{"dp_type": "Dataset", "free_text": "Notothenioid Fishes"}
[{"awards": "1543383 Postlethwait, John; 1440435 Ducklow, Hugh; 2026045 Schofield, Oscar; 0636696 DeVries, Arthur; 1142158 Cheng, Chi-Hing", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Mon, 22 Jul 2024 00:00:00 GMT", "description": "This data set includes photographs and metadata from phylogenetic analyses associated with the description of Akarotaxis gouldae n. sp., or the Banded Dragonfish (Bathydraconidae).", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Bellingshausen Sea; Cryosphere; Southern Ocean", "locations": "Southern Ocean; Bellingshausen Sea; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Corso, Andrew; Desvignes, Thomas; McDowell, Jan; Cheng, Chi-Hing; Biesack, Ellen; Steinberg, Deborah; Hilton, Eric", "project_titles": "Antarctic Fish and MicroRNA Control of Development and Physiology; Antarctic Notothenioid Fish Freeze Avoidance and Genome-wide Evolution for Life in the Cold; Environmental, Organismal and Evolutionary Physiology of Freeze Avoidance in Antarctic Notothenioid Fishes; Evolution of hemoglobin genes in notothenioid fishes; LTER Palmer, Antarctica (PAL): Land-Shelf-Ocean Connectivity, Ecosystem Resilience and Transformation in a Sea-Ice Influenced Pelagic Ecosystem", "projects": [{"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}, {"proj_uid": "p0010085", "repository": "USAP-DC", "title": "Antarctic Fish and MicroRNA Control of Development and Physiology"}, {"proj_uid": "p0000133", "repository": "USAP-DC", "title": "LTER Palmer, Antarctica (PAL): Land-Shelf-Ocean Connectivity, Ecosystem Resilience and Transformation in a Sea-Ice Influenced Pelagic Ecosystem"}, {"proj_uid": "p0010091", "repository": "USAP-DC", "title": "Antarctic Notothenioid Fish Freeze Avoidance and Genome-wide Evolution for Life in the Cold"}, {"proj_uid": "p0000560", "repository": "USAP-DC", "title": "Environmental, Organismal and Evolutionary Physiology of Freeze Avoidance in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LTER", "south": -90.0, "title": "Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)", "uid": "601811", "west": -180.0}, {"awards": "1543383 Postlethwait, John; 1947040 Postlethwait, John; 2232891 Postlethwait, John", "bounds_geometry": ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"], "date_created": "Fri, 08 Sep 2023 00:00:00 GMT", "description": "Phylogenetic tree of Notothenioid species used in analyses and results of the HyPhy MEME tests for sites evolving under episodic diversifying selection in notothenioid hemoglobin genes in the research article \u201cCold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\u201d by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Genetic Analysis; Hemoglobin; Icefish; Notothenioid; Notothenioid Fishes; Plunderfish; Sub-Antarctic", "locations": "Sub-Antarctic; Antarctica", "north": -37.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Postlethwait, John", "project_titles": "Evolution of hemoglobin genes in notothenioid fishes", "projects": [{"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "MEME tests of sites evolving under episodic diversifying selection in notothenioid hemoglobin genes.", "uid": "601730", "west": -180.0}, {"awards": "1543383 Postlethwait, John; 1947040 Postlethwait, John; 2232891 Postlethwait, John", "bounds_geometry": ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"], "date_created": "Fri, 08 Sep 2023 00:00:00 GMT", "description": "Phylogenetic tree of Notothenioid species used in analyses and results of the HyPhy RELAX tests for pervasive changes in strength of natural selection on hemoglobin genes in the research article \u201cCold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\u201d by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Genetic Analysis; Hemoglobin; Icefish; Notothenioid; Notothenioid Fishes; Plunderfish; Sub-Antarctic", "locations": "Sub-Antarctic; Antarctica", "north": -37.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Postlethwait, John", "project_titles": "Evolution of hemoglobin genes in notothenioid fishes", "projects": [{"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "RELAX tests for pervasive changes in strength of natural selection on hemoglobin genes in notothenioids.", "uid": "601731", "west": -180.0}, {"awards": "1543383 Postlethwait, John; 1947040 Postlethwait, John; 2232891 Postlethwait, John", "bounds_geometry": ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"], "date_created": "Fri, 08 Sep 2023 00:00:00 GMT", "description": "Notothenioid hemoglobin protein 3D modeling using SWISS-MODEL in the research article \u201cCold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\u201d by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Genetic Analysis; Hemoglobin; Icefish; Notothenioid; Notothenioid Fishes; Plunderfish; Sub-Antarctic", "locations": "Sub-Antarctic; Antarctica", "north": -37.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Postlethwait, John", "project_titles": "Evolution of hemoglobin genes in notothenioid fishes", "projects": [{"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Notothenioid hemoglobin protein 3D modeling.", "uid": "601732", "west": -180.0}, {"awards": "2232891 Postlethwait, John; 1543383 Postlethwait, John; 1947040 Postlethwait, John", "bounds_geometry": ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"], "date_created": "Fri, 08 Sep 2023 00:00:00 GMT", "description": "Phylogenetic tree of Notothenioid species used in analyses and results of the HyPhy aBSREL tests for diversifying selection in notothenioid hemoglobin genes in the research article \u201cCold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\u201d by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Gene; Genetic Analysis; Hemoglobin; Icefish; Notothenioid; Notothenioid Fishes; Plunderfish; Sub-Antarctic", "locations": "Antarctica; Antarctica; Sub-Antarctic", "north": -37.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Postlethwait, John", "project_titles": "Evolution of hemoglobin genes in notothenioid fishes", "projects": [{"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "aBSREL tests for episodic diversifying selection on hemoglobin genes in notothenioids.", "uid": "601728", "west": -180.0}, {"awards": "1543383 Postlethwait, John; 1947040 Postlethwait, John; 2232891 Postlethwait, John", "bounds_geometry": ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"], "date_created": "Fri, 08 Sep 2023 00:00:00 GMT", "description": "Results of hemoglobin gene KaKs (dN/dS) analyses in notothenioids in the research article \u201cCold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\u201d by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Genetic Analysis; Hemoglobin; Icefish; Notothenioid; Notothenioid Fishes; Plunderfish; Sub-Antarctic", "locations": "Sub-Antarctic; Antarctica", "north": -37.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Postlethwait, John", "project_titles": "Evolution of hemoglobin genes in notothenioid fishes", "projects": [{"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Rates of hemoglobin evolution among genes and across notothenioid species.", "uid": "601729", "west": -180.0}, {"awards": "1543383 Postlethwait, John; 1947040 Postlethwait, John; 2232891 Postlethwait, John", "bounds_geometry": ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"], "date_created": "Thu, 24 Aug 2023 00:00:00 GMT", "description": "Phylogenetic tree of 36 notothenioid species and five outgroup used throughout the study \"Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\" by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Gene; Hemoglobin; Icefish; Notothenioid; Plunderfish; Sub-Antarctic", "locations": "Sub-Antarctic; Antarctica", "north": -37.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Postlethwait, John", "project_titles": "Evolution of hemoglobin genes in notothenioid fishes", "projects": [{"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Notothenioid species tree used in the study \"Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\"", "uid": "601721", "west": -180.0}, {"awards": "1543383 Postlethwait, John; 1947040 Postlethwait, John; 2232891 Postlethwait, John", "bounds_geometry": ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"], "date_created": "Thu, 24 Aug 2023 00:00:00 GMT", "description": "All input and output files of the phylogenetic trees of hemoglobin proteins in Notothenioids from the study \"Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\" by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, and John H. Postlethwait.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Gene; Hemoglobin; Icefish; Notothenioid; Plunderfish; Sub-Antarctic", "locations": "Antarctica; Sub-Antarctic", "north": -37.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Postlethwait, John", "project_titles": "Evolution of hemoglobin genes in notothenioid fishes", "projects": [{"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Phylogenetic trees of hemoglobin proteins in notothenioids from the study \"Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\"", "uid": "601722", "west": -180.0}, {"awards": "1644196 Cziko, Paul", "bounds_geometry": ["POLYGON((162.647931 -77.000624,163.049652 -77.000624,163.451373 -77.000624,163.853094 -77.000624,164.254815 -77.000624,164.656536 -77.000624,165.058257 -77.000624,165.459978 -77.000624,165.861699 -77.000624,166.26342 -77.000624,166.665141 -77.000624,166.665141 -77.0856883,166.665141 -77.1707526,166.665141 -77.2558169,166.665141 -77.3408812,166.665141 -77.4259455,166.665141 -77.5110098,166.665141 -77.5960741,166.665141 -77.6811384,166.665141 -77.7662027,166.665141 -77.851267,166.26342 -77.851267,165.861699 -77.851267,165.459978 -77.851267,165.058257 -77.851267,164.656536 -77.851267,164.254815 -77.851267,163.853094 -77.851267,163.451373 -77.851267,163.049652 -77.851267,162.647931 -77.851267,162.647931 -77.7662027,162.647931 -77.6811384,162.647931 -77.5960741,162.647931 -77.5110098,162.647931 -77.4259455,162.647931 -77.3408812,162.647931 -77.2558169,162.647931 -77.1707526,162.647931 -77.0856883,162.647931 -77.000624))"], "date_created": "Sun, 03 Jan 2021 00:00:00 GMT", "description": "Nearshore benthic seawater temperature (plus pressure and salinity for some sites) in McMurdo Sound, Antarctica for 2017-2019. Data includes those from standalone temperature (sometimes pressure) for several sites around McMurdo Sound as well as data from the cabled McMurdo Oceanographic Observatory moored conductivity-temperature-depth (CTD) sensor at the McMurdo Station seawater intake jetty. Data are from high precision SeaBird sensors (SBE56, SBE39, SBE19Plus and SBE37), with sample intervals from 90 sec to 15 min, depending on site. Sampled sites include Explorer\u0027s Cove at New Harbor, Cape Evans, Granite Harbor, and the McMurdo Station jetty. All sensors were deployed near or on the benthos at 20-25 m deep, in typical nearshore benthic fish and invertebrate habitat.", "east": 166.665141, "geometry": ["POINT(164.656536 -77.4259455)"], "keywords": "Antarctica; Benthic Ecology; CTD; Depth; McMurdo Sound; Oceanography; Oceans; Physical Oceanography; Pressure; Salinity; Seawater Measurements; Seawater Temperature; Supercooling; Tides", "locations": "McMurdo Sound; Antarctica", "north": -77.000624, "nsf_funding_programs": "Antarctic Instrumentation and Support", "persons": "Cziko, Paul", "project_titles": "Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0010147", "repository": "USAP-DC", "title": "Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.851267, "title": "High-resolution nearshore benthic seawater temperature from around McMurdo Sound, Antarctica (2017-2019)", "uid": "601420", "west": 162.647931}, {"awards": "1644196 Cziko, Paul", "bounds_geometry": ["POINT(166.6645 -77.851)"], "date_created": "Tue, 29 Dec 2020 00:00:00 GMT", "description": "Long-term images taken by the camera from the McMurdo Oceanographic Observatory mooring in McMurdo Sound, Antarctica during its 2-year deployment (2017-2019). The mooring was situated at the seawater terminus of the McMurdo Station seawater intake jetty at 21 m deep, typically under thick sea ice cover. The automated 360\u00b0 pan-tilt-zoom (ptz) camera, inside of an air-filled self-cleaning dome, was programmed to move to 42 ptz \"waypoints\" every hour and take a still 1920x1080 JPG image for archiving. Lights, oriented in one direction only, illuminated a rock/rubble slope for much of each winter, when there was no natural illumination. The camera was situated on a concrete block, which elevated the camera about 1m off of the seabed. Motile and sessile benthic biota, including notothenioid fishes, anemones, pycnogonids, asteroids, soft-corals, sponges, and nudibranchs are commonly seen in the images. Some ptz waypoints survey the water column and underside of the sea ice, capturing also the presence of larval/juvenile fishes and other plankton/nekton in the water column. Maximum intervals between subsequent images from the same ptz waypoint were about 1 hour, though many waypoints were captured at somewhat higher frequency. Interval images, taken at 5-min intervals irrespective of camera orientation, were also captured. Images are occasionally obscured/impacted by the camera dome\u0027s wiper, darkness, low visibility, minor fouling of the camera dome, and out-of-focus lens elements. ", "east": 166.6645, "geometry": ["POINT(166.6645 -77.851)"], "keywords": "Antarctica; Benthic Ecology; Benthic Invertebrates; Biota; McMurdo Sound; Notothenioid; Notothenioid Fishes; Photo/video; Photo/Video; Rocky Reef Community; Soft-Bottom Community; Timelaps Images", "locations": "Antarctica; McMurdo Sound", "north": -77.851, "nsf_funding_programs": "Antarctic Instrumentation and Support", "persons": "Cziko, Paul", "project_titles": "Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0010147", "repository": "USAP-DC", "title": "Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.851, "title": "Long-term underwater images from around a single mooring site in McMurdo Sound, Antarctica (2017-2019)", "uid": "601417", "west": 166.6645}, {"awards": "1644196 Cziko, Paul", "bounds_geometry": ["POINT(166.6645 -77.851)"], "date_created": "Tue, 29 Dec 2020 00:00:00 GMT", "description": "Broadband underwater acoustic recordings from the McMurdo Oceanographic Observatory mooring near the seaward terminus of the McMurdo Station seawater intake jetty. An omnidirectional Ocean Sonics icListen hydrophone (SB2-ETH, SN 1713) recorded continuously at 512 kilosamples/second (256 kHz Nyquist frequency; 24 bit) for 2 years. The hydrophone was mounted vertically on a steel strut (insulated with rubber sheet) at about 70 cm above the mud/gravel seabed at 21m deep, with the sloping 45\u00b0 rubble face of the jetty just behind the hydrophone. Temporal coverage is \u003e90%, with gaps and truncated files arising due to network and power outages and software bugs. The audio recordings are 10 minute WAV files, compressed using the lossless FLAC code (Free Lossless Audio Codec, xiph.org; about 33MB of data/minute compressed; 100MB/min uncompressed). The hydrophone was under thick (to 3 m) sea ice cover for the majority of the dataset. The majority of the recorded biological sounds were produced by Weddell seals. Orca were present intermittently (~10 days total) in January-March in both summers. Known non-biological sounds include irregular low-intensity, broad-spectrum clicks and cracks from the sea ice cover, occasional wind noise, a 1.5-s gurgle with components to 200kHz every 90s from the CTD\u2019s pump, a broad-spectrum mechanical sound for 3 min every 4 h from the observatory\u0027s underwater camera cleaning system, low-intensity whines (about 18, 58, 83, and 130 kHz, though variable over the dataset) thought to be from the station seawater pumps (\u003e100 m away within the jetty\u2019s well casing), and intermittent noises from tracked-vehicles and helicopters (September\u2013February), SCUBA divers (October\u2013December), and ships (January). Given hosting limitations, only every 6th file (roughly 10min/hour) has been archived here. Additional data can be obtained by contacting the primary author of the dataset, who will maintain it for as long as possible. Audio spectrogram images (PNGs) at three frequency ranges (three stacked panels per image, upper limits of 2.5, 25, and 256 kHz) from the entire dataset (all data, not subsampled) are also archived separately.", "east": 166.6645, "geometry": ["POINT(166.6645 -77.851)"], "keywords": "Antarctica; Bioacoustics; Biota; Hydroacoustics; Killer Whales; Leptonychotes Weddellii; McMurdo Sound; Oceans; Orcinus Orca; Sea Ice; Weddell Seal; Whales", "locations": "Antarctica; McMurdo Sound", "north": -77.851, "nsf_funding_programs": "Antarctic Instrumentation and Support", "persons": "Cziko, Paul", "project_titles": "Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0010147", "repository": "USAP-DC", "title": "Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.851, "title": "Long-term broadband underwater acoustic recordings from McMurdo Sound, Antarctica (2017-2019)", "uid": "601416", "west": 166.6645}, {"awards": "1341663 O\u0027Brien, Kristin; 1341602 Crockett, Elizabeth", "bounds_geometry": null, "date_created": "Thu, 24 Dec 2020 00:00:00 GMT", "description": "Antarctic notothenioids are noted for extreme stenothermy, yet underpinnings of their thermal limits are not fully understood. We hypothesized that properties of ventricular membranes could explain previously observed differences among notothenioids in temperature onset of cardiac arrhythmias and persistent asystole. Microsomes were prepared using ventricles from six species of notothenioids, including four species from the hemoglobin-less (Hb-) family Channichthyidae (icefishes), which also differentially express cardiac myoglobin (Mb), and two species from the (Hb+) Nototheniidae. We determined membrane fluidity and structural integrity by quantifying fluorescence depolarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) and leakage of 5(6)-carboxyfluorescein, respectively, over a temperature range from ambient (0 \u00b0C) to 20 \u00b0C. Compositions of membrane phospholipids and cholesterol contents were also quantified. Membranes from all four species of icefishes exhibited greater fluidity than membranes from the red-blooded species N. coriiceps. Thermal sensitivity of fluidity did not vary among species. The greatest thermal sensitivity to leakage occurred between 0 and 5 \u00b0C for all species, while membranes from the icefish, Chaenocephalus aceratus (Hb-/Mb-) displayed leakage that was nearly 1.5-fold greater than leakage in N. coriiceps (Hb+/Mb+). Contents of phosphatidylethanolamine (PE) were approximately 1.5-fold greater in icefishes than in red-blooded fishes, and phospholipids had a higher degree of unsaturation in icefishes than in Hb + notothenioids. Cholesterol contents were lowest in Champsocephalus gunnari (Hb-/Mb-) and highest in the two Hb+/Mb + species, G. gibberifrons and N. coriiceps. Our results reveal marked differences in membrane properties and indicate a breach in membrane fluidity and structural integrity at a lower temperature in icefishes than in red-blooded notothenioids. ", "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula", "locations": "Antarctic Peninsula; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "O\u0027Brien, Kristin; Evans, Elizabeth; Farnoud, Amir; Crockett, Elizabeth", "project_titles": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0010084", "repository": "USAP-DC", "title": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Thermal sensitivity of membrane fluidity and integrity in hearts of Antarctic fishes that vary in expression of hemoglobin and myoglobin", "uid": "601414", "west": null}, {"awards": "1341602 Crockett, Elizabeth; 1341663 O\u0027Brien, Kristin", "bounds_geometry": null, "date_created": "Fri, 18 Dec 2020 00:00:00 GMT", "description": "Icefishes characteristically lack the oxygen-binding protein haemoglobin and therefore are especially reliant on cardiovascular regulation to augment oxygen transport when oxygen demand increases, such as during activity and warming. Using both in vivo and in vitro experiments, we evaluated the roles for adrenaline and adenosine, two well-established cardio- and vasoactive molecules, in regulating the cardiovascular system of the blackfin icefish, Chaenocephalus aceratus. Despite increasing cardiac contractility (increasing twitch force and contraction kinetics in isometric myocardial strip preparations) and accelerating heart rate (\u0192H), adrenaline (5 nmol kg-1 bolus intra-arterial injection) did not significantly increase cardiac output (Q\u0307) in vivo because it elicited a large decrease in vascular conductance (Gsys). In contrast, and despite preliminary data suggesting a direct negative inotropic effect of adenosine on isolated atria and little effect on isolated ventricle strips, adenosine (500 nmol kg-1) generated a large increase in Q\u0307 by increasing Gsys, a change reminiscent of that previously reported during both acute warming and invoked activity. Our data thus illustrate how Q\u0307 in C. aceratus may be much more dependent on peripheral control of vasomotor tone than direct regulation of the heart. ", "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula", "locations": "Antarctic Peninsula; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Joyce, Michael; Axelsson, Michael; Farrell, Anthony; Egginton, Stuart; O\u0027Brien, Kristin", "project_titles": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0010084", "repository": "USAP-DC", "title": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Adrenergic and adenosinergic regulation of the cardiovascular system in the Antarctic icefish Chaenocephalus aceratus", "uid": "601409", "west": null}, {"awards": "1341663 O\u0027Brien, Kristin", "bounds_geometry": null, "date_created": "Fri, 18 Dec 2020 00:00:00 GMT", "description": "The Southern Ocean has experienced stable, cold temperatures for over 10 million years, yet particular regions are currently undergoing rapid warming. To investigate the impacts of warming on cardiovascular oxygen transport, we compared the cardio-respiratory performance in an Antarctic notothenioid (Notothenia coriiceps) that was maintained at 0 or 5\u00b0C for 6.0-9.5 weeks. When compared at the fish\u0027s respective acclimation temperature, the oxygen consumption rate and cardiac output were significantly higher in 5\u00b0C-acclimated than 0\u00b0C-acclimated fish. The 2.7-fold elevation in cardiac output in 5\u00b0C-acclimated fish (17.4 vs. 6.5 ml min-1 kg-1) was predominantly due to a doubling of stroke volume, likely in response to increased cardiac preload, as measured by higher central venous pressure (0.15 vs. 0.08 kPa); tachycardia was minor (29.5 vs. 25.2 beats min-1). When fish were acutely warmed, oxygen consumption rate increased by similar amounts in 0\u00b0C- and 5\u00b0C-acclimated fish at equivalent test temperatures. In both acclimation groups, the increases in oxygen consumption rate during acute heating were supported by increased cardiac output achieved by elevating heart rate, while stroke volume changed relatively little. Cardiac output was similar between both acclimation groups until 12\u00b0C when cardiac output became significantly higher in 5\u00b0C-acclimated fish, driven largely by their higher stroke volume. Although cardiac arrhythmias developed at a similar temperature (~14.5\u00b0C) in both acclimation groups, the hearts of 5\u00b0C-acclimated fish continued to pump until significantly higher temperatures (CTmax for cardiac function 17.7 vs. 15.0\u00b0C for 0\u00b0C-acclimated fish). These results demonstrate that N. coriiceps is capable of increasing routine cardiac output during both acute and chronic warming, although the mechanisms are different (heart rate-dependent versus primarily stroke volume-dependent regulation, respectively). Cardiac performance was enhanced at higher temperatures following 5\u00b0C acclimation, suggesting cardiovascular function may not constrain the capacity of N. coriiceps to withstand a warming climate.", "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula", "locations": "Antarctic Peninsula; Antarctica", "north": null, "nsf_funding_programs": null, "persons": "Joyce, William; Egginton, Stuart; Farrell, Anthony; Axelsson, Michael; Crockett, Elizabeth; O\u0027Brien, Kristin", "project_titles": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0010084", "repository": "USAP-DC", "title": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Acclimation of cardiovascular function in Notothenia coriiceps", "uid": "601408", "west": null}, {"awards": "1341663 O\u0027Brien, Kristin; 1341602 Crockett, Elizabeth", "bounds_geometry": null, "date_created": "Fri, 18 Dec 2020 00:00:00 GMT", "description": "In fishes, the spleen can function as an important reservoir for red blood cells (RBCs), which, following splenic contraction, may be released into the circulation to increase haematocrit during energy\u2010demanding activities. This trait is particularly pronounced in red\u2010blooded Antarctic fishes in which the spleen can sequester a large proportion of RBCs during rest, thereby reducing blood viscosity, which may serve as an adaptation to life in cold environments. In one species, Pagothenia borchgrevinki, it has previously been shown that splenic contraction primarily depends on cholinergic stimulation. The aim of the present study was to investigate the regulation of splenic contraction in five other Antarctic fish species, three red\u2010blooded notothenioids (Dissostichus mawsoni Norman, 1937, Gobionotothen gibberifrons L\u00f6nnberg, 1905, Notothenia coriiceps Richardson 1844) and two white\u2010blooded \u201cicefish\u201d (Chaenocephalus aceratus L\u00f6nnberg, 1906 and Champsocephalus gunnari L\u00f6nnberg, 1905), which lack haemoglobin and RBCs, but nevertheless possess a large spleen. In all species, splenic strips constricted in response to both cholinergic (carbachol) and adrenergic (adrenaline) agonists. Surprisingly, in the two species of icefish, the spleen responded with similar sensitivity to red\u2010blooded species, despite contraction being of little obvious benefit for releasing RBCs into the circulation. Although the icefish lineage lost functional haemoglobin before diversifying over the past 7.8\u20134.8 millions of years, they retain the capacity to contract the spleen, likely as a vestige inherited from their red\u2010blooded ancestors.", "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula", "locations": "Antarctica; Antarctic Peninsula", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "O\u0027Brien, Kristin; Joyce, William; Axelsson, Michael", "project_titles": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0010084", "repository": "USAP-DC", "title": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Measurements of splenic contraction in Antarctic fishes", "uid": "601407", "west": null}, {"awards": "1341663 O\u0027Brien, Kristin", "bounds_geometry": null, "date_created": "Fri, 18 Dec 2020 00:00:00 GMT", "description": "Studies in temperate fishes provide evidence that cardiac mitochondrial function and the capacity to fuel cardiac work contribute to thermal tolerance. Here, we tested the hypothesis that decreased cardiac aerobic metabolic capacity contributes to the lower thermal tolerance of the haemoglobinless Antarctic icefish, Chaenocephalus aceratus, compared with that of the red-blooded Antarctic species, Notothenia coriiceps. Maximal activities of citrate synthase (CS) and lactate dehydrogenase (LDH), respiration rates of isolated mitochondria, adenylate levels and changes in mitochondrial protein expression were quantified from hearts of animals held at ambient temperature or exposed to their critical thermal maximum (CTmax). Compared with C. aceratus, activity of CS, ATP concentration and energy charge were higher in hearts of N. coriiceps at ambient temperature and CTmax While state 3 mitochondrial respiration rates were not impaired by exposure to CTmax in either species, state 4 rates, indicative of proton leakage, increased following exposure to CTmax in C. aceratus but not N. coriiceps The interactive effect of temperature and species resulted in an increase in antioxidants and aerobic metabolic enzymes in N. coriiceps but not in C. aceratus Together, our results support the hypothesis that the lower aerobic metabolic capacity of C. aceratus hearts contributes to its low thermal tolerance. ", "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula", "locations": "Antarctic Peninsula; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "O\u0027Brien, Kristin", "project_titles": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0010084", "repository": "USAP-DC", "title": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Cardiac metabolism in Antarctic fishes in response to an acute increase in temperature", "uid": "601405", "west": null}, {"awards": "1341663 O\u0027Brien, Kristin; 1341602 Crockett, Elizabeth", "bounds_geometry": null, "date_created": "Fri, 18 Dec 2020 00:00:00 GMT", "description": "The ability of Antarctic notothenioid fishes to mount a robust molecular response to hypoxia is largely unknown. The transcription factor, hypoxia-inducible factor-1 (HIF-1), a heterodimer of HIF-1\u03b1 and HIF-1\u03b2 subunits, is the master regulator of oxygen homeostasis in most metazoans. We sought to determine if, in the hearts of Antarctic notothenioids, HIF-1 is activated and functional in response to either an acute heat stress or hypoxia. The red-blooded Notothenia coriiceps and the hemoglobinless icefish, Chaenocephalus aceratus, were exposed to their critical thermal maximum (CTMAX) or hypoxia (5.0 \u00b1 0.3 mg of O2 L-1) for 2 h. Additionally, N. coriiceps was exposed to 2.3 \u00b1 0.3 mg of O2 L-1 for 12 h, and red-blooded Gobionotothen gibberifrons was exposed to both levels of hypoxia. Levels of HIF-1\u03b1 were quantified in nuclei isolated from heart ventricles using western blotting. Transcript levels of genes involved in anaerobic metabolism, and known to be regulated by HIF-1, were quantified by real-time PCR, and lactate levels were measured in heart ventricles. Protein levels of HIF-1\u03b1 increase in nuclei of hearts of N. coriiceps and C. aceratus in response to exposure to CTMAX and in hearts of N. coriiceps exposed to severe hypoxia, yet mRNA levels of anaerobic metabolic genes do not increase in any species, nor do lactate levels increase, suggesting that HIF-1 does not stimulate metabolic remodeling in hearts of notothenioids under these conditions. Together, these data suggest that Antarctic notothenioids may be vulnerable to hypoxic events, which are likely to increase with climate warming. ", "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula", "locations": "Antarctic Peninsula; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "O\u0027Brien, Kristin", "project_titles": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0010084", "repository": "USAP-DC", "title": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Hypoxia response of hearts of Antarctic fishes", "uid": "601406", "west": null}, {"awards": "1341663 O\u0027Brien, Kristin; 1341602 Crockett, Elizabeth", "bounds_geometry": null, "date_created": "Fri, 18 Dec 2020 00:00:00 GMT", "description": "We tested the hypothesis that blackfin icefish (Chaenocephalus aceratus), one of the six species in the family Channichthyidae (the icefishes) that do not express haemoglobin and myoglobin, lack regulatory cardiovascular flexibility during acute warming and activity. The experimental protocols were designed to optimize the surgical protocol and minimize stress. First, minimally invasive heart rate (fH) measurements were made during a thermal ramp until cardiac failure in C. aceratus and compared with those from the closely related red-blooded black rockcod (Notothenia coriiceps). Then, integrative cardiovascular adjustments were more extensively studied using flow probes and intravascular catheters in C. aceratus during acute warming (from 0 to 8\u00b0C) at rest and after imposed activity. Chaenocephalus aceratus had a lower routine fH than N. coriiceps (9 beats min-1 versus 14 beats min-1) and a lower peak fH during acute warming (38 beats min-1 versus 55 beats min-1) with a similar cardiac breakpoint temperature (13 and 14\u00b0C, respectively). Routine cardiac output (Q\u0307) for C. aceratus at \u223c0\u00b0C was much lower (26.6 ml min-1 kg-1) than previously reported, probably because fish in the present study had a low fH (12 beats min-1) indicative of a high routine vagal tone and low stress. Chaenocephalus aceratus increased oxygen consumption during acute warming and with activity. Correspondingly, Q\u0307 increased considerably (maximally 86.3 ml min-1 kg-1), as did vascular conductance (5-fold). Thus, unlike earlier suggestions, these data provide convincing evidence that icefish can mount a well-developed cardiovascular regulation of heart rate, cardiac output and vascular conductance, and this regulatory capacity provides flexibility during acute warming. ", "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Fish", "locations": "Antarctica; Antarctic Peninsula", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Joyce, William; Farrell, Anthony; Axelsson, Michael; Egginton, Stuart; Crockett, Elizabeth; O\u0027Brien, Kristin", "project_titles": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0010084", "repository": "USAP-DC", "title": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Effects of acute warming on cardiovascular performance of Antarctic fishes", "uid": "601410", "west": null}, {"awards": "1043576 Crockett, Elizabeth", "bounds_geometry": null, "date_created": "Tue, 13 Dec 2016 00:00:00 GMT", "description": "Positioning and depth recordings were made using instruments aboard the ARSV Laurence M Gould.", "east": null, "geometry": null, "keywords": "Antarctica; Biota; Southern Ocean", "locations": "Antarctica; Southern Ocean", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Crockett, Elizabeth", "project_titles": "Collaborative research: Redox Balance in Antarctic Notothenioid fishes: Do Icefishes have an Advantage?", "projects": [{"proj_uid": "p0000320", "repository": "USAP-DC", "title": "Collaborative research: Redox Balance in Antarctic Notothenioid fishes: Do Icefishes have an Advantage?"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Electronic fishing logs LM Gould 2015", "uid": "600390", "west": null}, {"awards": "1043781 O\u0027Brien, Kristin", "bounds_geometry": null, "date_created": "Tue, 06 Dec 2016 00:00:00 GMT", "description": null, "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Fish; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Southern Ocean; Antarctica; Antarctic Peninsula", "north": null, "nsf_funding_programs": null, "persons": "O\u0027Brien, Kristin", "project_titles": "Collaborative research: Redox Balance in Antarctic Notothenioid fishes: Do Icefishes have an Advantage?", "projects": [{"proj_uid": "p0000320", "repository": "USAP-DC", "title": "Collaborative research: Redox Balance in Antarctic Notothenioid fishes: Do Icefishes have an Advantage?"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Redox Balance in Antarctic Notothenioid Fishes", "uid": "600382", "west": null}, {"awards": "1019305 Grim, Jeffrey", "bounds_geometry": null, "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Survival of Antarctic notothenioid fishes in the context of global climate change will depend upon the impact of rising oceanic temperatures on their embryonic development, yet little is known regarding the molecular mechanisms underlying this complex suite of processes. Many notothenioids are characterized by secondary pelagicism, which enables them to exploit food sources in the water column and is supported in part by skeletal pedomorphism. Here the PI proposes to examine the hypothesis that reactive oxygen species (ROS) regulate notothenioid skeletal pedomorphism. The research objectives are : 1) To quantify and localize ROS production and identify the point(s) of origin of ROS production in embryonic Antarctic fishes that differ in skeletal phenotypes 2) To determine whether the time course of embryogenesis and the extent of osteological development in embryonic Antarctic fishes can be altered by changing the oxidative status of the animal during embryogenesis 3) To evaluate whether transgenic alteration of oxidative status can induce skeletal pedomorphism in a fish model. Broader Impacts will include teaching undergraduate lectures, recruiting undergraduate students to help with lab analyses (and possibly field work), lectures and demonstrations to high school students, and allowing secondary educators access to personal photos and videos of research animals for curriculum development.", "east": null, "geometry": null, "keywords": "Biota; Fish Logs; LMG1203; LMG1204; LMG1205; Oceans; Pot; Southern Ocean; Trawl", "locations": "Southern Ocean", "north": null, "nsf_funding_programs": null, "persons": "Grim, Jeffrey", "project_titles": "PostDoctoral Research Fellowship", "projects": [{"proj_uid": "p0000482", "repository": "USAP-DC", "title": "PostDoctoral Research Fellowship"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Impact of Rising Oceanic Temperatures on the Embryonic Development of Antarctic Notothenioid Fishes", "uid": "600119", "west": null}, {"awards": "0741301 O\u0027Brien, Kristin", "bounds_geometry": ["POLYGON((-64.45 -63.29,-64.249 -63.29,-64.048 -63.29,-63.847 -63.29,-63.646 -63.29,-63.445 -63.29,-63.244 -63.29,-63.043 -63.29,-62.842 -63.29,-62.641 -63.29,-62.44 -63.29,-62.44 -63.371,-62.44 -63.452,-62.44 -63.533,-62.44 -63.614,-62.44 -63.695,-62.44 -63.776,-62.44 -63.857,-62.44 -63.938,-62.44 -64.019,-62.44 -64.1,-62.641 -64.1,-62.842 -64.1,-63.043 -64.1,-63.244 -64.1,-63.445 -64.1,-63.646 -64.1,-63.847 -64.1,-64.048 -64.1,-64.249 -64.1,-64.45 -64.1,-64.45 -64.019,-64.45 -63.938,-64.45 -63.857,-64.45 -63.776,-64.45 -63.695,-64.45 -63.614,-64.45 -63.533,-64.45 -63.452,-64.45 -63.371,-64.45 -63.29))"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "Antarctic notothenioid fishes have evolved in the Southern Ocean for 10-14 MY under an unusual set of circumstances. Their characteristics include the complete absence of the circulating oxygen-binding protein, hemoglobin (Hb) within the Channichthyid (Icefish) family of notothenioids. Moreover, some species within the 16 members of this family have also lost the ability to express the oxygen-binding and storage protein, myoglobin (Mb) in cardiac muscle. Our previous work has determined that the loss of Hb and/or Mb is correlated with significant increases in densities of mitochondria within oxidative tissues, and extensive remodeling of these vital organelles. To date, nothing is known about how modifications in mitochondrial architecture of icefishes affect organelle function, or more importantly, how they affect organismal-level physiology. Most critical for Antarctic fishes is that mitochondrial characteristics have been linked to how well ectotherms can withstand increases in temperature. \nThis collaborative research project will address the hypothesis that the unusual mitochondrial architecture of Antarctic Channichthyids has led to changes in function that impact their ability to withstand elevations in temperature. Specifically, the research will (1) determine if the unusual mitochondrial architecture of icefishes affects function and contributes to organismal thermal sensitivity, (2) identify differences in organismal thermal tolerance between red- and white- blooded notothenioids, (3) identify molecular mechanisms regulating changes in mitochondrial structure in icefishes. The results may establish channichthyid icefishes as a sentinel taxon for signaling the impact of global warming on the Southern Ocean. Broad impacts of this project will be realized by participation of high school biology teachers in field work through cooperation with the ARMADA project at the University of Rhode Island, as well as graduate education.\n", "east": -62.44, "geometry": ["POINT(-63.445 -63.695)"], "keywords": "Biota; Oceans; Pot; Southern Ocean; Trawl", "locations": "Southern Ocean", "north": -63.29, "nsf_funding_programs": null, "persons": "O\u0027Brien, Kristin", "project_titles": "Collaborative Research: Linkages among Mitochondrial Form, Function and Thermal Tolerance of Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0000483", "repository": "USAP-DC", "title": "Collaborative Research: Linkages among Mitochondrial Form, Function and Thermal Tolerance of Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.1, "title": "Linkages among Mitochondrial Form, Function and Thermal Tolerance of Antarctic Notothenioid Fishes", "uid": "600084", "west": -64.45}, {"awards": "0436190 Eastman, Joseph", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "Patterns of biodiversity, as revealed by basic research in organismal biology, may be derived from ecological and evolutionary processes expressed in unique settings, such as Antarctica. The polar regions and their faunas are commanding increased attention as declining species diversity, environmental change, commercial fisheries, and resource management are now being viewed in a global context. Commercial fishing is known to have a direct and pervasive effect on marine biodiversity, and occurs in the Southern Ocean as far south as the Ross Sea. The nature of fish biodiversity in the Antarctic is different than in all other ocean shelf areas. Waters of the Antarctic continental shelf are ice covered for most of the year and water temperatures are nearly constant at -1.5 C. In these waters components of the phyletically derived Antarctic clade of Notothenioids dominate fish diversity. In some regions, including the southwestern Ross Sea, Notothenioids are overwhelmingly dominant in terms of number of species, abundance, and biomass. Such dominance by a single taxonomic group is unique among shelf faunas of the world. In the absence of competition from a taxonomically diverse fauna, Notothenioids underwent a habitat or depth related diversification keyed to the utilization of unfilled niches in the water column, especially pelagic or partially pelagic zooplanktivory and piscivory. This has been accomplished in the absence of a swim bladder for buoyancy control. They also may form a special type of adaptive radiation known as a species flock, which is an assemblage of a disproportionately high number of related species that have evolved rapidly within a defined area where most species are endemic. Diversification in buoyancy is the hallmark of the notothenioid radiation. Buoyancy is the feature of notothenioid biology that determines whether a species lives on the substrate, in the water column or both. Buoyancy also influences other key aspects of life history including swimming, feeding and reproduction and thus has implications for the role of the species in the ecosystem. With similarities to classic evolutionary hot spots, the Antarctic shelf and its Notothenioid radiation merit further exploration. The 2004 \u0027International Collaborative Expedition to collect and study Fish Indigenous to Sub-Antarctic Habitats,\u0027 or, \u0027ICEFISH,\u0027 provided a platform for collection of notothenioid fishes from sub-Antarctic waters between South America and Africa, which will be examined in this project. This study will determine buoyancy for samples of all notothenioid species captured during the ICEFISH cruise. This essential aspect of the biology is known for only 19% of the notothenioid fauna. Also, the gross and microscopic anatomy of brains and sense organs of the phyletically basal families Bovichtidae, Eleginopidae, and of the non-Antarctic species of the primarily Antarctic family Nototheniidae will be examined. The fish biodiversity and endemicity in poorly known localities along the ICEFISH cruise track, seamounts and deep trenches will be quantified. Broader impacts include improved information for comprehending and conserving biodiversity, a scientific and societal priority.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Biota; NBP0404; Oceans; R/v Nathaniel B. Palmer; Southern Ocean", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Eastman, Joseph", "project_titles": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0000106", "repository": "USAP-DC", "title": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes", "uid": "600038", "west": -180.0}, {"awards": "0437887 Sidell, Bruce", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "The polar ocean presently surrounding Antarctica is the coldest, most thermally stable marine environment on earth. Because oxygen solubility in seawater is inversely proportional to temperature, the cold Antarctic seas are an exceptionally oxygen-rich aquatic habitat. Eight families of a single perciform suborder, the Notothenioidei, dominate the present fish fauna surrounding Antarctica. Notothenioids account for approximately 35% of fish species and 90% of fish biomass south of the Antarctic Polar Front. Radiation of closely related notothenioid species thus has occurred rapidly and under a very unusual set of conditions: relative oceanographic isolation from other faunas due to circumpolar currents and deep ocean trenches surrounding the continent, chronically, severely cold water temperatures, very high oxygen availability, very low levels of niche competition in a Southern Ocean depauperate of species subsequent to a dramatic crash in species diversity of fishes that occurred sometime between the mid-Tertiary and present. These features make Antarctic notothenioid fishes an uniquely attractive group for the study of physiological and biochemical adaptations to cold body temperature. Few distinctive features of Antarctic fishes are as unique as the pattern of expression of oxygen-binding proteins in one notothenioid family, the Channichthyidae (Antarctic icefishes). All channichthyid icefishes lack the circulating oxygen-binding protein, hemoglobin (Hb); the intracellular oxygen-binding protein, myoglobin (Mb) is not uniformly expressed in species of this family. Both proteins are normally considered essential for adequate delivery of oxygen to aerobically poised tissues of animals. To compensate for the absence of Hb, icefishes have developed large hearts, rapidly circulate a large blood volume and possess elaborate vasculature of larger lumenal diameter than is seen in red-blooded fishes. Loss of Mb expression in oxidative muscles correlates with dramatic elevation in density of mitochondria within the cell, although each individual organelle is less densely packed with respiratory proteins. Within the framework of oxygen movement, the adaptive significance of greater vascular density and mitochondrial populations is understandable but mechanisms underlying development of these characteristics remain unknown. The answer may lie in another major function of both Hb and Mb, degradation of the ubiquitous bioactive compound, nitric oxide (NO). The research will test the hypothesis that loss of hemoprotein expression in icefishes has resulted in an increase in levels of NO that mediate modification of vascular systems and expansion of mitochondrial populations in oxidative tissues. The objectives of the proposal are to quantify the vascular density of retinas in +Hb and -Hb notothenioid species, to characterize NOS isoforms and catalytic activity in retina and cardiac muscle of Antarctic notothenioid fishes, to evaluate level of expression of downstream factors implicat ed in angiogenesis (in retinal tissue) and mitochondrial biogenesis (in cardiac muscle), and to determine whether inhibition of NOS in vivo results in regression of angiogenic and mitochondrial biogenic responses in icefishes. Broader impacts range from basic biology, through training of young scientists, to enhanced understanding of clinically relevant biomedical processes.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Biota; Oceans; Pot; Sample/collection Description; Sample/Collection Description; Southern Ocean; Trawl", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Sidell, Bruce", "project_titles": "Collaborative Research: Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis.", "projects": [{"proj_uid": "p0000527", "repository": "USAP-DC", "title": "Collaborative Research: Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis."}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis", "uid": "600039", "west": -180.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)
|
1543383 1440435 2026045 0636696 1142158 |
2024-07-22 | Corso, Andrew; Desvignes, Thomas; McDowell, Jan; Cheng, Chi-Hing; Biesack, Ellen; Steinberg, Deborah; Hilton, Eric |
Evolution of hemoglobin genes in notothenioid fishes Antarctic Fish and MicroRNA Control of Development and Physiology LTER Palmer, Antarctica (PAL): Land-Shelf-Ocean Connectivity, Ecosystem Resilience and Transformation in a Sea-Ice Influenced Pelagic Ecosystem Antarctic Notothenioid Fish Freeze Avoidance and Genome-wide Evolution for Life in the Cold Environmental, Organismal and Evolutionary Physiology of Freeze Avoidance in Antarctic Notothenioid Fishes |
This data set includes photographs and metadata from phylogenetic analyses associated with the description of Akarotaxis gouldae n. sp., or the Banded Dragonfish (Bathydraconidae). | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
MEME tests of sites evolving under episodic diversifying selection in notothenioid hemoglobin genes.
|
1543383 1947040 2232891 |
2023-09-08 | Desvignes, Thomas; Postlethwait, John |
Evolution of hemoglobin genes in notothenioid fishes |
Phylogenetic tree of Notothenioid species used in analyses and results of the HyPhy MEME tests for sites evolving under episodic diversifying selection in notothenioid hemoglobin genes in the research article “Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes” by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait. | ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"] | ["POINT(0 -89.999)"] | false | false |
RELAX tests for pervasive changes in strength of natural selection on hemoglobin genes in notothenioids.
|
1543383 1947040 2232891 |
2023-09-08 | Desvignes, Thomas; Postlethwait, John |
Evolution of hemoglobin genes in notothenioid fishes |
Phylogenetic tree of Notothenioid species used in analyses and results of the HyPhy RELAX tests for pervasive changes in strength of natural selection on hemoglobin genes in the research article “Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes” by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait. | ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"] | ["POINT(0 -89.999)"] | false | false |
Notothenioid hemoglobin protein 3D modeling.
|
1543383 1947040 2232891 |
2023-09-08 | Desvignes, Thomas; Postlethwait, John |
Evolution of hemoglobin genes in notothenioid fishes |
Notothenioid hemoglobin protein 3D modeling using SWISS-MODEL in the research article “Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes” by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait. | ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"] | ["POINT(0 -89.999)"] | false | false |
aBSREL tests for episodic diversifying selection on hemoglobin genes in notothenioids.
|
2232891 1543383 1947040 |
2023-09-08 | Desvignes, Thomas; Postlethwait, John |
Evolution of hemoglobin genes in notothenioid fishes |
Phylogenetic tree of Notothenioid species used in analyses and results of the HyPhy aBSREL tests for diversifying selection in notothenioid hemoglobin genes in the research article “Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes” by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait. | ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"] | ["POINT(0 -89.999)"] | false | false |
Rates of hemoglobin evolution among genes and across notothenioid species.
|
1543383 1947040 2232891 |
2023-09-08 | Desvignes, Thomas; Postlethwait, John |
Evolution of hemoglobin genes in notothenioid fishes |
Results of hemoglobin gene KaKs (dN/dS) analyses in notothenioids in the research article “Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes” by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait. | ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"] | ["POINT(0 -89.999)"] | false | false |
Notothenioid species tree used in the study "Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes"
|
1543383 1947040 2232891 |
2023-08-24 | Desvignes, Thomas; Postlethwait, John |
Evolution of hemoglobin genes in notothenioid fishes |
Phylogenetic tree of 36 notothenioid species and five outgroup used throughout the study "Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes" by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait. | ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"] | ["POINT(0 -89.999)"] | false | false |
Phylogenetic trees of hemoglobin proteins in notothenioids from the study "Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes"
|
1543383 1947040 2232891 |
2023-08-24 | Desvignes, Thomas; Postlethwait, John |
Evolution of hemoglobin genes in notothenioid fishes |
All input and output files of the phylogenetic trees of hemoglobin proteins in Notothenioids from the study "Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes" by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, and John H. Postlethwait. | ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"] | ["POINT(0 -89.999)"] | false | false |
High-resolution nearshore benthic seawater temperature from around McMurdo Sound, Antarctica (2017-2019)
|
1644196 |
2021-01-03 | Cziko, Paul |
Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes |
Nearshore benthic seawater temperature (plus pressure and salinity for some sites) in McMurdo Sound, Antarctica for 2017-2019. Data includes those from standalone temperature (sometimes pressure) for several sites around McMurdo Sound as well as data from the cabled McMurdo Oceanographic Observatory moored conductivity-temperature-depth (CTD) sensor at the McMurdo Station seawater intake jetty. Data are from high precision SeaBird sensors (SBE56, SBE39, SBE19Plus and SBE37), with sample intervals from 90 sec to 15 min, depending on site. Sampled sites include Explorer's Cove at New Harbor, Cape Evans, Granite Harbor, and the McMurdo Station jetty. All sensors were deployed near or on the benthos at 20-25 m deep, in typical nearshore benthic fish and invertebrate habitat. | ["POLYGON((162.647931 -77.000624,163.049652 -77.000624,163.451373 -77.000624,163.853094 -77.000624,164.254815 -77.000624,164.656536 -77.000624,165.058257 -77.000624,165.459978 -77.000624,165.861699 -77.000624,166.26342 -77.000624,166.665141 -77.000624,166.665141 -77.0856883,166.665141 -77.1707526,166.665141 -77.2558169,166.665141 -77.3408812,166.665141 -77.4259455,166.665141 -77.5110098,166.665141 -77.5960741,166.665141 -77.6811384,166.665141 -77.7662027,166.665141 -77.851267,166.26342 -77.851267,165.861699 -77.851267,165.459978 -77.851267,165.058257 -77.851267,164.656536 -77.851267,164.254815 -77.851267,163.853094 -77.851267,163.451373 -77.851267,163.049652 -77.851267,162.647931 -77.851267,162.647931 -77.7662027,162.647931 -77.6811384,162.647931 -77.5960741,162.647931 -77.5110098,162.647931 -77.4259455,162.647931 -77.3408812,162.647931 -77.2558169,162.647931 -77.1707526,162.647931 -77.0856883,162.647931 -77.000624))"] | ["POINT(164.656536 -77.4259455)"] | false | false |
Long-term underwater images from around a single mooring site in McMurdo Sound, Antarctica (2017-2019)
|
1644196 |
2020-12-29 | Cziko, Paul |
Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes |
Long-term images taken by the camera from the McMurdo Oceanographic Observatory mooring in McMurdo Sound, Antarctica during its 2-year deployment (2017-2019). The mooring was situated at the seawater terminus of the McMurdo Station seawater intake jetty at 21 m deep, typically under thick sea ice cover. The automated 360° pan-tilt-zoom (ptz) camera, inside of an air-filled self-cleaning dome, was programmed to move to 42 ptz "waypoints" every hour and take a still 1920x1080 JPG image for archiving. Lights, oriented in one direction only, illuminated a rock/rubble slope for much of each winter, when there was no natural illumination. The camera was situated on a concrete block, which elevated the camera about 1m off of the seabed. Motile and sessile benthic biota, including notothenioid fishes, anemones, pycnogonids, asteroids, soft-corals, sponges, and nudibranchs are commonly seen in the images. Some ptz waypoints survey the water column and underside of the sea ice, capturing also the presence of larval/juvenile fishes and other plankton/nekton in the water column. Maximum intervals between subsequent images from the same ptz waypoint were about 1 hour, though many waypoints were captured at somewhat higher frequency. Interval images, taken at 5-min intervals irrespective of camera orientation, were also captured. Images are occasionally obscured/impacted by the camera dome's wiper, darkness, low visibility, minor fouling of the camera dome, and out-of-focus lens elements. | ["POINT(166.6645 -77.851)"] | ["POINT(166.6645 -77.851)"] | false | false |
Long-term broadband underwater acoustic recordings from McMurdo Sound, Antarctica (2017-2019)
|
1644196 |
2020-12-29 | Cziko, Paul |
Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes |
Broadband underwater acoustic recordings from the McMurdo Oceanographic Observatory mooring near the seaward terminus of the McMurdo Station seawater intake jetty. An omnidirectional Ocean Sonics icListen hydrophone (SB2-ETH, SN 1713) recorded continuously at 512 kilosamples/second (256 kHz Nyquist frequency; 24 bit) for 2 years. The hydrophone was mounted vertically on a steel strut (insulated with rubber sheet) at about 70 cm above the mud/gravel seabed at 21m deep, with the sloping 45° rubble face of the jetty just behind the hydrophone. Temporal coverage is >90%, with gaps and truncated files arising due to network and power outages and software bugs. The audio recordings are 10 minute WAV files, compressed using the lossless FLAC code (Free Lossless Audio Codec, xiph.org; about 33MB of data/minute compressed; 100MB/min uncompressed). The hydrophone was under thick (to 3 m) sea ice cover for the majority of the dataset. The majority of the recorded biological sounds were produced by Weddell seals. Orca were present intermittently (~10 days total) in January-March in both summers. Known non-biological sounds include irregular low-intensity, broad-spectrum clicks and cracks from the sea ice cover, occasional wind noise, a 1.5-s gurgle with components to 200kHz every 90s from the CTD’s pump, a broad-spectrum mechanical sound for 3 min every 4 h from the observatory's underwater camera cleaning system, low-intensity whines (about 18, 58, 83, and 130 kHz, though variable over the dataset) thought to be from the station seawater pumps (>100 m away within the jetty’s well casing), and intermittent noises from tracked-vehicles and helicopters (September–February), SCUBA divers (October–December), and ships (January). Given hosting limitations, only every 6th file (roughly 10min/hour) has been archived here. Additional data can be obtained by contacting the primary author of the dataset, who will maintain it for as long as possible. Audio spectrogram images (PNGs) at three frequency ranges (three stacked panels per image, upper limits of 2.5, 25, and 256 kHz) from the entire dataset (all data, not subsampled) are also archived separately. | ["POINT(166.6645 -77.851)"] | ["POINT(166.6645 -77.851)"] | false | false |
Thermal sensitivity of membrane fluidity and integrity in hearts of Antarctic fishes that vary in expression of hemoglobin and myoglobin
|
1341663 1341602 |
2020-12-24 | O'Brien, Kristin; Evans, Elizabeth; Farnoud, Amir; Crockett, Elizabeth |
Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes |
Antarctic notothenioids are noted for extreme stenothermy, yet underpinnings of their thermal limits are not fully understood. We hypothesized that properties of ventricular membranes could explain previously observed differences among notothenioids in temperature onset of cardiac arrhythmias and persistent asystole. Microsomes were prepared using ventricles from six species of notothenioids, including four species from the hemoglobin-less (Hb-) family Channichthyidae (icefishes), which also differentially express cardiac myoglobin (Mb), and two species from the (Hb+) Nototheniidae. We determined membrane fluidity and structural integrity by quantifying fluorescence depolarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) and leakage of 5(6)-carboxyfluorescein, respectively, over a temperature range from ambient (0 °C) to 20 °C. Compositions of membrane phospholipids and cholesterol contents were also quantified. Membranes from all four species of icefishes exhibited greater fluidity than membranes from the red-blooded species N. coriiceps. Thermal sensitivity of fluidity did not vary among species. The greatest thermal sensitivity to leakage occurred between 0 and 5 °C for all species, while membranes from the icefish, Chaenocephalus aceratus (Hb-/Mb-) displayed leakage that was nearly 1.5-fold greater than leakage in N. coriiceps (Hb+/Mb+). Contents of phosphatidylethanolamine (PE) were approximately 1.5-fold greater in icefishes than in red-blooded fishes, and phospholipids had a higher degree of unsaturation in icefishes than in Hb + notothenioids. Cholesterol contents were lowest in Champsocephalus gunnari (Hb-/Mb-) and highest in the two Hb+/Mb + species, G. gibberifrons and N. coriiceps. Our results reveal marked differences in membrane properties and indicate a breach in membrane fluidity and structural integrity at a lower temperature in icefishes than in red-blooded notothenioids. | [] | [] | false | false |
Adrenergic and adenosinergic regulation of the cardiovascular system in the Antarctic icefish Chaenocephalus aceratus
|
1341602 1341663 |
2020-12-18 | Joyce, Michael; Axelsson, Michael; Farrell, Anthony; Egginton, Stuart; O'Brien, Kristin |
Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes |
Icefishes characteristically lack the oxygen-binding protein haemoglobin and therefore are especially reliant on cardiovascular regulation to augment oxygen transport when oxygen demand increases, such as during activity and warming. Using both in vivo and in vitro experiments, we evaluated the roles for adrenaline and adenosine, two well-established cardio- and vasoactive molecules, in regulating the cardiovascular system of the blackfin icefish, Chaenocephalus aceratus. Despite increasing cardiac contractility (increasing twitch force and contraction kinetics in isometric myocardial strip preparations) and accelerating heart rate (ƒH), adrenaline (5 nmol kg-1 bolus intra-arterial injection) did not significantly increase cardiac output (Q̇) in vivo because it elicited a large decrease in vascular conductance (Gsys). In contrast, and despite preliminary data suggesting a direct negative inotropic effect of adenosine on isolated atria and little effect on isolated ventricle strips, adenosine (500 nmol kg-1) generated a large increase in Q̇ by increasing Gsys, a change reminiscent of that previously reported during both acute warming and invoked activity. Our data thus illustrate how Q̇ in C. aceratus may be much more dependent on peripheral control of vasomotor tone than direct regulation of the heart. | [] | [] | false | false |
Acclimation of cardiovascular function in Notothenia coriiceps
|
1341663 |
2020-12-18 | Joyce, William; Egginton, Stuart; Farrell, Anthony; Axelsson, Michael; Crockett, Elizabeth; O'Brien, Kristin |
Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes |
The Southern Ocean has experienced stable, cold temperatures for over 10 million years, yet particular regions are currently undergoing rapid warming. To investigate the impacts of warming on cardiovascular oxygen transport, we compared the cardio-respiratory performance in an Antarctic notothenioid (Notothenia coriiceps) that was maintained at 0 or 5°C for 6.0-9.5 weeks. When compared at the fish's respective acclimation temperature, the oxygen consumption rate and cardiac output were significantly higher in 5°C-acclimated than 0°C-acclimated fish. The 2.7-fold elevation in cardiac output in 5°C-acclimated fish (17.4 vs. 6.5 ml min-1 kg-1) was predominantly due to a doubling of stroke volume, likely in response to increased cardiac preload, as measured by higher central venous pressure (0.15 vs. 0.08 kPa); tachycardia was minor (29.5 vs. 25.2 beats min-1). When fish were acutely warmed, oxygen consumption rate increased by similar amounts in 0°C- and 5°C-acclimated fish at equivalent test temperatures. In both acclimation groups, the increases in oxygen consumption rate during acute heating were supported by increased cardiac output achieved by elevating heart rate, while stroke volume changed relatively little. Cardiac output was similar between both acclimation groups until 12°C when cardiac output became significantly higher in 5°C-acclimated fish, driven largely by their higher stroke volume. Although cardiac arrhythmias developed at a similar temperature (~14.5°C) in both acclimation groups, the hearts of 5°C-acclimated fish continued to pump until significantly higher temperatures (CTmax for cardiac function 17.7 vs. 15.0°C for 0°C-acclimated fish). These results demonstrate that N. coriiceps is capable of increasing routine cardiac output during both acute and chronic warming, although the mechanisms are different (heart rate-dependent versus primarily stroke volume-dependent regulation, respectively). Cardiac performance was enhanced at higher temperatures following 5°C acclimation, suggesting cardiovascular function may not constrain the capacity of N. coriiceps to withstand a warming climate. | [] | [] | false | false |
Measurements of splenic contraction in Antarctic fishes
|
1341663 1341602 |
2020-12-18 | O'Brien, Kristin; Joyce, William; Axelsson, Michael |
Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes |
In fishes, the spleen can function as an important reservoir for red blood cells (RBCs), which, following splenic contraction, may be released into the circulation to increase haematocrit during energy‐demanding activities. This trait is particularly pronounced in red‐blooded Antarctic fishes in which the spleen can sequester a large proportion of RBCs during rest, thereby reducing blood viscosity, which may serve as an adaptation to life in cold environments. In one species, Pagothenia borchgrevinki, it has previously been shown that splenic contraction primarily depends on cholinergic stimulation. The aim of the present study was to investigate the regulation of splenic contraction in five other Antarctic fish species, three red‐blooded notothenioids (Dissostichus mawsoni Norman, 1937, Gobionotothen gibberifrons Lönnberg, 1905, Notothenia coriiceps Richardson 1844) and two white‐blooded “icefish” (Chaenocephalus aceratus Lönnberg, 1906 and Champsocephalus gunnari Lönnberg, 1905), which lack haemoglobin and RBCs, but nevertheless possess a large spleen. In all species, splenic strips constricted in response to both cholinergic (carbachol) and adrenergic (adrenaline) agonists. Surprisingly, in the two species of icefish, the spleen responded with similar sensitivity to red‐blooded species, despite contraction being of little obvious benefit for releasing RBCs into the circulation. Although the icefish lineage lost functional haemoglobin before diversifying over the past 7.8–4.8 millions of years, they retain the capacity to contract the spleen, likely as a vestige inherited from their red‐blooded ancestors. | [] | [] | false | false |
Cardiac metabolism in Antarctic fishes in response to an acute increase in temperature
|
1341663 |
2020-12-18 | O'Brien, Kristin |
Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes |
Studies in temperate fishes provide evidence that cardiac mitochondrial function and the capacity to fuel cardiac work contribute to thermal tolerance. Here, we tested the hypothesis that decreased cardiac aerobic metabolic capacity contributes to the lower thermal tolerance of the haemoglobinless Antarctic icefish, Chaenocephalus aceratus, compared with that of the red-blooded Antarctic species, Notothenia coriiceps. Maximal activities of citrate synthase (CS) and lactate dehydrogenase (LDH), respiration rates of isolated mitochondria, adenylate levels and changes in mitochondrial protein expression were quantified from hearts of animals held at ambient temperature or exposed to their critical thermal maximum (CTmax). Compared with C. aceratus, activity of CS, ATP concentration and energy charge were higher in hearts of N. coriiceps at ambient temperature and CTmax While state 3 mitochondrial respiration rates were not impaired by exposure to CTmax in either species, state 4 rates, indicative of proton leakage, increased following exposure to CTmax in C. aceratus but not N. coriiceps The interactive effect of temperature and species resulted in an increase in antioxidants and aerobic metabolic enzymes in N. coriiceps but not in C. aceratus Together, our results support the hypothesis that the lower aerobic metabolic capacity of C. aceratus hearts contributes to its low thermal tolerance. | [] | [] | false | false |
Hypoxia response of hearts of Antarctic fishes
|
1341663 1341602 |
2020-12-18 | O'Brien, Kristin |
Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes |
The ability of Antarctic notothenioid fishes to mount a robust molecular response to hypoxia is largely unknown. The transcription factor, hypoxia-inducible factor-1 (HIF-1), a heterodimer of HIF-1α and HIF-1β subunits, is the master regulator of oxygen homeostasis in most metazoans. We sought to determine if, in the hearts of Antarctic notothenioids, HIF-1 is activated and functional in response to either an acute heat stress or hypoxia. The red-blooded Notothenia coriiceps and the hemoglobinless icefish, Chaenocephalus aceratus, were exposed to their critical thermal maximum (CTMAX) or hypoxia (5.0 ± 0.3 mg of O2 L-1) for 2 h. Additionally, N. coriiceps was exposed to 2.3 ± 0.3 mg of O2 L-1 for 12 h, and red-blooded Gobionotothen gibberifrons was exposed to both levels of hypoxia. Levels of HIF-1α were quantified in nuclei isolated from heart ventricles using western blotting. Transcript levels of genes involved in anaerobic metabolism, and known to be regulated by HIF-1, were quantified by real-time PCR, and lactate levels were measured in heart ventricles. Protein levels of HIF-1α increase in nuclei of hearts of N. coriiceps and C. aceratus in response to exposure to CTMAX and in hearts of N. coriiceps exposed to severe hypoxia, yet mRNA levels of anaerobic metabolic genes do not increase in any species, nor do lactate levels increase, suggesting that HIF-1 does not stimulate metabolic remodeling in hearts of notothenioids under these conditions. Together, these data suggest that Antarctic notothenioids may be vulnerable to hypoxic events, which are likely to increase with climate warming. | [] | [] | false | false |
Effects of acute warming on cardiovascular performance of Antarctic fishes
|
1341663 1341602 |
2020-12-18 | Joyce, William; Farrell, Anthony; Axelsson, Michael; Egginton, Stuart; Crockett, Elizabeth; O'Brien, Kristin |
Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes |
We tested the hypothesis that blackfin icefish (Chaenocephalus aceratus), one of the six species in the family Channichthyidae (the icefishes) that do not express haemoglobin and myoglobin, lack regulatory cardiovascular flexibility during acute warming and activity. The experimental protocols were designed to optimize the surgical protocol and minimize stress. First, minimally invasive heart rate (fH) measurements were made during a thermal ramp until cardiac failure in C. aceratus and compared with those from the closely related red-blooded black rockcod (Notothenia coriiceps). Then, integrative cardiovascular adjustments were more extensively studied using flow probes and intravascular catheters in C. aceratus during acute warming (from 0 to 8°C) at rest and after imposed activity. Chaenocephalus aceratus had a lower routine fH than N. coriiceps (9 beats min-1 versus 14 beats min-1) and a lower peak fH during acute warming (38 beats min-1 versus 55 beats min-1) with a similar cardiac breakpoint temperature (13 and 14°C, respectively). Routine cardiac output (Q̇) for C. aceratus at ∼0°C was much lower (26.6 ml min-1 kg-1) than previously reported, probably because fish in the present study had a low fH (12 beats min-1) indicative of a high routine vagal tone and low stress. Chaenocephalus aceratus increased oxygen consumption during acute warming and with activity. Correspondingly, Q̇ increased considerably (maximally 86.3 ml min-1 kg-1), as did vascular conductance (5-fold). Thus, unlike earlier suggestions, these data provide convincing evidence that icefish can mount a well-developed cardiovascular regulation of heart rate, cardiac output and vascular conductance, and this regulatory capacity provides flexibility during acute warming. | [] | [] | false | false |
Electronic fishing logs LM Gould 2015
|
1043576 |
2016-12-13 | Crockett, Elizabeth |
Collaborative research: Redox Balance in Antarctic Notothenioid fishes: Do Icefishes have an Advantage? |
Positioning and depth recordings were made using instruments aboard the ARSV Laurence M Gould. | [] | [] | false | false |
Redox Balance in Antarctic Notothenioid Fishes
|
1043781 |
2016-12-06 | O'Brien, Kristin |
Collaborative research: Redox Balance in Antarctic Notothenioid fishes: Do Icefishes have an Advantage? |
None | [] | [] | false | false |
Impact of Rising Oceanic Temperatures on the Embryonic Development of Antarctic Notothenioid Fishes
|
1019305 |
2014-01-01 | Grim, Jeffrey |
PostDoctoral Research Fellowship |
Survival of Antarctic notothenioid fishes in the context of global climate change will depend upon the impact of rising oceanic temperatures on their embryonic development, yet little is known regarding the molecular mechanisms underlying this complex suite of processes. Many notothenioids are characterized by secondary pelagicism, which enables them to exploit food sources in the water column and is supported in part by skeletal pedomorphism. Here the PI proposes to examine the hypothesis that reactive oxygen species (ROS) regulate notothenioid skeletal pedomorphism. The research objectives are : 1) To quantify and localize ROS production and identify the point(s) of origin of ROS production in embryonic Antarctic fishes that differ in skeletal phenotypes 2) To determine whether the time course of embryogenesis and the extent of osteological development in embryonic Antarctic fishes can be altered by changing the oxidative status of the animal during embryogenesis 3) To evaluate whether transgenic alteration of oxidative status can induce skeletal pedomorphism in a fish model. Broader Impacts will include teaching undergraduate lectures, recruiting undergraduate students to help with lab analyses (and possibly field work), lectures and demonstrations to high school students, and allowing secondary educators access to personal photos and videos of research animals for curriculum development. | [] | [] | false | false |
Linkages among Mitochondrial Form, Function and Thermal Tolerance of Antarctic Notothenioid Fishes
|
0741301 |
2013-01-01 | O'Brien, Kristin |
Collaborative Research: Linkages among Mitochondrial Form, Function and Thermal Tolerance of Antarctic Notothenioid Fishes |
Antarctic notothenioid fishes have evolved in the Southern Ocean for 10-14 MY under an unusual set of circumstances. Their characteristics include the complete absence of the circulating oxygen-binding protein, hemoglobin (Hb) within the Channichthyid (Icefish) family of notothenioids. Moreover, some species within the 16 members of this family have also lost the ability to express the oxygen-binding and storage protein, myoglobin (Mb) in cardiac muscle. Our previous work has determined that the loss of Hb and/or Mb is correlated with significant increases in densities of mitochondria within oxidative tissues, and extensive remodeling of these vital organelles. To date, nothing is known about how modifications in mitochondrial architecture of icefishes affect organelle function, or more importantly, how they affect organismal-level physiology. Most critical for Antarctic fishes is that mitochondrial characteristics have been linked to how well ectotherms can withstand increases in temperature. This collaborative research project will address the hypothesis that the unusual mitochondrial architecture of Antarctic Channichthyids has led to changes in function that impact their ability to withstand elevations in temperature. Specifically, the research will (1) determine if the unusual mitochondrial architecture of icefishes affects function and contributes to organismal thermal sensitivity, (2) identify differences in organismal thermal tolerance between red- and white- blooded notothenioids, (3) identify molecular mechanisms regulating changes in mitochondrial structure in icefishes. The results may establish channichthyid icefishes as a sentinel taxon for signaling the impact of global warming on the Southern Ocean. Broad impacts of this project will be realized by participation of high school biology teachers in field work through cooperation with the ARMADA project at the University of Rhode Island, as well as graduate education. | ["POLYGON((-64.45 -63.29,-64.249 -63.29,-64.048 -63.29,-63.847 -63.29,-63.646 -63.29,-63.445 -63.29,-63.244 -63.29,-63.043 -63.29,-62.842 -63.29,-62.641 -63.29,-62.44 -63.29,-62.44 -63.371,-62.44 -63.452,-62.44 -63.533,-62.44 -63.614,-62.44 -63.695,-62.44 -63.776,-62.44 -63.857,-62.44 -63.938,-62.44 -64.019,-62.44 -64.1,-62.641 -64.1,-62.842 -64.1,-63.043 -64.1,-63.244 -64.1,-63.445 -64.1,-63.646 -64.1,-63.847 -64.1,-64.048 -64.1,-64.249 -64.1,-64.45 -64.1,-64.45 -64.019,-64.45 -63.938,-64.45 -63.857,-64.45 -63.776,-64.45 -63.695,-64.45 -63.614,-64.45 -63.533,-64.45 -63.452,-64.45 -63.371,-64.45 -63.29))"] | ["POINT(-63.445 -63.695)"] | false | false |
Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes
|
0436190 |
2009-01-01 | Eastman, Joseph |
Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes |
Patterns of biodiversity, as revealed by basic research in organismal biology, may be derived from ecological and evolutionary processes expressed in unique settings, such as Antarctica. The polar regions and their faunas are commanding increased attention as declining species diversity, environmental change, commercial fisheries, and resource management are now being viewed in a global context. Commercial fishing is known to have a direct and pervasive effect on marine biodiversity, and occurs in the Southern Ocean as far south as the Ross Sea. The nature of fish biodiversity in the Antarctic is different than in all other ocean shelf areas. Waters of the Antarctic continental shelf are ice covered for most of the year and water temperatures are nearly constant at -1.5 C. In these waters components of the phyletically derived Antarctic clade of Notothenioids dominate fish diversity. In some regions, including the southwestern Ross Sea, Notothenioids are overwhelmingly dominant in terms of number of species, abundance, and biomass. Such dominance by a single taxonomic group is unique among shelf faunas of the world. In the absence of competition from a taxonomically diverse fauna, Notothenioids underwent a habitat or depth related diversification keyed to the utilization of unfilled niches in the water column, especially pelagic or partially pelagic zooplanktivory and piscivory. This has been accomplished in the absence of a swim bladder for buoyancy control. They also may form a special type of adaptive radiation known as a species flock, which is an assemblage of a disproportionately high number of related species that have evolved rapidly within a defined area where most species are endemic. Diversification in buoyancy is the hallmark of the notothenioid radiation. Buoyancy is the feature of notothenioid biology that determines whether a species lives on the substrate, in the water column or both. Buoyancy also influences other key aspects of life history including swimming, feeding and reproduction and thus has implications for the role of the species in the ecosystem. With similarities to classic evolutionary hot spots, the Antarctic shelf and its Notothenioid radiation merit further exploration. The 2004 'International Collaborative Expedition to collect and study Fish Indigenous to Sub-Antarctic Habitats,' or, 'ICEFISH,' provided a platform for collection of notothenioid fishes from sub-Antarctic waters between South America and Africa, which will be examined in this project. This study will determine buoyancy for samples of all notothenioid species captured during the ICEFISH cruise. This essential aspect of the biology is known for only 19% of the notothenioid fauna. Also, the gross and microscopic anatomy of brains and sense organs of the phyletically basal families Bovichtidae, Eleginopidae, and of the non-Antarctic species of the primarily Antarctic family Nototheniidae will be examined. The fish biodiversity and endemicity in poorly known localities along the ICEFISH cruise track, seamounts and deep trenches will be quantified. Broader impacts include improved information for comprehending and conserving biodiversity, a scientific and societal priority. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis
|
0437887 |
2009-01-01 | Sidell, Bruce |
Collaborative Research: Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis. |
The polar ocean presently surrounding Antarctica is the coldest, most thermally stable marine environment on earth. Because oxygen solubility in seawater is inversely proportional to temperature, the cold Antarctic seas are an exceptionally oxygen-rich aquatic habitat. Eight families of a single perciform suborder, the Notothenioidei, dominate the present fish fauna surrounding Antarctica. Notothenioids account for approximately 35% of fish species and 90% of fish biomass south of the Antarctic Polar Front. Radiation of closely related notothenioid species thus has occurred rapidly and under a very unusual set of conditions: relative oceanographic isolation from other faunas due to circumpolar currents and deep ocean trenches surrounding the continent, chronically, severely cold water temperatures, very high oxygen availability, very low levels of niche competition in a Southern Ocean depauperate of species subsequent to a dramatic crash in species diversity of fishes that occurred sometime between the mid-Tertiary and present. These features make Antarctic notothenioid fishes an uniquely attractive group for the study of physiological and biochemical adaptations to cold body temperature. Few distinctive features of Antarctic fishes are as unique as the pattern of expression of oxygen-binding proteins in one notothenioid family, the Channichthyidae (Antarctic icefishes). All channichthyid icefishes lack the circulating oxygen-binding protein, hemoglobin (Hb); the intracellular oxygen-binding protein, myoglobin (Mb) is not uniformly expressed in species of this family. Both proteins are normally considered essential for adequate delivery of oxygen to aerobically poised tissues of animals. To compensate for the absence of Hb, icefishes have developed large hearts, rapidly circulate a large blood volume and possess elaborate vasculature of larger lumenal diameter than is seen in red-blooded fishes. Loss of Mb expression in oxidative muscles correlates with dramatic elevation in density of mitochondria within the cell, although each individual organelle is less densely packed with respiratory proteins. Within the framework of oxygen movement, the adaptive significance of greater vascular density and mitochondrial populations is understandable but mechanisms underlying development of these characteristics remain unknown. The answer may lie in another major function of both Hb and Mb, degradation of the ubiquitous bioactive compound, nitric oxide (NO). The research will test the hypothesis that loss of hemoprotein expression in icefishes has resulted in an increase in levels of NO that mediate modification of vascular systems and expansion of mitochondrial populations in oxidative tissues. The objectives of the proposal are to quantify the vascular density of retinas in +Hb and -Hb notothenioid species, to characterize NOS isoforms and catalytic activity in retina and cardiac muscle of Antarctic notothenioid fishes, to evaluate level of expression of downstream factors implicat ed in angiogenesis (in retinal tissue) and mitochondrial biogenesis (in cardiac muscle), and to determine whether inhibition of NOS in vivo results in regression of angiogenic and mitochondrial biogenic responses in icefishes. Broader impacts range from basic biology, through training of young scientists, to enhanced understanding of clinically relevant biomedical processes. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |