{"dp_type": "Project", "free_text": "OCEAN CURRENTS"}
[{"awards": "2428537 Siegelman, Lia", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 06 Aug 2024 00:00:00 GMT", "description": "The polar oceans act as a central thermostat that helps set the Earth\u2019s temperature and governs our climate. Rapid changes are currently ongoing in the polar regions in response to interactions between the air, ocean, and sea-ice. Despite their importance, air-sea interactions at high latitudes remain poorly understood, in great part due to the observational challenges inherent to this extreme and remote environment. The overarching objective of this project is to develop and test a new generation of autonomous ocean platforms specifically designed to withstand the harsh polar environment, to enable improved understanding and quantification of fine-scale air-sea fluxes in these key regions of the globe. Doing so will enable the research community to advance observational capabilities of under-sampled high-latitude oceans while being respectful of the environment and local communities. Compared to research vessels, our wave-propelled platforms (\u201dWave Gliders\u201d) produce a very low acoustic footprint, minimizing behavioral impact to marine mammals such as whales and seals, who are highly affected by underwater noise pollution generated by classical research vessels.\u003cbr/\u003e\u003cbr/\u003eResearchers will develop and test advanced capabilities added to existing, off-the-shelf platforms to operate in the extreme conditions of the high latitude oceans in order to understand how the ocean transfers heat and momentum to the atmosphere at fine scales. To accomplish this goal, instrumented Wave Gliders will first be upgraded with state-of-the-art technology for propulsion, energy generation and storage, anti-icing, and a scientific payload capable of operating for long durations in polar oceans. This new technology will be implemented and tested in the Air-Sea Interaction Laboratory and the recently completed SOARS facility at the Scripps Institution of Oceanography, UC San Diego. This facility is capable of developing a polar wave glider, as it can incorporate sea ice and freezing sea spray similar to real world conditions. The validation of the instrumented autonomous vehicles will be conducted during multiple short deployments, initially off La Jolla, CA with a final deployment in the Southern Ocean in polar conditions. Students from local robotics programs will participate in both the development and testing of the polar wave glider.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "OCEAN CURRENTS; Southern Ocean; SURFACE WINDS", "locations": "Southern Ocean", "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Siegelman, Lia; Lenain, Luc", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "EAGER: Developing High Latitudes Capabilities for Wave Gliders", "uid": "p0010475", "west": null}, {"awards": "1542902 Chereskin, Teresa; 2001646 Chereskin, Teresa", "bounds_geometry": "POLYGON((-68 -54,-66.7 -54,-65.4 -54,-64.1 -54,-62.8 -54,-61.5 -54,-60.2 -54,-58.9 -54,-57.6 -54,-56.3 -54,-55 -54,-55 -55,-55 -56,-55 -57,-55 -58,-55 -59,-55 -60,-55 -61,-55 -62,-55 -63,-55 -64,-56.3 -64,-57.6 -64,-58.9 -64,-60.2 -64,-61.5 -64,-62.8 -64,-64.1 -64,-65.4 -64,-66.7 -64,-68 -64,-68 -63,-68 -62,-68 -61,-68 -60,-68 -59,-68 -58,-68 -57,-68 -56,-68 -55,-68 -54))", "dataset_titles": "Joint Archive for shipboard ADCP data; World Ocean Database", "datasets": [{"dataset_uid": "200355", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "World Ocean Database", "url": "https://www.nodc.noaa.gov/OC5/SELECT/dbsearch/dbsearch.html"}, {"dataset_uid": "200354", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Joint Archive for shipboard ADCP data", "url": "https://uhslc.soest.hawaii.edu/sadcp/"}], "date_created": "Fri, 03 Mar 2023 00:00:00 GMT", "description": "The Antarctic Circumpolar Current (ACC) is the largest current on the planet, flowing west to east around Antarctica, forming a barrier that separates warmer waters to the north from colder waters to the south. Ocean eddies (like atmospheric storms) break through the ACC barrier, transferring heat across the ACC towards Antarctica. When warmer ocean waters intrude onto the Antarctic continental shelves, they contribute to glacial melt and ice shelf retreat. Over the past several decades, the Southern Ocean has warmed and winds have increased due to climate change. Somewhat surprisingly the ACC, though pushed by faster winds, has not accelerated; a faster current would present a stronger barrier to heat transfer. Instead, ocean eddies have increased. These eddies are concentrated at 6-7 \"hot spots\". Drake Passage is one of these hot spots. As the narrowest land gap on the entire circumpolar path of the ACC, Drake Passsage is an ideal monitoring spot. However, it is also one of the windiest and roughest stretches of water on the globe. The only ship that crosses Drake Passage year-round is the USAP supply vessel for Palmer Station, making it a unique platform to monitor the currents and temperature with a minimum of personnel and resources. The Drake Passage time series of upper ocean currents and temperature is now in its 24th year. The upper ocean temperature measurements have found significant warming in Drake Passage. The upper ocean current measurements have confirmed that the ACC has remained steady on average but have also revealed a complicated filamented current structure. Combining temperature and current measurements has provided a better understanding of heat transfer across the ACC by eddies. The time series has also provided valuable ground-truth for satellite measurements and for numerical model predictions looking at the entire ACC. Our studies are focused on examining low-frequency variability - seasonal, interannual, and decadal - in order to provide baselines from which to evaluate and interpret physical and biogeochemical changes occurring in the Southern Ocean. \r\n", "east": -55.0, "geometry": "POINT(-61.5 -59)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": true, "keywords": "R/V LMG; Drake Passage; WATER TEMPERATURE; Antarctic Circumpolar Current; Heat Flux", "locations": "Drake Passage", "north": -54.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Chereskin, Teresa; Sprintall, Janet", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "NCEI", "repositories": "NCEI", "science_programs": null, "south": -64.0, "title": "High Resolution Underway Air-Sea Observations in Drake Passage for Climate Science", "uid": "p0010409", "west": -68.0}, {"awards": "2220969 Manucharyan, Georgy; 2220968 Stewart, Andrew", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Sun, 07 Aug 2022 00:00:00 GMT", "description": "The world ocean is continuously in motion, and a large fraction of this motion takes the form of \"eddies\", nearly-horizontal swirls of water spanning tens to hundreds of kilometers. These eddies affect the ocean by mediating large-scale currents, redistributing heat, and supplying nutrients to oceanic ecosystems. Consequently, the ocean science community has historically invested substantial effort in characterizing the properties and impact of these eddies. In polar regions, the sea ice cover inhibits observations of eddies, and the relatively small horizontal size of the eddies hampers computer simulations of their behavior. Nonetheless, previous studies have identified an active population of eddies beneath the Arctic sea ice and shown that these eddies play a crucial role in maintaining the large-scale circulation in the Arctic seas. However, there has been no systematic attempt to study such eddies under Antarctic sea ice, leaving a significant gap in our understanding of eddies and their contribution to the large-scale ocean circulation around Antarctica.\r\n\r\nThe proposed research combines multiple approaches to improve our understanding of the eddy dynamics. Statistical characterizations of the sub-sea ice eddy field will be derived using hydrographic observations under Antarctic sea ice from Argo floats and instrumented seals. High-resolution global ocean and sea ice models will be used to track the simulated eddies back to their formation sites to identify the eddy formation mechanisms. Theoretical calculations will be conducted to test the hypothesis that the eddies primarily originate from hydrodynamic instabilities associated with subsurface density gradients. These theoretical, modeling, and data analysis approaches will be combined to estimate the eddies\u0027 contribution to lateral tracer transports and their impact on mean circulations of the near-Antarctic ocean. The proposed work will facilitate future scientific endeavors by providing publicly-available databases of detected eddy properties. This project will support the research of several junior scientists: an undergraduate student, two graduate students, and an early-career faculty member.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; OCEAN CURRENTS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Stewart, Andrew; Bianchi, Daniele", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Characteristics and Origins of Eddies beneath Antarctic Sea Ice", "uid": "p0010366", "west": -180.0}, {"awards": "2138277 Gallagher, Katherine", "bounds_geometry": "POLYGON((-78 -62,-76.2 -62,-74.4 -62,-72.6 -62,-70.8 -62,-69 -62,-67.2 -62,-65.4 -62,-63.6 -62,-61.8 -62,-60 -62,-60 -63,-60 -64,-60 -65,-60 -66,-60 -67,-60 -68,-60 -69,-60 -70,-60 -71,-60 -72,-61.8 -72,-63.6 -72,-65.4 -72,-67.2 -72,-69 -72,-70.8 -72,-72.6 -72,-74.4 -72,-76.2 -72,-78 -72,-78 -71,-78 -70,-78 -69,-78 -68,-78 -67,-78 -66,-78 -65,-78 -64,-78 -63,-78 -62))", "dataset_titles": "Current velocity and direction data from Regional Ocean Modeling System simulations (2006-2007 \u0026 2010-2011); Current velocity and direction data from Regional Ocean Modeling System simulations (2008-2009 \u0026 2018-2019); Passive particle trajectories from Regional Ocean Modeling System simulations 2008-2009 \u0026 2018-2019; Simulated krill trajectory data from Regional Ocean Modeling System simulations 2006-2007 \u0026 2010-2011; Simulated krill trajectory data from Regional Ocean Modeling System simulations 2008-2009 \u0026 2018-2019; Simulated marine debris trajectories along the West Antarctic Peninsula in 2008-2009 and 2018-2019", "datasets": [{"dataset_uid": "601656", "doi": "10.15784/601656", "keywords": "Antarctica; Model Data; Ocean Currents; Physical Oceanography; Regional Ocean Modeling System; ROMS; West Antarctic Shelf", "people": "Gallagher, Katherine", "repository": "USAP-DC", "science_program": null, "title": "Current velocity and direction data from Regional Ocean Modeling System simulations (2008-2009 \u0026 2018-2019)", "url": "https://www.usap-dc.org/view/dataset/601656"}, {"dataset_uid": "601655", "doi": "10.15784/601655", "keywords": "Antarctica; Antarctic Krill; Model Data; Physical Oceanography; Regional Ocean Modeling System; ROMS; West Antarctic Shelf", "people": "Gallagher, Katherine", "repository": "USAP-DC", "science_program": null, "title": "Simulated krill trajectory data from Regional Ocean Modeling System simulations 2008-2009 \u0026 2018-2019", "url": "https://www.usap-dc.org/view/dataset/601655"}, {"dataset_uid": "601734", "doi": "10.15784/601734", "keywords": "Antarctica; Modeling; Regional Ocean Modeling System; West Antarctic Shelf", "people": "Gallagher, Katherine", "repository": "USAP-DC", "science_program": null, "title": "Simulated marine debris trajectories along the West Antarctic Peninsula in 2008-2009 and 2018-2019", "url": "https://www.usap-dc.org/view/dataset/601734"}, {"dataset_uid": "601780", "doi": "10.15784/601780", "keywords": "Antarctica; Antarctic Krill; Cryosphere; Model Data; Physical Oceanography; Regional Ocean Modeling System; ROMS; West Antarctic Shelf", "people": "Gallagher, Katherine", "repository": "USAP-DC", "science_program": null, "title": "Simulated krill trajectory data from Regional Ocean Modeling System simulations 2006-2007 \u0026 2010-2011", "url": "https://www.usap-dc.org/view/dataset/601780"}, {"dataset_uid": "601682", "doi": "10.15784/601682", "keywords": "Antarctica; Physical Oceanography; Regional Ocean Modeling System; ROMS", "people": "Gallagher, Katherine", "repository": "USAP-DC", "science_program": null, "title": "Passive particle trajectories from Regional Ocean Modeling System simulations 2008-2009 \u0026 2018-2019", "url": "https://www.usap-dc.org/view/dataset/601682"}, {"dataset_uid": "601779", "doi": "10.15784/601779", "keywords": "Antarctica; Cryosphere; Model Data; Ocean Currents; Physical Oceanography; Regional Ocean Modeling System; ROMS; West Antarctic Shelf", "people": "Gallagher, Katherine", "repository": "USAP-DC", "science_program": null, "title": "Current velocity and direction data from Regional Ocean Modeling System simulations (2006-2007 \u0026 2010-2011)", "url": "https://www.usap-dc.org/view/dataset/601779"}], "date_created": "Tue, 19 Jul 2022 00:00:00 GMT", "description": "Pygoscelis penguins are central place foragers during the summer while they raise their chicks. They leave and return to the same colony location after hunting for food and rely on the availability of Antarctic krill, their primary food source. This research focuses on whether penguin diets and colony location reflect the retention of prey around and near colonies on the West Antarctic Peninsula. Eddies and other oceanographic processes may facilitate prey retention at certain locations, driving penguin colony establishment and success. \r\n\r\nThis project hypothesizes that Pygoscelis penguin diets will be composed of more Antarctic krill (Euphausia superba) when local prey retention is high, possibly due to subsurface eddies. This hypothesis will be tested using satellite-based estimates of Pygoscelis penguin diet composition using multispectral sensor data to estimate nitrogen values and infer trophic level. Prey retention will be calculated along the peninsula using the Regional Ocean Modeling System (ROMS). Simulated particles and diel vertical migration will be used to mimic krill behavior. These particles can be experimentally seeded across multiple depths in multiple years to assess residence times in the system. Using penguin colony data from the Mapping Application for Penguin Populations and Projected Dynamics (MAPPPD), the PI will correlate diet and retention metrics to local penguin colony growth and persistence and build a predictive model of where colonies may form in the future.\r\n\r\nThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -60.0, "geometry": "POINT(-69 -67)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctic Peninsula; PENGUINS; SPECIES/POPULATION INTERACTIONS; OCEAN CURRENTS", "locations": "Antarctic Peninsula", "north": -62.0, "nsf_funding_programs": "Post Doc/Travel", "paleo_time": null, "persons": "Gallagher, Katherine", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -72.0, "title": "OPP-PRF Pygoscelis Penguin Response to Potential Prey Retention along the West Antarctic Peninsula", "uid": "p0010349", "west": -78.0}, {"awards": "1945127 Moffat, Carlos", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 03 Jun 2022 00:00:00 GMT", "description": "Freshwater discharges from melting high-latitude continental ice glacial reserves strongly control salt budgets, circulation and associated ocean water mass formation arising from polar ice shelves. These are different in nature than freshwater inputs associated with riverine coastal inputs. The PI proposes an observational deployment to measure a specific, previously-identified example of a coastal freshwater-driven current, the Antarctic Peninsula Coastal Current (APCC). \u003cbr/\u003e \u003cbr/\u003eThe research component of this CAREER project aims to improve understanding of the dynamics of freshwater discharge around the Antarctic continent. Associated research questions pertain to the i) controls on the cross- and along-shelf spreading of fresh, buoyant coastal currents, ii) the role of distributed coastal freshwater sources (as opposed to \u0027point\u0027 source river outflow sources typical of lower latitudes), and iii) the contribution of these coastal currents to water mass transformation and heat transfer on the continental shelf. An educational CAREER program component leverages a series of field experiences and research outputs including data, model outputs, and theory, to bring polar science to the classroom and the general public, as well as training a new polar scientist. This combined strategy will allow the investigator to lay the foundation for a successful academic career as a researcher and teacher at the University of Delaware. The project will also provide the opportunity to train a PhD student. Informal outreach efforts will include giving public lectures at University of Deleware\u0027s sponsored events, including Coast Day, a summer event that attracts 8000-10000 people, and remote lectures from the field using an existing outreach network. This proposal requires fieldwork in the Antarctic.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; R/V LMG; TURBULENCE; USAP-DC; OCEAN CURRENTS; Antarctic Peninsula; AMD; USA/NSF; HEAT FLUX", "locations": "Antarctic Peninsula", "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Moffat, Carlos", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repositories": null, "science_programs": null, "south": null, "title": "CAREER: The Transformation, Cross-shore Export, and along-shore Transport of Freshwater on Antarctic Shelves", "uid": "p0010330", "west": null}, {"awards": "2148517 Hancock, Cathrine", "bounds_geometry": "POLYGON((-60 -55,-51 -55,-42 -55,-33 -55,-24 -55,-15 -55,-6 -55,3 -55,12 -55,21 -55,30 -55,30 -57,30 -59,30 -61,30 -63,30 -65,30 -67,30 -69,30 -71,30 -73,30 -75,21 -75,12 -75,3 -75,-6 -75,-15 -75,-24 -75,-33 -75,-42 -75,-51 -75,-60 -75,-60 -73,-60 -71,-60 -69,-60 -67,-60 -65,-60 -63,-60 -61,-60 -59,-60 -57,-60 -55))", "dataset_titles": "Trajectories for APEX floats 9223 and 9224 from acoustic tracking using artoa4argo, Mar 2022-Feb 2023; Under ice trajectories for RAFOS enabled profiling floats in the Weddell Gyre", "datasets": [{"dataset_uid": "601652", "doi": "10.15784/601652", "keywords": "Antarctica; ANTXXIV/3; Argo Float; Artoa4argo; GPS Data; RAFOS; US Argo Program; Weddell Sea", "people": "Hancock, Cathrine", "repository": "USAP-DC", "science_program": null, "title": "Under ice trajectories for RAFOS enabled profiling floats in the Weddell Gyre", "url": "https://www.usap-dc.org/view/dataset/601652"}, {"dataset_uid": "601852", "doi": "10.15784/601852", "keywords": "Antarctica; Continental Slope; Cryosphere; Eddy; Float Trajectory; HAFOS; Weddell Sea", "people": "Hancock, Cathrine; Boebel, Olaf", "repository": "USAP-DC", "science_program": null, "title": "Trajectories for APEX floats 9223 and 9224 from acoustic tracking using artoa4argo, Mar 2022-Feb 2023", "url": "https://www.usap-dc.org/view/dataset/601852"}], "date_created": "Fri, 25 Mar 2022 00:00:00 GMT", "description": "The Weddell Gyre is one of the major components of the Southern Ocean circulation system, linking heat and carbon fluxes in the Antarctic Circumpolar Current to the continental margins. Water masses entering the Weddell Gyre are modified as they move in a great circular route around the gyre margin and change through processes involving air-sea-cryosphere interactions as well as through ocean eddies that mix properties across the gyre boundaries. Some of the denser water masses exit the gyre through pathways along the northern boundary, and ultimately ventilate the global deep ocean as Antarctic Bottom Water. While in-situ and satellite observations, as well as computer modeling efforts, provide estimates of the large-scale average flow within the gyre, details of the smaller-scale, or \"mesoscale\" eddy flow remain elusive. The proposed research will quantify mixing due to mesoscale eddies within the Weddell Gyre, as well as the transport of incoming deep water from the northeast, thought to be a result of transient eddies. Since the Weddell Gyre produces source water for about 40% of Antarctic Bottom Water formation, understanding the dynamics in this region helps to identify causes of documented changes in global bottom waters. This in turn, will give insight into how climate change is affecting global oceans, through modification of dense polar waters and Antarctic Bottom Water characteristics.\r\n\r\nThis project aims to track 153 RAFOS-enabled Argo floats in the ice-covered regions of the Weddell Gyre. The resultant tracks along with all available Argo and earlier float data will be used to calculate Eulerian and Lagrangian means and eddy statistics for the Weddell Gyre. The study will link RAFOS tracks with Argo profiles under ice, allowing one to characterize the importance of eddies in water column modification at critical ice-edge boundaries and leads. With RAFOS tracks near the northeastern limit of the gyre, the project will investigate the eddy-driven processes of incoming Circumpolar Deep Water, to understand better the mechanisms and volume fluxes involved. Previous work shows that a large fraction of the mean circulation in the southern and western limits of the gyre, where it contacts the Antarctic continent, occurs in a narrow boundary layer above the slope. The research here will integrate this flow structure into a complete interior and boundary layer mean circulation synthesis. The findings and products from the proposed work will improve the positioning of Argo profiles in the polar regions, which would allow for more accurate climatological maps and derived quantities. Estimates of meso-scale mixing may serve as a foundation for the development of new parameterization schemes employed in climate models, as well as local and global ocean circulation models in polar regions.", "east": 30.0, "geometry": "POINT(-15 -65)", "instruments": null, "is_usap_dc": true, "keywords": "OCEAN CURRENTS; WATER MASSES; BUOYS; USA/NSF; Weddell Sea; AMD; USAP-DC; Amd/Us", "locations": "Weddell Sea", "north": -55.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Hancock, Cathrine; Speer, Kevin", "platforms": "WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED \u003e BUOYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.0, "title": "Weddell Gyre Mean Circulation and Eddy Statistics from Floats", "uid": "p0010310", "west": -60.0}, {"awards": "2149500 Chambers, Don", "bounds_geometry": "POLYGON((-180 -30,-144 -30,-108 -30,-72 -30,-36 -30,0 -30,36 -30,72 -30,108 -30,144 -30,180 -30,180 -36,180 -42,180 -48,180 -54,180 -60,180 -66,180 -72,180 -78,180 -84,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84,-180 -78,-180 -72,-180 -66,-180 -60,-180 -54,-180 -48,-180 -42,-180 -36,-180 -30))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 14 Mar 2022 00:00:00 GMT", "description": "The Southern Ocean accounts for ~40% of the total ocean uptake of anthropogenic CO2 despite covering only 20% of the global ocean surface, and is particularly rich in long-lived eddies. These eddies, or large ocean whirlpools which can be observed from space, can alter air-sea fluxes of CO2 in ways that are not yet fully understood. New observations from autonomous platforms measuring ocean carbon content suggest that there is significant heterogeneity in ocean carbon fluxes which can be linked to these dynamic eddy features. Due to computational and time limitations, ocean eddies are not explicitly represented in most climate models, limiting our ability to understand the role eddies play in the ocean carbon cycle. This work will explore the impact of eddies on ocean carbon content and air-sea CO2 fluxes in the Southern Ocean using both model- and observation-based strategies and the findings will improve our understanding of the ocean\u2019s role in the carbon cycle and in global climate. While this work will primarily be focused on the Southern Ocean, the results will be globally applicable. The researchers will also broaden interest in physical and chemical oceanography among middle school-age girls in the University of South Florida\u2019s Oceanography Camp for Girls by augmenting existing lessons with computational methods in oceanography. \r\n\r\nThis project aims to quantify the impacts of mesoscale eddy processes on ocean carbon content and air-sea carbon dioxide (CO2) fluxes in the Southern Ocean. For the modeling component, the investigators will explore relationships between eddies, ocean carbon content, and air-sea CO2 fluxes within the 1/6-degree resolution Biogeochemical Southern Ocean State Estimate (B-SOSE). They investigators will produce high-resolution composites of the carbon content and physical structure within both cyclonic and anticyclonic eddies by region, quantify the influence of these eddies on the overall simulated air-sea CO2 flux, and diagnose the physical mechanisms driving this influence. For the observational component, the investigators will match eddies observed via satellite altimetry to ocean carbon observations and characterize observed relationships between eddies and ocean carbon content with a focus on Southern Ocean winter observations where light limits biological processes, allowing isolation of the contribution of physical processes. This work will also provide motivation for higher resolution and better eddy parameterizations in climate models, more mesoscale biogeochemical observations, and integration of satellite SSH data into efforts to map air-sea fluxes of CO2. Each summer, the PI delivers a lab lesson at the University of South Florida Oceanography Camp for Girls (OCG), recognized by NSF as a \u201cModel STEM Program for Women and Girls\u201d focused on broadening participation by placing emphasis on recruiting a diverse group of young women. As part of this project, the existing interactive Jupyter Notebook-based Python coding Lab lesson will be augmented with a B-SOSE-themed modeling component, which will broaden interest in physical and chemical oceanography and data science, and expose campers to computational methods in oceanography.\r\n", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; Southern Ocean; PH; BIOGEOCHEMICAL CYCLES; AMD; OCEAN CHEMISTRY; OCEAN MIXED LAYER; USA/NSF; NITROGEN; OCEAN CURRENTS; SALINITY/DENSITY; USAP-DC; OCEAN TEMPERATURE; MODELS; CHLOROPHYLL; DISSOLVED GASES; NUTRIENTS", "locations": "Southern Ocean", "north": -30.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Williams, Nancy; Chambers, Don; Tamsitt, Veronica", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Diagnosing the Role of Ocean Eddies in Carbon Cycling from a High-resolution Data Assimilating Ocean Biogeochemical Model", "uid": "p0010309", "west": -180.0}, {"awards": "2103032 Schmittner, Andreas", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 09 Sep 2021 00:00:00 GMT", "description": "The Antarctic ice sheet is an important component of Earth\u2019s climate system, as it interacts with the atmosphere, the surrounding Southern Ocean, and the underlaying solid Earth. It is also the largest potential contributor to future sea level rise and a major uncertainty in climate projections. Climate change may trigger instabilities, which may lead to fast and irreversible collapse of parts of the ice sheet. However, very little is known about how interactions between the Antarctic ice sheet and the rest of the climate system affect its behavior, climate, and sea level, partly because most climate models currently do not have fully-interactive ice sheet components. This project investigates Antarctic ice-ocean interactions of the last 20,000 years. A novel numerical climate model will be constructed that includes an interactive Antarctic ice sheet, improving computational infrastructure for research. The model code will be made freely available to the public on a code-sharing site. Paleoclimate data will be synthesized and compared with simulations of the model. The model-data comparison will address three scientific hypotheses regarding past changes in deep ocean circulation, ice sheet, carbon, and sea level. The project will contribute to a better understanding of ice-ocean interactions and past climate variability.\r\n\r\nThis project will test suggestions that ice-ocean interactions have been important for setting deep ocean circulation and carbon storage during the Last Glacial Maximum and subsequent deglaciation. The new model will consist of three existing and well-tested components: (1) an isotope-enabled climate-carbon cycle model of intermediate complexity, (2) a model of the combined Antarctic ice sheet, solid Earth and sea level, and (3) an iceberg model. The coupling will include ocean temperature effects on basal melting of ice shelves, freshwater fluxes from the ice sheet to the ocean, and calving, transport and melting of icebergs. Once constructed and optimized, the model will be applied to simulate the Last Glacial Maximum and subsequent deglaciation. Differences between model versions with full, partial or no coupling will be used to investigate the effects of ice-ocean interactions on the Meridional Overturning Circulation, deep ocean carbon storage and ice sheet fluctuations. Paleoclimate data synthesis will include temperature, carbon and nitrogen isotopes, radiocarbon ages, protactinium-thorium ratios, neodymium isotopes, carbonate ion, dissolved oxygen, relative sea level and terrestrial cosmogenic ages into one multi-proxy database with a consistent updated chronology. The project will support an early-career scientist, one graduate student, undergraduate students, and new and ongoing national and international collaborations. Outreach activities in collaboration with a local science museum will benefit rural communities in Oregon by improving their climate literacy.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "ICE CORE RECORDS; Amd/Us; USA/NSF; OCEAN TEMPERATURE; GLACIERS/ICE SHEETS; BIOGEOCHEMICAL CYCLES; MODELS; AMD; United States Of America; OCEAN CURRENTS; ICEBERGS; PALEOCLIMATE RECONSTRUCTIONS", "locations": "United States Of America", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Schmittner, Andreas; Haight, Andrew ; Clark, Peter", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Investigating Antarctic Ice Sheet-Ocean-Carbon Cycle Interactions During the Last Deglaciation", "uid": "p0010256", "west": -180.0}, {"awards": "2023259 Thompson, Andrew; 2023303 Purkey, Sarah; 2023244 Stewart, Andrew", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Ocean CFC reconstructed data product", "datasets": [{"dataset_uid": "601752", "doi": "10.15784/601752", "keywords": "Antarctica; CFCs; GLODAP; Ocean Model; Ocean Ventilation; Southern Ocean", "people": "Gebbie, Jack; Purkey, Sarah; Cimoli, Laura", "repository": "USAP-DC", "science_program": null, "title": "Ocean CFC reconstructed data product", "url": "https://www.usap-dc.org/view/dataset/601752"}], "date_created": "Thu, 01 Jul 2021 00:00:00 GMT", "description": "The formation of dense Antarctic Bottom Water (AABW) and its export northward from the Antarctic continent is one of the key components of the global ocean overturning circulation, and plays a critical role in regulating Earth\u0027s climate on multi-decadal-to-millennial time scales. Recent studies of the global ocean overturning circulation have increasingly emphasized its three-dimensional structure: AABW is produced in a handful of distinct sites around the Antarctic continent, and there is a pronounced asymmetry in the allocation of AABW transports into the Atlantic, Indian and Pacific basins. The connectivity of AABW between the Antarctic continental shelf and the northern basins is mediated by the Antarctic Circumpolar Current (ACC), a circumpolar eastward flow that also serves as the primary route for inter-basin exchange.\r\n\r\nThe mapping from different shelf AABW sources to the northern basins dictates the response of the global MOC to localized variability or shifts in the state of the Antarctic shelf, for example due to major glacier calving events or modified inputs of freshwater from the Antarctic ice sheet. At present this mapping is not well constrained, with conflicting conclusions drawn in previous studies: at one extreme the ACC has been suggested to be a ``conduit\u0027\u0027 that simply allows each variety of AABW to transit directly northward; at the other extreme, it has been suggested that the ACC ``blends\u0027\u0027 all shelf AABW sources together before they reach the northern basins. Such conflicts arise, in part, because little is understood about the physics that determines AABW\u0027s pathways across the ACC.\r\n\r\nTo close this gap in understanding, this collaborative project draws on three complementary analytical tools: process-oriented modeling of AABW export across the ACC, a high-resolution global ocean model, and an observationally-constrained estimate of the global circulation. The PIs will first identify and quantify the pathways of AABW across the ACC by using these tools to propagate passive tracers that identify each of the four major AABW formation sites. They will then use a suite of process model sensitivity experiments to develop a theory for what controls meridional versus inter-basin transport of AABW in the ACC, and transfer this theory to interpret the AABW pathways simulated in the global model. Finally, they will combine the process model, global model and the observationally-constrained circulation product to map the rates at which AABW is transformed into lighter waters, and relate these transformation rates to the diagnosed pathways of AABW across the ACC. This combination of approaches allow the PIs to not only constrain the three-dimensional circulation of AABW from Antarctica to the northern basins, but also provides a mechanistic understanding of the circulation that can be transferred to past or future climates.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e DATA ANALYSIS \u003e ENVIRONMENTAL MODELING \u003e COMPUTER", "is_usap_dc": true, "keywords": "AMD; MODELS; USAP-DC; WATER MASSES; Southern Ocean; Amd/Us; OCEAN CURRENTS; COMPUTERS; Antarctic Circumpolar Current; USA/NSF", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Stewart, Andrew; Thompson, Andrew; Purkey, Sarah", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e MODELS \u003e MODELS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: The Antarctic Circumpolar Current: A Conduit or Blender of Antarctic Bottom Waters?", "uid": "p0010220", "west": -180.0}, {"awards": "0125602 Padman, Laurence; 0125252 Padman, Laurence", "bounds_geometry": "POLYGON((-180 -40.231,-144 -40.231,-108 -40.231,-72 -40.231,-36 -40.231,0 -40.231,36 -40.231,72 -40.231,108 -40.231,144 -40.231,180 -40.231,180 -45.2079,180 -50.1848,180 -55.1617,180 -60.1386,180 -65.1155,180 -70.0924,180 -75.0693,180 -80.0462,180 -85.0231,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.0231,-180 -80.0462,-180 -75.0693,-180 -70.0924,-180 -65.1155,-180 -60.1386,-180 -55.1617,-180 -50.1848,-180 -45.2079,-180 -40.231))", "dataset_titles": "Antarctic Tide Gauge Database, version 1; AntTG_Database_Tools; CATS2008: Circum-Antarctic Tidal Simulation version 2008; CATS2008_v2023: Circum-Antarctic Tidal Simulation 2008, version 2023; pyTMD; TMD_Matlab_Toolbox_v2.5", "datasets": [{"dataset_uid": "601772", "doi": "10.15784/601772", "keywords": "Antarctica; Cryosphere; Inverse Modeling; Model Data; Ocean Currents; Oceans; Sea Surface; Southern Ocean; Tide Model; Tides", "people": "Sutterley, Tyler; Padman, Laurence; Greene, Chad A.; Howard, Susan L.; Erofeeva, Svetlana", "repository": "USAP-DC", "science_program": null, "title": "CATS2008_v2023: Circum-Antarctic Tidal Simulation 2008, version 2023", "url": "https://www.usap-dc.org/view/dataset/601772"}, {"dataset_uid": "200157", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "TMD_Matlab_Toolbox_v2.5", "url": "https://github.com/EarthAndSpaceResearch/TMD_Matlab_Toolbox_v2.5"}, {"dataset_uid": "200158", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "pyTMD", "url": "https://github.com/tsutterley/pyTMD"}, {"dataset_uid": "601235", "doi": "10.15784/601235", "keywords": "Antarctica; Inverse Modeling; Model Data; Ocean Currents; Sea Surface; Tidal Models; Tides", "people": "Padman, Laurence; Erofeeva, Svetlana; Howard, Susan L.", "repository": "USAP-DC", "science_program": null, "title": "CATS2008: Circum-Antarctic Tidal Simulation version 2008", "url": "https://www.usap-dc.org/view/dataset/601235"}, {"dataset_uid": "601358", "doi": "10.15784/601358", "keywords": "Antarctica; Oceans; Sea Surface Height; Tide Gauges; Tides", "people": "King, Matt; Padman, Laurence; Howard, Susan L.", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Tide Gauge Database, version 1", "url": "https://www.usap-dc.org/view/dataset/601358"}, {"dataset_uid": "200156", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "AntTG_Database_Tools", "url": "https://github.com/EarthAndSpaceResearch/AntTG_Database_Tools"}], "date_created": "Tue, 07 Jul 2020 00:00:00 GMT", "description": "The ocean tide is a large component of total variability of ocean surface height and currents in the seas surrounding Antarctica, including under the floating ice shelves. Maximum tidal height range exceeds 7 m (near the grounding line of Rutford Ice Stream) and maximum tidal currents exceed 1 m/s (near the shelf break in the northwest Ross Sea). Tides contribute to several important climate and ecosystems processes including: ocean mixing, production of dense bottom water, flow of warm Circumpolar Deep Water onto the continental shelves, melting at the bases of ice shelves, fracturing of the ice sheet near a glacier or ice stream\u2019s grounding line, production and decay of sea ice, and sediment resuspension. Tide heights and, in particular, currents can change as the ocean background state changes, and as the geometry of the coastal margins of the Antarctic Ice Sheet varies through ice shelf thickness changes and ice-front and grounding-line advances or retreats. For satellite-based studies of ocean surface height and ice shelf thickness changes, tide heights are a source of substantial noise that must be removed. Similarly, tidal currents can also be a substantial noise signal when trying to estimate mean ocean currents from short-term measurements such as from acoustic Doppler current profilers mounted on ships and CTD rosettes. Therefore, tide models play critical roles in understanding current and future ocean and ice states, and as a method for removing tides in various measurements. A paper in Reviews of Geophysics (Padman, Siegfried and Fricker, 2018, see list of project-related publications below) provides a detailed review of tides and tidal processes around Antarctica.\r\n\nThis project provides a gateway to tide models and a database of tide height coefficients at the Antarctic Data Center, and links to toolboxes to work with these models and data.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e GAUGES \u003e TIDE GAUGES", "is_usap_dc": true, "keywords": "Tide Gauges; OCEAN CURRENTS; Sea Surface Height; USAP-DC; GLACIER MOTION/ICE SHEET MOTION; Tides; Antarctica; MODELS; FIELD INVESTIGATION", "locations": "Antarctica", "north": -40.231, "nsf_funding_programs": "Arctic System Science; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Howard, Susan L.; Padman, Laurence; Erofeeva, Svetlana; King, Matt", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e MODELS \u003e MODELS", "repo": "USAP-DC", "repositories": "GitHub; USAP-DC", "science_programs": null, "south": -90.0, "title": "Ocean Tides around Antarctica and in the Southern Ocean", "uid": "p0010116", "west": -180.0}, {"awards": "1235094 Thurnherr, Andreas", "bounds_geometry": "POLYGON((-19 -19,-18.2 -19,-17.4 -19,-16.6 -19,-15.8 -19,-15 -19,-14.2 -19,-13.4 -19,-12.6 -19,-11.8 -19,-11 -19,-11 -19.4,-11 -19.8,-11 -20.2,-11 -20.6,-11 -21,-11 -21.4,-11 -21.8,-11 -22.2,-11 -22.6,-11 -23,-11.8 -23,-12.6 -23,-13.4 -23,-14.2 -23,-15 -23,-15.8 -23,-16.6 -23,-17.4 -23,-18.2 -23,-19 -23,-19 -22.6,-19 -22.2,-19 -21.8,-19 -21.4,-19 -21,-19 -20.6,-19 -20.2,-19 -19.8,-19 -19.4,-19 -19))", "dataset_titles": "Expedition Data; NBP1406 Expedition data; NBP1508 Expedition data; Processed Current Measurement Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508; Processed Current Measurement, Pressure and Temperature Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508 (2015); Processed Current Measurement, Pressure, Salinity and Temperature Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508", "datasets": [{"dataset_uid": "001408", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1406"}, {"dataset_uid": "601353", "doi": null, "keywords": "CTD; CTD Data; Current Measurements; Current Meter; Mid-Ocean Ridge; Mooring; NBP1508; Oceans; Physical Oceanography; Pressure; R/v Nathaniel B. Palmer; Salinity; South Atlantic Ocean; Temperature", "people": "Thurnherr, Andreas", "repository": "USAP-DC", "science_program": null, "title": "Processed Current Measurement, Pressure and Temperature Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508 (2015)", "url": "https://www.usap-dc.org/view/dataset/601353"}, {"dataset_uid": "200153", "doi": "10.7284/903009", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1406 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1406"}, {"dataset_uid": "601354", "doi": "10.15784/601354", "keywords": "Current Measurements; LADCP; Mid-Ocean Ridge; NBP1508; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; South Atlantic Ocean", "people": "Thurnherr, Andreas", "repository": "USAP-DC", "science_program": null, "title": "Processed Current Measurement Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508", "url": "https://www.usap-dc.org/view/dataset/601354"}, {"dataset_uid": "601352", "doi": null, "keywords": "CTD; Mid-Ocean Ridge; Mooring; NBP1508; Oceans; Physical Oceanography; Pressure; R/v Nathaniel B. Palmer; Salinity; South Atlantic Ocean; Temperature", "people": "Thurnherr, Andreas", "repository": "USAP-DC", "science_program": null, "title": "Processed Current Measurement, Pressure, Salinity and Temperature Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508", "url": "https://www.usap-dc.org/view/dataset/601352"}, {"dataset_uid": "200154", "doi": "10.7284/906708", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1508 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1508"}], "date_created": "Thu, 02 Jul 2020 00:00:00 GMT", "description": "Overview: In order to close the global overturning circulation, high-density deep- and bottom waters produced at high latitudes must be made less dense and upwell to shallower depths. Available observations from the subtropical South Atlantic indicate that the bulk of the mixing in the deep ocean there takes place over the topographically rough Mid-Atlantic Ridge, in particular in the quasi-regularly spaced \"fracture zone canyons\" corrugating the ridge flanks. There, dense water is advected toward the ridge crest (i.e. upwelled) by persistent along-valley currents that flow down the unidirectional density gradients, which are maintained by strong turbulence (diapycnal mixing). Most of the data on which these inferences are based were collected during the Brazil Basin Tracer Release Experiment (BBTRE) along a single ridge-flank canyon in the western South Atlantic near 22S where previous analyses have shown that both tidal mixing and overflow processes are important. Therefore, it is likely that both processes must be considered in order to understand and parameterize the effects of turbulence and mixing in the canyons corrugating the flanks of all slow-spreading ridges, which make up large fractions of the sea floor, in particular in the Atlantic, Indian and Southern Oceans. The primary aim of this follow-on project is to improve our understanding of the dynamics over the corrugated flanks of slow-spreading mid-ocean ridges. Due to the coarse sampling resolution and choice of station locations it is not possible to answer important questions, such as the relative importance of tidal and sill mixing, from the BBTRE data. Therefore, high-resolution surveys of hydrography, three-dimensional flow, turbulence and mixing will be carried out in two neighboring canyons and over the intervening topographic spur in the BBTRE region to determine the relative contributions of tidal and sill-related mixing. Furthermore, profiling moorings deployed on two nearby sill regions will be used to derive time series of spatially integrated mixing related buoyancy fluxes and to investigate the strong but unexplained sub-inertial variability of the along-canyon flow recorded previously. Additionally, three small moorings will be deployed in saddles between the two canyons to investigate inter-canyon exchange. The data analysis will include available data from previous experiments, including a set of tracer profiles that has not been analyzed before. Intellectual Merit: The corrugated flanks of slow-spreading ridges cover large areas of the sea floor of several major ocean basins. Therefore, understanding the dynamics in the ~100 km of ridge-flank canyons and its effects on the buoyancy and upwelling budget of the abyssal ocean is of global significance. In addition to determining the relative importance of tidal mixing and cross-sill flows in two canyons, the temporal variability of turbulence and mixing from tidal to yearly time scales will be investigated to gain insights into the forcing of the along-canyon flows, the exchange between neighboring canyons, and the eventual fate of the canyon waters. Broader Impacts: It is anticipated that insights gained during this project will improve our understanding of abyssal mixing in many different regions with similar bottom topography and provide the basis for better parameterizations of the effects of turbulence and mixing in large-scale circulation and climate models that cannot resolve these small-scale processes. As part of the project, a graduate student and a post-doctoral researcher will be trained in all aspects of observational physical oceanography, from data acquisition to interpretation. ", "east": -11.0, "geometry": "POINT(-15 -21)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "OCEAN CURRENTS; South Atlantic Ocean; R/V NBP; WATER MASSES", "locations": "South Atlantic Ocean", "north": -19.0, "nsf_funding_programs": null, "paleo_time": null, "persons": "Thurnherr, Andreas", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -23.0, "title": "Collaborative Research: Flow, Turbulence and Mixing in Mid-Ocean Ridge Fracture Zone Canyons", "uid": "p0010114", "west": -19.0}, {"awards": "1341496 Girton, James", "bounds_geometry": "POLYGON((-142 -66,-135.3 -66,-128.6 -66,-121.9 -66,-115.2 -66,-108.5 -66,-101.8 -66,-95.1 -66,-88.4 -66,-81.7 -66,-75 -66,-75 -66.8,-75 -67.6,-75 -68.4,-75 -69.2,-75 -70,-75 -70.8,-75 -71.6,-75 -72.4,-75 -73.2,-75 -74,-81.7 -74,-88.4 -74,-95.1 -74,-101.8 -74,-108.5 -74,-115.2 -74,-121.9 -74,-128.6 -74,-135.3 -74,-142 -74,-142 -73.2,-142 -72.4,-142 -71.6,-142 -70.8,-142 -70,-142 -69.2,-142 -68.4,-142 -67.6,-142 -66.8,-142 -66))", "dataset_titles": "Bottom Photographs from the Antarctic Peninsula acquired during R/V Laurence M. Gould expedition LMG1703; Expedition Data; Expedition data of NBP1701", "datasets": [{"dataset_uid": "601302", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Benthic Images; Benthos; Biota; LMG1708; Oceans; Photo; Photo/video; Photo/Video; R/v Laurence M. Gould; Ship; Yoyo Camera", "people": "Girton, James", "repository": "USAP-DC", "science_program": null, "title": "Bottom Photographs from the Antarctic Peninsula acquired during R/V Laurence M. Gould expedition LMG1703", "url": "https://www.usap-dc.org/view/dataset/601302"}, {"dataset_uid": "002661", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1701", "url": "https://www.rvdata.us/search/cruise/NBP1701"}, {"dataset_uid": "001369", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1701"}], "date_created": "Tue, 10 Dec 2019 00:00:00 GMT", "description": "Current oceanographic interest in the interaction of relatively warm water of the Southern Ocean Circumpolar Deep Water (CDW) as it moves southward to the frigid waters of the Antarctic continental shelves is based on the potential importance of heat transport from the global ocean to the base of continental ice shelves. This is needed to understand the longer term mass balance of the continent, the stability of the vast Antarctic ice sheets and the rate at which sea-level will rise in a warming world. Improved observational knowledge of the mechanisms of how warming CDW moves across the Antarctic Circumpolar Current (ACC) is needed. Understanding this dynamical transport, believed to take place through the eddy flux of time-varying mesoscale circulation features, will improve coupled ocean-atmospheric climate models. The development of the next generation of coupled ocean-ice-climate models help us understand future changes in atmospheric heat fluxes, glacial and sea-ice balance, and changes in the Antarctic ecosystems. A recurring obstacle to our understanding is the lack of data in this distant region. In this project, a total of 10 subsurface profiling EM-APEX floats adapted to operate under sea ice were launched in 12 missions (and 2 recoveries) from 4 cruises of opportunity to the Amundsen Sea sector of the Antarctic continental margin during Austral summer. The floats were launched south of the Polar Front and measured shear, turbulence, temperature, and salinity to 2000m depth for 1-2 year missions while drifting with the CDW layer between profiles.", "east": -75.0, "geometry": "POINT(-108.5 -70)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERA", "is_usap_dc": true, "keywords": "OCEAN TEMPERATURE; R/V NBP; USAP-DC; ICE DEPTH/THICKNESS; HEAT FLUX; OCEAN CURRENTS; SALINITY/DENSITY; LMG1703; Bellingshausen Sea; Yoyo Camera; WATER MASSES; R/V LMG; NBP1701", "locations": "Bellingshausen Sea", "north": -66.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Girton, James; Rynearson, Tatiana", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -74.0, "title": "Collaborative Research: Pathways of Circumpolar Deep Water to West Antarctica from Profiling Float and Satellite Measurements", "uid": "p0010074", "west": -142.0}, {"awards": "1443498 Fricker, Helen; 1443534 Bell, Robin; 1443497 Siddoway, Christine; 1443677 Padman, Laurence", "bounds_geometry": "POLYGON((-180 -77,-177 -77,-174 -77,-171 -77,-168 -77,-165 -77,-162 -77,-159 -77,-156 -77,-153 -77,-150 -77,-150 -77.9,-150 -78.8,-150 -79.7,-150 -80.6,-150 -81.5,-150 -82.4,-150 -83.3,-150 -84.2,-150 -85.1,-150 -86,-153 -86,-156 -86,-159 -86,-162 -86,-165 -86,-168 -86,-171 -86,-174 -86,-177 -86,180 -86,178.1 -86,176.2 -86,174.3 -86,172.4 -86,170.5 -86,168.6 -86,166.7 -86,164.8 -86,162.9 -86,161 -86,161 -85.1,161 -84.2,161 -83.3,161 -82.4,161 -81.5,161 -80.6,161 -79.7,161 -78.8,161 -77.9,161 -77,162.9 -77,164.8 -77,166.7 -77,168.6 -77,170.5 -77,172.4 -77,174.3 -77,176.2 -77,178.1 -77,-180 -77))", "dataset_titles": "Basal Melt, Ice thickness and structure of the Ross Ice Shelf using airborne radar data; CATS2008: Circum-Antarctic Tidal Simulation version 2008; CATS2008_v2023: Circum-Antarctic Tidal Simulation 2008, version 2023; Deep ICE (DICE) Radar Dataset from Ross Ice Shelf (ROSETTA-Ice); LiDAR Nadir and Swath Data from Ross Ice Shelf, Antarctica (ROSETTA-Ice); ROSETTA-Ice data page; Ross Sea ocean model simulation used to support ROSETTA-Ice ; Shallow Ice Radar (SIR) Dataset from Ross Ice Shelf (ROSETTA-Ice)", "datasets": [{"dataset_uid": "200100", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "ROSETTA-Ice data page", "url": "http://wonder.ldeo.columbia.edu/data/ROSETTA-Ice/"}, {"dataset_uid": "601255", "doi": "10.15784/601255", "keywords": "Antarctica; Basal Melt; Ice Shelf; Model Output; Ocean Circulation Model; Ross Ice Shelf; Ross Sea", "people": "Howard, Susan L.; Padman, Laurence; Springer, Scott", "repository": "USAP-DC", "science_program": null, "title": "Ross Sea ocean model simulation used to support ROSETTA-Ice ", "url": "https://www.usap-dc.org/view/dataset/601255"}, {"dataset_uid": "601242", "doi": "10.15784/601242", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Penetrating Radar; Ice-Shelf Basal Melting; Radar Echo Sounder; Radar Echo Sounding; Snow/ice; Snow/Ice", "people": "Cordero, Isabel; Siegfried, Matt; Tinto, Kirsty; Dhakal, Tejendra; Siddoway, Christine; Hulbe, Christina; Fricker, Helen; Bell, Robin; Padman, Laurence; Das, Indrani; Mosbeux, Cyrille; Frearson, Nicholas", "repository": "USAP-DC", "science_program": null, "title": "Basal Melt, Ice thickness and structure of the Ross Ice Shelf using airborne radar data", "url": "https://www.usap-dc.org/view/dataset/601242"}, {"dataset_uid": "601235", "doi": "10.15784/601235", "keywords": "Antarctica; Inverse Modeling; Model Data; Ocean Currents; Sea Surface; Tidal Models; Tides", "people": "Padman, Laurence; Erofeeva, Svetlana; Howard, Susan L.", "repository": "USAP-DC", "science_program": null, "title": "CATS2008: Circum-Antarctic Tidal Simulation version 2008", "url": "https://www.usap-dc.org/view/dataset/601235"}, {"dataset_uid": "601794", "doi": null, "keywords": "Antarctica; Cryosphere; Remote Sensing; Ross Ice Shelf", "people": "Bell, Robin; Cordero, Isabel; Frearson, Nicholas; Dhakal, Tejendra; Bertinato, Christopher; Chu, Winnie; Keeshin, Skye; Wearing, Martin; Spergel, Julian; Packard, Sarah; Dong, LingLing; Das, Indrani", "repository": "USAP-DC", "science_program": null, "title": "Shallow Ice Radar (SIR) Dataset from Ross Ice Shelf (ROSETTA-Ice)", "url": "https://www.usap-dc.org/view/dataset/601794"}, {"dataset_uid": "601789", "doi": null, "keywords": "Airborne Radar; Antarctica; Cryosphere; Ice Thickness; Remote Sensing; Ross Ice Shelf", "people": "Das, Indrani; Wilner, Joel; Millstein, Joanna; Bertinato, Christopher; Dhakal, Tejendra; Frearson, Nicholas; Cordero, Isabel; Dong, LingLing; Bell, Robin; Chu, Winnie; Spergel, Julian", "repository": "USAP-DC", "science_program": null, "title": "Deep ICE (DICE) Radar Dataset from Ross Ice Shelf (ROSETTA-Ice)", "url": "https://www.usap-dc.org/view/dataset/601789"}, {"dataset_uid": "601788", "doi": null, "keywords": "Antarctica; Cryosphere; Ross Ice Shelf", "people": "Starke, Sarah; Dhakal, Tejendra; Becker, Maya K; Bertinato, Christopher; Locke, Caitlin; Boghosian, Alexandra", "repository": "USAP-DC", "science_program": null, "title": "LiDAR Nadir and Swath Data from Ross Ice Shelf, Antarctica (ROSETTA-Ice)", "url": "https://www.usap-dc.org/view/dataset/601788"}, {"dataset_uid": "601772", "doi": "10.15784/601772", "keywords": "Antarctica; Cryosphere; Inverse Modeling; Model Data; Ocean Currents; Oceans; Sea Surface; Southern Ocean; Tide Model; Tides", "people": "Sutterley, Tyler; Padman, Laurence; Greene, Chad A.; Howard, Susan L.; Erofeeva, Svetlana", "repository": "USAP-DC", "science_program": null, "title": "CATS2008_v2023: Circum-Antarctic Tidal Simulation 2008, version 2023", "url": "https://www.usap-dc.org/view/dataset/601772"}], "date_created": "Wed, 03 Jul 2019 00:00:00 GMT", "description": "The Ross Ice Shelf is the largest existing ice shelf in Antarctica, and is currently stabilizing significant portions of the land ice atop the Antarctic continent. An ice shelf begins where the land ice goes afloat on the ocean, and as such, the Ross Ice Shelf interacts with the ocean and seafloor below, and the land ice behind. Currently, the Ross Ice Shelf slows down, or buttresses, the fast flowing ice streams of the West Antarctic Ice Sheet (WAIS), a marine-based ice sheet, which if melted, would raise global sea level by 3-4 meters. The Ross Ice Shelf average ice thickness is approximately 350 meters, and it covers approximately 487,000 square kilometers, an area slightly larger than the state of California. The Ross Ice Shelf has disappeared during prior interglacial periods, suggesting in the future it may disappear again. Understanding the dynamics, stability and future of the West Antarctic Ice Sheet therefore requires in-depth knowledge of the Ross Ice Shelf. The ROSETTA-ICE project brings together scientists from 4 US institutions and from the Institute of Geological and Nuclear Sciences Limited, known as GNS Science, New Zealand. The ROSETTA-ICE data on the ice shelf, the water beneath the ice shelf, and the underlying rocks, will allow better predictions of how the Ross Ice Shelf will respond to changing climate, and therefore how the WAIS will behave in the future. The interdisciplinary ROSETTA-ICE team will train undergraduate and high school students in cutting edge research techniques, and will also work to educate the public via a series of vignettes integrating ROSETTA-ICE science with the scientific and human history of Antarctic research.\u003cbr/\u003e\u003cbr/\u003eThe ROSETTA-ICE survey will acquire gravity and magnetics data to determine the water depth beneath the ice shelf. Radar, LIDAR and imagery systems will be used to map the Ross Ice Shelf thickness and fine structure, crevasses, channels, debris, surface accumulation and distribution of marine ice. The high resolution aerogeophysical data over the Ross Ice Shelf region in Antarctica will be acquired using the IcePod sensor suite mounted externally on an LC-130 aircraft operating from McMurdo Station, Antarctica. Field activities will include ~36 flights on LC-130 aircraft over two field seasons in Antarctica. The IcePod instrument suite leverages the unique experience of the New York Air National Guard operating in Antarctica for NSF scientific research as well as infrastructure and logistics. The project will answer questions about the stability of the Ross Ice Shelf in future climate, and the geotectonic evolution of the Ross Ice Shelf Region, a key component of the West Antarctic Rift system. The comprehensive benchmark data sets acquired will enable broad, interdisciplinary analyses and modeling, which will also be performed as part of the project. ROSETTA-ICE will illuminate Ross ice sheet-ice shelf-ocean dynamics as the system nears a critical juncture but still is intact. Through interacting with an online data visualization tool, and comparing the ROSETTA-ICE data and results from earlier studies, we will engage students and young investigators, equipping them with new capabilities for the study of critical earth systems that influence global climate.", "east": 161.0, "geometry": "POINT(-174.5 -81.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LIDAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e PROTON MAGNETOMETER", "is_usap_dc": true, "keywords": "Airborne Radar; LIDAR; Ross Ice Shelf; SALINITY; SALINITY/DENSITY; CONDUCTIVITY; ICE DEPTH/THICKNESS; Tidal Models; GRAVITY ANOMALIES; Ross Sea; Antarctica; BATHYMETRY; C-130; MAGNETIC ANOMALIES; USAP-DC; Airborne Gravity", "locations": "Ross Sea; Antarctica; Ross Ice Shelf", "north": -77.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Bell, Robin; Frearson, Nicholas; Das, Indrani; Fricker, Helen; Padman, Laurence; Springer, Scott; Siddoway, Christine; Tinto, Kirsty", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e C-130", "repo": "PI website", "repositories": "PI website; USAP-DC", "science_programs": null, "south": -86.0, "title": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)", "uid": "p0010035", "west": -150.0}, {"awards": "1443733 Winsor, Peter; 1443705 Vernet, Maria; 1443680 Smith, Craig", "bounds_geometry": "POLYGON((-66 -64,-65.6 -64,-65.2 -64,-64.8 -64,-64.4 -64,-64 -64,-63.6 -64,-63.2 -64,-62.8 -64,-62.4 -64,-62 -64,-62 -64.1,-62 -64.2,-62 -64.3,-62 -64.4,-62 -64.5,-62 -64.6,-62 -64.7,-62 -64.8,-62 -64.9,-62 -65,-62.4 -65,-62.8 -65,-63.2 -65,-63.6 -65,-64 -65,-64.4 -65,-64.8 -65,-65.2 -65,-65.6 -65,-66 -65,-66 -64.9,-66 -64.8,-66 -64.7,-66 -64.6,-66 -64.5,-66 -64.4,-66 -64.3,-66 -64.2,-66 -64.1,-66 -64))", "dataset_titles": "Andvord Bay Glacier Timelapse; Andvord Bay sediment core data collected during the FjordEco project (LMG1510 and NBP1603); Expedition Data; Expedition data of LMG1702; FjordEco Phytoplankton Ecology Dataset in Andvord Bay ; Fjord-Eco Sediment OrgC OrgN Data - Craig Smith; LMG1510 Expedition data; NBP1603 Expedition data; Sediment macrofaunal abundance and family richness from inner Andvord Bay to the open continental shelf", "datasets": [{"dataset_uid": "601111", "doi": "10.15784/601111", "keywords": "Antarctica; Antarctic Peninsula; Glaciers/ice Sheet; Glaciers/Ice Sheet; Iceberg; Photo; Photo/video; Photo/Video", "people": "Winsor, Peter; Truffer, Martin", "repository": "USAP-DC", "science_program": "FjordEco", "title": "Andvord Bay Glacier Timelapse", "url": "https://www.usap-dc.org/view/dataset/601111"}, {"dataset_uid": "601157", "doi": "10.15784/601157", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Snow/ice; Snow/Ice", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "FjordEco", "title": "Fjord-Eco Sediment OrgC OrgN Data - Craig Smith", "url": "https://www.usap-dc.org/view/dataset/601157"}, {"dataset_uid": "002733", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1702", "url": "https://www.rvdata.us/search/cruise/LMG1702"}, {"dataset_uid": "601236", "doi": "10.15784/601236", "keywords": "Abundance; Andvord Bay; Antarctica; Antarctic Peninsula; Biota; Fjord; LMG1510; Marine Sediments; Oceans; Polychaete; Polychaete Family Richness; R/v Laurence M. Gould; Sediment Core Data; Sediment Macrofauna", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "FjordEco", "title": "Sediment macrofaunal abundance and family richness from inner Andvord Bay to the open continental shelf", "url": "https://www.usap-dc.org/view/dataset/601236"}, {"dataset_uid": "601193", "doi": "10.15784/601193", "keywords": "Antarctica; Geochronology; Grain Size; LMG1510; NBP1603; Sediment; Sediment Core Data", "people": "Homolka, Khadijah; Smith, Craig; Eidam, Emily; Nittrouer, Charles", "repository": "USAP-DC", "science_program": null, "title": "Andvord Bay sediment core data collected during the FjordEco project (LMG1510 and NBP1603)", "url": "https://www.usap-dc.org/view/dataset/601193"}, {"dataset_uid": "200039", "doi": "10.7284/907205", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1603 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1603"}, {"dataset_uid": "601158", "doi": "10.15784/601158", "keywords": "Antarctica; Antarctic Peninsula; Biota; Ecology; Fjord; Phytoplankton", "people": "Vernet, Maria; Pan, B. Jack; Forsch, Kiefer; Manck, Lauren", "repository": "USAP-DC", "science_program": "FjordEco", "title": "FjordEco Phytoplankton Ecology Dataset in Andvord Bay ", "url": "https://www.usap-dc.org/view/dataset/601158"}, {"dataset_uid": "200040", "doi": "10.7284/907085", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "LMG1510 Expedition data", "url": "https://www.rvdata.us/search/cruise/LMG1510"}, {"dataset_uid": "000402", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1702"}, {"dataset_uid": "001366", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1702"}], "date_created": "Wed, 13 Feb 2019 00:00:00 GMT", "description": "Marine communities along the western Antarctic Peninsula are highly productive ecosystems which support a diverse assemblage of charismatic animals such as penguins, seals, and whales as well as commercial fisheries such as that on Antarctic krill. Fjords (long, narrow, deep inlets of the sea between high cliffs) along the central coast of the Peninsula appear to be intense, potentially climate sensitive, hotspots of biological production and biodiversity, yet the structure and dynamics of these fjord ecosystems are very poorly understood. Because of this intense biological activity and the charismatic fauna it supports, these fjords are also major destinations for a large Antarctic tourism industry. This project is an integrated field and modeling program to evaluate physical oceanographic processes, glacial inputs, water column community dynamics, and seafloor bottom community structure and function in these important yet little understood fjord systems. These Antarctic fjords have characteristics that are substantially different from well-studied Arctic fjords, likely yielding much different responses to climate warming. This project will provide major new insights into the dynamics and climate sensitivity of Antarctic fjord ecosystems, highlighting contrasts with Arctic sub-polar fjords, and potentially transforming our understanding of the ecological role of fjords in the rapidly warming west Antarctic coastal marine landscape. The project will also further the NSF goal of training new generations of scientists, providing scientific training for undergraduate, graduate, and postdoctoral students. This includes the unique educational opportunity for undergraduates to participate in research cruises in Antarctica and the development of a novel summer graduate course on fjord ecosystems. Internet based outreach activities will be enhanced and extended by the participation of a professional photographer who will produce magazine articles, websites, radio broadcasts, and other forms of public outreach on the fascinating Antarctic ecosystem. \u003cbr/\u003e\u003cbr/\u003eThis project will involve a 15-month field program to test mechanistic hypotheses concerning oceanographic and glaciological forcing, and phytoplankton and benthic community response in the Antarctic fjords. Those efforts will be followed by a coupled physical/biological modeling effort to evaluate the drivers of biogeochemical cycles in the fjords and to explore their potential sensitivity to enhanced meltwater and sediment inputs. Fieldwork over two oceanographic cruises will utilize moorings, weather stations, and glacial, sea-ice and seafloor time-lapse cameras to obtain an integrated view of fjord ecosystem processes. The field team will also make multiple shipboard measurements and will use towed and autonomous underwater vehicles to intensively evaluate fjord ecosystem structure and function during spring/summer and autumn seasons. These integrated field and modeling studies are expected to elucidate fundamental properties of water column and sea bottom ecosystem structure and function in the fjords, and to identify key physical-chemical-glaciological forcing in these rapidly warming ecosystems.", "east": -62.0, "geometry": "POINT(-64 -64.5)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "OCEAN CURRENTS; Bellingshausen Sea; LMG1702; COMMUNITY DYNAMICS; FJORDS; R/V LMG; MARINE ECOSYSTEMS; USAP-DC; ECOSYSTEM FUNCTIONS; ANIMALS/INVERTEBRATES; SEDIMENTATION; NOT APPLICABLE; BENTHIC", "locations": "Bellingshausen Sea", "north": -64.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Winsor, Peter; Truffer, Martin; Smith, Craig; Powell, Brian; Merrifield, Mark; Vernet, Maria; Kohut, Josh", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": "FjordEco", "south": -65.0, "title": "Collaborative Research: Fjord Ecosystem Structure and Function on the West Antarctic Peninsula - Hotspots of Productivity and Biodiversity? (FjordEco)", "uid": "p0010010", "west": -66.0}, {"awards": "0632282 Jacobs, Stanley", "bounds_geometry": "POLYGON((-129.6 -54.2,-124.44 -54.2,-119.28 -54.2,-114.12 -54.2,-108.96 -54.2,-103.8 -54.2,-98.64 -54.2,-93.48 -54.2,-88.32 -54.2,-83.16 -54.2,-78 -54.2,-78 -56.29,-78 -58.38,-78 -60.47,-78 -62.56,-78 -64.65,-78 -66.74,-78 -68.83,-78 -70.92,-78 -73.01,-78 -75.1,-83.16 -75.1,-88.32 -75.1,-93.48 -75.1,-98.64 -75.1,-103.8 -75.1,-108.96 -75.1,-114.12 -75.1,-119.28 -75.1,-124.44 -75.1,-129.6 -75.1,-129.6 -73.01,-129.6 -70.92,-129.6 -68.83,-129.6 -66.74,-129.6 -64.65,-129.6 -62.56,-129.6 -60.47,-129.6 -58.38,-129.6 -56.29,-129.6 -54.2))", "dataset_titles": "Amundsen Sea Continental Shelf Mooring Data (2006-2007); Calibrated Hydrographic Data acquired with a LADCP from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901; NBP07-09 cruise data; NBP07-09 processed CTD data; NBP09-01 cruise data; NBP09-01 processed CTD data; Processed Temperature, Salinity, and Current Measurement Data from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901", "datasets": [{"dataset_uid": "000127", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP07-09 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP0709"}, {"dataset_uid": "601349", "doi": null, "keywords": "Amundsen Sea; Antarctica; Current Measurements; LADCP; NBP0901; Oceans; Physical Oceanography; Pine Island Bay; R/v Nathaniel B. Palmer; Southern Ocean", "people": "Thurnherr, Andreas", "repository": "USAP-DC", "science_program": null, "title": "Calibrated Hydrographic Data acquired with a LADCP from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901", "url": "https://www.usap-dc.org/view/dataset/601349"}, {"dataset_uid": "601809", "doi": "10.15784/601809", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Mooring; Ocean Currents; Pressure; Salinity; Temperature", "people": "Giulivi, Claudia F.; Jacobs, Stanley", "repository": "USAP-DC", "science_program": null, "title": "Amundsen Sea Continental Shelf Mooring Data (2006-2007)", "url": "https://www.usap-dc.org/view/dataset/601809"}, {"dataset_uid": "000130", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "NBP09-01 processed CTD data", "url": "http://accession.nodc.noaa.gov/0071179"}, {"dataset_uid": "000129", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP09-01 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP0901"}, {"dataset_uid": "000128", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "NBP07-09 processed CTD data", "url": "http://accession.nodc.noaa.gov/0120761"}, {"dataset_uid": "601350", "doi": null, "keywords": "Amundsen Sea; Antarctic; Antarctica; CTD; CTD Data; Current Measurements; NBP0901; Oceans; Physical Oceanography; Pine Island Bay; Pine Island Glacier; R/v Nathaniel B. Palmer; Salinity; Southern Ocean; Temperature", "people": "Jacobs, Stanley; Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Processed Temperature, Salinity, and Current Measurement Data from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901", "url": "https://www.usap-dc.org/view/dataset/601350"}], "date_created": "Fri, 25 Sep 2015 00:00:00 GMT", "description": "The Office of Polar Programs, Antarctic Science Division, Ocean \u0026 Climate Systems Program has made this award to support a multidisciplinary effort to study the upwelling of relatively warm deep water onto the Amundsen Sea continental shelf and how it relates to atmospheric forcing and bottom bathymetry and how the warm waters interact with both glacial and sea ice. This study constitutes a contribution of a coordinated research effort in the region known as the Amundsen Sea Embayment Project or ASEP. Previous work by the PI and others has shown that the West Antarctic Ice Sheet has been found to be melting faster, perhaps by orders of magnitude, than ice sheets elsewhere around Antarctica, excluding those on the Peninsula. Submarine channels that incise the continental shelf are thought to provide fairly direct access of relatively warm circum polar deep water to the cavity under the floating extension of the ice shelf. Interactions with sea ice en route can modify the upwelled waters. The proposed investigations build on previous efforts by the PI and colleagues to use hydrographic measurements to put quantitative bounds on the rate of glacial ice melt by relatively warm seawater. \u003cbr/\u003eThe region can be quite difficult to access due to sea ice conditions and previous hydrographic measurements have been restricted to the austral summer time frame. In this project it was proposed to obtain the first austral spring hydrographic data via CTD casts and XBT drops (September-October 2007) as part of a separately funded cruise (PI Steve Ackley) the primary focus of which is sea-ice conditions to be studied while the RV Nathanial B Palmer (RV NBP) drifts in the ice pack. This includes opportunistic sampling for pCO2 and TCO2. A dedicated cruise in austral summer 2009 will follow this opportunity. The principal objectives of the dedicated field program are to deploy a set of moorings with which to characterize temporal variability in warm water intrusions onto the shelf and to conduct repeat hydrographic surveying and swath mapping in targeted areas, ice conditions permitting. Automatic weather stations are to be deployed in concert with the program, sea-ice observations will be undertaken from the vessel and the marine cavity beneath the Pine Island may be explored pending availability of the British autonomous underwater vehicle Autosub 3. These combined ocean-sea ice-atmosphere observations are aimed at a range of model validations. A well-defined plan for making data available as well as archiving in a timely fashion should facilitate a variety of modeling efforts and so extend the value of the spatially limited observations. \u003cbr/\u003eBroader impacts: This project is relevant to an International Polar Year research emphasis on ice sheet dynamics focusing in particular on the seaward ocean-ice sheet interactions. Such interactions must be clarified for understanding the potential for sea level rise by melt of the West Antarctic ice Sheet. The project entails substantive international partnerships (British Antarctic Survey and Alfred Wegner Institute) and complements other Amundsen Sea Embayment Project proposals covering other elements of ice sheet dynamics. The proposal includes partial support for 2 graduate students and 2 post docs. Participants from the Antarctic Artists and Writers program are to take part in the cruise and so aid in outreach. In addition, the project is to be represented in the Lamont-Doherty annual open house.", "east": -78.0, "geometry": "POINT(-103.8 -64.65)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": true, "keywords": "Not provided; R/V NBP", "locations": null, "north": -54.2, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jacobs, Stanley; Hellmer, Hartmut; Jenkins, Adrian", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "NCEI; R2R; USAP-DC", "science_programs": null, "south": -75.1, "title": "Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise - IPY/ASEP", "uid": "p0000332", "west": -129.6}, {"awards": "0440775 Jacobs, Stanley", "bounds_geometry": null, "dataset_titles": "Amundsen Sea Continental Shelf Mooring Data (2006-2007); Expedition data of NBP0702; NBP0702 surface sediment sample information and images", "datasets": [{"dataset_uid": "601473", "doi": "10.15784/601473", "keywords": "Amundsen Sea; Antarctica; Marine Geoscience; Marine Sediments; NBP0702; Photo; R/v Nathaniel B. Palmer; Seafloor Sampling; Sediment Description; Smith-Mcintyre Grab", "people": "Leventer, Amy; Jacobs, Stanley", "repository": "USAP-DC", "science_program": null, "title": "NBP0702 surface sediment sample information and images", "url": "https://www.usap-dc.org/view/dataset/601473"}, {"dataset_uid": "601809", "doi": "10.15784/601809", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Mooring; Ocean Currents; Pressure; Salinity; Temperature", "people": "Giulivi, Claudia F.; Jacobs, Stanley", "repository": "USAP-DC", "science_program": null, "title": "Amundsen Sea Continental Shelf Mooring Data (2006-2007)", "url": "https://www.usap-dc.org/view/dataset/601809"}, {"dataset_uid": "002645", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0702", "url": "https://www.rvdata.us/search/cruise/NBP0702"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This collaborative study between Columbia University and the Southampton Oceanography Centre will investigate the dynamics of warm water intrusions under antarctic floating ice shelves. The study will focus on the Amundsen Sea and Pine Island Glacier, and will document how this water gains access to the continental shelf, transports heat into the ice shelf cavities via deep, glacially-scoured troughs, and rises beneath the ice to drive basal melting. The resulting seawater-meltwater mixtures upwell near the ice fronts, contributing to the formation of atypical coastal polynyas with strong geochemical signatures. Multidecadal freshening downstream is consistent with thinning ice shelves, which may be triggering changes inland, increasing the flow of grounded ice into the sea. This work will be carried out in combination with parallel modeling, remote sensing and data based projects, in an effort to narrow uncertainties about the response of West Antarctic Ice Sheet to climate change. Using state-of-the-art facilities and instruments, this work will enhance knowledge of water mass production and modification, and the understanding of interactions between the ocean circulation, sea floor and ice shelves. The data and findings will be reported to publicly accessible archives and submitted for publication in the scientific literature. The information obtained should prove invaluable for the development and validation of general circulation models, needed to predict the future role of the Antarctic Ice Sheet in sea level change.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "AMD; Amd/Us; R/V NBP; NSF/USA; Amundsen Sea; USAP-DC", "locations": "Amundsen Sea", "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jacobs, Stanley", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": null, "title": "The Amundsen Continental Shelf and the Antarctic Ice Sheet", "uid": "p0000836", "west": null}, {"awards": "0635531 Ishman, Scott", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG0804; Expedition data of LMG0808", "datasets": [{"dataset_uid": "002673", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0804", "url": "https://www.rvdata.us/search/cruise/LMG0804"}, {"dataset_uid": "002674", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0808", "url": "https://www.rvdata.us/search/cruise/LMG0808"}, {"dataset_uid": "001511", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0804"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project studies seasonal variation in the abundance and shell composition of foraminifera from the northern Gerlache-southern Bransfield Straits region of the Western Antarctic Peninsula. Its goal is to improve interpretation of microfaunal and geochemical proxies for reconstruction of ancient ocean currents, climate, and ecologies. Since seasonal variation may greatly affect interpretation, this project focuses on the Antarctic region, where intense seasonality should generate a more obvious signal than at the less extreme mid-latitudes. The results should allow a better understanding of the coupling to seasonal productivity, as well as improve regional reconstructions.\u003cbr/\u003eThe broader impacts are graduate, undergraduate, and postdoctoral student education; as well as outreach to both the English and Spanish-speaking public. The work will also improve society\u0027s understanding of past climate change as an analogue to the future.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Earth Sciences", "paleo_time": null, "persons": "Ishman, Scott", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Testing the Impact of Seasonality on Benthic Foraminifers as Paleoenvironmental Proxies.", "uid": "p0000856", "west": null}, {"awards": "0636474 Rathburn, Anthony", "bounds_geometry": "POLYGON((-64.919 -60.1023,-63.70316 -60.1023,-62.48732 -60.1023,-61.27148 -60.1023,-60.05564 -60.1023,-58.8398 -60.1023,-57.62396 -60.1023,-56.40812 -60.1023,-55.19228 -60.1023,-53.97644 -60.1023,-52.7606 -60.1023,-52.7606 -60.89191,-52.7606 -61.68152,-52.7606 -62.47113,-52.7606 -63.26074,-52.7606 -64.05035,-52.7606 -64.83996,-52.7606 -65.62957,-52.7606 -66.41918,-52.7606 -67.20879,-52.7606 -67.9984,-53.97644 -67.9984,-55.19228 -67.9984,-56.40812 -67.9984,-57.62396 -67.9984,-58.8398 -67.9984,-60.05564 -67.9984,-61.27148 -67.9984,-62.48732 -67.9984,-63.70316 -67.9984,-64.919 -67.9984,-64.919 -67.20879,-64.919 -66.41918,-64.919 -65.62957,-64.919 -64.83996,-64.919 -64.05035,-64.919 -63.26074,-64.919 -62.47113,-64.919 -61.68152,-64.919 -60.89191,-64.919 -60.1023))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001511", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0804"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project studies seasonal variation in the abundance and shell composition of foraminifera from the northern Gerlache-southern Bransfield Straits region of the Western Antarctic Peninsula. Its goal is to improve interpretation of microfaunal and geochemical proxies for reconstruction of ancient ocean currents, climate, and ecologies. Since seasonal variation may greatly affect interpretation, this project focuses on the Antarctic region, where intense seasonality should generate a more obvious signal than at the less extreme mid-latitudes. The results should allow a better understanding of the coupling to seasonal productivity, as well as improve regional reconstructions.\u003cbr/\u003eThe broader impacts are graduate, undergraduate, and postdoctoral student education; as well as outreach to both the English and Spanish-speaking public. The work will also improve society\u0027s understanding of past climate change as an analogue to the future.", "east": -52.7606, "geometry": "POINT(-58.8398 -64.05035)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -60.1023, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Earth Sciences", "paleo_time": null, "persons": "Ishman, Scott", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -67.9984, "title": "Collaborative Research: Testing the Impact of Seasonality on Benthic Foraminifers as Paleoenvironmental Proxies.", "uid": "p0000113", "west": -64.919}, {"awards": "9816226 Chereskin, Teresa", "bounds_geometry": null, "dataset_titles": "Expedition data of LMG9908", "datasets": [{"dataset_uid": "002691", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG9908", "url": "https://www.rvdata.us/search/cruise/LMG9908"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This proposed work concerns the development and maintenance of a shipboard acoustic Doppler current profiler (ADCP) program on board the RVIB Nathaniel B. Palmer and the research vessel Laurence M. Gould, operated by the United States Antarctic Program. The objective is to generate a quality-controlled data set on upper ocean current velocities in a sparsely sampled and remote region, yet one that plays an important role in the global ocean circulation. Further goals are to develop the underway data collection program so that it can be maintained with a minimum of personnel and resources, and that the observations become publicly available in a timely manner. Long-term science objectives are to measure the seasonal and interannual variability of upper ocean currents within the Drake Passage, to combine this information with similar temperature observations to study the variability in the heat exchange, and to characterize the velocity structure in the Southern Ocean on a variety of time and space scales.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Chereskin, Teresa", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Shipboard Acoustic Doppler Current Profiling on R/V Nathaniel B. Palmer and R/V Lawrence M. Gould", "uid": "p0000862", "west": null}, {"awards": "0523183 Padman, Laurence", "bounds_geometry": "POLYGON((-75 -65,-74 -65,-73 -65,-72 -65,-71 -65,-70 -65,-69 -65,-68 -65,-67 -65,-66 -65,-65 -65,-65 -65.6,-65 -66.2,-65 -66.8,-65 -67.4,-65 -68,-65 -68.6,-65 -69.2,-65 -69.8,-65 -70.4,-65 -71,-66 -71,-67 -71,-68 -71,-69 -71,-70 -71,-71 -71,-72 -71,-73 -71,-74 -71,-75 -71,-75 -70.4,-75 -69.8,-75 -69.2,-75 -68.6,-75 -68,-75 -67.4,-75 -66.8,-75 -66.2,-75 -65.6,-75 -65))", "dataset_titles": "U.S. GLOBEC Southern Ocean data", "datasets": [{"dataset_uid": "002739", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "U.S. GLOBEC Southern Ocean data", "url": "https://www.bco-dmo.org/project/2039"}], "date_created": "Mon, 22 Jun 2009 00:00:00 GMT", "description": "This collaborative study between Old Dominion University, the College of William and Mary, Earth and Space Research, and the Woods Hole Oceanographic Institution will examine the interactions among the ocean circulation, vertical mixing, sea ice, and marine biological processes on the western Antarctic Peninsula continental shelf. The study will result in analytical and numerical modeling tools that are based on, and will have been tested against the extensive data set obtained in the course of the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec). These models will provide insight into circulation and biological dynamics that will be applicable to the development and refinement of physical and biological models for other high latitude systems. \u003cbr/\u003e\u003cbr/\u003eSO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. It is currently in a synthesis and modeling phase. This collaborative project is concerned with the environmental setting and dynamics that constrain ecological processes, and will be integrated with other synthesis and modeling studies that deal with grazers, predators, and other higher trophic levels", "east": -65.0, "geometry": "POINT(-70 -68)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "OCEAN CURRENTS; NOT APPLICABLE; Antarctica; Southern Ocean", "locations": "Antarctica; Southern Ocean", "north": -65.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Padman, Laurence", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": -71.0, "title": "Collaborative Proposal: U.S. SO GLOBEC Synthesis and Modeling: Circulation and Hydrographic Data Analyses and Modeling Studies", "uid": "p0000216", "west": -75.0}, {"awards": "0229546 MacAyeal, Douglas", "bounds_geometry": "POINT(-178 -78)", "dataset_titles": "collection of nascent rift images and description of station deployment; Continuous GPS (static) Data from the Ross Ice Shelf, Antarctica; Giant Icebergs of the Ross Sea, in situ Drift and Weather Measurements, Antarctica; Iceberg Firn Temperatures, Antarctica; Iceberg Harmonic Tremor, Seismometer Data, Antarctica; Iceberg Satellite imagery from stations and ice shelves (full data link not provided); Iceberg Tiltmeter Measurements, Antarctica; Ice Shelf Rift Time-Lapse Photography, Antarctica; Incorporated Research Institutions for Seismology; Nascent Iceberg Webcam Images available during the deployment period; Ross Ice Shelf Firn Temperature, Antarctica; The files contain a short header (number of data samples, sample rate, start time, stop time, channel title)The time series data then follow the header above.; This site mirrors the NSIDC website archive.", "datasets": [{"dataset_uid": "609354", "doi": "10.7265/N5BP00Q3", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ross Ice Shelf; Snow/ice; Snow/Ice; Temperature", "people": "Sergienko, Olga; MacAyeal, Douglas; Muto, Atsu; Scambos, Ted", "repository": "USAP-DC", "science_program": null, "title": "Ross Ice Shelf Firn Temperature, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609354"}, {"dataset_uid": "609353", "doi": "10.7265/N5GF0RFF", "keywords": "Glaciology; Iceberg; Oceans; Ross Ice Shelf; Sea Ice; Southern Ocean; Tiltmeter", "people": "MacAyeal, Douglas; Bliss, Andrew; Kim, Young-Jin", "repository": "USAP-DC", "science_program": null, "title": "Iceberg Tiltmeter Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609353"}, {"dataset_uid": "609350", "doi": "10.7265/N5VM496K", "keywords": "AWS; Glaciology; GPS; Iceberg; Meteorology; Oceans; Ross Sea; Sea Ice; Southern Ocean; Weatherstation", "people": "Aster, Richard; Bassis, Jeremy; Okal, Emile; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Giant Icebergs of the Ross Sea, in situ Drift and Weather Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609350"}, {"dataset_uid": "609352", "doi": "10.7265/N5M61H55", "keywords": "Glaciology; Iceberg; Oceans; Ross Ice Shelf; Sea Ice; Snow/ice; Snow/Ice; Southern Ocean; Temperature", "people": "Sergienko, Olga; Thom, Jonathan; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Iceberg Firn Temperatures, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609352"}, {"dataset_uid": "609349", "doi": "10.7265/N5445JD6", "keywords": "Geology/Geophysics - Other; Glaciology; Iceberg; Oceans; Ross Sea; Sea Ice; Seismometer; Southern Ocean", "people": "MacAyeal, Douglas; Okal, Emile; Aster, Richard; Bassis, Jeremy", "repository": "USAP-DC", "science_program": null, "title": "Iceberg Harmonic Tremor, Seismometer Data, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609349"}, {"dataset_uid": "001598", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "The files contain a short header (number of data samples, sample rate, start time, stop time, channel title)The time series data then follow the header above.", "url": "http://nsidc.org"}, {"dataset_uid": "002568", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Iceberg Satellite imagery from stations and ice shelves (full data link not provided)", "url": "http://amrc.ssec.wisc.edu/"}, {"dataset_uid": "002504", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Nascent Iceberg Webcam Images available during the deployment period", "url": "https://amrc.ssec.wisc.edu/data/iceberg.html"}, {"dataset_uid": "609347", "doi": "10.7265/N57W694M", "keywords": "Antarctica; Geodesy; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ross Ice Shelf; Southern Ocean", "people": "King, Matthew; MacAyeal, Douglas; Brunt, Kelly", "repository": "USAP-DC", "science_program": null, "title": "Continuous GPS (static) Data from the Ross Ice Shelf, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609347"}, {"dataset_uid": "001684", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "This site mirrors the NSIDC website archive.", "url": "http://uwamrc.ssec.wisc.edu/"}, {"dataset_uid": "001685", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Incorporated Research Institutions for Seismology", "url": "http://www.iris.edu/data/sources.htm"}, {"dataset_uid": "609351", "doi": "10.7265/N5QV3JGV", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Photo/video; Photo/Video; Ross Ice Shelf", "people": "Brunt, Kelly; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Ice Shelf Rift Time-Lapse Photography, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609351"}, {"dataset_uid": "001639", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "collection of nascent rift images and description of station deployment", "url": "http://thistle.org/nascent/index.shtml"}], "date_created": "Fri, 19 Sep 2008 00:00:00 GMT", "description": "This award supports the study of the drift and break-up of Earth\u0027s largest icebergs, which were recently released into the Ross Sea of Antarctica as a result of calving from the Ross Ice Shelf. The scientific goals of the study are to determine the physics of iceberg motion within the dynamic context of ocean currents, winds, and sea ice, which determine the forces that drive iceberg motion, and the relationship between the iceberg and geographically and topographically determined pinning points on which the iceberg can ground. In addition, the processes by which icebergs influence the local environments (e.g., sea ice conditions near Antarctica, access to penguin rookeries, air-sea heat exchange and upwelling at iceberg margins, nutrient fluxes) will be studied. The processes by which icebergs generate globally far-reaching ocean acoustic signals that are detected within the global seismic (earthquake) sensing networks will also be studied. A featured element of the scientific research activity will be a field effort to deploy automatic weather stations, seismometer arrays and GPS-tracking stations on several of the largest icebergs presently adrift, or about to be adrift, in the Ross Sea. Data generated and relayed via satellite to home institutions in the Midwest will motivate theoretical analysis and computer simulation; and will be archived on an \"iceberg\" website (http://amrc.ssec.wisc.edu/amrc/iceberg.html) for access by scientists and the general public. At the most broad level, the study is justified by the fact that icebergs released by the Antarctic ice sheet represent the largest movements of fresh water within the natural environment (e.g., several of the icebergs to be studied, B15, C19 and others calved since 2000 CE, represent over 6000 cubic kilometers of fresh water-an amount roughly equivalent to 100 years of the flow of the Nile River). A better understanding of the impact of iceberg drift through the environment, and particularly the impact on ocean stratification and mixing, is essential to the understanding of the abrupt global climate changes witnessed by proxy during the ice age and of concern under conditions of future greenhouse warming. On a more specific level, the study will generate a knowledge base useful for the better management of Antarctic logistical resources (e.g., the shipping lanes to McMurdo Station) that can occasionally be influenced by adverse effects icebergs have on sea ice conditions.", "east": -178.0, "geometry": "POINT(-178 -78)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HUMIDITY SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e MMS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e TEMPERATURE LOGGERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e TEMPERATURE PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS", "is_usap_dc": true, "keywords": "SEISMOLOGICAL STATIONS; Pressure; AWS; Velocity Measurements; Firn Temperature Measurements; Ice Velocity; Seismology; Ice Sheet Elevation; Harmonic Tremor; Ice Shelf Temperature; Wind Speed; Iceberg; Ice Surface Elevation; Non-Volcanic Tremor; Not provided; Antarctic; Iceberg Tremor; Solar Radiation; Antarctic Ice Sheet; Ross Ice Shelf; Elevation; GPS; Temperature Profiles; Ice Shelf Rift Camera; GROUND STATIONS; Latitude; GROUND-BASED OBSERVATIONS; Ice Shelf Weather; FIELD INVESTIGATION; ARWS; Surface Elevation; Ice Shelf Flow; Antarctica; FIELD SURVEYS; Camera; Seismometer; Iceberg Weather (aws); Ice Movement; Photo; Wind Direction; Iceberg Snow Accumulation; Tremor And Slow Slip Events; AWS Climate Data; Location; Iceberg Drift; Iceberg Collisions; Iceberg Tilt; Atmospheric Pressure; Iceberg Seismicity; Firn Temperature", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; Ross Ice Shelf", "north": -78.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Okal, Emile; Aster, Richard; Bassis, Jeremy; Kim, Young-Jin; Bliss, Andrew; Sergienko, Olga; Thom, Jonathan; Scambos, Ted; Muto, Atsu; Brunt, Kelly; King, Matthew; Parker, Tim; Okal, Marianne; Cathles, Mac; MacAyeal, Douglas", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e ARWS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS; Not provided; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "AMRDC; IRIS; NSIDC; Project website; USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research of Earth\u0027s Largest Icebergs", "uid": "p0000117", "west": -178.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EAGER: Developing High Latitudes Capabilities for Wave Gliders
|
2428537 |
2024-08-06 | Siegelman, Lia; Lenain, Luc | No dataset link provided | The polar oceans act as a central thermostat that helps set the Earth’s temperature and governs our climate. Rapid changes are currently ongoing in the polar regions in response to interactions between the air, ocean, and sea-ice. Despite their importance, air-sea interactions at high latitudes remain poorly understood, in great part due to the observational challenges inherent to this extreme and remote environment. The overarching objective of this project is to develop and test a new generation of autonomous ocean platforms specifically designed to withstand the harsh polar environment, to enable improved understanding and quantification of fine-scale air-sea fluxes in these key regions of the globe. Doing so will enable the research community to advance observational capabilities of under-sampled high-latitude oceans while being respectful of the environment and local communities. Compared to research vessels, our wave-propelled platforms (”Wave Gliders”) produce a very low acoustic footprint, minimizing behavioral impact to marine mammals such as whales and seals, who are highly affected by underwater noise pollution generated by classical research vessels.<br/><br/>Researchers will develop and test advanced capabilities added to existing, off-the-shelf platforms to operate in the extreme conditions of the high latitude oceans in order to understand how the ocean transfers heat and momentum to the atmosphere at fine scales. To accomplish this goal, instrumented Wave Gliders will first be upgraded with state-of-the-art technology for propulsion, energy generation and storage, anti-icing, and a scientific payload capable of operating for long durations in polar oceans. This new technology will be implemented and tested in the Air-Sea Interaction Laboratory and the recently completed SOARS facility at the Scripps Institution of Oceanography, UC San Diego. This facility is capable of developing a polar wave glider, as it can incorporate sea ice and freezing sea spray similar to real world conditions. The validation of the instrumented autonomous vehicles will be conducted during multiple short deployments, initially off La Jolla, CA with a final deployment in the Southern Ocean in polar conditions. Students from local robotics programs will participate in both the development and testing of the polar wave glider.<br/><br/>This award reflects NSF''s statutory mission and has been deemed worthy of support through evaluation using the Foundation''s intellectual merit and broader impacts review criteria. | None | None | false | false | |||||||
High Resolution Underway Air-Sea Observations in Drake Passage for Climate Science
|
1542902 2001646 |
2023-03-03 | Chereskin, Teresa; Sprintall, Janet |
|
The Antarctic Circumpolar Current (ACC) is the largest current on the planet, flowing west to east around Antarctica, forming a barrier that separates warmer waters to the north from colder waters to the south. Ocean eddies (like atmospheric storms) break through the ACC barrier, transferring heat across the ACC towards Antarctica. When warmer ocean waters intrude onto the Antarctic continental shelves, they contribute to glacial melt and ice shelf retreat. Over the past several decades, the Southern Ocean has warmed and winds have increased due to climate change. Somewhat surprisingly the ACC, though pushed by faster winds, has not accelerated; a faster current would present a stronger barrier to heat transfer. Instead, ocean eddies have increased. These eddies are concentrated at 6-7 "hot spots". Drake Passage is one of these hot spots. As the narrowest land gap on the entire circumpolar path of the ACC, Drake Passsage is an ideal monitoring spot. However, it is also one of the windiest and roughest stretches of water on the globe. The only ship that crosses Drake Passage year-round is the USAP supply vessel for Palmer Station, making it a unique platform to monitor the currents and temperature with a minimum of personnel and resources. The Drake Passage time series of upper ocean currents and temperature is now in its 24th year. The upper ocean temperature measurements have found significant warming in Drake Passage. The upper ocean current measurements have confirmed that the ACC has remained steady on average but have also revealed a complicated filamented current structure. Combining temperature and current measurements has provided a better understanding of heat transfer across the ACC by eddies. The time series has also provided valuable ground-truth for satellite measurements and for numerical model predictions looking at the entire ACC. Our studies are focused on examining low-frequency variability - seasonal, interannual, and decadal - in order to provide baselines from which to evaluate and interpret physical and biogeochemical changes occurring in the Southern Ocean. | POLYGON((-68 -54,-66.7 -54,-65.4 -54,-64.1 -54,-62.8 -54,-61.5 -54,-60.2 -54,-58.9 -54,-57.6 -54,-56.3 -54,-55 -54,-55 -55,-55 -56,-55 -57,-55 -58,-55 -59,-55 -60,-55 -61,-55 -62,-55 -63,-55 -64,-56.3 -64,-57.6 -64,-58.9 -64,-60.2 -64,-61.5 -64,-62.8 -64,-64.1 -64,-65.4 -64,-66.7 -64,-68 -64,-68 -63,-68 -62,-68 -61,-68 -60,-68 -59,-68 -58,-68 -57,-68 -56,-68 -55,-68 -54)) | POINT(-61.5 -59) | false | false | |||||||
Collaborative Research: Characteristics and Origins of Eddies beneath Antarctic Sea Ice
|
2220969 2220968 |
2022-08-07 | Stewart, Andrew; Bianchi, Daniele | No dataset link provided | The world ocean is continuously in motion, and a large fraction of this motion takes the form of "eddies", nearly-horizontal swirls of water spanning tens to hundreds of kilometers. These eddies affect the ocean by mediating large-scale currents, redistributing heat, and supplying nutrients to oceanic ecosystems. Consequently, the ocean science community has historically invested substantial effort in characterizing the properties and impact of these eddies. In polar regions, the sea ice cover inhibits observations of eddies, and the relatively small horizontal size of the eddies hampers computer simulations of their behavior. Nonetheless, previous studies have identified an active population of eddies beneath the Arctic sea ice and shown that these eddies play a crucial role in maintaining the large-scale circulation in the Arctic seas. However, there has been no systematic attempt to study such eddies under Antarctic sea ice, leaving a significant gap in our understanding of eddies and their contribution to the large-scale ocean circulation around Antarctica. The proposed research combines multiple approaches to improve our understanding of the eddy dynamics. Statistical characterizations of the sub-sea ice eddy field will be derived using hydrographic observations under Antarctic sea ice from Argo floats and instrumented seals. High-resolution global ocean and sea ice models will be used to track the simulated eddies back to their formation sites to identify the eddy formation mechanisms. Theoretical calculations will be conducted to test the hypothesis that the eddies primarily originate from hydrodynamic instabilities associated with subsurface density gradients. These theoretical, modeling, and data analysis approaches will be combined to estimate the eddies' contribution to lateral tracer transports and their impact on mean circulations of the near-Antarctic ocean. The proposed work will facilitate future scientific endeavors by providing publicly-available databases of detected eddy properties. This project will support the research of several junior scientists: an undergraduate student, two graduate students, and an early-career faculty member. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||
OPP-PRF Pygoscelis Penguin Response to Potential Prey Retention along the West Antarctic Peninsula
|
2138277 |
2022-07-19 | Gallagher, Katherine | Pygoscelis penguins are central place foragers during the summer while they raise their chicks. They leave and return to the same colony location after hunting for food and rely on the availability of Antarctic krill, their primary food source. This research focuses on whether penguin diets and colony location reflect the retention of prey around and near colonies on the West Antarctic Peninsula. Eddies and other oceanographic processes may facilitate prey retention at certain locations, driving penguin colony establishment and success. This project hypothesizes that Pygoscelis penguin diets will be composed of more Antarctic krill (Euphausia superba) when local prey retention is high, possibly due to subsurface eddies. This hypothesis will be tested using satellite-based estimates of Pygoscelis penguin diet composition using multispectral sensor data to estimate nitrogen values and infer trophic level. Prey retention will be calculated along the peninsula using the Regional Ocean Modeling System (ROMS). Simulated particles and diel vertical migration will be used to mimic krill behavior. These particles can be experimentally seeded across multiple depths in multiple years to assess residence times in the system. Using penguin colony data from the Mapping Application for Penguin Populations and Projected Dynamics (MAPPPD), the PI will correlate diet and retention metrics to local penguin colony growth and persistence and build a predictive model of where colonies may form in the future. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-78 -62,-76.2 -62,-74.4 -62,-72.6 -62,-70.8 -62,-69 -62,-67.2 -62,-65.4 -62,-63.6 -62,-61.8 -62,-60 -62,-60 -63,-60 -64,-60 -65,-60 -66,-60 -67,-60 -68,-60 -69,-60 -70,-60 -71,-60 -72,-61.8 -72,-63.6 -72,-65.4 -72,-67.2 -72,-69 -72,-70.8 -72,-72.6 -72,-74.4 -72,-76.2 -72,-78 -72,-78 -71,-78 -70,-78 -69,-78 -68,-78 -67,-78 -66,-78 -65,-78 -64,-78 -63,-78 -62)) | POINT(-69 -67) | false | false | ||||||||
CAREER: The Transformation, Cross-shore Export, and along-shore Transport of Freshwater on Antarctic Shelves
|
1945127 |
2022-06-03 | Moffat, Carlos | No dataset link provided | Freshwater discharges from melting high-latitude continental ice glacial reserves strongly control salt budgets, circulation and associated ocean water mass formation arising from polar ice shelves. These are different in nature than freshwater inputs associated with riverine coastal inputs. The PI proposes an observational deployment to measure a specific, previously-identified example of a coastal freshwater-driven current, the Antarctic Peninsula Coastal Current (APCC). <br/> <br/>The research component of this CAREER project aims to improve understanding of the dynamics of freshwater discharge around the Antarctic continent. Associated research questions pertain to the i) controls on the cross- and along-shelf spreading of fresh, buoyant coastal currents, ii) the role of distributed coastal freshwater sources (as opposed to 'point' source river outflow sources typical of lower latitudes), and iii) the contribution of these coastal currents to water mass transformation and heat transfer on the continental shelf. An educational CAREER program component leverages a series of field experiences and research outputs including data, model outputs, and theory, to bring polar science to the classroom and the general public, as well as training a new polar scientist. This combined strategy will allow the investigator to lay the foundation for a successful academic career as a researcher and teacher at the University of Delaware. The project will also provide the opportunity to train a PhD student. Informal outreach efforts will include giving public lectures at University of Deleware's sponsored events, including Coast Day, a summer event that attracts 8000-10000 people, and remote lectures from the field using an existing outreach network. This proposal requires fieldwork in the Antarctic.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | |||||||
Weddell Gyre Mean Circulation and Eddy Statistics from Floats
|
2148517 |
2022-03-25 | Hancock, Cathrine; Speer, Kevin |
|
The Weddell Gyre is one of the major components of the Southern Ocean circulation system, linking heat and carbon fluxes in the Antarctic Circumpolar Current to the continental margins. Water masses entering the Weddell Gyre are modified as they move in a great circular route around the gyre margin and change through processes involving air-sea-cryosphere interactions as well as through ocean eddies that mix properties across the gyre boundaries. Some of the denser water masses exit the gyre through pathways along the northern boundary, and ultimately ventilate the global deep ocean as Antarctic Bottom Water. While in-situ and satellite observations, as well as computer modeling efforts, provide estimates of the large-scale average flow within the gyre, details of the smaller-scale, or "mesoscale" eddy flow remain elusive. The proposed research will quantify mixing due to mesoscale eddies within the Weddell Gyre, as well as the transport of incoming deep water from the northeast, thought to be a result of transient eddies. Since the Weddell Gyre produces source water for about 40% of Antarctic Bottom Water formation, understanding the dynamics in this region helps to identify causes of documented changes in global bottom waters. This in turn, will give insight into how climate change is affecting global oceans, through modification of dense polar waters and Antarctic Bottom Water characteristics. This project aims to track 153 RAFOS-enabled Argo floats in the ice-covered regions of the Weddell Gyre. The resultant tracks along with all available Argo and earlier float data will be used to calculate Eulerian and Lagrangian means and eddy statistics for the Weddell Gyre. The study will link RAFOS tracks with Argo profiles under ice, allowing one to characterize the importance of eddies in water column modification at critical ice-edge boundaries and leads. With RAFOS tracks near the northeastern limit of the gyre, the project will investigate the eddy-driven processes of incoming Circumpolar Deep Water, to understand better the mechanisms and volume fluxes involved. Previous work shows that a large fraction of the mean circulation in the southern and western limits of the gyre, where it contacts the Antarctic continent, occurs in a narrow boundary layer above the slope. The research here will integrate this flow structure into a complete interior and boundary layer mean circulation synthesis. The findings and products from the proposed work will improve the positioning of Argo profiles in the polar regions, which would allow for more accurate climatological maps and derived quantities. Estimates of meso-scale mixing may serve as a foundation for the development of new parameterization schemes employed in climate models, as well as local and global ocean circulation models in polar regions. | POLYGON((-60 -55,-51 -55,-42 -55,-33 -55,-24 -55,-15 -55,-6 -55,3 -55,12 -55,21 -55,30 -55,30 -57,30 -59,30 -61,30 -63,30 -65,30 -67,30 -69,30 -71,30 -73,30 -75,21 -75,12 -75,3 -75,-6 -75,-15 -75,-24 -75,-33 -75,-42 -75,-51 -75,-60 -75,-60 -73,-60 -71,-60 -69,-60 -67,-60 -65,-60 -63,-60 -61,-60 -59,-60 -57,-60 -55)) | POINT(-15 -65) | false | false | |||||||
Collaborative Research: Diagnosing the Role of Ocean Eddies in Carbon Cycling from a High-resolution Data Assimilating Ocean Biogeochemical Model
|
2149500 |
2022-03-14 | Williams, Nancy; Chambers, Don; Tamsitt, Veronica | No dataset link provided | The Southern Ocean accounts for ~40% of the total ocean uptake of anthropogenic CO2 despite covering only 20% of the global ocean surface, and is particularly rich in long-lived eddies. These eddies, or large ocean whirlpools which can be observed from space, can alter air-sea fluxes of CO2 in ways that are not yet fully understood. New observations from autonomous platforms measuring ocean carbon content suggest that there is significant heterogeneity in ocean carbon fluxes which can be linked to these dynamic eddy features. Due to computational and time limitations, ocean eddies are not explicitly represented in most climate models, limiting our ability to understand the role eddies play in the ocean carbon cycle. This work will explore the impact of eddies on ocean carbon content and air-sea CO2 fluxes in the Southern Ocean using both model- and observation-based strategies and the findings will improve our understanding of the ocean’s role in the carbon cycle and in global climate. While this work will primarily be focused on the Southern Ocean, the results will be globally applicable. The researchers will also broaden interest in physical and chemical oceanography among middle school-age girls in the University of South Florida’s Oceanography Camp for Girls by augmenting existing lessons with computational methods in oceanography. This project aims to quantify the impacts of mesoscale eddy processes on ocean carbon content and air-sea carbon dioxide (CO2) fluxes in the Southern Ocean. For the modeling component, the investigators will explore relationships between eddies, ocean carbon content, and air-sea CO2 fluxes within the 1/6-degree resolution Biogeochemical Southern Ocean State Estimate (B-SOSE). They investigators will produce high-resolution composites of the carbon content and physical structure within both cyclonic and anticyclonic eddies by region, quantify the influence of these eddies on the overall simulated air-sea CO2 flux, and diagnose the physical mechanisms driving this influence. For the observational component, the investigators will match eddies observed via satellite altimetry to ocean carbon observations and characterize observed relationships between eddies and ocean carbon content with a focus on Southern Ocean winter observations where light limits biological processes, allowing isolation of the contribution of physical processes. This work will also provide motivation for higher resolution and better eddy parameterizations in climate models, more mesoscale biogeochemical observations, and integration of satellite SSH data into efforts to map air-sea fluxes of CO2. Each summer, the PI delivers a lab lesson at the University of South Florida Oceanography Camp for Girls (OCG), recognized by NSF as a “Model STEM Program for Women and Girls” focused on broadening participation by placing emphasis on recruiting a diverse group of young women. As part of this project, the existing interactive Jupyter Notebook-based Python coding Lab lesson will be augmented with a B-SOSE-themed modeling component, which will broaden interest in physical and chemical oceanography and data science, and expose campers to computational methods in oceanography. | POLYGON((-180 -30,-144 -30,-108 -30,-72 -30,-36 -30,0 -30,36 -30,72 -30,108 -30,144 -30,180 -30,180 -36,180 -42,180 -48,180 -54,180 -60,180 -66,180 -72,180 -78,180 -84,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84,-180 -78,-180 -72,-180 -66,-180 -60,-180 -54,-180 -48,-180 -42,-180 -36,-180 -30)) | POINT(0 -89.999) | false | false | |||||||
Investigating Antarctic Ice Sheet-Ocean-Carbon Cycle Interactions During the Last Deglaciation
|
2103032 |
2021-09-09 | Schmittner, Andreas; Haight, Andrew ; Clark, Peter | No dataset link provided | The Antarctic ice sheet is an important component of Earth’s climate system, as it interacts with the atmosphere, the surrounding Southern Ocean, and the underlaying solid Earth. It is also the largest potential contributor to future sea level rise and a major uncertainty in climate projections. Climate change may trigger instabilities, which may lead to fast and irreversible collapse of parts of the ice sheet. However, very little is known about how interactions between the Antarctic ice sheet and the rest of the climate system affect its behavior, climate, and sea level, partly because most climate models currently do not have fully-interactive ice sheet components. This project investigates Antarctic ice-ocean interactions of the last 20,000 years. A novel numerical climate model will be constructed that includes an interactive Antarctic ice sheet, improving computational infrastructure for research. The model code will be made freely available to the public on a code-sharing site. Paleoclimate data will be synthesized and compared with simulations of the model. The model-data comparison will address three scientific hypotheses regarding past changes in deep ocean circulation, ice sheet, carbon, and sea level. The project will contribute to a better understanding of ice-ocean interactions and past climate variability. This project will test suggestions that ice-ocean interactions have been important for setting deep ocean circulation and carbon storage during the Last Glacial Maximum and subsequent deglaciation. The new model will consist of three existing and well-tested components: (1) an isotope-enabled climate-carbon cycle model of intermediate complexity, (2) a model of the combined Antarctic ice sheet, solid Earth and sea level, and (3) an iceberg model. The coupling will include ocean temperature effects on basal melting of ice shelves, freshwater fluxes from the ice sheet to the ocean, and calving, transport and melting of icebergs. Once constructed and optimized, the model will be applied to simulate the Last Glacial Maximum and subsequent deglaciation. Differences between model versions with full, partial or no coupling will be used to investigate the effects of ice-ocean interactions on the Meridional Overturning Circulation, deep ocean carbon storage and ice sheet fluctuations. Paleoclimate data synthesis will include temperature, carbon and nitrogen isotopes, radiocarbon ages, protactinium-thorium ratios, neodymium isotopes, carbonate ion, dissolved oxygen, relative sea level and terrestrial cosmogenic ages into one multi-proxy database with a consistent updated chronology. The project will support an early-career scientist, one graduate student, undergraduate students, and new and ongoing national and international collaborations. Outreach activities in collaboration with a local science museum will benefit rural communities in Oregon by improving their climate literacy. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||
Collaborative Research: The Antarctic Circumpolar Current: A Conduit or Blender of Antarctic Bottom Waters?
|
2023259 2023303 2023244 |
2021-07-01 | Stewart, Andrew; Thompson, Andrew; Purkey, Sarah |
|
The formation of dense Antarctic Bottom Water (AABW) and its export northward from the Antarctic continent is one of the key components of the global ocean overturning circulation, and plays a critical role in regulating Earth's climate on multi-decadal-to-millennial time scales. Recent studies of the global ocean overturning circulation have increasingly emphasized its three-dimensional structure: AABW is produced in a handful of distinct sites around the Antarctic continent, and there is a pronounced asymmetry in the allocation of AABW transports into the Atlantic, Indian and Pacific basins. The connectivity of AABW between the Antarctic continental shelf and the northern basins is mediated by the Antarctic Circumpolar Current (ACC), a circumpolar eastward flow that also serves as the primary route for inter-basin exchange. The mapping from different shelf AABW sources to the northern basins dictates the response of the global MOC to localized variability or shifts in the state of the Antarctic shelf, for example due to major glacier calving events or modified inputs of freshwater from the Antarctic ice sheet. At present this mapping is not well constrained, with conflicting conclusions drawn in previous studies: at one extreme the ACC has been suggested to be a ``conduit'' that simply allows each variety of AABW to transit directly northward; at the other extreme, it has been suggested that the ACC ``blends'' all shelf AABW sources together before they reach the northern basins. Such conflicts arise, in part, because little is understood about the physics that determines AABW's pathways across the ACC. To close this gap in understanding, this collaborative project draws on three complementary analytical tools: process-oriented modeling of AABW export across the ACC, a high-resolution global ocean model, and an observationally-constrained estimate of the global circulation. The PIs will first identify and quantify the pathways of AABW across the ACC by using these tools to propagate passive tracers that identify each of the four major AABW formation sites. They will then use a suite of process model sensitivity experiments to develop a theory for what controls meridional versus inter-basin transport of AABW in the ACC, and transfer this theory to interpret the AABW pathways simulated in the global model. Finally, they will combine the process model, global model and the observationally-constrained circulation product to map the rates at which AABW is transformed into lighter waters, and relate these transformation rates to the diagnosed pathways of AABW across the ACC. This combination of approaches allow the PIs to not only constrain the three-dimensional circulation of AABW from Antarctica to the northern basins, but also provides a mechanistic understanding of the circulation that can be transferred to past or future climates. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||
Ocean Tides around Antarctica and in the Southern Ocean
|
0125602 0125252 |
2020-07-07 | Howard, Susan L.; Padman, Laurence; Erofeeva, Svetlana; King, Matt | The ocean tide is a large component of total variability of ocean surface height and currents in the seas surrounding Antarctica, including under the floating ice shelves. Maximum tidal height range exceeds 7 m (near the grounding line of Rutford Ice Stream) and maximum tidal currents exceed 1 m/s (near the shelf break in the northwest Ross Sea). Tides contribute to several important climate and ecosystems processes including: ocean mixing, production of dense bottom water, flow of warm Circumpolar Deep Water onto the continental shelves, melting at the bases of ice shelves, fracturing of the ice sheet near a glacier or ice stream’s grounding line, production and decay of sea ice, and sediment resuspension. Tide heights and, in particular, currents can change as the ocean background state changes, and as the geometry of the coastal margins of the Antarctic Ice Sheet varies through ice shelf thickness changes and ice-front and grounding-line advances or retreats. For satellite-based studies of ocean surface height and ice shelf thickness changes, tide heights are a source of substantial noise that must be removed. Similarly, tidal currents can also be a substantial noise signal when trying to estimate mean ocean currents from short-term measurements such as from acoustic Doppler current profilers mounted on ships and CTD rosettes. Therefore, tide models play critical roles in understanding current and future ocean and ice states, and as a method for removing tides in various measurements. A paper in Reviews of Geophysics (Padman, Siegfried and Fricker, 2018, see list of project-related publications below) provides a detailed review of tides and tidal processes around Antarctica. This project provides a gateway to tide models and a database of tide height coefficients at the Antarctic Data Center, and links to toolboxes to work with these models and data. | POLYGON((-180 -40.231,-144 -40.231,-108 -40.231,-72 -40.231,-36 -40.231,0 -40.231,36 -40.231,72 -40.231,108 -40.231,144 -40.231,180 -40.231,180 -45.2079,180 -50.1848,180 -55.1617,180 -60.1386,180 -65.1155,180 -70.0924,180 -75.0693,180 -80.0462,180 -85.0231,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.0231,-180 -80.0462,-180 -75.0693,-180 -70.0924,-180 -65.1155,-180 -60.1386,-180 -55.1617,-180 -50.1848,-180 -45.2079,-180 -40.231)) | POINT(0 -89.999) | false | false | ||||||||
Collaborative Research: Flow, Turbulence and Mixing in Mid-Ocean Ridge Fracture Zone Canyons
|
1235094 |
2020-07-02 | Thurnherr, Andreas | Overview: In order to close the global overturning circulation, high-density deep- and bottom waters produced at high latitudes must be made less dense and upwell to shallower depths. Available observations from the subtropical South Atlantic indicate that the bulk of the mixing in the deep ocean there takes place over the topographically rough Mid-Atlantic Ridge, in particular in the quasi-regularly spaced "fracture zone canyons" corrugating the ridge flanks. There, dense water is advected toward the ridge crest (i.e. upwelled) by persistent along-valley currents that flow down the unidirectional density gradients, which are maintained by strong turbulence (diapycnal mixing). Most of the data on which these inferences are based were collected during the Brazil Basin Tracer Release Experiment (BBTRE) along a single ridge-flank canyon in the western South Atlantic near 22S where previous analyses have shown that both tidal mixing and overflow processes are important. Therefore, it is likely that both processes must be considered in order to understand and parameterize the effects of turbulence and mixing in the canyons corrugating the flanks of all slow-spreading ridges, which make up large fractions of the sea floor, in particular in the Atlantic, Indian and Southern Oceans. The primary aim of this follow-on project is to improve our understanding of the dynamics over the corrugated flanks of slow-spreading mid-ocean ridges. Due to the coarse sampling resolution and choice of station locations it is not possible to answer important questions, such as the relative importance of tidal and sill mixing, from the BBTRE data. Therefore, high-resolution surveys of hydrography, three-dimensional flow, turbulence and mixing will be carried out in two neighboring canyons and over the intervening topographic spur in the BBTRE region to determine the relative contributions of tidal and sill-related mixing. Furthermore, profiling moorings deployed on two nearby sill regions will be used to derive time series of spatially integrated mixing related buoyancy fluxes and to investigate the strong but unexplained sub-inertial variability of the along-canyon flow recorded previously. Additionally, three small moorings will be deployed in saddles between the two canyons to investigate inter-canyon exchange. The data analysis will include available data from previous experiments, including a set of tracer profiles that has not been analyzed before. Intellectual Merit: The corrugated flanks of slow-spreading ridges cover large areas of the sea floor of several major ocean basins. Therefore, understanding the dynamics in the ~100 km of ridge-flank canyons and its effects on the buoyancy and upwelling budget of the abyssal ocean is of global significance. In addition to determining the relative importance of tidal mixing and cross-sill flows in two canyons, the temporal variability of turbulence and mixing from tidal to yearly time scales will be investigated to gain insights into the forcing of the along-canyon flows, the exchange between neighboring canyons, and the eventual fate of the canyon waters. Broader Impacts: It is anticipated that insights gained during this project will improve our understanding of abyssal mixing in many different regions with similar bottom topography and provide the basis for better parameterizations of the effects of turbulence and mixing in large-scale circulation and climate models that cannot resolve these small-scale processes. As part of the project, a graduate student and a post-doctoral researcher will be trained in all aspects of observational physical oceanography, from data acquisition to interpretation. | POLYGON((-19 -19,-18.2 -19,-17.4 -19,-16.6 -19,-15.8 -19,-15 -19,-14.2 -19,-13.4 -19,-12.6 -19,-11.8 -19,-11 -19,-11 -19.4,-11 -19.8,-11 -20.2,-11 -20.6,-11 -21,-11 -21.4,-11 -21.8,-11 -22.2,-11 -22.6,-11 -23,-11.8 -23,-12.6 -23,-13.4 -23,-14.2 -23,-15 -23,-15.8 -23,-16.6 -23,-17.4 -23,-18.2 -23,-19 -23,-19 -22.6,-19 -22.2,-19 -21.8,-19 -21.4,-19 -21,-19 -20.6,-19 -20.2,-19 -19.8,-19 -19.4,-19 -19)) | POINT(-15 -21) | false | false | ||||||||
Collaborative Research: Pathways of Circumpolar Deep Water to West Antarctica from Profiling Float and Satellite Measurements
|
1341496 |
2019-12-10 | Girton, James; Rynearson, Tatiana |
|
Current oceanographic interest in the interaction of relatively warm water of the Southern Ocean Circumpolar Deep Water (CDW) as it moves southward to the frigid waters of the Antarctic continental shelves is based on the potential importance of heat transport from the global ocean to the base of continental ice shelves. This is needed to understand the longer term mass balance of the continent, the stability of the vast Antarctic ice sheets and the rate at which sea-level will rise in a warming world. Improved observational knowledge of the mechanisms of how warming CDW moves across the Antarctic Circumpolar Current (ACC) is needed. Understanding this dynamical transport, believed to take place through the eddy flux of time-varying mesoscale circulation features, will improve coupled ocean-atmospheric climate models. The development of the next generation of coupled ocean-ice-climate models help us understand future changes in atmospheric heat fluxes, glacial and sea-ice balance, and changes in the Antarctic ecosystems. A recurring obstacle to our understanding is the lack of data in this distant region. In this project, a total of 10 subsurface profiling EM-APEX floats adapted to operate under sea ice were launched in 12 missions (and 2 recoveries) from 4 cruises of opportunity to the Amundsen Sea sector of the Antarctic continental margin during Austral summer. The floats were launched south of the Polar Front and measured shear, turbulence, temperature, and salinity to 2000m depth for 1-2 year missions while drifting with the CDW layer between profiles. | POLYGON((-142 -66,-135.3 -66,-128.6 -66,-121.9 -66,-115.2 -66,-108.5 -66,-101.8 -66,-95.1 -66,-88.4 -66,-81.7 -66,-75 -66,-75 -66.8,-75 -67.6,-75 -68.4,-75 -69.2,-75 -70,-75 -70.8,-75 -71.6,-75 -72.4,-75 -73.2,-75 -74,-81.7 -74,-88.4 -74,-95.1 -74,-101.8 -74,-108.5 -74,-115.2 -74,-121.9 -74,-128.6 -74,-135.3 -74,-142 -74,-142 -73.2,-142 -72.4,-142 -71.6,-142 -70.8,-142 -70,-142 -69.2,-142 -68.4,-142 -67.6,-142 -66.8,-142 -66)) | POINT(-108.5 -70) | false | false | |||||||
Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)
|
1443498 1443534 1443497 1443677 |
2019-07-03 | Bell, Robin; Frearson, Nicholas; Das, Indrani; Fricker, Helen; Padman, Laurence; Springer, Scott; Siddoway, Christine; Tinto, Kirsty | The Ross Ice Shelf is the largest existing ice shelf in Antarctica, and is currently stabilizing significant portions of the land ice atop the Antarctic continent. An ice shelf begins where the land ice goes afloat on the ocean, and as such, the Ross Ice Shelf interacts with the ocean and seafloor below, and the land ice behind. Currently, the Ross Ice Shelf slows down, or buttresses, the fast flowing ice streams of the West Antarctic Ice Sheet (WAIS), a marine-based ice sheet, which if melted, would raise global sea level by 3-4 meters. The Ross Ice Shelf average ice thickness is approximately 350 meters, and it covers approximately 487,000 square kilometers, an area slightly larger than the state of California. The Ross Ice Shelf has disappeared during prior interglacial periods, suggesting in the future it may disappear again. Understanding the dynamics, stability and future of the West Antarctic Ice Sheet therefore requires in-depth knowledge of the Ross Ice Shelf. The ROSETTA-ICE project brings together scientists from 4 US institutions and from the Institute of Geological and Nuclear Sciences Limited, known as GNS Science, New Zealand. The ROSETTA-ICE data on the ice shelf, the water beneath the ice shelf, and the underlying rocks, will allow better predictions of how the Ross Ice Shelf will respond to changing climate, and therefore how the WAIS will behave in the future. The interdisciplinary ROSETTA-ICE team will train undergraduate and high school students in cutting edge research techniques, and will also work to educate the public via a series of vignettes integrating ROSETTA-ICE science with the scientific and human history of Antarctic research.<br/><br/>The ROSETTA-ICE survey will acquire gravity and magnetics data to determine the water depth beneath the ice shelf. Radar, LIDAR and imagery systems will be used to map the Ross Ice Shelf thickness and fine structure, crevasses, channels, debris, surface accumulation and distribution of marine ice. The high resolution aerogeophysical data over the Ross Ice Shelf region in Antarctica will be acquired using the IcePod sensor suite mounted externally on an LC-130 aircraft operating from McMurdo Station, Antarctica. Field activities will include ~36 flights on LC-130 aircraft over two field seasons in Antarctica. The IcePod instrument suite leverages the unique experience of the New York Air National Guard operating in Antarctica for NSF scientific research as well as infrastructure and logistics. The project will answer questions about the stability of the Ross Ice Shelf in future climate, and the geotectonic evolution of the Ross Ice Shelf Region, a key component of the West Antarctic Rift system. The comprehensive benchmark data sets acquired will enable broad, interdisciplinary analyses and modeling, which will also be performed as part of the project. ROSETTA-ICE will illuminate Ross ice sheet-ice shelf-ocean dynamics as the system nears a critical juncture but still is intact. Through interacting with an online data visualization tool, and comparing the ROSETTA-ICE data and results from earlier studies, we will engage students and young investigators, equipping them with new capabilities for the study of critical earth systems that influence global climate. | POLYGON((-180 -77,-177 -77,-174 -77,-171 -77,-168 -77,-165 -77,-162 -77,-159 -77,-156 -77,-153 -77,-150 -77,-150 -77.9,-150 -78.8,-150 -79.7,-150 -80.6,-150 -81.5,-150 -82.4,-150 -83.3,-150 -84.2,-150 -85.1,-150 -86,-153 -86,-156 -86,-159 -86,-162 -86,-165 -86,-168 -86,-171 -86,-174 -86,-177 -86,180 -86,178.1 -86,176.2 -86,174.3 -86,172.4 -86,170.5 -86,168.6 -86,166.7 -86,164.8 -86,162.9 -86,161 -86,161 -85.1,161 -84.2,161 -83.3,161 -82.4,161 -81.5,161 -80.6,161 -79.7,161 -78.8,161 -77.9,161 -77,162.9 -77,164.8 -77,166.7 -77,168.6 -77,170.5 -77,172.4 -77,174.3 -77,176.2 -77,178.1 -77,-180 -77)) | POINT(-174.5 -81.5) | false | false | ||||||||
Collaborative Research: Fjord Ecosystem Structure and Function on the West Antarctic Peninsula - Hotspots of Productivity and Biodiversity? (FjordEco)
|
1443733 1443705 1443680 |
2019-02-13 | Winsor, Peter; Truffer, Martin; Smith, Craig; Powell, Brian; Merrifield, Mark; Vernet, Maria; Kohut, Josh | Marine communities along the western Antarctic Peninsula are highly productive ecosystems which support a diverse assemblage of charismatic animals such as penguins, seals, and whales as well as commercial fisheries such as that on Antarctic krill. Fjords (long, narrow, deep inlets of the sea between high cliffs) along the central coast of the Peninsula appear to be intense, potentially climate sensitive, hotspots of biological production and biodiversity, yet the structure and dynamics of these fjord ecosystems are very poorly understood. Because of this intense biological activity and the charismatic fauna it supports, these fjords are also major destinations for a large Antarctic tourism industry. This project is an integrated field and modeling program to evaluate physical oceanographic processes, glacial inputs, water column community dynamics, and seafloor bottom community structure and function in these important yet little understood fjord systems. These Antarctic fjords have characteristics that are substantially different from well-studied Arctic fjords, likely yielding much different responses to climate warming. This project will provide major new insights into the dynamics and climate sensitivity of Antarctic fjord ecosystems, highlighting contrasts with Arctic sub-polar fjords, and potentially transforming our understanding of the ecological role of fjords in the rapidly warming west Antarctic coastal marine landscape. The project will also further the NSF goal of training new generations of scientists, providing scientific training for undergraduate, graduate, and postdoctoral students. This includes the unique educational opportunity for undergraduates to participate in research cruises in Antarctica and the development of a novel summer graduate course on fjord ecosystems. Internet based outreach activities will be enhanced and extended by the participation of a professional photographer who will produce magazine articles, websites, radio broadcasts, and other forms of public outreach on the fascinating Antarctic ecosystem. <br/><br/>This project will involve a 15-month field program to test mechanistic hypotheses concerning oceanographic and glaciological forcing, and phytoplankton and benthic community response in the Antarctic fjords. Those efforts will be followed by a coupled physical/biological modeling effort to evaluate the drivers of biogeochemical cycles in the fjords and to explore their potential sensitivity to enhanced meltwater and sediment inputs. Fieldwork over two oceanographic cruises will utilize moorings, weather stations, and glacial, sea-ice and seafloor time-lapse cameras to obtain an integrated view of fjord ecosystem processes. The field team will also make multiple shipboard measurements and will use towed and autonomous underwater vehicles to intensively evaluate fjord ecosystem structure and function during spring/summer and autumn seasons. These integrated field and modeling studies are expected to elucidate fundamental properties of water column and sea bottom ecosystem structure and function in the fjords, and to identify key physical-chemical-glaciological forcing in these rapidly warming ecosystems. | POLYGON((-66 -64,-65.6 -64,-65.2 -64,-64.8 -64,-64.4 -64,-64 -64,-63.6 -64,-63.2 -64,-62.8 -64,-62.4 -64,-62 -64,-62 -64.1,-62 -64.2,-62 -64.3,-62 -64.4,-62 -64.5,-62 -64.6,-62 -64.7,-62 -64.8,-62 -64.9,-62 -65,-62.4 -65,-62.8 -65,-63.2 -65,-63.6 -65,-64 -65,-64.4 -65,-64.8 -65,-65.2 -65,-65.6 -65,-66 -65,-66 -64.9,-66 -64.8,-66 -64.7,-66 -64.6,-66 -64.5,-66 -64.4,-66 -64.3,-66 -64.2,-66 -64.1,-66 -64)) | POINT(-64 -64.5) | false | false | ||||||||
Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise - IPY/ASEP
|
0632282 |
2015-09-25 | Jacobs, Stanley; Hellmer, Hartmut; Jenkins, Adrian | The Office of Polar Programs, Antarctic Science Division, Ocean & Climate Systems Program has made this award to support a multidisciplinary effort to study the upwelling of relatively warm deep water onto the Amundsen Sea continental shelf and how it relates to atmospheric forcing and bottom bathymetry and how the warm waters interact with both glacial and sea ice. This study constitutes a contribution of a coordinated research effort in the region known as the Amundsen Sea Embayment Project or ASEP. Previous work by the PI and others has shown that the West Antarctic Ice Sheet has been found to be melting faster, perhaps by orders of magnitude, than ice sheets elsewhere around Antarctica, excluding those on the Peninsula. Submarine channels that incise the continental shelf are thought to provide fairly direct access of relatively warm circum polar deep water to the cavity under the floating extension of the ice shelf. Interactions with sea ice en route can modify the upwelled waters. The proposed investigations build on previous efforts by the PI and colleagues to use hydrographic measurements to put quantitative bounds on the rate of glacial ice melt by relatively warm seawater. <br/>The region can be quite difficult to access due to sea ice conditions and previous hydrographic measurements have been restricted to the austral summer time frame. In this project it was proposed to obtain the first austral spring hydrographic data via CTD casts and XBT drops (September-October 2007) as part of a separately funded cruise (PI Steve Ackley) the primary focus of which is sea-ice conditions to be studied while the RV Nathanial B Palmer (RV NBP) drifts in the ice pack. This includes opportunistic sampling for pCO2 and TCO2. A dedicated cruise in austral summer 2009 will follow this opportunity. The principal objectives of the dedicated field program are to deploy a set of moorings with which to characterize temporal variability in warm water intrusions onto the shelf and to conduct repeat hydrographic surveying and swath mapping in targeted areas, ice conditions permitting. Automatic weather stations are to be deployed in concert with the program, sea-ice observations will be undertaken from the vessel and the marine cavity beneath the Pine Island may be explored pending availability of the British autonomous underwater vehicle Autosub 3. These combined ocean-sea ice-atmosphere observations are aimed at a range of model validations. A well-defined plan for making data available as well as archiving in a timely fashion should facilitate a variety of modeling efforts and so extend the value of the spatially limited observations. <br/>Broader impacts: This project is relevant to an International Polar Year research emphasis on ice sheet dynamics focusing in particular on the seaward ocean-ice sheet interactions. Such interactions must be clarified for understanding the potential for sea level rise by melt of the West Antarctic ice Sheet. The project entails substantive international partnerships (British Antarctic Survey and Alfred Wegner Institute) and complements other Amundsen Sea Embayment Project proposals covering other elements of ice sheet dynamics. The proposal includes partial support for 2 graduate students and 2 post docs. Participants from the Antarctic Artists and Writers program are to take part in the cruise and so aid in outreach. In addition, the project is to be represented in the Lamont-Doherty annual open house. | POLYGON((-129.6 -54.2,-124.44 -54.2,-119.28 -54.2,-114.12 -54.2,-108.96 -54.2,-103.8 -54.2,-98.64 -54.2,-93.48 -54.2,-88.32 -54.2,-83.16 -54.2,-78 -54.2,-78 -56.29,-78 -58.38,-78 -60.47,-78 -62.56,-78 -64.65,-78 -66.74,-78 -68.83,-78 -70.92,-78 -73.01,-78 -75.1,-83.16 -75.1,-88.32 -75.1,-93.48 -75.1,-98.64 -75.1,-103.8 -75.1,-108.96 -75.1,-114.12 -75.1,-119.28 -75.1,-124.44 -75.1,-129.6 -75.1,-129.6 -73.01,-129.6 -70.92,-129.6 -68.83,-129.6 -66.74,-129.6 -64.65,-129.6 -62.56,-129.6 -60.47,-129.6 -58.38,-129.6 -56.29,-129.6 -54.2)) | POINT(-103.8 -64.65) | false | false | ||||||||
The Amundsen Continental Shelf and the Antarctic Ice Sheet
|
0440775 |
2010-05-04 | Jacobs, Stanley |
|
This collaborative study between Columbia University and the Southampton Oceanography Centre will investigate the dynamics of warm water intrusions under antarctic floating ice shelves. The study will focus on the Amundsen Sea and Pine Island Glacier, and will document how this water gains access to the continental shelf, transports heat into the ice shelf cavities via deep, glacially-scoured troughs, and rises beneath the ice to drive basal melting. The resulting seawater-meltwater mixtures upwell near the ice fronts, contributing to the formation of atypical coastal polynyas with strong geochemical signatures. Multidecadal freshening downstream is consistent with thinning ice shelves, which may be triggering changes inland, increasing the flow of grounded ice into the sea. This work will be carried out in combination with parallel modeling, remote sensing and data based projects, in an effort to narrow uncertainties about the response of West Antarctic Ice Sheet to climate change. Using state-of-the-art facilities and instruments, this work will enhance knowledge of water mass production and modification, and the understanding of interactions between the ocean circulation, sea floor and ice shelves. The data and findings will be reported to publicly accessible archives and submitted for publication in the scientific literature. The information obtained should prove invaluable for the development and validation of general circulation models, needed to predict the future role of the Antarctic Ice Sheet in sea level change. | None | None | false | false | |||||||
Collaborative Research: Testing the Impact of Seasonality on Benthic Foraminifers as Paleoenvironmental Proxies.
|
0635531 |
2010-05-04 | Ishman, Scott |
|
This project studies seasonal variation in the abundance and shell composition of foraminifera from the northern Gerlache-southern Bransfield Straits region of the Western Antarctic Peninsula. Its goal is to improve interpretation of microfaunal and geochemical proxies for reconstruction of ancient ocean currents, climate, and ecologies. Since seasonal variation may greatly affect interpretation, this project focuses on the Antarctic region, where intense seasonality should generate a more obvious signal than at the less extreme mid-latitudes. The results should allow a better understanding of the coupling to seasonal productivity, as well as improve regional reconstructions.<br/>The broader impacts are graduate, undergraduate, and postdoctoral student education; as well as outreach to both the English and Spanish-speaking public. The work will also improve society's understanding of past climate change as an analogue to the future. | None | None | false | false | |||||||
Collaborative Research: Testing the Impact of Seasonality on Benthic Foraminifers as Paleoenvironmental Proxies.
|
0636474 |
2010-05-04 | Ishman, Scott |
|
This project studies seasonal variation in the abundance and shell composition of foraminifera from the northern Gerlache-southern Bransfield Straits region of the Western Antarctic Peninsula. Its goal is to improve interpretation of microfaunal and geochemical proxies for reconstruction of ancient ocean currents, climate, and ecologies. Since seasonal variation may greatly affect interpretation, this project focuses on the Antarctic region, where intense seasonality should generate a more obvious signal than at the less extreme mid-latitudes. The results should allow a better understanding of the coupling to seasonal productivity, as well as improve regional reconstructions.<br/>The broader impacts are graduate, undergraduate, and postdoctoral student education; as well as outreach to both the English and Spanish-speaking public. The work will also improve society's understanding of past climate change as an analogue to the future. | POLYGON((-64.919 -60.1023,-63.70316 -60.1023,-62.48732 -60.1023,-61.27148 -60.1023,-60.05564 -60.1023,-58.8398 -60.1023,-57.62396 -60.1023,-56.40812 -60.1023,-55.19228 -60.1023,-53.97644 -60.1023,-52.7606 -60.1023,-52.7606 -60.89191,-52.7606 -61.68152,-52.7606 -62.47113,-52.7606 -63.26074,-52.7606 -64.05035,-52.7606 -64.83996,-52.7606 -65.62957,-52.7606 -66.41918,-52.7606 -67.20879,-52.7606 -67.9984,-53.97644 -67.9984,-55.19228 -67.9984,-56.40812 -67.9984,-57.62396 -67.9984,-58.8398 -67.9984,-60.05564 -67.9984,-61.27148 -67.9984,-62.48732 -67.9984,-63.70316 -67.9984,-64.919 -67.9984,-64.919 -67.20879,-64.919 -66.41918,-64.919 -65.62957,-64.919 -64.83996,-64.919 -64.05035,-64.919 -63.26074,-64.919 -62.47113,-64.919 -61.68152,-64.919 -60.89191,-64.919 -60.1023)) | POINT(-58.8398 -64.05035) | false | false | |||||||
Shipboard Acoustic Doppler Current Profiling on R/V Nathaniel B. Palmer and R/V Lawrence M. Gould
|
9816226 |
2010-05-04 | Chereskin, Teresa |
|
This proposed work concerns the development and maintenance of a shipboard acoustic Doppler current profiler (ADCP) program on board the RVIB Nathaniel B. Palmer and the research vessel Laurence M. Gould, operated by the United States Antarctic Program. The objective is to generate a quality-controlled data set on upper ocean current velocities in a sparsely sampled and remote region, yet one that plays an important role in the global ocean circulation. Further goals are to develop the underway data collection program so that it can be maintained with a minimum of personnel and resources, and that the observations become publicly available in a timely manner. Long-term science objectives are to measure the seasonal and interannual variability of upper ocean currents within the Drake Passage, to combine this information with similar temperature observations to study the variability in the heat exchange, and to characterize the velocity structure in the Southern Ocean on a variety of time and space scales. | None | None | false | false | |||||||
Collaborative Proposal: U.S. SO GLOBEC Synthesis and Modeling: Circulation and Hydrographic Data Analyses and Modeling Studies
|
0523183 |
2009-06-22 | Padman, Laurence |
|
This collaborative study between Old Dominion University, the College of William and Mary, Earth and Space Research, and the Woods Hole Oceanographic Institution will examine the interactions among the ocean circulation, vertical mixing, sea ice, and marine biological processes on the western Antarctic Peninsula continental shelf. The study will result in analytical and numerical modeling tools that are based on, and will have been tested against the extensive data set obtained in the course of the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec). These models will provide insight into circulation and biological dynamics that will be applicable to the development and refinement of physical and biological models for other high latitude systems. <br/><br/>SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. It is currently in a synthesis and modeling phase. This collaborative project is concerned with the environmental setting and dynamics that constrain ecological processes, and will be integrated with other synthesis and modeling studies that deal with grazers, predators, and other higher trophic levels | POLYGON((-75 -65,-74 -65,-73 -65,-72 -65,-71 -65,-70 -65,-69 -65,-68 -65,-67 -65,-66 -65,-65 -65,-65 -65.6,-65 -66.2,-65 -66.8,-65 -67.4,-65 -68,-65 -68.6,-65 -69.2,-65 -69.8,-65 -70.4,-65 -71,-66 -71,-67 -71,-68 -71,-69 -71,-70 -71,-71 -71,-72 -71,-73 -71,-74 -71,-75 -71,-75 -70.4,-75 -69.8,-75 -69.2,-75 -68.6,-75 -68,-75 -67.4,-75 -66.8,-75 -66.2,-75 -65.6,-75 -65)) | POINT(-70 -68) | false | false | |||||||
Collaborative Research of Earth's Largest Icebergs
|
0229546 |
2008-09-19 | Okal, Emile; Aster, Richard; Bassis, Jeremy; Kim, Young-Jin; Bliss, Andrew; Sergienko, Olga; Thom, Jonathan; Scambos, Ted; Muto, Atsu; Brunt, Kelly; King, Matthew; Parker, Tim; Okal, Marianne; Cathles, Mac; MacAyeal, Douglas | This award supports the study of the drift and break-up of Earth's largest icebergs, which were recently released into the Ross Sea of Antarctica as a result of calving from the Ross Ice Shelf. The scientific goals of the study are to determine the physics of iceberg motion within the dynamic context of ocean currents, winds, and sea ice, which determine the forces that drive iceberg motion, and the relationship between the iceberg and geographically and topographically determined pinning points on which the iceberg can ground. In addition, the processes by which icebergs influence the local environments (e.g., sea ice conditions near Antarctica, access to penguin rookeries, air-sea heat exchange and upwelling at iceberg margins, nutrient fluxes) will be studied. The processes by which icebergs generate globally far-reaching ocean acoustic signals that are detected within the global seismic (earthquake) sensing networks will also be studied. A featured element of the scientific research activity will be a field effort to deploy automatic weather stations, seismometer arrays and GPS-tracking stations on several of the largest icebergs presently adrift, or about to be adrift, in the Ross Sea. Data generated and relayed via satellite to home institutions in the Midwest will motivate theoretical analysis and computer simulation; and will be archived on an "iceberg" website (http://amrc.ssec.wisc.edu/amrc/iceberg.html) for access by scientists and the general public. At the most broad level, the study is justified by the fact that icebergs released by the Antarctic ice sheet represent the largest movements of fresh water within the natural environment (e.g., several of the icebergs to be studied, B15, C19 and others calved since 2000 CE, represent over 6000 cubic kilometers of fresh water-an amount roughly equivalent to 100 years of the flow of the Nile River). A better understanding of the impact of iceberg drift through the environment, and particularly the impact on ocean stratification and mixing, is essential to the understanding of the abrupt global climate changes witnessed by proxy during the ice age and of concern under conditions of future greenhouse warming. On a more specific level, the study will generate a knowledge base useful for the better management of Antarctic logistical resources (e.g., the shipping lanes to McMurdo Station) that can occasionally be influenced by adverse effects icebergs have on sea ice conditions. | POINT(-178 -78) | POINT(-178 -78) | false | false |