{"dp_type": "Project", "free_text": "Altimetry"}
[{"awards": "2317927 Hills, Benjamin", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Radar Reflectivity at Whillans Ice Plain", "datasets": [{"dataset_uid": "200401", "doi": "10.5281/zenodo.11201199", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Radar Reflectivity at Whillans Ice Plain", "url": "https://doi.org/10.5281/zenodo.11201199"}], "date_created": "Mon, 07 Aug 2023 00:00:00 GMT", "description": "Ice flow is resisted by frictional forces that keep a glacier from immediately sliding into the ocean. Friction comes in two varieties: internal friction within the ice column which resists ice deformation and basal friction which resists ice sliding over its bedrock substrate. Partitioning between internal and basal friction is difficult since both have similar expressions at the most common target for data collection?the ice-sheet surface. However, understanding this partitioning is important because the physical processes that control internal and basal friction act and evolve at different timescales. This project combines spaceborne remote sensing observations from the ice-sheet surface with ice-penetrating radar data that images the internal structure of the ice sheet in order to partition the contribution of each source of friction. Results will advance the fundamental understanding of ice flow and will strengthen projections of future sea-level rise. Broader Impacts of the project include facilitating data reuse for the ice-sheet research community; the strategy for distributing the software toolkit includes student mentorship and hackathon teaching.\r\n\r\nThe researcher will expand the impact of existing ice-penetrating datasets by 1) developing new open-source algorithms for extraction of englacial stratigraphy; 2) creating stratigraphy data products that can be assimilated into future studies of ice motion; and 3) using statistical analyses to integrate radar datasets into larger-scale interpretations with remote sensing datasets of ice-surface velocity, altimetry, climate variables, and model-derived basal friction. The computational tools developed as part of this effort will be integrated and released as a reusable software toolkit for ice-penetrating radar data analysis. The toolkit will be validated and tested by deployment to cloud-hosted JupyterHub instances, which will serve as a singular interface to access radar and remote sensing data, load them into a unified framework, step through a predefined processing flow, and carry out statistical analyses. In some areas, the imaged englacial stratigraphy will deviate from the ice-dynamic setting expected based on surface measurements alone. There, the internal dynamics (or ice-dynamic history) are inconsistent with the surface dynamics, likely because internal friction is poorly constrained and misattributed to basal friction instead. This work will develop the data and statistical tools for constraining internal friction from ice-penetrating radar, making those data products and tools available for future work.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING", "is_usap_dc": true, "keywords": "GLACIER MOTION/ICE SHEET MOTION; BT-67; Antarctica; GLACIER TOPOGRAPHY/ICE SHEET TOPOGRAPHY; DHC-6; ICE SHEETS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Post Doc/Travel", "paleo_time": null, "persons": "Hills, Benjamin", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e BT-67; AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6", "repo": "Zenodo", "repositories": "Zenodo", "science_programs": null, "south": -90.0, "title": "Postdoctoral Fellowship: OPP-PRF: Disentangling Ice-sheet Internal and Basal Processes through Novel Ice-penetrating Radar Integration Built on Scalable, Cloud-based Infrastructure", "uid": "p0010428", "west": -180.0}, {"awards": "2149500 Chambers, Don", "bounds_geometry": "POLYGON((-180 -30,-144 -30,-108 -30,-72 -30,-36 -30,0 -30,36 -30,72 -30,108 -30,144 -30,180 -30,180 -36,180 -42,180 -48,180 -54,180 -60,180 -66,180 -72,180 -78,180 -84,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84,-180 -78,-180 -72,-180 -66,-180 -60,-180 -54,-180 -48,-180 -42,-180 -36,-180 -30))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 14 Mar 2022 00:00:00 GMT", "description": "The Southern Ocean accounts for ~40% of the total ocean uptake of anthropogenic CO2 despite covering only 20% of the global ocean surface, and is particularly rich in long-lived eddies. These eddies, or large ocean whirlpools which can be observed from space, can alter air-sea fluxes of CO2 in ways that are not yet fully understood. New observations from autonomous platforms measuring ocean carbon content suggest that there is significant heterogeneity in ocean carbon fluxes which can be linked to these dynamic eddy features. Due to computational and time limitations, ocean eddies are not explicitly represented in most climate models, limiting our ability to understand the role eddies play in the ocean carbon cycle. This work will explore the impact of eddies on ocean carbon content and air-sea CO2 fluxes in the Southern Ocean using both model- and observation-based strategies and the findings will improve our understanding of the ocean\u2019s role in the carbon cycle and in global climate. While this work will primarily be focused on the Southern Ocean, the results will be globally applicable. The researchers will also broaden interest in physical and chemical oceanography among middle school-age girls in the University of South Florida\u2019s Oceanography Camp for Girls by augmenting existing lessons with computational methods in oceanography. \r\n\r\nThis project aims to quantify the impacts of mesoscale eddy processes on ocean carbon content and air-sea carbon dioxide (CO2) fluxes in the Southern Ocean. For the modeling component, the investigators will explore relationships between eddies, ocean carbon content, and air-sea CO2 fluxes within the 1/6-degree resolution Biogeochemical Southern Ocean State Estimate (B-SOSE). They investigators will produce high-resolution composites of the carbon content and physical structure within both cyclonic and anticyclonic eddies by region, quantify the influence of these eddies on the overall simulated air-sea CO2 flux, and diagnose the physical mechanisms driving this influence. For the observational component, the investigators will match eddies observed via satellite altimetry to ocean carbon observations and characterize observed relationships between eddies and ocean carbon content with a focus on Southern Ocean winter observations where light limits biological processes, allowing isolation of the contribution of physical processes. This work will also provide motivation for higher resolution and better eddy parameterizations in climate models, more mesoscale biogeochemical observations, and integration of satellite SSH data into efforts to map air-sea fluxes of CO2. Each summer, the PI delivers a lab lesson at the University of South Florida Oceanography Camp for Girls (OCG), recognized by NSF as a \u201cModel STEM Program for Women and Girls\u201d focused on broadening participation by placing emphasis on recruiting a diverse group of young women. As part of this project, the existing interactive Jupyter Notebook-based Python coding Lab lesson will be augmented with a B-SOSE-themed modeling component, which will broaden interest in physical and chemical oceanography and data science, and expose campers to computational methods in oceanography.\r\n", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; Southern Ocean; PH; BIOGEOCHEMICAL CYCLES; AMD; OCEAN CHEMISTRY; OCEAN MIXED LAYER; USA/NSF; NITROGEN; OCEAN CURRENTS; SALINITY/DENSITY; USAP-DC; OCEAN TEMPERATURE; MODELS; CHLOROPHYLL; DISSOLVED GASES; NUTRIENTS", "locations": "Southern Ocean", "north": -30.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Williams, Nancy; Chambers, Don; Tamsitt, Veronica", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Diagnosing the Role of Ocean Eddies in Carbon Cycling from a High-resolution Data Assimilating Ocean Biogeochemical Model", "uid": "p0010309", "west": -180.0}, {"awards": "2149501 Mazloff, Matthew", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 04 Mar 2022 00:00:00 GMT", "description": "This project aims to quantify the impacts of mesoscale eddy processes on ocean carbon content and air-sea carbon dioxide (CO2) fluxes in the Southern Ocean. For the modeling component, the investigators will explore relationships between eddies, ocean carbon content, and air-sea CO2 fluxes within the 1/6-degree resolution Biogeochemical Southern Ocean State Estimate (B-SOSE). They investigators will produce high-resolution composites of the carbon content and physical structure within both cyclonic and anticyclonic eddies by region, quantify the influence of these eddies on the overall simulated air-sea CO2 flux, and diagnose the physical mechanisms driving this influence. For the observational component, the investigators will match eddies observed via satellite altimetry to ocean carbon observations and characterize observed relationships between eddies and ocean carbon content with a focus on Southern Ocean winter observations where light limits biological processes, allowing isolation of the contribution of physical processes. This work will also provide motivation for higher resolution and better eddy parameterizations in climate models, more mesoscale biogeochemical observations, and integration of satellite SSH data into efforts to map air-sea fluxes of CO2. Each summer, the PI delivers a lab lesson at the University of South Florida Oceanography Camp for Girls (OCG), recognized by NSF as a \u201cModel STEM Program for Women and Girls\u201d focused on broadening participation by placing emphasis on recruiting a diverse group of young women. As part of this project, the existing interactive Jupyter Notebook-based Python coding Lab lesson will be augmented with a B-SOSE-themed modeling component, which will broaden interest in physical and chemical oceanography and data science, and expose campers to computational methods in oceanography.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Southern Ocean; AMD; USA/NSF; USAP-DC; MODELS; BIOGEOCHEMICAL CYCLES; Amd/Us", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Mazloff, Matthew", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Diagnosing the role of ocean eddies in carbon cycling from a high- resolution data assimilating ocean biogeochemical model", "uid": "p0010304", "west": -180.0}, {"awards": "2048840 Chambers, Don", "bounds_geometry": "POLYGON((0 -30,15 -30,30 -30,45 -30,60 -30,75 -30,90 -30,105 -30,120 -30,135 -30,150 -30,150 -33.5,150 -37,150 -40.5,150 -44,150 -47.5,150 -51,150 -54.5,150 -58,150 -61.5,150 -65,135 -65,120 -65,105 -65,90 -65,75 -65,60 -65,45 -65,30 -65,15 -65,0 -65,0 -61.5,0 -58,0 -54.5,0 -51,0 -47.5,0 -44,0 -40.5,0 -37,0 -33.5,0 -30))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 16 Jun 2021 00:00:00 GMT", "description": "We propose to better characterize the role of eddies in wintertime air-sea carbon dioxide (CO2) fluxes in the Indian sector of the Southern Ocean using two autonomous sailing vehicles called Saildrones during austral winter 2021. The Saildrones will carry sensors to directly measure atmospheric and oceanic concentrations of CO2 (pCO2), atmospheric pressure, and wind speed to allow calculation of air-sea CO2 flux at 5-km resolution and similar accuracy to an underway ship-based measurement. The Saildrone data from this mission, a 2019 mission, and BGC Argo float data from 2014\u20132020 will be co-located with eddies derived from satellite altimetry to quantify the relationships between eddies and ocean carbon content. The overall objectives of this project are to determine the relationship between wintertime pCO2 variability and the presence and structure of eddies and to use these relationships to create a better representation of mesoscale variability in Southern Ocean CO2 flux.\r\n", "east": 150.0, "geometry": "POINT(75 -47.5)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; OCEAN MIXED LAYER; Southern Ocean; SHIPS; PH; OCEAN CHEMISTRY; CO2; Argo Float; DISSOLVED GASES; USAP-DC; Saildrone; AMD; Amd/Us", "locations": "Southern Ocean", "north": -30.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Williams, Nancy; Chambers, Don; Lindstrom, Eric; Carter, Brendan", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repositories": null, "science_programs": null, "south": -65.0, "title": "The Role of Cyclonic Upwelling Eddies in Southern Ocean CO2 Flux", "uid": "p0010191", "west": 0.0}, {"awards": "1935438 McCarthy, Christine", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Thu, 03 Jun 2021 00:00:00 GMT", "description": "The ice sheets of Antarctica and Greenland are losing mass and contributing to accelerating global sea-level rise. Satellite altimetry provides precise measurement of ice-sheet volume change, but computing ice-sheet mass change the quantity relevant for estimating the ice sheets sea-level contribution requires knowing the density of the ice sheet. The density near the ice-sheet surface also affects age estimates of air bubbles recovered in ice cores, which are a key source of information on past climate changes. Ice-sheet density is primarily controlled by the rate at which firn (snow that has persisted for a year or more on ice sheets) compacts into ice, but there is currently no widely accepted theory of how this compaction occurs. The goal of this project is thus to advance understanding of how firn densifies. The team will conduct laboratory experiments and analyze ice-penetrating radar and ice-core data from Antarctica. A key desired outcome of the project is a new model of firn densification that can be used to improve satellite-based altimetry measurements of present-day ice-sheet change and reconstructions of past climate changes from ice cores.\r\n\r\nThis project will combine laboratory experiments, numerical modeling, and geophysical techniques to determine the rheology of firn as it compacts to form ice. The team will use two methods to measure firn compaction: (1) lab-based experiments and (2) analysis of ice-core and radar data. For the lab-based work, the team will conduct a suite of compaction experiments on synthetic firn samples under uni-axial strain and constant temperature and axial stress. They will also measure the grain-size evolution. By running a large number of experiments (\u003e 25), the team will constrain key parameters that determine how firn compaction rate depends on density, temperature, grain size, and axial stress. The experiments will be conducted in a table-top apparatus at temperatures as low as -40 degrees C and axial stresses up to 4 MPa. For the field-data-based component, the team will analyze ice-core and ice-penetrating radar data to produce the first coincident set of radar-derived firn compaction rates, borehole temperatures, firn densities, and firn grain sizes. Results from lab and field data will be tied together using a numerical firn compaction model. This model is formulated using conservation of mass, momentum, and energy, along with an explicit description of firn rheology and grain-size evolution. Constraints on firn rheology will be incorporated into this model and the team will use it to examine fundamental questions about how changes in the climate affect firn density. This is a crucial unknown that contributes significant measurement uncertainty in estimates of past and present climate change.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "AMD; LABORATORY; USA/NSF; COMPUTERS; USAP-DC; FIRN; Antarctic Ice Sheet; Amd/Us", "locations": "Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Arctic Natural Sciences", "paleo_time": null, "persons": "McCarthy, Christine M.; Kingslake, Jonathan", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Understanding Firn Rheology Through Laboratory Compaction Experiments and Radar Data", "uid": "p0010185", "west": null}, {"awards": "1543501 Howat, Ian", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "The Reference Model of Antarctica", "datasets": [{"dataset_uid": "200218", "doi": "", "keywords": null, "people": null, "repository": "PGC", "science_program": null, "title": "The Reference Model of Antarctica", "url": "https://www.pgc.umn.edu/data/rema/"}], "date_created": "Tue, 18 May 2021 00:00:00 GMT", "description": "The Reference Elevation Model of Antarctica (REMA) is the first continental-scale digital elevation model (DEM) at a resolution of less than 10\u2009m. REMA is created from stereophotogrammetry with submeter resolution optical, commercial satellite imagery. The higher spatial and radiometric resolutions of this imagery enable high-quality surface extraction over the low-contrast ice sheet surface. The DEMs are registered to satellite radar and laser altimetry and are mosaicked to provide a continuous surface covering nearly 95\u2009% the entire continent. The mosaic includes an error estimate and a time stamp, enabling change measurement. Typical elevation errors are less than 1\u2009m, as validated by the comparison to airborne laser altimetry. REMA provides a powerful new resource for Antarctic science and provides a proof of concept for generating accurate high-resolution repeat topography at continental scales.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Topography; AMD; USA/NSF; Amd/Us; USAP-DC; Antarctica; ICE SHEETS; COMPUTERS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Howat, Ian; Myoung-Jong Noh, ", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS", "repo": "PGC", "repositories": "PGC", "science_programs": null, "south": -90.0, "title": "The Reference Elevation Model of Antarctica", "uid": "p0010180", "west": -180.0}, {"awards": "1443690 Young, Duncan", "bounds_geometry": "POLYGON((95 -68,100.5 -68,106 -68,111.5 -68,117 -68,122.5 -68,128 -68,133.5 -68,139 -68,144.5 -68,150 -68,150 -70.2,150 -72.4,150 -74.6,150 -76.8,150 -79,150 -81.2,150 -83.4,150 -85.6,150 -87.8,150 -90,144.5 -90,139 -90,133.5 -90,128 -90,122.5 -90,117 -90,111.5 -90,106 -90,100.5 -90,95 -90,95 -87.8,95 -85.6,95 -83.4,95 -81.2,95 -79,95 -76.8,95 -74.6,95 -72.4,95 -70.2,95 -68))", "dataset_titles": "Airborne potential fields data from Titan Dome, Antarctica; ICECAP Basal Interface Specularity Content Profiles: IPY and OIB; ICECAP: Gridded boundary conditions for Little Dome C, Antarctica, and extracted subglacial lake locations; ICECAP: High resolution survey of the Little Dome C region in support of the IPICS Old Ice goal; ICECAP radargrams in support of the international old ice search at Dome C - 2016; Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau; SPICECAP/ICECAP II Instrument Measurements (LASER, MAGNETICS and POSITIONING); Titan Dome, East Antarctica, Aerogeophysical Survey", "datasets": [{"dataset_uid": "601463", "doi": "10.15784/601463", "keywords": "Antarctica; Epica Dome C; ICECAP; Ice Penetrating Radar; Subglacial Lake", "people": "Roberts, Jason; Young, Duncan A.; Ritz, Catherine; Frezzotti, Massimo; Quartini, Enrica; Cavitte, Marie G. P; Tozer, Carly; Steinhage, Daniel; Urbini, Stefano; Corr, Hugh F. J.; Van Ommen, Tas; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "ICECAP: Gridded boundary conditions for Little Dome C, Antarctica, and extracted subglacial lake locations", "url": "https://www.usap-dc.org/view/dataset/601463"}, {"dataset_uid": "601461", "doi": "10.15784/601461", "keywords": "Antarctica; ICECAP; Titan Dome", "people": "Jingxue, Guo; Blankenship, Donald D.; Young, Duncan A.; Greenbaum, Jamin; Bo, Sun", "repository": "USAP-DC", "science_program": null, "title": "Airborne potential fields data from Titan Dome, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601461"}, {"dataset_uid": "200235", "doi": "10.26179/jydx-yz69", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "SPICECAP/ICECAP II Instrument Measurements (LASER, MAGNETICS and POSITIONING)", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_ICECAP_OIA_Level1B_AEROGEOPHYSICS"}, {"dataset_uid": "200233", "doi": "http://dx.doi.org/doi:10.26179/5wkf-7361", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "ICECAP radargrams in support of the international old ice search at Dome C - 2016", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_ICECAP_OIA_RADARGRAMS"}, {"dataset_uid": "601355", "doi": "10.15784/601355", "keywords": "Aerogeophysics; Antarctica; Bed Elevation; Bed Reflectivity; Epica Dome C; Ice Thickness", "people": "Tozer, Carly; Beem, Lucas H.; Cavitte, Marie G. P; Greenbaum, Jamin; Ng, Gregory; Richter, Thomas; van Ommen, Tas; Blankenship, Donald D.; Roberts, Jason; Young, Duncan A.; Habbal, Feras; Kempf, Scott D.; Ritz, Catherine; Quartini, Enrica", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "ICECAP: High resolution survey of the Little Dome C region in support of the IPICS Old Ice goal", "url": "https://www.usap-dc.org/view/dataset/601355"}, {"dataset_uid": "601411", "doi": "10.15784/601411", "keywords": "Antarctica; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; ICECAP; Ice Penetrating Radar; Internal Reflecting Horizons", "people": "Quartini, Enrica; Cavitte, Marie G. P; Young, Duncan A.; Mulvaney, Robert; Ritz, Catherine; Greenbaum, Jamin; Ng, Gregory; Kempf, Scott D.; Muldoon, Gail R.; Paden, John; Frezzotti, Massimo; Roberts, Jason; Tozer, Carly; Schroeder, Dustin; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau", "url": "https://www.usap-dc.org/view/dataset/601411"}, {"dataset_uid": "601437", "doi": "10.15784/601437", "keywords": "Airborne Laser Altimetry; Airborne Radar; Airplane; Antarctica; Bedrock Elevation; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness; Radar Echo Sounder; Surface Elevation; Titan Dome", "people": "Bo, Sun; Beem, Lucas H.; Young, Duncan A.; Greenbaum, Jamin; Ng, Gregory; Blankenship, Donald D.; Cavitte, Marie G. P; Young, Duncan; Jingxue, Guo", "repository": "USAP-DC", "science_program": null, "title": "Titan Dome, East Antarctica, Aerogeophysical Survey", "url": "https://www.usap-dc.org/view/dataset/601437"}, {"dataset_uid": "601371", "doi": "10.15784/601371", "keywords": "Antarctica; East Antarctica; ICECAP; Ice Penetrating Radar; Radar Echo Sounder; Radar Echo Sounding; Subglacial Hydrology", "people": "Young, Duncan A.; Blankenship, Donald D.; Roberts, Jason; Siegert, Martin; van Ommen, Tas; Greenbaum, Jamin; Schroeder, Dustin", "repository": "USAP-DC", "science_program": null, "title": "ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "url": "https://www.usap-dc.org/view/dataset/601371"}], "date_created": "Tue, 07 Jul 2020 00:00:00 GMT", "description": "This study focuses on processing and interpretation of internationally collected aerogeophysical data from the Southern Plateau of the East Antarctic Ice Sheet. The data include ice penetrating radar data, laser altimetry, gravity and magnetics. The project will provide information on geological trends under the ice, the topography and character of the ice/rock interface, and the stratigraphy of the ice. The project will also provide baseline site characterization for future drilling. Future drilling sites and deep ice cores for old ice require that the base of the ice sheet be frozen to the bed (i.e. no free water at the interface between rock and ice) and the assessment will map the extent of frozen vs. thawed areas. Specifically, three main outcomes are anticipated for this project. First, the study will provide an assessment of the viability of Titan Dome, a subglacial highland region located near South Pole, as a potential old ice drilling prospect. The assessment will include determining the hydraulic context of the bed by processing and interpreting the radar data, ice sheet mass balance through time by mapping englacial reflectors in the ice and connecting them to ice stratigraphy in the recent South Pole, and ice sheet geometry using laser altimetry. Second, the study will provide an assessment of the geological context of the Titan Dome region with respect to understanding regional geologic boundaries and the potential for bedrock sampling. For these two goals, we will use data opportunistically collected by China, and the recent PolarGAP dataset. Third, the study will provide an assessment of the risk posture for RAID site targeting in the Titan Dome region, and the Dome C region. This will use a high-resolution dataset the team collected previously at Dome C, an area similar to the coarser resolution data collected at Titan Dome, and will enable an understanding of what is missed by the wide lines spacing at Titan Dome. Specifically, we will model subglacial hydrology with and without the high resolution data, and statistically examine the detection of subglacial mountains (which could preserve old ice) and subglacial lakes (which could destroy old ice), as a function of line spacing.", "east": 150.0, "geometry": "POINT(122.5 -79)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e LIDAR ALTIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e NUCLEAR PRECESSION MAGNETOMETER", "is_usap_dc": true, "keywords": "BT-67; MAGNETIC ANOMALIES; Epica Dome C; GRAVITY ANOMALIES; GLACIER ELEVATION/ICE SHEET ELEVATION; GLACIER THICKNESS/ICE SHEET THICKNESS", "locations": "Epica Dome C", "north": -68.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Young, Duncan A.; Blankenship, Donald D.; Roberts, Jason; Bo, Sun", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e BT-67", "repo": "USAP-DC", "repositories": "AADC; USAP-DC", "science_programs": "Dome C Ice Core", "south": -90.0, "title": "Collaborative Research: Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP)", "uid": "p0010115", "west": 95.0}, {"awards": "9978236 Bell, Robin", "bounds_geometry": "POLYGON((101 -75.5,101.9 -75.5,102.8 -75.5,103.7 -75.5,104.6 -75.5,105.5 -75.5,106.4 -75.5,107.3 -75.5,108.2 -75.5,109.1 -75.5,110 -75.5,110 -75.85,110 -76.2,110 -76.55,110 -76.9,110 -77.25,110 -77.6,110 -77.95,110 -78.3,110 -78.65,110 -79,109.1 -79,108.2 -79,107.3 -79,106.4 -79,105.5 -79,104.6 -79,103.7 -79,102.8 -79,101.9 -79,101 -79,101 -78.65,101 -78.3,101 -77.95,101 -77.6,101 -77.25,101 -76.9,101 -76.55,101 -76.2,101 -75.85,101 -75.5))", "dataset_titles": "SOAR-Lake Vostok Survey airborne radar data; SOAR-Lake Vostok Survey bed elevation data; SOAR-Lake Vostok Survey Gravity data; SOAR-Lake Vostok Survey ice thickness data; SOAR-Lake Vostok survey magnetic anomaly data; SOAR-Lake Vostok Survey surface elevation data", "datasets": [{"dataset_uid": "601295", "doi": "10.1594/IEDA/306563", "keywords": "Airborne Gravity; Airplane; Antarctica; East Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Lake Vostok; Potential Field; Solid Earth", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey Gravity data", "url": "https://www.usap-dc.org/view/dataset/601295"}, {"dataset_uid": "601300", "doi": "10.1594/IEDA/306568", "keywords": "Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Lake Vostok; Navigation; Radar; SOAR; Subglacial Lakes", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey airborne radar data", "url": "https://www.usap-dc.org/view/dataset/601300"}, {"dataset_uid": "601296", "doi": " 10.1594/IEDA/306564", "keywords": "Airborne Magnetic; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Lake Vostok; Magnetic; Magnetic Anomaly; Magnetometer; Potential Field; SOAR; Solid Earth", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok survey magnetic anomaly data", "url": "https://www.usap-dc.org/view/dataset/601296"}, {"dataset_uid": "601297", "doi": "10.1594/IEDA/306567", "keywords": "Airborne Laser Altimeters; Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Sheet; Ice Stratigraphy; Ice Thickness; Ice Thickness Distribution; Lake Vostok; Radar; Radar Altimetry; Radar Echo Sounder; SOAR; Subglacial Lake", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey ice thickness data", "url": "https://www.usap-dc.org/view/dataset/601297"}, {"dataset_uid": "601298", "doi": "10.1594/IEDA/306566", "keywords": "Airborne Altimetry; Airborne Laser Altimeters; Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Ice Sheet Elevation; Ice Surface; Lake Vostok; Radar Echo Sounder; SOAR; Surface Elevation", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey surface elevation data", "url": "https://www.usap-dc.org/view/dataset/601298"}, {"dataset_uid": "601299", "doi": "10.1594/IEDA/306565", "keywords": "Airborne Laser Altimeters; Airborne Laser Altimetry; Airborne Radar; Airplane; Antarctica; Bed Elevation; Bedrock Elevation; Digital Elevation Model; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Lake Vostok; Radar; Radar Echo Sounder; SOAR", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey bed elevation data", "url": "https://www.usap-dc.org/view/dataset/601299"}], "date_created": "Fri, 24 Apr 2020 00:00:00 GMT", "description": "This award, provided by the Office of Polar Programs under the Life in Extreme Environments (LExEn) Program, supports a geophysical study of Lake Vostok, a large lake beneath the East Antarctic Ice Sheet. \u003cbr/\u003e\u003cbr/\u003eSubglacial ecosystems, in particular subglacial lake ecosystems are extreme oligotrophic environments. These environments, and the ecosystems which may exist within them, should provide key insights into a range of fundamental questions about the development of Earth and other bodies in the Solar System including: 1) the processes associated with rapid evolutionary radiation after the extensive Neoproterozoic glaciations; 2) the overall carbon cycle through glacial and interglacial periods; and 3) the possible adaptations organisms may require to thrive in environments such as on Europa, the ice covered moon of Jupiter. Over 70 subglacial lakes have been identified beneath the 3-4 kilometer thick ice of Antarctica. One lake, Lake Vostok, is sufficiently large to be clearly identified from space with satellite altimetry. Lake Vostok is similar to Lake Ontario in area but with a much larger volume including measured water depths of 600 meters. The overlying ice sheet is acting as a conveyer belt continually delivering new water, nutrients, gas hydrates, sediments and microbes as the ice sheet flows across the lake. \u003cbr/\u003e\u003cbr/\u003eThe goal of this program is to determine the fundamental boundary conditions for this subglacial lake as an essential first step toward understanding the physical processes within the lake. An aerogeophysical survey over the lake and into the surrounding regions will be acquired to meet this goal. This data set includes gravity, magnetic, laser altimetry and ice penetrating radar data and will be used to compile a basic set of ice surface elevation, subglacial topography, gravity and magnetic anomaly maps. \u003cbr/\u003e\u003cbr/\u003ePotential field methods widely used in the oil industry will be modified to estimate the subglacial topography from gravity data where the ice penetrating radar will be unable to recover the depth of the lake. A similar method can be modified to estimate the thickness of the sediments beneath the lake from magnetic data. These methods will be tested and applied to subglacial lakes near South Pole prior to the Lake Vostok field campaign and will provide valuable comparisons to the planned survey. Once the methods have been adjusted for the Lake Vostok application, maps of the water cavity and sediment thickness beneath the lake will be produced.\u003cbr/\u003e\u003cbr/\u003eThese maps will become tools to explore the geologic origin of the lake. The two endmember models are, first, that the lake is an active tectonic rift such as Lake Baikal and, second, the lake is the result of glacial scouring. The distinct characteristics of an extensional rift can be easily identified with our aerogeophysical survey. The geological interpretation of the airborne geophysical survey will provide the first geological constraints of the interior of the East Antarctic continent based on modern data. In addition, the underlying geology will influence the ecosystem within the lake. \u003cbr/\u003e\u003cbr/\u003eOne of the critical issues for the ecosystem within the lake will be the flux of nutrients. A preliminary estimation of the regions of freezing and melting based on the distance between distinctive internal layers observed on the radar data will be made. These basic boundary conditions will provide guidance for a potential international effort aimed at in situ exploration of the lake and improve the understanding of East Antarctic geologic structures.", "east": 110.0, "geometry": "POINT(105.5 -77.25)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e MAGNETOMETERS \u003e MGF; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e AIRGRAV", "is_usap_dc": true, "keywords": "Gravity; GLACIERS/ICE SHEETS; East Antarctica; USAP-DC; Lake Vostok; Airborne Radar; Subglacial Lake; MAGNETIC FIELD; GRAVITY", "locations": "East Antarctica; Lake Vostok", "north": -75.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bell, Robin; Studinger, Michael S.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work\r\n", "uid": "p0010097", "west": 101.0}, {"awards": "9319854 Bell, Robin; 9319877 Finn, Carol; 9319369 Blankenship, Donald", "bounds_geometry": "POLYGON((-155 -77.5,-150 -77.5,-145 -77.5,-140 -77.5,-135 -77.5,-130 -77.5,-125 -77.5,-120 -77.5,-115 -77.5,-110 -77.5,-105 -77.5,-105 -78.2,-105 -78.9,-105 -79.6,-105 -80.3,-105 -81,-105 -81.7,-105 -82.4,-105 -83.1,-105 -83.8,-105 -84.5,-110 -84.5,-115 -84.5,-120 -84.5,-125 -84.5,-130 -84.5,-135 -84.5,-140 -84.5,-145 -84.5,-150 -84.5,-155 -84.5,-155 -83.8,-155 -83.1,-155 -82.4,-155 -81.7,-155 -81,-155 -80.3,-155 -79.6,-155 -78.9,-155 -78.2,-155 -77.5))", "dataset_titles": "SOAR-BSB Airborne gravity data for the CASERTZ/WAIS project; SOAR-IRE airborne gravity data for the CASERTZ/WAIS project; SOAR-TKD airborne gravity data for the CASERTZ/WAIS project; SOAR-WAZ Airborne gravity data for the CASERTZ/WAIS project", "datasets": [{"dataset_uid": "601290", "doi": "10.15784/601290", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Potential Field; Solid Earth; WAIS", "people": "Bell, Robin; Arko, Robert A.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-IRE airborne gravity data for the CASERTZ/WAIS project", "url": "https://www.usap-dc.org/view/dataset/601290"}, {"dataset_uid": "601291", "doi": "10.15784/601291", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Potential Field; Solid Earth; WAIS", "people": "Arko, Robert A.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-WAZ Airborne gravity data for the CASERTZ/WAIS project", "url": "https://www.usap-dc.org/view/dataset/601291"}, {"dataset_uid": "601289", "doi": "10.15784/601289", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Potential Field; Solid Earth; WAIS", "people": "Bell, Robin; Arko, Robert A.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-TKD airborne gravity data for the CASERTZ/WAIS project", "url": "https://www.usap-dc.org/view/dataset/601289"}, {"dataset_uid": "601288", "doi": "10.15784/601288", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Solid Earth; WAIS", "people": "Bell, Robin; Arko, Robert A.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-BSB Airborne gravity data for the CASERTZ/WAIS project", "url": "https://www.usap-dc.org/view/dataset/601288"}], "date_created": "Fri, 24 Apr 2020 00:00:00 GMT", "description": "This award supports a project to conduct an integrated geophysical survey over a large portion of the West Antarctic Ice Sheet (WAIS) toward an understanding of the dynamic behavior of the ice sheet and the nature of the lithosphere beneath the ice sheet. West Antarctica is characterized by two kinds of the Earth s most dynamic systems, a continental rift (the West Antarctic Rift System) and a marine based ice sheet (the WAIS). Active continental rift systems, caused by divergent plate motions, result in thinned continental crust. Associated with the thin crust are fault-bounded sedimentary basins, active volcanism, and elevated heat flow. Marine ice sheets are characterized by rapidly moving streams of ice, penetrating and draining a slowly moving ice reservoir. Evidence left by past marine ice sheets indicates that they may have a strongly non- linear response to long-term climate change which results in massive and rapid discharges of ice. Understanding the evolution of the ice stream system and its interaction with the interior ice is the key to understanding this non-linear response. Subglacial geology and ice dynamics are generally studied in isolation, but evidence is mounting that the behavior of the West Antarctic ice streams may be closely linked to the nature of the underlying West Antarctic rift system. The fast moving ice streams appear to glide on a lubricating layer of water-saturated till. This till requires easily eroded sediment and a source of water, both of which may be controlled by the geology of the rift system; the sediments from the fault-bounded basins and the water from the elevated heat flux associated with active lithospheric extension. This project represents an interdisciplinary aerogeophysical study to characterize the lithosphere of the West Antarctic rift system beneath critical regions of the WAIS. The objective is to determine the effects of the rift architect ure, as manifested by the distribution of sedimentary basins and volcanic constructs, on the ice stream system. The research tool is a unique geophysical aircraft with laser altimetry, ice penetrating radar, aerogravity, and aeromagnetic systems integrated with a high precision kinematic GPS navigation system. It is capable of imaging both the surface and bed of the ice sheet while simultaneously measuring the gravity and magnetic signature of the subglacial lithosphere. Work to be done under this award will build on work already completed in the southern sector of central West Antarctica and it will focus on the region of the Byrd Subglacial Basin and Ice Stream D. The ice sheet in these regions is completely covered by satellite imagery and so this project will be integrated with remote sensing studies of the ice stream. The changing dynamics of Ice Stream D, as with other West Antarctic ice streams, seem to be correlated with changes in the morphological provinces of the underlying rift system. The experimental targets proceed from the divide of the interior ice, downstream through the onset of streaming to the trunk of Ice Stream D. This study will be coordinated with surface glaciological investigations of Ice Stream D and will be used to guide cooperative over-snow seismic investigations of the central West Antarctic rift system. The data will also be used to select a site for future deep ice coring along the crest of the WAIS. These data represent baseline data for long term global change monitoring work and represent crucial boundary conditions for ice sheet modeling efforts.", "east": -105.0, "geometry": "POINT(-130 -81)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": true, "keywords": "USAP-DC; MAGNETIC FIELD; GRAVITY FIELD; Antarctica; GLACIERS/ICE SHEETS; Marie Byrd Land; Airborne Gravity", "locations": "Marie Byrd Land; Antarctica", "north": -77.5, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Bell, Robin; Blankenship, Donald D.; Finn, C. A.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.5, "title": "Collaborative Research: Lithospheric Controls on the Behavior of the West Antarctic Ice Sheet: Corridor Aerogeophysics of Eastern Ross Transect Zone", "uid": "p0010094", "west": -155.0}, {"awards": "1341725 Guest, Peter; 1341606 Stammerjohn, Sharon; 1341717 Ackley, Stephen; 1341513 Maksym, Edward; 1543483 Sedwick, Peter", "bounds_geometry": "POLYGON((-180 -55,-177 -55,-174 -55,-171 -55,-168 -55,-165 -55,-162 -55,-159 -55,-156 -55,-153 -55,-150 -55,-150 -57.3,-150 -59.6,-150 -61.9,-150 -64.2,-150 -66.5,-150 -68.8,-150 -71.1,-150 -73.4,-150 -75.7,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -75.7,160 -73.4,160 -71.1,160 -68.8,160 -66.5,160 -64.2,160 -61.9,160 -59.6,160 -57.3,160 -55,162 -55,164 -55,166 -55,168 -55,170 -55,172 -55,174 -55,176 -55,178 -55,-180 -55))", "dataset_titles": "ASPeCt Visual Ice Observations on PIPERS Cruise NBP1704 April-June 2017; Expedition data of NBP1704; Impact of Convective Processes and Sea Ice Formation on the Distribution of Iron in the Ross Sea: Closing the Seasonal Cycle; NBP1704 CTD sensor data; NBP1704 Expedition Data; PIPERS Airborne LiDAR Data; PIPERS Meteorology Rawinsonde Data; PIPERS Meteorology Time Series; PIPERS Noble Gases; Sea Ice Layer Cakes, PIPERS 2017; SUMO unmanned aerial system (UAS) atmospheric data", "datasets": [{"dataset_uid": "601183", "doi": "10.15784/601183", "keywords": "Antarctica; Glaciology; Ice Concentration; Ice Thickness; Ice Type; NBP1704; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Sea Ice; Snow Depth; Snow/ice; Snow/Ice; Visual Observations", "people": "Ackley, Stephen", "repository": "USAP-DC", "science_program": null, "title": "ASPeCt Visual Ice Observations on PIPERS Cruise NBP1704 April-June 2017", "url": "https://www.usap-dc.org/view/dataset/601183"}, {"dataset_uid": "001363", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1704 Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1704"}, {"dataset_uid": "601609", "doi": "10.15784/601609", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Mass Spectrometer; NBP1704; Noble Gas; Oceans; Ross Sea; R/v Nathaniel B. Palmer", "people": "Loose, Brice", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Noble Gases", "url": "https://www.usap-dc.org/view/dataset/601609"}, {"dataset_uid": "601184", "doi": "10.15784/601184 ", "keywords": "Air Temperature; Antarctica; Atmosphere; Meteorology; Near-Surface Air Temperatures; PIPERS; Radiation; Sea Ice Temperatures; Temperature; Weather Station Data; Wind Direction; Wind Speed", "people": "Guest, Peter", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Meteorology Time Series", "url": "https://www.usap-dc.org/view/dataset/601184"}, {"dataset_uid": "601185", "doi": "10.15784/601185 ", "keywords": "Air Temperature; Antarctica; Atmosphere; Atmospheric Surface Winds; Meteorology; NBP1704; PIPERS; Pressure; Radiosonde; Rawinsonde; Relative Humidity; Ross Sea; R/v Nathaniel B. Palmer; Wind Direction; Wind Speed", "people": "Guest, Peter", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Meteorology Rawinsonde Data", "url": "https://www.usap-dc.org/view/dataset/601185"}, {"dataset_uid": "601188", "doi": "10.15784/601188", "keywords": "Aerogeophysics; Airborne Laser Altimetry; Antarctica; LIDAR; PIPERS; Ross Sea; Sea Ice", "people": "Locke, Caitlin; Bell, Robin; Dhakal, Tejendra; Xie, Hongjie; Bertinato, Christopher", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Airborne LiDAR Data", "url": "https://www.usap-dc.org/view/dataset/601188"}, {"dataset_uid": "601191", "doi": "10.15784/601191", "keywords": "Air Temperature; Antarctica; Atmosphere; Meteorology; NBP1704; PIPERS; R/v Nathaniel B. Palmer; Southern Ocean; Temperature Profiles; UAV; Unmanned Aircraft", "people": "Cassano, John", "repository": "USAP-DC", "science_program": null, "title": "SUMO unmanned aerial system (UAS) atmospheric data", "url": "https://www.usap-dc.org/view/dataset/601191"}, {"dataset_uid": "601207", "doi": "10.15784/601207", "keywords": "Antarctica; Digital Elevation Model; Glaciology; Ice; Ice Thickness; Ice Thickness Distribution; LIDAR; NBP1704; PIPERS; Ross Sea; R/v Nathaniel B. Palmer; Sea Ice; Snow; Snow Depth; Surface Elevation", "people": "Mei, M. Jeffrey; Maksym, Edward; Jeffrey Mei, M.", "repository": "USAP-DC", "science_program": null, "title": "Sea Ice Layer Cakes, PIPERS 2017", "url": "https://www.usap-dc.org/view/dataset/601207"}, {"dataset_uid": "200150", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Impact of Convective Processes and Sea Ice Formation on the Distribution of Iron in the Ross Sea: Closing the Seasonal Cycle", "url": "https://www.bco-dmo.org/project/815403"}, {"dataset_uid": "601422", "doi": "10.15784/601422", "keywords": "Antarctica; CTD; CTD Data; NBP1704; Ocean Profile Data; Ross Sea; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Stammerjohn, Sharon", "repository": "USAP-DC", "science_program": null, "title": "NBP1704 CTD sensor data", "url": "https://www.usap-dc.org/view/dataset/601422"}, {"dataset_uid": "002663", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1704", "url": "https://www.rvdata.us/search/cruise/NBP1704"}], "date_created": "Mon, 10 Jun 2019 00:00:00 GMT", "description": "The one place on Earth consistently showing increases in sea ice area, duration, and concentration is the Ross Sea in Antarctica. Satellite imagery shows about half of the Ross Sea increases are associated with changes in the austral fall, when the new sea ice is forming. The most pronounced changes are also located near polynyas, which are areas of open ocean surrounded by sea ice. To understand the processes driving the sea ice increase, and to determine if the increase in sea ice area is also accompanied by a change in ice thickness, this project will conduct an oceanographic cruise to the polynyas of the Ross Sea in April and May, 2017, which is the austral fall. The team will deploy state of the art research tools including unmanned airborne systems (UASs, commonly called drones), autonomous underwater vehicles (AUVs), and remotely operated underwater vehicles (ROVs). Using these tools and others, the team will study atmospheric, oceanic, and sea ice properties and processes concurrently. A change in sea ice production will necessarily change the ocean water below, which may have significant consequences for global ocean circulation patterns, a topic of international importance. All the involved institutions will be training students, and all share the goal of expanding climate literacy in the US, emphasizing the role high latitudes play in the Earth\u0027s dynamic climate.\u003cbr/\u003e\u003cbr/\u003eThe main goal of the project is to improve estimates of sea ice production and water mass transformation in the Ross Sea. The team will fully capture the spatial and temporal changes in air-ice-ocean interactions when they are initiated in the austral fall, and then track the changes into the winter and spring using ice buoys, and airborne mapping with the newly commissioned IcePod instrument system, which is deployed on the US Antarctic Program\u0027s LC-130 fleet. The oceanographic cruise will include stations in and outside of both the Terra Nova Bay and Ross Ice Shelf polynyas. Measurements to be made include air-sea boundary layer fluxes of heat, freshwater, and trace gases, radiation, and meteorology in the air; ice formation processes, ice thickness, snow depth, mass balance, and ice drift within the sea ice zone; and temperature, salinity, and momentum in the ocean below. Following collection of the field data, the team will improve both model parameterizations of air-sea-ice interactions and remote sensing algorithms. Model parameterizations are needed to determine if sea-ice production has increased in crucial areas, and if so, why (e.g., stronger winds or fresher oceans). The remote sensing validation will facilitate change detection over wider areas and verify model predictions over time. Accordingly this project will contribute to the international Southern Ocean Observing System (SOOS) goal of measuring essential climate variables continuously to monitor the state of the ocean and ice cover into the future.", "east": -150.0, "geometry": "POINT(-175 -66.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LIDAR; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "OCEAN MIXED LAYER; TRACE ELEMENTS; CARBON DIOXIDE; ATMOSPHERIC RADIATION; ICE GROWTH/MELT; AMD; BOUNDARY LAYER TEMPERATURE; SULFUR COMPOUNDS; NBP1704; HEAT FLUX; ICE DEPTH/THICKNESS; R/V NBP; USA/NSF; BOUNDARY LAYER WINDS; SNOW DEPTH; VERTICAL PROFILES; METHANE; POLYNYAS; CONDUCTIVITY; SEA ICE; Ross Sea; WATER MASSES; TURBULENCE; USAP-DC; Amd/Us", "locations": "Ross Sea", "north": -55.0, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Ackley, Stephen; Bell, Robin; Weissling, Blake; Nuss, Wendell; Maksym, Edward; Stammerjohn, Sharon; Cassano, John; Guest, Peter; Sedwick, Peter; Xie, Hongjie", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "BCO-DMO; R2R; USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica", "uid": "p0010032", "west": 160.0}, {"awards": "0732804 McPhee, Miles; 0732906 Nowicki, Sophie; 0732730 Truffer, Martin; 0732869 Holland, David", "bounds_geometry": "POINT(-100.728 -75.0427)", "dataset_titles": "Automatic Weather Station Pine Island Glacier; Borehole Temperatures at Pine Island Glacier, Antarctica; Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica", "datasets": [{"dataset_uid": "609627", "doi": "10.7265/N5T151MV", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Pine Island Glacier; Temperature", "people": "Truffer, Martin; Stanton, Timothy", "repository": "USAP-DC", "science_program": null, "title": "Borehole Temperatures at Pine Island Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609627"}, {"dataset_uid": "601216", "doi": "10.15784/601216", "keywords": "Antarctica; Atmosphere; Automated Weather Station; Flux; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Meteorology; Pine Island Glacier; Weather Station Data", "people": "Holland, David; Mojica Moncada, Jhon F.", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Automatic Weather Station Pine Island Glacier", "url": "https://www.usap-dc.org/view/dataset/601216"}, {"dataset_uid": "600072", "doi": "10.15784/600072", "keywords": "Antarctica; Atmosphere; McMurdo; Meteorology; Oceans; Ross Island; Southern Ocean", "people": "McPhee, Miles G.", "repository": "USAP-DC", "science_program": null, "title": "Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica", "url": "https://www.usap-dc.org/view/dataset/600072"}], "date_created": "Tue, 30 Dec 2014 00:00:00 GMT", "description": "Collaborative With: McPhee 0732804, Holland 0732869, Truffer 0732730, Stanton 0732926, Anandakrishnan 0732844 \u003cbr/\u003eTitle: Collaborative Research: IPY: Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica\u003cbr/\u003e\u003cbr/\u003eThe Office of Polar Programs, Antarctic Integrated and System Science Program has made this award to support an interdisciplinary study of the effects of the ocean on the stability of glacial ice in the most dynamic region the West Antarctic Ice Sheet, namely the Pine Island Glacier in the Amundsen Sea Embayment. The collaborative project builds on the knowledge gained by the highly successful West Antarctic Ice Sheet program and is being jointly sponsored with NASA. Recent observations indicate a significant ice loss, equivalent to 10% of the ongoing increase in sea-level rise, in this region. These changes are largest along the coast and propagate rapidly inland, indicating the critical impact of the ocean on ice sheet stability in the region. While a broad range of remote sensing and ground-based instrumentation is available to characterize changes of the ice surface and internal structure (deformation, ice motion, melt) and the shape of the underlying sediment and rock bed, instrumentation has yet to be successfully deployed for observing boundary layer processes of the ocean cavity which underlies the floating ice shelf and where rapid melting is apparently occurring. Innovative, mini ocean sensors that can be lowered through boreholes in the ice shelf (about 500 m thick) will be developed and deployed to automatically provide ocean profiling information over at least three years. Their data will be transmitted through a conducting cable frozen in the borehole to the surface where it will be further transmitted via satellite to a laboratory in the US. Geophysical and remote sensing methods (seismic, GPS, altimetry, stereo imaging, radar profiling) will be applied to map the geometry of the ice shelf, the shape of the sub ice-shelf cavity, the ice surface geometry and deformations within the glacial ice. To integrate the seismic, glaciological and oceanographic observations, a new 3-dimensional coupled ice-ocean model is being developed which will be the first of its kind. NASA is supporting satellite based research and the deployment of a robotic-camera system to explore the environment in the ocean cavity underlying the ice shelf and NSF is supporting all other aspects of this study. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: This project is motivated by the potential societal impacts of rapid sea level rise and should result in critically needed improvements in characterizing and predicting the behavior of coupled ocean-ice systems. It is a contribution to the International Polar Year and was endorsed by the International Council for Science as a component of the \"Multidisciplinary Study of the Amundsen Sea Embayment\" proposal #258 of the honeycomb of endorsed IPY activities. The research involves substantial international partnerships with the British Antarctic Survey and the University of Bristol in the UK. The investigators will partner with the previously funded \"Polar Palooza\" education and outreach program in addition to undertaking a diverse set of outreach activities of their own. Eight graduate students and one undergraduate as well as one post doc will be integrated into this research project.", "east": -100.728, "geometry": "POINT(-100.728 -75.0427)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e SEISMIC REFLECTION PROFILERS", "is_usap_dc": true, "keywords": "West Antarctica; Seismic; LABORATORY; Amundsen Sea; Ocean-Ice Interaction; Remote Sensing; COMPUTERS; FIELD SURVEYS; LANDSAT-8; FIELD INVESTIGATION; Ocean Profiling; AUVS; Sea Level Rise; Stability; Not provided; Deformation; SATELLITES; Ice Movement; GROUND-BASED OBSERVATIONS; Ice Temperature; International Polar Year; Borehole", "locations": "West Antarctica; Amundsen Sea", "north": -75.0427, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Truffer, Martin; Stanton, Timothy; Bindschadler, Robert; Behar, Alberto; Nowicki, Sophie; Anandakrishnan, Sridhar; Holland, David; McPhee, Miles G.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e LANDSAT \u003e LANDSAT-8; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES; WATER-BASED PLATFORMS \u003e UNCREWED VEHICLES \u003e SUBSURFACE \u003e AUVS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.0427, "title": "Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica", "uid": "p0000043", "west": -100.728}, {"awards": "0838810 Hulbe, Christina", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 01 Jul 2013 00:00:00 GMT", "description": "Hulbe/0838810 \u003cbr/\u003e\u003cbr/\u003eThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThis award supports a modeling study of the processes in West Antarctic grounding zones, the transition from ice resting on bedrock to ice floating on the ocean surface with an eye toward understanding the interrelated causes of rapid change in grounding line configuration and outlet flow. A combination of satellite remote sensing and numerical modeling will be used to investigate both past and ongoing patterns of change. New high-resolution surface elevation maps made from a novel combination of satellite laser altimetry and remotely observed surface shape provide a unique view of grounding zones. These data will be used to diagnose events associated with the shutdown of Kamb Ice Stream, to investigate a recent discharge event on Institute Ice Stream and to investigate ongoing change at the outlet of Whillans Ice Stream, along with other modern processes around the West Antarctic. An existing numerical model of coupled ice sheet, ice stream, and ice shelf flow will be used and improved as part of the research project. The broader impacts of the project relate to the importance of understanding the role of polar ice sheets in global sea level rise. The work will contribute to the next round of deliberations for the Intergovernmental Panel on Climate Change (IPCC). Improved views, interpretations, and insights into the physical processes that govern variability in ice sheet outlet streams will help correct the shortcomings of the last IPCC report that didn?t include the role of ice sheets in sea level rise. The PIs have a strong record of public outreach, involvement in the professional community, and student training.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "LABORATORY; Kamb Ice Stream; Grounding Line; FIELD INVESTIGATION; SATELLITES; Transition Zone; Ice Shelf Flow; Outlet Flow; Ice Sheet; Modeling; COMPUTERS; Antarctica", "locations": "Antarctica; Kamb Ice Stream", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hulbe, Christina; Fahnestock, Mark", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Mass Transit: Controls on Grounding and Ungrounding at Marine Ice Sheet Outlets", "uid": "p0000371", "west": null}, {"awards": "0733025 Blankenship, Donald", "bounds_geometry": "POLYGON((95 -65,103.5 -65,112 -65,120.5 -65,129 -65,137.5 -65,146 -65,154.5 -65,163 -65,171.5 -65,180 -65,180 -66.7,180 -68.4,180 -70.1,180 -71.8,180 -73.5,180 -75.2,180 -76.9,180 -78.6,180 -80.3,180 -82,171.5 -82,163 -82,154.5 -82,146 -82,137.5 -82,129 -82,120.5 -82,112 -82,103.5 -82,95 -82,95 -80.3,95 -78.6,95 -76.9,95 -75.2,95 -73.5,95 -71.8,95 -70.1,95 -68.4,95 -66.7,95 -65))", "dataset_titles": "Gravity anomaly data; Gravity raw data; ICECAP Basal Interface Specularity Content Profiles: IPY and OIB; ICECAP flight reports; ICECAP ice thickness data over the Darwin and Hatherton Glaciers, Transantarctic Mountains, Antarctica; ICECAP radargrams (HiCARS 1); ICECAP radargrams (HiCARS 2); Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau; Ice thickness and bed reflectivity data (HiCARS 1); Ice thickness and bed reflectivity data (HiCARS 2); Laser altimetry raw data; Laser surface elevation data; Magnetic anomaly data; Magnetic raw data", "datasets": [{"dataset_uid": "601371", "doi": "10.15784/601371", "keywords": "Antarctica; East Antarctica; ICECAP; Ice Penetrating Radar; Radar Echo Sounder; Radar Echo Sounding; Subglacial Hydrology", "people": "Young, Duncan A.; Blankenship, Donald D.; Roberts, Jason; Siegert, Martin; van Ommen, Tas; Greenbaum, Jamin; Schroeder, Dustin", "repository": "USAP-DC", "science_program": null, "title": "ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "url": "https://www.usap-dc.org/view/dataset/601371"}, {"dataset_uid": "200121", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "ICECAP flight reports", "url": "https://nsidc.org/data/ifltrpt"}, {"dataset_uid": "200117", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Gravity raw data", "url": "https://nsidc.org/data/igbgm1b/"}, {"dataset_uid": "200120", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Laser surface elevation data", "url": "https://nsidc.org/data/ilutp2"}, {"dataset_uid": "601605", "doi": "10.15784/601605", "keywords": "Airborne Radar; Antarctica; Basler; Darwin Glacier; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hatherton Glacier; Hicars; ICECAP; Ice Penetrating Radar; Ice Thickness; Transantarctic Mountains", "people": "Young, Duncan A.; Holt, John W.; Greenbaum, Jamin; Gillespie, Mette; Schroeder, Dustin; Siegert, Martin; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "ICECAP ice thickness data over the Darwin and Hatherton Glaciers, Transantarctic Mountains, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601605"}, {"dataset_uid": "200111", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "ICECAP radargrams (HiCARS 1)", "url": "https://nsidc.org/data/IR1HI1B/versions/1"}, {"dataset_uid": "200119", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Laser altimetry raw data", "url": "https://nsidc.org/data/ilutp1b"}, {"dataset_uid": "200118", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Gravity anomaly data", "url": "https://nsidc.org/data/igbgm2/"}, {"dataset_uid": "200116", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Magnetic anomaly data", "url": "https://nsidc.org/data/imgeo2"}, {"dataset_uid": "601411", "doi": "10.15784/601411", "keywords": "Antarctica; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; ICECAP; Ice Penetrating Radar; Internal Reflecting Horizons", "people": "Quartini, Enrica; Cavitte, Marie G. P; Young, Duncan A.; Mulvaney, Robert; Ritz, Catherine; Greenbaum, Jamin; Ng, Gregory; Kempf, Scott D.; Muldoon, Gail R.; Paden, John; Frezzotti, Massimo; Roberts, Jason; Tozer, Carly; Schroeder, Dustin; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau", "url": "https://www.usap-dc.org/view/dataset/601411"}, {"dataset_uid": "200112", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "ICECAP radargrams (HiCARS 2)", "url": "https://nsidc.org/data/IR2HI1B/versions/1"}, {"dataset_uid": "200113", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Ice thickness and bed reflectivity data (HiCARS 1)", "url": "https://nsidc.org/data/IR1HI2/versions/1"}, {"dataset_uid": "200114", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Ice thickness and bed reflectivity data (HiCARS 2)", "url": "https://nsidc.org/data/IR2HI2/versions/1"}, {"dataset_uid": "200115", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Magnetic raw data", "url": "https://nsidc.org/data/imgeo1b"}], "date_created": "Tue, 04 Sep 2012 00:00:00 GMT", "description": "This project is an aerogeophysical survey to explore unknown terrain in East Antarctica to answer questions of climate change and earth science. The methods include ice-penetrating radar, gravity, and magnetic measurements. The project?s main goal is to investigate the stability and migration of ice divides that guide flow of the East Antarctic ice sheet, the world?s largest. The project also maps ice accumulation over the last interglacial, identifies subglacial lakes, and characterizes the catchment basins of the very largest glacial basins, including Wilkes and Aurora. The outcomes contribute to ice sheet models relevant to understanding sea level rise in a warming world. The work will also help understand the regional geology. Buried beneath miles-thick ice, East Antarctica is virtually uncharacterized, but is considered a keystone for tectonic reconstructions and other geologic questions. The region also hosts subglacial lakes, whose geologic histories are unknown. \u003cbr/\u003e\u003cbr/\u003eThe broader impacts are extensive, and include societal relevance for understanding sea level rise, outreach in various forms, and education at the K12 through postdoctoral levels. The project contributes to the International Polar Year (2007-2009) by addressing key IPY themes on frontiers in polar exploration and climate change. It also includes extensive international collaboration with the United Kingdom, Australia, France and other nations; and offers explicit opportunities for early career scientists.", "east": 180.0, "geometry": "POINT(137.5 -73.5)", "instruments": null, "is_usap_dc": false, "keywords": "DOME C; Aurora Subglacial Basin; BT-67; East Antarctica; Wilkes Land; Totten Glacier; ICE SHEETS; Byrd Glacier; Wilkes Subglacial Basin", "locations": "East Antarctica; DOME C; Byrd Glacier; Totten Glacier; Aurora Subglacial Basin; Wilkes Subglacial Basin; Wilkes Land", "north": -65.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Integrated System Science", "paleo_time": null, "persons": "Siegert, Martin; Roberts, Jason; Van Ommen, Tas; Warner, Roland; Richter, Thomas; Greenbaum, Jamin; Holt, John W.; Young, Duncan A.; Blankenship, Donald D.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e BT-67", "repo": "USAP-DC", "repositories": "NSIDC; USAP-DC", "science_programs": null, "south": -82.0, "title": "IPY Research: Investigating the Cryospheric Evolution of the Central Antarctic Plate (ICECAP)", "uid": "p0000719", "west": 95.0}, {"awards": "0631973 Joughin, Ian; 0632031 Das, Sarah", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 20 Jun 2012 00:00:00 GMT", "description": "Joughin 0631973\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to gather data to better understand the mass balance of the West Antarctic Ice Sheet, in the Pine Island and Thwaites region, through the combination of radar altimetry and surface-based ice-core measurements of accumulation. The intellectual merit of the project is that the results of the field work will provide information on decadal-scale average accumulation extending back through the last century and will help constrain a modeling effort to determine how coastal changes propagate inland, to allow better prediction of future change. Comparison of the basin averaged accumulation with ice discharge determined using Interferometric Synthetic Aperture Radar (InSAR) velocity data will provide improved mass-balance estimates. Study of changes in flow speed will produce a record of mass balance over the last three decades. Analysis of the satellite altimeter record in conjunction with annual accumulation estimates also will provide estimates of changes and variability in mass balance. The broader impacts of the work are that it will make a significant contribution to future IPCC estimates of sea level, which are important for projection of the impacts of increased sea level on coastal communities. The research will contribute to the graduate education of students at the Universities of Washington and Kansas and will enrich K-12 education through the direct participation of the PIs in classroom activities. Informal science education includes 4-day glacier flow demonstrations at the Polar Science Weekend held annually at the Pacific Science Center in Seattle. The project also will communicate results through Center for the Remote Sensing of Ice Sheets (CReSIS) outreach effort. All field and remotely-sensed data sets will be archived and distributed by the National Snow and Ice Data Center. This project is relevant to IPY in that the West Antarctic Ice Sheet is losing mass, in large part because of rapid thinning of the Amundsen Coast glaciers so, it will directly address the NSF IPY emphasis on \"ice sheet history and dynamics.\" The project is also international in scope.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": false, "keywords": "Not provided; FIELD INVESTIGATION; Flow Speed; Antarctic; LABORATORY; Ice Sheet Accumulation Rate; Mass Balance; Accumulation; Insar; SATELLITES; FIELD SURVEYS; Ice Core; Radar Altimetry; Ice Velocity", "locations": "Antarctic", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Joughin, Ian; Medley, Brooke; Das, Sarah", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES", "repositories": null, "science_programs": null, "south": null, "title": "IPY: Collaborative Proposal: Constraining the Mass-Balance Deficit of the Amundsen Coast\u0027s Glaciers", "uid": "p0000542", "west": null}, {"awards": "0636724 Blankenship, Donald; 0758274 Parizek, Byron", "bounds_geometry": "POLYGON((-110.058 -74.0548,-109.57993 -74.0548,-109.10186 -74.0548,-108.62379 -74.0548,-108.14572 -74.0548,-107.66765 -74.0548,-107.18958 -74.0548,-106.71151 -74.0548,-106.23344 -74.0548,-105.75537 -74.0548,-105.2773 -74.0548,-105.2773 -74.31383,-105.2773 -74.57286,-105.2773 -74.83189,-105.2773 -75.09092,-105.2773 -75.34995,-105.2773 -75.60898,-105.2773 -75.86801,-105.2773 -76.12704,-105.2773 -76.38607,-105.2773 -76.6451,-105.75537 -76.6451,-106.23344 -76.6451,-106.71151 -76.6451,-107.18958 -76.6451,-107.66765 -76.6451,-108.14572 -76.6451,-108.62379 -76.6451,-109.10186 -76.6451,-109.57993 -76.6451,-110.058 -76.6451,-110.058 -76.38607,-110.058 -76.12704,-110.058 -75.86801,-110.058 -75.60898,-110.058 -75.34995,-110.058 -75.09092,-110.058 -74.83189,-110.058 -74.57286,-110.058 -74.31383,-110.058 -74.0548))", "dataset_titles": "Access to data; AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment; AGASEA Ice Thickness Profile Data from the Amundsen Sea Embayment, Antarctica; Airborne Laser Altimetry of the Thwaites Glacier Catchment, West Antarctica; ICECAP Basal Interface Specularity Content Profiles: IPY and OIB; Subglacial water flow paths under Thwaites Glacier, West Antarctica; Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "datasets": [{"dataset_uid": "609334", "doi": "10.7265/N5HD7SK8", "keywords": "AGASEA; Airborne Altimetry; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Thwaites Glacier", "people": "Kempf, Scott D.; Holt, John W.; Young, Duncan A.; Blankenship, Donald D.; Morse, David L.", "repository": "USAP-DC", "science_program": null, "title": "Airborne Laser Altimetry of the Thwaites Glacier Catchment, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609334"}, {"dataset_uid": "601371", "doi": "10.15784/601371", "keywords": "Antarctica; East Antarctica; ICECAP; Ice Penetrating Radar; Radar Echo Sounder; Radar Echo Sounding; Subglacial Hydrology", "people": "Young, Duncan A.; Blankenship, Donald D.; Roberts, Jason; Siegert, Martin; van Ommen, Tas; Greenbaum, Jamin; Schroeder, Dustin", "repository": "USAP-DC", "science_program": null, "title": "ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "url": "https://www.usap-dc.org/view/dataset/601371"}, {"dataset_uid": "601673", "doi": "10.15784/601673", "keywords": "Antarchitecture; Antarctica; Ice Penetrating Radar; Isochron; Layers; Radar; Radioglaciology; Thwaites Glacier", "people": "Jackson, Charles; Muldoon, Gail R.; Young, Duncan A.; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment", "url": "https://www.usap-dc.org/view/dataset/601673"}, {"dataset_uid": "609517", "doi": "10.7265/N5W95730", "keywords": "AGASEA; Airborne Radar; Amundsen Sea; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness", "people": "Kempf, Scott D.; Blankenship, Donald D.; Young, Duncan A.; Holt, John W.", "repository": "USAP-DC", "science_program": null, "title": "AGASEA Ice Thickness Profile Data from the Amundsen Sea Embayment, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609517"}, {"dataset_uid": "609619", "doi": "10.7265/N58913TN", "keywords": "Amundsen Sea; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; Thwaites Glacier", "people": "Holt, John W.; Parizek, Byron R.; Blankenship, Donald D.; Dupont, Todd K.", "repository": "USAP-DC", "science_program": null, "title": "Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "url": "https://www.usap-dc.org/view/dataset/609619"}, {"dataset_uid": "000248", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Access to data", "url": "http://nsidc.org/data/netcdf/tools.html"}, {"dataset_uid": "609518", "doi": "10.7265/N5RJ4GC8", "keywords": "AGASEA; Airborne Radar; Antarctica; Elevation; Flow Paths; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Thwaites Glacier", "people": "Blankenship, Donald D.; Young, Duncan A.; Carter, Sasha P.", "repository": "USAP-DC", "science_program": null, "title": "Subglacial water flow paths under Thwaites Glacier, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609518"}, {"dataset_uid": "002536", "doi": "", "keywords": null, "people": null, "repository": "NASA", "science_program": null, "title": "Access to data", "url": "http://www.giss.nasa.gov/tools/panoply/"}], "date_created": "Tue, 15 May 2012 00:00:00 GMT", "description": "This award supports a three-year study to isolate essential physical processes affecting Thwaites Glacier (TG) in the Amundsen Sea Embayment (ASE) of West Antarctica using a suite of existing numerical models in conjunction with existing and International Polar Year (IPY)-proposed data sets. Four different models will be utilized to explore the effects of embayment geometry, ice-shelf buttressing, basal-stress distribution, surface mass balance, surface climate, and inland dynamic perturbations on the present and future dynamics of TG. This particular collection of models is ideally suited for the broad nature of this investigation, as they incorporate efficient and complementary simplifications of the stress field (shallow-ice and shelf-stream), system geometry (1-d and 2-d plan-view and flowline; depth-integrated and depth-dependent), and mass-momentum energy coupling (mechanical and thermo-mechanical). The models will be constrained and validated by data sets (including regional maps of ice thickness, surface elevation, basal topography, ice surface velocity, and potential fields) and geophysical data analyses (including increasing the spatial resolution of surface elevations, improving regional estimates of geothermal flux, and characterizing the sub-glacial interface of grounded ice as well as the grounding-zone transition between grounded and floating ice). The intellectual merit of the research focuses on several of the NSF Glaciology program\u0027s emphases, including: ice dynamics, numerical modeling, and remote sensing of ice sheets. In addition, the research directly addresses the following specific NSF objectives: \"investigation of the physics of fast glacier flow with emphasis on processes at glacier beds\"; \"investigation of ice-shelf stability\"; and \"identification and quantification of the feedback between ice dynamics and climate change\". The broader impacts of this research effort will help answer societally relevant questions of future ice sheet stability and sea-level change. The research also will aid in the early career development of two young investigators and will contribute to the education of both graduate and undergraduate students directly involved in the research, and results will be incorporated into courses and informal presentations.", "east": -105.2773, "geometry": "POINT(-107.66765 -75.34995)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e RADIO \u003e INS", "is_usap_dc": true, "keywords": "Ice Sheet Thickness; Ice Sheet Elevation; Glacier Dynamics; Ice Stream; Numerical Model; West Antarctic; Surface Elevation; Basal Rheology; Ice Surface Velocity; Embayment Geometry; Amundsen Sea; Hydrology; FIELD SURVEYS; Antarctic Ice Sheet; Glacier; Subglacial; DHC-6; West Antarctic Ice Sheet; Model Output; Surface Climate; Glaciers; Basal Topography; Grounding Zone; Model Input Data; Airborne Laser Altimeters; FIELD INVESTIGATION; Thwaites Glacier; Airborne Laser Altimetry; Diagnostic; Ice-Shelf Buttressing; Ice Sheet; Prognostic; Glacier Surface; Airborne Radar Sounding; Digital Elevation Model; Ice Dynamic; Antarctica; Altimetry; Antarctica (agasea); Bed Elevation; Basal Stress; LABORATORY", "locations": "Antarctica; Thwaites Glacier; West Antarctic Ice Sheet; Antarctic Ice Sheet; West Antarctic; Amundsen Sea", "north": -74.0548, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Carter, Sasha P.; Dupont, Todd K.; Holt, John W.; Morse, David L.; Parizek, Byron R.; Young, Duncan A.; Kempf, Scott D.; Blankenship, Donald D.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "NASA; NSIDC; USAP-DC", "science_programs": null, "south": -76.6451, "title": "Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "uid": "p0000174", "west": -110.058}, {"awards": "0636719 Joughin, Ian; 0636970 Tulaczyk, Slawek", "bounds_geometry": null, "dataset_titles": "Antarctic Active Subglacial Lake Inventory from ICESat Altimetry", "datasets": [{"dataset_uid": "601439", "doi": "10.15784/601439", "keywords": "Altimetry; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Icesat; Laser Altimetry; Subglacial Lake", "people": "Tulaczyk, Slawek; Smith, Ben; Joughin, Ian; Fricker, Helen", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Active Subglacial Lake Inventory from ICESat Altimetry", "url": "https://www.usap-dc.org/view/dataset/601439"}], "date_created": "Wed, 27 Jul 2011 00:00:00 GMT", "description": "Tulaczyk/0636970\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to study elevation change anomalies (henceforth ECAs), which are oval-shaped, 5-to-10 km areas observed in remote sensing images in several locations within the Ross Sea sector of the West Antarctic Ice Sheet (WAIS). Within these anomalies, surface elevation changes at rates of up to ~1 to ~2 cm per day, significantly faster than in surrounding regions. These anomalies are thought to result from filling and draining of multi-kilometer-scale subglacial water pockets. The intellectual merit of this project is that these ECA\u0027s represent an unprecedented window into the elusive world of water drainage dynamics beneath the modern Antarctic ice sheet. Although subglacial water fluxes are small compared to normal terrestrial conditions, they play an important role in controlling fast ice streaming and, potentially, stability of the ice sheet. The dearth of observational constraints on sub-ice sheet water dynamics represents one of the most important limitations on progress in quantitative modeling of ice streams and ice sheets. Such models are necessary to assess future ice sheet mass balance and to reconstruct the response of ice sheets to past climate changes. The dynamic sub-ice sheet water transport indicated by the ECAs may have also implications for studies of subglacial lakes and other subglacial environments, which may harbor life adapted to such extreme conditions. The broader impacts of this project are that it will provide advanced training opportunities to one postdoctoral fellow (UW), two female doctoral students (UCSC), who will enhance diversity in polar sciences, and at least three undergraduate students (UCSC). Project output will be relevant to broad scientific and societal interests, such as the future global sea level changes and the response of Polar Regions to climate changes. Douglas Fox, a freelance science journalist, is interested in joining the first field season to write feature articles to popular science magazines and promote the exposure of this project, and Antarctic Science in general, to mass media.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e GLAS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e GLAS", "is_usap_dc": false, "keywords": "ICESAT; Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Smith, Ben; Joughin, Ian; Tulaczyk, Slawek; SMITH, BENJAMIN", "platforms": "Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e ICE, CLOUD AND LAND ELEVATION SATELLITE (ICESAT) \u003e ICESAT", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Elevation Change Anomalies in West Antarctica and Dynamics of Subglacial Water Transport Beneath Ice Streams and their Tributaries", "uid": "p0000115", "west": null}, {"awards": "0338151 Raymond, Charles", "bounds_geometry": "POINT(-112.086 -79.468)", "dataset_titles": "Englacial Layers and Attenuation Rates across the Ross and Amundsen Sea Ice-Flow Divide (WAIS Divide), West Antarctica; Surface Elevation and Ice Thickness, Western Marie Byrd Land, Antarctica", "datasets": [{"dataset_uid": "609470", "doi": "10.7265/N5416V0W", "keywords": "Airborne Radar; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Radar; WAIS Divide", "people": "Matsuoka, Kenichi; Raymond, Charles", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Englacial Layers and Attenuation Rates across the Ross and Amundsen Sea Ice-Flow Divide (WAIS Divide), West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609470"}, {"dataset_uid": "609119", "doi": "10.7265/N5BZ63ZH", "keywords": "Airborne Radar; Airplane; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marie Byrd Land", "people": "Wilson, Douglas S.; Luyendyk, Bruce P.", "repository": "USAP-DC", "science_program": null, "title": "Surface Elevation and Ice Thickness, Western Marie Byrd Land, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609119"}], "date_created": "Tue, 11 May 2010 00:00:00 GMT", "description": "This award supports an investigation of spatial variations of ice temperature and subglacial conditions using available ice-penetrating radar data around a future deep ice coring site near the Ross and Amundsen flow divide of West Antarctic Ice Sheet. Besides geometry of reflection layers the focus will be on intensities of radar echoes from within ice deeper than several hundred meters and will also examine echoes from the bed. Preliminary studies on theory and comparison with Japanese radar data from East Antarctica suggest that large spatial variations of the vertical gradient of radar echoes from within ice exist and are caused primarily by ice temperature and secondarily by crystal-orientation fabric. The hypothesis that the vertical gradient is a proxy of ice temperature will be tested. The project will utilize an existing data set from the Support Office for Aerogeophysical Research in Antarctica (SOAR) and will complement work already underway at University of Texas to analyze the radar data. The project will provide undergraduate research experience with an emphasis on computer analysis of time series and large data sets as well as development of web-based resource of results and methods and will support an international collaboration between US and Japan through discussions on the preliminary results from their study sites. Practical procedures developed through this study will be downloadable from the project\u0027s web site in the third year and will allow investigation of other ice sheets using existing radar data sets. This project will contribute to the interpretation of the future inland West Antarctic ice core and will help in the understanding of ice sheet history and climate change.", "east": -112.086, "geometry": "POINT(-112.086 -79.468)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LASERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e RADAR ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR", "is_usap_dc": true, "keywords": "SOAR; Ice Sheet Elevation; Antarctic Ice Sheet; Layers; USAP-DC; West Antarctic; FIELD INVESTIGATION; Amundsen; Ice Sheet; Airborne Laser Altimetry; Ice Surface; Not provided; Ice Penetrating Radar; Ice Sheet Thickness; Ice Extent; Ice Surface Elevation; Ice Cover; Ice Deformation; FIELD SURVEYS; Antarctica; Ground Ice; Subglacial; Reflection Layers; West Antarctic Ice Sheet; Ice Surface Temperature; LABORATORY; Amundsen Flow Divide; Radar Echo Sounding; Internal Layering; Radar Altimetry; Ice; Radar Echoes; Englacial; Crystal Orientation Fabric; Ice Thickness; Altimetry; Ice Temperature; Radar Echo Sounder; Ice Thickness Distribution", "locations": "Antarctic Ice Sheet; Antarctica; West Antarctic; Amundsen; Amundsen Flow Divide; West Antarctic Ice Sheet", "north": -79.468, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Raymond, Charles; Matsuoka, Kenichi; Luyendyk, Bruce P.; Wilson, Douglas S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.468, "title": "Glaciological Characteristics of the Ross/Amundsen Sea Ice-flow Divide Deduced by a New Analysis of Ice-penetrating Radar Data", "uid": "p0000017", "west": -112.086}, {"awards": "0338346 Cande, Steven; 0338317 Stock, Joann", "bounds_geometry": "POLYGON((-179.9987 71.33822,-143.998893 71.33822,-107.999086 71.33822,-71.999279 71.33822,-35.999472 71.33822,0.000334999999978 71.33822,36.000142 71.33822,71.999949 71.33822,107.999756 71.33822,143.999563 71.33822,179.99937 71.33822,179.99937 59.8431,179.99937 48.34798,179.99937 36.85286,179.99937 25.35774,179.99937 13.86262,179.99937 2.3675,179.99937 -9.12762,179.99937 -20.62274,179.99937 -32.11786,179.99937 -43.61298,143.999563 -43.61298,107.999756 -43.61298,71.999949 -43.61298,36.000142 -43.61298,0.000335000000007 -43.61298,-35.999472 -43.61298,-71.999279 -43.61298,-107.999086 -43.61298,-143.998893 -43.61298,-179.9987 -43.61298,-179.9987 -32.11786,-179.9987 -20.62274,-179.9987 -9.12762,-179.9987 2.3675,-179.9987 13.86262,-179.9987 25.35774,-179.9987 36.85286,-179.9987 48.34798,-179.9987 59.8431,-179.9987 71.33822))", "dataset_titles": "Expedition Data; Expedition data of NBP0501", "datasets": [{"dataset_uid": "001652", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0406"}, {"dataset_uid": "001557", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0607C"}, {"dataset_uid": "001577", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0602"}, {"dataset_uid": "001690", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304B"}, {"dataset_uid": "001692", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304D"}, {"dataset_uid": "002627", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "001660", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0403"}, {"dataset_uid": "001691", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304C"}, {"dataset_uid": "001561", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0607A"}, {"dataset_uid": "001609", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0501B"}, {"dataset_uid": "001587", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0507"}, {"dataset_uid": "001512", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0804"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project will utilize the R/VIB Nathaniel B. Palmer\u0027s transit cruises to collect marine geophysical data on targets-of-opportunity in the southern oceans. Because the Palmer generally traverses regions only sparsely surveyed with geophysical instruments, this project represents a cost-effective way to collect important new data. The work\u0027s focus is expanding our knowledge of plate motion histories for the Antarctic and surrounding plates. The ultimate goals are improving global plate reconstructions and gaining new insight into general plate kinematics and dynamics and lithospheric rheology. Only slight deviations from the straight routes are required, and we expect to operate on one cruise per year over the three years of the project. The first cruise from New Zealand to Chile will survey a flow line of Pacific-Antarctic plate motion along the Menard fracture zone, which crosses the East Pacific Rise at ~50 S latitude. Swath bathymetry, gravity, magnetics, and a small amount of seismic reflection profiling will be collected to determine the exact trace of the fracture zone and its relationship to the associated gravity anomaly seen in shipboard and satellite radar altimetry data. These observations are critical for precise plate reconstructions, and will provide GPS-navigated locations of a major fracture zone near the northern end of the Pacific-Antarctic boundary. These data will be used in combination with similar data from the Pitman fracture zone at the southwestern end of the plate boundary and magnetic anomalies from previous cruises near the Menard fracture zone to improve high-precision plate reconstructions and evaluate the limits of internal deformation of the Pacific and Antarctic plates. The science plan for cruises in following years will be designed once transit schedules are set. In terms of broader impacts, we plan to teach an on-board marine geophysics class to graduate and undergraduate students on two cruises. The class consists of daily classroom lectures about the instruments and data; several hours per day of watch standing and data processing; and work by each student on an independent research project. We expect to accommodate 15 students per class, including participants from primarily undergraduate institutions with high minority enrollments.", "east": 179.99937, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e WATER BOTTLES", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": 71.33822, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Croon, Marcel; Stock, Joann; Miller, Alisa; Cande, Steven; Gordon, Arnold", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -43.61298, "title": "Collaborative Research: Collection of Marine Geophysical Data on Transits of the Nathaniel B. Palmer", "uid": "p0000121", "west": -179.9987}, {"awards": "0122520 Gogineni, S. Prasad", "bounds_geometry": "POLYGON((-110 -62,-105 -62,-100 -62,-95 -62,-90 -62,-85 -62,-80 -62,-75 -62,-70 -62,-65 -62,-60 -62,-60 -63.5,-60 -65,-60 -66.5,-60 -68,-60 -69.5,-60 -71,-60 -72.5,-60 -74,-60 -75.5,-60 -77,-65 -77,-70 -77,-75 -77,-80 -77,-85 -77,-90 -77,-95 -77,-100 -77,-105 -77,-110 -77,-110 -75.5,-110 -74,-110 -72.5,-110 -71,-110 -69.5,-110 -68,-110 -66.5,-110 -65,-110 -63.5,-110 -62))", "dataset_titles": "Antarctic Radar Echograms and Derived Ice Thickness Data from CReSIS", "datasets": [{"dataset_uid": "609414", "doi": "", "keywords": "Airborne Radar; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Radar", "people": "Gogineni, Prasad", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Radar Echograms and Derived Ice Thickness Data from CReSIS", "url": "https://www.usap-dc.org/view/dataset/609414"}], "date_created": "Wed, 01 Jul 2009 00:00:00 GMT", "description": "0122520\u003cbr/\u003eGogineni\u003cbr/\u003e\u003cbr/\u003eSea level has been rising over the last century. Although the immediate impact of sea level rise may be less severe than other effects of global climate change, the long-term consequences can be much more devastating since nearly 60% of the world population lives in coastal regions. Scientists have postulated that excess water is being released from polar ice sheets due to long-term, global climate change, but there are insufficient data to confirm these theories. Understanding the interactions between the ice sheets, oceans and atmosphere is essential to quantifying the role of ice sheets in sea level rise. Toward that end, this research project involves the innovative application of information technology in the development and deployment of intelligent radar sensors for measuring key glaciological parameters. \u003cbr/\u003e\u003cbr/\u003eRadar instrumentation will consist of a synthetic aperture radar (SAR) that can operate in bistatic or monostatic mode. One important application of the SAR will be in the determination of basal conditions, particularly the presence and distribution of basal water. Basal water lubricates the ice/bed interface, enhancing flow, and increasing the amount of ice discharged into the ocean. Another application of the SAR will be to measure ice thickness and map internal layers in both shallow and deep ice. Information on near-surface internal layers will be used to estimate the average, recent accumulation rate, while the deeper layers provide a history of past accumulation and flow rates. A tracked vehicle and an automated snowmobile will be used to test and demonstrate the utility of an intelligent radar in glaciological investigations.\u003cbr/\u003e\u003cbr/\u003eThe system will be developed to collect, process and analyze data in real time and in conjunction with a priori information derived from archived sources. The combined real time and archived information will be used onboard the vehicles to select and generate an optimum sensor configuration. This project thus involves innovative research in intelligent systems, sounding radars and ice sheet modeling. In addition it has a very strong public outreach and education program, which include near-real-time image broadcasts via the world wide web", "east": -60.0, "geometry": "POINT(-85 -69.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e AIRSAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IMAGING RADAR SYSTEMS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR", "is_usap_dc": true, "keywords": "Radar Echo Sounding; Not provided; FIELD SURVEYS; Airborne Radar Sounding; Radar Echo Sounder; Antarctic Ice Sheet; LABORATORY; Antarctica; Ice Sheet Thickness; Antarctic; Ice Sheet; Synthetic Aperture Radar Imagery; Radar Altimetry; Ice Sheet Elevation; FIELD INVESTIGATION; Radar", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet", "north": -62.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Gogineni, Prasad", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "ITR/SI+AP: A Mobile Sensor Web for Polar Ice Sheet Measurements", "uid": "p0000583", "west": -110.0}, {"awards": "9319379 Blankenship, Donald; 9911617 Blankenship, Donald", "bounds_geometry": null, "dataset_titles": "Antarctic Aerogeophysics Data; Antarctic Subglacial Lake Classification Inventory; RBG - Robb Glacier Survey; SOAR-Lake Vostok Survey airborne radar data; SOAR-Lake Vostok Survey bed elevation data; SOAR-Lake Vostok Survey Gravity data; SOAR-Lake Vostok Survey ice thickness data; SOAR-Lake Vostok survey magnetic anomaly data; SOAR-Lake Vostok Survey surface elevation data", "datasets": [{"dataset_uid": "601604", "doi": "10.15784/601604", "keywords": "Airborne Radar; Antarctica; Bed Elevation; Geophysics; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Surface Elevation; Ice Thickness; Robb Glacier; Transantarctic Mountains", "people": "Buck, W. Roger; Blankenship, Donald D.; Young, Duncan A.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "RBG - Robb Glacier Survey", "url": "https://www.usap-dc.org/view/dataset/601604"}, {"dataset_uid": "601296", "doi": " 10.1594/IEDA/306564", "keywords": "Airborne Magnetic; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Lake Vostok; Magnetic; Magnetic Anomaly; Magnetometer; Potential Field; SOAR; Solid Earth", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok survey magnetic anomaly data", "url": "https://www.usap-dc.org/view/dataset/601296"}, {"dataset_uid": "601295", "doi": "10.1594/IEDA/306563", "keywords": "Airborne Gravity; Airplane; Antarctica; East Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Lake Vostok; Potential Field; Solid Earth", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey Gravity data", "url": "https://www.usap-dc.org/view/dataset/601295"}, {"dataset_uid": "601299", "doi": "10.1594/IEDA/306565", "keywords": "Airborne Laser Altimeters; Airborne Laser Altimetry; Airborne Radar; Airplane; Antarctica; Bed Elevation; Bedrock Elevation; Digital Elevation Model; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Lake Vostok; Radar; Radar Echo Sounder; SOAR", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey bed elevation data", "url": "https://www.usap-dc.org/view/dataset/601299"}, {"dataset_uid": "609240", "doi": "", "keywords": "Airborne Radar; Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Navigation; Potential Field; SOAR; Solid Earth", "people": "Blankenship, Donald D.; Dalziel, Ian W.; Holt, John W.; Morse, David L.", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Aerogeophysics Data", "url": "https://www.usap-dc.org/view/dataset/609240"}, {"dataset_uid": "601300", "doi": "10.1594/IEDA/306568", "keywords": "Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Lake Vostok; Navigation; Radar; SOAR; Subglacial Lakes", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey airborne radar data", "url": "https://www.usap-dc.org/view/dataset/601300"}, {"dataset_uid": "601298", "doi": "10.1594/IEDA/306566", "keywords": "Airborne Altimetry; Airborne Laser Altimeters; Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Ice Sheet Elevation; Ice Surface; Lake Vostok; Radar Echo Sounder; SOAR; Surface Elevation", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey surface elevation data", "url": "https://www.usap-dc.org/view/dataset/601298"}, {"dataset_uid": "601297", "doi": "10.1594/IEDA/306567", "keywords": "Airborne Laser Altimeters; Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Sheet; Ice Stratigraphy; Ice Thickness; Ice Thickness Distribution; Lake Vostok; Radar; Radar Altimetry; Radar Echo Sounder; SOAR; Subglacial Lake", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey ice thickness data", "url": "https://www.usap-dc.org/view/dataset/601297"}, {"dataset_uid": "609336", "doi": "10.7265/N5CN71VX", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Subglacial Lake", "people": "Carter, Sasha P.; Holt, John W.; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Subglacial Lake Classification Inventory", "url": "https://www.usap-dc.org/view/dataset/609336"}], "date_created": "Fri, 06 Feb 2009 00:00:00 GMT", "description": "9911617\u003cbr/\u003eBlankenship\u003cbr/\u003e\u003cbr/\u003eThis award, provided jointly by the Antarctic Geology and Geophysics Program, the Antarctic Glaciology Program, and the Polar Research Support Section of the Office of Polar Programs, provides funds for continuation of the Support Office for Aerogeophysical Research (SOAR). From July 1994 to July 2000, SOAR served as a facility to accomplish aerogeophysical research in Antarctica under an agreement between the University of Texas at Austin and the National Science Foundation\u0027s Office of Polar Programs (NSF/OPP). SOAR operated and maintained an aerogeophysical instrument package that consists of an ice-penetrating radar sounder, a laser altimeter, a gravimeter and a magnetometer that are tightly integrated with each other as well as with the aircraft\u0027s avionics and power packages. An array of aircraft and ground-based GPS receivers supported kinematic differential positioning using carrier-phase observations. SOAR activities included: developing aerogeophysical research projects with NSF/OPP investigators; upgrading of the aerogeophysical instrumentation package to accommodate new science projects and advances in technology; fielding this instrument package to accomplish SOAR-developed projects; and management, reduction, and analysis of the acquired aerogeophysical data. In pursuit of 9 NSF-OPP funded aerogeophysical research projects (involving 14 investigators from 9 institutions), SOAR carried out six field campaigns over a six-year period and accomplished approximately 200,000 line kilometers of aerogeophysical surveying over both East and West Antarctica in 377 flights.\u003cbr/\u003e\u003cbr/\u003eThis award supports SOAR to undertake a one year and 8 month program of aerogeophysical activities that are consistent with continuing U.S. support for geophysical research in Antarctica. \u003cbr/\u003e- SOAR will conduct an aerogeophysical campaign during the 200/01 austral summer to accomplish surveys for two SOAR-developed projects: \"Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Studies\" (Co-PI\u0027s Bell and Studinger, LDEO); and \"Collaborative Research: Seismic Investigation of the Deep Continental Structure Across the East-West Antarctic Boundary\" (Co-PI\u0027s Weins, Washington U. and Anandakrishnan, U. Alabama). After configuration and testing of the survey aircraft in McMurdo, SOAR will conduct survey flights from an NSF-supported base adjacent to the Russian Station above Lake Vostok and briefly occupy one or two remote bases on the East Antarctic ice sheet.\u003cbr/\u003e- SOAR will reduce these aerogeophysical data and produce profiles and maps of surface elevation, bed elevation, gravity and magnetic field intensity. These results will be provided to the respective project investigators within nine months of conclusion of field activities. We will also submit a technical manuscript that describes these results to a refereed scientific journal and distribute these results to appropriate national geophysical data centers within approximately 24 months of completion of field activities.\u003cbr/\u003e- SOAR will standardize all previously reduced SOAR data products and transfer them to the appropriate national geophysical data centers by the end of this grant.\u003cbr/\u003e- SOAR will convene a workshop to establish a community consensus for future U.S. Antarctic aerogeophysical research. This workshop will be co-convened by Ian Dalziel and Richard Alley and will take place during the spring of 2001.\u003cbr/\u003e- SOAR will upgrade the existing SOAR in-field quality control procedures to serve as a web-based interface for efficient browsing of many low-level SOAR data streams.\u003cbr/\u003e- SOAR will repair and/or refurbish equipment that was used during the 2000/01 field campaign.\u003cbr/\u003e\u003cbr/\u003eSupport for SOAR is essential for accomplishing major geophysical investigations in Antarctica. Following data interpretation by the science teams, these data will provide valuable insights to the structure and evolution of the Antarctic continent.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IMAGING RADAR SYSTEMS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LIDAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e PROTON MAGNETOMETER", "is_usap_dc": true, "keywords": "Ice Sheet; Ice Sheet Elevation; Surface Winds; Snow Temperature; Atmospheric Pressure; Antarctic; West Antarctic Ice Sheet; Surface Temperature Measurements; FIELD INVESTIGATION; Surface Wind Speed Measurements; Subglacial Topography; Atmospheric Humidity Measurements; Not provided; Aerogeophysics; FIELD SURVEYS; GROUND STATIONS; Antarctica; SOAR; Snow Temperature Measurements; West Antarctica; Antarctic Ice Sheet; East Antarctic Plateau", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; West Antarctica; West Antarctic Ice Sheet; East Antarctic Plateau", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Carter, Sasha P.; Holt, John W.; Blankenship, Donald D.; Morse, David L.; Dalziel, Ian W.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR)", "uid": "p0000125", "west": null}, {"awards": "0126149 Liu, Hongxing", "bounds_geometry": null, "dataset_titles": "Access to Antarctic coastline coverage and reference documents; Access to Antarctic snow zone coverage and reference documents; Access to boundary file and reference documents; Access to ice velocity data and reference documents; Access to snow melt extent image files and reference documents", "datasets": [{"dataset_uid": "001350", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to boundary file and reference documents", "url": "http://geog.tamu.edu/~liu/research/download.htm"}, {"dataset_uid": "001640", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to snow melt extent image files and reference documents", "url": "http://geog.tamu.edu/~liu/research/download.htm"}, {"dataset_uid": "001352", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to Antarctic snow zone coverage and reference documents", "url": "http://geog.tamu.edu/~liu/research/download.htm"}, {"dataset_uid": "001351", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to Antarctic coastline coverage and reference documents", "url": "http://geog.tamu.edu/~liu/research/download.htm"}, {"dataset_uid": "001779", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to ice velocity data and reference documents", "url": "http://geog.tamu.edu/~liu/research/download.htm"}], "date_created": "Tue, 15 Aug 2006 00:00:00 GMT", "description": "This award supports a project to characterize the morphology, ice motion velocity and mass balance of Lambert Glacier, Antarctica using state-of-the-art remote sensing and GIS techniques. Lambert Glacier is the largest ice stream in the world. Because of its size, it plays a fundamental role in the study of glacial dynamics and mass budget in response to present and future climate changes. Along with the bedrock topography and ice thickness data derived from airborne radio echo soundings and snow accumulation data compiled from ground-based measurements, the dynamic behavior and mass balance of the Lambert glacial basin in a Geographic Information Systems (GIS) environment will be examined. Specific objectives are to: (1) Extract two-dimensional ice velocity field over the entire Lambert glacial basin using speckle matching and differential interferometric SAR (InSAR) techniques, and produce a full coverage of radar coherence map over the drainage basin. With the ice velocity data, calculate the strain rate field from the initiation areas of the ice stream onto the Amery Ice Shelf; (2) Derive high-resolution digital elevation model (DEM) over the Lambert glacial drainage basin using SAR stereo, differential interferometric SAR, and GLAS laser altimetry techniques. Based on the DEM, extract ice divides and ice flow directions, delineate the snow catchment basin, and calculate the balance deformation velocity and the basal shear stress; (3) Interpolate traverse ice thickness data collected by Australian and Russian airborne radio echo sounding surveys into a regular grid, and derive a regular grid of bedrock topography in combination with the DEM; (4) Integrate newly derived ice velocity and ice thickness data as well as snow accumulation rate data compiled from previous ground-based measurements into a geographic information system (GIS), and calculate the mass flux through the ice stream at the grounding lines and net mass balance throughout the drainage basin. With these new measurements and calculations derived from advanced remote sensing techniques, we will be able to improve our understanding of dynamic behavior and current mass balance status of the Lambert glacial basin, gain an insight on the relationship between ice mass change and the variation in regional and global climate at decadal scale, and provide an evaluation on the issue of whether the Lambert glacier basin is subject to surging in the context of future climate change.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e SMMR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e SSM/I; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IFSAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR", "is_usap_dc": false, "keywords": "DEM; Not provided; RADARSAT-1", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Liu, Hongxing; Jezek, Kenneth", "platforms": "Not provided; OTHER \u003e MODELS \u003e DEM; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e RADARSAT \u003e RADARSAT-1", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": null, "title": "High-Resolution Modeling of Surface Topography, Ice Motion, and Mass Balance in the Lambert Glacial Basin using Radar Remote Sensing and GIS Techniques", "uid": "p0000204", "west": null}, {"awards": "8919147 Elliot, David", "bounds_geometry": null, "dataset_titles": "Ice Thickness and Surface Elevation, Southeastern Ross Embayment, West Antarctica", "datasets": [{"dataset_uid": "609099", "doi": "10.7265/N5WW7FKC", "keywords": "Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ross Embayment; West Antarctica", "people": "Brozena, J. M.; Behrendt, J. C.; Hodge, S. M.; Kempf, Scott D.; Peters, M. E.; Morse, David L.; Bell, Robin; Studinger, Michael S.; Finn, C. A.; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "Ice Thickness and Surface Elevation, Southeastern Ross Embayment, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609099"}], "date_created": "Wed, 17 Mar 2004 00:00:00 GMT", "description": "This award will support a combined airborne radar and aeromagnetic survey of two 220 x 330 km regions between the Transantarctica Mountains and Marie Byrd Land during the 1990-91 and 1991-92 field seasons. These efforts will address significant problems identified in the Ross Transect Zone (RTZ) by the National Academy of Sciences (1986) report \"Antarctic Solid Earth Sciences Research,\" and by the report to NSF \"A Plan for a United States Program to Study the Structure and Evolution of the Antarctic Lithosphere (SEAL).\" The surveys will be flown using the NSF/TUD radar and an areomagnetics system mounted in a light aircraft. The grid spacing will be 5 km and navigation will be by radiopositioning. In addition to maps of subglacial topography and magnetic intensity, attempts will be made to reconstruct the position of subglacial diffractors in three dimensions. This reconstruction should give new information about the distribution of escarpments and therefore the tectonic relationships within the region, especially when combined with the magnetic results. These experiments will be conducted by the Byrd Polar Research Center of the Ohio State University and the Water Resources and Geological Divisions of the U.S. Geological Survey.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": true, "keywords": "Subglacial Topography; SOAR; Airborne Laser Altimeters; Ross Embayment; West Antarctica; Ice Stream; Surface Morphology; Airborne Laser Altimetry; Aerogeophysics; Ice Sheet Thickness; Airborne Radar Sounding; Ice Thickness; West Antarctic Ice Sheet; Ice Surface Elevation; Casertz", "locations": "Ross Embayment; West Antarctica; West Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Elliot, David; Bell, Robin; Blankenship, Donald D.; Brozena, J. M.; Finn, C. A.; Hodge, S. M.; Kempf, Scott D.; Behrendt, J. C.; Morse, David L.; Peters, M. E.; Studinger, Michael S.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Corridor Aerogeophysics of the Southeastern Ross Transect Zone (CASERTZ), Antarctica", "uid": "p0000056", "west": null}, {"awards": "9615347 Conway, Howard", "bounds_geometry": null, "dataset_titles": "Roosevelt Island Bedrock and Surface Elevations; Roosevelt Island Ice Core Density and Beta Count Data", "datasets": [{"dataset_uid": "609139", "doi": "10.7265/N55718ZW", "keywords": "Antarctica; Beta Count; Density; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; Roosevelt Island", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Ice Core Density and Beta Count Data", "url": "https://www.usap-dc.org/view/dataset/609139"}, {"dataset_uid": "609140", "doi": "10.7265/N51J97NB", "keywords": "Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Roosevelt Island; Solid Earth", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Bedrock and Surface Elevations", "url": "https://www.usap-dc.org/view/dataset/609140"}], "date_created": "Fri, 23 May 2003 00:00:00 GMT", "description": "This award is for two years of support to perform radar investigations across former shear margins at Roosevelt Island and Ice Stream C in order to measure changes in the configuration and continuity of internal layers and the bed. The broad goal of these investigations is to gain an understanding of ice stream flow and the timing and mechanisms of ice stream shutdown. A high-resolution short-pulse radar system will be used for detailed examination of the uppermost hundred meters of the firn and ice, and a monopulse sounding-radar system will be used to image the rest of the ice column (including internal layers) and the bed. Changes in the shape and continuity of layers will be used to interpret mechanisms and modes of ice stream flow including the possible migration of stagnation fronts and rates of shut-down. Variations in bed reflectivity will be used to deduce basal hydrology conditions across lineations. Accumulation rates deduced from snow pits and shallow cores will be used to estimate near-surface depth-age profiles. Improved understanding of ice stream history opens the possibility of linking changes in the West Antarctic ice sheet with the geologic evidence from Northern Victoria Land and the ocean record of the retreat of the grounding line in the Ross Sea.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e RA; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Radioactive Decay; Radar Echo Sounder; Antarctica; Radar Altimetry; Densification; Bedrock Elevation; Ice Sheet Elevation; Satellite Radar Data; GROUND-BASED OBSERVATIONS; Radar; Ice Core; Snow Stratigraphy; Terrain Elevation; Antarctic Ice Sheet; Stable Isotopes; Ice Surface Elevation; Surface Elevation; Glaciology; Snow Densification; Ice Core Data; GROUND STATIONS; Not provided; Altimetry; Antarctic; Ice Core Stratigraphy; Ice Stratigraphy", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Radar Investigations of Former Shear Margins: Roosevelt Island and Ice Stream C", "uid": "p0000164", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Postdoctoral Fellowship: OPP-PRF: Disentangling Ice-sheet Internal and Basal Processes through Novel Ice-penetrating Radar Integration Built on Scalable, Cloud-based Infrastructure
|
2317927 |
2023-08-07 | Hills, Benjamin |
|
Ice flow is resisted by frictional forces that keep a glacier from immediately sliding into the ocean. Friction comes in two varieties: internal friction within the ice column which resists ice deformation and basal friction which resists ice sliding over its bedrock substrate. Partitioning between internal and basal friction is difficult since both have similar expressions at the most common target for data collection?the ice-sheet surface. However, understanding this partitioning is important because the physical processes that control internal and basal friction act and evolve at different timescales. This project combines spaceborne remote sensing observations from the ice-sheet surface with ice-penetrating radar data that images the internal structure of the ice sheet in order to partition the contribution of each source of friction. Results will advance the fundamental understanding of ice flow and will strengthen projections of future sea-level rise. Broader Impacts of the project include facilitating data reuse for the ice-sheet research community; the strategy for distributing the software toolkit includes student mentorship and hackathon teaching. The researcher will expand the impact of existing ice-penetrating datasets by 1) developing new open-source algorithms for extraction of englacial stratigraphy; 2) creating stratigraphy data products that can be assimilated into future studies of ice motion; and 3) using statistical analyses to integrate radar datasets into larger-scale interpretations with remote sensing datasets of ice-surface velocity, altimetry, climate variables, and model-derived basal friction. The computational tools developed as part of this effort will be integrated and released as a reusable software toolkit for ice-penetrating radar data analysis. The toolkit will be validated and tested by deployment to cloud-hosted JupyterHub instances, which will serve as a singular interface to access radar and remote sensing data, load them into a unified framework, step through a predefined processing flow, and carry out statistical analyses. In some areas, the imaged englacial stratigraphy will deviate from the ice-dynamic setting expected based on surface measurements alone. There, the internal dynamics (or ice-dynamic history) are inconsistent with the surface dynamics, likely because internal friction is poorly constrained and misattributed to basal friction instead. This work will develop the data and statistical tools for constraining internal friction from ice-penetrating radar, making those data products and tools available for future work. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||||||||||||||||
Collaborative Research: Diagnosing the Role of Ocean Eddies in Carbon Cycling from a High-resolution Data Assimilating Ocean Biogeochemical Model
|
2149500 |
2022-03-14 | Williams, Nancy; Chambers, Don; Tamsitt, Veronica | No dataset link provided | The Southern Ocean accounts for ~40% of the total ocean uptake of anthropogenic CO2 despite covering only 20% of the global ocean surface, and is particularly rich in long-lived eddies. These eddies, or large ocean whirlpools which can be observed from space, can alter air-sea fluxes of CO2 in ways that are not yet fully understood. New observations from autonomous platforms measuring ocean carbon content suggest that there is significant heterogeneity in ocean carbon fluxes which can be linked to these dynamic eddy features. Due to computational and time limitations, ocean eddies are not explicitly represented in most climate models, limiting our ability to understand the role eddies play in the ocean carbon cycle. This work will explore the impact of eddies on ocean carbon content and air-sea CO2 fluxes in the Southern Ocean using both model- and observation-based strategies and the findings will improve our understanding of the ocean’s role in the carbon cycle and in global climate. While this work will primarily be focused on the Southern Ocean, the results will be globally applicable. The researchers will also broaden interest in physical and chemical oceanography among middle school-age girls in the University of South Florida’s Oceanography Camp for Girls by augmenting existing lessons with computational methods in oceanography. This project aims to quantify the impacts of mesoscale eddy processes on ocean carbon content and air-sea carbon dioxide (CO2) fluxes in the Southern Ocean. For the modeling component, the investigators will explore relationships between eddies, ocean carbon content, and air-sea CO2 fluxes within the 1/6-degree resolution Biogeochemical Southern Ocean State Estimate (B-SOSE). They investigators will produce high-resolution composites of the carbon content and physical structure within both cyclonic and anticyclonic eddies by region, quantify the influence of these eddies on the overall simulated air-sea CO2 flux, and diagnose the physical mechanisms driving this influence. For the observational component, the investigators will match eddies observed via satellite altimetry to ocean carbon observations and characterize observed relationships between eddies and ocean carbon content with a focus on Southern Ocean winter observations where light limits biological processes, allowing isolation of the contribution of physical processes. This work will also provide motivation for higher resolution and better eddy parameterizations in climate models, more mesoscale biogeochemical observations, and integration of satellite SSH data into efforts to map air-sea fluxes of CO2. Each summer, the PI delivers a lab lesson at the University of South Florida Oceanography Camp for Girls (OCG), recognized by NSF as a “Model STEM Program for Women and Girls” focused on broadening participation by placing emphasis on recruiting a diverse group of young women. As part of this project, the existing interactive Jupyter Notebook-based Python coding Lab lesson will be augmented with a B-SOSE-themed modeling component, which will broaden interest in physical and chemical oceanography and data science, and expose campers to computational methods in oceanography. | POLYGON((-180 -30,-144 -30,-108 -30,-72 -30,-36 -30,0 -30,36 -30,72 -30,108 -30,144 -30,180 -30,180 -36,180 -42,180 -48,180 -54,180 -60,180 -66,180 -72,180 -78,180 -84,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84,-180 -78,-180 -72,-180 -66,-180 -60,-180 -54,-180 -48,-180 -42,-180 -36,-180 -30)) | POINT(0 -89.999) | false | false | |||||||||||||||||||||||||
Collaborative Research: Diagnosing the role of ocean eddies in carbon cycling from a high- resolution data assimilating ocean biogeochemical model
|
2149501 |
2022-03-04 | Mazloff, Matthew | No dataset link provided | This project aims to quantify the impacts of mesoscale eddy processes on ocean carbon content and air-sea carbon dioxide (CO2) fluxes in the Southern Ocean. For the modeling component, the investigators will explore relationships between eddies, ocean carbon content, and air-sea CO2 fluxes within the 1/6-degree resolution Biogeochemical Southern Ocean State Estimate (B-SOSE). They investigators will produce high-resolution composites of the carbon content and physical structure within both cyclonic and anticyclonic eddies by region, quantify the influence of these eddies on the overall simulated air-sea CO2 flux, and diagnose the physical mechanisms driving this influence. For the observational component, the investigators will match eddies observed via satellite altimetry to ocean carbon observations and characterize observed relationships between eddies and ocean carbon content with a focus on Southern Ocean winter observations where light limits biological processes, allowing isolation of the contribution of physical processes. This work will also provide motivation for higher resolution and better eddy parameterizations in climate models, more mesoscale biogeochemical observations, and integration of satellite SSH data into efforts to map air-sea fluxes of CO2. Each summer, the PI delivers a lab lesson at the University of South Florida Oceanography Camp for Girls (OCG), recognized by NSF as a “Model STEM Program for Women and Girls” focused on broadening participation by placing emphasis on recruiting a diverse group of young women. As part of this project, the existing interactive Jupyter Notebook-based Python coding Lab lesson will be augmented with a B-SOSE-themed modeling component, which will broaden interest in physical and chemical oceanography and data science, and expose campers to computational methods in oceanography. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||||||||||||||||
The Role of Cyclonic Upwelling Eddies in Southern Ocean CO2 Flux
|
2048840 |
2021-06-16 | Williams, Nancy; Chambers, Don; Lindstrom, Eric; Carter, Brendan | No dataset link provided | We propose to better characterize the role of eddies in wintertime air-sea carbon dioxide (CO2) fluxes in the Indian sector of the Southern Ocean using two autonomous sailing vehicles called Saildrones during austral winter 2021. The Saildrones will carry sensors to directly measure atmospheric and oceanic concentrations of CO2 (pCO2), atmospheric pressure, and wind speed to allow calculation of air-sea CO2 flux at 5-km resolution and similar accuracy to an underway ship-based measurement. The Saildrone data from this mission, a 2019 mission, and BGC Argo float data from 2014–2020 will be co-located with eddies derived from satellite altimetry to quantify the relationships between eddies and ocean carbon content. The overall objectives of this project are to determine the relationship between wintertime pCO2 variability and the presence and structure of eddies and to use these relationships to create a better representation of mesoscale variability in Southern Ocean CO2 flux. | POLYGON((0 -30,15 -30,30 -30,45 -30,60 -30,75 -30,90 -30,105 -30,120 -30,135 -30,150 -30,150 -33.5,150 -37,150 -40.5,150 -44,150 -47.5,150 -51,150 -54.5,150 -58,150 -61.5,150 -65,135 -65,120 -65,105 -65,90 -65,75 -65,60 -65,45 -65,30 -65,15 -65,0 -65,0 -61.5,0 -58,0 -54.5,0 -51,0 -47.5,0 -44,0 -40.5,0 -37,0 -33.5,0 -30)) | POINT(75 -47.5) | false | false | |||||||||||||||||||||||||
Understanding Firn Rheology Through Laboratory Compaction Experiments and Radar Data
|
1935438 |
2021-06-03 | McCarthy, Christine M.; Kingslake, Jonathan | No dataset link provided | The ice sheets of Antarctica and Greenland are losing mass and contributing to accelerating global sea-level rise. Satellite altimetry provides precise measurement of ice-sheet volume change, but computing ice-sheet mass change the quantity relevant for estimating the ice sheets sea-level contribution requires knowing the density of the ice sheet. The density near the ice-sheet surface also affects age estimates of air bubbles recovered in ice cores, which are a key source of information on past climate changes. Ice-sheet density is primarily controlled by the rate at which firn (snow that has persisted for a year or more on ice sheets) compacts into ice, but there is currently no widely accepted theory of how this compaction occurs. The goal of this project is thus to advance understanding of how firn densifies. The team will conduct laboratory experiments and analyze ice-penetrating radar and ice-core data from Antarctica. A key desired outcome of the project is a new model of firn densification that can be used to improve satellite-based altimetry measurements of present-day ice-sheet change and reconstructions of past climate changes from ice cores. This project will combine laboratory experiments, numerical modeling, and geophysical techniques to determine the rheology of firn as it compacts to form ice. The team will use two methods to measure firn compaction: (1) lab-based experiments and (2) analysis of ice-core and radar data. For the lab-based work, the team will conduct a suite of compaction experiments on synthetic firn samples under uni-axial strain and constant temperature and axial stress. They will also measure the grain-size evolution. By running a large number of experiments (> 25), the team will constrain key parameters that determine how firn compaction rate depends on density, temperature, grain size, and axial stress. The experiments will be conducted in a table-top apparatus at temperatures as low as -40 degrees C and axial stresses up to 4 MPa. For the field-data-based component, the team will analyze ice-core and ice-penetrating radar data to produce the first coincident set of radar-derived firn compaction rates, borehole temperatures, firn densities, and firn grain sizes. Results from lab and field data will be tied together using a numerical firn compaction model. This model is formulated using conservation of mass, momentum, and energy, along with an explicit description of firn rheology and grain-size evolution. Constraints on firn rheology will be incorporated into this model and the team will use it to examine fundamental questions about how changes in the climate affect firn density. This is a crucial unknown that contributes significant measurement uncertainty in estimates of past and present climate change. | None | None | false | false | |||||||||||||||||||||||||
The Reference Elevation Model of Antarctica
|
1543501 |
2021-05-18 | Howat, Ian; Myoung-Jong Noh, |
|
The Reference Elevation Model of Antarctica (REMA) is the first continental-scale digital elevation model (DEM) at a resolution of less than 10 m. REMA is created from stereophotogrammetry with submeter resolution optical, commercial satellite imagery. The higher spatial and radiometric resolutions of this imagery enable high-quality surface extraction over the low-contrast ice sheet surface. The DEMs are registered to satellite radar and laser altimetry and are mosaicked to provide a continuous surface covering nearly 95 % the entire continent. The mosaic includes an error estimate and a time stamp, enabling change measurement. Typical elevation errors are less than 1 m, as validated by the comparison to airborne laser altimetry. REMA provides a powerful new resource for Antarctic science and provides a proof of concept for generating accurate high-resolution repeat topography at continental scales. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||||||||||||||||
Collaborative Research: Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP)
|
1443690 |
2020-07-07 | Young, Duncan A.; Blankenship, Donald D.; Roberts, Jason; Bo, Sun | This study focuses on processing and interpretation of internationally collected aerogeophysical data from the Southern Plateau of the East Antarctic Ice Sheet. The data include ice penetrating radar data, laser altimetry, gravity and magnetics. The project will provide information on geological trends under the ice, the topography and character of the ice/rock interface, and the stratigraphy of the ice. The project will also provide baseline site characterization for future drilling. Future drilling sites and deep ice cores for old ice require that the base of the ice sheet be frozen to the bed (i.e. no free water at the interface between rock and ice) and the assessment will map the extent of frozen vs. thawed areas. Specifically, three main outcomes are anticipated for this project. First, the study will provide an assessment of the viability of Titan Dome, a subglacial highland region located near South Pole, as a potential old ice drilling prospect. The assessment will include determining the hydraulic context of the bed by processing and interpreting the radar data, ice sheet mass balance through time by mapping englacial reflectors in the ice and connecting them to ice stratigraphy in the recent South Pole, and ice sheet geometry using laser altimetry. Second, the study will provide an assessment of the geological context of the Titan Dome region with respect to understanding regional geologic boundaries and the potential for bedrock sampling. For these two goals, we will use data opportunistically collected by China, and the recent PolarGAP dataset. Third, the study will provide an assessment of the risk posture for RAID site targeting in the Titan Dome region, and the Dome C region. This will use a high-resolution dataset the team collected previously at Dome C, an area similar to the coarser resolution data collected at Titan Dome, and will enable an understanding of what is missed by the wide lines spacing at Titan Dome. Specifically, we will model subglacial hydrology with and without the high resolution data, and statistically examine the detection of subglacial mountains (which could preserve old ice) and subglacial lakes (which could destroy old ice), as a function of line spacing. | POLYGON((95 -68,100.5 -68,106 -68,111.5 -68,117 -68,122.5 -68,128 -68,133.5 -68,139 -68,144.5 -68,150 -68,150 -70.2,150 -72.4,150 -74.6,150 -76.8,150 -79,150 -81.2,150 -83.4,150 -85.6,150 -87.8,150 -90,144.5 -90,139 -90,133.5 -90,128 -90,122.5 -90,117 -90,111.5 -90,106 -90,100.5 -90,95 -90,95 -87.8,95 -85.6,95 -83.4,95 -81.2,95 -79,95 -76.8,95 -74.6,95 -72.4,95 -70.2,95 -68)) | POINT(122.5 -79) | false | false | ||||||||||||||||||||||||||
Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work
|
9978236 |
2020-04-24 | Bell, Robin; Studinger, Michael S. | This award, provided by the Office of Polar Programs under the Life in Extreme Environments (LExEn) Program, supports a geophysical study of Lake Vostok, a large lake beneath the East Antarctic Ice Sheet. <br/><br/>Subglacial ecosystems, in particular subglacial lake ecosystems are extreme oligotrophic environments. These environments, and the ecosystems which may exist within them, should provide key insights into a range of fundamental questions about the development of Earth and other bodies in the Solar System including: 1) the processes associated with rapid evolutionary radiation after the extensive Neoproterozoic glaciations; 2) the overall carbon cycle through glacial and interglacial periods; and 3) the possible adaptations organisms may require to thrive in environments such as on Europa, the ice covered moon of Jupiter. Over 70 subglacial lakes have been identified beneath the 3-4 kilometer thick ice of Antarctica. One lake, Lake Vostok, is sufficiently large to be clearly identified from space with satellite altimetry. Lake Vostok is similar to Lake Ontario in area but with a much larger volume including measured water depths of 600 meters. The overlying ice sheet is acting as a conveyer belt continually delivering new water, nutrients, gas hydrates, sediments and microbes as the ice sheet flows across the lake. <br/><br/>The goal of this program is to determine the fundamental boundary conditions for this subglacial lake as an essential first step toward understanding the physical processes within the lake. An aerogeophysical survey over the lake and into the surrounding regions will be acquired to meet this goal. This data set includes gravity, magnetic, laser altimetry and ice penetrating radar data and will be used to compile a basic set of ice surface elevation, subglacial topography, gravity and magnetic anomaly maps. <br/><br/>Potential field methods widely used in the oil industry will be modified to estimate the subglacial topography from gravity data where the ice penetrating radar will be unable to recover the depth of the lake. A similar method can be modified to estimate the thickness of the sediments beneath the lake from magnetic data. These methods will be tested and applied to subglacial lakes near South Pole prior to the Lake Vostok field campaign and will provide valuable comparisons to the planned survey. Once the methods have been adjusted for the Lake Vostok application, maps of the water cavity and sediment thickness beneath the lake will be produced.<br/><br/>These maps will become tools to explore the geologic origin of the lake. The two endmember models are, first, that the lake is an active tectonic rift such as Lake Baikal and, second, the lake is the result of glacial scouring. The distinct characteristics of an extensional rift can be easily identified with our aerogeophysical survey. The geological interpretation of the airborne geophysical survey will provide the first geological constraints of the interior of the East Antarctic continent based on modern data. In addition, the underlying geology will influence the ecosystem within the lake. <br/><br/>One of the critical issues for the ecosystem within the lake will be the flux of nutrients. A preliminary estimation of the regions of freezing and melting based on the distance between distinctive internal layers observed on the radar data will be made. These basic boundary conditions will provide guidance for a potential international effort aimed at in situ exploration of the lake and improve the understanding of East Antarctic geologic structures. | POLYGON((101 -75.5,101.9 -75.5,102.8 -75.5,103.7 -75.5,104.6 -75.5,105.5 -75.5,106.4 -75.5,107.3 -75.5,108.2 -75.5,109.1 -75.5,110 -75.5,110 -75.85,110 -76.2,110 -76.55,110 -76.9,110 -77.25,110 -77.6,110 -77.95,110 -78.3,110 -78.65,110 -79,109.1 -79,108.2 -79,107.3 -79,106.4 -79,105.5 -79,104.6 -79,103.7 -79,102.8 -79,101.9 -79,101 -79,101 -78.65,101 -78.3,101 -77.95,101 -77.6,101 -77.25,101 -76.9,101 -76.55,101 -76.2,101 -75.85,101 -75.5)) | POINT(105.5 -77.25) | false | false | ||||||||||||||||||||||||||
Collaborative Research: Lithospheric Controls on the Behavior of the West Antarctic Ice Sheet: Corridor Aerogeophysics of Eastern Ross Transect Zone
|
9319854 9319877 9319369 |
2020-04-24 | Bell, Robin; Blankenship, Donald D.; Finn, C. A. | This award supports a project to conduct an integrated geophysical survey over a large portion of the West Antarctic Ice Sheet (WAIS) toward an understanding of the dynamic behavior of the ice sheet and the nature of the lithosphere beneath the ice sheet. West Antarctica is characterized by two kinds of the Earth s most dynamic systems, a continental rift (the West Antarctic Rift System) and a marine based ice sheet (the WAIS). Active continental rift systems, caused by divergent plate motions, result in thinned continental crust. Associated with the thin crust are fault-bounded sedimentary basins, active volcanism, and elevated heat flow. Marine ice sheets are characterized by rapidly moving streams of ice, penetrating and draining a slowly moving ice reservoir. Evidence left by past marine ice sheets indicates that they may have a strongly non- linear response to long-term climate change which results in massive and rapid discharges of ice. Understanding the evolution of the ice stream system and its interaction with the interior ice is the key to understanding this non-linear response. Subglacial geology and ice dynamics are generally studied in isolation, but evidence is mounting that the behavior of the West Antarctic ice streams may be closely linked to the nature of the underlying West Antarctic rift system. The fast moving ice streams appear to glide on a lubricating layer of water-saturated till. This till requires easily eroded sediment and a source of water, both of which may be controlled by the geology of the rift system; the sediments from the fault-bounded basins and the water from the elevated heat flux associated with active lithospheric extension. This project represents an interdisciplinary aerogeophysical study to characterize the lithosphere of the West Antarctic rift system beneath critical regions of the WAIS. The objective is to determine the effects of the rift architect ure, as manifested by the distribution of sedimentary basins and volcanic constructs, on the ice stream system. The research tool is a unique geophysical aircraft with laser altimetry, ice penetrating radar, aerogravity, and aeromagnetic systems integrated with a high precision kinematic GPS navigation system. It is capable of imaging both the surface and bed of the ice sheet while simultaneously measuring the gravity and magnetic signature of the subglacial lithosphere. Work to be done under this award will build on work already completed in the southern sector of central West Antarctica and it will focus on the region of the Byrd Subglacial Basin and Ice Stream D. The ice sheet in these regions is completely covered by satellite imagery and so this project will be integrated with remote sensing studies of the ice stream. The changing dynamics of Ice Stream D, as with other West Antarctic ice streams, seem to be correlated with changes in the morphological provinces of the underlying rift system. The experimental targets proceed from the divide of the interior ice, downstream through the onset of streaming to the trunk of Ice Stream D. This study will be coordinated with surface glaciological investigations of Ice Stream D and will be used to guide cooperative over-snow seismic investigations of the central West Antarctic rift system. The data will also be used to select a site for future deep ice coring along the crest of the WAIS. These data represent baseline data for long term global change monitoring work and represent crucial boundary conditions for ice sheet modeling efforts. | POLYGON((-155 -77.5,-150 -77.5,-145 -77.5,-140 -77.5,-135 -77.5,-130 -77.5,-125 -77.5,-120 -77.5,-115 -77.5,-110 -77.5,-105 -77.5,-105 -78.2,-105 -78.9,-105 -79.6,-105 -80.3,-105 -81,-105 -81.7,-105 -82.4,-105 -83.1,-105 -83.8,-105 -84.5,-110 -84.5,-115 -84.5,-120 -84.5,-125 -84.5,-130 -84.5,-135 -84.5,-140 -84.5,-145 -84.5,-150 -84.5,-155 -84.5,-155 -83.8,-155 -83.1,-155 -82.4,-155 -81.7,-155 -81,-155 -80.3,-155 -79.6,-155 -78.9,-155 -78.2,-155 -77.5)) | POINT(-130 -81) | false | false | ||||||||||||||||||||||||||
Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica
|
1341725 1341606 1341717 1341513 1543483 |
2019-06-10 | Ackley, Stephen; Bell, Robin; Weissling, Blake; Nuss, Wendell; Maksym, Edward; Stammerjohn, Sharon; Cassano, John; Guest, Peter; Sedwick, Peter; Xie, Hongjie | The one place on Earth consistently showing increases in sea ice area, duration, and concentration is the Ross Sea in Antarctica. Satellite imagery shows about half of the Ross Sea increases are associated with changes in the austral fall, when the new sea ice is forming. The most pronounced changes are also located near polynyas, which are areas of open ocean surrounded by sea ice. To understand the processes driving the sea ice increase, and to determine if the increase in sea ice area is also accompanied by a change in ice thickness, this project will conduct an oceanographic cruise to the polynyas of the Ross Sea in April and May, 2017, which is the austral fall. The team will deploy state of the art research tools including unmanned airborne systems (UASs, commonly called drones), autonomous underwater vehicles (AUVs), and remotely operated underwater vehicles (ROVs). Using these tools and others, the team will study atmospheric, oceanic, and sea ice properties and processes concurrently. A change in sea ice production will necessarily change the ocean water below, which may have significant consequences for global ocean circulation patterns, a topic of international importance. All the involved institutions will be training students, and all share the goal of expanding climate literacy in the US, emphasizing the role high latitudes play in the Earth's dynamic climate.<br/><br/>The main goal of the project is to improve estimates of sea ice production and water mass transformation in the Ross Sea. The team will fully capture the spatial and temporal changes in air-ice-ocean interactions when they are initiated in the austral fall, and then track the changes into the winter and spring using ice buoys, and airborne mapping with the newly commissioned IcePod instrument system, which is deployed on the US Antarctic Program's LC-130 fleet. The oceanographic cruise will include stations in and outside of both the Terra Nova Bay and Ross Ice Shelf polynyas. Measurements to be made include air-sea boundary layer fluxes of heat, freshwater, and trace gases, radiation, and meteorology in the air; ice formation processes, ice thickness, snow depth, mass balance, and ice drift within the sea ice zone; and temperature, salinity, and momentum in the ocean below. Following collection of the field data, the team will improve both model parameterizations of air-sea-ice interactions and remote sensing algorithms. Model parameterizations are needed to determine if sea-ice production has increased in crucial areas, and if so, why (e.g., stronger winds or fresher oceans). The remote sensing validation will facilitate change detection over wider areas and verify model predictions over time. Accordingly this project will contribute to the international Southern Ocean Observing System (SOOS) goal of measuring essential climate variables continuously to monitor the state of the ocean and ice cover into the future. | POLYGON((-180 -55,-177 -55,-174 -55,-171 -55,-168 -55,-165 -55,-162 -55,-159 -55,-156 -55,-153 -55,-150 -55,-150 -57.3,-150 -59.6,-150 -61.9,-150 -64.2,-150 -66.5,-150 -68.8,-150 -71.1,-150 -73.4,-150 -75.7,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -75.7,160 -73.4,160 -71.1,160 -68.8,160 -66.5,160 -64.2,160 -61.9,160 -59.6,160 -57.3,160 -55,162 -55,164 -55,166 -55,168 -55,170 -55,172 -55,174 -55,176 -55,178 -55,-180 -55)) | POINT(-175 -66.5) | false | false | ||||||||||||||||||||||||||
Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica
|
0732804 0732906 0732730 0732869 |
2014-12-30 | Truffer, Martin; Stanton, Timothy; Bindschadler, Robert; Behar, Alberto; Nowicki, Sophie; Anandakrishnan, Sridhar; Holland, David; McPhee, Miles G. |
|
Collaborative With: McPhee 0732804, Holland 0732869, Truffer 0732730, Stanton 0732926, Anandakrishnan 0732844 <br/>Title: Collaborative Research: IPY: Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica<br/><br/>The Office of Polar Programs, Antarctic Integrated and System Science Program has made this award to support an interdisciplinary study of the effects of the ocean on the stability of glacial ice in the most dynamic region the West Antarctic Ice Sheet, namely the Pine Island Glacier in the Amundsen Sea Embayment. The collaborative project builds on the knowledge gained by the highly successful West Antarctic Ice Sheet program and is being jointly sponsored with NASA. Recent observations indicate a significant ice loss, equivalent to 10% of the ongoing increase in sea-level rise, in this region. These changes are largest along the coast and propagate rapidly inland, indicating the critical impact of the ocean on ice sheet stability in the region. While a broad range of remote sensing and ground-based instrumentation is available to characterize changes of the ice surface and internal structure (deformation, ice motion, melt) and the shape of the underlying sediment and rock bed, instrumentation has yet to be successfully deployed for observing boundary layer processes of the ocean cavity which underlies the floating ice shelf and where rapid melting is apparently occurring. Innovative, mini ocean sensors that can be lowered through boreholes in the ice shelf (about 500 m thick) will be developed and deployed to automatically provide ocean profiling information over at least three years. Their data will be transmitted through a conducting cable frozen in the borehole to the surface where it will be further transmitted via satellite to a laboratory in the US. Geophysical and remote sensing methods (seismic, GPS, altimetry, stereo imaging, radar profiling) will be applied to map the geometry of the ice shelf, the shape of the sub ice-shelf cavity, the ice surface geometry and deformations within the glacial ice. To integrate the seismic, glaciological and oceanographic observations, a new 3-dimensional coupled ice-ocean model is being developed which will be the first of its kind. NASA is supporting satellite based research and the deployment of a robotic-camera system to explore the environment in the ocean cavity underlying the ice shelf and NSF is supporting all other aspects of this study. <br/><br/>Broader impacts: This project is motivated by the potential societal impacts of rapid sea level rise and should result in critically needed improvements in characterizing and predicting the behavior of coupled ocean-ice systems. It is a contribution to the International Polar Year and was endorsed by the International Council for Science as a component of the "Multidisciplinary Study of the Amundsen Sea Embayment" proposal #258 of the honeycomb of endorsed IPY activities. The research involves substantial international partnerships with the British Antarctic Survey and the University of Bristol in the UK. The investigators will partner with the previously funded "Polar Palooza" education and outreach program in addition to undertaking a diverse set of outreach activities of their own. Eight graduate students and one undergraduate as well as one post doc will be integrated into this research project. | POINT(-100.728 -75.0427) | POINT(-100.728 -75.0427) | false | false | |||||||||||||||||||||||||
Collaborative Research: Mass Transit: Controls on Grounding and Ungrounding at Marine Ice Sheet Outlets
|
0838810 |
2013-07-01 | Hulbe, Christina; Fahnestock, Mark | No dataset link provided | Hulbe/0838810 <br/><br/>This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>This award supports a modeling study of the processes in West Antarctic grounding zones, the transition from ice resting on bedrock to ice floating on the ocean surface with an eye toward understanding the interrelated causes of rapid change in grounding line configuration and outlet flow. A combination of satellite remote sensing and numerical modeling will be used to investigate both past and ongoing patterns of change. New high-resolution surface elevation maps made from a novel combination of satellite laser altimetry and remotely observed surface shape provide a unique view of grounding zones. These data will be used to diagnose events associated with the shutdown of Kamb Ice Stream, to investigate a recent discharge event on Institute Ice Stream and to investigate ongoing change at the outlet of Whillans Ice Stream, along with other modern processes around the West Antarctic. An existing numerical model of coupled ice sheet, ice stream, and ice shelf flow will be used and improved as part of the research project. The broader impacts of the project relate to the importance of understanding the role of polar ice sheets in global sea level rise. The work will contribute to the next round of deliberations for the Intergovernmental Panel on Climate Change (IPCC). Improved views, interpretations, and insights into the physical processes that govern variability in ice sheet outlet streams will help correct the shortcomings of the last IPCC report that didn?t include the role of ice sheets in sea level rise. The PIs have a strong record of public outreach, involvement in the professional community, and student training. | None | None | false | false | |||||||||||||||||||||||||
IPY Research: Investigating the Cryospheric Evolution of the Central Antarctic Plate (ICECAP)
|
0733025 |
2012-09-04 | Siegert, Martin; Roberts, Jason; Van Ommen, Tas; Warner, Roland; Richter, Thomas; Greenbaum, Jamin; Holt, John W.; Young, Duncan A.; Blankenship, Donald D. | This project is an aerogeophysical survey to explore unknown terrain in East Antarctica to answer questions of climate change and earth science. The methods include ice-penetrating radar, gravity, and magnetic measurements. The project?s main goal is to investigate the stability and migration of ice divides that guide flow of the East Antarctic ice sheet, the world?s largest. The project also maps ice accumulation over the last interglacial, identifies subglacial lakes, and characterizes the catchment basins of the very largest glacial basins, including Wilkes and Aurora. The outcomes contribute to ice sheet models relevant to understanding sea level rise in a warming world. The work will also help understand the regional geology. Buried beneath miles-thick ice, East Antarctica is virtually uncharacterized, but is considered a keystone for tectonic reconstructions and other geologic questions. The region also hosts subglacial lakes, whose geologic histories are unknown. <br/><br/>The broader impacts are extensive, and include societal relevance for understanding sea level rise, outreach in various forms, and education at the K12 through postdoctoral levels. The project contributes to the International Polar Year (2007-2009) by addressing key IPY themes on frontiers in polar exploration and climate change. It also includes extensive international collaboration with the United Kingdom, Australia, France and other nations; and offers explicit opportunities for early career scientists. | POLYGON((95 -65,103.5 -65,112 -65,120.5 -65,129 -65,137.5 -65,146 -65,154.5 -65,163 -65,171.5 -65,180 -65,180 -66.7,180 -68.4,180 -70.1,180 -71.8,180 -73.5,180 -75.2,180 -76.9,180 -78.6,180 -80.3,180 -82,171.5 -82,163 -82,154.5 -82,146 -82,137.5 -82,129 -82,120.5 -82,112 -82,103.5 -82,95 -82,95 -80.3,95 -78.6,95 -76.9,95 -75.2,95 -73.5,95 -71.8,95 -70.1,95 -68.4,95 -66.7,95 -65)) | POINT(137.5 -73.5) | false | false | ||||||||||||||||||||||||||
IPY: Collaborative Proposal: Constraining the Mass-Balance Deficit of the Amundsen Coast's Glaciers
|
0631973 0632031 |
2012-06-20 | Joughin, Ian; Medley, Brooke; Das, Sarah | No dataset link provided | Joughin 0631973<br/><br/>This award supports a project to gather data to better understand the mass balance of the West Antarctic Ice Sheet, in the Pine Island and Thwaites region, through the combination of radar altimetry and surface-based ice-core measurements of accumulation. The intellectual merit of the project is that the results of the field work will provide information on decadal-scale average accumulation extending back through the last century and will help constrain a modeling effort to determine how coastal changes propagate inland, to allow better prediction of future change. Comparison of the basin averaged accumulation with ice discharge determined using Interferometric Synthetic Aperture Radar (InSAR) velocity data will provide improved mass-balance estimates. Study of changes in flow speed will produce a record of mass balance over the last three decades. Analysis of the satellite altimeter record in conjunction with annual accumulation estimates also will provide estimates of changes and variability in mass balance. The broader impacts of the work are that it will make a significant contribution to future IPCC estimates of sea level, which are important for projection of the impacts of increased sea level on coastal communities. The research will contribute to the graduate education of students at the Universities of Washington and Kansas and will enrich K-12 education through the direct participation of the PIs in classroom activities. Informal science education includes 4-day glacier flow demonstrations at the Polar Science Weekend held annually at the Pacific Science Center in Seattle. The project also will communicate results through Center for the Remote Sensing of Ice Sheets (CReSIS) outreach effort. All field and remotely-sensed data sets will be archived and distributed by the National Snow and Ice Data Center. This project is relevant to IPY in that the West Antarctic Ice Sheet is losing mass, in large part because of rapid thinning of the Amundsen Coast glaciers so, it will directly address the NSF IPY emphasis on "ice sheet history and dynamics." The project is also international in scope. | None | None | false | false | |||||||||||||||||||||||||
Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System
|
0636724 0758274 |
2012-05-15 | Carter, Sasha P.; Dupont, Todd K.; Holt, John W.; Morse, David L.; Parizek, Byron R.; Young, Duncan A.; Kempf, Scott D.; Blankenship, Donald D. | This award supports a three-year study to isolate essential physical processes affecting Thwaites Glacier (TG) in the Amundsen Sea Embayment (ASE) of West Antarctica using a suite of existing numerical models in conjunction with existing and International Polar Year (IPY)-proposed data sets. Four different models will be utilized to explore the effects of embayment geometry, ice-shelf buttressing, basal-stress distribution, surface mass balance, surface climate, and inland dynamic perturbations on the present and future dynamics of TG. This particular collection of models is ideally suited for the broad nature of this investigation, as they incorporate efficient and complementary simplifications of the stress field (shallow-ice and shelf-stream), system geometry (1-d and 2-d plan-view and flowline; depth-integrated and depth-dependent), and mass-momentum energy coupling (mechanical and thermo-mechanical). The models will be constrained and validated by data sets (including regional maps of ice thickness, surface elevation, basal topography, ice surface velocity, and potential fields) and geophysical data analyses (including increasing the spatial resolution of surface elevations, improving regional estimates of geothermal flux, and characterizing the sub-glacial interface of grounded ice as well as the grounding-zone transition between grounded and floating ice). The intellectual merit of the research focuses on several of the NSF Glaciology program's emphases, including: ice dynamics, numerical modeling, and remote sensing of ice sheets. In addition, the research directly addresses the following specific NSF objectives: "investigation of the physics of fast glacier flow with emphasis on processes at glacier beds"; "investigation of ice-shelf stability"; and "identification and quantification of the feedback between ice dynamics and climate change". The broader impacts of this research effort will help answer societally relevant questions of future ice sheet stability and sea-level change. The research also will aid in the early career development of two young investigators and will contribute to the education of both graduate and undergraduate students directly involved in the research, and results will be incorporated into courses and informal presentations. | POLYGON((-110.058 -74.0548,-109.57993 -74.0548,-109.10186 -74.0548,-108.62379 -74.0548,-108.14572 -74.0548,-107.66765 -74.0548,-107.18958 -74.0548,-106.71151 -74.0548,-106.23344 -74.0548,-105.75537 -74.0548,-105.2773 -74.0548,-105.2773 -74.31383,-105.2773 -74.57286,-105.2773 -74.83189,-105.2773 -75.09092,-105.2773 -75.34995,-105.2773 -75.60898,-105.2773 -75.86801,-105.2773 -76.12704,-105.2773 -76.38607,-105.2773 -76.6451,-105.75537 -76.6451,-106.23344 -76.6451,-106.71151 -76.6451,-107.18958 -76.6451,-107.66765 -76.6451,-108.14572 -76.6451,-108.62379 -76.6451,-109.10186 -76.6451,-109.57993 -76.6451,-110.058 -76.6451,-110.058 -76.38607,-110.058 -76.12704,-110.058 -75.86801,-110.058 -75.60898,-110.058 -75.34995,-110.058 -75.09092,-110.058 -74.83189,-110.058 -74.57286,-110.058 -74.31383,-110.058 -74.0548)) | POINT(-107.66765 -75.34995) | false | false | ||||||||||||||||||||||||||
Collaborative Research: Elevation Change Anomalies in West Antarctica and Dynamics of Subglacial Water Transport Beneath Ice Streams and their Tributaries
|
0636719 0636970 |
2011-07-27 | Smith, Ben; Joughin, Ian; Tulaczyk, Slawek; SMITH, BENJAMIN |
|
Tulaczyk/0636970<br/><br/>This award supports a project to study elevation change anomalies (henceforth ECAs), which are oval-shaped, 5-to-10 km areas observed in remote sensing images in several locations within the Ross Sea sector of the West Antarctic Ice Sheet (WAIS). Within these anomalies, surface elevation changes at rates of up to ~1 to ~2 cm per day, significantly faster than in surrounding regions. These anomalies are thought to result from filling and draining of multi-kilometer-scale subglacial water pockets. The intellectual merit of this project is that these ECA's represent an unprecedented window into the elusive world of water drainage dynamics beneath the modern Antarctic ice sheet. Although subglacial water fluxes are small compared to normal terrestrial conditions, they play an important role in controlling fast ice streaming and, potentially, stability of the ice sheet. The dearth of observational constraints on sub-ice sheet water dynamics represents one of the most important limitations on progress in quantitative modeling of ice streams and ice sheets. Such models are necessary to assess future ice sheet mass balance and to reconstruct the response of ice sheets to past climate changes. The dynamic sub-ice sheet water transport indicated by the ECAs may have also implications for studies of subglacial lakes and other subglacial environments, which may harbor life adapted to such extreme conditions. The broader impacts of this project are that it will provide advanced training opportunities to one postdoctoral fellow (UW), two female doctoral students (UCSC), who will enhance diversity in polar sciences, and at least three undergraduate students (UCSC). Project output will be relevant to broad scientific and societal interests, such as the future global sea level changes and the response of Polar Regions to climate changes. Douglas Fox, a freelance science journalist, is interested in joining the first field season to write feature articles to popular science magazines and promote the exposure of this project, and Antarctic Science in general, to mass media. | None | None | false | false | |||||||||||||||||||||||||
Glaciological Characteristics of the Ross/Amundsen Sea Ice-flow Divide Deduced by a New Analysis of Ice-penetrating Radar Data
|
0338151 |
2010-05-11 | Raymond, Charles; Matsuoka, Kenichi; Luyendyk, Bruce P.; Wilson, Douglas S. | This award supports an investigation of spatial variations of ice temperature and subglacial conditions using available ice-penetrating radar data around a future deep ice coring site near the Ross and Amundsen flow divide of West Antarctic Ice Sheet. Besides geometry of reflection layers the focus will be on intensities of radar echoes from within ice deeper than several hundred meters and will also examine echoes from the bed. Preliminary studies on theory and comparison with Japanese radar data from East Antarctica suggest that large spatial variations of the vertical gradient of radar echoes from within ice exist and are caused primarily by ice temperature and secondarily by crystal-orientation fabric. The hypothesis that the vertical gradient is a proxy of ice temperature will be tested. The project will utilize an existing data set from the Support Office for Aerogeophysical Research in Antarctica (SOAR) and will complement work already underway at University of Texas to analyze the radar data. The project will provide undergraduate research experience with an emphasis on computer analysis of time series and large data sets as well as development of web-based resource of results and methods and will support an international collaboration between US and Japan through discussions on the preliminary results from their study sites. Practical procedures developed through this study will be downloadable from the project's web site in the third year and will allow investigation of other ice sheets using existing radar data sets. This project will contribute to the interpretation of the future inland West Antarctic ice core and will help in the understanding of ice sheet history and climate change. | POINT(-112.086 -79.468) | POINT(-112.086 -79.468) | false | false | ||||||||||||||||||||||||||
Collaborative Research: Collection of Marine Geophysical Data on Transits of the Nathaniel B. Palmer
|
0338346 0338317 |
2010-05-04 | Croon, Marcel; Stock, Joann; Miller, Alisa; Cande, Steven; Gordon, Arnold |
|
This project will utilize the R/VIB Nathaniel B. Palmer's transit cruises to collect marine geophysical data on targets-of-opportunity in the southern oceans. Because the Palmer generally traverses regions only sparsely surveyed with geophysical instruments, this project represents a cost-effective way to collect important new data. The work's focus is expanding our knowledge of plate motion histories for the Antarctic and surrounding plates. The ultimate goals are improving global plate reconstructions and gaining new insight into general plate kinematics and dynamics and lithospheric rheology. Only slight deviations from the straight routes are required, and we expect to operate on one cruise per year over the three years of the project. The first cruise from New Zealand to Chile will survey a flow line of Pacific-Antarctic plate motion along the Menard fracture zone, which crosses the East Pacific Rise at ~50 S latitude. Swath bathymetry, gravity, magnetics, and a small amount of seismic reflection profiling will be collected to determine the exact trace of the fracture zone and its relationship to the associated gravity anomaly seen in shipboard and satellite radar altimetry data. These observations are critical for precise plate reconstructions, and will provide GPS-navigated locations of a major fracture zone near the northern end of the Pacific-Antarctic boundary. These data will be used in combination with similar data from the Pitman fracture zone at the southwestern end of the plate boundary and magnetic anomalies from previous cruises near the Menard fracture zone to improve high-precision plate reconstructions and evaluate the limits of internal deformation of the Pacific and Antarctic plates. The science plan for cruises in following years will be designed once transit schedules are set. In terms of broader impacts, we plan to teach an on-board marine geophysics class to graduate and undergraduate students on two cruises. The class consists of daily classroom lectures about the instruments and data; several hours per day of watch standing and data processing; and work by each student on an independent research project. We expect to accommodate 15 students per class, including participants from primarily undergraduate institutions with high minority enrollments. | POLYGON((-179.9987 71.33822,-143.998893 71.33822,-107.999086 71.33822,-71.999279 71.33822,-35.999472 71.33822,0.000334999999978 71.33822,36.000142 71.33822,71.999949 71.33822,107.999756 71.33822,143.999563 71.33822,179.99937 71.33822,179.99937 59.8431,179.99937 48.34798,179.99937 36.85286,179.99937 25.35774,179.99937 13.86262,179.99937 2.3675,179.99937 -9.12762,179.99937 -20.62274,179.99937 -32.11786,179.99937 -43.61298,143.999563 -43.61298,107.999756 -43.61298,71.999949 -43.61298,36.000142 -43.61298,0.000335000000007 -43.61298,-35.999472 -43.61298,-71.999279 -43.61298,-107.999086 -43.61298,-143.998893 -43.61298,-179.9987 -43.61298,-179.9987 -32.11786,-179.9987 -20.62274,-179.9987 -9.12762,-179.9987 2.3675,-179.9987 13.86262,-179.9987 25.35774,-179.9987 36.85286,-179.9987 48.34798,-179.9987 59.8431,-179.9987 71.33822)) | POINT(0 -89.999) | false | false | |||||||||||||||||||||||||
ITR/SI+AP: A Mobile Sensor Web for Polar Ice Sheet Measurements
|
0122520 |
2009-07-01 | Gogineni, Prasad |
|
0122520<br/>Gogineni<br/><br/>Sea level has been rising over the last century. Although the immediate impact of sea level rise may be less severe than other effects of global climate change, the long-term consequences can be much more devastating since nearly 60% of the world population lives in coastal regions. Scientists have postulated that excess water is being released from polar ice sheets due to long-term, global climate change, but there are insufficient data to confirm these theories. Understanding the interactions between the ice sheets, oceans and atmosphere is essential to quantifying the role of ice sheets in sea level rise. Toward that end, this research project involves the innovative application of information technology in the development and deployment of intelligent radar sensors for measuring key glaciological parameters. <br/><br/>Radar instrumentation will consist of a synthetic aperture radar (SAR) that can operate in bistatic or monostatic mode. One important application of the SAR will be in the determination of basal conditions, particularly the presence and distribution of basal water. Basal water lubricates the ice/bed interface, enhancing flow, and increasing the amount of ice discharged into the ocean. Another application of the SAR will be to measure ice thickness and map internal layers in both shallow and deep ice. Information on near-surface internal layers will be used to estimate the average, recent accumulation rate, while the deeper layers provide a history of past accumulation and flow rates. A tracked vehicle and an automated snowmobile will be used to test and demonstrate the utility of an intelligent radar in glaciological investigations.<br/><br/>The system will be developed to collect, process and analyze data in real time and in conjunction with a priori information derived from archived sources. The combined real time and archived information will be used onboard the vehicles to select and generate an optimum sensor configuration. This project thus involves innovative research in intelligent systems, sounding radars and ice sheet modeling. In addition it has a very strong public outreach and education program, which include near-real-time image broadcasts via the world wide web | POLYGON((-110 -62,-105 -62,-100 -62,-95 -62,-90 -62,-85 -62,-80 -62,-75 -62,-70 -62,-65 -62,-60 -62,-60 -63.5,-60 -65,-60 -66.5,-60 -68,-60 -69.5,-60 -71,-60 -72.5,-60 -74,-60 -75.5,-60 -77,-65 -77,-70 -77,-75 -77,-80 -77,-85 -77,-90 -77,-95 -77,-100 -77,-105 -77,-110 -77,-110 -75.5,-110 -74,-110 -72.5,-110 -71,-110 -69.5,-110 -68,-110 -66.5,-110 -65,-110 -63.5,-110 -62)) | POINT(-85 -69.5) | false | false | |||||||||||||||||||||||||
Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR)
|
9319379 9911617 |
2009-02-06 | Carter, Sasha P.; Holt, John W.; Blankenship, Donald D.; Morse, David L.; Dalziel, Ian W. | 9911617<br/>Blankenship<br/><br/>This award, provided jointly by the Antarctic Geology and Geophysics Program, the Antarctic Glaciology Program, and the Polar Research Support Section of the Office of Polar Programs, provides funds for continuation of the Support Office for Aerogeophysical Research (SOAR). From July 1994 to July 2000, SOAR served as a facility to accomplish aerogeophysical research in Antarctica under an agreement between the University of Texas at Austin and the National Science Foundation's Office of Polar Programs (NSF/OPP). SOAR operated and maintained an aerogeophysical instrument package that consists of an ice-penetrating radar sounder, a laser altimeter, a gravimeter and a magnetometer that are tightly integrated with each other as well as with the aircraft's avionics and power packages. An array of aircraft and ground-based GPS receivers supported kinematic differential positioning using carrier-phase observations. SOAR activities included: developing aerogeophysical research projects with NSF/OPP investigators; upgrading of the aerogeophysical instrumentation package to accommodate new science projects and advances in technology; fielding this instrument package to accomplish SOAR-developed projects; and management, reduction, and analysis of the acquired aerogeophysical data. In pursuit of 9 NSF-OPP funded aerogeophysical research projects (involving 14 investigators from 9 institutions), SOAR carried out six field campaigns over a six-year period and accomplished approximately 200,000 line kilometers of aerogeophysical surveying over both East and West Antarctica in 377 flights.<br/><br/>This award supports SOAR to undertake a one year and 8 month program of aerogeophysical activities that are consistent with continuing U.S. support for geophysical research in Antarctica. <br/>- SOAR will conduct an aerogeophysical campaign during the 200/01 austral summer to accomplish surveys for two SOAR-developed projects: "Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Studies" (Co-PI's Bell and Studinger, LDEO); and "Collaborative Research: Seismic Investigation of the Deep Continental Structure Across the East-West Antarctic Boundary" (Co-PI's Weins, Washington U. and Anandakrishnan, U. Alabama). After configuration and testing of the survey aircraft in McMurdo, SOAR will conduct survey flights from an NSF-supported base adjacent to the Russian Station above Lake Vostok and briefly occupy one or two remote bases on the East Antarctic ice sheet.<br/>- SOAR will reduce these aerogeophysical data and produce profiles and maps of surface elevation, bed elevation, gravity and magnetic field intensity. These results will be provided to the respective project investigators within nine months of conclusion of field activities. We will also submit a technical manuscript that describes these results to a refereed scientific journal and distribute these results to appropriate national geophysical data centers within approximately 24 months of completion of field activities.<br/>- SOAR will standardize all previously reduced SOAR data products and transfer them to the appropriate national geophysical data centers by the end of this grant.<br/>- SOAR will convene a workshop to establish a community consensus for future U.S. Antarctic aerogeophysical research. This workshop will be co-convened by Ian Dalziel and Richard Alley and will take place during the spring of 2001.<br/>- SOAR will upgrade the existing SOAR in-field quality control procedures to serve as a web-based interface for efficient browsing of many low-level SOAR data streams.<br/>- SOAR will repair and/or refurbish equipment that was used during the 2000/01 field campaign.<br/><br/>Support for SOAR is essential for accomplishing major geophysical investigations in Antarctica. Following data interpretation by the science teams, these data will provide valuable insights to the structure and evolution of the Antarctic continent. | None | None | false | false | ||||||||||||||||||||||||||
High-Resolution Modeling of Surface Topography, Ice Motion, and Mass Balance in the Lambert Glacial Basin using Radar Remote Sensing and GIS Techniques
|
0126149 |
2006-08-15 | Liu, Hongxing; Jezek, Kenneth | This award supports a project to characterize the morphology, ice motion velocity and mass balance of Lambert Glacier, Antarctica using state-of-the-art remote sensing and GIS techniques. Lambert Glacier is the largest ice stream in the world. Because of its size, it plays a fundamental role in the study of glacial dynamics and mass budget in response to present and future climate changes. Along with the bedrock topography and ice thickness data derived from airborne radio echo soundings and snow accumulation data compiled from ground-based measurements, the dynamic behavior and mass balance of the Lambert glacial basin in a Geographic Information Systems (GIS) environment will be examined. Specific objectives are to: (1) Extract two-dimensional ice velocity field over the entire Lambert glacial basin using speckle matching and differential interferometric SAR (InSAR) techniques, and produce a full coverage of radar coherence map over the drainage basin. With the ice velocity data, calculate the strain rate field from the initiation areas of the ice stream onto the Amery Ice Shelf; (2) Derive high-resolution digital elevation model (DEM) over the Lambert glacial drainage basin using SAR stereo, differential interferometric SAR, and GLAS laser altimetry techniques. Based on the DEM, extract ice divides and ice flow directions, delineate the snow catchment basin, and calculate the balance deformation velocity and the basal shear stress; (3) Interpolate traverse ice thickness data collected by Australian and Russian airborne radio echo sounding surveys into a regular grid, and derive a regular grid of bedrock topography in combination with the DEM; (4) Integrate newly derived ice velocity and ice thickness data as well as snow accumulation rate data compiled from previous ground-based measurements into a geographic information system (GIS), and calculate the mass flux through the ice stream at the grounding lines and net mass balance throughout the drainage basin. With these new measurements and calculations derived from advanced remote sensing techniques, we will be able to improve our understanding of dynamic behavior and current mass balance status of the Lambert glacial basin, gain an insight on the relationship between ice mass change and the variation in regional and global climate at decadal scale, and provide an evaluation on the issue of whether the Lambert glacier basin is subject to surging in the context of future climate change. | None | None | false | false | ||||||||||||||||||||||||||
Corridor Aerogeophysics of the Southeastern Ross Transect Zone (CASERTZ), Antarctica
|
8919147 |
2004-03-17 | Elliot, David; Bell, Robin; Blankenship, Donald D.; Brozena, J. M.; Finn, C. A.; Hodge, S. M.; Kempf, Scott D.; Behrendt, J. C.; Morse, David L.; Peters, M. E.; Studinger, Michael S. |
|
This award will support a combined airborne radar and aeromagnetic survey of two 220 x 330 km regions between the Transantarctica Mountains and Marie Byrd Land during the 1990-91 and 1991-92 field seasons. These efforts will address significant problems identified in the Ross Transect Zone (RTZ) by the National Academy of Sciences (1986) report "Antarctic Solid Earth Sciences Research," and by the report to NSF "A Plan for a United States Program to Study the Structure and Evolution of the Antarctic Lithosphere (SEAL)." The surveys will be flown using the NSF/TUD radar and an areomagnetics system mounted in a light aircraft. The grid spacing will be 5 km and navigation will be by radiopositioning. In addition to maps of subglacial topography and magnetic intensity, attempts will be made to reconstruct the position of subglacial diffractors in three dimensions. This reconstruction should give new information about the distribution of escarpments and therefore the tectonic relationships within the region, especially when combined with the magnetic results. These experiments will be conducted by the Byrd Polar Research Center of the Ohio State University and the Water Resources and Geological Divisions of the U.S. Geological Survey. | None | None | false | false | |||||||||||||||||||||||||
Radar Investigations of Former Shear Margins: Roosevelt Island and Ice Stream C
|
9615347 |
2003-05-23 | Conway, Howard |
|
This award is for two years of support to perform radar investigations across former shear margins at Roosevelt Island and Ice Stream C in order to measure changes in the configuration and continuity of internal layers and the bed. The broad goal of these investigations is to gain an understanding of ice stream flow and the timing and mechanisms of ice stream shutdown. A high-resolution short-pulse radar system will be used for detailed examination of the uppermost hundred meters of the firn and ice, and a monopulse sounding-radar system will be used to image the rest of the ice column (including internal layers) and the bed. Changes in the shape and continuity of layers will be used to interpret mechanisms and modes of ice stream flow including the possible migration of stagnation fronts and rates of shut-down. Variations in bed reflectivity will be used to deduce basal hydrology conditions across lineations. Accumulation rates deduced from snow pits and shallow cores will be used to estimate near-surface depth-age profiles. Improved understanding of ice stream history opens the possibility of linking changes in the West Antarctic ice sheet with the geologic evidence from Northern Victoria Land and the ocean record of the retreat of the grounding line in the Ross Sea. | None | None | false | false |