{"dp_type": "Project", "free_text": "Amundsen Sea Embayment"}
[{"awards": "2152622 Morlighem, Mathieu", "bounds_geometry": "POLYGON((-110 -74,-109 -74,-108 -74,-107 -74,-106 -74,-105 -74,-104 -74,-103 -74,-102 -74,-101 -74,-100 -74,-100 -74.3,-100 -74.6,-100 -74.9,-100 -75.2,-100 -75.5,-100 -75.8,-100 -76.1,-100 -76.4,-100 -76.7,-100 -77,-101 -77,-102 -77,-103 -77,-104 -77,-105 -77,-106 -77,-107 -77,-108 -77,-109 -77,-110 -77,-110 -76.7,-110 -76.4,-110 -76.1,-110 -75.8,-110 -75.5,-110 -75.2,-110 -74.9,-110 -74.6,-110 -74.3,-110 -74))", "dataset_titles": "Sliding-Law Parameter and Airborne Radar-Derived Basal Reflectivity Data Underneath Thwaites Glacier, Antarctica", "datasets": [{"dataset_uid": "601658", "doi": "10.15784/601658", "keywords": "Airborne Radar; Antarctica; Cryosphere; Glaciers/Ice Sheet; Glaciology; Thwaites; Thwaites Glacier", "people": "Das, Indrani", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Sliding-Law Parameter and Airborne Radar-Derived Basal Reflectivity Data Underneath Thwaites Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601658"}], "date_created": "Tue, 20 Dec 2022 00:00:00 GMT", "description": "This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Thwaites Glacier has been accelerating and widening over the past three decades. How fast Thwaites will disintegrate or how quickly it will find a new stable state have become some of the most important questions of the future of the West Antarctic Ice Sheet and its contribution to sea-level rise over the next decades to centuries and beyond. This project will rely on three independent numerical models of ice flow, coupled to an ocean circulation model to (1) improve our understanding of the interactions between the ice and the underlying bedrock, (2) analyze how sensitive the glacier is to external changes, (3) assess the processes that may lead to a collapse of Thwaites, and, most importantly, (4) forecast future ice loss of Thwaites. By providing predictions based on a suite of coupled ice-ocean models, this project will also assess the uncertainty in model projections.\r\n\r\nThe project will use three independent ice-sheet models: Ice Sheet System Model, Ua, and STREAMICE, coupled to the ocean circulation model of the MIT General Circulation Model. The team will first focus on the representation of key physical processes of calving, ice damage, and basal slipperiness that have either not been included, or are poorly represented, in previous ice-flow modelling work. The team will then quantify the relative role of different proposed external drivers of change (e.g., ocean-induced ice-shelf thinning, loss of ice-shelf pinning points) and explore the stability regime of Thwaites Glacier with the aim of identifying internal thresholds separating stable and unstable grounding-line retreat. Using inverse methodology, the project will produce new physically consistent high-resolution (300-m) data sets on ice-thicknesses from available radar measurements. Furthermore, the team will generate new remote sensing data sets on ice velocities and rates of elevation change. These will be used to constrain and validate the numerical models, and will also be valuable stand-alone data sets. This process will allow the numerical models to be constrained more tightly by data than has previously been possible. The resultant more robust model predictions of near-future impact of Thwaites Glacier on global sea levels can inform policy-relevant decision-making.\r\n\r\nThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -100.0, "geometry": "POINT(-105 -75.5)", "instruments": null, "is_usap_dc": true, "keywords": "COMPUTERS; Amundsen Sea Embayment; ICE SHEETS", "locations": "Amundsen Sea Embayment", "north": -74.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "NOT APPLICABLE", "persons": "Morlighem, Mathieu; Das, Indrani", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "NSF-NERC: PROcesses, drivers, Predictions: Modeling the response of Thwaites Glacier over the next Century using Ice/Ocean Coupled Models (PROPHET)", "uid": "p0010400", "west": -110.0}, {"awards": "2212904 Herbert, Lisa", "bounds_geometry": "POLYGON((-120 -71,-118 -71,-116 -71,-114 -71,-112 -71,-110 -71,-108 -71,-106 -71,-104 -71,-102 -71,-100 -71,-100 -71.4,-100 -71.8,-100 -72.2,-100 -72.6,-100 -73,-100 -73.4,-100 -73.8,-100 -74.2,-100 -74.6,-100 -75,-102 -75,-104 -75,-106 -75,-108 -75,-110 -75,-112 -75,-114 -75,-116 -75,-118 -75,-120 -75,-120 -74.6,-120 -74.2,-120 -73.8,-120 -73.4,-120 -73,-120 -72.6,-120 -72.2,-120 -71.8,-120 -71.4,-120 -71))", "dataset_titles": null, "datasets": null, "date_created": "Sun, 07 Aug 2022 00:00:00 GMT", "description": "The Amundsen Sea, near the fastest melting Antarctic glaciers, hosts one of the most productive polar ecosystems in the world. Phytoplankton serve as the base of the food chain, and their growth also removes carbon dioxide from the atmosphere. Phytoplankton growth is fertilized in this area by nutrient iron (Fe), which is only present at low concentrations in seawater. Prior studies have shown the seabed sediments may provide Fe to the Amundsen Sea ecosystem. However, sediment sources of Fe have never been studied here directly. This project fills this gap by analyzing sediments from the Amundsen Sea and investigating whether sediment Fe fertilizes plankton growth. The results will help scientists understand the basic ecosystem drivers and predict the effects of climate change on this vibrant, vulnerable region. This project also emphasizes inclusivity and openness to the public. The researchers will establish a mentoring network for diverse polar scientists through the Polar Impact Network and communicate their results to the public through CryoConnect.org. \r\n\r\nThis project leverages samples already collected from the Amundsen Sea (NBP22-02) to investigate sediment Fe cycling and fluxes. The broad questions driving this research are 1) does benthic Fe fertilize Antarctic coastal primary productivity, and 2) what are the feedbacks between benthic Fe release and carbon cycling in the coastal Antarctic? To answer these questions, the researchers will analyze pore water Fe content and speciation and calculate fluxes of Fe across the sediment-water interface. These results will be compared to sediment characteristics (e.g., organic carbon content, reactive Fe content, proximity to glacial sources) to identify controls on benthic Fe release. This research dovetails with and expands on the science goals of the \u201cAccelerating Thwaites Ecosystem Impacts for the Southern Ocean\u201d (ARTEMIS) project through which the field samples were collected. In turn, the findings of ARTEMIS regarding modeled and observed trace metal dynamics, surface water productivity, and carbon cycling will inform the conclusions of this project, allowing insight into the impact of benthic Fe in the whole system. This project represents a unique opportunity for combined study of the water column and sediment biogeochemistry which will be of great value to the marine biogeochemistry community and will inform future sediment-ocean studies in polar oceanography and beyond. \r\n", "east": -100.0, "geometry": "POINT(-110 -73)", "instruments": null, "is_usap_dc": true, "keywords": "TRACE ELEMENTS; Amundsen Sea Embayment; SEDIMENT CHEMISTRY", "locations": "Amundsen Sea Embayment", "north": -71.0, "nsf_funding_programs": "Post Doc/Travel", "paleo_time": null, "persons": "Herbert, Lisa", "platforms": null, "repositories": null, "science_programs": null, "south": -75.0, "title": "OPP-PRF: Benthic Iron Fluxes and Cycling in the Amundsen Sea", "uid": "p0010362", "west": -120.0}, {"awards": "1744759 Dunham, Eric; 1744958 Wei, Yong; 1744856 Bromirski, Peter", "bounds_geometry": null, "dataset_titles": "Data for: Ocean Surface Gravity Wave Excitation of Flexural Gravity and Extensional Lamb Waves in Ice Shelves; Simulation of flexural-gravity wave response of Antarctic ice shelves to tsunami and infragravity waves", "datasets": [{"dataset_uid": "601561", "doi": "10.15784/601561", "keywords": "Amundsen Sea Embayment; Antarctica; Cryosphere; Glaciology", "people": "Dunham, Eric; Tazhimbetov, Nurbek; Almquist, Martin", "repository": "USAP-DC", "science_program": null, "title": "Simulation of flexural-gravity wave response of Antarctic ice shelves to tsunami and infragravity waves", "url": "https://www.usap-dc.org/view/dataset/601561"}, {"dataset_uid": "200323", "doi": "10.25740/qy001dt7463", "keywords": null, "people": null, "repository": "Stanford Digital Repository", "science_program": null, "title": "Data for: Ocean Surface Gravity Wave Excitation of Flexural Gravity and Extensional Lamb Waves in Ice Shelves", "url": "https://doi.org/10.25740/qy001dt7463"}], "date_created": "Mon, 16 May 2022 00:00:00 GMT", "description": "Understanding and being able to more reliably forecast ice mass loss from Antarctica is a critical research priority for Antarctic Science. Massive ice shelves buttress marine terminating glaciers, slowing the rate that land ice reaches the sea and, in turn, restraining the rate of sea level rise. To date, most work has focused on the destabilizing impacts of warmer air and water temperatures, resulting in melting that thins and weakens ice shelves. However, recent findings indicate that sea ice does not protect ice shelves from wave impacts as much as previously thought, which has raised the possibility that tsunamis and other ocean waves could affect shelf stability. This project will assess the potential for increased shelf fracturing from the impact of tsunamis and from heightened wave activity due to climate-driven changes in storm patterns and reduced sea-ice extent by developing models to investigate how wave impacts damage ice shelves. The modeling effort will allow for regional comparisons between large and small ice shelves, and provide an evaluation of the impacts of changing climate and storm patterns on ice shelves, ice sheets, glaciers, and, ultimately, sea level rise. This project will train graduate students in mathematical modeling and interdisciplinary approaches to Earth and ocean sciences.\u003cbr/\u003e\u003cbr/\u003eThis project takes a four-pronged approach to estimating the impact of vibrations on ice shelves at the grounding zone due to tsunamis, very long period, infragravity, and storm-driven waves. First, the team will use high-resolution tsunami modeling to investigate the response of ice shelves along the West Antarctic coast to waves originating in different regions of the Pacific Ocean. Second, it will compare the response to wave impacts on grounding zones of narrow and wide ice shelves. Third, it will assess the exposure risk due to storm forcing through a reanalysis of weather and wave model data; and, finally, the team will model the propagation of ocean-wave-induced vibrations in the ice from the shelf front to and across the grounding zone. In combination, this project aims to identify locations along the Antarctic coast that are subject to enhanced, bathymetrically-focused, long-period ocean-wave impacts. Linkages between wave impacts and climate arise from potential changes in sea-ice extent in front of shelves, and changes in the magnitude, frequency, and tracks of storms. Understanding the effects of ocean waves and climate on ice-shelf integrity is critical to anticipate their contribution to the amplitude and timing of sea-level rise. Wave-driven reductions in ice-shelf stability may enhance shelf fragmentation and iceberg calving, reducing ice shelf buttressing and eventually accelerating sea-level rise.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "COMPUTERS; Amundsen Sea Embayment; AMD; SEA ICE; USAP-DC; USA/NSF; AMD/US; MODELS", "locations": "Amundsen Sea Embayment", "north": null, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Glaciology", "paleo_time": null, "persons": "Dunham, Eric", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e MODELS \u003e MODELS", "repo": "USAP-DC", "repositories": "Stanford Digital Repository; USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Do Ocean Wave Impacts Pose a Hazard to the Stability of West Antarctic Ice Shelves?", "uid": "p0010320", "west": null}, {"awards": "1933764 Enderlin, Ellyn; 1643455 Enderlin, Ellyn", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Crane Glacier centerline observations and modeling results ; Remotely-sensed iceberg geometries and meltwater fluxes", "datasets": [{"dataset_uid": "601679", "doi": "10.15784/601679", "keywords": "Antarctica; Cryosphere; Elevation; Glaciology; Iceberg; Meltwater; submarine melt", "people": "Miller, Emily; Oliver, Caitlin; Aberle, Rainey; Enderlin, Ellyn; Dickson, Adam; Dryak, Mariama", "repository": "USAP-DC", "science_program": null, "title": "Remotely-sensed iceberg geometries and meltwater fluxes", "url": "https://www.usap-dc.org/view/dataset/601679"}, {"dataset_uid": "601617", "doi": "10.15784/601617", "keywords": "Antarctica; Antarctic Peninsula; Crane Glacier; Cryosphere; glacier dynamics; Glacier Mass Discharge; Glaciers/Ice Sheet; Glaciology; Modeling; Model Results", "people": "Enderlin, Ellyn; Aberle, Rainey; Marshall, Hans-Peter; Kopera, Michal; Meehan, Tate", "repository": "USAP-DC", "science_program": null, "title": "Crane Glacier centerline observations and modeling results ", "url": "https://www.usap-dc.org/view/dataset/601617"}], "date_created": "Mon, 28 Jun 2021 00:00:00 GMT", "description": "The project uses repeat, very high-resolution (~0.5 m pixel width and length) satellite images acquired by the WorldView satellites, to estimate rates of iceberg melting in key coastal regions around Antarctica. The satellite images are used to construct maps of iceberg surface elevation change over time, which are converted to estimates of area-averaged submarine melt rates. Where ocean temperature observations are available, the melt rates are compared to these data to determine if variations in ocean temperature can explain observed iceberg melt variability. The iceberg melt rates are also compared to glacier frontal ablation rates (flow towards the terminus minus changes in terminus position over time) and integrated into a numerical ice flow model in order to assess the importance of submarine melting on recent changes in terminus position, ice flow, and dynamic mass loss. Overall, the analysis will yield insights into the effects of changes in ocean forcing on the submarine melting of Antarctic ice shelves and icebergs. The project does not require field work in Antarctica.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Amery Ice Shelf; FIELD SURVEYS; Totten Glacier; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE; USAP-DC; Antarctic Peninsula; ICEBERGS; Mertz Glacier; OCEAN TEMPERATURE; USA/NSF; Amundsen Sea; Ronne Ice Shelf; Filchner Ice Shelf; AMD; AMD/US; Amundsen Sea Embayment", "locations": "Antarctic Peninsula; Amundsen Sea Embayment; Totten Glacier; Ronne Ice Shelf; Filchner Ice Shelf; Amery Ice Shelf; Mertz Glacier; Amundsen Sea", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Enderlin, Ellyn", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Antarctic Submarine Melt Variability from Remote Sensing of Icebergs", "uid": "p0010210", "west": -180.0}, {"awards": "2001714 Muto, Atsuhiro; 2002346 Tinto, Kirsteen", "bounds_geometry": "POLYGON((-115 -70,-113 -70,-111 -70,-109 -70,-107 -70,-105 -70,-103 -70,-101 -70,-99 -70,-97 -70,-95 -70,-95 -70.8,-95 -71.6,-95 -72.4,-95 -73.2,-95 -74,-95 -74.8,-95 -75.6,-95 -76.4,-95 -77.2,-95 -78,-97 -78,-99 -78,-101 -78,-103 -78,-105 -78,-107 -78,-109 -78,-111 -78,-113 -78,-115 -78,-115 -77.2,-115 -76.4,-115 -75.6,-115 -74.8,-115 -74,-115 -73.2,-115 -72.4,-115 -71.6,-115 -70.8,-115 -70))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 02 Mar 2021 00:00:00 GMT", "description": "Predictions of future changes of the Antarctic ice sheet are essential for understanding changes in the global sea level expected for the coming centuries. These predictions rely on models of ice-sheet flow that in turn rely on knowledge of the physical conditions of the Antarctic continent beneath the ice. Exploration of Antarctica by land, sea, and air has advanced our understanding of the geological material under the Antarctic ice sheet, but this information has not yet been fully integrated into ice-sheet models. This project will take advantage of existing data from decades of US and international investment in geophysical surveys to create a new understanding of the geology underlying the Amundsen Sea and the adjacent areas of the West Antarctic Ice Sheet?a portion of Antarctica that is considered particularly vulnerable to collapse. A series of new datasets called ?Bed Classes? will be developed that will translate the geological properties of the Antarctic continent in ways that can be incorporated into ice-sheet models. \u003cbr/\u003e\u003cbr/\u003eThis project will develop a new regional geologic/tectonic framework for the Amundsen Sea Embayment and its ice catchments using extensive marine and airborne geophysical data together with ground-based onshore geophysical and geological constraints to delineate sedimentary basins, bedrock ridges, faults, and volcanic structures. Using this new geologic interpretation of the region, several key issues regarding the geologic influence on ice-sheet stability will be addressed: whether the regional heat flow is dominated by localization along the faults or lithology; the role of geology on the sources, sinks, and flow-paths of subglacial water; the distribution of sediments that determine bed-character variability; and the extent of geologic control on the current Thwaites Glacier grounding line. The impact of improved geological knowledge on ice-sheet models will be tested with the development of a set of ?Bed Class? grids to capture these new insights for use in the models. Bed Classes will be tested within the Parallel Ice Sheet Model framework with initial experiments to identify the sensitivity of model simulations to geological parameterizations. Through a series of workshops with ice-sheet modelers, the Bed Classes will be refined and made accessible to the broader modelling community. This work aims to ensure that the Bed-Class concept can be applied more broadly to ice-sheet models working in different geographic areas and on different timescales.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -95.0, "geometry": "POINT(-105 -74)", "instruments": null, "is_usap_dc": true, "keywords": "COMPUTERS; GRAVITY ANOMALIES; Amundsen Sea Embayment; AMD/US; GLACIERS/ICE SHEETS; AMD; USA/NSF; USAP-DC", "locations": "Amundsen Sea Embayment", "north": -70.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Tinto, Kirsty; Bell, Robin; Porter, David; Muto, Atsu", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS", "repositories": null, "science_programs": null, "south": -78.0, "title": "Collaborative Research: Building Geologically Informed Bed Classes to Improve Projections of Ice Sheet Change", "uid": "p0010164", "west": -115.0}, {"awards": "1929991 Pettit, Erin C; 1738992 Pettit, Erin C", "bounds_geometry": "POLYGON((-114 -74,-113 -74,-112 -74,-111 -74,-110 -74,-109 -74,-108 -74,-107 -74,-106 -74,-105 -74,-104 -74,-104 -74.2,-104 -74.4,-104 -74.6,-104 -74.8,-104 -75,-104 -75.2,-104 -75.4,-104 -75.6,-104 -75.8,-104 -76,-105 -76,-106 -76,-107 -76,-108 -76,-109 -76,-110 -76,-111 -76,-112 -76,-113 -76,-114 -76,-114 -75.8,-114 -75.6,-114 -75.4,-114 -75.2,-114 -75,-114 -74.8,-114 -74.6,-114 -74.4,-114 -74.2,-114 -74))", "dataset_titles": "AMIGOS-IIIa \"Cavity\" Aquadopp current data Jan 2020 - Mar 2021; AMIGOS-IIIa \"Cavity\" Seabird CTD data Jan 2020 - Dec 2021; AMIGOS-III Cavity and Channel Snow Height and Thermistor Snow Temperature Data; AMIGOS-IIIc \"Channel\" Aquadopp current data Jan 2020 - Mar 2021; AMIGOS-IIIc \"Channel\" Seabird CTD data Jan 2020 - Dec 2021; CTD data from the NBP 19/02 cruise as part of the TARSAN project in the Amundsen Sea during austral summer 2018/2019; Dotson-Crosson Ice Shelf data from a tale of two ice shelves paper; SIIOS Temporary Deployment; Thwaites Glacier grounding lines for 2014 and 2019/20 from height above flotation; Two-year velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2001-2020; Visala WXT520 weather station data at the Cavity and Channel AMIGOS-III sites", "datasets": [{"dataset_uid": "601549", "doi": "10.15784/601549", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Ice Shelf; Pine Island Bay; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Visala WXT520 weather station data at the Cavity and Channel AMIGOS-III sites", "url": "https://www.usap-dc.org/view/dataset/601549"}, {"dataset_uid": "601499", "doi": "10.15784/601499", "keywords": "Amundsen Sea Embayment; Antarctica; Cryosphere; Glaciology; Grounding Line; Ice Shelf; Thwaites Glacier", "people": "Pettit, Erin; Wild, Christian; Alley, Karen; Muto, Atsu; Truffer, Martin; Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Thwaites Glacier grounding lines for 2014 and 2019/20 from height above flotation", "url": "https://www.usap-dc.org/view/dataset/601499"}, {"dataset_uid": "601552", "doi": "10.15784/601552", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Ice Shelf; Pine Island Bay; Snow Accumulation; Snow Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-III Cavity and Channel Snow Height and Thermistor Snow Temperature Data", "url": "https://www.usap-dc.org/view/dataset/601552"}, {"dataset_uid": "200321", "doi": "10.5285/e338af5d-8622-05de-e053-6c86abc06489", "keywords": null, "people": null, "repository": "British Oceanographic Data Centre", "science_program": null, "title": "CTD data from the NBP 19/02 cruise as part of the TARSAN project in the Amundsen Sea during austral summer 2018/2019", "url": "https://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/e338af5d-8622-05de-e053-6c86abc06489/"}, {"dataset_uid": "601544", "doi": "10.15784/601544", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Ice Shelf; Mooring; Pine Island Bay; Pressure; Salinity; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIa \"Cavity\" Seabird CTD data Jan 2020 - Dec 2021", "url": "https://www.usap-dc.org/view/dataset/601544"}, {"dataset_uid": "601578", "doi": "10.15784/601578", "keywords": "Antarctica; Cryosphere; Dotson ice shelf; Glaciers/Ice Sheet; Glaciology", "people": "Segabinazzi-Dotto, Tiago; Wild, Christian", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Dotson-Crosson Ice Shelf data from a tale of two ice shelves paper", "url": "https://www.usap-dc.org/view/dataset/601578"}, {"dataset_uid": "601545", "doi": "10.15784/601545", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Ice Shelf; Mooring; Pine Island Bay; Pressure; Salinity; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIc \"Channel\" Seabird CTD data Jan 2020 - Dec 2021", "url": "https://www.usap-dc.org/view/dataset/601545"}, {"dataset_uid": "601547", "doi": "10.15784/601547", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Ice Shelf; Mooring; Pine Island Bay; Pressure; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIa \"Cavity\" Aquadopp current data Jan 2020 - Mar 2021", "url": "https://www.usap-dc.org/view/dataset/601547"}, {"dataset_uid": "601548", "doi": "10.15784/601548", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Ice Shelf; Mooring; Pine Island Bay; Pressure; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIc \"Channel\" Aquadopp current data Jan 2020 - Mar 2021", "url": "https://www.usap-dc.org/view/dataset/601548"}, {"dataset_uid": "601478", "doi": "10.15784/601478", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Shelf; Ice Velocity; Strain Rate; Thwaites Glacier", "people": "Truffer, Martin; Scambos, Ted; Wild, Christian; Alley, Karen; Wallin, Bruce; Klinger, Marin; Pettit, Erin; Muto, Atsu", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Two-year velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2001-2020", "url": "https://www.usap-dc.org/view/dataset/601478"}, {"dataset_uid": "200204", "doi": "https://doi.org/10.7914/SN/1L_2019", "keywords": null, "people": null, "repository": "International Federation of Digital Seismograph Networks", "science_program": null, "title": "SIIOS Temporary Deployment", "url": "http://www.fdsn.org/networks/detail/1L_2019/"}], "date_created": "Mon, 22 Feb 2021 00:00:00 GMT", "description": "This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Thwaites and neighboring glaciers in the Amundsen Sea Embayment are rapidly losing mass in response to recent climate warming and related changes in ocean circulation. Mass loss from the Amundsen Sea Embayment could lead to the eventual collapse of the West Antarctic Ice Sheet, raising the global sea level by up to 2.5 meters (8 feet) in as short as 500 years. The processes driving the loss appear to be warmer ocean circulation and changes in the width and flow speed of the glacier, but a better understanding of these changes is needed to refine predictions of how the glacier will evolve. One highly sensitive process is the transitional flow of glacier ice from land onto the ocean to become a floating ice shelf. This flow of ice from grounded to floating is affected by changes in air temperature and snowfall at the surface; the speed and thickness of ice feeding it from upstream; and the ocean temperature, salinity, bathymetry, and currents that the ice flows into. The project team will gather new measurements of each of these local environmental conditions so that it can better predict how future changes in air, ocean, or the ice will affect the loss of ice to the ocean in this region. \u003cbr/\u003e \u003cbr/\u003eCurrent and anticipated near-future mass loss from Thwaites Glacier and nearby Amundsen Sea Embayment region is mainly attributed to reduction in ice-shelf buttressing due to sub-ice-shelf melting by intrusion of relatively warm Circumpolar Deep Water into sub-ice-shelf cavities. Such predictions for mass loss, however, still lack understanding of the dominant processes at and near grounding zones, especially their spatial and temporal variability, as well as atmospheric and oceanic drivers of these processes. This project aims to constrain and compare these processes for the Thwaites and the Dotson Ice Shelves, which are connected through upstream ice dynamics, but influenced by different submarine troughs. The team\u0027s specific objectives are to: 1) install atmosphere-ice-ocean multi-sensor remote autonomous stations on the ice shelves for two years to provide sub-daily continuous observations of concurrent oceanic, glaciologic, and atmospheric conditions; 2) measure ocean properties on the continental shelf adjacent to ice-shelf fronts (using seal tagging, glider-based and ship-based surveys, and existing moored and conductivity-temperature-depth-cast data), 3) measure ocean properties into sub-ice-shelf cavities (using autonomous underwater vehicles) to detail ocean transports and heat fluxes; and 4) constrain current ice-shelf and sub-ice-shelf cavity geometry, ice flow, and firn properties for the ice-shelves (using radar, active-source seismic, and gravimetric methods) to better understand the impact of ocean and atmosphere on the ice-sheet change. The team will also engage the public and bring awareness to this rapidly changing component of the cryosphere through a \"Live from the Ice\" social media campaign in which the public can follow the action and data collection from the perspective of tagged seals and autonomous stations.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -104.0, "geometry": "POINT(-109 -75)", "instruments": null, "is_usap_dc": true, "keywords": "Thwaites Glacier; FIELD SURVEYS; GLACIERS/ICE SHEETS", "locations": "Thwaites Glacier", "north": -74.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences; Antarctic Glaciology; Antarctic Glaciology; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science", "paleo_time": null, "persons": "Truffer, Martin; Scambos, Ted; Muto, Atsu; Heywood, Karen; Boehme, Lars; Hall, Robert; Wahlin, Anna; Lenaerts, Jan; Pettit, Erin", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "British Oceanographic Data Centre; International Federation of Digital Seismograph Networks; USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -76.0, "title": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment", "uid": "p0010162", "west": -114.0}, {"awards": "1745137 Schroeder, Dustin", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctic topographic and subglacial lake geostatistical simulations; Radar Sounding Observations of the Amundsen Sea Embayment, 2004-2005", "datasets": [{"dataset_uid": "601213", "doi": "10.15784/601213", "keywords": "Active Lakes; Antarctica; Cryosphere; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; Model Data; Snow/Ice; Subglacial Lakes; Topography", "people": "Siegfried, Matt; Scheidt, Celine; MacKie, Emma; Schroeder, Dustin; Caers, Jef", "repository": "USAP-DC", "science_program": null, "title": "Antarctic topographic and subglacial lake geostatistical simulations", "url": "https://www.usap-dc.org/view/dataset/601213"}, {"dataset_uid": "601436", "doi": "10.15784/601436", "keywords": "Amundsen Sea Embayment; Antarctica; Bed Reflectivity; Cryosphere; Ice Penetrating Radar; Radar Echo Sounder", "people": "Schroeder, Dustin; Jordan, Thomas M.; Seroussi, Helene; Young, Duncan A.; Vaughan, David G.; Culberg, Riley; Hilger, Andrew M.; Chu, Winnie", "repository": "USAP-DC", "science_program": null, "title": "Radar Sounding Observations of the Amundsen Sea Embayment, 2004-2005", "url": "https://www.usap-dc.org/view/dataset/601436"}], "date_created": "Sat, 12 Oct 2019 00:00:00 GMT", "description": "Earth\u0027s geologic record shows that the great ice sheets have contributed to rates of sea-level rise that have been much higher than those observed today. That said, some sectors of the current Antarctic ice sheet are losing mass at large and accelerating rates. One of the primary challenges for placing these recent and ongoing changes in the context of geologically historic rates, and for making projections decades to centuries into the future, is the difficulty of observing conditions and processes beneath the ice sheet. Whereas satellite observations allow tracking of the ice-surface velocity and elevation on the scale of glacier catchments to ice sheets, airborne ice-penetrating radar has been the only approach for assessing conditions on this scale beneath the ice. These radar observations have been made since the late 1960s, but, because many different instruments have been used, it is difficult to track change in subglacial conditions through time. This project will develop the technical tools and approaches required to cross-compare among these measurements and thus open up opportunities for tracking and understanding changes in the critical subglacial environment. Intertwined with the research and student training on this project will be an outreach education effort to provide middle school and high school students with improved resources and enhanced exposure to geophysical, glaciological, and remote-sensing topics through partnership with the National Science Olympiad.\u003cbr/\u003e\u003cbr/\u003eThe radar sounding of ice sheets is a powerful tool for glaciological science with broad applicability across a wide range of cryosphere problems and processes. Radar sounding data have been collected with extensive spatial and temporal coverage across the West Antarctic Ice Sheet, including areas where multiple surveys provide observations that span decades in time or entire cross-catchment ice-sheet sectors. However, one major obstacle to realizing the scientific potential of existing radar sounding observations in Antarctica is the lack of analysis approaches specifically developed for cross-instrument interpretation. Radar is also spatially limited and often has gaps of many tens of kilometers between data points. Further work is needed to investigate ways of extrapolating radar information beyond the flight lines. This project aims to directly address these barriers to full utilization of the collective Antarctic radar sounding record by developing a suite of processing and interpretation techniques to enable the synthesis of radar sounding data sets collected with systems that range from incoherent to coherent, single-channel to swath-imaging, and digital to optically-recorded radar sounders. This includes a geostatistical analysis of ice sheet and radar datasets to make probabilistic predictions of conditions at the bed. The approaches will be assessed for two target regions: the Amundsen Sea Embayment and the Siple Coast. All pre- and post-processed sounding data produced by this project will be publically hosted for use by the wider research community.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IMAGING RADAR SYSTEMS", "is_usap_dc": true, "keywords": "GLACIER TOPOGRAPHY/ICE SHEET TOPOGRAPHY; Airborne Radar; USA/NSF; ICE DEPTH/THICKNESS; Antarctica; Radar; AMD/US; AMD; USAP-DC", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Schroeder, Dustin; MacKie, Emma", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "CAREER: Cross-Instrument Synthesis of Antarctic Radar Sounding Observations", "uid": "p0010058", "west": -180.0}, {"awards": "1443190 Parizek, Byron", "bounds_geometry": "POLYGON((-130 -73,-125.5 -73,-121 -73,-116.5 -73,-112 -73,-107.5 -73,-103 -73,-98.5 -73,-94 -73,-89.5 -73,-85 -73,-85 -73.9,-85 -74.8,-85 -75.7,-85 -76.6,-85 -77.5,-85 -78.4,-85 -79.3,-85 -80.2,-85 -81.1,-85 -82,-89.5 -82,-94 -82,-98.5 -82,-103 -82,-107.5 -82,-112 -82,-116.5 -82,-121 -82,-125.5 -82,-130 -82,-130 -81.1,-130 -80.2,-130 -79.3,-130 -78.4,-130 -77.5,-130 -76.6,-130 -75.7,-130 -74.8,-130 -73.9,-130 -73))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 16 Sep 2019 00:00:00 GMT", "description": "Accurate reconstructions and predictions of glacier movement on timescales of human interest require a better understanding of available observations and the ability to model the key processes that govern ice flow. The fact that many of these processes are interconnected, are loosely constrained by data, and involve not only the ice, but also the atmosphere, ocean, and solid Earth, makes this a challenging endeavor, but one that is essential for Earth-system modeling and the resulting climate and sea-level forecasts that are provided to policymakers worldwide. Based on the amount of ice present in the West Antarctic Ice Sheet and its ability to flow and/or melt into the ocean, its complete collapse would result in a global sea-level rise of 3.3 to 5 meters, making its stability and rate of change scientific questions of global societal significance. Whether or not a collapse eventually occurs, a better understanding of the potential West Antarctic contribution to sea level over the coming decades and centuries is necessary when considering the fate of coastal population centers. Recent observations of the Amundsen Sea Embayment of West Antarctica indicate that it is experiencing faster mass loss than any other region of the continent. At present, the long-term stability of this embayment is unknown, with both theory and observations suggesting that collapse is possible. This study is focused on this critical region as well as processes governing changes in outlet glacier flow. To this end, we will test an ice-sheet model against existing observations and improve treatment of key processes within ice sheet models.\r\n\r\nThis is a four-year (one year of no-cost extension) modeling study using the open-source Ice Sheet System Model in coordination with other models to help improve projections of future sea-level change. Overall project goals, which are distributed across the collaborating institutions, are to:\r\n1. hindcast the past two-to-three decades of evolution of the Amundsen Sea Embayment sector to determine controlling processes, incorporate and test parameterizations, and assess and improve model initialization, spinup, and performance;\r\n2. utilize observations from glacial settings and efficient process-oriented models to develop a better understanding of key processes associated with outlet glacier dynamics and to create numerically efficient parameterizations for these often sub-grid-scale processes;\r\n3. project a range of evolutions of the Amundsen Sea Embayment sector in the next several centuries given various forcings and inclusion or omission of physical processes in the model.\r\n", "east": -85.0, "geometry": "POINT(-107.5 -77.5)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; Antarctica; GLACIER MOTION/ICE SHEET MOTION; NOT APPLICABLE", "locations": "Antarctica", "north": -73.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Pollard, David; Parizek, Byron R.", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repositories": null, "science_programs": null, "south": -82.0, "title": "Collaborative Research: Evaluating Retreat in the Amundsen Sea Embayment: Assessing Controlling Processes, Uncertainties, and Projections", "uid": "p0010054", "west": -130.0}, {"awards": "1043750 Chen, Jianli", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements", "datasets": [{"dataset_uid": "600159", "doi": "10.15784/600159", "keywords": "Antarctica; Cryosphere; Glaciers/Ice Sheet; Glaciology; GPS; GRACE; Potential Field; Satellite Data", "people": "Chen, Jianli", "repository": "USAP-DC", "science_program": null, "title": "Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements", "url": "https://www.usap-dc.org/view/dataset/600159"}], "date_created": "Fri, 13 May 2016 00:00:00 GMT", "description": "1043750/Chen\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to improve the estimate of long-term and inter-annual variability of Antarctic ice sheet mass balance at continental, regional, and catchment scales, using satellite gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) and other geodetic measurements. The work will improve the quantification of long-term mass change rates over Antarctica using GRACE gravity data with a longer record and newer generation(s) of products and will develop advanced numerical forward modeling techniques that can accurately correct leakage effects associated with GRACE data processing, and significantly improve spatial resolution of GRACE mass rate estimates over Antarctica. The work will also contribute to a better understanding of crustal uplift rates due to postglacial rebound (PGR) and present day ice load change over Antarctica via PGR models, GPS measurements, and combined analysis of GRACE and ICESat elevation changes. Inter-annual variations of ice mass over Antarctica will be investigated at continental and catchment scales and connections to regional climate change will be studied. The major deliverables from this study will be improved assessments of ice mass balance for the entire Antarctic ice sheet and potential contribution to global mean sea level rise. The work will also provide estimates of regional ice mass change rates over Antarctica, with a focus along the coast in the Amundsen Sea Embayment, the Peninsula in West Antarctica, and in Wilkes Land and Victoria Land in East Antarctica. Estimates of inter-annual ice mass change over Antarctica at various spatial scales, and assessments of uncertainty of GRACE ice rate estimates and PGR models errors over Antarctica will also be made. The intellectual merits of the proposed investigation include 1) providing improved assessments of Antarctic ice mass balance at different temporal and spatial scales with unprecedented accuracy, an important contribution to broad areas of polar science research; 2) combining high accuracy GPS vertical uplift measurements and PGR models to better quantify long-term crust uplift effects that are not distinguishable from ice mass changes by GRACE; and 3) unifying the work of several investigations at the forefront of quantifying ice sheet and glacier mass balance and crustal uplift based on a variety of modern space geodetic observations. The broader impacts include the fact that the project will actively involve student participation and training, through the support of two graduate students. In addition the project will contribute to general education and public outreach (E/PO) activities and the results from this investigation will help inspire future geoscientists and promote public awareness of significant manifestations of climate change.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e LASER RANGING \u003e GRACE LRR", "is_usap_dc": true, "keywords": "SATELLITES; GRACE; Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Chen, Jianli; Wilson, Clark; Blankenship, Donald D.; Tapley, Byron", "platforms": "SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e NASA EARTH SYSTEM SCIENCE PATHFINDER \u003e GRACE; Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements", "uid": "p0000415", "west": -180.0}, {"awards": "0632282 Jacobs, Stanley", "bounds_geometry": "POLYGON((-129.6 -54.2,-124.44 -54.2,-119.28 -54.2,-114.12 -54.2,-108.96 -54.2,-103.8 -54.2,-98.64 -54.2,-93.48 -54.2,-88.32 -54.2,-83.16 -54.2,-78 -54.2,-78 -56.29,-78 -58.38,-78 -60.47,-78 -62.56,-78 -64.65,-78 -66.74,-78 -68.83,-78 -70.92,-78 -73.01,-78 -75.1,-83.16 -75.1,-88.32 -75.1,-93.48 -75.1,-98.64 -75.1,-103.8 -75.1,-108.96 -75.1,-114.12 -75.1,-119.28 -75.1,-124.44 -75.1,-129.6 -75.1,-129.6 -73.01,-129.6 -70.92,-129.6 -68.83,-129.6 -66.74,-129.6 -64.65,-129.6 -62.56,-129.6 -60.47,-129.6 -58.38,-129.6 -56.29,-129.6 -54.2))", "dataset_titles": "Calibrated Hydrographic Data acquired with a LADCP from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901; NBP07-09 cruise data; NBP07-09 processed CTD data; NBP09-01 cruise data; NBP09-01 processed CTD data; Processed Temperature, Salinity, and Current Measurement Data from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901", "datasets": [{"dataset_uid": "000128", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "NBP07-09 processed CTD data", "url": "http://accession.nodc.noaa.gov/0120761"}, {"dataset_uid": "000127", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP07-09 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP0709"}, {"dataset_uid": "000130", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "NBP09-01 processed CTD data", "url": "http://accession.nodc.noaa.gov/0071179"}, {"dataset_uid": "601349", "doi": null, "keywords": "Amundsen Sea; Antarctica; Cryosphere; Current Measurements; LADCP; NBP0901; Oceans; Physical Oceanography; Pine Island Bay; R/V Nathaniel B. Palmer; Southern Ocean", "people": "Thurnherr, Andreas", "repository": "USAP-DC", "science_program": null, "title": "Calibrated Hydrographic Data acquired with a LADCP from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901", "url": "https://www.usap-dc.org/view/dataset/601349"}, {"dataset_uid": "601350", "doi": null, "keywords": "Amundsen Sea; Antarctic; Antarctica; Cryosphere; CTD; CTD Data; Current Measurements; NBP0901; Oceans; Physical Oceanography; Pine Island Bay; Pine Island Glacier; R/V Nathaniel B. Palmer; Salinity; Southern Ocean; Temperature", "people": "Jacobs, Stanley; Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Processed Temperature, Salinity, and Current Measurement Data from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901", "url": "https://www.usap-dc.org/view/dataset/601350"}, {"dataset_uid": "000129", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP09-01 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP0901"}], "date_created": "Fri, 25 Sep 2015 00:00:00 GMT", "description": "The Office of Polar Programs, Antarctic Science Division, Ocean \u0026 Climate Systems Program has made this award to support a multidisciplinary effort to study the upwelling of relatively warm deep water onto the Amundsen Sea continental shelf and how it relates to atmospheric forcing and bottom bathymetry and how the warm waters interact with both glacial and sea ice. This study constitutes a contribution of a coordinated research effort in the region known as the Amundsen Sea Embayment Project or ASEP. Previous work by the PI and others has shown that the West Antarctic Ice Sheet has been found to be melting faster, perhaps by orders of magnitude, than ice sheets elsewhere around Antarctica, excluding those on the Peninsula. Submarine channels that incise the continental shelf are thought to provide fairly direct access of relatively warm circum polar deep water to the cavity under the floating extension of the ice shelf. Interactions with sea ice en route can modify the upwelled waters. The proposed investigations build on previous efforts by the PI and colleagues to use hydrographic measurements to put quantitative bounds on the rate of glacial ice melt by relatively warm seawater. \u003cbr/\u003eThe region can be quite difficult to access due to sea ice conditions and previous hydrographic measurements have been restricted to the austral summer time frame. In this project it was proposed to obtain the first austral spring hydrographic data via CTD casts and XBT drops (September-October 2007) as part of a separately funded cruise (PI Steve Ackley) the primary focus of which is sea-ice conditions to be studied while the RV Nathanial B Palmer (RV NBP) drifts in the ice pack. This includes opportunistic sampling for pCO2 and TCO2. A dedicated cruise in austral summer 2009 will follow this opportunity. The principal objectives of the dedicated field program are to deploy a set of moorings with which to characterize temporal variability in warm water intrusions onto the shelf and to conduct repeat hydrographic surveying and swath mapping in targeted areas, ice conditions permitting. Automatic weather stations are to be deployed in concert with the program, sea-ice observations will be undertaken from the vessel and the marine cavity beneath the Pine Island may be explored pending availability of the British autonomous underwater vehicle Autosub 3. These combined ocean-sea ice-atmosphere observations are aimed at a range of model validations. A well-defined plan for making data available as well as archiving in a timely fashion should facilitate a variety of modeling efforts and so extend the value of the spatially limited observations. \u003cbr/\u003eBroader impacts: This project is relevant to an International Polar Year research emphasis on ice sheet dynamics focusing in particular on the seaward ocean-ice sheet interactions. Such interactions must be clarified for understanding the potential for sea level rise by melt of the West Antarctic ice Sheet. The project entails substantive international partnerships (British Antarctic Survey and Alfred Wegner Institute) and complements other Amundsen Sea Embayment Project proposals covering other elements of ice sheet dynamics. The proposal includes partial support for 2 graduate students and 2 post docs. Participants from the Antarctic Artists and Writers program are to take part in the cruise and so aid in outreach. In addition, the project is to be represented in the Lamont-Doherty annual open house.", "east": -78.0, "geometry": "POINT(-103.8 -64.65)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": true, "keywords": "Not provided; R/V NBP", "locations": null, "north": -54.2, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jacobs, Stanley; Hellmer, Hartmut; Jenkins, Adrian", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP; Not provided", "repo": "NCEI", "repositories": "NCEI; R2R; USAP-DC", "science_programs": null, "south": -75.1, "title": "IPY/ASEP - Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise.", "uid": "p0000332", "west": -129.6}, {"awards": "0732804 McPhee, Miles; 0732906 Nowicki, Sophie; 0732869 Holland, David; 0732730 Truffer, Martin", "bounds_geometry": "POINT(-100.728 -75.0427)", "dataset_titles": "Automatic Weather Station Pine Island Glacier; Borehole Temperatures at Pine Island Glacier, Antarctica; Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica", "datasets": [{"dataset_uid": "600072", "doi": "10.15784/600072", "keywords": "Antarctica; Atmosphere; Cryosphere; McMurdo; Meteorology; Oceans; Ross Island; Southern Ocean", "people": "McPhee, Miles G.", "repository": "USAP-DC", "science_program": null, "title": "Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica", "url": "https://www.usap-dc.org/view/dataset/600072"}, {"dataset_uid": "601216", "doi": "10.15784/601216", "keywords": "Antarctica; Atmosphere; Atmospheric; Automated Weather Station (AWS); Cryosphere; Fluxes; Glaciers/Ice Sheet; Glaciology; Meteorology; Pine Island Glacier; Weather Station Data", "people": "Mojica Moncada, Jhon F.; Holland, David", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Automatic Weather Station Pine Island Glacier", "url": "https://www.usap-dc.org/view/dataset/601216"}, {"dataset_uid": "609627", "doi": "10.7265/N5T151MV", "keywords": "Antarctica; Cryosphere; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Pine Island Glacier; Temperature", "people": "Truffer, Martin; Stanton, Timothy", "repository": "USAP-DC", "science_program": null, "title": "Borehole Temperatures at Pine Island Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609627"}], "date_created": "Tue, 30 Dec 2014 00:00:00 GMT", "description": "Collaborative With: McPhee 0732804, Holland 0732869, Truffer 0732730, Stanton 0732926, Anandakrishnan 0732844 \u003cbr/\u003eTitle: Collaborative Research: IPY: Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica\u003cbr/\u003e\u003cbr/\u003eThe Office of Polar Programs, Antarctic Integrated and System Science Program has made this award to support an interdisciplinary study of the effects of the ocean on the stability of glacial ice in the most dynamic region the West Antarctic Ice Sheet, namely the Pine Island Glacier in the Amundsen Sea Embayment. The collaborative project builds on the knowledge gained by the highly successful West Antarctic Ice Sheet program and is being jointly sponsored with NASA. Recent observations indicate a significant ice loss, equivalent to 10% of the ongoing increase in sea-level rise, in this region. These changes are largest along the coast and propagate rapidly inland, indicating the critical impact of the ocean on ice sheet stability in the region. While a broad range of remote sensing and ground-based instrumentation is available to characterize changes of the ice surface and internal structure (deformation, ice motion, melt) and the shape of the underlying sediment and rock bed, instrumentation has yet to be successfully deployed for observing boundary layer processes of the ocean cavity which underlies the floating ice shelf and where rapid melting is apparently occurring. Innovative, mini ocean sensors that can be lowered through boreholes in the ice shelf (about 500 m thick) will be developed and deployed to automatically provide ocean profiling information over at least three years. Their data will be transmitted through a conducting cable frozen in the borehole to the surface where it will be further transmitted via satellite to a laboratory in the US. Geophysical and remote sensing methods (seismic, GPS, altimetry, stereo imaging, radar profiling) will be applied to map the geometry of the ice shelf, the shape of the sub ice-shelf cavity, the ice surface geometry and deformations within the glacial ice. To integrate the seismic, glaciological and oceanographic observations, a new 3-dimensional coupled ice-ocean model is being developed which will be the first of its kind. NASA is supporting satellite based research and the deployment of a robotic-camera system to explore the environment in the ocean cavity underlying the ice shelf and NSF is supporting all other aspects of this study. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: This project is motivated by the potential societal impacts of rapid sea level rise and should result in critically needed improvements in characterizing and predicting the behavior of coupled ocean-ice systems. It is a contribution to the International Polar Year and was endorsed by the International Council for Science as a component of the \"Multidisciplinary Study of the Amundsen Sea Embayment\" proposal #258 of the honeycomb of endorsed IPY activities. The research involves substantial international partnerships with the British Antarctic Survey and the University of Bristol in the UK. The investigators will partner with the previously funded \"Polar Palooza\" education and outreach program in addition to undertaking a diverse set of outreach activities of their own. Eight graduate students and one undergraduate as well as one post doc will be integrated into this research project.", "east": -100.728, "geometry": "POINT(-100.728 -75.0427)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e SEISMIC REFLECTION PROFILERS", "is_usap_dc": true, "keywords": "West Antarctica; Melt; Seismic; AGDC; LABORATORY; stability; AGDC-project; Ocean-Ice Interaction; Remote Sensing; COMPUTERS; FIELD SURVEYS; LANDSAT-8; Boreholes; Ice Motion; FIELD INVESTIGATION; ocean profiling; AUVS; sea-level rise; Not provided; Deformation; SATELLITES; Amundsen Sea Sector; GROUND-BASED OBSERVATIONS; Ice Temperature; International Polar Year", "locations": "West Antarctica", "north": -75.0427, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Truffer, Martin; Stanton, Timothy; Bindschadler, Robert; Behar, Alberto; Nowicki, Sophie; Anandakrishnan, Sridhar; Holland, David; McPhee, Miles G.", "platforms": "WATER-BASED PLATFORMS \u003e UNCREWED VEHICLES \u003e SUBSURFACE \u003e AUVS; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e LANDSAT \u003e LANDSAT-8; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e MODELS \u003e COMPUTERS; Not provided; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.0427, "title": "Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica", "uid": "p0000043", "west": -100.728}, {"awards": "0632198 Anandakrishnan, Sridhar", "bounds_geometry": "POINT(110 -74)", "dataset_titles": "Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "datasets": [{"dataset_uid": "609619", "doi": "10.7265/N58913TN", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; Thwaites Glacier", "people": "Dupont, Todd K.; Parizek, Byron R.; Holt, John W.; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "url": "https://www.usap-dc.org/view/dataset/609619"}], "date_created": "Wed, 29 Aug 2012 00:00:00 GMT", "description": "This award supports a project to study ice sheet history and dynamics on the Thwaites Glacier and Pine Island Glacier in the Amundsen Sea sector of the West Antarctic Ice Sheet. The international collaboration that has been established with the British Antarctic Survey will enable a fuller suite of geophysical experiments with more-efficient use of people and logistics than we could achieve individually. This project is one of a number of projects to characterize the Amundsen Sea Embayment, which has been identified in numerous planning documents as perhaps the most important target for ice-dynamical research. Taken together, this \"pulse of activity\" will result in a better understanding of this important part of the global system. Field work will measure the subglacial environment of Thwaites and Pine Island Glaciers using three powerful, but relatively simple tools: reflection seismic imaging, GPS motion monitoring of the tidal forcing, and passive seismic monitoring of the seismicity associated with motion. The results of the field work will feed into ice-sheet modeling efforts that are tuned to the case of an ocean-terminating glacier and will assess the influence of these glaciers on current sea level and project into the future. The broader impacts of the project involve the inclusion of a film- and audio-professional to document the work for informal outreach (public radio and TV; museums). In addition, we will train graduate students in polar geophysical and glaciological research and in numerical modeling techniques. The ultimate goal of this project, of assessing the role of Thwaites Glacier in global sea level change, has broad societal impact in coastal regions and small islands.", "east": -110.0, "geometry": "POINT(-110 -74)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e SEISMIC REFLECTION PROFILERS", "is_usap_dc": false, "keywords": "thickness; ice-sheet modeling; tidal forcing; subglacial; Pine Island Glacier; Ice Dynamics; FIELD INVESTIGATION; Not provided; Thwaites; LABORATORY; Amundsen Sea Embayment; bed reflection; FIELD SURVEYS; position", "locations": "Amundsen Sea Embayment; Pine Island Glacier", "north": -74.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Anandakrishnan, Sridhar", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -74.0, "title": "IPY: Flow Dynamics of the Amundsen Sea Glaciers: Thwaites and Pine Island.", "uid": "p0000699", "west": -110.0}, {"awards": "0739372 Conway, Howard; 0739654 Catania, Ginny", "bounds_geometry": null, "dataset_titles": "Coastal and Terminus History of the Eastern Amundsen Sea Embayment, West Antarctica, 1972 - 2011; Ice Flow History of the Thwaites Glacier, West Antarctica", "datasets": [{"dataset_uid": "609463", "doi": "10.7265/N5RR1W6X", "keywords": "Antarctica; Cryosphere; Glaciers/Ice Sheet; Glaciology; Ice Flow Lines; Thwaites Glacier", "people": "Conway, Howard; Fudge, T. J.; Catania, Ginny", "repository": "USAP-DC", "science_program": null, "title": "Ice Flow History of the Thwaites Glacier, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609463"}, {"dataset_uid": "609522", "doi": "10.7265/N5CC0XNK", "keywords": "Amundsen Sea; Antarctica; Climate Change; Coastline; Cryosphere; GIS Data; Glaciers/Ice Sheet; Glaciology; Satellite data interpretation", "people": "Macgregor, Joseph A.; Andrews, Alan G.; Markowski, Michael; Catania, Ginny", "repository": "USAP-DC", "science_program": null, "title": "Coastal and Terminus History of the Eastern Amundsen Sea Embayment, West Antarctica, 1972 - 2011", "url": "https://www.usap-dc.org/view/dataset/609522"}], "date_created": "Wed, 30 May 2012 00:00:00 GMT", "description": "Catania 0739654\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to study the Amundsen Sea drainage system and improve understanding of the impact of recent glaciological changes as an aid to predicting how this region will change in the future. The intellectual merit of the work is that the Amundsen Sea drainage system has been a recent focus for glaciological research because of rapid changes occurring there as a result of grounding line retreat. The work will focus on the regions of flow transition and will map the internal stratigraphy of the ice sheet across the Thwaites Glacier shear margins and use the age and geometry of radar-detected internal layers to interpret ice flow history. Thwaites Glacier (one of the main pathways for ice drainage in the region) has recently widened and may continue to do so in the near future. Thwaites Glacier may be particularly vulnerable to grounding line retreat because it lacks a well-defined subglacial channel. The subglacial environment exerts strong control on ice flow and flow history will be mapped in the context of bed topography and bed reflectivity. The plan is to use existing ice-penetrating radar data and coordinate with planned upcoming surveys to reduce logistical costs. The work proposed here will take three years to complete but no additional fieldwork in Antarctica is required. More detailed ground-based geophysical (radar and seismic) experiments will be needed at key locations to achieve our overall goal and the work proposed here will aid in identifying those regions. The broader impacts of the project are that it will initiate a new collaboration among radar communities within the US including those that are on the forefront of radar systems engineering and those that are actively involved in radar-derived internal layer and bed analysis. The project will also provide support for a postdoctoral researcher and a graduate student, thus giving them exposure to a variety of methodologies and scientific issues. Finally, there are plans to further develop the \"Wired Antarctica\" website designed by Ginny Catania with the help of a student-teacher. This will allow for the existing lesson plans to be updated to Texas State standards so that they can be used more broadly within state middle and high schools.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e TM; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": true, "keywords": "ERS-1; Coastal; Terminus; LABORATORY; Glacier; Not provided; Thwaites Glacier; subglacial; glaciers; Antarctica; LANDSAT; Internal Stratigraphy; West Antarctica; Amundsen Sea; internal layers; FIELD INVESTIGATION; FIELD SURVEYS; LANDSAT-5; Radar; Seismic", "locations": "Antarctica; Thwaites Glacier; Amundsen Sea; West Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard; Catania, Ginny; Markowski, Michael; Macgregor, Joseph A.; Andrews, Alan G.; Fudge, T. J.", "platforms": "Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e LANDSAT \u003e LANDSAT-5; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e LANDSAT \u003e LANDSAT; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e EUROPEAN REMOTE SENSING SATELLITE (ERS) \u003e ERS-1", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Ice-flow history of the Thwaites Glacier, West Antarctica", "uid": "p0000143", "west": null}, {"awards": "0758274 Parizek, Byron; 0636724 Blankenship, Donald", "bounds_geometry": "POLYGON((-110.058 -74.0548,-109.57993 -74.0548,-109.10186 -74.0548,-108.62379 -74.0548,-108.14572 -74.0548,-107.66765 -74.0548,-107.18958 -74.0548,-106.71151 -74.0548,-106.23344 -74.0548,-105.75537 -74.0548,-105.2773 -74.0548,-105.2773 -74.31383,-105.2773 -74.57286,-105.2773 -74.83189,-105.2773 -75.09092,-105.2773 -75.34995,-105.2773 -75.60898,-105.2773 -75.86801,-105.2773 -76.12704,-105.2773 -76.38607,-105.2773 -76.6451,-105.75537 -76.6451,-106.23344 -76.6451,-106.71151 -76.6451,-107.18958 -76.6451,-107.66765 -76.6451,-108.14572 -76.6451,-108.62379 -76.6451,-109.10186 -76.6451,-109.57993 -76.6451,-110.058 -76.6451,-110.058 -76.38607,-110.058 -76.12704,-110.058 -75.86801,-110.058 -75.60898,-110.058 -75.34995,-110.058 -75.09092,-110.058 -74.83189,-110.058 -74.57286,-110.058 -74.31383,-110.058 -74.0548))", "dataset_titles": "Access to data; AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment; AGASEA Ice Thickness Profile Data from the Amundsen Sea Embayment, Antarctica; Airborne Laser Altimetry of the Thwaites Glacier Catchment, West Antarctica; ICECAP Basal Interface Specularity Content Profiles: IPY and OIB; Subglacial water flow paths under Thwaites Glacier, West Antarctica; Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "datasets": [{"dataset_uid": "609517", "doi": "10.7265/N5W95730", "keywords": "AGASEA; Airborne Radar; Amundsen Sea Embayment; Antarctica; Bathymetry/Topography; Cryosphere; Glaciers/Ice Sheet; Glaciology; Ice Thickness", "people": "Blankenship, Donald D.; Young, Duncan A.; Holt, John W.; Kempf, Scott D.", "repository": "USAP-DC", "science_program": null, "title": "AGASEA Ice Thickness Profile Data from the Amundsen Sea Embayment, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609517"}, {"dataset_uid": "609619", "doi": "10.7265/N58913TN", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; Thwaites Glacier", "people": "Dupont, Todd K.; Parizek, Byron R.; Holt, John W.; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "url": "https://www.usap-dc.org/view/dataset/609619"}, {"dataset_uid": "609334", "doi": "10.7265/N5HD7SK8", "keywords": "AGASEA; Airborne Altimetry; Antarctica; Bathymetry/Topography; Cryosphere; Glaciers/Ice Sheet; Glaciology; Thwaites Glacier", "people": "Blankenship, Donald D.; Morse, David L.; Young, Duncan A.; Holt, John W.; Kempf, Scott D.", "repository": "USAP-DC", "science_program": null, "title": "Airborne Laser Altimetry of the Thwaites Glacier Catchment, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609334"}, {"dataset_uid": "601673", "doi": "10.15784/601673", "keywords": "AntArchitecture; Antarctica; Cryosphere; Ice Penetrating Radar; Isochron; layers; Radar; Radioglaciology; Thwaites Glacier", "people": "Blankenship, Donald D.; Muldoon, Gail R.; Jackson, Charles; Young, Duncan A.", "repository": "USAP-DC", "science_program": null, "title": "AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment", "url": "https://www.usap-dc.org/view/dataset/601673"}, {"dataset_uid": "000248", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Access to data", "url": "http://nsidc.org/data/netcdf/tools.html"}, {"dataset_uid": "601371", "doi": "10.15784/601371", "keywords": "Antarctica; Cryosphere; East Antarctica; ICECAP; Ice Penetrating Radar; Radar Echo Sounder; Radar Echo Sounding; Subglacial Hydrology", "people": "Young, Duncan A.; Blankenship, Donald D.; Schroeder, Dustin; Greenbaum, Jamin; van Ommen, Tas; Siegert, Martin; Roberts, Jason", "repository": "USAP-DC", "science_program": null, "title": "ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "url": "https://www.usap-dc.org/view/dataset/601371"}, {"dataset_uid": "002536", "doi": "", "keywords": null, "people": null, "repository": "NASA", "science_program": null, "title": "Access to data", "url": "http://www.giss.nasa.gov/tools/panoply/"}, {"dataset_uid": "609518", "doi": "10.7265/N5RJ4GC8", "keywords": "AGASEA; Airborne Radar; Antarctica; Bathymetry/Topography; Cryosphere; Flow Paths; Glaciers/Ice Sheet; Glaciology; Thwaites Glacier", "people": "Young, Duncan A.; Carter, Sasha P.; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "Subglacial water flow paths under Thwaites Glacier, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609518"}], "date_created": "Tue, 15 May 2012 00:00:00 GMT", "description": "This award supports a three-year study to isolate essential physical processes affecting Thwaites Glacier (TG) in the Amundsen Sea Embayment (ASE) of West Antarctica using a suite of existing numerical models in conjunction with existing and International Polar Year (IPY)-proposed data sets. Four different models will be utilized to explore the effects of embayment geometry, ice-shelf buttressing, basal-stress distribution, surface mass balance, surface climate, and inland dynamic perturbations on the present and future dynamics of TG. This particular collection of models is ideally suited for the broad nature of this investigation, as they incorporate efficient and complementary simplifications of the stress field (shallow-ice and shelf-stream), system geometry (1-d and 2-d plan-view and flowline; depth-integrated and depth-dependent), and mass-momentum energy coupling (mechanical and thermo-mechanical). The models will be constrained and validated by data sets (including regional maps of ice thickness, surface elevation, basal topography, ice surface velocity, and potential fields) and geophysical data analyses (including increasing the spatial resolution of surface elevations, improving regional estimates of geothermal flux, and characterizing the sub-glacial interface of grounded ice as well as the grounding-zone transition between grounded and floating ice). The intellectual merit of the research focuses on several of the NSF Glaciology program\u0027s emphases, including: ice dynamics, numerical modeling, and remote sensing of ice sheets. In addition, the research directly addresses the following specific NSF objectives: \"investigation of the physics of fast glacier flow with emphasis on processes at glacier beds\"; \"investigation of ice-shelf stability\"; and \"identification and quantification of the feedback between ice dynamics and climate change\". The broader impacts of this research effort will help answer societally relevant questions of future ice sheet stability and sea-level change. The research also will aid in the early career development of two young investigators and will contribute to the education of both graduate and undergraduate students directly involved in the research, and results will be incorporated into courses and informal presentations.", "east": -105.2773, "geometry": "POINT(-107.66765 -75.34995)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e RADIO \u003e INS", "is_usap_dc": true, "keywords": "glaciers; Ice Sheet Thickness; Ice Sheet Elevation; diagnostic; Ice Stream; West Antarctic; prognostic; basal rheology; Surface Elevation; Airborne geophysical survey of the Amundsen Sea Embayment; basal topography; ice surface velocity; bed elevations; Hydrology; FIELD SURVEYS; Antarctic Ice Sheet; Glacier; glacier dynamics; DHC-6; West Antarctic Ice Sheet; Amundsen Sea Embayment; Ice Dynamics; Grounding Zone; Model Input Data; Airborne Laser Altimeters; basal-stress distribution; FIELD INVESTIGATION; subglacial; ice-shelf buttressing; Thwaites Glacier; surface climate; Antarctica (AGASEA); model results; Airborne Laser Altimetry; numerical modeling; Ice Sheet; embayment geometry; Glacier Surface; Airborne Radar Sounding; Digital Elevation Model; Antarctica; Altimetry; LABORATORY", "locations": "Antarctica; Thwaites Glacier; West Antarctic Ice Sheet; Antarctic Ice Sheet; Amundsen Sea Embayment", "north": -74.0548, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Carter, Sasha P.; Dupont, Todd K.; Holt, John W.; Morse, David L.; Parizek, Byron R.; Young, Duncan A.; Kempf, Scott D.; Blankenship, Donald D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "NASA; NSIDC; USAP-DC", "science_programs": null, "south": -76.6451, "title": "Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "uid": "p0000174", "west": -110.058}, {"awards": "0632168 Hulbe, Christina; 0632325 Seals, Cheryl; 0632161 Johnson, Jesse; 0632346 Tulaczyk, Slawek", "bounds_geometry": "POLYGON((-180 -50.05,-144 -50.05,-108 -50.05,-72 -50.05,-36 -50.05,0 -50.05,36 -50.05,72 -50.05,108 -50.05,144 -50.05,180 -50.05,180 -54.045,180 -58.04,180 -62.035,180 -66.03,180 -70.025,180 -74.02,180 -78.015,180 -82.01,180 -86.005,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -86.005,-180 -82.01,-180 -78.015,-180 -74.02,-180 -70.025,-180 -66.03,-180 -62.035,-180 -58.04,-180 -54.045,-180 -50.05))", "dataset_titles": "Singular Value Decomposition Analysis of Ice Sheet Model Output Fields; Wiki containing the data and provenance.", "datasets": [{"dataset_uid": "001499", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Wiki containing the data and provenance.", "url": "http://websrv.cs.umt.edu/isis/index.php/Present_Day_Antarctica"}, {"dataset_uid": "609396", "doi": "10.7265/N5K64G1S", "keywords": "Antarctica; Community Ice Sheet Model; Cryosphere; Glaciers/Ice Sheet; Glaciology", "people": "Daescu, Dacian N.; Hulbe, Christina", "repository": "USAP-DC", "science_program": null, "title": "Singular Value Decomposition Analysis of Ice Sheet Model Output Fields", "url": "https://www.usap-dc.org/view/dataset/609396"}], "date_created": "Fri, 02 Jul 2010 00:00:00 GMT", "description": "Johnson/0632161\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to create a \"Community Ice Sheet Model (CISM)\". The intellectual merit of the proposed activity is that the development of such a model will aid in advancing the science of ice sheet modeling. The model will be developed with the goal of assuring that CISM is accurate, robust, well documented, intuitive, and computationally efficient. The development process will stress principles of software design. Two complementary efforts will occur. One will involve novel predictive modeling experiments on the Amundsen Sea Embayment region of Antarctica with the goal of understanding how interactions between basal processes and ice sheet dynamics can result in abrupt reconfigurations of ice-sheets, and how those reconfigurations impact other Earth systems. New modeling physics are to include the higher order stress terms that allow proper resolution of ice stream and shelf features, and the associated numerical methods that allow higher and lower order physics to be coexist in a single model. The broader impacts of the proposed activity involve education and public outreach. The model will be elevated to a high standard in terms of user interface and design, which will allow for the production of inquiry based, polar and climate science curriculum for K-12 education. The development of a CISM itself would represent a sea change in the way that glaciological research is conducted, eliminating numerous barriers to progress in polar research such as duplicated efforts, lack of transparency in publication, lack of a cryospheric model for others to link to and reference, and a common starting point from which to begin investigation. As the appropriate interfaces are developed, a curriculum to utilize CISM in education will be developed. Students participating in this grant will be required to be involved in public outreach through various mechanisms including local and state science fairs. The model will also serve as a basis for educating \"a new generation\" of climate scientists. This project is relevant to the International Polar Year (IPY) as the research team is multi-institutional and multi-disciplinary, will bring new groups and new specialties into the realm of polar research and is part of a larger group of proposals whose research focuses on research in the Amundsen Sea Embayment Plan region of Antarctica. The project is international in scope and the nature of software development is quite international, with firm commitments from the United Kingdom and Belgium to collaborate. In addition there will be an international external advisory board that will be used to guide development, and serve as a link to other IPY activities.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "MODELS; Amundsen Sea Embayment; International Polar Year; Derived Basal Temperature Evolution; Ice Sheet; Community Ice Sheet Model; Ice Sheet Model; LABORATORY; Numerical models; Modeling; Basal Temperature; Antarctic Ice Sheet; Environmental Modeling; IPY; Antarctica; Model; Not provided; Ice Dynamic; EISMINT", "locations": "Antarctic Ice Sheet; Antarctica; Amundsen Sea Embayment", "north": -50.05, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Hulbe, Christina; Seals, Cheryl; Johnson, Jesse; Daescu, Dacian N.", "platforms": "OTHER \u003e MODELS \u003e MODELS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "PI website", "repositories": "PI website; USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: IPY, The Next Generation: A Community Ice Sheet Model for Scientists and Educators With Demonstration Experiments in Amundsen Sea Embayment Region", "uid": "p0000756", "west": -180.0}, {"awards": "9814692 Kellogg, Thomas", "bounds_geometry": "POLYGON((-179.99342 -58.74225,-143.994734 -58.74225,-107.996048 -58.74225,-71.997362 -58.74225,-35.998676 -58.74225,0.000010000000003 -58.74225,35.998696 -58.74225,71.997382 -58.74225,107.996068 -58.74225,143.994754 -58.74225,179.99344 -58.74225,179.99344 -60.716231,179.99344 -62.690212,179.99344 -64.664193,179.99344 -66.638174,179.99344 -68.612155,179.99344 -70.586136,179.99344 -72.560117,179.99344 -74.534098,179.99344 -76.508079,179.99344 -78.48206,143.994754 -78.48206,107.996068 -78.48206,71.997382 -78.48206,35.998696 -78.48206,0.000010000000003 -78.48206,-35.998676 -78.48206,-71.997362 -78.48206,-107.996048 -78.48206,-143.994734 -78.48206,-179.99342 -78.48206,-179.99342 -76.508079,-179.99342 -74.534098,-179.99342 -72.560117,-179.99342 -70.586136,-179.99342 -68.612155,-179.99342 -66.638174,-179.99342 -64.664193,-179.99342 -62.690212,-179.99342 -60.716231,-179.99342 -58.74225))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001992", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0001"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a marine geological investigation of the Amundsen Sea region toward a better understanding of the deglaciation history of the West Antarctic Ice Sheet (WAIS). The WAIS may be inherently unstable because it is the last marine-based ice sheet in the world. Unlike other embayments in West Antarctica, major ice streams draining into the Amundsen Sea from the interior of the WAIS lack buttressing ice shelves. Mass balance data for the distal portions of these ice streams (Pine Island and Thwaites glaciers) appear to be in balance or may be becoming negative. Because both ice streams have beds that slope downward toward the center of the ice sheet, grounding-line recession resulting from either continued thinning or sea-level rise could trigger irreversible grounding-line retreat, leading to ice-sheet disintegration and consequent global sea-level rise. The limited marine geological and geophysical data available from the Amundsen Sea suggest that grounded ice or an ice shelf occupied the inner Amundsen Sea embayment until perhaps as recently as 1000 to 2000 years ago, and this ice may have retreated rapidly in historic time.\u003cbr/\u003e\u003cbr/\u003eThis project, a study of the marine geology and geophysics of the Amundsen Sea continental shelf from 100 degrees W to 130 degrees W, is designed to address the Amundsen Sea part of WAIS Science Plan Priority Goal H2: \"What is the deglaciation history in the eastern Ross, the Bellingshausen and Amundsen Seas?\" This project will examine bathymetric data of the Amundsen Sea continental shelf to determine the positions of former ice-steam channels, and to aid in choosing sites for sediment coring. Single-channel seismic reflection studies will be conducted in order to determine sediment-thickness patterns, to aid in choice of coring sites, and to locate and identify morphologic features indicative of former grounded ice (e.g., moraines, scours, flutes, striations, till wedges and deltas, etc.). Coring will be concentrated along former ice flow-lines. Core samples will be analyzed in the laboratory for sedimentology, to determine whether of not basal tills are present (indicating former grounded ice and its former extent), and for calcareous and siliceous microfossils. The chronology of grounding-line and ice-shelf retreat from a presumed Last Glacial Maximum position near the shelf break will be established using accelerator mass spectrometry (AMS) carbon-14 dates of acid-insoluble particulate organic carbon.\u003cbr/\u003e\u003cbr/\u003eThis project will share ship time in the Amundsen Sea with a physical oceanographic project. Marine geologic data and samples collected will be integrated with findings of other investigators toward developing a comprehensive interpretation of the history of the WAIS.", "east": 179.99344, "geometry": "POINT(0.000010000000003 -68.612155)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -58.74225, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kellogg, Thomas; Jacobs, Stanley", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -78.48206, "title": "Glacial History of the Amundsen Sea Shelf", "uid": "p0000620", "west": -179.99342}, {"awards": "0230197 Holt, John", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment; Amundsen Sea Sector Data Set; Subglacial Topography: Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica", "datasets": [{"dataset_uid": "601673", "doi": "10.15784/601673", "keywords": "AntArchitecture; Antarctica; Cryosphere; Ice Penetrating Radar; Isochron; layers; Radar; Radioglaciology; Thwaites Glacier", "people": "Blankenship, Donald D.; Muldoon, Gail R.; Jackson, Charles; Young, Duncan A.", "repository": "USAP-DC", "science_program": null, "title": "AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment", "url": "https://www.usap-dc.org/view/dataset/601673"}, {"dataset_uid": "609312", "doi": "10.7265/N5J9649Q", "keywords": "Amundsen Sea Embayment; Antarctica; Bathymetry/Topography; Cryosphere; Glaciers/Ice Sheet; Glaciology", "people": "Fastook, James L.", "repository": "USAP-DC", "science_program": null, "title": "Amundsen Sea Sector Data Set", "url": "https://www.usap-dc.org/view/dataset/609312"}, {"dataset_uid": "609292", "doi": "10.7265/N59W0CDC", "keywords": "AGASEA; Airborne Radar; Amundsen Sea Embayment; Antarctica; Bathymetry/Topography; Cryosphere; Glaciers/Ice Sheet; Glaciology; Solid Earth", "people": "Vaughan, David G.; Corr, Hugh F. J.; Blankenship, Donald D.; Holt, John W.; Young, Duncan A.; Morse, David L.", "repository": "USAP-DC", "science_program": null, "title": "Subglacial Topography: Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609292"}], "date_created": "Mon, 01 Jan 2007 00:00:00 GMT", "description": "This award supports a comprehensive aerogeophysical survey of the Amundsen Sea Embayment (ASE) in West Antarctica. The University of Texas will join forces with the British Antarctic Survey to use both US and UK aircraft and instrumentation to achieve this survey. Analyses of the new aerogeophysical\u003cbr/\u003edata will result in the generation of maps of ice sheet surface, volume and bottom-interface characteristics. These maps will support the efforts of a community of US and international researchers to assess the present and predict the future behavior of the ice sheet in the ASE.\u003cbr/\u003eThe West Antarctic ice sheet has been the subject of intensive interdisciplinary study by both the European and U.S. scientific communities since it was recognized to be a potential source for up to 5 meters of sea\u003cbr/\u003elevel rise, possibly on short timescales. In terms of ice discharge, the ASE is the largest drainage system in West Antarctica. Yet it has been comparatively unstudied, primarily due to its remoteness from logistical\u003cbr/\u003ecenters. The ASE is the only major drainage to exhibit significant elevation change over the period of available satellite observations. Present knowledge of the ice thickness and subglacial boundary conditions in the ASE are insufficient to understand its evolution or its sensitivity to climatic change.\u003cbr/\u003eThe results from our surveys are required to achieve the fundamental research objectives outlined by the US scientific community in an ASE Science Plan. The surveys and analyses will be achieved through international collaboration and will involve graduate students, undergraduates and high school apprentices.\u003cbr/\u003eThrough its potential for influencing sea level, the future behavior of the ASE is of primary societal importance. Given the substantial public and scientific interest that recent reports of change in West Antarctica have generated, we expect fundamental research in the Amundsen Sea Embayment, enabled by our surveys, will have widespread impact.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e RADAR ALTIMETERS", "is_usap_dc": true, "keywords": "Thwaites Glacier; Airborne geophysical survey of the Amundsen Sea Embayment; Amundsen Sea Embayment; Ice Velocity; Melt; Ablation; Pine Island Glacier; Elevation; Antarctica (AGASEA); Ice Sheet Elevation; West Antarctic Ice Sheet; Ice Temperature; Amundsen Basin; Subglacial Topography; AGDC; Ice Melt; West Antarctica; Velocity Measurements; Snow Accumulation; Antarctica; Bedrock Elevation; Modeling", "locations": "Amundsen Sea Embayment; Antarctica; West Antarctica; Amundsen Basin; Pine Island Glacier; Thwaites Glacier; West Antarctic Ice Sheet", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Blankenship, Donald D.; Fastook, James L.; Corr, Hugh F. J.; Holt, John W.; Morse, David L.; Vaughan, David G.; Young, Duncan A.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA)", "uid": "p0000243", "west": -180.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NSF-NERC: PROcesses, drivers, Predictions: Modeling the response of Thwaites Glacier over the next Century using Ice/Ocean Coupled Models (PROPHET)
|
2152622 |
2022-12-20 | Morlighem, Mathieu; Das, Indrani |
|
This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Thwaites Glacier has been accelerating and widening over the past three decades. How fast Thwaites will disintegrate or how quickly it will find a new stable state have become some of the most important questions of the future of the West Antarctic Ice Sheet and its contribution to sea-level rise over the next decades to centuries and beyond. This project will rely on three independent numerical models of ice flow, coupled to an ocean circulation model to (1) improve our understanding of the interactions between the ice and the underlying bedrock, (2) analyze how sensitive the glacier is to external changes, (3) assess the processes that may lead to a collapse of Thwaites, and, most importantly, (4) forecast future ice loss of Thwaites. By providing predictions based on a suite of coupled ice-ocean models, this project will also assess the uncertainty in model projections. The project will use three independent ice-sheet models: Ice Sheet System Model, Ua, and STREAMICE, coupled to the ocean circulation model of the MIT General Circulation Model. The team will first focus on the representation of key physical processes of calving, ice damage, and basal slipperiness that have either not been included, or are poorly represented, in previous ice-flow modelling work. The team will then quantify the relative role of different proposed external drivers of change (e.g., ocean-induced ice-shelf thinning, loss of ice-shelf pinning points) and explore the stability regime of Thwaites Glacier with the aim of identifying internal thresholds separating stable and unstable grounding-line retreat. Using inverse methodology, the project will produce new physically consistent high-resolution (300-m) data sets on ice-thicknesses from available radar measurements. Furthermore, the team will generate new remote sensing data sets on ice velocities and rates of elevation change. These will be used to constrain and validate the numerical models, and will also be valuable stand-alone data sets. This process will allow the numerical models to be constrained more tightly by data than has previously been possible. The resultant more robust model predictions of near-future impact of Thwaites Glacier on global sea levels can inform policy-relevant decision-making. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-110 -74,-109 -74,-108 -74,-107 -74,-106 -74,-105 -74,-104 -74,-103 -74,-102 -74,-101 -74,-100 -74,-100 -74.3,-100 -74.6,-100 -74.9,-100 -75.2,-100 -75.5,-100 -75.8,-100 -76.1,-100 -76.4,-100 -76.7,-100 -77,-101 -77,-102 -77,-103 -77,-104 -77,-105 -77,-106 -77,-107 -77,-108 -77,-109 -77,-110 -77,-110 -76.7,-110 -76.4,-110 -76.1,-110 -75.8,-110 -75.5,-110 -75.2,-110 -74.9,-110 -74.6,-110 -74.3,-110 -74)) | POINT(-105 -75.5) | false | false | |||||||
OPP-PRF: Benthic Iron Fluxes and Cycling in the Amundsen Sea
|
2212904 |
2022-08-07 | Herbert, Lisa | No dataset link provided | The Amundsen Sea, near the fastest melting Antarctic glaciers, hosts one of the most productive polar ecosystems in the world. Phytoplankton serve as the base of the food chain, and their growth also removes carbon dioxide from the atmosphere. Phytoplankton growth is fertilized in this area by nutrient iron (Fe), which is only present at low concentrations in seawater. Prior studies have shown the seabed sediments may provide Fe to the Amundsen Sea ecosystem. However, sediment sources of Fe have never been studied here directly. This project fills this gap by analyzing sediments from the Amundsen Sea and investigating whether sediment Fe fertilizes plankton growth. The results will help scientists understand the basic ecosystem drivers and predict the effects of climate change on this vibrant, vulnerable region. This project also emphasizes inclusivity and openness to the public. The researchers will establish a mentoring network for diverse polar scientists through the Polar Impact Network and communicate their results to the public through CryoConnect.org. This project leverages samples already collected from the Amundsen Sea (NBP22-02) to investigate sediment Fe cycling and fluxes. The broad questions driving this research are 1) does benthic Fe fertilize Antarctic coastal primary productivity, and 2) what are the feedbacks between benthic Fe release and carbon cycling in the coastal Antarctic? To answer these questions, the researchers will analyze pore water Fe content and speciation and calculate fluxes of Fe across the sediment-water interface. These results will be compared to sediment characteristics (e.g., organic carbon content, reactive Fe content, proximity to glacial sources) to identify controls on benthic Fe release. This research dovetails with and expands on the science goals of the “Accelerating Thwaites Ecosystem Impacts for the Southern Ocean” (ARTEMIS) project through which the field samples were collected. In turn, the findings of ARTEMIS regarding modeled and observed trace metal dynamics, surface water productivity, and carbon cycling will inform the conclusions of this project, allowing insight into the impact of benthic Fe in the whole system. This project represents a unique opportunity for combined study of the water column and sediment biogeochemistry which will be of great value to the marine biogeochemistry community and will inform future sediment-ocean studies in polar oceanography and beyond. | POLYGON((-120 -71,-118 -71,-116 -71,-114 -71,-112 -71,-110 -71,-108 -71,-106 -71,-104 -71,-102 -71,-100 -71,-100 -71.4,-100 -71.8,-100 -72.2,-100 -72.6,-100 -73,-100 -73.4,-100 -73.8,-100 -74.2,-100 -74.6,-100 -75,-102 -75,-104 -75,-106 -75,-108 -75,-110 -75,-112 -75,-114 -75,-116 -75,-118 -75,-120 -75,-120 -74.6,-120 -74.2,-120 -73.8,-120 -73.4,-120 -73,-120 -72.6,-120 -72.2,-120 -71.8,-120 -71.4,-120 -71)) | POINT(-110 -73) | false | false | |||||||
Collaborative Research: Do Ocean Wave Impacts Pose a Hazard to the Stability of West Antarctic Ice Shelves?
|
1744759 1744958 1744856 |
2022-05-16 | Dunham, Eric | Understanding and being able to more reliably forecast ice mass loss from Antarctica is a critical research priority for Antarctic Science. Massive ice shelves buttress marine terminating glaciers, slowing the rate that land ice reaches the sea and, in turn, restraining the rate of sea level rise. To date, most work has focused on the destabilizing impacts of warmer air and water temperatures, resulting in melting that thins and weakens ice shelves. However, recent findings indicate that sea ice does not protect ice shelves from wave impacts as much as previously thought, which has raised the possibility that tsunamis and other ocean waves could affect shelf stability. This project will assess the potential for increased shelf fracturing from the impact of tsunamis and from heightened wave activity due to climate-driven changes in storm patterns and reduced sea-ice extent by developing models to investigate how wave impacts damage ice shelves. The modeling effort will allow for regional comparisons between large and small ice shelves, and provide an evaluation of the impacts of changing climate and storm patterns on ice shelves, ice sheets, glaciers, and, ultimately, sea level rise. This project will train graduate students in mathematical modeling and interdisciplinary approaches to Earth and ocean sciences.<br/><br/>This project takes a four-pronged approach to estimating the impact of vibrations on ice shelves at the grounding zone due to tsunamis, very long period, infragravity, and storm-driven waves. First, the team will use high-resolution tsunami modeling to investigate the response of ice shelves along the West Antarctic coast to waves originating in different regions of the Pacific Ocean. Second, it will compare the response to wave impacts on grounding zones of narrow and wide ice shelves. Third, it will assess the exposure risk due to storm forcing through a reanalysis of weather and wave model data; and, finally, the team will model the propagation of ocean-wave-induced vibrations in the ice from the shelf front to and across the grounding zone. In combination, this project aims to identify locations along the Antarctic coast that are subject to enhanced, bathymetrically-focused, long-period ocean-wave impacts. Linkages between wave impacts and climate arise from potential changes in sea-ice extent in front of shelves, and changes in the magnitude, frequency, and tracks of storms. Understanding the effects of ocean waves and climate on ice-shelf integrity is critical to anticipate their contribution to the amplitude and timing of sea-level rise. Wave-driven reductions in ice-shelf stability may enhance shelf fragmentation and iceberg calving, reducing ice shelf buttressing and eventually accelerating sea-level rise.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | ||||||||
Antarctic Submarine Melt Variability from Remote Sensing of Icebergs
|
1933764 1643455 |
2021-06-28 | Enderlin, Ellyn |
|
The project uses repeat, very high-resolution (~0.5 m pixel width and length) satellite images acquired by the WorldView satellites, to estimate rates of iceberg melting in key coastal regions around Antarctica. The satellite images are used to construct maps of iceberg surface elevation change over time, which are converted to estimates of area-averaged submarine melt rates. Where ocean temperature observations are available, the melt rates are compared to these data to determine if variations in ocean temperature can explain observed iceberg melt variability. The iceberg melt rates are also compared to glacier frontal ablation rates (flow towards the terminus minus changes in terminus position over time) and integrated into a numerical ice flow model in order to assess the importance of submarine melting on recent changes in terminus position, ice flow, and dynamic mass loss. Overall, the analysis will yield insights into the effects of changes in ocean forcing on the submarine melting of Antarctic ice shelves and icebergs. The project does not require field work in Antarctica. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||
Collaborative Research: Building Geologically Informed Bed Classes to Improve Projections of Ice Sheet Change
|
2001714 2002346 |
2021-03-02 | Tinto, Kirsty; Bell, Robin; Porter, David; Muto, Atsu | No dataset link provided | Predictions of future changes of the Antarctic ice sheet are essential for understanding changes in the global sea level expected for the coming centuries. These predictions rely on models of ice-sheet flow that in turn rely on knowledge of the physical conditions of the Antarctic continent beneath the ice. Exploration of Antarctica by land, sea, and air has advanced our understanding of the geological material under the Antarctic ice sheet, but this information has not yet been fully integrated into ice-sheet models. This project will take advantage of existing data from decades of US and international investment in geophysical surveys to create a new understanding of the geology underlying the Amundsen Sea and the adjacent areas of the West Antarctic Ice Sheet?a portion of Antarctica that is considered particularly vulnerable to collapse. A series of new datasets called ?Bed Classes? will be developed that will translate the geological properties of the Antarctic continent in ways that can be incorporated into ice-sheet models. <br/><br/>This project will develop a new regional geologic/tectonic framework for the Amundsen Sea Embayment and its ice catchments using extensive marine and airborne geophysical data together with ground-based onshore geophysical and geological constraints to delineate sedimentary basins, bedrock ridges, faults, and volcanic structures. Using this new geologic interpretation of the region, several key issues regarding the geologic influence on ice-sheet stability will be addressed: whether the regional heat flow is dominated by localization along the faults or lithology; the role of geology on the sources, sinks, and flow-paths of subglacial water; the distribution of sediments that determine bed-character variability; and the extent of geologic control on the current Thwaites Glacier grounding line. The impact of improved geological knowledge on ice-sheet models will be tested with the development of a set of ?Bed Class? grids to capture these new insights for use in the models. Bed Classes will be tested within the Parallel Ice Sheet Model framework with initial experiments to identify the sensitivity of model simulations to geological parameterizations. Through a series of workshops with ice-sheet modelers, the Bed Classes will be refined and made accessible to the broader modelling community. This work aims to ensure that the Bed-Class concept can be applied more broadly to ice-sheet models working in different geographic areas and on different timescales.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-115 -70,-113 -70,-111 -70,-109 -70,-107 -70,-105 -70,-103 -70,-101 -70,-99 -70,-97 -70,-95 -70,-95 -70.8,-95 -71.6,-95 -72.4,-95 -73.2,-95 -74,-95 -74.8,-95 -75.6,-95 -76.4,-95 -77.2,-95 -78,-97 -78,-99 -78,-101 -78,-103 -78,-105 -78,-107 -78,-109 -78,-111 -78,-113 -78,-115 -78,-115 -77.2,-115 -76.4,-115 -75.6,-115 -74.8,-115 -74,-115 -73.2,-115 -72.4,-115 -71.6,-115 -70.8,-115 -70)) | POINT(-105 -74) | false | false | |||||||
NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment
|
1929991 1738992 |
2021-02-22 | Truffer, Martin; Scambos, Ted; Muto, Atsu; Heywood, Karen; Boehme, Lars; Hall, Robert; Wahlin, Anna; Lenaerts, Jan; Pettit, Erin | This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Thwaites and neighboring glaciers in the Amundsen Sea Embayment are rapidly losing mass in response to recent climate warming and related changes in ocean circulation. Mass loss from the Amundsen Sea Embayment could lead to the eventual collapse of the West Antarctic Ice Sheet, raising the global sea level by up to 2.5 meters (8 feet) in as short as 500 years. The processes driving the loss appear to be warmer ocean circulation and changes in the width and flow speed of the glacier, but a better understanding of these changes is needed to refine predictions of how the glacier will evolve. One highly sensitive process is the transitional flow of glacier ice from land onto the ocean to become a floating ice shelf. This flow of ice from grounded to floating is affected by changes in air temperature and snowfall at the surface; the speed and thickness of ice feeding it from upstream; and the ocean temperature, salinity, bathymetry, and currents that the ice flows into. The project team will gather new measurements of each of these local environmental conditions so that it can better predict how future changes in air, ocean, or the ice will affect the loss of ice to the ocean in this region. <br/> <br/>Current and anticipated near-future mass loss from Thwaites Glacier and nearby Amundsen Sea Embayment region is mainly attributed to reduction in ice-shelf buttressing due to sub-ice-shelf melting by intrusion of relatively warm Circumpolar Deep Water into sub-ice-shelf cavities. Such predictions for mass loss, however, still lack understanding of the dominant processes at and near grounding zones, especially their spatial and temporal variability, as well as atmospheric and oceanic drivers of these processes. This project aims to constrain and compare these processes for the Thwaites and the Dotson Ice Shelves, which are connected through upstream ice dynamics, but influenced by different submarine troughs. The team's specific objectives are to: 1) install atmosphere-ice-ocean multi-sensor remote autonomous stations on the ice shelves for two years to provide sub-daily continuous observations of concurrent oceanic, glaciologic, and atmospheric conditions; 2) measure ocean properties on the continental shelf adjacent to ice-shelf fronts (using seal tagging, glider-based and ship-based surveys, and existing moored and conductivity-temperature-depth-cast data), 3) measure ocean properties into sub-ice-shelf cavities (using autonomous underwater vehicles) to detail ocean transports and heat fluxes; and 4) constrain current ice-shelf and sub-ice-shelf cavity geometry, ice flow, and firn properties for the ice-shelves (using radar, active-source seismic, and gravimetric methods) to better understand the impact of ocean and atmosphere on the ice-sheet change. The team will also engage the public and bring awareness to this rapidly changing component of the cryosphere through a "Live from the Ice" social media campaign in which the public can follow the action and data collection from the perspective of tagged seals and autonomous stations.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-114 -74,-113 -74,-112 -74,-111 -74,-110 -74,-109 -74,-108 -74,-107 -74,-106 -74,-105 -74,-104 -74,-104 -74.2,-104 -74.4,-104 -74.6,-104 -74.8,-104 -75,-104 -75.2,-104 -75.4,-104 -75.6,-104 -75.8,-104 -76,-105 -76,-106 -76,-107 -76,-108 -76,-109 -76,-110 -76,-111 -76,-112 -76,-113 -76,-114 -76,-114 -75.8,-114 -75.6,-114 -75.4,-114 -75.2,-114 -75,-114 -74.8,-114 -74.6,-114 -74.4,-114 -74.2,-114 -74)) | POINT(-109 -75) | false | false | ||||||||
CAREER: Cross-Instrument Synthesis of Antarctic Radar Sounding Observations
|
1745137 |
2019-10-12 | Schroeder, Dustin; MacKie, Emma |
|
Earth's geologic record shows that the great ice sheets have contributed to rates of sea-level rise that have been much higher than those observed today. That said, some sectors of the current Antarctic ice sheet are losing mass at large and accelerating rates. One of the primary challenges for placing these recent and ongoing changes in the context of geologically historic rates, and for making projections decades to centuries into the future, is the difficulty of observing conditions and processes beneath the ice sheet. Whereas satellite observations allow tracking of the ice-surface velocity and elevation on the scale of glacier catchments to ice sheets, airborne ice-penetrating radar has been the only approach for assessing conditions on this scale beneath the ice. These radar observations have been made since the late 1960s, but, because many different instruments have been used, it is difficult to track change in subglacial conditions through time. This project will develop the technical tools and approaches required to cross-compare among these measurements and thus open up opportunities for tracking and understanding changes in the critical subglacial environment. Intertwined with the research and student training on this project will be an outreach education effort to provide middle school and high school students with improved resources and enhanced exposure to geophysical, glaciological, and remote-sensing topics through partnership with the National Science Olympiad.<br/><br/>The radar sounding of ice sheets is a powerful tool for glaciological science with broad applicability across a wide range of cryosphere problems and processes. Radar sounding data have been collected with extensive spatial and temporal coverage across the West Antarctic Ice Sheet, including areas where multiple surveys provide observations that span decades in time or entire cross-catchment ice-sheet sectors. However, one major obstacle to realizing the scientific potential of existing radar sounding observations in Antarctica is the lack of analysis approaches specifically developed for cross-instrument interpretation. Radar is also spatially limited and often has gaps of many tens of kilometers between data points. Further work is needed to investigate ways of extrapolating radar information beyond the flight lines. This project aims to directly address these barriers to full utilization of the collective Antarctic radar sounding record by developing a suite of processing and interpretation techniques to enable the synthesis of radar sounding data sets collected with systems that range from incoherent to coherent, single-channel to swath-imaging, and digital to optically-recorded radar sounders. This includes a geostatistical analysis of ice sheet and radar datasets to make probabilistic predictions of conditions at the bed. The approaches will be assessed for two target regions: the Amundsen Sea Embayment and the Siple Coast. All pre- and post-processed sounding data produced by this project will be publically hosted for use by the wider research community.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||
Collaborative Research: Evaluating Retreat in the Amundsen Sea Embayment: Assessing Controlling Processes, Uncertainties, and Projections
|
1443190 |
2019-09-16 | Pollard, David; Parizek, Byron R. | No dataset link provided | Accurate reconstructions and predictions of glacier movement on timescales of human interest require a better understanding of available observations and the ability to model the key processes that govern ice flow. The fact that many of these processes are interconnected, are loosely constrained by data, and involve not only the ice, but also the atmosphere, ocean, and solid Earth, makes this a challenging endeavor, but one that is essential for Earth-system modeling and the resulting climate and sea-level forecasts that are provided to policymakers worldwide. Based on the amount of ice present in the West Antarctic Ice Sheet and its ability to flow and/or melt into the ocean, its complete collapse would result in a global sea-level rise of 3.3 to 5 meters, making its stability and rate of change scientific questions of global societal significance. Whether or not a collapse eventually occurs, a better understanding of the potential West Antarctic contribution to sea level over the coming decades and centuries is necessary when considering the fate of coastal population centers. Recent observations of the Amundsen Sea Embayment of West Antarctica indicate that it is experiencing faster mass loss than any other region of the continent. At present, the long-term stability of this embayment is unknown, with both theory and observations suggesting that collapse is possible. This study is focused on this critical region as well as processes governing changes in outlet glacier flow. To this end, we will test an ice-sheet model against existing observations and improve treatment of key processes within ice sheet models. This is a four-year (one year of no-cost extension) modeling study using the open-source Ice Sheet System Model in coordination with other models to help improve projections of future sea-level change. Overall project goals, which are distributed across the collaborating institutions, are to: 1. hindcast the past two-to-three decades of evolution of the Amundsen Sea Embayment sector to determine controlling processes, incorporate and test parameterizations, and assess and improve model initialization, spinup, and performance; 2. utilize observations from glacial settings and efficient process-oriented models to develop a better understanding of key processes associated with outlet glacier dynamics and to create numerically efficient parameterizations for these often sub-grid-scale processes; 3. project a range of evolutions of the Amundsen Sea Embayment sector in the next several centuries given various forcings and inclusion or omission of physical processes in the model. | POLYGON((-130 -73,-125.5 -73,-121 -73,-116.5 -73,-112 -73,-107.5 -73,-103 -73,-98.5 -73,-94 -73,-89.5 -73,-85 -73,-85 -73.9,-85 -74.8,-85 -75.7,-85 -76.6,-85 -77.5,-85 -78.4,-85 -79.3,-85 -80.2,-85 -81.1,-85 -82,-89.5 -82,-94 -82,-98.5 -82,-103 -82,-107.5 -82,-112 -82,-116.5 -82,-121 -82,-125.5 -82,-130 -82,-130 -81.1,-130 -80.2,-130 -79.3,-130 -78.4,-130 -77.5,-130 -76.6,-130 -75.7,-130 -74.8,-130 -73.9,-130 -73)) | POINT(-107.5 -77.5) | false | false | |||||||
Collaborative Research: Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements
|
1043750 |
2016-05-13 | Chen, Jianli; Wilson, Clark; Blankenship, Donald D.; Tapley, Byron |
|
1043750/Chen<br/><br/>This award supports a project to improve the estimate of long-term and inter-annual variability of Antarctic ice sheet mass balance at continental, regional, and catchment scales, using satellite gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) and other geodetic measurements. The work will improve the quantification of long-term mass change rates over Antarctica using GRACE gravity data with a longer record and newer generation(s) of products and will develop advanced numerical forward modeling techniques that can accurately correct leakage effects associated with GRACE data processing, and significantly improve spatial resolution of GRACE mass rate estimates over Antarctica. The work will also contribute to a better understanding of crustal uplift rates due to postglacial rebound (PGR) and present day ice load change over Antarctica via PGR models, GPS measurements, and combined analysis of GRACE and ICESat elevation changes. Inter-annual variations of ice mass over Antarctica will be investigated at continental and catchment scales and connections to regional climate change will be studied. The major deliverables from this study will be improved assessments of ice mass balance for the entire Antarctic ice sheet and potential contribution to global mean sea level rise. The work will also provide estimates of regional ice mass change rates over Antarctica, with a focus along the coast in the Amundsen Sea Embayment, the Peninsula in West Antarctica, and in Wilkes Land and Victoria Land in East Antarctica. Estimates of inter-annual ice mass change over Antarctica at various spatial scales, and assessments of uncertainty of GRACE ice rate estimates and PGR models errors over Antarctica will also be made. The intellectual merits of the proposed investigation include 1) providing improved assessments of Antarctic ice mass balance at different temporal and spatial scales with unprecedented accuracy, an important contribution to broad areas of polar science research; 2) combining high accuracy GPS vertical uplift measurements and PGR models to better quantify long-term crust uplift effects that are not distinguishable from ice mass changes by GRACE; and 3) unifying the work of several investigations at the forefront of quantifying ice sheet and glacier mass balance and crustal uplift based on a variety of modern space geodetic observations. The broader impacts include the fact that the project will actively involve student participation and training, through the support of two graduate students. In addition the project will contribute to general education and public outreach (E/PO) activities and the results from this investigation will help inspire future geoscientists and promote public awareness of significant manifestations of climate change. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||
IPY/ASEP - Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise.
|
0632282 |
2015-09-25 | Jacobs, Stanley; Hellmer, Hartmut; Jenkins, Adrian | The Office of Polar Programs, Antarctic Science Division, Ocean & Climate Systems Program has made this award to support a multidisciplinary effort to study the upwelling of relatively warm deep water onto the Amundsen Sea continental shelf and how it relates to atmospheric forcing and bottom bathymetry and how the warm waters interact with both glacial and sea ice. This study constitutes a contribution of a coordinated research effort in the region known as the Amundsen Sea Embayment Project or ASEP. Previous work by the PI and others has shown that the West Antarctic Ice Sheet has been found to be melting faster, perhaps by orders of magnitude, than ice sheets elsewhere around Antarctica, excluding those on the Peninsula. Submarine channels that incise the continental shelf are thought to provide fairly direct access of relatively warm circum polar deep water to the cavity under the floating extension of the ice shelf. Interactions with sea ice en route can modify the upwelled waters. The proposed investigations build on previous efforts by the PI and colleagues to use hydrographic measurements to put quantitative bounds on the rate of glacial ice melt by relatively warm seawater. <br/>The region can be quite difficult to access due to sea ice conditions and previous hydrographic measurements have been restricted to the austral summer time frame. In this project it was proposed to obtain the first austral spring hydrographic data via CTD casts and XBT drops (September-October 2007) as part of a separately funded cruise (PI Steve Ackley) the primary focus of which is sea-ice conditions to be studied while the RV Nathanial B Palmer (RV NBP) drifts in the ice pack. This includes opportunistic sampling for pCO2 and TCO2. A dedicated cruise in austral summer 2009 will follow this opportunity. The principal objectives of the dedicated field program are to deploy a set of moorings with which to characterize temporal variability in warm water intrusions onto the shelf and to conduct repeat hydrographic surveying and swath mapping in targeted areas, ice conditions permitting. Automatic weather stations are to be deployed in concert with the program, sea-ice observations will be undertaken from the vessel and the marine cavity beneath the Pine Island may be explored pending availability of the British autonomous underwater vehicle Autosub 3. These combined ocean-sea ice-atmosphere observations are aimed at a range of model validations. A well-defined plan for making data available as well as archiving in a timely fashion should facilitate a variety of modeling efforts and so extend the value of the spatially limited observations. <br/>Broader impacts: This project is relevant to an International Polar Year research emphasis on ice sheet dynamics focusing in particular on the seaward ocean-ice sheet interactions. Such interactions must be clarified for understanding the potential for sea level rise by melt of the West Antarctic ice Sheet. The project entails substantive international partnerships (British Antarctic Survey and Alfred Wegner Institute) and complements other Amundsen Sea Embayment Project proposals covering other elements of ice sheet dynamics. The proposal includes partial support for 2 graduate students and 2 post docs. Participants from the Antarctic Artists and Writers program are to take part in the cruise and so aid in outreach. In addition, the project is to be represented in the Lamont-Doherty annual open house. | POLYGON((-129.6 -54.2,-124.44 -54.2,-119.28 -54.2,-114.12 -54.2,-108.96 -54.2,-103.8 -54.2,-98.64 -54.2,-93.48 -54.2,-88.32 -54.2,-83.16 -54.2,-78 -54.2,-78 -56.29,-78 -58.38,-78 -60.47,-78 -62.56,-78 -64.65,-78 -66.74,-78 -68.83,-78 -70.92,-78 -73.01,-78 -75.1,-83.16 -75.1,-88.32 -75.1,-93.48 -75.1,-98.64 -75.1,-103.8 -75.1,-108.96 -75.1,-114.12 -75.1,-119.28 -75.1,-124.44 -75.1,-129.6 -75.1,-129.6 -73.01,-129.6 -70.92,-129.6 -68.83,-129.6 -66.74,-129.6 -64.65,-129.6 -62.56,-129.6 -60.47,-129.6 -58.38,-129.6 -56.29,-129.6 -54.2)) | POINT(-103.8 -64.65) | false | false | ||||||||
Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica
|
0732804 0732906 0732869 0732730 |
2014-12-30 | Truffer, Martin; Stanton, Timothy; Bindschadler, Robert; Behar, Alberto; Nowicki, Sophie; Anandakrishnan, Sridhar; Holland, David; McPhee, Miles G. |
|
Collaborative With: McPhee 0732804, Holland 0732869, Truffer 0732730, Stanton 0732926, Anandakrishnan 0732844 <br/>Title: Collaborative Research: IPY: Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica<br/><br/>The Office of Polar Programs, Antarctic Integrated and System Science Program has made this award to support an interdisciplinary study of the effects of the ocean on the stability of glacial ice in the most dynamic region the West Antarctic Ice Sheet, namely the Pine Island Glacier in the Amundsen Sea Embayment. The collaborative project builds on the knowledge gained by the highly successful West Antarctic Ice Sheet program and is being jointly sponsored with NASA. Recent observations indicate a significant ice loss, equivalent to 10% of the ongoing increase in sea-level rise, in this region. These changes are largest along the coast and propagate rapidly inland, indicating the critical impact of the ocean on ice sheet stability in the region. While a broad range of remote sensing and ground-based instrumentation is available to characterize changes of the ice surface and internal structure (deformation, ice motion, melt) and the shape of the underlying sediment and rock bed, instrumentation has yet to be successfully deployed for observing boundary layer processes of the ocean cavity which underlies the floating ice shelf and where rapid melting is apparently occurring. Innovative, mini ocean sensors that can be lowered through boreholes in the ice shelf (about 500 m thick) will be developed and deployed to automatically provide ocean profiling information over at least three years. Their data will be transmitted through a conducting cable frozen in the borehole to the surface where it will be further transmitted via satellite to a laboratory in the US. Geophysical and remote sensing methods (seismic, GPS, altimetry, stereo imaging, radar profiling) will be applied to map the geometry of the ice shelf, the shape of the sub ice-shelf cavity, the ice surface geometry and deformations within the glacial ice. To integrate the seismic, glaciological and oceanographic observations, a new 3-dimensional coupled ice-ocean model is being developed which will be the first of its kind. NASA is supporting satellite based research and the deployment of a robotic-camera system to explore the environment in the ocean cavity underlying the ice shelf and NSF is supporting all other aspects of this study. <br/><br/>Broader impacts: This project is motivated by the potential societal impacts of rapid sea level rise and should result in critically needed improvements in characterizing and predicting the behavior of coupled ocean-ice systems. It is a contribution to the International Polar Year and was endorsed by the International Council for Science as a component of the "Multidisciplinary Study of the Amundsen Sea Embayment" proposal #258 of the honeycomb of endorsed IPY activities. The research involves substantial international partnerships with the British Antarctic Survey and the University of Bristol in the UK. The investigators will partner with the previously funded "Polar Palooza" education and outreach program in addition to undertaking a diverse set of outreach activities of their own. Eight graduate students and one undergraduate as well as one post doc will be integrated into this research project. | POINT(-100.728 -75.0427) | POINT(-100.728 -75.0427) | false | false | |||||||
IPY: Flow Dynamics of the Amundsen Sea Glaciers: Thwaites and Pine Island.
|
0632198 |
2012-08-29 | Anandakrishnan, Sridhar |
|
This award supports a project to study ice sheet history and dynamics on the Thwaites Glacier and Pine Island Glacier in the Amundsen Sea sector of the West Antarctic Ice Sheet. The international collaboration that has been established with the British Antarctic Survey will enable a fuller suite of geophysical experiments with more-efficient use of people and logistics than we could achieve individually. This project is one of a number of projects to characterize the Amundsen Sea Embayment, which has been identified in numerous planning documents as perhaps the most important target for ice-dynamical research. Taken together, this "pulse of activity" will result in a better understanding of this important part of the global system. Field work will measure the subglacial environment of Thwaites and Pine Island Glaciers using three powerful, but relatively simple tools: reflection seismic imaging, GPS motion monitoring of the tidal forcing, and passive seismic monitoring of the seismicity associated with motion. The results of the field work will feed into ice-sheet modeling efforts that are tuned to the case of an ocean-terminating glacier and will assess the influence of these glaciers on current sea level and project into the future. The broader impacts of the project involve the inclusion of a film- and audio-professional to document the work for informal outreach (public radio and TV; museums). In addition, we will train graduate students in polar geophysical and glaciological research and in numerical modeling techniques. The ultimate goal of this project, of assessing the role of Thwaites Glacier in global sea level change, has broad societal impact in coastal regions and small islands. | POINT(110 -74) | POINT(-110 -74) | false | false | |||||||
Collaborative Research: Ice-flow history of the Thwaites Glacier, West Antarctica
|
0739372 0739654 |
2012-05-30 | Conway, Howard; Catania, Ginny; Markowski, Michael; Macgregor, Joseph A.; Andrews, Alan G.; Fudge, T. J. |
|
Catania 0739654<br/><br/>This award supports a project to study the Amundsen Sea drainage system and improve understanding of the impact of recent glaciological changes as an aid to predicting how this region will change in the future. The intellectual merit of the work is that the Amundsen Sea drainage system has been a recent focus for glaciological research because of rapid changes occurring there as a result of grounding line retreat. The work will focus on the regions of flow transition and will map the internal stratigraphy of the ice sheet across the Thwaites Glacier shear margins and use the age and geometry of radar-detected internal layers to interpret ice flow history. Thwaites Glacier (one of the main pathways for ice drainage in the region) has recently widened and may continue to do so in the near future. Thwaites Glacier may be particularly vulnerable to grounding line retreat because it lacks a well-defined subglacial channel. The subglacial environment exerts strong control on ice flow and flow history will be mapped in the context of bed topography and bed reflectivity. The plan is to use existing ice-penetrating radar data and coordinate with planned upcoming surveys to reduce logistical costs. The work proposed here will take three years to complete but no additional fieldwork in Antarctica is required. More detailed ground-based geophysical (radar and seismic) experiments will be needed at key locations to achieve our overall goal and the work proposed here will aid in identifying those regions. The broader impacts of the project are that it will initiate a new collaboration among radar communities within the US including those that are on the forefront of radar systems engineering and those that are actively involved in radar-derived internal layer and bed analysis. The project will also provide support for a postdoctoral researcher and a graduate student, thus giving them exposure to a variety of methodologies and scientific issues. Finally, there are plans to further develop the "Wired Antarctica" website designed by Ginny Catania with the help of a student-teacher. This will allow for the existing lesson plans to be updated to Texas State standards so that they can be used more broadly within state middle and high schools. | None | None | false | false | |||||||
Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System
|
0758274 0636724 |
2012-05-15 | Carter, Sasha P.; Dupont, Todd K.; Holt, John W.; Morse, David L.; Parizek, Byron R.; Young, Duncan A.; Kempf, Scott D.; Blankenship, Donald D. | This award supports a three-year study to isolate essential physical processes affecting Thwaites Glacier (TG) in the Amundsen Sea Embayment (ASE) of West Antarctica using a suite of existing numerical models in conjunction with existing and International Polar Year (IPY)-proposed data sets. Four different models will be utilized to explore the effects of embayment geometry, ice-shelf buttressing, basal-stress distribution, surface mass balance, surface climate, and inland dynamic perturbations on the present and future dynamics of TG. This particular collection of models is ideally suited for the broad nature of this investigation, as they incorporate efficient and complementary simplifications of the stress field (shallow-ice and shelf-stream), system geometry (1-d and 2-d plan-view and flowline; depth-integrated and depth-dependent), and mass-momentum energy coupling (mechanical and thermo-mechanical). The models will be constrained and validated by data sets (including regional maps of ice thickness, surface elevation, basal topography, ice surface velocity, and potential fields) and geophysical data analyses (including increasing the spatial resolution of surface elevations, improving regional estimates of geothermal flux, and characterizing the sub-glacial interface of grounded ice as well as the grounding-zone transition between grounded and floating ice). The intellectual merit of the research focuses on several of the NSF Glaciology program's emphases, including: ice dynamics, numerical modeling, and remote sensing of ice sheets. In addition, the research directly addresses the following specific NSF objectives: "investigation of the physics of fast glacier flow with emphasis on processes at glacier beds"; "investigation of ice-shelf stability"; and "identification and quantification of the feedback between ice dynamics and climate change". The broader impacts of this research effort will help answer societally relevant questions of future ice sheet stability and sea-level change. The research also will aid in the early career development of two young investigators and will contribute to the education of both graduate and undergraduate students directly involved in the research, and results will be incorporated into courses and informal presentations. | POLYGON((-110.058 -74.0548,-109.57993 -74.0548,-109.10186 -74.0548,-108.62379 -74.0548,-108.14572 -74.0548,-107.66765 -74.0548,-107.18958 -74.0548,-106.71151 -74.0548,-106.23344 -74.0548,-105.75537 -74.0548,-105.2773 -74.0548,-105.2773 -74.31383,-105.2773 -74.57286,-105.2773 -74.83189,-105.2773 -75.09092,-105.2773 -75.34995,-105.2773 -75.60898,-105.2773 -75.86801,-105.2773 -76.12704,-105.2773 -76.38607,-105.2773 -76.6451,-105.75537 -76.6451,-106.23344 -76.6451,-106.71151 -76.6451,-107.18958 -76.6451,-107.66765 -76.6451,-108.14572 -76.6451,-108.62379 -76.6451,-109.10186 -76.6451,-109.57993 -76.6451,-110.058 -76.6451,-110.058 -76.38607,-110.058 -76.12704,-110.058 -75.86801,-110.058 -75.60898,-110.058 -75.34995,-110.058 -75.09092,-110.058 -74.83189,-110.058 -74.57286,-110.058 -74.31383,-110.058 -74.0548)) | POINT(-107.66765 -75.34995) | false | false | ||||||||
Collaborative Research: IPY, The Next Generation: A Community Ice Sheet Model for Scientists and Educators With Demonstration Experiments in Amundsen Sea Embayment Region
|
0632168 0632325 0632161 0632346 |
2010-07-02 | Hulbe, Christina; Seals, Cheryl; Johnson, Jesse; Daescu, Dacian N. |
|
Johnson/0632161<br/><br/>This award supports a project to create a "Community Ice Sheet Model (CISM)". The intellectual merit of the proposed activity is that the development of such a model will aid in advancing the science of ice sheet modeling. The model will be developed with the goal of assuring that CISM is accurate, robust, well documented, intuitive, and computationally efficient. The development process will stress principles of software design. Two complementary efforts will occur. One will involve novel predictive modeling experiments on the Amundsen Sea Embayment region of Antarctica with the goal of understanding how interactions between basal processes and ice sheet dynamics can result in abrupt reconfigurations of ice-sheets, and how those reconfigurations impact other Earth systems. New modeling physics are to include the higher order stress terms that allow proper resolution of ice stream and shelf features, and the associated numerical methods that allow higher and lower order physics to be coexist in a single model. The broader impacts of the proposed activity involve education and public outreach. The model will be elevated to a high standard in terms of user interface and design, which will allow for the production of inquiry based, polar and climate science curriculum for K-12 education. The development of a CISM itself would represent a sea change in the way that glaciological research is conducted, eliminating numerous barriers to progress in polar research such as duplicated efforts, lack of transparency in publication, lack of a cryospheric model for others to link to and reference, and a common starting point from which to begin investigation. As the appropriate interfaces are developed, a curriculum to utilize CISM in education will be developed. Students participating in this grant will be required to be involved in public outreach through various mechanisms including local and state science fairs. The model will also serve as a basis for educating "a new generation" of climate scientists. This project is relevant to the International Polar Year (IPY) as the research team is multi-institutional and multi-disciplinary, will bring new groups and new specialties into the realm of polar research and is part of a larger group of proposals whose research focuses on research in the Amundsen Sea Embayment Plan region of Antarctica. The project is international in scope and the nature of software development is quite international, with firm commitments from the United Kingdom and Belgium to collaborate. In addition there will be an international external advisory board that will be used to guide development, and serve as a link to other IPY activities. | POLYGON((-180 -50.05,-144 -50.05,-108 -50.05,-72 -50.05,-36 -50.05,0 -50.05,36 -50.05,72 -50.05,108 -50.05,144 -50.05,180 -50.05,180 -54.045,180 -58.04,180 -62.035,180 -66.03,180 -70.025,180 -74.02,180 -78.015,180 -82.01,180 -86.005,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -86.005,-180 -82.01,-180 -78.015,-180 -74.02,-180 -70.025,-180 -66.03,-180 -62.035,-180 -58.04,-180 -54.045,-180 -50.05)) | POINT(0 -89.999) | false | false | |||||||
Glacial History of the Amundsen Sea Shelf
|
9814692 |
2010-05-04 | Kellogg, Thomas; Jacobs, Stanley |
|
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a marine geological investigation of the Amundsen Sea region toward a better understanding of the deglaciation history of the West Antarctic Ice Sheet (WAIS). The WAIS may be inherently unstable because it is the last marine-based ice sheet in the world. Unlike other embayments in West Antarctica, major ice streams draining into the Amundsen Sea from the interior of the WAIS lack buttressing ice shelves. Mass balance data for the distal portions of these ice streams (Pine Island and Thwaites glaciers) appear to be in balance or may be becoming negative. Because both ice streams have beds that slope downward toward the center of the ice sheet, grounding-line recession resulting from either continued thinning or sea-level rise could trigger irreversible grounding-line retreat, leading to ice-sheet disintegration and consequent global sea-level rise. The limited marine geological and geophysical data available from the Amundsen Sea suggest that grounded ice or an ice shelf occupied the inner Amundsen Sea embayment until perhaps as recently as 1000 to 2000 years ago, and this ice may have retreated rapidly in historic time.<br/><br/>This project, a study of the marine geology and geophysics of the Amundsen Sea continental shelf from 100 degrees W to 130 degrees W, is designed to address the Amundsen Sea part of WAIS Science Plan Priority Goal H2: "What is the deglaciation history in the eastern Ross, the Bellingshausen and Amundsen Seas?" This project will examine bathymetric data of the Amundsen Sea continental shelf to determine the positions of former ice-steam channels, and to aid in choosing sites for sediment coring. Single-channel seismic reflection studies will be conducted in order to determine sediment-thickness patterns, to aid in choice of coring sites, and to locate and identify morphologic features indicative of former grounded ice (e.g., moraines, scours, flutes, striations, till wedges and deltas, etc.). Coring will be concentrated along former ice flow-lines. Core samples will be analyzed in the laboratory for sedimentology, to determine whether of not basal tills are present (indicating former grounded ice and its former extent), and for calcareous and siliceous microfossils. The chronology of grounding-line and ice-shelf retreat from a presumed Last Glacial Maximum position near the shelf break will be established using accelerator mass spectrometry (AMS) carbon-14 dates of acid-insoluble particulate organic carbon.<br/><br/>This project will share ship time in the Amundsen Sea with a physical oceanographic project. Marine geologic data and samples collected will be integrated with findings of other investigators toward developing a comprehensive interpretation of the history of the WAIS. | POLYGON((-179.99342 -58.74225,-143.994734 -58.74225,-107.996048 -58.74225,-71.997362 -58.74225,-35.998676 -58.74225,0.000010000000003 -58.74225,35.998696 -58.74225,71.997382 -58.74225,107.996068 -58.74225,143.994754 -58.74225,179.99344 -58.74225,179.99344 -60.716231,179.99344 -62.690212,179.99344 -64.664193,179.99344 -66.638174,179.99344 -68.612155,179.99344 -70.586136,179.99344 -72.560117,179.99344 -74.534098,179.99344 -76.508079,179.99344 -78.48206,143.994754 -78.48206,107.996068 -78.48206,71.997382 -78.48206,35.998696 -78.48206,0.000010000000003 -78.48206,-35.998676 -78.48206,-71.997362 -78.48206,-107.996048 -78.48206,-143.994734 -78.48206,-179.99342 -78.48206,-179.99342 -76.508079,-179.99342 -74.534098,-179.99342 -72.560117,-179.99342 -70.586136,-179.99342 -68.612155,-179.99342 -66.638174,-179.99342 -64.664193,-179.99342 -62.690212,-179.99342 -60.716231,-179.99342 -58.74225)) | POINT(0.000010000000003 -68.612155) | false | false | |||||||
Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA)
|
0230197 |
2007-01-01 | Blankenship, Donald D.; Fastook, James L.; Corr, Hugh F. J.; Holt, John W.; Morse, David L.; Vaughan, David G.; Young, Duncan A. | This award supports a comprehensive aerogeophysical survey of the Amundsen Sea Embayment (ASE) in West Antarctica. The University of Texas will join forces with the British Antarctic Survey to use both US and UK aircraft and instrumentation to achieve this survey. Analyses of the new aerogeophysical<br/>data will result in the generation of maps of ice sheet surface, volume and bottom-interface characteristics. These maps will support the efforts of a community of US and international researchers to assess the present and predict the future behavior of the ice sheet in the ASE.<br/>The West Antarctic ice sheet has been the subject of intensive interdisciplinary study by both the European and U.S. scientific communities since it was recognized to be a potential source for up to 5 meters of sea<br/>level rise, possibly on short timescales. In terms of ice discharge, the ASE is the largest drainage system in West Antarctica. Yet it has been comparatively unstudied, primarily due to its remoteness from logistical<br/>centers. The ASE is the only major drainage to exhibit significant elevation change over the period of available satellite observations. Present knowledge of the ice thickness and subglacial boundary conditions in the ASE are insufficient to understand its evolution or its sensitivity to climatic change.<br/>The results from our surveys are required to achieve the fundamental research objectives outlined by the US scientific community in an ASE Science Plan. The surveys and analyses will be achieved through international collaboration and will involve graduate students, undergraduates and high school apprentices.<br/>Through its potential for influencing sea level, the future behavior of the ASE is of primary societal importance. Given the substantial public and scientific interest that recent reports of change in West Antarctica have generated, we expect fundamental research in the Amundsen Sea Embayment, enabled by our surveys, will have widespread impact. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false |