{"dp_type": "Project", "free_text": "d18O"}
[{"awards": "1644118 Dunbar, Robert", "bounds_geometry": "POLYGON((-108 -73,-107.3 -73,-106.6 -73,-105.9 -73,-105.2 -73,-104.5 -73,-103.8 -73,-103.1 -73,-102.4 -73,-101.7 -73,-101 -73,-101 -73.3,-101 -73.6,-101 -73.9,-101 -74.2,-101 -74.5,-101 -74.8,-101 -75.1,-101 -75.4,-101 -75.7,-101 -76,-101.7 -76,-102.4 -76,-103.1 -76,-103.8 -76,-104.5 -76,-105.2 -76,-105.9 -76,-106.6 -76,-107.3 -76,-108 -76,-108 -75.7,-108 -75.4,-108 -75.1,-108 -74.8,-108 -74.5,-108 -74.2,-108 -73.9,-108 -73.6,-108 -73.3,-108 -73))", "dataset_titles": "Antarctic Seawater d18O isotope data from SE Amundsen Sea: 2000, 2007, 2009, 2019, 2020", "datasets": [{"dataset_uid": "601611", "doi": "10.15784/601611", "keywords": "Amundsen Sea; Antarctica; Chemistry:Water; CTD; D18O; NBP0001; NBP0702; NBP0901; NBP1901; NBP2002; Oceans; Oxygen Isotope; R/v Nathaniel B. Palmer; Seawater Isotope; Southern Ocean", "people": "Hennig, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Seawater d18O isotope data from SE Amundsen Sea: 2000, 2007, 2009, 2019, 2020", "url": "https://www.usap-dc.org/view/dataset/601611"}], "date_created": "Wed, 21 Sep 2022 00:00:00 GMT", "description": "Estimating Antarctic ice sheet growth or loss is important to predicting future sea level rise. Such estimates rely on field measurements or remotely sensed based observations of the ice sheet surface, ice margins, and or ice shelves. This work examines the introduction of freshwater into the ocean to surrounding Antarctica to track meltwater from continental ice. Polar ice is depleted in two stable isotopes, 18O and D, deuterium, relative to Southern Ocean seawater and precipitation. Measurements of seawater isotopic composition in conjunction with precise observations of seawater temperature and salinity, will permit discrimination of freshwater derived from melting glacial ice from that derived from regional precipitation or sea ice melt. This research describes an accepted method for determining rates and locations of meltwater entering the oceans from polar ice sheets. As isotopic and salinity perturbations are cumulative in many Antarctic coastal seas, the method allows for the detection of any marked acceleration in meltwater introduction in specific regions, using samples collected and analyzed over a period of years to decades. Impact of the project derives from use of an independent method capable of constraining knowledge about current ice sheet melt rates, their stability and potential impact on sea level rise. The project allows for sample collection taken from foreign vessels of opportunity sailing in Antarctic waters, and subsequent sharing and interpretation of data. Research partners include the U.S., Korea, China, New Zealand, the United Kingdom, and Germany. Participating collaborators will collect seawater samples for isotopic and salinity analysis at Stanford University. USAP cruises will concentrate on sampling the Ross Sea, and the West Antarctic. The work plan includes interpretation of isotopic data using box model and mixing curve analyses as well as using isotope enabled ROMS (Regional Ocean Modeling System) models. The broader impacts of the research will include development of an educational module that illustrates the scientific method and how ocean observations help society understand how Earth is changing.", "east": -101.0, "geometry": "POINT(-104.5 -74.5)", "instruments": null, "is_usap_dc": true, "keywords": "Stable Isotopes; WATER TEMPERATURE; SALINITY; Oxygen Isotope; Meltwater Inventory; Pine Island Bay; OCEAN CHEMISTRY", "locations": "Pine Island Bay", "north": -73.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Dunbar, Robert", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.0, "title": "Estimation of Antarctic Ice Melt using Stable Isotopic Analyses of Seawater", "uid": "p0010380", "west": -108.0}, {"awards": "1643664 Severinghaus, Jeffrey; 1643669 Petrenko, Vasilii; 1643716 Buizert, Christo", "bounds_geometry": "POLYGON((112 -66,112.2 -66,112.4 -66,112.6 -66,112.8 -66,113 -66,113.2 -66,113.4 -66,113.6 -66,113.8 -66,114 -66,114 -66.1,114 -66.2,114 -66.3,114 -66.4,114 -66.5,114 -66.6,114 -66.7,114 -66.8,114 -66.9,114 -67,113.8 -67,113.6 -67,113.4 -67,113.2 -67,113 -67,112.8 -67,112.6 -67,112.4 -67,112.2 -67,112 -67,112 -66.9,112 -66.8,112 -66.7,112 -66.6,112 -66.5,112 -66.4,112 -66.3,112 -66.2,112 -66.1,112 -66))", "dataset_titles": "Concentration and isotopic composition of atmospheric N2O over the last century; Law Dome DE08-OH firn air 15N, O2/N2, Ar/N2, 18O of O2; Law Dome DE08-OH site noble gases in ice: testing the 86Krexcess proxy; Law Dome firn air and ice core 14CO concentration", "datasets": [{"dataset_uid": "601846", "doi": "10.15784/601846", "keywords": "Antarctica; Carbon-14; Cryosphere; Firn Air; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Law Dome; Snow/ice; Snow/Ice", "people": "Petrenko, Vasilii", "repository": "USAP-DC", "science_program": null, "title": "Law Dome firn air and ice core 14CO concentration", "url": "https://www.usap-dc.org/view/dataset/601846"}, {"dataset_uid": "601693", "doi": "10.15784/601693", "keywords": "Antarctic; Antarctica; Anthropogenic Emission; Atmosphere; Greenhouse Gas; Greenland; Ice Core Data; Nitrification And Denitrification Processes; Nitrous Oxide; Site-Specific 15N Isotopomer; Styx Glacier", "people": "Ghosh, Sambit; Etheridge, David; Ahn, Jinho ; Joong Kim, Seong; Yoshida, Naohiro ; Langenfelds, Ray L ; Buizert, Christo ; Toyoda, Sakae ", "repository": "USAP-DC", "science_program": null, "title": "Concentration and isotopic composition of atmospheric N2O over the last century", "url": "https://www.usap-dc.org/view/dataset/601693"}, {"dataset_uid": "601598", "doi": "10.15784/601598", "keywords": "Antarctica; Firn; Firn Density; Gravitational Settling; Inert Gases; Law Dome", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Law Dome DE08-OH firn air 15N, O2/N2, Ar/N2, 18O of O2", "url": "https://www.usap-dc.org/view/dataset/601598"}, {"dataset_uid": "601597", "doi": "10.15784/601597", "keywords": "Antarctica; Ice Core; Law Dome; Noble Gas", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Law Dome DE08-OH site noble gases in ice: testing the 86Krexcess proxy", "url": "https://www.usap-dc.org/view/dataset/601597"}], "date_created": "Fri, 17 Jun 2022 00:00:00 GMT", "description": "Hydroxyl radicals are responsible for removal of most atmospheric trace gases, including pollutants and important greenhouse gases. They have been called the \"detergent of the atmosphere\". Changes in hydroxyl radical concentration in response to large changes in reactive trace gas emissions, which may happen in the future, are uncertain. This project aims to provide the first estimates of the variability of atmospheric hydroxyl radicals since about 1880 AD when anthropogenic emissions of reactive trace gases were minimal. This will improve understanding of their stability in response to large changes in emissions. The project will also investigate whether ice cores record past changes in Southern Hemisphere westerly winds. These winds are a key component of the global climate system, and have an important influence on ocean circulation and possibly on atmospheric carbon dioxide concentrations. The project team will include three early career scientists, a postdoctoral researcher, and graduate and undergraduate students, working in collaboration with senior scientists and Australian collaborators. Firn air and shallow ice to a depth of about 233 m will be sampled at the Law Dome high-accumulation coastal site in East Antarctica. Trapped air will be extracted from the ice cores on site immediately after drilling. Carbon-14 of carbon monoxide (14CO) will be analyzed in firn and ice-core air samples. Corrections will be made for the in situ cosmogenic 14CO component in the ice, allowing for the atmospheric 14CO history to be reconstructed. This 14CO history will be interpreted with the aid of a chemistry-transport model to place the first observational constraints on the variability of Southern Hemisphere hydroxyl radical concentration after about 1880 AD. An additional component of the project will analyze Krypton-86 in the firn-air and ice-core samples. These measurements will explore whether ice-core Krypton-86 acts as a proxy for barometric pressure variability, and whether this proxy can be used in Antarctic ice cores to infer past movement of the Southern Hemisphere westerly winds. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 114.0, "geometry": "POINT(113 -66.5)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; TRACE GASES/TRACE SPECIES; Law Dome; Amd/Us; USAP-DC; LABORATORY; ICE CORE AIR BUBBLES; USA/NSF", "locations": "Law Dome", "north": -66.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Petrenko, Vasilii; Murray, Lee T; Buizert, Christo; Petrenko, Vasilii; Murray, Lee T", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.0, "title": "Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability", "uid": "p0010341", "west": 112.0}, {"awards": "2019719 Brook, Edward", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "2019-2020 Allan Hills Field Report; 2022-23 Allan Hills Intermediate Ice Core Site Selection Field Report; 2023-2024 Allan Hills End-of-Season Science Report; Airborne Radar Data: 2022-23 (CXA1) flight based HDF5/matlab format data; Airborne Radar Data: 2022-23 (CXA1) transect based (science organized) unfocused data; Airborne Radar Data: 2023-24 (CXA2) flight based data HDF5/matlab format; Airborne Radar Data: 2023-24 (CXA2) transect based (science organized) unfocused data; ALHIC2201 and ALHIC2302 3D ECM and Layer Orientations; Allan Hills 2022-23 Shallow Ice Core Field Report; Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 \u0026 2022; Allan Hills I-188 Field Season Report 2022-2023; Allan Hills ice water stable isotope record for dD, d18O; Basal Ice Unit Thickness Mapped by the NSF COLDEX MARFA Ice Penetrating Radar; CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903; COLDEX VHF MARFA Open Polar Radar radargrams; Concentration and flux of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area; Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903; I-165-M GPR Field Report 2019-2020; MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903; NSF COLDEX 2022-23 Level 2 Basal Specularity Content Profiles; NSF COLDEX 2022-23 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets; NSF COLDEX 2023-24 Level 2 Basal Specularity Content Profiles; NSF COLDEX 2023-24 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets; NSF COLDEX Ice Penetrating Radar Derived Grids of the Southern Flank of Dome C; NSF COLDEX/Open Polar Radar Example Delay Doppler Classification of Englacial Reflectors; NSF COLDEX Raw MARFA Ice Penetrating Radar data; Oxygen and hydrogen isotope compositions and associated d-excess of ice from ALHIC1903 drilled at the Allan Hills Blue Ice Area; Rare earth elemental concentrations of leached ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area; Replicate O-17-excess by continuous flow laser spectroscopy for an ice core section at Summit, Greenland; Rising Seas: Representations of Antarctica, Climate Change, and Sea Level Rise in U.S. Newspaper Coverage; Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old; Social network analysis to understand participant engagement in transdisciplinary team science: a large U.S. science and technology center case study; Strontium and neodymium isotope compositions of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "datasets": [{"dataset_uid": "200435", "doi": "10.18738/T8/PNBFOL", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2023-24 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets", "url": "https://doi.org/10.18738/T8/PNBFOL"}, {"dataset_uid": "601768", "doi": "10.15784/601768", "keywords": "Antarctica; Coldex; East Antarctic Plateau; Glaciology; Radar Echo Sounder", "people": "Kempf, Scott D.; Ng, Gregory; Buhl, Dillon; Kerr, Megan; Greenbaum, Jamin; Blankenship, Donald D.; Young, Duncan A.; Chan, Kristian", "repository": "USAP-DC", "science_program": "COLDEX", "title": "NSF COLDEX Raw MARFA Ice Penetrating Radar data", "url": "https://www.usap-dc.org/view/dataset/601768"}, {"dataset_uid": "200419", "doi": "", "keywords": null, "people": null, "repository": "University Digital Conservancy", "science_program": null, "title": "Rising Seas: Representations of Antarctica, Climate Change, and Sea Level Rise in U.S. Newspaper Coverage", "url": "https://hdl.handle.net/11299/265195"}, {"dataset_uid": "200420", "doi": "10.18738/T8/J38CO5", "keywords": null, "people": null, "repository": "OPR", "science_program": null, "title": "Airborne Radar Data: 2022-23 (CXA1) flight based HDF5/matlab format data", "url": "https://data.cresis.ku.edu/data/rds/2022_Antarctica_BaslerMKB/"}, {"dataset_uid": "200421", "doi": "10.18738/T8/J38CO5", "keywords": null, "people": null, "repository": "OPR", "science_program": null, "title": "Airborne Radar Data: 2023-24 (CXA2) flight based data HDF5/matlab format", "url": "https://data.cresis.ku.edu/data/rds/2023_Antarctica_BaslerMKB/"}, {"dataset_uid": "200470", "doi": "doi:10.15784/601822", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "Oxygen and hydrogen isotope compositions and associated d-excess of ice from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "url": "https://www.usap-dc.org/view/dataset/601822"}, {"dataset_uid": "200469", "doi": "https://doi.org/10.15784/601821", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "Rare earth elemental concentrations of leached ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "url": "https://www.usap-dc.org/view/dataset/601821"}, {"dataset_uid": "200468", "doi": "https://doi.org/10.15784/601820", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "Strontium and neodymium isotope compositions of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "url": "https://www.usap-dc.org/view/dataset/601820"}, {"dataset_uid": "601819", "doi": "10.15784/601819", "keywords": "Allan Hills; Antarctica; Cryosphere", "people": "Kuhl, Tanner; Morton, Elizabeth; Zajicek, Anna; Nesbitt, Ian; Carter, Austin; Morgan, Jacob; Shackleton, Sarah; Higgins, John; Epifanio, Jenna", "repository": "USAP-DC", "science_program": "COLDEX", "title": "2019-2020 Allan Hills Field Report", "url": "https://www.usap-dc.org/view/dataset/601819"}, {"dataset_uid": "601824", "doi": "10.15784/601824", "keywords": "Allan Hills; Antarctica; Coldex; Cryosphere", "people": "Brook, Edward J.; Epifanio, Jenna; Mayo, Emalia; Goverman, Ashley; Jayred, Michael; Morton, Elizabeth; Banerjee, Asmita; Hudak, Abigail; Manos, John-Morgan; Carter, Austin; Shackleton, Sarah; Higgins, John; Marks Peterson, Julia", "repository": "USAP-DC", "science_program": "COLDEX", "title": "2023-2024 Allan Hills End-of-Season Science Report", "url": "https://www.usap-dc.org/view/dataset/601824"}, {"dataset_uid": "601826", "doi": "10.15784/601826", "keywords": "Allan Hills; Antarctica; Cryosphere", "people": "Shaya, Margot; Manos, John-Morgan; Horlings, Annika; Epifanio, Jenna; Conway, Howard", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Allan Hills I-188 Field Season Report 2022-2023", "url": "https://www.usap-dc.org/view/dataset/601826"}, {"dataset_uid": "601697", "doi": "10.15784/601697", "keywords": "Allan Hills; Antarctica; Apres; Ice Core; Ice Penetrating Radar; Temperature Profiles", "people": "Conway, Howard; Brook, Edward J.", "repository": "USAP-DC", "science_program": "COLDEX", "title": "2022-23 Allan Hills Intermediate Ice Core Site Selection Field Report", "url": "https://www.usap-dc.org/view/dataset/601697"}, {"dataset_uid": "601696", "doi": "10.15784/601696", "keywords": "Allan Hills; Antarctica; Ice Core", "people": "Brook, Edward J.; Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills 2022-23 Shallow Ice Core Field Report", "url": "https://www.usap-dc.org/view/dataset/601696"}, {"dataset_uid": "200467", "doi": "doi:10.15784/601825", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "Concentration and flux of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "url": "https://www.usap-dc.org/view/dataset/601825"}, {"dataset_uid": "200465", "doi": "10.18738/T8/DM10IG", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "COLDEX VHF MARFA Open Polar Radar radargrams", "url": "https://doi.org/10.18738/T8/DM10IG"}, {"dataset_uid": "200464", "doi": "10.18738/T8/DM10IG", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX/Open Polar Radar Example Delay Doppler Classification of Englacial Reflectors", "url": "https://doi.org/10.18738/T8/DM10IG"}, {"dataset_uid": "200463", "doi": "10.18738/T8/M77ANK", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX Ice Penetrating Radar Derived Grids of the Southern Flank of Dome C", "url": "https://doi.org/10.18738/T8/M77ANK"}, {"dataset_uid": "200462", "doi": "10.18738/T8/KHUT1U", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2023-24 Level 2 Basal Specularity Content Profiles", "url": "https://doi.org/10.18738/T8/KHUT1U"}, {"dataset_uid": "200461", "doi": "10.18738/T8/6T5JS6", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2022-23 Level 2 Basal Specularity Content Profiles", "url": "https://doi.org/10.18738/T8/6T5JS6"}, {"dataset_uid": "601669", "doi": "10.15784/601669", "keywords": "Allan Hills; Antarctica; GPR; Ice Core; Report", "people": "Nesbitt, Ian; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "I-165-M GPR Field Report 2019-2020", "url": "https://www.usap-dc.org/view/dataset/601669"}, {"dataset_uid": "601854", "doi": "10.15784/601854", "keywords": "Allan Hills; Antarctica; Cryosphere", "people": "Kirkpatrick, Liam; Carter, Austin; Marks Peterson, Julia; Shackleton, Sarah; Fudge, T. J.", "repository": "USAP-DC", "science_program": "COLDEX", "title": "ALHIC2201 and ALHIC2302 3D ECM and Layer Orientations", "url": "https://www.usap-dc.org/view/dataset/601854"}, {"dataset_uid": "601659", "doi": "10.15784/601659", "keywords": "Antarctica; Continuous Flow; Glaciology; Greenland; Ice Core Data; Laser Spectroscopy; Oxygen Isotope; Triple Oxygen Isotopes", "people": "Davidge, Lindsey", "repository": "USAP-DC", "science_program": "Hercules Dome Ice Core", "title": "Replicate O-17-excess by continuous flow laser spectroscopy for an ice core section at Summit, Greenland", "url": "https://www.usap-dc.org/view/dataset/601659"}, {"dataset_uid": "601863", "doi": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Isotope Data", "people": "Mayewski, Paul A.; Introne, Douglas; Severinghaus, Jeffrey P.; Kurbatov, Andrei V.; Higgins, John; Brook, Edward", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills ice water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601863"}, {"dataset_uid": "601863", "doi": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Isotope Data", "people": "Higgins, John; Introne, Douglas; Brook, Edward; Mayewski, Paul A.; Severinghaus, Jeffrey P.; Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Allan Hills ice water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601863"}, {"dataset_uid": "200433", "doi": "10.18738/T8/FV6VNT", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "Airborne Radar Data: 2023-24 (CXA2) transect based (science organized) unfocused data", "url": "https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/FV6VNT"}, {"dataset_uid": "200434", "doi": "10.18738/T8/99IEOG", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2022-23 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets", "url": "https://doi.org/10.18738/T8/99IEOG"}, {"dataset_uid": "601620", "doi": "10.15784/601620", "keywords": "18O; Allan Hills; Allan Hills Blue Ice; Antarctica; Blue Ice; Delta 15N; Delta 18O; Dole Effect; Firn Thickness; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Chronology; Ice Core Records", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 \u0026 2022", "url": "https://www.usap-dc.org/view/dataset/601620"}, {"dataset_uid": "601878", "doi": "10.15784/601878", "keywords": "Allan Hills; Antarctica; Blue Ice; Carbon Dioxide; Cryosphere; Methane", "people": "Shackleton, Sarah; Severinghaus, Jeffrey P.; Hishamunda, Valens; Kalk, Michael; Brook, Edward; Marks Peterson, Julia", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old", "url": "https://www.usap-dc.org/view/dataset/601878"}, {"dataset_uid": "200432", "doi": "10.18738/T8/XPMLCC", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "Airborne Radar Data: 2022-23 (CXA1) transect based (science organized) unfocused data", "url": "https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/XPMLCC"}, {"dataset_uid": "200452", "doi": "https://hdl.handle.net/11299/270020", "keywords": null, "people": null, "repository": "UMN University Digital Conservancy", "science_program": null, "title": "Social network analysis to understand participant engagement in transdisciplinary team science: a large U.S. science and technology center case study", "url": "https://hdl.handle.net/11299/270020"}, {"dataset_uid": "601895", "doi": "10.15784/601895", "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Noble Gas", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601895"}, {"dataset_uid": "601896", "doi": "10.15784/601896", "keywords": "Allan Hills; Antarctica; Ch4; CO2; Cryosphere; Glaciology; Glaciology; Ice Core Data; Ice Core Records", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601896"}, {"dataset_uid": "601897", "doi": "10.15784/601897", "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciology; Ice Core Data; MOT; Ocean Temperature; Paleoclimate; Xe/Kr", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601897"}, {"dataset_uid": "601912", "doi": "10.15784/601912", "keywords": "Antarctica; Coldex; Cryosphere; East Antarctica; East Antarctic Plateau; Glaciology; Radar Echo Sounder", "people": "Vega Gonzalez, Alejandra; Kerr, Megan; Young, Duncan A.; Yan, Shuai; Blankenship, Donald D.; Singh, Shivangini", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Basal Ice Unit Thickness Mapped by the NSF COLDEX MARFA Ice Penetrating Radar", "url": "https://www.usap-dc.org/view/dataset/601912"}], "date_created": "Sat, 21 May 2022 00:00:00 GMT", "description": "Cores drilled through the Antarctic ice sheet provide a remarkable window on the evolution of Earth\u2019s climate and unique samples of the ancient atmosphere. The clear link between greenhouse gases and climate revealed by ice cores underpins much of the scientific understanding of climate change. Unfortunately, the existing data do not extend far enough back in time to reveal key features of climates warmer than today. COLDEX, the Center for Oldest Ice Exploration, will solve this problem by exploring Antarctica for sites to collect the oldest possible record of past climate recorded in the ice sheet. COLDEX will provide critical information for understanding how Earth\u2019s near-future climate may evolve and why climate varies over geologic time. New technologies will be developed for exploration and analysis that will have a long legacy for future research. An archive of old ice will stimulate new research for the next generations of polar scientists. COLDEX programs will galvanize that next generation of polar researchers, bring new results to other scientific disciplines and the public, and help to create a more inclusive and diverse scientific community. Knowledge of Earth\u2019s climate history is grounded in the geologic record. This knowledge is gained by measuring chemical, biological and physical properties of geologic materials that reflect elements of climate. Ice cores retrieved from polar ice sheets play a central role in this science and provide the best evidence for a strong link between atmospheric carbon dioxide and climate on geologic timescales. The goal of COLDEX is to extend the ice-core record of past climate to at least 1.5 million years by drilling and analyzing a continuous ice core in East Antarctica, and to much older times using discontinuous ice sections at the base and margin of the ice sheet. COLDEX will develop and deploy novel radar and melt-probe tools to rapidly explore the ice, use ice-sheet models to constrain where old ice is preserved, conduct ice coring, develop new analytical systems, and produce novel paleoclimate records from locations across East Antarctica. The search for Earth\u2019s oldest ice also provides a compelling narrative for disseminating information about past and future climate change and polar science to students, teachers, the media, policy makers and the public. COLDEX will engage and incorporate these groups through targeted professional development workshops, undergraduate research experiences, a comprehensive communication program, annual scientific meetings, scholarships, and broad collaboration nationally and internationally. COLDEX will provide a focal point for efforts to increase diversity in polar science by providing field, laboratory, mentoring and networking experiences for students and early career scientists from groups underrepresented in STEM, and by continuous engagement of the entire COLDEX community in developing a more inclusive scientific culture. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; AMD; Antarctica; Amd/Us; Coldex; USAP-DC; FIELD SURVEYS; ICE DEPTH/THICKNESS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Polar Special Initiatives", "paleo_time": null, "persons": "Brook, Edward J.; Neff, Peter", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "Texas Data Repository", "repositories": "OPR; Texas Data Repository; UMN University Digital Conservancy; University Digital Conservancy; USAP-DC", "science_programs": "COLDEX", "south": -90.0, "title": "Center for Oldest Ice Exploration", "uid": "p0010321", "west": -180.0}, {"awards": "1744832 Severinghaus, Jeffrey; 1745007 Mayewski, Paul; 1745006 Brook, Edward J.; 0838843 Kurbatov, Andrei; 1744993 Higgins, John", "bounds_geometry": "POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667))", "dataset_titles": "Allan Hills 2022-23 Shallow Ice Core Field Report; Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 \u0026 2022; Allan Hills Stable Water Isotopes; CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903; Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903; I-165-M GPR Field Report 2019-2020; MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903; Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old", "datasets": [{"dataset_uid": "601897", "doi": "10.15784/601897", "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciology; Ice Core Data; MOT; Ocean Temperature; Paleoclimate; Xe/Kr", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601897"}, {"dataset_uid": "601896", "doi": "10.15784/601896", "keywords": "Allan Hills; Antarctica; Ch4; CO2; Cryosphere; Glaciology; Glaciology; Ice Core Data; Ice Core Records", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601896"}, {"dataset_uid": "601895", "doi": "10.15784/601895", "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Noble Gas", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601895"}, {"dataset_uid": "601878", "doi": "10.15784/601878", "keywords": "Allan Hills; Antarctica; Blue Ice; Carbon Dioxide; Cryosphere; Methane", "people": "Shackleton, Sarah; Severinghaus, Jeffrey P.; Hishamunda, Valens; Kalk, Michael; Brook, Edward; Marks Peterson, Julia", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old", "url": "https://www.usap-dc.org/view/dataset/601878"}, {"dataset_uid": "601620", "doi": "10.15784/601620", "keywords": "18O; Allan Hills; Allan Hills Blue Ice; Antarctica; Blue Ice; Delta 15N; Delta 18O; Dole Effect; Firn Thickness; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Chronology; Ice Core Records", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 \u0026 2022", "url": "https://www.usap-dc.org/view/dataset/601620"}, {"dataset_uid": "601696", "doi": "10.15784/601696", "keywords": "Allan Hills; Antarctica; Ice Core", "people": "Brook, Edward J.; Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills 2022-23 Shallow Ice Core Field Report", "url": "https://www.usap-dc.org/view/dataset/601696"}, {"dataset_uid": "609541", "doi": "10.7265/N5NP22DF", "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Isotope", "people": "Spaulding, Nicole; Mayewski, Paul A.; Introne, Douglas; Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills Stable Water Isotopes", "url": "https://www.usap-dc.org/view/dataset/609541"}, {"dataset_uid": "601669", "doi": "10.15784/601669", "keywords": "Allan Hills; Antarctica; GPR; Ice Core; Report", "people": "Nesbitt, Ian; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "I-165-M GPR Field Report 2019-2020", "url": "https://www.usap-dc.org/view/dataset/601669"}], "date_created": "Fri, 27 Aug 2021 00:00:00 GMT", "description": "Bubbles of ancient air trapped in ice cores have been used to directly reconstruct atmospheric composition, and its links to Antarctic and global climate, over the last 800,000 years. Previous field expeditions to the Allan Hills Blue Ice Area, Antarctica, have recovered ice cores that extend as far back as 2.7 million years, by far the oldest polar ice samples yet recovered. These ice cores extend direct observations of atmospheric carbon dioxide and methane concentrations and indirect records of Antarctic climate into a period of Earth\u0027s climate history that represents a plausible geologic analogue to future anthropogenic climate change. The results demonstrate a smaller glacial-interglacial variability of climate and greenhouse gases, and a persistent linkage between Antarctic climate and atmospheric carbon dioxide, between 1 and 2 million years ago. Through this project, the team will return to the Allan Hills Blue Ice Area to recover additional ice cores that date to 2 million years or older. The climate records developed from these ice cores will provide new insights into the chemical composition of the atmosphere and Antarctic climate during times of comparable or even greater warmth than the present day. Project results will help answer questions about issues associated with anthropogenic change including the relationship between temperature change and the mass balance of Antarctic ice and the relationship between atmospheric greenhouse gases and global climate change. Earth has been cooling, and ice sheets expanding, over the past ~52 million years. Superimposed on this cooling are periodic changes in Earth\u0027s climate system driven by variations in the eccentricity, precession, and obliquity of Earth\u0027s orbit around the Sun. Climate reconstructions based on measurements of oxygen isotopes in foraminiferal calcite indicate that, from ~2.8 to 1.2 million years before present (Ma), Earth\u0027s climate system oscillated between glacial and interglacial states every ~40,000 years (the \"40k world\"). Between 1.2-0.8 Ma and continuing to the present, the period of glacial cycles increased in amplitude and lengthened to ~100,000 years (the \"100k world\"). Ice cores preserve ancient air that allows direct reconstructions of atmospheric carbon dioxide and methane. They also archive proxy records of regional climate, mean ocean temperature, global oxygen cycling, and the aridity of nearby continents. Studies of stratigraphically continuous ice cores, extending to 800,000 years before present, have demonstrated that atmospheric carbon dioxide is strongly linked to climate, and it is of great interest to extend the ice-core record into the 40k world. Recent discoveries of well-preserved ice dating from 1.0 to 2.7 Ma from ice cores drilled in the Allan Hills Blue Ice Area (BIA), Antarctica, demonstrate the potential to retrieve stratigraphically discontinuous old ice at shallow depths (\u003c200 meters). This project will continue this work by retrieving new large-volume ice cores and measuring paleoclimate properties in both new and existing ice from the Allan Hills BIA. The experimental objectives are to more fully characterize fundamental properties of the climate system and the carbon cycle during the 40k world. Project results will have implications for Pleistocene climate change, and will provide new constraints on the processes that regulate atmospheric carbon dioxide, methane, and oxygen on geologic timescales. Given a demonstrated age of the ice at the Allan Hills BIA of at least 2 million years, the team will drill additional cores to prospect for ice that predates the initiation of Northern Hemisphere glaciation at the Plio-Pleistocene transition (~2.8 Ma). This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 159.41667, "geometry": "POINT(159.29167 -76.7)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; USAP-DC; SNOW/ICE; Allan Hills; FIELD SURVEYS; USA/NSF; Amd/Us; LABORATORY", "locations": "Allan Hills", "north": -76.66667, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Mayewski, Paul A.; Kurbatov, Andrei V.; Brook, Edward J.; Severinghaus, Jeffrey P.; Higgins, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73333, "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "uid": "p0010253", "west": 159.16667}, {"awards": "1644159 Jacobs, Stanley", "bounds_geometry": "POLYGON((-180 -72.5,-177 -72.5,-174 -72.5,-171 -72.5,-168 -72.5,-165 -72.5,-162 -72.5,-159 -72.5,-156 -72.5,-153 -72.5,-150 -72.5,-150 -73.15,-150 -73.8,-150 -74.45,-150 -75.1,-150 -75.75,-150 -76.4,-150 -77.05,-150 -77.7,-150 -78.35,-150 -79,-153 -79,-156 -79,-159 -79,-162 -79,-165 -79,-168 -79,-171 -79,-174 -79,-177 -79,180 -79,178.2 -79,176.4 -79,174.6 -79,172.8 -79,171 -79,169.2 -79,167.4 -79,165.6 -79,163.8 -79,162 -79,162 -78.35,162 -77.7,162 -77.05,162 -76.4,162 -75.75,162 -75.1,162 -74.45,162 -73.8,162 -73.15,162 -72.5,163.8 -72.5,165.6 -72.5,167.4 -72.5,169.2 -72.5,171 -72.5,172.8 -72.5,174.6 -72.5,176.4 -72.5,178.2 -72.5,-180 -72.5))", "dataset_titles": "Antarctic Seawater d18O isotope data from SE Amundsen Sea: 2000, 2007, 2009, 2019, 2020; Ross Island area salinity and temperature records 1956 to 2020", "datasets": [{"dataset_uid": "601611", "doi": "10.15784/601611", "keywords": "Amundsen Sea; Antarctica; Chemistry:Water; CTD; D18O; NBP0001; NBP0702; NBP0901; NBP1901; NBP2002; Oceans; Oxygen Isotope; R/v Nathaniel B. Palmer; Seawater Isotope; Southern Ocean", "people": "Hennig, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Seawater d18O isotope data from SE Amundsen Sea: 2000, 2007, 2009, 2019, 2020", "url": "https://www.usap-dc.org/view/dataset/601611"}, {"dataset_uid": "601458", "doi": "10.15784/601458", "keywords": "Antarctica; CTD; Oceans; Physical Oceanography; Ross Island; Ross Sea; Salinity; Temperature", "people": "Giulivi, Claudia F.; Jacobs, Stanley", "repository": "USAP-DC", "science_program": null, "title": "Ross Island area salinity and temperature records 1956 to 2020", "url": "https://www.usap-dc.org/view/dataset/601458"}], "date_created": "Fri, 25 Jun 2021 00:00:00 GMT", "description": "Overview and Intellectual merit: This project extends and combines historical and recent ocean data sets to investigate ice-ocean-interactions along the Pacific continental margin of the West Antarctic Ice Sheet. The synthesis focuses on the strikingly different environments on and near the cold Ross Sea and warm Amundsen Sea continental shelves, where available measurements reach back to ~1958 and 1994, respectively. On the more extensively covered Ross Sea continental shelf, multiple reoccupations of ocean stations and transects are used to extend our knowledge of long-term ocean freshening and the mass balance of the world?s largest ice shelf. On the more rugged Amundsen Sea continental shelf, which contains the earth?s fastest melting ice shelves, continuing research on observed thermohaline variability also pursues connections between outer shelf shoals and vulnerable ice shelf grounding zones. This interdisciplinary work updates a prior study of ice shelf response to ocean thermal forcing, and uses chemical tracers to measure changes in shelf, deep and bottom water transformations and production rates. Broader Impacts : Recent and potential future rates of sea level rise are the primary broad-scale impacts of the ice and ocean changes revealed by observations in the study area. The overriding question is whether global and regional sea levels will accelerate gradually, allowing carbon usage reductions to head off the worst consequences, or so rapidly that they will contribute to major social and economic upheavals. Collaborations and data acquired by foreign vessels are also utilized to better understand the causes of rapid change in these shelf seas and ice shelves, along with associated wider implications. Data that are re-gridded, re-edited or newly collated will be archived, and results made available via presentations, publications, and press releases if warranted. This proposal does not require fieldwork in the Antarctic This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -150.0, "geometry": "POINT(-174 -75.75)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; AMD; USA/NSF; COMPUTERS; Ross Sea; SHIPS; USAP-DC; SALINITY/DENSITY; OCEAN TEMPERATURE", "locations": "Ross Sea", "north": -72.5, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jacobs, Stanley", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "West Antarctic Ice Shelf- Ocean Interactions ", "uid": "p0010208", "west": 162.0}, {"awards": "2045611 Rasbury, Emma; 2042495 Blackburn, Terrence", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": " Subglacial Precipitates Record Antarctic Ice Sheet Response to Pleistocene Millennial Climate Cycles; Subglacial precipitates record Antarctic ice sheet response to Southern Ocean warming ; Thermogenic Methane Production in Antarctic Subglacial Hydrocarbon Seeps; U-Th isotopes and major elements in sediments from Taylor Valley, Antarctica", "datasets": [{"dataset_uid": "601806", "doi": "10.15784/601806", "keywords": "Antarctica; Cryosphere; Erosion; Isotope Data; Major Elements; Soil; Taylor Glacier; Taylor Valley", "people": "Tulaczyk, Slawek; Edwards, Graham; Piccione, Gavin; Blackburn, Terrence", "repository": "USAP-DC", "science_program": null, "title": "U-Th isotopes and major elements in sediments from Taylor Valley, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601806"}, {"dataset_uid": "601594", "doi": "10.15784/601594", "keywords": "Antarctica; East Antarctica", "people": "Blackburn, Terrence; Piccione, Gavin", "repository": "USAP-DC", "science_program": null, "title": " Subglacial Precipitates Record Antarctic Ice Sheet Response to Pleistocene Millennial Climate Cycles", "url": "https://www.usap-dc.org/view/dataset/601594"}, {"dataset_uid": "601918", "doi": "10.15784/601918", "keywords": "Antarctica; Carbon Isotopes; Cryosphere; East Antarctica; Elephant Moraine; Geochronology; Isotope Data; Subglacial", "people": "Piccione, Gavin", "repository": "USAP-DC", "science_program": null, "title": "Thermogenic Methane Production in Antarctic Subglacial Hydrocarbon Seeps", "url": "https://www.usap-dc.org/view/dataset/601918"}, {"dataset_uid": "601911", "doi": null, "keywords": "Antarctica; Cryosphere", "people": "Gagliardi, Jessica", "repository": "USAP-DC", "science_program": null, "title": "Subglacial precipitates record Antarctic ice sheet response to Southern Ocean warming ", "url": "https://www.usap-dc.org/view/dataset/601911"}], "date_created": "Fri, 18 Jun 2021 00:00:00 GMT", "description": "Over the past century, climate science has constructed an extensive record of Earth\u2019s ice age cycles through the chemical and isotopic characterization of various geologic archives such as polar ice cores, deep-ocean sediments, and cave speleothems. These climatic archives provide an insightful picture of ice age cycles and of the related large global sea level fluctuations triggered by these significant climate rhythms. However, such records still provide limited insight as to how or which of Earth\u2019s ice sheets contributed to higher sea levels during past warm climate periods. This is of particular importance for our modern world: the Antarctic ice sheet is currently the world\u2019s largest freshwater reservoir, which, if completely melted, would raise the global sea level by over 60 meters (200 feet). Yet, geologic records of Antarctic ice sheet sensitivity to warm climates are particularly limited and difficult to obtain, because the direct records of ice sheet geometry smaller than the modern one are still buried beneath the mile-thick ice covering the continent. Therefore, it remains unclear how much this ice sheet contributed to past sea level rise during warm climate periods or how it will respond to the anticipated near-future climate warming. In the proposed research we seek to develop sub-ice chemical precipitates\u2014minerals that form in lakes found beneath the ice sheet\u2014as a climatic archive, one that records how the Antarctic ice sheet responded to past climatic change. These sub-ice mineral formations accumulated beneath the ice for over a hundred thousand years, recording the changes in chemical and isotopic subglacial properties that occur in response to climate change. Eventually these samples were eroded by the ice sheet and moved to the Antarctic ice margin where they were collected and made available to study. This research will utilize advanced geochemical, isotopic and geochronologic techniques to develop record of the Antarctica ice sheet\u2019s past response to warm climate periods, directly informing efforts to understand how Antarctica will response to future warming. Efforts to improve sea level forecasting on a warming planet have focused on determining the temperature, sea level and extent of polar ice sheets during Earth\u2019s past warm periods. Large uncertainties, however, in reconstructions of past and future sea levels, result from the poorly constrained climate sensitivity of the Antarctic Ice sheet (AIS). This research project aims to develop the use of subglacial precipitates as an archive the Antarctic ice sheet (AIS) past response to climate change. The subglacial precipitates from East Antarctica form in water bodies beneath Antarctic ice and in doing so provide an entirely new and unique measure of how the AIS responds to climate change. In preliminary examination of these precipitates, we identified multiple samples consisting of cyclic opal and calcite that spans hundreds of thousands of years in duration. Our preliminary geochemical characterization of these samples indicates that the observed mineralogic changes result from a cyclic change in subglacial water compositions between isotopically and chemically distinct waters. Opal-forming waters are reduced (Ce* \u003c1 and high Fe/Mn) and exhibit elevated 234U/238U compositions similar to the saline groundwater brines found at the periphery of the AIS. Calcite-forming waters, are rather, oxidized and exhibit \u03b418O compositions consistent with derivation from the depleted polar plateau (\u003c -50 \u2030). 234U-230Th dates permit construction of a robust timeseries describing these mineralogic and compositional changes through time. Comparisons of these time series with other Antarctic climate records (e.g., ice core records) reveal that calcite forming events align with millennial scale changes in local temperature or \u201cAntarctic isotopic maximums\u201d, which represent Southern Hemisphere warm periods resulting in increased Atlantic Meridional overturing circulation. Ultimately, this project seeks to develop a comprehensive model as to how changes in the thermohaline cycle induce a glaciologic response which in turn induces a change in the composition of subglacial waters and the mineralogic phase recorded within the precipitate archive. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; FIELD INVESTIGATION; AMD; USA/NSF; Amd/Us; USAP-DC; East Antarctica", "locations": "East Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Blackburn, Terrence; Tulaczyk, Slawek; Hain, Mathis; Rasbury, Troy", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Reconstructing East Antarctica\u2019s Past Response to Climate using Subglacial Precipitates", "uid": "p0010192", "west": -180.0}, {"awards": "1807522 Jones, Tyler", "bounds_geometry": "POINT(-112.085 -79.467)", "dataset_titles": "Mid-Holocene high-resolution water isotope time series for the WAIS Divide ice core; Seasonal temperatures in West Antarctica during the Holocene ; Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "datasets": [{"dataset_uid": "601326", "doi": "10.15784/601326", "keywords": "Antarctica; Delta 18O; Delta Deuterium; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Snow/ice; Snow/Ice; WAIS Divide Ice Core; Water Isotopes; West Antarctic Ice Sheet", "people": "Morris, Valerie; Jones, Tyler R.; Vaughn, Bruce; White, James", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Mid-Holocene high-resolution water isotope time series for the WAIS Divide ice core", "url": "https://www.usap-dc.org/view/dataset/601326"}, {"dataset_uid": "601603", "doi": "10.15784/601603", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Seasonality; Seasonal Temperatures; Temperature; Water Isotopes; West Antarctic Ice Sheet", "people": "Jones, Tyler R.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Seasonal temperatures in West Antarctica during the Holocene ", "url": "https://www.usap-dc.org/view/dataset/601603"}, {"dataset_uid": "601274", "doi": "10.15784/601274", "keywords": "Antarctica; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Snow/ice; Snow/Ice; WAIS Divide; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Jones, Tyler R.; Vaughn, Bruce; White, James; Price, Michael; Garland, Joshua; Bradley, Elizabeth; Morris, Valerie", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "url": "https://www.usap-dc.org/view/dataset/601274"}], "date_created": "Tue, 26 May 2020 00:00:00 GMT", "description": "Ice cores contain detailed accounts of Earth\u0027s climate history. The collection of an ice core can be logistically challenging, and extraction of data from the core can be time-consuming as well as susceptible to both human and machine error. Furthermore, locked in measurements from ice cores is information that scientists have not yet found ways to recover. This project will apply techniques from information theory to ice-core data to unlock that information. The primary goal is to demonstrate that information theory can (a) identify regions of a specific ice-core record that are in need of further analysis and (b) provide some specific guidance for that analysis. A secondary goal is to demonstrate that information theory has practical and scientific utility for studies of past climate. This project aims to use information theory in two distinct ways: first, to identify regions of a core where information appears to be damaged or missing, perhaps due to human and/or machine error. In the segment of the West Antarctic Ice Sheet Divide core that is 5000-8000 years old, for instance, information-theoretic methods reveal significant levels of noise, probably due to a laboratory instrument, and something that was not visible in the raw data. This is a particularly important segment of the record, as it contains valuable clues about climatic shifts and the onset of the Holocene. Targeted re-sampling of this segment of the core and reanalysis with newer laboratory apparatus could resolve the data issues. The second way in which information theory can potentially aid in ice-core analysis is by extracting climate signals from the data--such as the accumulation rate at the core site over the period of its formation. This quantity usually requires significant time and effort to produce, but information theory could help to streamline that process. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -112.085, "geometry": "POINT(-112.085 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "AMD; West Antarctic Ice Sheet; ISOTOPES; Amd/Us; USAP-DC; USA/NSF; Water Isotopes; WAIS Divide Ice Core; Deuterium; LABORATORY", "locations": "West Antarctic Ice Sheet", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Garland, Joshua; Jones, Tyler R.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Collaborative Research: Targeted resampling of deep polar ice cores using information theory", "uid": "p0010100", "west": -112.085}, {"awards": "1443105 Steig, Eric", "bounds_geometry": "POINT(0 -90)", "dataset_titles": "Continuous-flow measurements of the complete water isotope ratios (D/H, 17O/16O, 18O/16) from the South Pole ice core; South Pole high resolution ice core water stable isotope record for dD, d18O; South Pole Ice Core Holocene Major Ion Dataset; South Pole Ice Core Sea Salt and Major Ions; SP19 Gas Chronology; Temperature, accumulation rate, and layer thinning from the South Pole ice core (SPC14)", "datasets": [{"dataset_uid": "601850", "doi": "10.15784/601850", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Holocene Major Ion Dataset", "url": "https://www.usap-dc.org/view/dataset/601850"}, {"dataset_uid": "601239", "doi": "10.15784/601239", "keywords": "Antarctica; Cavity Ring Down Spectrometers; Delta 18O; Delta Deuterium; Deuterium Isotopes; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core; Ice Core Chemistry; Ice Core Data; Oxygen Isotope; Snow/ice; Snow/Ice; Stable Isotopes", "people": "Jones, Tyler R.; Vaughn, Bruce; Kahle, Emma; Steig, Eric J.; Schauer, Andrew; Morris, Valerie; White, James", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole high resolution ice core water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601239"}, {"dataset_uid": "601851", "doi": "10.15784/601851", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Sea Salt and Major Ions", "url": "https://www.usap-dc.org/view/dataset/601851"}, {"dataset_uid": "601380", "doi": "10.15784/601380", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Core Stratigraphy; Methane; South Pole; SPICEcore", "people": "Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SP19 Gas Chronology", "url": "https://www.usap-dc.org/view/dataset/601380"}, {"dataset_uid": "601396", "doi": "10.15784/601396", "keywords": "Accumulation; Antarctica; Diffusion Length; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Dynamic; Layer Thinning; Oxygen Isotope; South Pole; SPICEcore; Temperature", "people": "Jones, Tyler R.; Kahle, Emma; Steig, Eric J.; White, James; Epifanio, Jenna; Buizert, Christo; Waddington, Edwin D.; Conway, Howard; Stevens, Max; Schauer, Andrew; Vaughn, Bruce; Morris, Valerie; Koutnik, Michelle; Fudge, T. J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Temperature, accumulation rate, and layer thinning from the South Pole ice core (SPC14)", "url": "https://www.usap-dc.org/view/dataset/601396"}, {"dataset_uid": "601429", "doi": "10.15784/601429", "keywords": "Antarctica; Climate; Deuterium; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hydrogen; Ice; Ice Core; Ice Core Chemistry; Oxygen; Paleoclimate; Snow/ice; Snow/Ice; South Pole; Stable Isotopes", "people": "Vaughn, Bruce; Jones, Tyler R.; White, James; Morris, Valerie; Schauer, Andrew; Steig, Eric J.; Kahle, Emma", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Continuous-flow measurements of the complete water isotope ratios (D/H, 17O/16O, 18O/16) from the South Pole ice core", "url": "https://www.usap-dc.org/view/dataset/601429"}], "date_created": "Sun, 17 Nov 2019 00:00:00 GMT", "description": "This project will develop a record of the stable-isotope ratios of water from an ice core at the South Pole, Antarctica. Water-isotope ratio measurements provide a means to determine variability in temperature through time. South Pole is distinct from most other locations in Antarctica in showing no warming in recent decades, but little is known about temperature variability in this location prior to the installation of weather stations in 1957. The measurements made as part of this project will result in a much longer temperature record, extending at least 40,000 years, aiding our ability to understand what controls Antarctic climate, and improving projections of future Antarctic climate change. Data from this project will be critical to other investigators working on the South Pole ice core, and of general interest to other scientists and the public. Data will be provided rapidly to other investigators and made public as soon as possible. This project will obtain records of the stable-isotope ratios of water on the ice core currently being obtained at South Pole. The core will reach a depth of 1500 m and an age of 40,000 years. The project will use laser spectroscopy to obtain both an ultra-high-resolution record of oxygen 18/16 and deuterium-hydrogen ratios, and a lower-resolution record of oxygen 17/16 ratios. The high-resolution measurements will be used to aid in dating the core, and to provide estimates of isotope diffusion that constrain the process of firn densification. The novel 17/16 measurement provides additional constraints on the isotope fractionation due to the temperature-dependent supersaturation ratio, which affects the fractionation of water during the liquid-solid condensate transition. Together, these techniques will allow for improved accuracy in the use of the water isotope ratios as proxies for ice-sheet temperature, sea-surface temperature, and atmospheric circulation. The result will be a record of decadal through centennial and millennial scale climate change in a climatically distinct region in East Antarctica that has not been previously sampled by deep ice coring. The project will support a graduate student who will be co-advised by faculty at the University of Washington and the University of Colorado, and will be involved in all aspects of the work.", "east": 0.0, "geometry": "POINT(0 -90)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "SPICEcore; D18O; LABORATORY; OXYGEN ISOTOPE ANALYSIS; Oxygen Isotope; South Pole; USAP-DC; GLACIERS/ICE SHEETS; Antarctica; AMD; FIELD INVESTIGATION; Ice Core", "locations": "Antarctica; South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Steig, Eric J.; White, James", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: Record of the Triple-oxygen Isotope and Hydrogen Isotope Composition of Ice from an Ice Core at South Pole", "uid": "p0010065", "west": 0.0}, {"awards": "1443420 Dodd, Justin", "bounds_geometry": "POLYGON((167.07 -77.87,167.073 -77.87,167.076 -77.87,167.079 -77.87,167.082 -77.87,167.085 -77.87,167.088 -77.87,167.091 -77.87,167.094 -77.87,167.097 -77.87,167.1 -77.87,167.1 -77.873,167.1 -77.876,167.1 -77.879,167.1 -77.882,167.1 -77.885,167.1 -77.888,167.1 -77.891,167.1 -77.894,167.1 -77.897,167.1 -77.9,167.097 -77.9,167.094 -77.9,167.091 -77.9,167.088 -77.9,167.085 -77.9,167.082 -77.9,167.079 -77.9,167.076 -77.9,167.073 -77.9,167.07 -77.9,167.07 -77.897,167.07 -77.894,167.07 -77.891,167.07 -77.888,167.07 -77.885,167.07 -77.882,167.07 -77.879,167.07 -77.876,167.07 -77.873,167.07 -77.87))", "dataset_titles": "Diatom Oxygen Isotope Evidence of Pliocene (~4.68 to 3.44 Ma) Antarctic Ice Sheet Dynamics and Ross Sea Paleoceanography", "datasets": [{"dataset_uid": "601220", "doi": "10.15784/601220", "keywords": "And-1B; Andrill; Antarctica; Chemistry:sediment; Chemistry:Sediment; Delta 18O; Diatom; Mass Spectrometer; Oxygen Isotope; Paleoclimate; Pliocene; Sediment; Wais Project; West Antarctic Ice Sheet", "people": "Dodd, Justin; Abbott, Tirzah", "repository": "USAP-DC", "science_program": "ANDRILL", "title": "Diatom Oxygen Isotope Evidence of Pliocene (~4.68 to 3.44 Ma) Antarctic Ice Sheet Dynamics and Ross Sea Paleoceanography", "url": "https://www.usap-dc.org/view/dataset/601220"}], "date_created": "Tue, 06 Aug 2019 00:00:00 GMT", "description": "Abstract During the Early Pliocene, 4.8 to 3.4 million years ago, warmer-than-present global temperatures resulted in a retreat of the Ross Ice Shelf and West Antarctic Ice Sheet. Understanding changes in ocean dynamics during times of reduced ice volume and increased temperatures in the geologic past will improve the predictive models for these conditions. The primary goal of the proposed research is to develop a new oxygen isotope record of Pliocene oceanographic conditions near the Antarctic continent. Oxygen isotope values from the carbonate tests of benthic foraminifera have become the global standard for paleo-oceanographic studies, but foraminifera are sparse in high-latitude sediment cores. This research will instead make use of oxygen isotope measurements from diatom silica preserved in a marine sediment core from the Ross Sea. The project is the first attempt at using this method and will advance understanding of global ocean dynamics and ice sheet-ocean interactions during the Pliocene. The project will foster the professional development of two early-career scientists and serve as training for graduate and undergraduate student researchers. The PIs will use this project to introduce High School students to polar/oceanographic research, as well as stable isotope geochemistry. Collaboration with teachers via NSTA and Polar Educators International will ensure the implementation of excellent STEM learning activities and curricula for younger students. Technical Description This project will produce a high-resolution oxygen isotope record from well-dated diatom rich sediments that have been cross-correlated with global benthic foraminifera oxygen isotope records. Diatom silica frustules deposited during the Early Pliocene and recovered by the ANDRILL Project (AND-1B) provide ideal material for this objective. Diatomite unites in the AND-1B core are nearly pure, with little evidence of opal formation. A diatom oxygen isotope record from this core offers the potential to constrain lingering uncertainties about Ross Sea and Southern Ocean paleoceanography and Antarctic Ice Sheet history during a time of high atmospheric carbon dioxide concentrations. Specifically, oxygen isotope variations will be used to constrain changes in the water temperature and/or freshwater flux in the Pliocene Ross Sea. Diatom species data from the AND-1B core have been used to infer variations in the extent and duration of seasonal sea ice coverage, sea surface temperatures, and mid-water advection onto the continental shelf. However, the diatom oxygen isotope record will provide the first direct measure of water/oxygen isotope values at the Antarctic continental margin during the Pliocene.", "east": 167.1, "geometry": "POINT(167.085 -77.885)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "OXYGEN ISOTOPES; USAP-DC; Antarctica; NOT APPLICABLE", "locations": "Antarctica", "north": -77.87, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Dodd, Justin; Scherer, Reed Paul; Warnock, Jonathan", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ANDRILL", "south": -77.9, "title": "Diatom and Oxygen Isotope Evidence of Pliocene Antarctic Ice Sheet Dynamics and Ross Sea Paleoceanography", "uid": "p0010042", "west": 167.07}, {"awards": "1443550 Brook, Edward J.", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Polar Ice Cores 3,000 Year Nitrous Oxide d15N and d18O Data; SPICEcore Holocene CO2 and N2O data", "datasets": [{"dataset_uid": "601197", "doi": "10.15784/601197", "keywords": "Antarctica; Carbon Dioxide; Ice Core Gas Records; Nitrous Oxide; South Pole; SPICEcore", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SPICEcore Holocene CO2 and N2O data", "url": "https://www.usap-dc.org/view/dataset/601197"}, {"dataset_uid": "200055", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Polar Ice Cores 3,000 Year Nitrous Oxide d15N and d18O Data", "url": "https://www.ncdc.noaa.gov/paleo-search/study/25530"}], "date_created": "Tue, 06 Aug 2019 00:00:00 GMT", "description": "The temperature of the earth is controlled, in part, by heat trapping gases that include carbon dioxide, methane, and nitrous oxide. Despite their importance to climate, direct measurements of these gases in the atmosphere are limited to the last 50 years at best. Air trapped in ice cores extends those data back hundreds of millennia, and measurements of greenhouse gases in ice cores underpin much of our understanding of global chemical cycles relevant to modern climate change. Existing records vary in quality and detail. The proposed work fills gaps in our knowledge of nitrous oxide and carbon dioxide over the last 10,000 years. New measurements from an ice core from the South Pole will be used to determine what role changes in ocean and land based processes played in controlling these gases, which decreased during the first 2,000 years of this time period, then gradually increased toward the present. The work will address a major controversy over whether early human activities could have impacted the atmosphere, and provide data to improve mathematical models of the land-ocean-atmosphere system that predict how future climate change will impact the composition of the atmosphere and climate. For nitrous oxide the work will improve on existing concentration records and provide a novel, detailed Holocene stable isotope record. It will also develop measurement of the isotopomers of nitrous oxide and explore their utility for understanding aspects of the Holocene nitrous oxide budget. The primary goal is to determine if marine and/or terrestrial emissions of nitrous oxide change in response to changes in Holocene climate. A new Holocene isotopic record for carbon dioxide (stable carbon and oxygen isotopes), will improve the precision of existing records by a factor 5 and increase the temporal resolution. These data will be used to evaluate controversial hypotheses about why carbon dioxide concentrations changed in the Holocene and provide insight into millennial scale processes in the carbon cycle, which are not resolved by current isotopic data. A graduate student will receive advanced training during and the student and principle investigator will conduct outreach efforts targeted at local middle school students. The proposed work will also contribute to teaching efforts by the PI and to public lectures on climate and climate change. The results will be disseminated through publications, data archive, and the OSU Ice Core Lab web site. New analytical methods of wide utility will also be developed and documented.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Antarctica; ICE CORE RECORDS; CARBON DIOXIDE; NOT APPLICABLE; USAP-DC; TRACE GASES/TRACE SPECIES; NITROUS OXIDE", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Brook, Edward J.", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "NCEI; USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Controls on Variations in Atmospheric Carbon Dioxide and Nitrous Oxide During the Last 10,000 years", "uid": "p0010043", "west": -180.0}, {"awards": "1443306 Mayewski, Paul; 1443263 Higgins, John", "bounds_geometry": null, "dataset_titles": "Allan Hills ice water stable isotope record for dD, d18O; Carbon dioxide concentration and its stable carbon isotope composition in Allan Hills ice cores; Elemental and isotopic composition of heavy noble gases in Allan Hills ice cores; Elemental and isotopic composition of nitrogen, oxygen, and argon in Allan Hills ice cores; Greenhouse gas composition in the Allan Hills S27 ice core; Methane concentration in Allan Hills ice cores; Stable isotope composition of the trapped air in the Allan Hills S27 ice core; Stable water isotope data for the AH-1502 ice core drilled at the Allan Hills Blue ice area; Stable water isotope data for the AH-1503 ice core drilled at the Allan Hills Blue ice area; Stable water isotope data for the surface samples collected at the Allan Hills Blue ice area", "datasets": [{"dataset_uid": "601203", "doi": "10.15784/601203", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Chemistry:ice; Chemistry:Ice; Gas Chromatography; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenhouse Gas; Ice; Ice Core Data; Ice Core Gas Records; Methane; Snow/ice; Snow/Ice", "people": "Higgins, John; Yan, Yuzhen; Bender, Michael; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Methane concentration in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601203"}, {"dataset_uid": "601425", "doi": "10.15784/601425", "keywords": "Allan Hills; Antarctica; Blue Ice; Carbon Dioxide; Ice Core; Methane", "people": "Yan, Yuzhen; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Greenhouse gas composition in the Allan Hills S27 ice core", "url": "https://www.usap-dc.org/view/dataset/601425"}, {"dataset_uid": "601201", "doi": "10.15784/601201", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Argon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Data; Ice Core Gas Records; Krypton; Mass Spectrometer; Noble Gas; Snow/ice; Snow/Ice; Xenon", "people": "Ng, Jessica; Severinghaus, Jeffrey P.; Yan, Yuzhen; Bender, Michael; Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Elemental and isotopic composition of heavy noble gases in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601201"}, {"dataset_uid": "601129", "doi": "10.15784/601129", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Blue Ice; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Isotope Data; Oxygen; Snow/ice; Snow/Ice; Stable Water Isotopes; Transantarctic Mountains", "people": "Kurbatov, Andrei V.; Yan, Yuzhen; Introne, Douglas; Mayewski, Paul A.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable water isotope data for the AH-1502 ice core drilled at the Allan Hills Blue ice area", "url": "https://www.usap-dc.org/view/dataset/601129"}, {"dataset_uid": "601863", "doi": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Isotope Data", "people": "Mayewski, Paul A.; Introne, Douglas; Severinghaus, Jeffrey P.; Kurbatov, Andrei V.; Higgins, John; Brook, Edward", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills ice water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601863"}, {"dataset_uid": "601130", "doi": "10.15784/601130", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; Delta 18O; Delta Deuterium; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Gas Records; Ice Core Records; Oxygen; Snow/ice; Snow/Ice; Stable Water Isotopes; Transantarctic Mountains", "people": "Introne, Douglas; Mayewski, Paul A.; Kurbatov, Andrei V.; Yan, Yuzhen", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable water isotope data for the surface samples collected at the Allan Hills Blue ice area", "url": "https://www.usap-dc.org/view/dataset/601130"}, {"dataset_uid": "601863", "doi": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Isotope Data", "people": "Higgins, John; Introne, Douglas; Brook, Edward; Mayewski, Paul A.; Severinghaus, Jeffrey P.; Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Allan Hills ice water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601863"}, {"dataset_uid": "601128", "doi": "10.15784/601128", "keywords": "Allan Hills; Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope Record; Mass Spectrometry; Stable Water Isotopes", "people": "Introne, Douglas; Kurbatov, Andrei V.; Yan, Yuzhen; Mayewski, Paul A.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable water isotope data for the AH-1503 ice core drilled at the Allan Hills Blue ice area", "url": "https://www.usap-dc.org/view/dataset/601128"}, {"dataset_uid": "601483", "doi": "10.15784/601483", "keywords": "Allan Hills; Antarctica; Argon; Ice; Ice Core Data; Ice Core Gas Records; Isotope; Mass Spectrometry; Nitrogen; Oxygen", "people": "Yan, Yuzhen; Bender, Michael; Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Elemental and isotopic composition of nitrogen, oxygen, and argon in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601483"}, {"dataset_uid": "601202", "doi": "10.15784/601202", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Carbon Dioxide; Carbon Isotopes; Chemistry:ice; Chemistry:Ice; CO2; Gas Chromatography; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Gas Records; Ice Core Records; Mass Spectrometer; Mass Spectrometry; Methane; Snow/ice; Snow/Ice", "people": "Yan, Yuzhen; Bender, Michael; Brook, Edward J.; Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Carbon dioxide concentration and its stable carbon isotope composition in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601202"}, {"dataset_uid": "601512", "doi": "10.15784/601512", "keywords": "Allan Hills; Antarctica; Blue Ice; Ice Core; Ice Core Gas Records; Isotope; Nitrogen; Oxygen", "people": "Bender, Michael; Yan, Yuzhen; Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable isotope composition of the trapped air in the Allan Hills S27 ice core", "url": "https://www.usap-dc.org/view/dataset/601512"}], "date_created": "Thu, 18 Oct 2018 00:00:00 GMT", "description": "Bubbles of ancient air trapped in ice cores permit the direct reconstruction of atmospheric composition and allow us to link greenhouse gases and global climate over the last 800,000 years. Previous field expeditions to the Allan Hills blue ice area, Antarctica, have recovered ice cores that date to one million years, the oldest ice cores yet recovered from Antarctica. These records have revealed that interglacial CO2 concentrations decreased by 800,000 years ago and that, in the warmer world 1 million years ago, CO2 and Antarctic temperature were linked as during the last 800,000 years. This project will return to the Allan Hills blue ice area to recover additional ice cores that date to 1 million years or older. The climate records developed from the drilled ice cores will provide new insights into the chemical composition of the atmosphere and Antarctic climate during times of comparable or even greater warmth than the present day. Our results will help answer questions about issues associated with anthropogenic change. These include the relationship between temperature change and the mass balance of Antarctic ice; precipitation and aridity variations associated with radiatively forced climate change; and the climate significance of sea ice extent. The project will entrain two graduate students and a postdoctoral scholar, and will conduct outreach including workshops to engage teachers in carbon science and ice cores. Between about 2.8-0.9 million years ago, Earth\u0027s climate was characterized by 40,000-year cycles, driven or paced by changes in the tilt of Earth\u0027s spin axis. Much is known about the \"40,000-year\" world from studies of deep-sea sediments, but our understanding of climate change during this period is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of ancient ice from the Main Ice Field, Allan Hills, Antarctica. During previous field seasons we recovered ice extending, discontinuously, from 0.1-1.0 million years old. Ice was dated by measuring the 40Ar/38Ar (Argon) ratio of the trapped gases. Our discovery of million year-old ice demonstrates that there is gas-record-quality ice from the 40,000-year world in the Allan Hills Main Ice Field. We have identified two different sites, each overlying bedrock at ~ 200 m depth, that are attractive targets for coring ice dating to 1 million years and older. This project aims to core the ice at these two sites, re-occupy a previous site with million year-old ice and drill it down to the bedrock, and generate 10-20 short (~10-meter) cores in areas where our previous work and terrestrial meteorite ages suggest ancient surface ice. We plan to date the ice using the 40Ar/38Ar ages of trapped Argon. We also plan to characterize the continuity of our cores by measuring the deuterium and oxygen isotope ratios in the ice, methane, ratios of Oxygen and Argon to Nitrogen in trapped gas, the Nitrogen-15 isotope (d15N) of Nitrogen, and the Oxygen-18 isotope (d18O) of Oxygen. As the ice may be stratigraphically disturbed, these measurements will provide diagnostic properties for assessing the continuity of the ice-core records. Successful retrieval of ice older than one million years will provide the opportunity for follow-up work to measure the CO2 concentration and other properties within the ice to inform on the temperature history of the Allan Hills region, dust sources and source-area aridity, moisture sources, densification conditions, global average ocean temperature, and greenhouse gas concentrations. We will analyze the data in the context of leading hypotheses of the 40,000-year world and the Mid-Pleistocene Transition to the 100,000-year world. We expect to advance understanding of climate dynamics during these periods.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Amd/Us; AMD; Allan Hills; USA/NSF; FIELD INVESTIGATION; USAP-DC; Ice Core; LABORATORY", "locations": "Allan Hills", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Mayewski, Paul A.; Kurbatov, Andrei V.; Higgins, John; Bender, Michael", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": null, "title": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area", "uid": "p0000760", "west": null}, {"awards": "0732711 Smith, Craig; 0732625 Leventer, Amy; 0732655 Mosley-Thompson, Ellen; 0732602 Truffer, Martin; 0732651 Gordon, Arnold; 0732983 Vernet, Maria", "bounds_geometry": "POLYGON((-68 -57.8,-66.78 -57.8,-65.56 -57.8,-64.34 -57.8,-63.12 -57.8,-61.9 -57.8,-60.68 -57.8,-59.46 -57.8,-58.24 -57.8,-57.02 -57.8,-55.8 -57.8,-55.8 -58.8,-55.8 -59.8,-55.8 -60.8,-55.8 -61.8,-55.8 -62.8,-55.8 -63.8,-55.8 -64.8,-55.8 -65.8,-55.8 -66.8,-55.8 -67.8,-57.02 -67.8,-58.24 -67.8,-59.46 -67.8,-60.68 -67.8,-61.9 -67.8,-63.12 -67.8,-64.34 -67.8,-65.56 -67.8,-66.78 -67.8,-68 -67.8,-68 -66.8,-68 -65.8,-68 -64.8,-68 -63.8,-68 -62.8,-68 -61.8,-68 -60.8,-68 -59.8,-68 -58.8,-68 -57.8))", "dataset_titles": "Abrupt Environmental Change in the Larsen Ice Shelf System (LARISSA) - Marine Ecosystems; Biology Species Abundance from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expeditions NBP1001 and NBP1203; Bruce Plateau Accumulation O18 2009-1900; Easten Antarctic Peninsula Surface Sediment Diatom Data; LMG13-11 JKC-1 Paleoceanographic data; Macrofauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001; Megafauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001; NBP1001 cruise data; NBP1203 cruise data; Processed CTD Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001; Processed CTD Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203; Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001; Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203; Radioisotope data (C-14 and Pb-210) from bulk sediments, Larsen A Ice Shelf; Sediment samples (full data link not provided)", "datasets": [{"dataset_uid": "601306", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; LARISSA; Larsen Ice Shelf; Macrofauna; NBP1001; Oceans; R/v Nathaniel B. Palmer; Seafloor Sampling; Species Abundance", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Macrofauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601306"}, {"dataset_uid": "601348", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; CTD; CTD Data; LARISSA; Larsen Ice Shelf; NBP1203; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Huber, Bruce; Gordon, Arnold", "repository": "USAP-DC", "science_program": null, "title": "Processed CTD Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203", "url": "https://www.usap-dc.org/view/dataset/601348"}, {"dataset_uid": "000226", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "Biology Species Abundance from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expeditions NBP1001 and NBP1203", "url": "https://doi.org/10.1594/ieda/320821"}, {"dataset_uid": "600073", "doi": "10.15784/600073", "keywords": "Antarctica; Antarctic Peninsula; Araon1304; Biota; LARISSA; Larsen B Ice Shelf; NBP1001; NBP1203; Oceans; Physical Oceanography; Southern Ocean; Weddell Sea", "people": "Vernet, Maria", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Abrupt Environmental Change in the Larsen Ice Shelf System (LARISSA) - Marine Ecosystems", "url": "https://www.usap-dc.org/view/dataset/600073"}, {"dataset_uid": "600167", "doi": "10.15784/600167", "keywords": "Antarctica; Antarctic Peninsula; Bruce Plateau; Glaciology; Ice Core Records; Isotope; LARISSA; Paleoclimate; Sample/collection Description; Sample/Collection Description; Snow Accumulation", "people": "Thompson, Lonnie G.; Mosley-Thompson, Ellen", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Bruce Plateau Accumulation O18 2009-1900", "url": "https://www.usap-dc.org/view/dataset/600167"}, {"dataset_uid": "601346", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Current Measurements; LADCP; Larsen Ice Shelf; NBP1001; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer", "people": "Huber, Bruce; Gordon, Arnold", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601346"}, {"dataset_uid": "601336", "doi": "10.15784/601336", "keywords": "Antarctica; Carbon-14; Larsen Ice Shelf; Lead-210; Marine Sediments; Radioisotope Analysis", "people": "Taylor, Richard; DeMaster, David", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Radioisotope data (C-14 and Pb-210) from bulk sediments, Larsen A Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/601336"}, {"dataset_uid": "601211", "doi": "10.15784/601211", "keywords": "Antarctica; Antarctic Peninsula; Benthos; Biota; Diatom; Geology/Geophysics - Other; LMG0502; Marine Geoscience; Marine Sediments; Microscope; NBP0003; NBP0107; NBP0603; NBP1203; R/v Nathaniel B. Palmer; Surface Sediment", "people": "Leventer, Amy", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Easten Antarctic Peninsula Surface Sediment Diatom Data", "url": "https://www.usap-dc.org/view/dataset/601211"}, {"dataset_uid": "000145", "doi": "", "keywords": null, "people": null, "repository": "AMGRF", "science_program": null, "title": "Sediment samples (full data link not provided)", "url": "http://arf.fsu.edu/"}, {"dataset_uid": "000142", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1001 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP1001"}, {"dataset_uid": "601485", "doi": "10.15784/601485", "keywords": "Antarctica; Antarctic Peninsula; Delta 13C; Delta 18O; Paleoceanography; Temperature", "people": "Shevenell, Amelia", "repository": "USAP-DC", "science_program": "LARISSA", "title": "LMG13-11 JKC-1 Paleoceanographic data", "url": "https://www.usap-dc.org/view/dataset/601485"}, {"dataset_uid": "000143", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1203 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP1203"}, {"dataset_uid": "601347", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Current Measurements; LADCP; LARISSA; Larsen Ice Shelf; NBP1203; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer", "people": "Gordon, Arnold; Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203", "url": "https://www.usap-dc.org/view/dataset/601347"}, {"dataset_uid": "601305", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; LARISSA; Larsen Ice Shelf; Macrofauna; Megafauna; NBP1001; Oceans; R/v Nathaniel B. Palmer; Seafloor Sampling; Species Abundance", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Megafauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601305"}, {"dataset_uid": "601345", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; CTD; CTD Data; LARISSA; Larsen Ice Shelf; NBP1001; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Huber, Bruce; Gordon, Arnold", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Processed CTD Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601345"}], "date_created": "Thu, 01 Feb 2018 00:00:00 GMT", "description": "Like no other region on Earth, the northern Antarctic Peninsula represents a spectacular natural laboratory of climate change and provides the opportunity to study the record of past climate and ecological shifts alongside the present-day changes in one of the most rapidly warming regions on Earth. This award supports the cryospheric and oceano-graphic components of an integrated multi-disciplinary program to address these rapid and fundamental changes now taking place in Antarctic Peninsula (AP). By making use of a marine research platform (the RV NB Palmer and on-board helicopters) and additional logistical support from the Argentine Antarctic program, the project will bring glaciologists, oceanographers, marine geologists and biologists together, working collaboratively to address fundamentally interdisciplinary questions regarding climate change. The project will include gathering a new, high-resolution paleoclimate record from the Bruce Plateau of Graham Land, and using it to compare Holocene- and possibly glacial-epoch climate to the modern period; investigating the stability of the remaining Larsen Ice Shelf and rapid post-breakup glacier response ? in particular, the roles of surface melt and ice-ocean interactions in the speed-up and retreat; observing the contribution of, and response of, oceanographic systems to ice shelf disintegration and ice-glacier interactions. Helicopter support on board will allow access to a wide range of glacial and geological areas of interest adjacent to the Larsen embayment. At these locations, long-term in situ glacial monitoring, isostatic uplift, and ice flow GPS sites will be established, and high-resolution ice core records will be obtained using previously tested lightweight drilling equipment. Long-term monitoring of deep water outflow will, for the first time, be integrated into changes in ice shelf extent and thickness, bottom water formation, and multi-level circulation by linking near-source observations to distal sites of concentrated outflow. The broader impacts of this international, multidisciplinary effort are that it will significantly advance our understanding of linkages amongst the earth\u0027s systems in the Polar Regions, and are proposed with international participation (UK, Spain, Belgium, Germany and Argentina) and interdisciplinary engagement in the true spirit of the International Polar Year (IPY). It will also provide a means of engaging and educating the public in virtually all aspects of polar science and the effects of ongoing climate change. The research team has a long record of involving undergraduates in research, educating high-performing graduate students, and providing innovative and engaging outreach products to the K-12 education and public media forums. Moreover, forging the new links both in science and international Antarctic programs will provide a continuing legacy, beyond IPY, of improved understanding and cooperation in Antarctica.", "east": -55.8, "geometry": "POINT(-61.9 -62.8)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e BOX CORE; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ICE AUGERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SNOW DENSITY CUTTER", "is_usap_dc": true, "keywords": "Paleoclimate; Megafauna; USAP-DC; AMD; Amd/Us; Antarctica; Climate Change; LABORATORY; Climate Variability; Multi-Disciplinary; Cryosphere; NBP1001; FIELD SURVEYS; Not provided; Antarctic Peninsula; R/V NBP; FIELD INVESTIGATION; USA/NSF; Ice Core; Holocene", "locations": "Antarctica; Antarctic Peninsula", "north": -57.8, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Truffer, Martin; Gordon, Arnold; Huber, Bruce; Mosley-Thompson, Ellen; Leventer, Amy; Vernet, Maria; Smith, Craig; Thompson, Lonnie G.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "AMGRF; MGDS; R2R; USAP-DC", "science_programs": "LARISSA", "south": -67.8, "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans", "uid": "p0000101", "west": -68.0}, {"awards": "1246223 Hastings, Meredith", "bounds_geometry": "POINT(-112.1115 -79.481)", "dataset_titles": "WAIS Divide WDC06A Nitrate Isotope Record", "datasets": [{"dataset_uid": "601022", "doi": "10.15784/601022", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Nitrate; WAIS Divide; WAIS Divide Ice Core", "people": "Hastings, Meredith; Buffen, Aron", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide WDC06A Nitrate Isotope Record", "url": "https://www.usap-dc.org/view/dataset/601022"}], "date_created": "Tue, 02 May 2017 00:00:00 GMT", "description": "Hastings/1246223 This award supports a project with the aim of distinguishing the sources of nitrate deposition to the West Antarctic Ice Sheet (WAIS) using isotopic ratios snow in archive snow and ice samples. The isotopic composition of nitrate has been shown to contain information about the source of the nitrate (i.e. nitrogen oxides = NOx = NO+NO2) and the oxidation processes that convert NOx to nitrate in the atmosphere prior to deposition. A difficulty in interpreting records in the context of NOx sources is that nitrate can be post-depositionally processed in surface snow, such that the archived record does not reflect the composition of the atmosphere. This intellectual merit of this work specifically aims to investigate variability in the isotopic composition of nitrate in snow and ice from the WAIS in the context of accumulation rate, NOx source emissions, and atmospheric chemistry. These records will be interpreted in the context of our understanding of biospheric (biomass burning, microbial processes in soils), atmospheric (lightning, transport, chemistry), and climate (temperature, accumulation rate) changes over time. A graduate student will be supported as part of this project, and both graduate student and PI will be involved in communicating the utility and results of polar research to elementary school students in the Providence, RI area. The broader impacts of the project also include making efforts to attract more young, female scientists to polar research by establishing a connection between the Earth Science Women\u0027s Network (ESWN), an organization PI Hastings helped to establish, and the Association of Polar Early Career Scientists (APECS). Finally, results of all measurements will be presented at relevant conferences, made available publicly and published in peer-reviewed journals.", "east": -112.1115, "geometry": "POINT(-112.1115 -79.481)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hastings, Meredith", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Investigating Source, Chemistry and Climate changes using the Isotopic Composition of Nitrate in Antarctic Snow and Ice", "uid": "p0000399", "west": -112.1115}, {"awards": "1043092 Steig, Eric; 1043167 White, James", "bounds_geometry": "POINT(-112.08 -79.47)", "dataset_titles": "Resampling of Deep Polar Ice Cores using Information Theory; Seasonal temperatures in West Antarctica during the Holocene ; Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core; WAIS Divide Ice Core Discrete CH4 (80-3403m)", "datasets": [{"dataset_uid": "601741", "doi": "10.15784/601741", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Methane; WAIS", "people": "Brook, Edward J.; Sowers, Todd A.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Discrete CH4 (80-3403m)", "url": "https://www.usap-dc.org/view/dataset/601741"}, {"dataset_uid": "601603", "doi": "10.15784/601603", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Seasonality; Seasonal Temperatures; Temperature; Water Isotopes; West Antarctic Ice Sheet", "people": "Jones, Tyler R.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Seasonal temperatures in West Antarctica during the Holocene ", "url": "https://www.usap-dc.org/view/dataset/601603"}, {"dataset_uid": "601365", "doi": "10.15784/601365", "keywords": "Antarctica; Delta 18O; Isotope; WAIS Divide; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Jones, Tyler R.; Morris, Valerie; Garland, Joshua; Vaughn, Bruce; White, James", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Resampling of Deep Polar Ice Cores using Information Theory", "url": "https://www.usap-dc.org/view/dataset/601365"}, {"dataset_uid": "600169", "doi": "10.15784/600169", "keywords": "Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; Snow Accumulation; WAIS Divide; WAIS Divide Ice Core", "people": "Morris, Valerie; White, James; Jones, Tyler R.; Vaughn, Bruce", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "url": "https://www.usap-dc.org/view/dataset/600169"}, {"dataset_uid": "601274", "doi": "10.15784/601274", "keywords": "Antarctica; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Snow/ice; Snow/Ice; WAIS Divide; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Jones, Tyler R.; Vaughn, Bruce; White, James; Price, Michael; Garland, Joshua; Bradley, Elizabeth; Morris, Valerie", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "url": "https://www.usap-dc.org/view/dataset/601274"}], "date_created": "Thu, 15 Sep 2016 00:00:00 GMT", "description": "Steig/1043092 This award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public.", "east": -112.08, "geometry": "POINT(-112.08 -79.47)", "instruments": null, "is_usap_dc": true, "keywords": "LABORATORY", "locations": null, "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "White, James; Vaughn, Bruce; Jones, Tyler R.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.47, "title": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "uid": "p0000078", "west": -112.08}, {"awards": "1245659 Petrenko, Vasilii; 1246148 Severinghaus, Jeffrey; 1245821 Brook, Edward J.", "bounds_geometry": "POINT(162.167 -77.733)", "dataset_titles": "Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores; Last Interglacial Mean Ocean Temperature; Mean Ocean Temperature in Marine Isotope Stage 4; Measurements of 14CH4 and 14CO in ice from Taylor Glacier: Last Deglaciation; N2O Concentration and Isotope Data for 74-59 ka from Taylor Glacier, Antarctica; Taylor Glacier CO2 Isotope Data 74-59 kyr; Taylor Glacier Noble Gases - Younger Dryas; The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "datasets": [{"dataset_uid": "601176", "doi": "10.15784/601176", "keywords": "Antarctica; CO2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Methane; Noble Gas; Noble Gas Isotopes; Snow/ice; Snow/Ice; Taylor Glacier; Younger Dryas", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Taylor Glacier Noble Gases - Younger Dryas", "url": "https://www.usap-dc.org/view/dataset/601176"}, {"dataset_uid": "601198", "doi": "10.15784/601198", "keywords": "Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; CO2; Dust; Gas; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Mass Spectrometer; Methane; Nitrogen Isotopes; Oxygen Isotope; Paleoclimate; Snow/ice; Snow/Ice; Taylor Dome; Taylor Dome Ice Core", "people": "Dyonisius, Michael; Menking, James; Brook, Edward J.; Marcott, Shaun; Barker, Stephen; Shackleton, Sarah; Petrenko, Vasilii; McConnell, Joseph; Rhodes, Rachel; Bauska, Thomas; Severinghaus, Jeffrey P.; Baggenstos, Daniel", "repository": "USAP-DC", "science_program": null, "title": "Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/601198"}, {"dataset_uid": "600163", "doi": "10.15784/600163", "keywords": "Antarctica; Atmosphere; Geochemistry; Ice Core Records; Isotope; Paleoclimate; Taylor Glacier; Transantarctic Mountains", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "url": "https://www.usap-dc.org/view/dataset/600163"}, {"dataset_uid": "601398", "doi": "10.15784/601398", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Gas Records; Ice Core Records; Marine Isotope Stage 4; MIS 4; Nitrous Oxide; Pleistocene; Taylor Dome Ice Core; Taylor Glacier", "people": "Severinghaus, Jeffrey P.; Menking, James; Brook, Edward J.; Schilt, Adrian; Shackleton, Sarah; Dyonisius, Michael; Petrenko, Vasilii", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "N2O Concentration and Isotope Data for 74-59 ka from Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601398"}, {"dataset_uid": "601218", "doi": "10.15784/601218", "keywords": "Antarctica; Carbon-14; Carbon Dioxide; Chemistry:ice; Chemistry:Ice; CO2; Dome C Ice Core; Epica; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Isotope Data; Last Interglacial; Mass Spectrometer; Mass Spectrometry; Methane; Oxygen; Oxygen Isotope; Paleotemperature; Pleistocene; Snow/ice; Snow/Ice; Taylor Dome Ice Core; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Last Interglacial Mean Ocean Temperature", "url": "https://www.usap-dc.org/view/dataset/601218"}, {"dataset_uid": "601218", "doi": "10.15784/601218", "keywords": "Antarctica; Carbon-14; Carbon Dioxide; Chemistry:ice; Chemistry:Ice; CO2; Dome C Ice Core; Epica; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Isotope Data; Last Interglacial; Mass Spectrometer; Mass Spectrometry; Methane; Oxygen; Oxygen Isotope; Paleotemperature; Pleistocene; Snow/ice; Snow/Ice; Taylor Dome Ice Core; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Last Interglacial Mean Ocean Temperature", "url": "https://www.usap-dc.org/view/dataset/601218"}, {"dataset_uid": "601600", "doi": "10.15784/601600", "keywords": "Antarctica; Taylor Glacier", "people": "Bauska, Thomas; Buffen, Aron; Brook, Edward J.; Shackleton, Sarah; Menking, James; Menking, Andy; Petrenko, Vasilii; Dyonisius, Michael; Severinghaus, Jeffrey P.; Barker, Stephen", "repository": "USAP-DC", "science_program": null, "title": "Taylor Glacier CO2 Isotope Data 74-59 kyr", "url": "https://www.usap-dc.org/view/dataset/601600"}, {"dataset_uid": "601260", "doi": "10.15784/601260", "keywords": "Antarctica; Carbon-14; Cosmogenic; Ice Core; Methane", "people": "Dyonisius, Michael; Petrenko, Vasilii", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Measurements of 14CH4 and 14CO in ice from Taylor Glacier: Last Deglaciation", "url": "https://www.usap-dc.org/view/dataset/601260"}, {"dataset_uid": "601415", "doi": "10.15784/601415", "keywords": "Antarctica; Glaciology; Ice Core Data; Ice Core Records; Paleoclimate; Paleotemperature; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Mean Ocean Temperature in Marine Isotope Stage 4", "url": "https://www.usap-dc.org/view/dataset/601415"}], "date_created": "Mon, 13 Jul 2015 00:00:00 GMT", "description": "1245659/Petrenko This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, \u0026#948;18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, \u0026#948;13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of \u0026#948;13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica.", "east": 162.167, "geometry": "POINT(162.167 -77.733)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Not provided; USAP-DC; FIELD INVESTIGATION; Stratigraphy; FIELD SURVEYS; Antarctica; Paleoenvironment; Methane; Ice Core; Carbon Dioxide; FIXED OBSERVATION STATIONS; Stable Isotopes; Ablation Zone; Taylor Glacier; Nitrous Oxide; USA/NSF; LABORATORY; AMD; Cosmogenic; Amd/Us", "locations": "Taylor Glacier; Antarctica", "north": -77.733, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Petrenko, Vasilii; Brook, Edward J.; Severinghaus, Jeffrey P.; PETRENKO, VASILLI", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": -77.733, "title": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "uid": "p0000283", "west": 162.167}, {"awards": "1043092 Steig, Eric; 1043167 White, James", "bounds_geometry": null, "dataset_titles": "17O excess from WAIS Divide, 0 to 25 ka BP; WAIS Divide Ice Core Discrete CH4 (80-3403m); WAIS Divide WDC06A Oxygen Isotope Record", "datasets": [{"dataset_uid": "609629", "doi": "10.7265/N5GT5K41", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Steig, Eric J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide WDC06A Oxygen Isotope Record", "url": "https://www.usap-dc.org/view/dataset/609629"}, {"dataset_uid": "601741", "doi": "10.15784/601741", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Methane; WAIS", "people": "Brook, Edward J.; Sowers, Todd A.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Discrete CH4 (80-3403m)", "url": "https://www.usap-dc.org/view/dataset/601741"}, {"dataset_uid": "601413", "doi": "10.15784/601413", "keywords": "Antarctica; Ice Core; Oxygen Isotope; WAIS Divide", "people": "Steig, Eric J.; Schoenemann, Spruce", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "17O excess from WAIS Divide, 0 to 25 ka BP", "url": "https://www.usap-dc.org/view/dataset/601413"}], "date_created": "Sat, 06 Dec 2014 00:00:00 GMT", "description": "This award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e INFRARED LASER SPECTROSCOPY; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e INFRARED LASER SPECTROSCOPY", "is_usap_dc": true, "keywords": "AMD; ANALYTICAL LAB; USAP-DC; Amd/Us; LABORATORY; ICE CORE RECORDS; Antarctica; Wais Divide-project; FIELD SURVEYS; USA/NSF", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e ANALYTICAL LAB; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "uid": "p0000010", "west": null}, {"awards": "0537661 Cuffey, Kurt; 0537593 White, James; 0537930 Steig, Eric", "bounds_geometry": "POINT(-112.08 -79.47)", "dataset_titles": "Stable Isotope Lab at INSTAAR, University of Colorado; WAIS ice core isotope data #342, 347, 348, 349, 350, 351 (full data link not provided)", "datasets": [{"dataset_uid": "000140", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "WAIS ice core isotope data #342, 347, 348, 349, 350, 351 (full data link not provided)", "url": "http://www.waisdivide.unh.edu/"}, {"dataset_uid": "002561", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Stable Isotope Lab at INSTAAR, University of Colorado", "url": "http://instaar.colorado.edu/sil/about/index.php"}], "date_created": "Mon, 09 Apr 2012 00:00:00 GMT", "description": "This award supports analyses of stable isotopes of water, dD, d18O and deuterium excess in the proposed West Antarctic Ice Sheet Divide (WAIS) deep ice core. The project will produce a continuous and high-resolution reconstruction of stable isotope ratios for the new core. dD and d18O values provide estimates of temperature change at the ice core site. Deuterium excess provides estimates of ocean surface conditions, such as sea surface temperature, at the moisture source areas. This new ice core is ideally situated to address questions ranging from ice sheet stability to abrupt climate change. WAIS Divide has high enough snowfall rates to record climate changes on annual to decadal time scales. It should also have ice old enough to capture the last interglacial period in detail. The West Antarctic ice sheet is the subject of great scrutiny as our modern climate warms and sea level rises. What are the prospects for added sea level rise from ice released by this ice sheet? Understanding how this ice sheet has responded to climate change in the past, which the data collected in this project will help to assess, is critical to answering this question. The high temporal resolution available in the WAIS Divide core will provide the best available basis for inter-comparison of millennial-scale climate changes between the poles, and thus a better understanding of the spatial expression and dynamics of rapid climate change events. Finally, the location of this core in the Pacific sector of West Antarctica makes it well situated for examining the influence of the tropical Pacific on Antarctica climate, on longer timescales than are available from the instrumental climate record. Analyses will include the measurement of sub-annually resolved isotope variations in the uppermost parts of the core, measurements at annual resolution throughout the last 10,000 years and during periods of rapid climate change prior to that, and measurements at 50-year resolution throughout the entire length of the core that is collected and processed during the period of this grant. We anticipate that this will be about half of the full core expected to be drilled. In terms of broader impacts, the PIs will share the advising of two graduate students, who will make this ice core the focus of their thesis projects. It will be done in an innovative multi-campus approach designed to foster a broader educational experience. As noted above, the data and interpretations generated by this proposal will address climate change questions not only of direct and immediate scientific interest, but also of direct and immediate policy interest.", "east": -112.08, "geometry": "POINT(-112.08 -79.47)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES", "is_usap_dc": true, "keywords": "West Antarctic Ice Sheet Divide; Not provided; Ice Core; WAIS Divide; LABORATORY; FIELD SURVEYS; Isotope; FIELD INVESTIGATION; Antarctica; West Antarctica; Stable Isotope Ratios; Antarctic; Ice Sheet; Deuterium", "locations": "WAIS Divide; West Antarctica; Antarctic; Antarctica; West Antarctic Ice Sheet Divide", "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "White, James; Steig, Eric J.; Cuffey, Kurt M.; Souney, Joseph Jr.; Vaughn, Bruce", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "Project website", "repositories": "Project website", "science_programs": null, "south": -79.47, "title": "Collaborative Research: Stable Isotopes of Ice in the WAIS Divide Deep Ice Core", "uid": "p0000294", "west": -112.08}, {"awards": "0538657 Severinghaus, Jeffrey", "bounds_geometry": null, "dataset_titles": "Borehole Temperature Measurement in WDC05A in January 2008 and January 2009; d15N and d18O of air in the WAIS Divide ice core; Low-res d15N and d18O of O2 in the WAIS Divide 06A Deep Core; Ultra-High Resolution LA-ICP-MS Results: DO-21 Rapid Warming Event; WAIS Divide d18Oatm and Siple Dome/WAIS Divide composite and individual delta epsilon LAND", "datasets": [{"dataset_uid": "601041", "doi": "10.15784/601041", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Gas; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; WAIS Divide Ice Core", "people": "Seltzer, Alan; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide d18Oatm and Siple Dome/WAIS Divide composite and individual delta epsilon LAND", "url": "https://www.usap-dc.org/view/dataset/601041"}, {"dataset_uid": "609660", "doi": "10.7265/N5S46PWD", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Low-res d15N and d18O of O2 in the WAIS Divide 06A Deep Core", "url": "https://www.usap-dc.org/view/dataset/609660"}, {"dataset_uid": "609637", "doi": "10.7265/N5B27S7S", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Temperature; WAIS Divide; WAIS Divide Ice Core", "people": "Severinghaus, Jeffrey P.; Orsi, Anais J.", "repository": "USAP-DC", "science_program": null, "title": "Borehole Temperature Measurement in WDC05A in January 2008 and January 2009", "url": "https://www.usap-dc.org/view/dataset/609637"}, {"dataset_uid": "609635", "doi": "10.7265/N51J97PS", "keywords": "Arctic; Geochemistry; GISP; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate", "people": "Mayewski, Paul A.; Kurbatov, Andrei V.; Haines, Skylar", "repository": "USAP-DC", "science_program": null, "title": "Ultra-High Resolution LA-ICP-MS Results: DO-21 Rapid Warming Event", "url": "https://www.usap-dc.org/view/dataset/609635"}, {"dataset_uid": "601747", "doi": "10.15784/601747", "keywords": "Antarctica; Delta 15N; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Gas Records; Ice Core Records; Isotope; Nitrogen; Nitrogen Isotopes; Oxygen; Oxygen Isotope; Snow/ice; Snow/Ice; WAIS; WAIS Divide", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "d15N and d18O of air in the WAIS Divide ice core", "url": "https://www.usap-dc.org/view/dataset/601747"}], "date_created": "Thu, 08 Jul 2010 00:00:00 GMT", "description": "0538657\u003cbr/\u003eSeveringhaus\u003cbr/\u003eThis award supports a project to develop high-resolution (20-yr) nitrogen and oxygen isotope records on trapped gases in the WAIS Divide ice core (Antarctica), with a comparison record for chronological purposes in the GISP2 (Greenland) ice core. The main scientific objective is to provide an independent temperature-change record for the past 100,000 years in West Antarctica that is not subject to the uncertainty inherent in ice isotopes (18O and deuterium), the classical paleothermometer. Nitrogen isotopes (Delta 15N) in air bubbles in glacial ice record rapid surface temperature change because of thermal fractionation of air in the porous firn layer, and this isotopic anomaly is recorded in bubbles as the firn becomes ice. Using this gas-based temperature-change record, in combination with methane data as interpolar stratigraphic markers, the proposed work will define the precise relative timing of abrupt warming in Greenland and abrupt cooling at the WAIS Divide site during the millennial-scale climatic oscillations of Marine Isotopic Stage 3 (30-70 kyr BP) and the last glacial termination. The nitrogen isotope record also provides constraints on past firn thickness, which inform temperature and accumulation rate histories from the ice core. A search for possible solar-related cycles will be conducted with the WAIS Divide Holocene (Delta 15N.) Oxygen isotopes of O2 (Delta 18Oatm) are obtained as a byproduct of the (Delta 15N) measurement. The gas-isotopic records will enhance the value of other atmospheric gas measurements in WAIS Divide, which are expected to be of unprecedented quality. The high-resolution (Delta 18Oatm) records will provide chronological control for use by the international ice coring community and for surface glacier ice dating. Education of a graduate student, and training of a staff member in the laboratory, will contribute to the nation\u0027s human resource base. Outreach activities in the context of the International Polar Year will be enhanced. International collaboration is planned with the laboratory of LSCE, University of Paris.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e LA-ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Borehole Temperature; LABORATORY; Depth; Not provided; GROUND-BASED OBSERVATIONS; Wais Divide-project; Ice Core; WAIS Divide", "locations": "WAIS Divide", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Haines, Skylar; Mayewski, Paul A.; Orsi, Anais J.; Kurbatov, Andrei V.; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate", "uid": "p0000036", "west": null}, {"awards": "0440975 Severinghaus, Jeffrey", "bounds_geometry": "POINT(-119.533333 -80.016667)", "dataset_titles": "Nitrogen and Oxygen Gas Isotopes in the Siple Dome and Byrd Ice Cores, Antarctica", "datasets": [{"dataset_uid": "609407", "doi": "10.7265/N55X26V0", "keywords": "Antarctica; Arctic; Atmosphere; Byrd Glacier; Byrd Ice Core; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Nitrogen and Oxygen Gas Isotopes in the Siple Dome and Byrd Ice Cores, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609407"}], "date_created": "Fri, 17 Jul 2009 00:00:00 GMT", "description": "The award supports the development of high-resolution nitrogen and oxygen isotope records on trapped gases in the Byrd and Siple Dome ice cores, and the Holocene part of the GISP2 ice core. The primary scientific goals of this work are to understand the enigmatic d15N anomalies seen thus far in the Siple Dome record at 15.3 ka and 35 ka, and to find other events that may occur in both cores. At these events, d15N of trapped air approaches zero, implying little or no gravitational fractionation of gases in the firn layer at the time of formation of the ice. These events may represent times of low accumulation rate and arid meteorological conditions, and thus may contain valuable information about the climatic history of West Antarctica. Alternatively, they may stem from crevassing and thus may reveal ice-dynamical processes. Finding the events in the Byrd core, which is located 500 km from Siple Dome, would place powerful constraints on their origin and significance. A second major goal is to explore the puzzling absence of the abrupt warming event at 22 ka (seen at Siple Dome) in the nearby Byrd 18O/16O record in the ice (d18Oice), and search for a possible correlative signal in Byrd d15N. A third goal takes advantage of the fact that precise measurements of the oxygen isotopic composition of atmospheric O2 (d18Oatm) are obtained as a byproduct of the d15N measurement. The proposed gas-isotopic measurements will underpin an integrated suite of West Antarctic climate and atmospheric gas records, which will ultimately include the WAIS Divide core. These records will help separate regional from global climate signals, and may place constraints on the cause of abrupt climate change. Education of two graduate students, and training of two staff members in the laboratory, contribute to the nation\u0027s human resource base. Education and outreach will be an important component of the project.", "east": -119.533333, "geometry": "POINT(-119.533333 -80.016667)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Antarctica; Firn Air Isotopes; Not provided; Nitrogen Isotopes; LABORATORY; Firn Isotopes; Paleoclimate; FIELD SURVEYS; Ice Core; Oxygen Isotope; FIELD INVESTIGATION; Siple Dome", "locations": "Antarctica; Siple Dome", "north": -80.016667, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -80.016667, "title": "Nitrogen and oxygen gas isotopes in the Siple Dome and Byrd ice cores", "uid": "p0000450", "west": -119.533333}, {"awards": "0228052 Kreutz, Karl", "bounds_geometry": "POLYGON((161.0434 -77.3002,161.241645 -77.3002,161.43989 -77.3002,161.638135 -77.3002,161.83638 -77.3002,162.034625 -77.3002,162.23287 -77.3002,162.431115 -77.3002,162.62936 -77.3002,162.827605 -77.3002,163.02585 -77.3002,163.02585 -77.3784846,163.02585 -77.4567692,163.02585 -77.5350538,163.02585 -77.6133384,163.02585 -77.691623,163.02585 -77.7699076,163.02585 -77.8481922,163.02585 -77.9264768,163.02585 -78.0047614,163.02585 -78.083046,162.827605 -78.083046,162.62936 -78.083046,162.431115 -78.083046,162.23287 -78.083046,162.034625 -78.083046,161.83638 -78.083046,161.638135 -78.083046,161.43989 -78.083046,161.241645 -78.083046,161.0434 -78.083046,161.0434 -78.0047614,161.0434 -77.9264768,161.0434 -77.8481922,161.0434 -77.7699076,161.0434 -77.691623,161.0434 -77.6133384,161.0434 -77.5350538,161.0434 -77.4567692,161.0434 -77.3784846,161.0434 -77.3002))", "dataset_titles": "Late Holocene Climate Variability, Dry Valleys, Antarctica", "datasets": [{"dataset_uid": "609399", "doi": "10.7265/N5FF3Q92", "keywords": "Antarctica; Borehole Temperature; Chemistry:ice; Chemistry:Ice; Dry Valleys; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Mass Balance; Paleoclimate; Physical Properties", "people": "Kreutz, Karl; Mayewski, Paul A.", "repository": "USAP-DC", "science_program": null, "title": "Late Holocene Climate Variability, Dry Valleys, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609399"}], "date_created": "Tue, 21 Oct 2008 00:00:00 GMT", "description": "This award supports a project to collect and develop high-resolution ice core records from the Dry Valleys region of Antarctica, and provide interpretations of interannual to decadal-scale climate variability during the last 2000 years (late Holocene). The project will test hypotheses related to ocean/atmosphere teleconnections (e.g., El Nino Southern Oscillation, Antarctic Oscillation) that may be responsible for major late Holocene climate events such as the Little Ice Age in the Southern Hemisphere. Conceptual and quantitative models of these processes in the Dry Valleys during the late Holocene are critical for understanding recent climate changes, and represent the main scientific merit of the project. We plan to collect intermediate-length ice cores (100-200m) at four sites along transects in Taylor Valley and Wright Valley, and analyze each core at high resolution for stable isotopes (d18O, dD), major ions (Na+, Mg2+, Ca2+, K+, NH4+, Cl-, NO3-, SO42-, MSA), and trace elements (Al, Fe, S, Sr, B). A suite of statistical techniques will be applied to the multivariate glaciochemical dataset to identify chemical associations and to calibrate the time-series records with available instrumental data. Broader impacts of the project include: 1) contributions to several ongoing interdisciplinary Antarctic research programs; 2) graduate and undergraduate student involvement in field, laboratory, and data interpretation activities; 3) use of project data and ideas in several UMaine courses and outreach activities; and 4) data dissemination through peer-reviewed publications, UMaine and other paleoclimate data archive websites, and presentations at national and international meetings.", "east": 163.02585, "geometry": "POINT(162.034625 -77.691623)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MC-ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HUMIDITY SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS", "is_usap_dc": true, "keywords": "Holocene; Climate Research; AWS Climate Data; Paleoclimate; Climate Variation; Dry Valleys; Wright Valley; Little Ice Age; Stable Isotopes; Glaciochemical; Ice Core; FIELD INVESTIGATION; Enso; Antarctic Oscillation; Climate; GPS; El Nino-Southern Oscillation; LABORATORY; Not provided; Climate Change; Ice Core Records; Antarctica; Taylor Valley; FIELD SURVEYS; Variability", "locations": "Antarctica; Dry Valleys; Taylor Valley; Wright Valley", "north": -77.3002, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Kreutz, Karl; Arcone, Steven; Mayewski, Paul A.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.083046, "title": "Dry Valleys Late Holocene Climate Variability", "uid": "p0000155", "west": 161.0434}, {"awards": "0338244 Schaefer, Joerg", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 10 Dec 2007 00:00:00 GMT", "description": "This project will determine the age, origin, and climatic significance of buried ice found in the western Dry Valleys of Antarctica. Previous studies indicate that this ice may be over a million years in age, making it by far the oldest ice yet discovered on Earth. An alternative view is that this ice is represents recently frozen groundwater. To distinguish between these hypotheses and characterize the ice, we are undertaking an interdisciplinary research program focused on: 1) understanding the surface processes that permit ice preservation; and 2) testing the efficacy of cosmogenic nuclides and 40Ar/39Ar analyses in dating both tills and volcanic ash associated with the ice. Our plan calls for the analysis of a minimum of six cosmogenic depth profiles to determine if and how cryoturbation reworks sublimation tills and assess the average rate of ice sublimation for three debris-covered glaciers. We will model through finite- element analyses at least three buried glaciers and compare flow rates with those based on radiometric dating of surface deposits. Ten ice cores will also be collected for measurement of d18O, dD, ice fabric, ice texture, total gas content/composition. Better understanding of surface processes above buried ice will permit researchers to gain access to a record of atmospheric and climate change that could well cover intervals that predate Quaternary time. The work may also add valuable insight into Martian history. In terms of broader impacts, we have recruited three female PhD students and developed interdisciplinary collaborations among geochemists at Columbia University, planetary geologists at Brown University, geomorphologists at Boston University, and numerical modelers at the University of Maine.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": false, "keywords": "FIELD INVESTIGATION", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "Schaefer, Joerg", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Age, Origin and Climatic Significance of Buried Ice in the Western Dry Valleys, Antarctica", "uid": "p0000255", "west": null}, {"awards": "9526979 White, James", "bounds_geometry": null, "dataset_titles": "Siple Dome Core Date from Measurement of the d18O of Paleoatmospheric Oxygen", "datasets": [{"dataset_uid": "609123", "doi": "10.7265/N5TX3C95", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Bender, Michael; White, James", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Siple Dome Core Date from Measurement of the d18O of Paleoatmospheric Oxygen", "url": "https://www.usap-dc.org/view/dataset/609123"}], "date_created": "Mon, 16 Jun 2003 00:00:00 GMT", "description": "This award is for support for a program to measure the stable isotope (deuterium to hydrogen and oxygen-18 to oxygen-16) concentrations of ice cores retrieved from Siple Dome as part of the West Antarctic ice sheet program. In addition, the deuterium excess of samples from the Taylor Dome ice core will be determined. This project will approach the question of rapid climate change using ice cores to determine the history of temperature changes, moisture source changes, and elevational changes in the West Antarctic ice sheet. Results from ice cores taken to date in the interior of Antarctica (East and West) are surprisingly lacking in indications of abrupt climate changes, such as those that have been observed in the GISP2 ice core from Summit, Greenland. This work will address the question of whether rapid climate changes, which are known to have occurred in other parts of the southern hemi-sphere, may have also occurred in the coastal regions of West Antarctica. There is some indication from existing records of isotopes in ice cores that the West Antarctic ice sheet may have flushed ice in the past (as evidenced by large changes in elevation of the ice sheet).", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Antarctica; LABORATORY; WAISCORES; GROUND STATIONS; Siple Coast; Glaciology; Snow; D18O; Isotope; Thermometry; Ice Sheet; Siple; Accumulation; Ice Core; Siple Dome; Stratigraphy; Densification; GROUND-BASED OBSERVATIONS; Not provided", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "White, James; Bender, Michael", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Isotopic Measurements on the WAIS/Siple Dome Ice Cores", "uid": "p0000063", "west": null}, {"awards": "9222121 Dalziel, Ian", "bounds_geometry": null, "dataset_titles": "Concentration and Isotopic Composition of O2 and N2 in Trapped Gases of the Vostok Ice Core", "datasets": [{"dataset_uid": "609107", "doi": "10.7265/N5862DCW", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciology; Ice Core Records; Lake Vostok; Paleoclimate; UPLC-Q-TOF; Vostok Ice Core", "people": "Bender, Michael", "repository": "USAP-DC", "science_program": null, "title": "Concentration and Isotopic Composition of O2 and N2 in Trapped Gases of the Vostok Ice Core", "url": "https://www.usap-dc.org/view/dataset/609107"}], "date_created": "Tue, 01 Jan 2002 00:00:00 GMT", "description": "This award supports an in situ and short traverse seismic reflection/refraction and magnetotelluric experiment in West Antarctica. This collaborative experiment involves four awards at four institutions. The four-fold purpose is 1) to investigate part of the Byrd Subglacial Basin, 2) to test techniques for this work that could be done in a long traverse, 3) to determine the viability of the magnetotelluric method on a thick (electrically resistive) ice sheet, and 4) to evaluate the relative merits of refraction with wide reflection versus reflection with narrow refraction seismic studies in imaging the lithosphere. The geophysical techniques that will be employed are capable of imaging the ice sheet, the continental lithosphere, and the upper mantle, as well as determining physical properties of parts of the lithosphere and mantle. Investigations of outcrop geology over the last thirty years in West Antarctica and the Transantarctic Mountains have lead to recent interpretations that the crust is made up of many different lithospheric blocks. Seismic reflection work is the only way to image the crust in detail and the refraction work is the only way to determine physical properties of the layers and blocks defined by the reflection work. The magnetotelluric work is scientifically risky because it may not yield useful information when used over the electrically resistive ice sheet; however, if it works it has the potential to image molten rock in the crust and upper mantle. In a continental rift region such as West Antarctica, the presence of melt in the lithosphere is likely and, if documented, has very important ramifications to ice sheet dynamics. Research work supported by this award is expected to provide constraints to models of a range of crustal processes from models of ice sheet dynamics to tectonic and kinematic models of lithospheric thinning and rifting.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Isotope; Vostok; USAP-DC; Antarctica; Trapped Gases; Ice Core; Glaciology; Nitrogen; GROUND STATIONS", "locations": "Antarctica; Vostok", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bender, Michael; Dalziel, Ian W.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Seismic Traverse of the Byrd Subglacial Basin-Field Test", "uid": "p0000150", "west": null}, {"awards": "9725305 Severinghaus, Jeffrey", "bounds_geometry": null, "dataset_titles": "Firn Air Isotope and Temperature Measurements from Siple Dome and South Pole", "datasets": [{"dataset_uid": "609098", "doi": "10.7265/N51N7Z2P", "keywords": "Antarctica; Atmosphere; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciology; Isotope; Paleoclimate; Siple Dome; Snow/ice; Snow/Ice; South Pole; Temperature", "people": "Battle, Mark; Severinghaus, Jeffrey P.; Grachev, Alexi", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Firn Air Isotope and Temperature Measurements from Siple Dome and South Pole", "url": "https://www.usap-dc.org/view/dataset/609098"}], "date_created": "Mon, 01 Jan 2001 00:00:00 GMT", "description": "9725305 Severinghaus This award supports a project to develop and apply a new technique for quantifying temperature changes in the past based on the thermodynamic principle of thermal diffusion, in which gas mixtures in a temperature gradient become fractionated. Air in polar firn is fractionated by temperature gradients induced by abrupt climate change, and a record of this air is preserved in bubbles in the ice. The magnitude of the abrupt temperature change, the precise relative timing, and an estimate of the absolute temperature change can be determined. By providing a gas-phase stratigraphic marker of temperature change, the phasing of methane (with decadal precision) and hence widespread climate change (relative to local polar temperature changes) can be determined (across five abrupt warming events during the last glacial period).", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e FLASKS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": true, "keywords": "Isotopic History; GROUND STATIONS; Thermal Diffusion; Firn Temperature Measurements; Not provided; Oxygen Isotope; Trapped Air Bubbles; Shallow Firn Air; Firn Air Isotope Measurements; Seasonal Temperature Gradients; Mass Spectrometry; GROUND-BASED OBSERVATIONS; Thermal Fractionation; Polar Firn Air; Isotopic Anomalies; Xenon; Atmospheric Gases; Argon Isotopes; Siple Dome; Krypton; Nitrogen Isotopes; Seasonal Temperature Changes; Antarctica; Ice Core Gas Records; Firn Air Isotopes; Mass Spectrometer; South Pole; Firn Isotopes; Borehole", "locations": "Antarctica; Siple Dome; South Pole", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Battle, Mark; Grachev, Alexi; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Thermal Fractionation of Firn Air and the Ice Core Record of Abrupt Interstadial Climate Change", "uid": "p0000160", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Estimation of Antarctic Ice Melt using Stable Isotopic Analyses of Seawater
|
1644118 |
2022-09-21 | Dunbar, Robert |
|
Estimating Antarctic ice sheet growth or loss is important to predicting future sea level rise. Such estimates rely on field measurements or remotely sensed based observations of the ice sheet surface, ice margins, and or ice shelves. This work examines the introduction of freshwater into the ocean to surrounding Antarctica to track meltwater from continental ice. Polar ice is depleted in two stable isotopes, 18O and D, deuterium, relative to Southern Ocean seawater and precipitation. Measurements of seawater isotopic composition in conjunction with precise observations of seawater temperature and salinity, will permit discrimination of freshwater derived from melting glacial ice from that derived from regional precipitation or sea ice melt. This research describes an accepted method for determining rates and locations of meltwater entering the oceans from polar ice sheets. As isotopic and salinity perturbations are cumulative in many Antarctic coastal seas, the method allows for the detection of any marked acceleration in meltwater introduction in specific regions, using samples collected and analyzed over a period of years to decades. Impact of the project derives from use of an independent method capable of constraining knowledge about current ice sheet melt rates, their stability and potential impact on sea level rise. The project allows for sample collection taken from foreign vessels of opportunity sailing in Antarctic waters, and subsequent sharing and interpretation of data. Research partners include the U.S., Korea, China, New Zealand, the United Kingdom, and Germany. Participating collaborators will collect seawater samples for isotopic and salinity analysis at Stanford University. USAP cruises will concentrate on sampling the Ross Sea, and the West Antarctic. The work plan includes interpretation of isotopic data using box model and mixing curve analyses as well as using isotope enabled ROMS (Regional Ocean Modeling System) models. The broader impacts of the research will include development of an educational module that illustrates the scientific method and how ocean observations help society understand how Earth is changing. | POLYGON((-108 -73,-107.3 -73,-106.6 -73,-105.9 -73,-105.2 -73,-104.5 -73,-103.8 -73,-103.1 -73,-102.4 -73,-101.7 -73,-101 -73,-101 -73.3,-101 -73.6,-101 -73.9,-101 -74.2,-101 -74.5,-101 -74.8,-101 -75.1,-101 -75.4,-101 -75.7,-101 -76,-101.7 -76,-102.4 -76,-103.1 -76,-103.8 -76,-104.5 -76,-105.2 -76,-105.9 -76,-106.6 -76,-107.3 -76,-108 -76,-108 -75.7,-108 -75.4,-108 -75.1,-108 -74.8,-108 -74.5,-108 -74.2,-108 -73.9,-108 -73.6,-108 -73.3,-108 -73)) | POINT(-104.5 -74.5) | false | false | |||||||
Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability
|
1643664 1643669 1643716 |
2022-06-17 | Petrenko, Vasilii; Murray, Lee T; Buizert, Christo; Petrenko, Vasilii; Murray, Lee T | Hydroxyl radicals are responsible for removal of most atmospheric trace gases, including pollutants and important greenhouse gases. They have been called the "detergent of the atmosphere". Changes in hydroxyl radical concentration in response to large changes in reactive trace gas emissions, which may happen in the future, are uncertain. This project aims to provide the first estimates of the variability of atmospheric hydroxyl radicals since about 1880 AD when anthropogenic emissions of reactive trace gases were minimal. This will improve understanding of their stability in response to large changes in emissions. The project will also investigate whether ice cores record past changes in Southern Hemisphere westerly winds. These winds are a key component of the global climate system, and have an important influence on ocean circulation and possibly on atmospheric carbon dioxide concentrations. The project team will include three early career scientists, a postdoctoral researcher, and graduate and undergraduate students, working in collaboration with senior scientists and Australian collaborators. Firn air and shallow ice to a depth of about 233 m will be sampled at the Law Dome high-accumulation coastal site in East Antarctica. Trapped air will be extracted from the ice cores on site immediately after drilling. Carbon-14 of carbon monoxide (14CO) will be analyzed in firn and ice-core air samples. Corrections will be made for the in situ cosmogenic 14CO component in the ice, allowing for the atmospheric 14CO history to be reconstructed. This 14CO history will be interpreted with the aid of a chemistry-transport model to place the first observational constraints on the variability of Southern Hemisphere hydroxyl radical concentration after about 1880 AD. An additional component of the project will analyze Krypton-86 in the firn-air and ice-core samples. These measurements will explore whether ice-core Krypton-86 acts as a proxy for barometric pressure variability, and whether this proxy can be used in Antarctic ice cores to infer past movement of the Southern Hemisphere westerly winds. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((112 -66,112.2 -66,112.4 -66,112.6 -66,112.8 -66,113 -66,113.2 -66,113.4 -66,113.6 -66,113.8 -66,114 -66,114 -66.1,114 -66.2,114 -66.3,114 -66.4,114 -66.5,114 -66.6,114 -66.7,114 -66.8,114 -66.9,114 -67,113.8 -67,113.6 -67,113.4 -67,113.2 -67,113 -67,112.8 -67,112.6 -67,112.4 -67,112.2 -67,112 -67,112 -66.9,112 -66.8,112 -66.7,112 -66.6,112 -66.5,112 -66.4,112 -66.3,112 -66.2,112 -66.1,112 -66)) | POINT(113 -66.5) | false | false | ||||||||
Center for Oldest Ice Exploration
|
2019719 |
2022-05-21 | Brook, Edward J.; Neff, Peter | Cores drilled through the Antarctic ice sheet provide a remarkable window on the evolution of Earth’s climate and unique samples of the ancient atmosphere. The clear link between greenhouse gases and climate revealed by ice cores underpins much of the scientific understanding of climate change. Unfortunately, the existing data do not extend far enough back in time to reveal key features of climates warmer than today. COLDEX, the Center for Oldest Ice Exploration, will solve this problem by exploring Antarctica for sites to collect the oldest possible record of past climate recorded in the ice sheet. COLDEX will provide critical information for understanding how Earth’s near-future climate may evolve and why climate varies over geologic time. New technologies will be developed for exploration and analysis that will have a long legacy for future research. An archive of old ice will stimulate new research for the next generations of polar scientists. COLDEX programs will galvanize that next generation of polar researchers, bring new results to other scientific disciplines and the public, and help to create a more inclusive and diverse scientific community. Knowledge of Earth’s climate history is grounded in the geologic record. This knowledge is gained by measuring chemical, biological and physical properties of geologic materials that reflect elements of climate. Ice cores retrieved from polar ice sheets play a central role in this science and provide the best evidence for a strong link between atmospheric carbon dioxide and climate on geologic timescales. The goal of COLDEX is to extend the ice-core record of past climate to at least 1.5 million years by drilling and analyzing a continuous ice core in East Antarctica, and to much older times using discontinuous ice sections at the base and margin of the ice sheet. COLDEX will develop and deploy novel radar and melt-probe tools to rapidly explore the ice, use ice-sheet models to constrain where old ice is preserved, conduct ice coring, develop new analytical systems, and produce novel paleoclimate records from locations across East Antarctica. The search for Earth’s oldest ice also provides a compelling narrative for disseminating information about past and future climate change and polar science to students, teachers, the media, policy makers and the public. COLDEX will engage and incorporate these groups through targeted professional development workshops, undergraduate research experiences, a comprehensive communication program, annual scientific meetings, scholarships, and broad collaboration nationally and internationally. COLDEX will provide a focal point for efforts to increase diversity in polar science by providing field, laboratory, mentoring and networking experiences for students and early career scientists from groups underrepresented in STEM, and by continuous engagement of the entire COLDEX community in developing a more inclusive scientific culture. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||||
Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area
|
1744832 1745007 1745006 0838843 1744993 |
2021-08-27 | Mayewski, Paul A.; Kurbatov, Andrei V.; Brook, Edward J.; Severinghaus, Jeffrey P.; Higgins, John | Bubbles of ancient air trapped in ice cores have been used to directly reconstruct atmospheric composition, and its links to Antarctic and global climate, over the last 800,000 years. Previous field expeditions to the Allan Hills Blue Ice Area, Antarctica, have recovered ice cores that extend as far back as 2.7 million years, by far the oldest polar ice samples yet recovered. These ice cores extend direct observations of atmospheric carbon dioxide and methane concentrations and indirect records of Antarctic climate into a period of Earth's climate history that represents a plausible geologic analogue to future anthropogenic climate change. The results demonstrate a smaller glacial-interglacial variability of climate and greenhouse gases, and a persistent linkage between Antarctic climate and atmospheric carbon dioxide, between 1 and 2 million years ago. Through this project, the team will return to the Allan Hills Blue Ice Area to recover additional ice cores that date to 2 million years or older. The climate records developed from these ice cores will provide new insights into the chemical composition of the atmosphere and Antarctic climate during times of comparable or even greater warmth than the present day. Project results will help answer questions about issues associated with anthropogenic change including the relationship between temperature change and the mass balance of Antarctic ice and the relationship between atmospheric greenhouse gases and global climate change. Earth has been cooling, and ice sheets expanding, over the past ~52 million years. Superimposed on this cooling are periodic changes in Earth's climate system driven by variations in the eccentricity, precession, and obliquity of Earth's orbit around the Sun. Climate reconstructions based on measurements of oxygen isotopes in foraminiferal calcite indicate that, from ~2.8 to 1.2 million years before present (Ma), Earth's climate system oscillated between glacial and interglacial states every ~40,000 years (the "40k world"). Between 1.2-0.8 Ma and continuing to the present, the period of glacial cycles increased in amplitude and lengthened to ~100,000 years (the "100k world"). Ice cores preserve ancient air that allows direct reconstructions of atmospheric carbon dioxide and methane. They also archive proxy records of regional climate, mean ocean temperature, global oxygen cycling, and the aridity of nearby continents. Studies of stratigraphically continuous ice cores, extending to 800,000 years before present, have demonstrated that atmospheric carbon dioxide is strongly linked to climate, and it is of great interest to extend the ice-core record into the 40k world. Recent discoveries of well-preserved ice dating from 1.0 to 2.7 Ma from ice cores drilled in the Allan Hills Blue Ice Area (BIA), Antarctica, demonstrate the potential to retrieve stratigraphically discontinuous old ice at shallow depths (<200 meters). This project will continue this work by retrieving new large-volume ice cores and measuring paleoclimate properties in both new and existing ice from the Allan Hills BIA. The experimental objectives are to more fully characterize fundamental properties of the climate system and the carbon cycle during the 40k world. Project results will have implications for Pleistocene climate change, and will provide new constraints on the processes that regulate atmospheric carbon dioxide, methane, and oxygen on geologic timescales. Given a demonstrated age of the ice at the Allan Hills BIA of at least 2 million years, the team will drill additional cores to prospect for ice that predates the initiation of Northern Hemisphere glaciation at the Plio-Pleistocene transition (~2.8 Ma). This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667)) | POINT(159.29167 -76.7) | false | false | ||||||||
West Antarctic Ice Shelf- Ocean Interactions
|
1644159 |
2021-06-25 | Jacobs, Stanley |
|
Overview and Intellectual merit: This project extends and combines historical and recent ocean data sets to investigate ice-ocean-interactions along the Pacific continental margin of the West Antarctic Ice Sheet. The synthesis focuses on the strikingly different environments on and near the cold Ross Sea and warm Amundsen Sea continental shelves, where available measurements reach back to ~1958 and 1994, respectively. On the more extensively covered Ross Sea continental shelf, multiple reoccupations of ocean stations and transects are used to extend our knowledge of long-term ocean freshening and the mass balance of the world?s largest ice shelf. On the more rugged Amundsen Sea continental shelf, which contains the earth?s fastest melting ice shelves, continuing research on observed thermohaline variability also pursues connections between outer shelf shoals and vulnerable ice shelf grounding zones. This interdisciplinary work updates a prior study of ice shelf response to ocean thermal forcing, and uses chemical tracers to measure changes in shelf, deep and bottom water transformations and production rates. Broader Impacts : Recent and potential future rates of sea level rise are the primary broad-scale impacts of the ice and ocean changes revealed by observations in the study area. The overriding question is whether global and regional sea levels will accelerate gradually, allowing carbon usage reductions to head off the worst consequences, or so rapidly that they will contribute to major social and economic upheavals. Collaborations and data acquired by foreign vessels are also utilized to better understand the causes of rapid change in these shelf seas and ice shelves, along with associated wider implications. Data that are re-gridded, re-edited or newly collated will be archived, and results made available via presentations, publications, and press releases if warranted. This proposal does not require fieldwork in the Antarctic This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -72.5,-177 -72.5,-174 -72.5,-171 -72.5,-168 -72.5,-165 -72.5,-162 -72.5,-159 -72.5,-156 -72.5,-153 -72.5,-150 -72.5,-150 -73.15,-150 -73.8,-150 -74.45,-150 -75.1,-150 -75.75,-150 -76.4,-150 -77.05,-150 -77.7,-150 -78.35,-150 -79,-153 -79,-156 -79,-159 -79,-162 -79,-165 -79,-168 -79,-171 -79,-174 -79,-177 -79,180 -79,178.2 -79,176.4 -79,174.6 -79,172.8 -79,171 -79,169.2 -79,167.4 -79,165.6 -79,163.8 -79,162 -79,162 -78.35,162 -77.7,162 -77.05,162 -76.4,162 -75.75,162 -75.1,162 -74.45,162 -73.8,162 -73.15,162 -72.5,163.8 -72.5,165.6 -72.5,167.4 -72.5,169.2 -72.5,171 -72.5,172.8 -72.5,174.6 -72.5,176.4 -72.5,178.2 -72.5,-180 -72.5)) | POINT(-174 -75.75) | false | false | |||||||
Collaborative Research: Reconstructing East Antarctica’s Past Response to Climate using Subglacial Precipitates
|
2045611 2042495 |
2021-06-18 | Blackburn, Terrence; Tulaczyk, Slawek; Hain, Mathis; Rasbury, Troy | Over the past century, climate science has constructed an extensive record of Earth’s ice age cycles through the chemical and isotopic characterization of various geologic archives such as polar ice cores, deep-ocean sediments, and cave speleothems. These climatic archives provide an insightful picture of ice age cycles and of the related large global sea level fluctuations triggered by these significant climate rhythms. However, such records still provide limited insight as to how or which of Earth’s ice sheets contributed to higher sea levels during past warm climate periods. This is of particular importance for our modern world: the Antarctic ice sheet is currently the world’s largest freshwater reservoir, which, if completely melted, would raise the global sea level by over 60 meters (200 feet). Yet, geologic records of Antarctic ice sheet sensitivity to warm climates are particularly limited and difficult to obtain, because the direct records of ice sheet geometry smaller than the modern one are still buried beneath the mile-thick ice covering the continent. Therefore, it remains unclear how much this ice sheet contributed to past sea level rise during warm climate periods or how it will respond to the anticipated near-future climate warming. In the proposed research we seek to develop sub-ice chemical precipitates—minerals that form in lakes found beneath the ice sheet—as a climatic archive, one that records how the Antarctic ice sheet responded to past climatic change. These sub-ice mineral formations accumulated beneath the ice for over a hundred thousand years, recording the changes in chemical and isotopic subglacial properties that occur in response to climate change. Eventually these samples were eroded by the ice sheet and moved to the Antarctic ice margin where they were collected and made available to study. This research will utilize advanced geochemical, isotopic and geochronologic techniques to develop record of the Antarctica ice sheet’s past response to warm climate periods, directly informing efforts to understand how Antarctica will response to future warming. Efforts to improve sea level forecasting on a warming planet have focused on determining the temperature, sea level and extent of polar ice sheets during Earth’s past warm periods. Large uncertainties, however, in reconstructions of past and future sea levels, result from the poorly constrained climate sensitivity of the Antarctic Ice sheet (AIS). This research project aims to develop the use of subglacial precipitates as an archive the Antarctic ice sheet (AIS) past response to climate change. The subglacial precipitates from East Antarctica form in water bodies beneath Antarctic ice and in doing so provide an entirely new and unique measure of how the AIS responds to climate change. In preliminary examination of these precipitates, we identified multiple samples consisting of cyclic opal and calcite that spans hundreds of thousands of years in duration. Our preliminary geochemical characterization of these samples indicates that the observed mineralogic changes result from a cyclic change in subglacial water compositions between isotopically and chemically distinct waters. Opal-forming waters are reduced (Ce* <1 and high Fe/Mn) and exhibit elevated 234U/238U compositions similar to the saline groundwater brines found at the periphery of the AIS. Calcite-forming waters, are rather, oxidized and exhibit δ18O compositions consistent with derivation from the depleted polar plateau (< -50 ‰). 234U-230Th dates permit construction of a robust timeseries describing these mineralogic and compositional changes through time. Comparisons of these time series with other Antarctic climate records (e.g., ice core records) reveal that calcite forming events align with millennial scale changes in local temperature or “Antarctic isotopic maximums”, which represent Southern Hemisphere warm periods resulting in increased Atlantic Meridional overturing circulation. Ultimately, this project seeks to develop a comprehensive model as to how changes in the thermohaline cycle induce a glaciologic response which in turn induces a change in the composition of subglacial waters and the mineralogic phase recorded within the precipitate archive. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||||
Collaborative Research: Targeted resampling of deep polar ice cores using information theory
|
1807522 |
2020-05-26 | Garland, Joshua; Jones, Tyler R. | Ice cores contain detailed accounts of Earth's climate history. The collection of an ice core can be logistically challenging, and extraction of data from the core can be time-consuming as well as susceptible to both human and machine error. Furthermore, locked in measurements from ice cores is information that scientists have not yet found ways to recover. This project will apply techniques from information theory to ice-core data to unlock that information. The primary goal is to demonstrate that information theory can (a) identify regions of a specific ice-core record that are in need of further analysis and (b) provide some specific guidance for that analysis. A secondary goal is to demonstrate that information theory has practical and scientific utility for studies of past climate. This project aims to use information theory in two distinct ways: first, to identify regions of a core where information appears to be damaged or missing, perhaps due to human and/or machine error. In the segment of the West Antarctic Ice Sheet Divide core that is 5000-8000 years old, for instance, information-theoretic methods reveal significant levels of noise, probably due to a laboratory instrument, and something that was not visible in the raw data. This is a particularly important segment of the record, as it contains valuable clues about climatic shifts and the onset of the Holocene. Targeted re-sampling of this segment of the core and reanalysis with newer laboratory apparatus could resolve the data issues. The second way in which information theory can potentially aid in ice-core analysis is by extracting climate signals from the data--such as the accumulation rate at the core site over the period of its formation. This quantity usually requires significant time and effort to produce, but information theory could help to streamline that process. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POINT(-112.085 -79.467) | POINT(-112.085 -79.467) | false | false | ||||||||
Collaborative Research: Record of the Triple-oxygen Isotope and Hydrogen Isotope Composition of Ice from an Ice Core at South Pole
|
1443105 |
2019-11-17 | Steig, Eric J.; White, James | This project will develop a record of the stable-isotope ratios of water from an ice core at the South Pole, Antarctica. Water-isotope ratio measurements provide a means to determine variability in temperature through time. South Pole is distinct from most other locations in Antarctica in showing no warming in recent decades, but little is known about temperature variability in this location prior to the installation of weather stations in 1957. The measurements made as part of this project will result in a much longer temperature record, extending at least 40,000 years, aiding our ability to understand what controls Antarctic climate, and improving projections of future Antarctic climate change. Data from this project will be critical to other investigators working on the South Pole ice core, and of general interest to other scientists and the public. Data will be provided rapidly to other investigators and made public as soon as possible. This project will obtain records of the stable-isotope ratios of water on the ice core currently being obtained at South Pole. The core will reach a depth of 1500 m and an age of 40,000 years. The project will use laser spectroscopy to obtain both an ultra-high-resolution record of oxygen 18/16 and deuterium-hydrogen ratios, and a lower-resolution record of oxygen 17/16 ratios. The high-resolution measurements will be used to aid in dating the core, and to provide estimates of isotope diffusion that constrain the process of firn densification. The novel 17/16 measurement provides additional constraints on the isotope fractionation due to the temperature-dependent supersaturation ratio, which affects the fractionation of water during the liquid-solid condensate transition. Together, these techniques will allow for improved accuracy in the use of the water isotope ratios as proxies for ice-sheet temperature, sea-surface temperature, and atmospheric circulation. The result will be a record of decadal through centennial and millennial scale climate change in a climatically distinct region in East Antarctica that has not been previously sampled by deep ice coring. The project will support a graduate student who will be co-advised by faculty at the University of Washington and the University of Colorado, and will be involved in all aspects of the work. | POINT(0 -90) | POINT(0 -90) | false | false | ||||||||
Diatom and Oxygen Isotope Evidence of Pliocene Antarctic Ice Sheet Dynamics and Ross Sea Paleoceanography
|
1443420 |
2019-08-06 | Dodd, Justin; Scherer, Reed Paul; Warnock, Jonathan |
|
Abstract During the Early Pliocene, 4.8 to 3.4 million years ago, warmer-than-present global temperatures resulted in a retreat of the Ross Ice Shelf and West Antarctic Ice Sheet. Understanding changes in ocean dynamics during times of reduced ice volume and increased temperatures in the geologic past will improve the predictive models for these conditions. The primary goal of the proposed research is to develop a new oxygen isotope record of Pliocene oceanographic conditions near the Antarctic continent. Oxygen isotope values from the carbonate tests of benthic foraminifera have become the global standard for paleo-oceanographic studies, but foraminifera are sparse in high-latitude sediment cores. This research will instead make use of oxygen isotope measurements from diatom silica preserved in a marine sediment core from the Ross Sea. The project is the first attempt at using this method and will advance understanding of global ocean dynamics and ice sheet-ocean interactions during the Pliocene. The project will foster the professional development of two early-career scientists and serve as training for graduate and undergraduate student researchers. The PIs will use this project to introduce High School students to polar/oceanographic research, as well as stable isotope geochemistry. Collaboration with teachers via NSTA and Polar Educators International will ensure the implementation of excellent STEM learning activities and curricula for younger students. Technical Description This project will produce a high-resolution oxygen isotope record from well-dated diatom rich sediments that have been cross-correlated with global benthic foraminifera oxygen isotope records. Diatom silica frustules deposited during the Early Pliocene and recovered by the ANDRILL Project (AND-1B) provide ideal material for this objective. Diatomite unites in the AND-1B core are nearly pure, with little evidence of opal formation. A diatom oxygen isotope record from this core offers the potential to constrain lingering uncertainties about Ross Sea and Southern Ocean paleoceanography and Antarctic Ice Sheet history during a time of high atmospheric carbon dioxide concentrations. Specifically, oxygen isotope variations will be used to constrain changes in the water temperature and/or freshwater flux in the Pliocene Ross Sea. Diatom species data from the AND-1B core have been used to infer variations in the extent and duration of seasonal sea ice coverage, sea surface temperatures, and mid-water advection onto the continental shelf. However, the diatom oxygen isotope record will provide the first direct measure of water/oxygen isotope values at the Antarctic continental margin during the Pliocene. | POLYGON((167.07 -77.87,167.073 -77.87,167.076 -77.87,167.079 -77.87,167.082 -77.87,167.085 -77.87,167.088 -77.87,167.091 -77.87,167.094 -77.87,167.097 -77.87,167.1 -77.87,167.1 -77.873,167.1 -77.876,167.1 -77.879,167.1 -77.882,167.1 -77.885,167.1 -77.888,167.1 -77.891,167.1 -77.894,167.1 -77.897,167.1 -77.9,167.097 -77.9,167.094 -77.9,167.091 -77.9,167.088 -77.9,167.085 -77.9,167.082 -77.9,167.079 -77.9,167.076 -77.9,167.073 -77.9,167.07 -77.9,167.07 -77.897,167.07 -77.894,167.07 -77.891,167.07 -77.888,167.07 -77.885,167.07 -77.882,167.07 -77.879,167.07 -77.876,167.07 -77.873,167.07 -77.87)) | POINT(167.085 -77.885) | false | false | |||||||
Controls on Variations in Atmospheric Carbon Dioxide and Nitrous Oxide During the Last 10,000 years
|
1443550 |
2019-08-06 | Brook, Edward J. |
|
The temperature of the earth is controlled, in part, by heat trapping gases that include carbon dioxide, methane, and nitrous oxide. Despite their importance to climate, direct measurements of these gases in the atmosphere are limited to the last 50 years at best. Air trapped in ice cores extends those data back hundreds of millennia, and measurements of greenhouse gases in ice cores underpin much of our understanding of global chemical cycles relevant to modern climate change. Existing records vary in quality and detail. The proposed work fills gaps in our knowledge of nitrous oxide and carbon dioxide over the last 10,000 years. New measurements from an ice core from the South Pole will be used to determine what role changes in ocean and land based processes played in controlling these gases, which decreased during the first 2,000 years of this time period, then gradually increased toward the present. The work will address a major controversy over whether early human activities could have impacted the atmosphere, and provide data to improve mathematical models of the land-ocean-atmosphere system that predict how future climate change will impact the composition of the atmosphere and climate. For nitrous oxide the work will improve on existing concentration records and provide a novel, detailed Holocene stable isotope record. It will also develop measurement of the isotopomers of nitrous oxide and explore their utility for understanding aspects of the Holocene nitrous oxide budget. The primary goal is to determine if marine and/or terrestrial emissions of nitrous oxide change in response to changes in Holocene climate. A new Holocene isotopic record for carbon dioxide (stable carbon and oxygen isotopes), will improve the precision of existing records by a factor 5 and increase the temporal resolution. These data will be used to evaluate controversial hypotheses about why carbon dioxide concentrations changed in the Holocene and provide insight into millennial scale processes in the carbon cycle, which are not resolved by current isotopic data. A graduate student will receive advanced training during and the student and principle investigator will conduct outreach efforts targeted at local middle school students. The proposed work will also contribute to teaching efforts by the PI and to public lectures on climate and climate change. The results will be disseminated through publications, data archive, and the OSU Ice Core Lab web site. New analytical methods of wide utility will also be developed and documented. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||
Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area
|
1443306 1443263 |
2018-10-18 | Mayewski, Paul A.; Kurbatov, Andrei V.; Higgins, John; Bender, Michael | Bubbles of ancient air trapped in ice cores permit the direct reconstruction of atmospheric composition and allow us to link greenhouse gases and global climate over the last 800,000 years. Previous field expeditions to the Allan Hills blue ice area, Antarctica, have recovered ice cores that date to one million years, the oldest ice cores yet recovered from Antarctica. These records have revealed that interglacial CO2 concentrations decreased by 800,000 years ago and that, in the warmer world 1 million years ago, CO2 and Antarctic temperature were linked as during the last 800,000 years. This project will return to the Allan Hills blue ice area to recover additional ice cores that date to 1 million years or older. The climate records developed from the drilled ice cores will provide new insights into the chemical composition of the atmosphere and Antarctic climate during times of comparable or even greater warmth than the present day. Our results will help answer questions about issues associated with anthropogenic change. These include the relationship between temperature change and the mass balance of Antarctic ice; precipitation and aridity variations associated with radiatively forced climate change; and the climate significance of sea ice extent. The project will entrain two graduate students and a postdoctoral scholar, and will conduct outreach including workshops to engage teachers in carbon science and ice cores. Between about 2.8-0.9 million years ago, Earth's climate was characterized by 40,000-year cycles, driven or paced by changes in the tilt of Earth's spin axis. Much is known about the "40,000-year" world from studies of deep-sea sediments, but our understanding of climate change during this period is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of ancient ice from the Main Ice Field, Allan Hills, Antarctica. During previous field seasons we recovered ice extending, discontinuously, from 0.1-1.0 million years old. Ice was dated by measuring the 40Ar/38Ar (Argon) ratio of the trapped gases. Our discovery of million year-old ice demonstrates that there is gas-record-quality ice from the 40,000-year world in the Allan Hills Main Ice Field. We have identified two different sites, each overlying bedrock at ~ 200 m depth, that are attractive targets for coring ice dating to 1 million years and older. This project aims to core the ice at these two sites, re-occupy a previous site with million year-old ice and drill it down to the bedrock, and generate 10-20 short (~10-meter) cores in areas where our previous work and terrestrial meteorite ages suggest ancient surface ice. We plan to date the ice using the 40Ar/38Ar ages of trapped Argon. We also plan to characterize the continuity of our cores by measuring the deuterium and oxygen isotope ratios in the ice, methane, ratios of Oxygen and Argon to Nitrogen in trapped gas, the Nitrogen-15 isotope (d15N) of Nitrogen, and the Oxygen-18 isotope (d18O) of Oxygen. As the ice may be stratigraphically disturbed, these measurements will provide diagnostic properties for assessing the continuity of the ice-core records. Successful retrieval of ice older than one million years will provide the opportunity for follow-up work to measure the CO2 concentration and other properties within the ice to inform on the temperature history of the Allan Hills region, dust sources and source-area aridity, moisture sources, densification conditions, global average ocean temperature, and greenhouse gas concentrations. We will analyze the data in the context of leading hypotheses of the 40,000-year world and the Mid-Pleistocene Transition to the 100,000-year world. We expect to advance understanding of climate dynamics during these periods. | None | None | false | false | ||||||||
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans
|
0732711 0732625 0732655 0732602 0732651 0732983 |
2018-02-01 | Truffer, Martin; Gordon, Arnold; Huber, Bruce; Mosley-Thompson, Ellen; Leventer, Amy; Vernet, Maria; Smith, Craig; Thompson, Lonnie G. | Like no other region on Earth, the northern Antarctic Peninsula represents a spectacular natural laboratory of climate change and provides the opportunity to study the record of past climate and ecological shifts alongside the present-day changes in one of the most rapidly warming regions on Earth. This award supports the cryospheric and oceano-graphic components of an integrated multi-disciplinary program to address these rapid and fundamental changes now taking place in Antarctic Peninsula (AP). By making use of a marine research platform (the RV NB Palmer and on-board helicopters) and additional logistical support from the Argentine Antarctic program, the project will bring glaciologists, oceanographers, marine geologists and biologists together, working collaboratively to address fundamentally interdisciplinary questions regarding climate change. The project will include gathering a new, high-resolution paleoclimate record from the Bruce Plateau of Graham Land, and using it to compare Holocene- and possibly glacial-epoch climate to the modern period; investigating the stability of the remaining Larsen Ice Shelf and rapid post-breakup glacier response ? in particular, the roles of surface melt and ice-ocean interactions in the speed-up and retreat; observing the contribution of, and response of, oceanographic systems to ice shelf disintegration and ice-glacier interactions. Helicopter support on board will allow access to a wide range of glacial and geological areas of interest adjacent to the Larsen embayment. At these locations, long-term in situ glacial monitoring, isostatic uplift, and ice flow GPS sites will be established, and high-resolution ice core records will be obtained using previously tested lightweight drilling equipment. Long-term monitoring of deep water outflow will, for the first time, be integrated into changes in ice shelf extent and thickness, bottom water formation, and multi-level circulation by linking near-source observations to distal sites of concentrated outflow. The broader impacts of this international, multidisciplinary effort are that it will significantly advance our understanding of linkages amongst the earth's systems in the Polar Regions, and are proposed with international participation (UK, Spain, Belgium, Germany and Argentina) and interdisciplinary engagement in the true spirit of the International Polar Year (IPY). It will also provide a means of engaging and educating the public in virtually all aspects of polar science and the effects of ongoing climate change. The research team has a long record of involving undergraduates in research, educating high-performing graduate students, and providing innovative and engaging outreach products to the K-12 education and public media forums. Moreover, forging the new links both in science and international Antarctic programs will provide a continuing legacy, beyond IPY, of improved understanding and cooperation in Antarctica. | POLYGON((-68 -57.8,-66.78 -57.8,-65.56 -57.8,-64.34 -57.8,-63.12 -57.8,-61.9 -57.8,-60.68 -57.8,-59.46 -57.8,-58.24 -57.8,-57.02 -57.8,-55.8 -57.8,-55.8 -58.8,-55.8 -59.8,-55.8 -60.8,-55.8 -61.8,-55.8 -62.8,-55.8 -63.8,-55.8 -64.8,-55.8 -65.8,-55.8 -66.8,-55.8 -67.8,-57.02 -67.8,-58.24 -67.8,-59.46 -67.8,-60.68 -67.8,-61.9 -67.8,-63.12 -67.8,-64.34 -67.8,-65.56 -67.8,-66.78 -67.8,-68 -67.8,-68 -66.8,-68 -65.8,-68 -64.8,-68 -63.8,-68 -62.8,-68 -61.8,-68 -60.8,-68 -59.8,-68 -58.8,-68 -57.8)) | POINT(-61.9 -62.8) | false | false | ||||||||
Investigating Source, Chemistry and Climate changes using the Isotopic Composition of Nitrate in Antarctic Snow and Ice
|
1246223 |
2017-05-02 | Hastings, Meredith |
|
Hastings/1246223 This award supports a project with the aim of distinguishing the sources of nitrate deposition to the West Antarctic Ice Sheet (WAIS) using isotopic ratios snow in archive snow and ice samples. The isotopic composition of nitrate has been shown to contain information about the source of the nitrate (i.e. nitrogen oxides = NOx = NO+NO2) and the oxidation processes that convert NOx to nitrate in the atmosphere prior to deposition. A difficulty in interpreting records in the context of NOx sources is that nitrate can be post-depositionally processed in surface snow, such that the archived record does not reflect the composition of the atmosphere. This intellectual merit of this work specifically aims to investigate variability in the isotopic composition of nitrate in snow and ice from the WAIS in the context of accumulation rate, NOx source emissions, and atmospheric chemistry. These records will be interpreted in the context of our understanding of biospheric (biomass burning, microbial processes in soils), atmospheric (lightning, transport, chemistry), and climate (temperature, accumulation rate) changes over time. A graduate student will be supported as part of this project, and both graduate student and PI will be involved in communicating the utility and results of polar research to elementary school students in the Providence, RI area. The broader impacts of the project also include making efforts to attract more young, female scientists to polar research by establishing a connection between the Earth Science Women's Network (ESWN), an organization PI Hastings helped to establish, and the Association of Polar Early Career Scientists (APECS). Finally, results of all measurements will be presented at relevant conferences, made available publicly and published in peer-reviewed journals. | POINT(-112.1115 -79.481) | POINT(-112.1115 -79.481) | false | false | |||||||
Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core
|
1043092 1043167 |
2016-09-15 | White, James; Vaughn, Bruce; Jones, Tyler R. | Steig/1043092 This award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public. | POINT(-112.08 -79.47) | POINT(-112.08 -79.47) | false | false | ||||||||
Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive
|
1245659 1246148 1245821 |
2015-07-13 | Petrenko, Vasilii; Brook, Edward J.; Severinghaus, Jeffrey P.; PETRENKO, VASILLI | 1245659/Petrenko This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, δ18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, δ13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of δ13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica. | POINT(162.167 -77.733) | POINT(162.167 -77.733) | false | false | ||||||||
Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core
|
1043092 1043167 |
2014-12-06 | Steig, Eric J. |
|
This award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public. | None | None | false | false | |||||||
Collaborative Research: Stable Isotopes of Ice in the WAIS Divide Deep Ice Core
|
0537661 0537593 0537930 |
2012-04-09 | White, James; Steig, Eric J.; Cuffey, Kurt M.; Souney, Joseph Jr.; Vaughn, Bruce |
|
This award supports analyses of stable isotopes of water, dD, d18O and deuterium excess in the proposed West Antarctic Ice Sheet Divide (WAIS) deep ice core. The project will produce a continuous and high-resolution reconstruction of stable isotope ratios for the new core. dD and d18O values provide estimates of temperature change at the ice core site. Deuterium excess provides estimates of ocean surface conditions, such as sea surface temperature, at the moisture source areas. This new ice core is ideally situated to address questions ranging from ice sheet stability to abrupt climate change. WAIS Divide has high enough snowfall rates to record climate changes on annual to decadal time scales. It should also have ice old enough to capture the last interglacial period in detail. The West Antarctic ice sheet is the subject of great scrutiny as our modern climate warms and sea level rises. What are the prospects for added sea level rise from ice released by this ice sheet? Understanding how this ice sheet has responded to climate change in the past, which the data collected in this project will help to assess, is critical to answering this question. The high temporal resolution available in the WAIS Divide core will provide the best available basis for inter-comparison of millennial-scale climate changes between the poles, and thus a better understanding of the spatial expression and dynamics of rapid climate change events. Finally, the location of this core in the Pacific sector of West Antarctica makes it well situated for examining the influence of the tropical Pacific on Antarctica climate, on longer timescales than are available from the instrumental climate record. Analyses will include the measurement of sub-annually resolved isotope variations in the uppermost parts of the core, measurements at annual resolution throughout the last 10,000 years and during periods of rapid climate change prior to that, and measurements at 50-year resolution throughout the entire length of the core that is collected and processed during the period of this grant. We anticipate that this will be about half of the full core expected to be drilled. In terms of broader impacts, the PIs will share the advising of two graduate students, who will make this ice core the focus of their thesis projects. It will be done in an innovative multi-campus approach designed to foster a broader educational experience. As noted above, the data and interpretations generated by this proposal will address climate change questions not only of direct and immediate scientific interest, but also of direct and immediate policy interest. | POINT(-112.08 -79.47) | POINT(-112.08 -79.47) | false | false | |||||||
Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate
|
0538657 |
2010-07-08 | Haines, Skylar; Mayewski, Paul A.; Orsi, Anais J.; Kurbatov, Andrei V.; Severinghaus, Jeffrey P. | 0538657<br/>Severinghaus<br/>This award supports a project to develop high-resolution (20-yr) nitrogen and oxygen isotope records on trapped gases in the WAIS Divide ice core (Antarctica), with a comparison record for chronological purposes in the GISP2 (Greenland) ice core. The main scientific objective is to provide an independent temperature-change record for the past 100,000 years in West Antarctica that is not subject to the uncertainty inherent in ice isotopes (18O and deuterium), the classical paleothermometer. Nitrogen isotopes (Delta 15N) in air bubbles in glacial ice record rapid surface temperature change because of thermal fractionation of air in the porous firn layer, and this isotopic anomaly is recorded in bubbles as the firn becomes ice. Using this gas-based temperature-change record, in combination with methane data as interpolar stratigraphic markers, the proposed work will define the precise relative timing of abrupt warming in Greenland and abrupt cooling at the WAIS Divide site during the millennial-scale climatic oscillations of Marine Isotopic Stage 3 (30-70 kyr BP) and the last glacial termination. The nitrogen isotope record also provides constraints on past firn thickness, which inform temperature and accumulation rate histories from the ice core. A search for possible solar-related cycles will be conducted with the WAIS Divide Holocene (Delta 15N.) Oxygen isotopes of O2 (Delta 18Oatm) are obtained as a byproduct of the (Delta 15N) measurement. The gas-isotopic records will enhance the value of other atmospheric gas measurements in WAIS Divide, which are expected to be of unprecedented quality. The high-resolution (Delta 18Oatm) records will provide chronological control for use by the international ice coring community and for surface glacier ice dating. Education of a graduate student, and training of a staff member in the laboratory, will contribute to the nation's human resource base. Outreach activities in the context of the International Polar Year will be enhanced. International collaboration is planned with the laboratory of LSCE, University of Paris. | None | None | false | false | ||||||||
Nitrogen and oxygen gas isotopes in the Siple Dome and Byrd ice cores
|
0440975 |
2009-07-17 | Severinghaus, Jeffrey P. |
|
The award supports the development of high-resolution nitrogen and oxygen isotope records on trapped gases in the Byrd and Siple Dome ice cores, and the Holocene part of the GISP2 ice core. The primary scientific goals of this work are to understand the enigmatic d15N anomalies seen thus far in the Siple Dome record at 15.3 ka and 35 ka, and to find other events that may occur in both cores. At these events, d15N of trapped air approaches zero, implying little or no gravitational fractionation of gases in the firn layer at the time of formation of the ice. These events may represent times of low accumulation rate and arid meteorological conditions, and thus may contain valuable information about the climatic history of West Antarctica. Alternatively, they may stem from crevassing and thus may reveal ice-dynamical processes. Finding the events in the Byrd core, which is located 500 km from Siple Dome, would place powerful constraints on their origin and significance. A second major goal is to explore the puzzling absence of the abrupt warming event at 22 ka (seen at Siple Dome) in the nearby Byrd 18O/16O record in the ice (d18Oice), and search for a possible correlative signal in Byrd d15N. A third goal takes advantage of the fact that precise measurements of the oxygen isotopic composition of atmospheric O2 (d18Oatm) are obtained as a byproduct of the d15N measurement. The proposed gas-isotopic measurements will underpin an integrated suite of West Antarctic climate and atmospheric gas records, which will ultimately include the WAIS Divide core. These records will help separate regional from global climate signals, and may place constraints on the cause of abrupt climate change. Education of two graduate students, and training of two staff members in the laboratory, contribute to the nation's human resource base. Education and outreach will be an important component of the project. | POINT(-119.533333 -80.016667) | POINT(-119.533333 -80.016667) | false | false | |||||||
Dry Valleys Late Holocene Climate Variability
|
0228052 |
2008-10-21 | Kreutz, Karl; Arcone, Steven; Mayewski, Paul A. |
|
This award supports a project to collect and develop high-resolution ice core records from the Dry Valleys region of Antarctica, and provide interpretations of interannual to decadal-scale climate variability during the last 2000 years (late Holocene). The project will test hypotheses related to ocean/atmosphere teleconnections (e.g., El Nino Southern Oscillation, Antarctic Oscillation) that may be responsible for major late Holocene climate events such as the Little Ice Age in the Southern Hemisphere. Conceptual and quantitative models of these processes in the Dry Valleys during the late Holocene are critical for understanding recent climate changes, and represent the main scientific merit of the project. We plan to collect intermediate-length ice cores (100-200m) at four sites along transects in Taylor Valley and Wright Valley, and analyze each core at high resolution for stable isotopes (d18O, dD), major ions (Na+, Mg2+, Ca2+, K+, NH4+, Cl-, NO3-, SO42-, MSA), and trace elements (Al, Fe, S, Sr, B). A suite of statistical techniques will be applied to the multivariate glaciochemical dataset to identify chemical associations and to calibrate the time-series records with available instrumental data. Broader impacts of the project include: 1) contributions to several ongoing interdisciplinary Antarctic research programs; 2) graduate and undergraduate student involvement in field, laboratory, and data interpretation activities; 3) use of project data and ideas in several UMaine courses and outreach activities; and 4) data dissemination through peer-reviewed publications, UMaine and other paleoclimate data archive websites, and presentations at national and international meetings. | POLYGON((161.0434 -77.3002,161.241645 -77.3002,161.43989 -77.3002,161.638135 -77.3002,161.83638 -77.3002,162.034625 -77.3002,162.23287 -77.3002,162.431115 -77.3002,162.62936 -77.3002,162.827605 -77.3002,163.02585 -77.3002,163.02585 -77.3784846,163.02585 -77.4567692,163.02585 -77.5350538,163.02585 -77.6133384,163.02585 -77.691623,163.02585 -77.7699076,163.02585 -77.8481922,163.02585 -77.9264768,163.02585 -78.0047614,163.02585 -78.083046,162.827605 -78.083046,162.62936 -78.083046,162.431115 -78.083046,162.23287 -78.083046,162.034625 -78.083046,161.83638 -78.083046,161.638135 -78.083046,161.43989 -78.083046,161.241645 -78.083046,161.0434 -78.083046,161.0434 -78.0047614,161.0434 -77.9264768,161.0434 -77.8481922,161.0434 -77.7699076,161.0434 -77.691623,161.0434 -77.6133384,161.0434 -77.5350538,161.0434 -77.4567692,161.0434 -77.3784846,161.0434 -77.3002)) | POINT(162.034625 -77.691623) | false | false | |||||||
Collaborative Research: Age, Origin and Climatic Significance of Buried Ice in the Western Dry Valleys, Antarctica
|
0338244 |
2007-12-10 | Schaefer, Joerg | No dataset link provided | This project will determine the age, origin, and climatic significance of buried ice found in the western Dry Valleys of Antarctica. Previous studies indicate that this ice may be over a million years in age, making it by far the oldest ice yet discovered on Earth. An alternative view is that this ice is represents recently frozen groundwater. To distinguish between these hypotheses and characterize the ice, we are undertaking an interdisciplinary research program focused on: 1) understanding the surface processes that permit ice preservation; and 2) testing the efficacy of cosmogenic nuclides and 40Ar/39Ar analyses in dating both tills and volcanic ash associated with the ice. Our plan calls for the analysis of a minimum of six cosmogenic depth profiles to determine if and how cryoturbation reworks sublimation tills and assess the average rate of ice sublimation for three debris-covered glaciers. We will model through finite- element analyses at least three buried glaciers and compare flow rates with those based on radiometric dating of surface deposits. Ten ice cores will also be collected for measurement of d18O, dD, ice fabric, ice texture, total gas content/composition. Better understanding of surface processes above buried ice will permit researchers to gain access to a record of atmospheric and climate change that could well cover intervals that predate Quaternary time. The work may also add valuable insight into Martian history. In terms of broader impacts, we have recruited three female PhD students and developed interdisciplinary collaborations among geochemists at Columbia University, planetary geologists at Brown University, geomorphologists at Boston University, and numerical modelers at the University of Maine. | None | None | false | false | |||||||
Isotopic Measurements on the WAIS/Siple Dome Ice Cores
|
9526979 |
2003-06-16 | White, James; Bender, Michael |
|
This award is for support for a program to measure the stable isotope (deuterium to hydrogen and oxygen-18 to oxygen-16) concentrations of ice cores retrieved from Siple Dome as part of the West Antarctic ice sheet program. In addition, the deuterium excess of samples from the Taylor Dome ice core will be determined. This project will approach the question of rapid climate change using ice cores to determine the history of temperature changes, moisture source changes, and elevational changes in the West Antarctic ice sheet. Results from ice cores taken to date in the interior of Antarctica (East and West) are surprisingly lacking in indications of abrupt climate changes, such as those that have been observed in the GISP2 ice core from Summit, Greenland. This work will address the question of whether rapid climate changes, which are known to have occurred in other parts of the southern hemi-sphere, may have also occurred in the coastal regions of West Antarctica. There is some indication from existing records of isotopes in ice cores that the West Antarctic ice sheet may have flushed ice in the past (as evidenced by large changes in elevation of the ice sheet). | None | None | false | false | |||||||
Collaborative Research: Seismic Traverse of the Byrd Subglacial Basin-Field Test
|
9222121 |
2002-01-01 | Bender, Michael; Dalziel, Ian W. |
|
This award supports an in situ and short traverse seismic reflection/refraction and magnetotelluric experiment in West Antarctica. This collaborative experiment involves four awards at four institutions. The four-fold purpose is 1) to investigate part of the Byrd Subglacial Basin, 2) to test techniques for this work that could be done in a long traverse, 3) to determine the viability of the magnetotelluric method on a thick (electrically resistive) ice sheet, and 4) to evaluate the relative merits of refraction with wide reflection versus reflection with narrow refraction seismic studies in imaging the lithosphere. The geophysical techniques that will be employed are capable of imaging the ice sheet, the continental lithosphere, and the upper mantle, as well as determining physical properties of parts of the lithosphere and mantle. Investigations of outcrop geology over the last thirty years in West Antarctica and the Transantarctic Mountains have lead to recent interpretations that the crust is made up of many different lithospheric blocks. Seismic reflection work is the only way to image the crust in detail and the refraction work is the only way to determine physical properties of the layers and blocks defined by the reflection work. The magnetotelluric work is scientifically risky because it may not yield useful information when used over the electrically resistive ice sheet; however, if it works it has the potential to image molten rock in the crust and upper mantle. In a continental rift region such as West Antarctica, the presence of melt in the lithosphere is likely and, if documented, has very important ramifications to ice sheet dynamics. Research work supported by this award is expected to provide constraints to models of a range of crustal processes from models of ice sheet dynamics to tectonic and kinematic models of lithospheric thinning and rifting. | None | None | false | false | |||||||
Thermal Fractionation of Firn Air and the Ice Core Record of Abrupt Interstadial Climate Change
|
9725305 |
2001-01-01 | Battle, Mark; Grachev, Alexi; Severinghaus, Jeffrey P. |
|
9725305 Severinghaus This award supports a project to develop and apply a new technique for quantifying temperature changes in the past based on the thermodynamic principle of thermal diffusion, in which gas mixtures in a temperature gradient become fractionated. Air in polar firn is fractionated by temperature gradients induced by abrupt climate change, and a record of this air is preserved in bubbles in the ice. The magnitude of the abrupt temperature change, the precise relative timing, and an estimate of the absolute temperature change can be determined. By providing a gas-phase stratigraphic marker of temperature change, the phasing of methane (with decadal precision) and hence widespread climate change (relative to local polar temperature changes) can be determined (across five abrupt warming events during the last glacial period). | None | None | false | false |