": "10.15784/601863", "keywords": "Allan Hills; Antarctica; Cryosphere; Isotope Data", "people": "Mayewski, Paul A.; Kurbatov, Andrei; Kurbatov, Andrei V.; Introne, Douglas; Severinghaus, Jeffrey P.; Higgins, John; Brook, Edward", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Allan Hills ice water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601863"}, {"dataset_uid": "601696", "doi": "10.15784/601696", "keywords": "Allan Hills; Antarctica; Ice Core", "people": "Shackleton, Sarah; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills 2022-23 Shallow Ice Core Field Report", "url": "https://www.usap-dc.org/view/dataset/601696"}, {"dataset_uid": "601863", "doi": "10.15784/601863", "keywords": "Allan Hills; Antarctica; Cryosphere; Isotope Data", "people": "Higgins, John; Brook, Edward; Kurbatov, Andrei V.; Kurbatov, Andrei; Mayewski, Paul A.; Introne, Douglas; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills ice water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601863"}, {"dataset_uid": "601945", "doi": "10.15784/601945", "keywords": "Allan Hills; Antarctica; Cryosphere", "people": "Shaya, Margot; Chalif, Jacob; Ishraque, Fairuz; Kirkpatrick, Liam; Hudak, Abigail; Severinghaus, Jeffrey P.; Fudge, T. J.; Epifanio, Jenna", "repository": "USAP-DC", "science_program": "COLDEX", "title": "2024-2025 I-187 End of season science report ", "url": "https://www.usap-dc.org/view/dataset/601945"}, {"dataset_uid": "200452", "doi": "https://hdl.handle.net/11299/270020", "keywords": null, "people": null, "repository": "UMN University Digital Conservancy", "science_program": null, "title": "Social network analysis to understand participant engagement in transdisciplinary team science: a large U.S. science and technology center case study", "url": "https://hdl.handle.net/11299/270020"}, {"dataset_uid": "601967", "doi": "10.15784/601967", "keywords": "Allan Hills; Antarctica; Cryosphere; Electrical Conductivity; Ice Core Data", "people": "Shackleton, Sarah; Kirkpatrick, Liam; Carter, Austin; Fudge, T. J.; Marks Peterson, Julia", "repository": "USAP-DC", "science_program": "COLDEX", "title": "ALHIC2201 and ALHIC2302 3D ECM and Layer Orientations", "url": "https://www.usap-dc.org/view/dataset/601967"}, {"dataset_uid": "601972", "doi": "10.15784/601972", "keywords": "Antarctica; Coldex; Cryosphere; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Penetrating Radar", "people": "Blankenship, Donald D.; Yan, Shuai; Singh, Shivangini; Vega Gonzalez, Alejandra; Li, Duyi; Young, Duncan A.; Kerr, Megan E.", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Fractional Thickness of Incoherent Scattering Within the Basal Unit Mapped by the NSF COLDEX MARFA Ice-Penetrating Radar", "url": "https://www.usap-dc.org/view/dataset/601972"}, {"dataset_uid": "601768", "doi": "10.15784/601768", "keywords": "Antarctica; Coldex; East Antarctic Plateau; Glaciology; Radar Echo Sounder", "people": "Young, Duncan A.; Blankenship, Donald D.; Kempf, Scott D.; Chan, Kristian; Buhl, Dillon P.; Greenbaum, Jamin; Ng, Gregory; Kerr, Megan E.", "repository": "USAP-DC", "science_program": "COLDEX", "title": "NSF COLDEX Raw MARFA Ice Penetrating Radar data", "url": "https://www.usap-dc.org/view/dataset/601768"}, {"dataset_uid": "200536", "doi": "10.18738/T8/LHSVH5", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2023-2024 Airborne Season (CXA2): Level 1B ", "url": "https://doi.org/10.18738/T8/LHSVH5"}, {"dataset_uid": "601994", "doi": "10.15784/601994", "keywords": "Antarctica; Coldex; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Glaciology; Radar; Snow/ice; Snow/Ice", "people": "Fudge, T. J.", "repository": "USAP-DC", "science_program": "COLDEX", "title": "COLDEX survey preliminary accumulation", "url": "https://www.usap-dc.org/view/dataset/601994"}, {"dataset_uid": "601999", "doi": "10.15784/601999", "keywords": "Aerogeophysics; Allan Hills; Antarctica; Beardmore Glacier; Cryosphere; David Glacier; Dome A; GPS Data; South Pole; South Pole Basin", "people": "Ng, Gregory; Young, Duncan; Blankenship, Donald D.; Young, Duncan A.; Singh, Shivangini; Kerr, Megan E.; Kempf, Scott D.; Buhl, Dillon P.", "repository": "USAP-DC", "science_program": null, "title": "NSF COLDEX 2023-24 GNSS/IMU Level 1 instrument measurements from Dome A, East Antarctica", "url": "https://www.usap-dc.org/view/dataset/601999"}, {"dataset_uid": "602002", "doi": null, "keywords": "Antarctica; Cryosphere", "people": "Horlings, B. Ilyse", "repository": "USAP-DC", "science_program": null, "title": "Firn microstructure from micro-computer tomography of PICO2303, Allan Hills Blue Ice Area, Antarctica", "url": "https://www.usap-dc.org/view/dataset/602002"}, {"dataset_uid": "601669", "doi": "10.15784/601669", "keywords": "Allan Hills; Antarctica; GPR; Ice Core; Report", "people": "Brook, Edward J.; Nesbitt, Ian", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "I-165-M GPR Field Report 2019-2020", "url": "https://www.usap-dc.org/view/dataset/601669"}, {"dataset_uid": "602009", "doi": "10.15784/602009", "keywords": "Air Bubbles; Allan Hills; Antarctica; Bubble Number Density; Cryosphere; Ice Deformation; Microstructure; Porosity", "people": "Stoll, Nicolas; Freitag, Johannes", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Allan Hills ALHIC1901 ice core 3D bubble parameters", "url": "https://www.usap-dc.org/view/dataset/602009"}, {"dataset_uid": "602010", "doi": "10.15784/602010", "keywords": "Air Bubbles; Allan Hills; Antarctica; Bubble Number Density; Cryosphere; Ice Deformation; Microstructure; Porosity", "people": "Fudge, T. J.; Stoll, Nicolas", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Allan Hills ALHIC1901 ice core 2D bubble parameters", "url": "https://www.usap-dc.org/view/dataset/602010"}, {"dataset_uid": "602011", "doi": "10.15784/602011", "keywords": "Air Bubbles; Allan Hills; Antarctica; Bubble Number Density; Cryosphere; Ice Deformation; Microstructure; Porosity", "people": "Stoll, Nicolas", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Allan Hills ALHIC1901 ice core fabric data", "url": "https://www.usap-dc.org/view/dataset/602011"}, {"dataset_uid": "602013", "doi": "10.15784/602013", "keywords": "Allan Hills; Antarctica; Cryosphere", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Allan Hills dXeKr measurements and mean ocean temperature reconstruction", "url": "https://www.usap-dc.org/view/dataset/602013"}, {"dataset_uid": "602018", "doi": "10.15784/602018", "keywords": "Allan Hills; Allan Hills Blue Ice; Antarctica; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Grain Size; Ice Core Records; Microscope; Microstructure; Subgrain Boundaries", "people": "Stoll, Nicolas", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Allan Hills ALHIC1901 ice core texture images", "url": "https://www.usap-dc.org/view/dataset/602018"}, {"dataset_uid": "601659", "doi": "10.15784/601659", "keywords": "Antarctica; Continuous Flow; Glaciology; Greenland; Ice Core Data; Laser Spectroscopy; Oxygen Isotope; Triple Oxygen Isotopes", "people": "Davidge, Lindsey", "repository": "USAP-DC", "science_program": "Hercules Dome Ice Core", "title": "Replicate O-17-excess by continuous flow laser spectroscopy for an ice core section at Summit, Greenland", "url": "https://www.usap-dc.org/view/dataset/601659"}, {"dataset_uid": "602025", "doi": "10.15784/602025", "keywords": "Allan Hills; Antarctica; Borehole Temperature; Cryosphere; Distributed Temperature Sensing; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Glaciology; Ice Core Records; Snow/ice; Snow/Ice", "people": "Manos, John-Morgan; Shaya, Marguerite", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Borehole temperature measurements using distributed temperature sensing in Allan Hills, Antarctica (2022-2024)", "url": "https://www.usap-dc.org/view/dataset/602025"}, {"dataset_uid": "602026", "doi": "10.15784/602026", "keywords": "Allan Hills; Antarctica; Cryosphere; Geophysics; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ice Surface Velocity", "people": "Fudge, T. J.; Kirkpatrick, Liam; Ishraque, Fairuz; Brook, Edward; Hudak, Abigail; Goverman, Ashley; Epifanio, Jenna; Carter, Austin; Banerjee, Asmita; Mayo, Emalia; Meyer, Kelcie; Shackleton, Sarah; Shaya, Marguerite; Manos, John-Morgan; Marks Peterson, Julia; Chalif, Jacob", "repository": "USAP-DC", "science_program": "COLDEX", "title": "GPS stake measurements of surface ice flow at the Allan Hills, Antarctica (2023-2025)", "url": "https://www.usap-dc.org/view/dataset/602026"}, {"dataset_uid": "601826", "doi": "10.15784/601826", "keywords": "Allan Hills; Antarctica; Cryosphere", "people": "Manos, John-Morgan; Shaya, Margot; Conway, Howard; Horlings, Annika; Epifanio, Jenna", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Allan Hills I-188 Field Season Report 2022-2023", "url": "https://www.usap-dc.org/view/dataset/601826"}, {"dataset_uid": "601824", "doi": "10.15784/601824", "keywords": "Allan Hills; Antarctica; Coldex; Cryosphere", "people": "Shackleton, Sarah; Manos, John-Morgan; Jayred, Michael; Brook, Edward J.; Goverman, Ashley; Marks Peterson, Julia; Higgins, John; Hudak, Abigail; Mayo, Emalia; Epifanio, Jenna; Carter, Austin; Banerjee, Asmita; Morton, Elizabeth", "repository": "USAP-DC", "science_program": "COLDEX", "title": "2023-2024 Allan Hills End-of-Season Science Report", "url": "https://www.usap-dc.org/view/dataset/601824"}, {"dataset_uid": "601819", "doi": "10.15784/601819", "keywords": "Allan Hills; Antarctica; Cryosphere", "people": "Carter, Austin; Zajicek, Anna; Morton, Elizabeth; Kuhl, Tanner; Epifanio, Jenna; Morgan, Jacob; Shackleton, Sarah; Higgins, John; Nesbitt, Ian", "repository": "USAP-DC", "science_program": "COLDEX", "title": "2019-2020 Allan Hills Field Report", "url": "https://www.usap-dc.org/view/dataset/601819"}, {"dataset_uid": "200470", "doi": "doi:10.15784/601822", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "Oxygen and hydrogen isotope compositions and associated d-excess of ice from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "url": "https://www.usap-dc.org/view/dataset/601822"}, {"dataset_uid": "200542", "doi": "10.7914/dmhj-4441", "keywords": null, "people": null, "repository": "FDSN", "science_program": null, "title": "Magnetotelluric measurements of crustal structure at a potential old ice drilling site on the flank of Dome A, Antarctica", "url": "https://doi.org/10.7914/dmhj-4441"}, {"dataset_uid": "200461", "doi": "10.18738/T8/6T5JS6", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2022-23 Level 2 Basal Specularity Content Profiles", "url": "https://doi.org/10.18738/T8/6T5JS6"}, {"dataset_uid": "200462", "doi": "10.18738/T8/KHUT1U", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2023-24 Level 2 Basal Specularity Content Profiles", "url": "https://doi.org/10.18738/T8/KHUT1U"}, {"dataset_uid": "200469", "doi": "https://doi.org/10.15784/601821", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "Rare earth elemental concentrations of leached ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "url": "https://www.usap-dc.org/view/dataset/601821"}, {"dataset_uid": "200463", "doi": "10.18738/T8/M77ANK", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX Ice Penetrating Radar Derived Grids of the Southern Flank of Dome C", "url": "https://doi.org/10.18738/T8/M77ANK"}, {"dataset_uid": "601620", "doi": "10.15784/601620", "keywords": "18O; Allan Hills; Allan Hills Blue Ice; Antarctica; Blue Ice; Delta 15N; Delta 18O; Dole Effect; Firn Thickness; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Chronology; Ice Core Records", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 \u0026 2022", "url": "https://www.usap-dc.org/view/dataset/601620"}, {"dataset_uid": "200464", "doi": "10.18738/T8/DM10IG", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX/Open Polar Radar Example Delay Doppler Classification of Englacial Reflectors", "url": "https://doi.org/10.18738/T8/DM10IG"}, {"dataset_uid": "200465", "doi": "10.18738/T8/DM10IG", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "COLDEX VHF MARFA Open Polar Radar radargrams", "url": "https://doi.org/10.18738/T8/DM10IG"}, {"dataset_uid": "200467", "doi": "doi:10.15784/601825", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "Concentration and flux of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "url": "https://www.usap-dc.org/view/dataset/601825"}, {"dataset_uid": "200468", "doi": "https://doi.org/10.15784/601820", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "Strontium and neodymium isotope compositions of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "url": "https://www.usap-dc.org/view/dataset/601820"}], "date_created": "Sat, 21 May 2022 00:00:00 GMT", "description": "Cores drilled through the Antarctic ice sheet provide a remarkable window on the evolution of Earth\u2019s climate and unique samples of the ancient atmosphere. The clear link between greenhouse gases and climate revealed by ice cores underpins much of the scientific understanding of climate change. Unfortunately, the existing data do not extend far enough back in time to reveal key features of climates warmer than today. COLDEX, the Center for Oldest Ice Exploration, will solve this problem by exploring Antarctica for sites to collect the oldest possible record of past climate recorded in the ice sheet. COLDEX will provide critical information for understanding how Earth\u2019s near-future climate may evolve and why climate varies over geologic time. New technologies will be developed for exploration and analysis that will have a long legacy for future research. An archive of old ice will stimulate new research for the next generations of polar scientists. COLDEX programs will galvanize that next generation of polar researchers, bring new results to other scientific disciplines and the public, and help to create a more inclusive and diverse scientific community. Knowledge of Earth\u2019s climate history is grounded in the geologic record. This knowledge is gained by measuring chemical, biological and physical properties of geologic materials that reflect elements of climate. Ice cores retrieved from polar ice sheets play a central role in this science and provide the best evidence for a strong link between atmospheric carbon dioxide and climate on geologic timescales. The goal of COLDEX is to extend the ice-core record of past climate to at least 1.5 million years by drilling and analyzing a continuous ice core in East Antarctica, and to much older times using discontinuous ice sections at the base and margin of the ice sheet. COLDEX will develop and deploy novel radar and melt-probe tools to rapidly explore the ice, use ice-sheet models to constrain where old ice is preserved, conduct ice coring, develop new analytical systems, and produce novel paleoclimate records from locations across East Antarctica. The search for Earth\u2019s oldest ice also provides a compelling narrative for disseminating information about past and future climate change and polar science to students, teachers, the media, policy makers and the public. COLDEX will engage and incorporate these groups through targeted professional development workshops, undergraduate research experiences, a comprehensive communication program, annual scientific meetings, scholarships, and broad collaboration nationally and internationally. COLDEX will provide a focal point for efforts to increase diversity in polar science by providing field, laboratory, mentoring and networking experiences for students and early career scientists from groups underrepresented in STEM, and by continuous engagement of the entire COLDEX community in developing a more inclusive scientific culture. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; AMD; Antarctica; Amd/Us; Coldex; USAP-DC; FIELD SURVEYS; ICE DEPTH/THICKNESS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Polar Special Initiatives; Antarctic Glaciology", "paleo_time": null, "persons": "Neff, Peter; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "Texas Data Repository", "repositories": "FDSN; OPR; Texas Data Repository; UMN University Digital Conservancy; University Digital Conservancy; USAP-DC", "science_programs": "COLDEX", "south": -90.0, "title": "Center for Oldest Ice Exploration", "uid": "p0010321", "west": -180.0}, {"awards": "1929991 Pettit, Erin C; 1738992 Pettit, Erin C", "bounds_geometry": "POLYGON((-114 -74,-113 -74,-112 -74,-111 -74,-110 -74,-109 -74,-108 -74,-107 -74,-106 -74,-105 -74,-104 -74,-104 -74.2,-104 -74.4,-104 -74.6,-104 -74.8,-104 -75,-104 -75.2,-104 -75.4,-104 -75.6,-104 -75.8,-104 -76,-105 -76,-106 -76,-107 -76,-108 -76,-109 -76,-110 -76,-111 -76,-112 -76,-113 -76,-114 -76,-114 -75.8,-114 -75.6,-114 -75.4,-114 -75.2,-114 -75,-114 -74.8,-114 -74.6,-114 -74.4,-114 -74.2,-114 -74))", "dataset_titles": "AMIGOS-IIIa \"Cavity\" Aquadopp current data Jan 2020 - Mar 2021; AMIGOS-IIIa \"Cavity\" Seabird CTD data Jan 2020 - Dec 2021; AMIGOS-III Cavity and Channel Snow Height and Thermistor Snow Temperature Data; AMIGOS-IIIc \"Channel\" Aquadopp current data Jan 2020 - Mar 2021; AMIGOS-IIIc \"Channel\" Seabird CTD data Jan 2020 - Dec 2021; Cavity AMIGOS Distributed Temperature Sensing (DTS) complete record; Channel 3c AMIGOS DTS Data Collection January 2023; Channel AMIGOS Distributed Temperature Sensing (DTS) complete record; Channel Camp borehole CTD data (January 2020); CTD data from the NBP 19/02 cruise as part of the TARSAN project in the Amundsen Sea during austral summer 2018/2019; Dotson-Crosson Ice Shelf data from a tale of two ice shelves paper; Pinning-point shear-zone fractures in Thwaites Eastern Ice Shelf (2002 - 2022); Sentinel-1-derived monthly-averaged velocity components from Thwaites Eastern Ice Shelf, 2016 - 2022; Shallow firn cores on Thwaites Eastern Ice Shelf - densities and water isotope analysis; SIIOS Temporary Deployment; Sub-ice-shelf seafloor elevation derived from point-source active-seismic data on Thwaites Eastern Ice Shelf and Dotson Ice Shelf, December 2019 and January 2020; Thwaites Eastern Ice Shelf GPS displacements; Thwaites Glacier grounding lines for 2014 and 2019/20 from height above flotation; Two-year velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2001-2020; Visala WXT520 weather station data at the Cavity and Channel AMIGOS-III sites; Yearly velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2013-2022", "datasets": [{"dataset_uid": "601903", "doi": "10.15784/601903", "keywords": "Antarctica; Cryosphere; Fractures; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Thwaites", "people": "Scambos, Ted; Lilien, David; Alley, Karen; Muto, Atsuhiro; Truffer, Martin; Pettit, Erin; Wild, Christian; Banerjee, Debangshu; Luckman, Adrian", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Pinning-point shear-zone fractures in Thwaites Eastern Ice Shelf (2002 - 2022)", "url": "https://www.usap-dc.org/view/dataset/601903"}, {"dataset_uid": "601979", "doi": "10.15784/601979", "keywords": "AMIGOS; Antarctica; Cryosphere; DTS; Glaciers/ice Sheet; Glaciers/Ice Sheet; ice and ocean temperature; Thwaites", "people": "Tyler, Scott; Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Channel 3c AMIGOS DTS Data Collection January 2023", "url": "https://www.usap-dc.org/view/dataset/601979"}, {"dataset_uid": "601980", "doi": "10.15784/601980", "keywords": "AMIGOS; Antarctica; Cryosphere; DTS; Glaciology; ice and ocean temperature; Thwaites", "people": "Tyler, Scott; Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Channel 3c AMIGOS DTS Data Collection January 2023", "url": "https://www.usap-dc.org/view/dataset/601980"}, {"dataset_uid": "601552", "doi": "10.15784/601552", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Pine Island Bay; Snow Accumulation; Snow Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-III Cavity and Channel Snow Height and Thermistor Snow Temperature Data", "url": "https://www.usap-dc.org/view/dataset/601552"}, {"dataset_uid": "601914", "doi": "10.15784/601914", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Shelf; Thwaites Glacier; Velocity", "people": "Muto, Atsuhiro; Luckman, Adrian; Pettit, Erin; Scambos, Ted; Banerjee, Debangshu; Lilien, David; Wild, Christian; Alley, Karen; Truffer, Martin", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Sentinel-1-derived monthly-averaged velocity components from Thwaites Eastern Ice Shelf, 2016 - 2022", "url": "https://www.usap-dc.org/view/dataset/601914"}, {"dataset_uid": "601904", "doi": "10.15784/601904", "keywords": "Antarctica; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Glaciology; Ice Shelf; Remote Sensing; Satellite Imagery; Thwaites; Thwaites Glacier; Velocity", "people": "Scambos, Ted; Truffer, Martin; Alley, Karen; Muto, Atsuhiro; Luckman, Adrian; Wild, Christian; Pettit, Erin; Banerjee, Debangshu; Lilien, David", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Yearly velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2013-2022", "url": "https://www.usap-dc.org/view/dataset/601904"}, {"dataset_uid": "601578", "doi": "10.15784/601578", "keywords": "Antarctica; Dotson Ice Shelf; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology", "people": "Wild, Christian; Segabinazzi-Dotto, Tiago", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Dotson-Crosson Ice Shelf data from a tale of two ice shelves paper", "url": "https://www.usap-dc.org/view/dataset/601578"}, {"dataset_uid": "601499", "doi": "10.15784/601499", "keywords": "Amundsen Sea; Antarctica; Glaciology; Grounding Line; Ice Shelf; Thwaites Glacier", "people": "Scambos, Ted; Truffer, Martin; Muto, Atsu; Alley, Karen; Wild, Christian; Pettit, Erin", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Thwaites Glacier grounding lines for 2014 and 2019/20 from height above flotation", "url": "https://www.usap-dc.org/view/dataset/601499"}, {"dataset_uid": "601981", "doi": "10.15784/601981", "keywords": "AMIGOS; Antarctica; Cryosphere; DTS; Glaciology; ice and ocean temperature; Thwaites", "people": "Tyler, Scott; Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Channel 3c AMIGOS DTS Data Collection January 2023", "url": "https://www.usap-dc.org/view/dataset/601981"}, {"dataset_uid": "601545", "doi": "10.15784/601545", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Salinity; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIc \"Channel\" Seabird CTD data Jan 2020 - Dec 2021", "url": "https://www.usap-dc.org/view/dataset/601545"}, {"dataset_uid": "601992", "doi": "10.15784/601992", "keywords": "Antarctica; Cryosphere; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Snow/ice; Snow/Ice; Thwaites; Water Isotopes", "people": "Maclennan, Michelle L.; Pettit, Erin; Morris, Valerie; Ochwat, Naomi", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Shallow firn cores on Thwaites Eastern Ice Shelf - densities and water isotope analysis", "url": "https://www.usap-dc.org/view/dataset/601992"}, {"dataset_uid": "601827", "doi": "10.15784/601827", "keywords": "Antarctica; Cryosphere; Dotson Ice Shelf; Thwaites Glacier", "people": "Muto, Atsuhiro; Wallin, Bruce; Pomraning, Dale; Wild, Christian; Scambos, Ted; Truffer, Martin; Pettit, Erin; Roccaro, Alexander; Alley, Karen", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Sub-ice-shelf seafloor elevation derived from point-source active-seismic data on Thwaites Eastern Ice Shelf and Dotson Ice Shelf, December 2019 and January 2020", "url": "https://www.usap-dc.org/view/dataset/601827"}, {"dataset_uid": "601925", "doi": "10.15784/601925", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GNSS; Ice Shelf; Ice Velocity; Thwaites Glacier", "people": "Alley, Karen; Wild, Christian; Pettit, Erin; Scambos, Ted; Truffer, Martin", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Thwaites Eastern Ice Shelf GPS displacements", "url": "https://www.usap-dc.org/view/dataset/601925"}, {"dataset_uid": "601544", "doi": "10.15784/601544", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Salinity; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIa \"Cavity\" Seabird CTD data Jan 2020 - Dec 2021", "url": "https://www.usap-dc.org/view/dataset/601544"}, {"dataset_uid": "601549", "doi": "10.15784/601549", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Pine Island Bay; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Visala WXT520 weather station data at the Cavity and Channel AMIGOS-III sites", "url": "https://www.usap-dc.org/view/dataset/601549"}, {"dataset_uid": "601478", "doi": "10.15784/601478", "keywords": "Antarctica; Glaciology; Ice Shelf; Ice Velocity; Strain Rate; Thwaites Glacier", "people": "Scambos, Ted; Klinger, Marin; Wallin, Bruce; Truffer, Martin; Pettit, Erin; Muto, Atsu; Wild, Christian; Alley, Karen", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Two-year velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2001-2020", "url": "https://www.usap-dc.org/view/dataset/601478"}, {"dataset_uid": "601548", "doi": "10.15784/601548", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIc \"Channel\" Aquadopp current data Jan 2020 - Mar 2021", "url": "https://www.usap-dc.org/view/dataset/601548"}, {"dataset_uid": "601939", "doi": "10.15784/601939", "keywords": "Antarctica; Cryosphere; Ocean Temperature; Thwaites Glacier; Thwaites Region", "people": "White, Timothy; Scambos, Ted; Tyler, Scott; Kratt, Christopher; Wallin, Bruce", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Cavity AMIGOS Distributed Temperature Sensing (DTS) complete record", "url": "https://www.usap-dc.org/view/dataset/601939"}, {"dataset_uid": "601547", "doi": "10.15784/601547", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIa \"Cavity\" Aquadopp current data Jan 2020 - Mar 2021", "url": "https://www.usap-dc.org/view/dataset/601547"}, {"dataset_uid": "200204", "doi": "https://doi.org/10.7914/SN/1L_2019", "keywords": null, "people": null, "repository": "International Federation of Digital Seismograph Networks", "science_program": null, "title": "SIIOS Temporary Deployment", "url": "http://www.fdsn.org/networks/detail/1L_2019/"}, {"dataset_uid": "200321", "doi": "10.5285/e338af5d-8622-05de-e053-6c86abc06489", "keywords": null, "people": null, "repository": "British Oceanographic Data Centre", "science_program": null, "title": "CTD data from the NBP 19/02 cruise as part of the TARSAN project in the Amundsen Sea during austral summer 2018/2019", "url": "https://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/e338af5d-8622-05de-e053-6c86abc06489/"}, {"dataset_uid": "601938", "doi": "10.15784/601938", "keywords": "Antarctica; Cryosphere; Ocean Temperature; Thwaites Glacier; Thwaites Region", "people": "Scambos, Ted; Tyler, Scott; Kratt, Christopher; Wallin, Bruce; White, Timothy", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Channel AMIGOS Distributed Temperature Sensing (DTS) complete record", "url": "https://www.usap-dc.org/view/dataset/601938"}, {"dataset_uid": "601965", "doi": "10.15784/601965", "keywords": "Antarctica; Cryosphere; CTD Data", "people": "Wild, Christian", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Channel Camp borehole CTD data (January 2020)", "url": "https://www.usap-dc.org/view/dataset/601965"}], "date_created": "Mon, 22 Feb 2021 00:00:00 GMT", "description": "This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Thwaites and neighboring glaciers in the Amundsen Sea Embayment are rapidly losing mass in response to recent climate warming and related changes in ocean circulation. Mass loss from the Amundsen Sea Embayment could lead to the eventual collapse of the West Antarctic Ice Sheet, raising the global sea level by up to 2.5 meters (8 feet) in as short as 500 years. The processes driving the loss appear to be warmer ocean circulation and changes in the width and flow speed of the glacier, but a better understanding of these changes is needed to refine predictions of how the glacier will evolve. One highly sensitive process is the transitional flow of glacier ice from land onto the ocean to become a floating ice shelf. This flow of ice from grounded to floating is affected by changes in air temperature and snowfall at the surface; the speed and thickness of ice feeding it from upstream; and the ocean temperature, salinity, bathymetry, and currents that the ice flows into. The project team will gather new measurements of each of these local environmental conditions so that it can better predict how future changes in air, ocean, or the ice will affect the loss of ice to the ocean in this region. Current and anticipated near-future mass loss from Thwaites Glacier and nearby Amundsen Sea Embayment region is mainly attributed to reduction in ice-shelf buttressing due to sub-ice-shelf melting by intrusion of relatively warm Circumpolar Deep Water into sub-ice-shelf cavities. Such predictions for mass loss, however, still lack understanding of the dominant processes at and near grounding zones, especially their spatial and temporal variability, as well as atmospheric and oceanic drivers of these processes. This project aims to constrain and compare these processes for the Thwaites and the Dotson Ice Shelves, which are connected through upstream ice dynamics, but influenced by different submarine troughs. The team\u0027s specific objectives are to: 1) install atmosphere-ice-ocean multi-sensor remote autonomous stations on the ice shelves for two years to provide sub-daily continuous observations of concurrent oceanic, glaciologic, and atmospheric conditions; 2) measure ocean properties on the continental shelf adjacent to ice-shelf fronts (using seal tagging, glider-based and ship-based surveys, and existing moored and conductivity-temperature-depth-cast data), 3) measure ocean properties into sub-ice-shelf cavities (using autonomous underwater vehicles) to detail ocean transports and heat fluxes; and 4) constrain current ice-shelf and sub-ice-shelf cavity geometry, ice flow, and firn properties for the ice-shelves (using radar, active-source seismic, and gravimetric methods) to better understand the impact of ocean and atmosphere on the ice-sheet change. The team will also engage the public and bring awareness to this rapidly changing component of the cryosphere through a \"Live from the Ice\" social media campaign in which the public can follow the action and data collection from the perspective of tagged seals and autonomous stations. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -104.0, "geometry": "POINT(-109 -75)", "instruments": null, "is_usap_dc": true, "keywords": "Thwaites Glacier; FIELD SURVEYS; GLACIERS/ICE SHEETS", "locations": "Thwaites Glacier", "north": -74.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences; Antarctic Glaciology; Antarctic Integrated System Science", "paleo_time": null, "persons": "Pettit, Erin; Truffer, Martin; Scambos, Ted; Muto, Atsu; Heywood, Karen; Boehme, Lars; Hall, Robert; Wahlin, Anna; Lenaerts, Jan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "British Oceanographic Data Centre; International Federation of Digital Seismograph Networks; USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -76.0, "title": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment", "uid": "p0010162", "west": -114.0}, {"awards": "1745049 Tyler, Scott", "bounds_geometry": null, "dataset_titles": "Ice Diver Madison Run #1 March 1, 2020", "datasets": [{"dataset_uid": "601368", "doi": "10.15784/601368", "keywords": "Antarctica; North America; Temperature", "people": "Tyler, Scott W.", "repository": "USAP-DC", "science_program": null, "title": "Ice Diver Madison Run #1 March 1, 2020", "url": "https://www.usap-dc.org/view/dataset/601368"}], "date_created": "Mon, 03 Aug 2020 00:00:00 GMT", "description": "Nontechnical Abstract Studies in Antarctica are, at present, severely limited by the costs of placing measurement instruments within and beneath thousands of meters of ice. Our aim is to enable dense, widespread measurement-networks by advancing development of low-cost ice melt probe technology to deploy instruments. Ice melt probes use electrical energy to descend through thick ice with little support structure on the ice surface. We are extending previous technology by using anti-freeze to maintain a partially open melt-hole above a descending probe, deploying as we go a new a new fiber-optic technology to measure ice temperature. Ice temperature measurements will reveal spatial patterns of heat welling up from the Earth beneath the ice, which in turn will contribute greatly to finding ancient ice that contains global climate records, and to understanding how ice flow may raise sea levels. Our immediate objective in this 1-year project is to test and refine our anti-freeze-based method in a 15 meter-tall ice column at the University of Wisconsin, so as to reduce technical risk in future field tests. Technical Abstract The overarching aim of our development is to enable widespread, spatially dense deployments of instruments within and beneath the Antarctic Ice Sheet for a variety of investigations, beginning with observations of basal temperature and geothermal flux at the base of the ice sheet. Dense, widespread deployment requires logistical costs far below current costs for ice drilling and coring. Our approach is to extend ice melt probe technology (which is inherently light, logistically) to allow the progressive deployment of cable for Distributed Temperature Sensing (DTS) from the ice surface as the probe descends, without greatly increasing logistical costs. Our extension is based on arresting refreezing of the melt-hole above the probe (at a diameter a few times the cable diameter) by injecting anti-freeze - specifically, ethanol at temperature near 0C - a few meters above the probe during descent. After thermal equilibration of the liquid ethanol/water column with the ice, DTS measurements yield the depth-profile of ice sheet temperature, from which basal temperature and (over frozen beds) geothermal flux can be inferred. We have carried out initial trials of our approach in a cold-room laboratory, but field work based only on such small-scale tests may still involve unnecessary risk. We therefore propose further testing at a facility of the Ice Drilling Design and Operations (IDDO) facility in Madison, WI. The new trials will test our approaches to melt-hole control and probe recovery in the taller column, will test cable and cable-tension-management methods more nearly approximating those needed to work on ice sheets, and will demonstrate the Distributed Temperature Sensing in its field configuration. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; North America; ICE DEPTH/THICKNESS; NOT APPLICABLE", "locations": "North America", "north": null, "nsf_funding_programs": "Antarctic Instrumentation and Facilities; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Tyler, Scott W.", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Toward Dense Observation of Geothermal Fluxes in Antarctica Via Logistically Light Instrument Deployment", "uid": "p0010121", "west": null}, {"awards": "0838817 Kyle, Philip", "bounds_geometry": "POLYGON((167 -77.3,167.05 -77.3,167.1 -77.3,167.15 -77.3,167.2 -77.3,167.25 -77.3,167.3 -77.3,167.35 -77.3,167.4 -77.3,167.45 -77.3,167.5 -77.3,167.5 -77.34,167.5 -77.38,167.5 -77.42,167.5 -77.46,167.5 -77.5,167.5 -77.54,167.5 -77.58,167.5 -77.62,167.5 -77.66,167.5 -77.7,167.45 -77.7,167.4 -77.7,167.35 -77.7,167.3 -77.7,167.25 -77.7,167.2 -77.7,167.15 -77.7,167.1 -77.7,167.05 -77.7,167 -77.7,167 -77.66,167 -77.62,167 -77.58,167 -77.54,167 -77.5,167 -77.46,167 -77.42,167 -77.38,167 -77.34,167 -77.3))", "dataset_titles": "Mount Erebus Volcano Observatory III (MEVO III): Conduit Processes and Surveillance", "datasets": [{"dataset_uid": "600153", "doi": "10.15784/600153", "keywords": "Antarctica; Cable Observatory; Intracontinental Magmatism; IntraContinental Magmatism; MEVO; Mount Erebus; Photo/video; Photo/Video; Ross Sea; Solid Earth; Volcano", "people": "Kyle, Philip", "repository": "USAP-DC", "science_program": "MEVO", "title": "Mount Erebus Volcano Observatory III (MEVO III): Conduit Processes and Surveillance", "url": "https://www.usap-dc.org/view/dataset/600153"}], "date_created": "Thu, 23 Jun 2016 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Mount Erebus is Antarctica?s most active volcano that has been in a persistent state of activity for at least the last 35 years. It has a unique geochemistry among the Earth\u0027s active volcanoes and is also unique in hosting a persistent convecting lake(s) of anorthclase phonolite magma in its summit crater. The relative simplicity of the magmatic system, consistency of activity, and accessibility of close-range observation make Erebus attractive as a target for extensive studies. Although the Erebus\u0027 seismicity and eruptive activity and processes are becoming increasingly well understood over years of research, there is a near total lack of understanding its deeper magmatic system. The primary goal of this proposal is to continue supporting the Mt. Erebus Volcano Observatory (MEVO III) improving our current understanding of the Erebus eruptive and non-eruptive magmatic system using an integrated approach from geophysical, geochemical and remote sensing observations. This goal can be grouped into the following fundamental research objectives: (a) to sustain year-round surveillance of on-going volcanic activity primarily using geophysical observatories; (b) to understand processes within the convecting conduit which feeds the persistent lava lakes; and (c) to understand the impact of Erebus eruptive activity upon the Antarctic environment. Continued reliance on students provides a broader impact to this proposed research and firmly grounds this effort in its educational mission.", "east": 167.5, "geometry": "POINT(167.25 -77.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS", "is_usap_dc": true, "keywords": "Ice Caves; USAP-DC; Amd/Us; Distributed Temperature Sensing; FIELD SURVEYS; Not provided; AMD; Optical Fiber", "locations": null, "north": -77.3, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kyle, Philip; Curtis, Aaron; Rotman, Holly", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "MEVO", "south": -77.7, "title": "Mount Erebus Volcano Observatory III (MEVO III): Conduit Processes and Surveillance", "uid": "p0000488", "west": 167.0}, {"awards": "1043217 Zagorodnov, Victor", "bounds_geometry": null, "dataset_titles": "Fiber-Optic Distributed Temperature Sensing at Windless Bight", "datasets": [{"dataset_uid": "609604", "doi": "10.7265/N5V122QS", "keywords": "Antarctica; Ice Shelf; McMurdo Sound; Mooring; Oceans; Physical Oceanography; Ross Ice Shelf; Southern Ocean", "people": "Zagorodnov, Victor; Tyler, Scott W.; Holland, David", "repository": "USAP-DC", "science_program": null, "title": "Fiber-Optic Distributed Temperature Sensing at Windless Bight", "url": "https://www.usap-dc.org/view/dataset/609604"}], "date_created": "Tue, 05 May 2015 00:00:00 GMT", "description": "Abstract Researchers will explore the use of a distributed temperature sensing monitoring system (DTS), using fiber-optical (FO) technology, as the basis of a sustainable, sub-ice cavity sensing array. FO cable systems, such as may be deployed through a hot-water drilled hole through an ice shelf, passing through the underlying cavity to the sea floor, are capable of measuring temperatures down fiber at 1 meter intervals, and at time frequencies as high as 15 seconds. DTS FO systems operate via optical time domain reflectometry along the fiber waveguide using inelastic backscatter of coherent laser light as a probe beam in the FO environment. The introduction of new technologies to the harsh environmental conditions of the Antarctic are often associated with high risk. However, the potential rewards of this approach (e.g. multiyear capability, minimal submerged mechanical or electrical components that may fail, relative simplicity of deployment and measurement principle, yet yielding distributed real time and spatial observation) are attractive enough to conduct a pilot project at a field-ready location (McMurdo). Current indications are that the instability of some of the world\u0027s largest ice sheets located around the Antarctic and Greenland may be caused by the presence of warming, deep ocean waters, shoaling over continental shelves, and melting the underside of floating ice shelves. Additional knowledge of the temporal and spatial variability of the temperature fields underneath terminal ice shelves, such as those draining the West Antarctic Ice Sheet, are needed to accurately project future global climate effects on ice-shelf ocean interactions, and in order to inform societal and technological aspects of adaption to changing sea-level.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e TEMPERATURE LOGGERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS", "is_usap_dc": true, "keywords": "GROUND STATIONS; Not provided; Conservative Temperature; MOORINGS; Ice Shelf Temperature; Ocean Temperature", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Zagorodnov, Victor; Holland, David; Tyler, Scott W.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED \u003e MOORINGS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Application of Distributed Temperature Sensors (DTS) for Antarctic Ice Shelves and Cavities", "uid": "p0000183", "west": null}, {"awards": "1142083 Kyle, Philip", "bounds_geometry": "POINT(167.15334 -77.529724)", "dataset_titles": "Database of Erebus cave field seasons; Icequakes at Erebus volcano, Antarctica; Mount Erebus Observatory GPS data; Mount Erebus Seismic Data; Mount Erebus Thermodynamic model code; Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO); Seismic data used for high-resolution active-source seismic tomography", "datasets": [{"dataset_uid": "600381", "doi": "10.15784/600381", "keywords": "Antarctica; Cable Observatory; Geology/Geophysics - Other; Infrared Imagery; Intracontinental Magmatism; IntraContinental Magmatism; MEVO; Mount Erebus; Photo/video; Photo/Video; Ross Island; Solid Earth; Thermal Camera; Volcano", "people": "Oppenheimer, Clive; Kyle, Philip", "repository": "USAP-DC", "science_program": "MEVO", "title": "Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)", "url": "https://www.usap-dc.org/view/dataset/600381"}, {"dataset_uid": "200033", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Icequakes at Erebus volcano, Antarctica", "url": "http://ds.iris.edu/mda/ZW/?timewindow=2007-2009http://ds.iris.edu/mda/Y4?timewindow=2008-2009http://ds.iris.edu/mda/ZO?timewindow=2011-2012"}, {"dataset_uid": "200032", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Mount Erebus Seismic Data", "url": "http://ds.iris.edu/mda/ER/"}, {"dataset_uid": "200031", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Mount Erebus Thermodynamic model code", "url": "https://github.com/kaylai/Iacovino2015_thermodynamic_model"}, {"dataset_uid": "200030", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Database of Erebus cave field seasons", "url": "https://github.com/foobarbecue/troggle"}, {"dataset_uid": "200034", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Seismic data used for high-resolution active-source seismic tomography", "url": "http://ds.iris.edu/mda/ZW/?timewindow=2007-2009http://ds.iris.edu/mda/Y4?timewindow=2008-2009http://ds.iris.edu/ds/nodes/dmc/forms/assembled-data/?dataset_report_number=09-015"}, {"dataset_uid": "200027", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Mount Erebus Observatory GPS data", "url": "https://www.unavco.org/data/gps-gnss/data-access-methods/dai1/monument.php?mid=22083\u0026parent_link=Permanent\u0026pview=original"}], "date_created": "Tue, 03 Sep 2013 00:00:00 GMT", "description": "Intellectual Merit: Mt. Erebus is one of only a handful of volcanoes worldwide that have lava lakes with readily observable and nearly continuous Strombolian explosive activity. Erebus is also unique in having a permanent convecting lava lake of anorthoclase phonolite magma. Over the years significant infrastructure has been established at the summit of Mt. Erebus as part of the Mount Erebus Volcano Observatory (MEVO), which serves as a natural laboratory to study a wide range of volcanic processes, especially magma degassing associated with an open convecting magma conduit. The PI proposes to continue operating MEVO for a further five years. The fundamental fundamental research objectives are: to understand diffuse flank degassing by using distributed temperature sensing and gas measurements in ice caves, to understand conduit processes, and to examine the environmental impact of volcanic emissions from Erebus on atmospheric and cryospheric environments. To examine conduit processes the PI will make simultaneous observations with video records, thermal imaging, measurements of gas emission rates and gas compositions, seismic, and infrasound data. Broader impacts: An important aspect of Erebus research is the education and training of students. Both graduate and undergraduate students will have the opportunity to work on MEVO data and deploy to the field site. In addition, this proposal will support a middle or high school science teacher for two field seasons. The PI will also continue working with various media organizations and filmmakers.", "east": 167.15334, "geometry": "POINT(167.15334 -77.529724)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e TIRS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e SPECTROMETERS \u003e FTIR SPECTROMETER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e SPECTROMETERS \u003e DOAS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e LASER RANGING \u003e MOBLAS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e PETROGRAPHIC MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e HRDI; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e TIRS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e INFRASONIC MICROPHONES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e AMS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e XRF; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-ES; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e LASER RANGING \u003e MOBLAS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e IRGA; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE CHAMBERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e SPECTROMETERS \u003e FTIR SPECTROMETER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e MICROTOMOGRAPHY; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e SIMS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Earthquakes; Vesuvius; Cosmogenic Radionuclides; Infrasonic Signals; Icequakes; Magma Shells; Phase Equilibria; Passcal; Correlation; Backscattering; Eruptive History; Degassing; Volatiles; Magma Convection; Thermodynamics; Tremors; Optech; Uv Doas; Energy Partitioning; Erebus; Cronus; Holocene; Lava Lake; Phonolite; Vagrant; Thermal Infrared Camera; Flir; USA/NSF; Mount Erebus; Active Source Seismic; GROUND-BASED OBSERVATIONS; Interferometry; Volatile Solubility; Redox State; Viscosity; Hydrogen Emission; Seismicity; Eruptions; Explosion Energy; FIELD SURVEYS; Radar Spectra; OBSERVATION BASED; Seismic Events; Strombolian Eruptions; Anorthoclase; Ice Caves; Iris; VOLCANO OBSERVATORY; Melt Inclusions; Ftir; Alkaline Volcanism; Tomography; TLS; Volcanic Gases; ANALYTICAL LAB", "locations": "Vesuvius; Cronus; Vagrant; Mount Erebus; Passcal", "north": -77.529724, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Kyle, Philip; Oppenheimer, Clive; Chaput, Julien; Jones, Laura; Fischer, Tobias", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e VOLCANO OBSERVATORY; OTHER \u003e MODELS \u003e OBSERVATION BASED; OTHER \u003e PHYSICAL MODELS \u003e ANALYTICAL LAB", "repo": "USAP-DC", "repositories": "GitHub; IRIS; UNAVCO; USAP-DC", "science_programs": "MEVO", "south": -77.529724, "title": "Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)", "uid": "p0000383", "west": 167.15334}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
| Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Center for Oldest Ice Exploration
|
2019719 |
2022-05-21 | Neff, Peter; Brook, Edward J. | Cores drilled through the Antarctic ice sheet provide a remarkable window on the evolution of Earth’s climate and unique samples of the ancient atmosphere. The clear link between greenhouse gases and climate revealed by ice cores underpins much of the scientific understanding of climate change. Unfortunately, the existing data do not extend far enough back in time to reveal key features of climates warmer than today. COLDEX, the Center for Oldest Ice Exploration, will solve this problem by exploring Antarctica for sites to collect the oldest possible record of past climate recorded in the ice sheet. COLDEX will provide critical information for understanding how Earth’s near-future climate may evolve and why climate varies over geologic time. New technologies will be developed for exploration and analysis that will have a long legacy for future research. An archive of old ice will stimulate new research for the next generations of polar scientists. COLDEX programs will galvanize that next generation of polar researchers, bring new results to other scientific disciplines and the public, and help to create a more inclusive and diverse scientific community. Knowledge of Earth’s climate history is grounded in the geologic record. This knowledge is gained by measuring chemical, biological and physical properties of geologic materials that reflect elements of climate. Ice cores retrieved from polar ice sheets play a central role in this science and provide the best evidence for a strong link between atmospheric carbon dioxide and climate on geologic timescales. The goal of COLDEX is to extend the ice-core record of past climate to at least 1.5 million years by drilling and analyzing a continuous ice core in East Antarctica, and to much older times using discontinuous ice sections at the base and margin of the ice sheet. COLDEX will develop and deploy novel radar and melt-probe tools to rapidly explore the ice, use ice-sheet models to constrain where old ice is preserved, conduct ice coring, develop new analytical systems, and produce novel paleoclimate records from locations across East Antarctica. The search for Earth’s oldest ice also provides a compelling narrative for disseminating information about past and future climate change and polar science to students, teachers, the media, policy makers and the public. COLDEX will engage and incorporate these groups through targeted professional development workshops, undergraduate research experiences, a comprehensive communication program, annual scientific meetings, scholarships, and broad collaboration nationally and internationally. COLDEX will provide a focal point for efforts to increase diversity in polar science by providing field, laboratory, mentoring and networking experiences for students and early career scientists from groups underrepresented in STEM, and by continuous engagement of the entire COLDEX community in developing a more inclusive scientific culture. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||
|
NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment
|
1929991 1738992 |
2021-02-22 | Pettit, Erin; Truffer, Martin; Scambos, Ted; Muto, Atsu; Heywood, Karen; Boehme, Lars; Hall, Robert; Wahlin, Anna; Lenaerts, Jan | This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Thwaites and neighboring glaciers in the Amundsen Sea Embayment are rapidly losing mass in response to recent climate warming and related changes in ocean circulation. Mass loss from the Amundsen Sea Embayment could lead to the eventual collapse of the West Antarctic Ice Sheet, raising the global sea level by up to 2.5 meters (8 feet) in as short as 500 years. The processes driving the loss appear to be warmer ocean circulation and changes in the width and flow speed of the glacier, but a better understanding of these changes is needed to refine predictions of how the glacier will evolve. One highly sensitive process is the transitional flow of glacier ice from land onto the ocean to become a floating ice shelf. This flow of ice from grounded to floating is affected by changes in air temperature and snowfall at the surface; the speed and thickness of ice feeding it from upstream; and the ocean temperature, salinity, bathymetry, and currents that the ice flows into. The project team will gather new measurements of each of these local environmental conditions so that it can better predict how future changes in air, ocean, or the ice will affect the loss of ice to the ocean in this region. Current and anticipated near-future mass loss from Thwaites Glacier and nearby Amundsen Sea Embayment region is mainly attributed to reduction in ice-shelf buttressing due to sub-ice-shelf melting by intrusion of relatively warm Circumpolar Deep Water into sub-ice-shelf cavities. Such predictions for mass loss, however, still lack understanding of the dominant processes at and near grounding zones, especially their spatial and temporal variability, as well as atmospheric and oceanic drivers of these processes. This project aims to constrain and compare these processes for the Thwaites and the Dotson Ice Shelves, which are connected through upstream ice dynamics, but influenced by different submarine troughs. The team's specific objectives are to: 1) install atmosphere-ice-ocean multi-sensor remote autonomous stations on the ice shelves for two years to provide sub-daily continuous observations of concurrent oceanic, glaciologic, and atmospheric conditions; 2) measure ocean properties on the continental shelf adjacent to ice-shelf fronts (using seal tagging, glider-based and ship-based surveys, and existing moored and conductivity-temperature-depth-cast data), 3) measure ocean properties into sub-ice-shelf cavities (using autonomous underwater vehicles) to detail ocean transports and heat fluxes; and 4) constrain current ice-shelf and sub-ice-shelf cavity geometry, ice flow, and firn properties for the ice-shelves (using radar, active-source seismic, and gravimetric methods) to better understand the impact of ocean and atmosphere on the ice-sheet change. The team will also engage the public and bring awareness to this rapidly changing component of the cryosphere through a "Live from the Ice" social media campaign in which the public can follow the action and data collection from the perspective of tagged seals and autonomous stations. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-114 -74,-113 -74,-112 -74,-111 -74,-110 -74,-109 -74,-108 -74,-107 -74,-106 -74,-105 -74,-104 -74,-104 -74.2,-104 -74.4,-104 -74.6,-104 -74.8,-104 -75,-104 -75.2,-104 -75.4,-104 -75.6,-104 -75.8,-104 -76,-105 -76,-106 -76,-107 -76,-108 -76,-109 -76,-110 -76,-111 -76,-112 -76,-113 -76,-114 -76,-114 -75.8,-114 -75.6,-114 -75.4,-114 -75.2,-114 -75,-114 -74.8,-114 -74.6,-114 -74.4,-114 -74.2,-114 -74)) | POINT(-109 -75) | false | false | ||||
|
Collaborative Research: Toward Dense Observation of Geothermal Fluxes in Antarctica Via Logistically Light Instrument Deployment
|
1745049 |
2020-08-03 | Tyler, Scott W. |
|
Nontechnical Abstract Studies in Antarctica are, at present, severely limited by the costs of placing measurement instruments within and beneath thousands of meters of ice. Our aim is to enable dense, widespread measurement-networks by advancing development of low-cost ice melt probe technology to deploy instruments. Ice melt probes use electrical energy to descend through thick ice with little support structure on the ice surface. We are extending previous technology by using anti-freeze to maintain a partially open melt-hole above a descending probe, deploying as we go a new a new fiber-optic technology to measure ice temperature. Ice temperature measurements will reveal spatial patterns of heat welling up from the Earth beneath the ice, which in turn will contribute greatly to finding ancient ice that contains global climate records, and to understanding how ice flow may raise sea levels. Our immediate objective in this 1-year project is to test and refine our anti-freeze-based method in a 15 meter-tall ice column at the University of Wisconsin, so as to reduce technical risk in future field tests. Technical Abstract The overarching aim of our development is to enable widespread, spatially dense deployments of instruments within and beneath the Antarctic Ice Sheet for a variety of investigations, beginning with observations of basal temperature and geothermal flux at the base of the ice sheet. Dense, widespread deployment requires logistical costs far below current costs for ice drilling and coring. Our approach is to extend ice melt probe technology (which is inherently light, logistically) to allow the progressive deployment of cable for Distributed Temperature Sensing (DTS) from the ice surface as the probe descends, without greatly increasing logistical costs. Our extension is based on arresting refreezing of the melt-hole above the probe (at a diameter a few times the cable diameter) by injecting anti-freeze - specifically, ethanol at temperature near 0C - a few meters above the probe during descent. After thermal equilibration of the liquid ethanol/water column with the ice, DTS measurements yield the depth-profile of ice sheet temperature, from which basal temperature and (over frozen beds) geothermal flux can be inferred. We have carried out initial trials of our approach in a cold-room laboratory, but field work based only on such small-scale tests may still involve unnecessary risk. We therefore propose further testing at a facility of the Ice Drilling Design and Operations (IDDO) facility in Madison, WI. The new trials will test our approaches to melt-hole control and probe recovery in the taller column, will test cable and cable-tension-management methods more nearly approximating those needed to work on ice sheets, and will demonstrate the Distributed Temperature Sensing in its field configuration. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | |||
|
Mount Erebus Volcano Observatory III (MEVO III): Conduit Processes and Surveillance
|
0838817 |
2016-06-23 | Kyle, Philip; Curtis, Aaron; Rotman, Holly |
|
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Mount Erebus is Antarctica?s most active volcano that has been in a persistent state of activity for at least the last 35 years. It has a unique geochemistry among the Earth's active volcanoes and is also unique in hosting a persistent convecting lake(s) of anorthclase phonolite magma in its summit crater. The relative simplicity of the magmatic system, consistency of activity, and accessibility of close-range observation make Erebus attractive as a target for extensive studies. Although the Erebus' seismicity and eruptive activity and processes are becoming increasingly well understood over years of research, there is a near total lack of understanding its deeper magmatic system. The primary goal of this proposal is to continue supporting the Mt. Erebus Volcano Observatory (MEVO III) improving our current understanding of the Erebus eruptive and non-eruptive magmatic system using an integrated approach from geophysical, geochemical and remote sensing observations. This goal can be grouped into the following fundamental research objectives: (a) to sustain year-round surveillance of on-going volcanic activity primarily using geophysical observatories; (b) to understand processes within the convecting conduit which feeds the persistent lava lakes; and (c) to understand the impact of Erebus eruptive activity upon the Antarctic environment. Continued reliance on students provides a broader impact to this proposed research and firmly grounds this effort in its educational mission. | POLYGON((167 -77.3,167.05 -77.3,167.1 -77.3,167.15 -77.3,167.2 -77.3,167.25 -77.3,167.3 -77.3,167.35 -77.3,167.4 -77.3,167.45 -77.3,167.5 -77.3,167.5 -77.34,167.5 -77.38,167.5 -77.42,167.5 -77.46,167.5 -77.5,167.5 -77.54,167.5 -77.58,167.5 -77.62,167.5 -77.66,167.5 -77.7,167.45 -77.7,167.4 -77.7,167.35 -77.7,167.3 -77.7,167.25 -77.7,167.2 -77.7,167.15 -77.7,167.1 -77.7,167.05 -77.7,167 -77.7,167 -77.66,167 -77.62,167 -77.58,167 -77.54,167 -77.5,167 -77.46,167 -77.42,167 -77.38,167 -77.34,167 -77.3)) | POINT(167.25 -77.5) | false | false | |||
|
Collaborative Research: Application of Distributed Temperature Sensors (DTS) for Antarctic Ice Shelves and Cavities
|
1043217 |
2015-05-05 | Zagorodnov, Victor; Holland, David; Tyler, Scott W. |
|
Abstract Researchers will explore the use of a distributed temperature sensing monitoring system (DTS), using fiber-optical (FO) technology, as the basis of a sustainable, sub-ice cavity sensing array. FO cable systems, such as may be deployed through a hot-water drilled hole through an ice shelf, passing through the underlying cavity to the sea floor, are capable of measuring temperatures down fiber at 1 meter intervals, and at time frequencies as high as 15 seconds. DTS FO systems operate via optical time domain reflectometry along the fiber waveguide using inelastic backscatter of coherent laser light as a probe beam in the FO environment. The introduction of new technologies to the harsh environmental conditions of the Antarctic are often associated with high risk. However, the potential rewards of this approach (e.g. multiyear capability, minimal submerged mechanical or electrical components that may fail, relative simplicity of deployment and measurement principle, yet yielding distributed real time and spatial observation) are attractive enough to conduct a pilot project at a field-ready location (McMurdo). Current indications are that the instability of some of the world's largest ice sheets located around the Antarctic and Greenland may be caused by the presence of warming, deep ocean waters, shoaling over continental shelves, and melting the underside of floating ice shelves. Additional knowledge of the temporal and spatial variability of the temperature fields underneath terminal ice shelves, such as those draining the West Antarctic Ice Sheet, are needed to accurately project future global climate effects on ice-shelf ocean interactions, and in order to inform societal and technological aspects of adaption to changing sea-level. | None | None | false | false | |||
|
Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)
|
1142083 |
2013-09-03 | Kyle, Philip; Oppenheimer, Clive; Chaput, Julien; Jones, Laura; Fischer, Tobias | Intellectual Merit: Mt. Erebus is one of only a handful of volcanoes worldwide that have lava lakes with readily observable and nearly continuous Strombolian explosive activity. Erebus is also unique in having a permanent convecting lava lake of anorthoclase phonolite magma. Over the years significant infrastructure has been established at the summit of Mt. Erebus as part of the Mount Erebus Volcano Observatory (MEVO), which serves as a natural laboratory to study a wide range of volcanic processes, especially magma degassing associated with an open convecting magma conduit. The PI proposes to continue operating MEVO for a further five years. The fundamental fundamental research objectives are: to understand diffuse flank degassing by using distributed temperature sensing and gas measurements in ice caves, to understand conduit processes, and to examine the environmental impact of volcanic emissions from Erebus on atmospheric and cryospheric environments. To examine conduit processes the PI will make simultaneous observations with video records, thermal imaging, measurements of gas emission rates and gas compositions, seismic, and infrasound data. Broader impacts: An important aspect of Erebus research is the education and training of students. Both graduate and undergraduate students will have the opportunity to work on MEVO data and deploy to the field site. In addition, this proposal will support a middle or high school science teacher for two field seasons. The PI will also continue working with various media organizations and filmmakers. | POINT(167.15334 -77.529724) | POINT(167.15334 -77.529724) | false | false |

