{"dp_type": "Project", "free_text": "NSF/USA"}
[{"awards": "2032029 Gerken, Sarah", "bounds_geometry": "POLYGON((-70 -62,-68.5 -62,-67 -62,-65.5 -62,-64 -62,-62.5 -62,-61 -62,-59.5 -62,-58 -62,-56.5 -62,-55 -62,-55 -62.8,-55 -63.6,-55 -64.4,-55 -65.2,-55 -66,-55 -66.8,-55 -67.6,-55 -68.4,-55 -69.2,-55 -70,-56.5 -70,-58 -70,-59.5 -70,-61 -70,-62.5 -70,-64 -70,-65.5 -70,-67 -70,-68.5 -70,-70 -70,-70 -69.2,-70 -68.4,-70 -67.6,-70 -66.8,-70 -66,-70 -65.2,-70 -64.4,-70 -63.6,-70 -62.8,-70 -62))", "dataset_titles": "Expedition Data of NBP2303; Invertebrate Zoology", "datasets": [{"dataset_uid": "200385", "doi": "", "keywords": null, "people": null, "repository": "Alabama Museum of Natural History, University of Alabama, Tuscaloosa", "science_program": null, "title": "Invertebrate Zoology", "url": "https://arctos.database.museum/"}, {"dataset_uid": "200386", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP2303", "url": "https://www.rvdata.us/search/cruise/NBP2303"}], "date_created": "Mon, 13 Jun 2022 00:00:00 GMT", "description": "Ocean communities play an important role in determining the natural and human impacts of global change. The most conspicuous members of those communities are generally large vertebrates such as marine mammals and sea birds. But smaller animals often determine how the changes impact those charismatic animals. In the Antarctic, where some of the most dramatic physical changes are taking place, we do not know much about what small animals exist. This project will sample the sub-Antarctic and three different Antarctic seas with a hope of identifying, quantifying and discovering the variation in species of a group of small invertebrates. Comma shrimp, also called cumaceans, are rarely seen elsewhere but may be common and important in the communities of these locations. Antarctic sampling traditionally used gear that was not very effective at catching cumaceans so we do not know what species exist there and how common they are. This study will utilize modern sampling methods that will allow comma shrimp to be sampled. This will lead to discoveries about the diversity and abundance of comma shrimp, as well as their relationship to other invertebrate species. Major impacts of this work will be an enhancement of museum collections, the development of description of all the comma shrimp of Antarctica including new and unnamed species. Those contributions may be especially important as we strive to understand what drives the dynamics of charismatic vertebrates and fisheries that are tied to Antarctic food webs. This project will collect cumaceans from benthic samples from Argentinian waters, Bransfield Strait, and the Weddell Sea using benthic sleds. Specimens will be fixed in 95% ethanol and preserved in 95% ethanol and 5% glycerin to preserve both morphology and DNA. The specimens will form the basis for a monograph synthesizing current knowledge on the Subantarctic and Antarctic Cumacea, including diagnoses of all species, descriptions of new species, additional description for currently unknown life stages of known species, and vouchered gene sequences for all species collected. The monograph will include keys to all families, genera and species known from the region. Monographic revisions that include identification resources are typically useful for decades to a broad spectrum of other scientists. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -55.0, "geometry": "POINT(-62.5 -66)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; NSF/USA; ANIMALS/INVERTEBRATES; SHIPS; USAP-DC; NBP2303; Weddell Sea; Amd/Us; Antarctic Peninsula", "locations": "Antarctic Peninsula; Weddell Sea", "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Gerken, Sarah", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "Alabama Museum of Natural History, University of Alabama, Tuscaloosa", "repositories": "Alabama Museum of Natural History, University of Alabama, Tuscaloosa; R2R", "science_programs": null, "south": -70.0, "title": "RAPID: Monographing the Antarctic and Subantarctic Cumacea", "uid": "p0010338", "west": -70.0}, {"awards": "1643436 Donohoe, Aaron", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Partionining of CERES planetary albedo between atmospheric and surface reflection", "datasets": [{"dataset_uid": "601579", "doi": "10.15784/601579", "keywords": "Antarctica; Southern Ocean", "people": "Donohoe, Aaron", "repository": "USAP-DC", "science_program": null, "title": "Partionining of CERES planetary albedo between atmospheric and surface reflection", "url": "https://www.usap-dc.org/view/dataset/601579"}], "date_created": "Fri, 10 Jun 2022 00:00:00 GMT", "description": "This project will use observations and coupled climate model simulations to examine the causes of sea ice variability. Sea ice in the Southern Ocean has increased in area over the observational record but researchers have yet to agree on the cause. Researchers suggests that changes in surface winds, upper-ocean freshening, or internal ocean/atmosphere variability could be the main driver for the increase in sea ice area. This project will determine how much of the change in sea ice area from year to year is due to oceanic, atmospheric, and radiative processes. Reconciling the observation-based understanding with model representations of sea ice variability will improve confidence in projections of future changes in Southern Ocean sea ice. The goal of this proposal is to improve our understanding of the processes that drive Southern Ocean sea ice year-to-year variability and long term trends. This knowledge will provide insight into how Southern Ocean sea ice responded to greenhouse gas and ozone forcing in the past and how it will respond in the future. The energy budget of the coupled cryosphere/ocean/atmosphere climate system will be used as a framework to disentangle drivers and responses during sea ice loss events. The technique consists of: (i) calculating the coupled energy budget of the climate system at the monthly timescale, (ii) isolating the radiative impact of sea ice variability from the radiative impact of cloud variability in the observed satellite radiation record and (iii) analyzing the vertical structure of atmospheric energy transport to determine the vertical profile of energy transport into the atmospheric column. This framework will allow the investigators to distinguish whether ice loss events are triggered by oceanic processes, atmospheric dynamics, or radiative processes. Preliminary results show that a diversity of mechanisms can drive Southern Ocean sea ice variability in coupled climate models whereas observed sea ice variability appears to be dominated by atmospheric dynamics. The exploration of biases between models and observations in both the mean state and in specific processes will yield more accurate projections of the future of sea ice in the Southern Ocean.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; AMD; Amd/Us; SEA ICE; United States Of America; COMPUTERS; ATMOSPHERIC WINDS; ATMOSPHERIC RADIATION; NSF/USA", "locations": "United States Of America", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Donohoe, Aaron; Schweiger, Axel", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "What Processes Drive Southern Ocean Sea Ice Variability and Trends? Insights from the Energy Budget of the Coupled Cryosphere-ocean-atmosphere System", "uid": "p0010336", "west": -180.0}, {"awards": "1947040 Postlethwait, John", "bounds_geometry": "POLYGON((-65.3 -63.3,-65 -63.3,-64.7 -63.3,-64.4 -63.3,-64.1 -63.3,-63.8 -63.3,-63.5 -63.3,-63.2 -63.3,-62.9 -63.3,-62.6 -63.3,-62.3 -63.3,-62.3 -63.47,-62.3 -63.64,-62.3 -63.81,-62.3 -63.98,-62.3 -64.15,-62.3 -64.32,-62.3 -64.49,-62.3 -64.66,-62.3 -64.83,-62.3 -65,-62.6 -65,-62.9 -65,-63.2 -65,-63.5 -65,-63.8 -65,-64.1 -65,-64.4 -65,-64.7 -65,-65 -65,-65.3 -65,-65.3 -64.83,-65.3 -64.66,-65.3 -64.49,-65.3 -64.32,-65.3 -64.15,-65.3 -63.98,-65.3 -63.81,-65.3 -63.64,-65.3 -63.47,-65.3 -63.3))", "dataset_titles": "18 SSU rDNA type sequences for Notoxcellia coronata (nov. sp.); 18 SSU rDNA type sequences for Notoxcellia picta (nov. sp.); Expedition Data of LMG1805; Fish pictures and skin pathology of X-cell infection in Trematomus scotti.; Histopathology of X-cell xenomas in Trematomus scotti and Nototheniops larseni.; In situ hybridization of X-cell and host fish 18S SSU rRNA in alternate sections of tumor xenomas.; Metagenomic analysis of apparently healthy and tumor samples using Kaiju software ; microMRI analyses of Trematomus scotti Tsco_18_08 with X-cell xenomas; Morphological and pathological data of Trematomus scotti specimens captured on May 30th, 2018 in Andvord Bay.; Morphological, fecundity, and age data of Trematomus scotti from Andvord Bay and the Weddell Sea.; Nomenclatural Act for the genus Notoxcellia; Nomenclatural Act for the species Notoxcellia coronata; Nomenclatural Act for the species Notoxcellia picta; Phylogenetic Analysis of Notoxcellia species.; Raw Illumina sequencing reads from skin tumors and visually healthy skins from Trematomus scotti and Nototheniops larseni; Temperature profiles at five fishing locations on the West Antarctic Peninsula during austral fall 2018.; Trematomus scotti mt-co1 sequence alignment.; Trematomus scotti with X-cell xenomas", "datasets": [{"dataset_uid": "601893", "doi": "10.15784/601893", "keywords": "Age; Antarctica; Biota; Cryonotothenioid; Cryosphere; Fecundity; Growth; Length; Nototheniidae; Oceans; Otolith; Reproduction; Weight", "people": "Cal\u00ec, Federico; Valdivieso, Alejandro; Desvignes, Thomas; La Mesa, Mario; Postlethwait, John; Papetti, Chiara; Detrich, H. William; Mark, Felix C; Lucassen, Magnus; Le Francois, Nathalie; Grondin, Jacob; Streeter, Margaret; Riginella, Emilio; Sguotti, Camilla", "repository": "USAP-DC", "science_program": null, "title": "Morphological, fecundity, and age data of Trematomus scotti from Andvord Bay and the Weddell Sea.", "url": "https://www.usap-dc.org/view/dataset/601893"}, {"dataset_uid": "200262", "doi": "", "keywords": null, "people": null, "repository": "MorphoSource", "science_program": null, "title": "Trematomus scotti with X-cell xenomas", "url": "https://www.morphosource.org/projects/000405843?locale=en"}, {"dataset_uid": "200443", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of LMG1805", "url": "https://doi.org/10.7284/907930"}, {"dataset_uid": "200254", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of LMG1805", "url": "https://www.rvdata.us/search/cruise/LMG1805"}, {"dataset_uid": "601539", "doi": "10.15784/601539", "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "people": "Postlethwait, John; Desvignes, Thomas", "repository": "USAP-DC", "science_program": null, "title": "In situ hybridization of X-cell and host fish 18S SSU rRNA in alternate sections of tumor xenomas.", "url": "https://www.usap-dc.org/view/dataset/601539"}, {"dataset_uid": "601538", "doi": "10.15784/601538", "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "people": "Desvignes, Thomas; Postlethwait, John; Lauridsen, Henrik", "repository": "USAP-DC", "science_program": null, "title": "microMRI analyses of Trematomus scotti Tsco_18_08 with X-cell xenomas", "url": "https://www.usap-dc.org/view/dataset/601538"}, {"dataset_uid": "601496", "doi": "10.15784/601496", "keywords": "Andvord Bay; Antarctica; Fish", "people": "Lauridsen, Henrik; Postlethwait, John; Desvignes, Thomas", "repository": "USAP-DC", "science_program": null, "title": "Fish pictures and skin pathology of X-cell infection in Trematomus scotti.", "url": "https://www.usap-dc.org/view/dataset/601496"}, {"dataset_uid": "601537", "doi": "10.15784/601537", "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "people": "Varsani, Arvind; Postlethwait, John; Desvignes, Thomas; Fontenele, Rafaela S. ; Kraberger, Simona ", "repository": "USAP-DC", "science_program": null, "title": "Metagenomic analysis of apparently healthy and tumor samples using Kaiju software ", "url": "https://www.usap-dc.org/view/dataset/601537"}, {"dataset_uid": "601536", "doi": "10.15784/601536", "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "people": "Desvignes, Thomas; Murray, Katrina N. ; Postlethwait, John; Kent, Michael L. ", "repository": "USAP-DC", "science_program": null, "title": "Histopathology of X-cell xenomas in Trematomus scotti and Nototheniops larseni.", "url": "https://www.usap-dc.org/view/dataset/601536"}, {"dataset_uid": "601495", "doi": "10.15784/601495", "keywords": "Antarctica; Antarctic Peninsula", "people": "Desvignes, Thomas", "repository": "USAP-DC", "science_program": null, "title": "Temperature profiles at five fishing locations on the West Antarctic Peninsula during austral fall 2018.", "url": "https://www.usap-dc.org/view/dataset/601495"}, {"dataset_uid": "601501", "doi": "10.15784/601501", "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Biota; Notoxcellia Coronata; Notoxcellia Picta; Oceans; Perkinsozoa; Xcellidae", "people": "Postlethwait, John; Varsani, Arvind; Desvignes, Thomas", "repository": "USAP-DC", "science_program": null, "title": "Phylogenetic Analysis of Notoxcellia species.", "url": "https://www.usap-dc.org/view/dataset/601501"}, {"dataset_uid": "601494", "doi": "10.15784/601494", "keywords": "Andvord Bay; Antarctica; Fish", "people": "Postlethwait, John; Desvignes, Thomas; Lauridsen, Henrik; Le Francois, Nathalie", "repository": "USAP-DC", "science_program": null, "title": "Morphological and pathological data of Trematomus scotti specimens captured on May 30th, 2018 in Andvord Bay.", "url": "https://www.usap-dc.org/view/dataset/601494"}, {"dataset_uid": "200277", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "Raw Illumina sequencing reads from skin tumors and visually healthy skins from Trematomus scotti and Nototheniops larseni", "url": "https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA789574"}, {"dataset_uid": "200276", "doi": "", "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "18 SSU rDNA type sequences for Notoxcellia picta (nov. sp.)", "url": "https://www.ncbi.nlm.nih.gov/nuccore/OL630145"}, {"dataset_uid": "200275", "doi": "", "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "18 SSU rDNA type sequences for Notoxcellia coronata (nov. sp.)", "url": "https://www.ncbi.nlm.nih.gov/nuccore/OL630144"}, {"dataset_uid": "601892", "doi": "10.15784/601892", "keywords": "Antarctica; Biota; CO1; COX1; Cryonotothenioid; Cryosphere; Genetic Sequences; LMG1805; MT-CO1; Nototheniidae; Notothenioid; Population Genetics", "people": "Papetti, Chiara; Schiavon, Luca ; Desvignes, Thomas; Postlethwait, John", "repository": "USAP-DC", "science_program": null, "title": "Trematomus scotti mt-co1 sequence alignment.", "url": "https://www.usap-dc.org/view/dataset/601892"}, {"dataset_uid": "200384", "doi": "", "keywords": null, "people": null, "repository": "ZooBank", "science_program": null, "title": "Nomenclatural Act for the species Notoxcellia picta", "url": "https://zoobank.org/NomenclaturalActs/31062dd2-7202-47fa-86e0-7be5c55ac0e2"}, {"dataset_uid": "200382", "doi": "", "keywords": null, "people": null, "repository": "ZooBank", "science_program": null, "title": "Nomenclatural Act for the genus Notoxcellia", "url": "https://zoobank.org/NomenclaturalActs/5cf9609e-0111-4386-8518-bd50b5bdde0e"}, {"dataset_uid": "200383", "doi": "", "keywords": null, "people": null, "repository": "ZooBank", "science_program": null, "title": "Nomenclatural Act for the species Notoxcellia coronata", "url": "https://zoobank.org/NomenclaturalActs/194d91b2-e268-4238-89e2-385819f2c35b"}], "date_created": "Thu, 01 Jul 2021 00:00:00 GMT", "description": "Antarctica\u2019s native animals face increasing stressors from warming oceans. A key unanswered question is how Antarctic life will respond. If warmer waters contribute to fish disease susceptibility, then iconic Antarctic predators they support, including penguins, seals, and killer whales, will suffer. A recent scientific cruise on the Antarctic peninsula encountered a population of crowned notothen fish that were plagued by pink, wart-like tumors that covered 10% to 30% of the body surface on about a third of the animals. Similar tumors had not previously been reported, suggesting that this might be a new disease that threatens Antarctic fish. The goal of proposed work is to identify the biological origins of the tumor and how it affects cell function and organismal physiology. The work is potentially transformative because it studies what might be a harbinger of Antarctic fish responses to global climate change. The project has several Broader Impacts. First, it will publicize the tumors. Because Antarctic researchers have never reported a tumor epidemic, the community must become aware of the outbreak and the tumor\u2019s distinct diagnostic features. Second, dissemination of project results will stir further research to determine if this is an isolated event or is becoming a general phenomenon, and thus a broad concern for Antarctic ecosystems. Third, assays the project develops to detect the disease will enhance research infrastructure. Finally, work will broaden the nation\u2019s scientific workforce by providing authentic research experiences for high school students and undergraduates from groups underrepresented in scientific research. The overall goal of proposed work is to identify the biological origins of the neoplasia and how it affects cell function and physiology. Aim 1 is to identify the pathogenic agent. Aim 1a is to test the hypothesis that a virus causes the neoplasia by isolating and sequencing viral nucleic acids from neoplasias and from animals that are not visibly affected. Aim 1b is to test neoplasias for bacteria, fungi, protozoa, or invertebrate parasites not present in healthy skin. Aim 2 is to learn how the disease alters the biology of affected cells. Aim 2a is to examine histological sections of affected and control tissues to see if the neoplasias are similar to previously reported skin diseases in temperate water fishes. Aim 2b is to examine the function of neoplastic cells by RNA-seq transcriptomics to identify genes that are differentially expressed in neoplasias and normal skin. Achieving these Aims will advance knowledge by identifying the causes and consequences of an outbreak of neoplasias in Antarctic fish. Proposed work is significant because it is the first to investigate a neoplasia cluster in Antarctic fish. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -62.3, "geometry": "POINT(-63.8 -64.15)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; Andvord Bay; Amd/Us; PROTISTS; BENTHIC; FISH; Dallmann Bay; USAP-DC; NSF/USA; AMD", "locations": "Andvord Bay; Dallmann Bay", "north": -63.3, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Postlethwait, John; Varsani, Arvind; Desvignes, Thomas", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "GenBank; MorphoSource; NCBI SRA; R2R; USAP-DC; ZooBank", "science_programs": null, "south": -65.0, "title": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish ", "uid": "p0010221", "west": -65.3}, {"awards": "2022920 Zhan, Zhongwen", "bounds_geometry": "POINT(180 -90)", "dataset_titles": null, "datasets": null, "date_created": "Wed, 30 Jun 2021 00:00:00 GMT", "description": "This EAGER award will explore the Distributed Acoustic Sensing emerging technology that transforms a single optical fiber into a massively multichannel seismic array. This technology may provide a scalable and affordable way to deploy dense seismic networks. Experimental Distributed Acoustic Sensing equipment will be tested in the Antarctic exploiting unused (dark) strands in the existing fiber-optic cable that connects the U.S. Amundsen-Scott South Pole Station to the Remote Earth Science and Seismological Observatory (SPRESSO) located about 7.5-km from the main station. Upon processing the seismic signals, the Distributed Acoustic Sensing may provide a new tool to structurally image firn, glacial ice, and glacial bedrock. Learning how Distributed Acoustic Sensing would work on the ice sheet, scientists can then check seismological signals propagating through the Earth\u0027s crust and mantle variously using natural icequakes and earthquakes events in the surrounding area. The investigators propose to convert at least 8 km of pre-existing fiber optic cable at the Amundsen-Scott South Pole station into more than 8000 sensors to explore the potential of Distributed acoustic sensing (DAS) as a breakthrough data engine for polar seismology. The DAS array will operate for about one year, allowing them to (1) evaluate and calibrate the performance of the DAS technology in the extreme cold, very low noise (including during the exceptionally quiet austral winter) polar plateau environment; (2) record and analyze local ambient and transient signals from ice, anthropogenic signals, ocean microseism, atmospheric and other processes, as well as to study local, regional, and teleseismic tectonic events; (3) structurally image the firn, glacial ice, glacial bed, crust, and mantle, variously using active sources, ambient seismic noise, and natural icequake and earthquake events. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(180 -90)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; South Pole Station; GLACIERS/ICE SHEETS; NSF/USA; Amd/Us; SEISMIC SURFACE WAVES; SEISMOLOGICAL STATIONS; USAP-DC", "locations": "South Pole Station", "north": -90.0, "nsf_funding_programs": "Antarctic Instrumentation and Facilities", "paleo_time": null, "persons": "Zhan, Zhongwen", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS", "repositories": null, "science_programs": null, "south": -90.0, "title": "EAGER: Pilot Fiber Seismic Networks at the Amundsen-Scott South Pole Station", "uid": "p0010214", "west": 180.0}, {"awards": "1753101 Bernard, Kim", "bounds_geometry": "POLYGON((-65 -64,-64.7 -64,-64.4 -64,-64.1 -64,-63.8 -64,-63.5 -64,-63.2 -64,-62.9 -64,-62.6 -64,-62.3 -64,-62 -64,-62 -64.1,-62 -64.2,-62 -64.3,-62 -64.4,-62 -64.5,-62 -64.6,-62 -64.7,-62 -64.8,-62 -64.9,-62 -65,-62.3 -65,-62.6 -65,-62.9 -65,-63.2 -65,-63.5 -65,-63.8 -65,-64.1 -65,-64.4 -65,-64.7 -65,-65 -65,-65 -64.9,-65 -64.8,-65 -64.7,-65 -64.6,-65 -64.5,-65 -64.4,-65 -64.3,-65 -64.2,-65 -64.1,-65 -64))", "dataset_titles": "2019 Krill Carbon Content; 2019 Krill Morphometrics; CAREER: \"The Omnivores Dilemma\": The Effect of Autumn Diet on Winter Physiology and Condition of Juvenile Antarctic Krill; Expedition of NBP2205; Feeding Experiment - Krill Lipid Classes; Gerlache Strait Krill Demographics", "datasets": [{"dataset_uid": "200369", "doi": "10.7284/909918", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition of NBP2205", "url": "https://www.rvdata.us/search/cruise/NBP2205"}, {"dataset_uid": "601706", "doi": "10.15784/601706", "keywords": "Abundance; Antarctica; Antarctic Krill", "people": "Bernard, Kim", "repository": "USAP-DC", "science_program": null, "title": "Gerlache Strait Krill Demographics", "url": "https://www.usap-dc.org/view/dataset/601706"}, {"dataset_uid": "601707", "doi": "10.15784/601707", "keywords": "Antarctica; Antarctic Krill; Palmer Station; Winter", "people": "Bernard, Kim", "repository": "USAP-DC", "science_program": null, "title": "Feeding Experiment - Krill Lipid Classes", "url": "https://www.usap-dc.org/view/dataset/601707"}, {"dataset_uid": "601708", "doi": "10.15784/601708", "keywords": "Antarctica; Antarctic Krill; Palmer Station; Winter", "people": "Bernard, Kim", "repository": "USAP-DC", "science_program": null, "title": "2019 Krill Morphometrics", "url": "https://www.usap-dc.org/view/dataset/601708"}, {"dataset_uid": "601709", "doi": "10.15784/601709", "keywords": "Antarctica; Antarctic Krill; Palmer Station; Winter", "people": "Bernard, Kim", "repository": "USAP-DC", "science_program": null, "title": "2019 Krill Carbon Content", "url": "https://www.usap-dc.org/view/dataset/601709"}, {"dataset_uid": "200368", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "CAREER: \"The Omnivores Dilemma\": The Effect of Autumn Diet on Winter Physiology and Condition of Juvenile Antarctic Krill", "url": "https://www.bco-dmo.org/project/824760"}], "date_created": "Mon, 31 Aug 2020 00:00:00 GMT", "description": "Antarctic krill are essential in the Southern Ocean as they support vast numbers of marine mammals, seabirds and fishes, some of which feed almost exclusively on krill. Antarctic krill also constitute a target species for industrial fisheries in the Southern Ocean. The success of Antarctic krill populations is largely determined by the ability of their young to survive the long, dark winter, where food is extremely scarce. To survive the long-dark winter, young Antarctic krill must have a high-quality diet in autumn. However, warming in certain parts of Antarctica is changing the dynamics and quality of the polar food web, resulting in a shift in the type of food available to young krill in autumn. It is not yet clear how these dynamic changes are affecting the ability of krill to survive the winter. This project aims to fill an important gap in current knowledge on an understudied stage of the Antarctic krill life cycle, the 1-year old juveniles. The results derived from this work will contribute to the development of improved bioenergetic, population and ecosystem models, and will advance current scientific understanding of this critical Antarctic species. This CAREER project\u0027s core education and outreach objectives seek to enhance education and increase diversity within STEM fields. An undergraduate course will be developed that will integrate undergraduate research and writing in way that promotes authentic scientific inquiry and analysis of original research data by the students, and that enhances their communication skills. A graduate course will be developed that will promote students\u0027 skills in communicating their own research to a non-scientific audience. Graduate students will be supported through the proposed study and will gain valuable research experience. Traditionally underserved undergraduate students will be recruited to conduct independent research under the umbrella of the larger project. Throughout each field season, the research team will maintain a weekly blog that will include short videos, photographs and text highlighting the research, as well as their experiences living and working in Antarctica. The aim of the blog will be to engage the public and increase awareness and understanding of Antarctic ecosystems and the impact of warming, and of the scientific process of research and discovery. In this 5-year CAREER project, the investigator will use a combination of empirical and theoretical techniques to assess the effects of diet on 1-year old krill in autumn-winter. The research is centered on four hypotheses: (H1) autumn diet affects 1-year old krill physiology and condition at the onset of winter; (H2) autumn diet has an effect on winter physiology and condition of 1-year old krill under variable winter food conditions; (H3) the rate of change in physiology and condition of 1-year old krill from autumn to winter is dependent on autumn diet; and (H4) the winter energy budget of 1-year old krill will vary between years and will be dependent on autumn diet. Long-term feeding experiments and in situ sampling will be used to measure changes in the physiology and condition of krill in relation to their diet and feeding environment. Empirically-derived data will be used to develop theoretical models of growth rates and energy budgets to determine how diet will influence the overwinter survival of 1-year old krill. The research will be integrated with an education and outreach plan to (1) develop engaging undergraduate and graduate courses, (2) train and develop young scientists for careers in polar research, and (3) engage the public and increase their awareness and understanding. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -62.0, "geometry": "POINT(-63.5 -64.5)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctic Peninsula; AMD; FIELD INVESTIGATION; ANIMALS/INVERTEBRATES; PELAGIC; Anvers Island; Amd/Us; USAP-DC; NSF/USA", "locations": "Antarctic Peninsula; Anvers Island", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Bernard, Kim", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "R2R", "repositories": "BCO-DMO; R2R; USAP-DC", "science_programs": null, "south": -65.0, "title": "CAREER: \"The Omnivore\u0027s Dilemma\": The Effect of Autumn Diet on Winter Physiology and Condition of Juvenile Antarctic Krill", "uid": "p0010124", "west": -65.0}, {"awards": "1341464 Robinson, Rebecca; 1341432 Brzezinski, Mark", "bounds_geometry": "POLYGON((-175 -54,-174 -54,-173 -54,-172 -54,-171 -54,-170 -54,-169 -54,-168 -54,-167 -54,-166 -54,-165 -54,-165 -55.3,-165 -56.6,-165 -57.9,-165 -59.2,-165 -60.5,-165 -61.8,-165 -63.1,-165 -64.4,-165 -65.7,-165 -67,-166 -67,-167 -67,-168 -67,-169 -67,-170 -67,-171 -67,-172 -67,-173 -67,-174 -67,-175 -67,-175 -65.7,-175 -64.4,-175 -63.1,-175 -61.8,-175 -60.5,-175 -59.2,-175 -57.9,-175 -56.6,-175 -55.3,-175 -54))", "dataset_titles": "Diatom assemblage counts from NBP17-02 shipboard carboy experiments; Dissolved nutrient profiles from along 170\u00b0W between 67 and 54\u00b0S; Expedition Data of NBP1702; Particle composition measurements from along 170\u00b0W between 67-54\u00b0S; Particulate silicon and nitrogen concentrations and isotopic composition measurements in McLane pump profiles from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean; Silicon concentration and isotopic composition measurements in pore waters and sediments from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean; Surface Southern Ocean community growouts to evaluate the diatom bound N isotope proxy", "datasets": [{"dataset_uid": "601522", "doi": "10.15784/601522", "keywords": "Antarctica; Nitrogen Isotopes; Oceans; Paleoproxies; Southern Ocean", "people": "Kelly, Roger; Jones, Colin; Robinson, Rebecca; Brzezinski, Mark; Riesselman, Christina; Robinson, Rebecca ; Closset, Ivia", "repository": "USAP-DC", "science_program": null, "title": "Surface Southern Ocean community growouts to evaluate the diatom bound N isotope proxy", "url": "https://www.usap-dc.org/view/dataset/601522"}, {"dataset_uid": "200126", "doi": "10.7284/907211", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP1702", "url": "https://www.rvdata.us/search/cruise/NBP1702"}, {"dataset_uid": "601269", "doi": "10.15784/601269", "keywords": "Antarctica; Chlorophyll; Southern Ocean", "people": "Brzezinski, Mark; Robinson, Rebecca", "repository": "USAP-DC", "science_program": null, "title": "Dissolved nutrient profiles from along 170\u00b0W between 67 and 54\u00b0S", "url": "https://www.usap-dc.org/view/dataset/601269"}, {"dataset_uid": "601276", "doi": "10.15784/601276", "keywords": "Antarctica; Biogenic Silica; Nitrogen Isotopes; Southern Ocean", "people": "Brzezinski, Mark; Robinson, Rebecca", "repository": "USAP-DC", "science_program": null, "title": "Particle composition measurements from along 170\u00b0W between 67-54\u00b0S", "url": "https://www.usap-dc.org/view/dataset/601276"}, {"dataset_uid": "601576", "doi": "10.15784/601576", "keywords": "Antarctica; Biogenic Silica; Chemistry:sediment; Chemistry:Sediment; Diatom; Diatom Bound; Lithogenic Silica; Marine Geoscience; NBP1702; Nitrogen Isotopes; Silicon Cycle; Silicon Stable Isotope; Southern Ocean", "people": "Robinson, Rebecca; Jones, Janice L.; Closset, Ivia; Brzezinski, Mark", "repository": "USAP-DC", "science_program": null, "title": " Particulate silicon and nitrogen concentrations and isotopic composition measurements in McLane pump profiles from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean", "url": "https://www.usap-dc.org/view/dataset/601576"}, {"dataset_uid": "601562", "doi": "10.15784/601562", "keywords": "Antarctica; Biogenic Silica; Chemistry:sediment; Chemistry:Sediment; Lithogenic Silica; Marine Geoscience; NBP1702; Pore Water Biogeochemistry; Sediment; Silicon Cycle; Silicon Stable Isotope; Southern Ocean", "people": "Jones, Janice L.; Closset, Ivia; Brzezinski, Mark", "repository": "USAP-DC", "science_program": null, "title": "Silicon concentration and isotopic composition measurements in pore waters and sediments from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean", "url": "https://www.usap-dc.org/view/dataset/601562"}, {"dataset_uid": "601523", "doi": "10.15784/601523", "keywords": "Antarctica; Biota; Carboy Growouts; Diatom; Diatom Assemblage Data; NBP1702; Oceans; R/v Nathaniel B. Palmer; Southern Ocean; Southern Ocean Summer", "people": "Riesselman, Christina; Robinson, Rebecca; Jones, Colin; Robinson, Rebecca ", "repository": "USAP-DC", "science_program": null, "title": "Diatom assemblage counts from NBP17-02 shipboard carboy experiments", "url": "https://www.usap-dc.org/view/dataset/601523"}], "date_created": "Wed, 26 Feb 2020 00:00:00 GMT", "description": "Collaborative Proposal: A field and laboratory examination of the diatom N and Si isotope proxies: Implications for assessing the Southern Ocean biological pump The rise in atmospheric carbon dioxide concentrations and associated climate changes make understanding the role of the ocean in large scale carbon cycle a priority. Geologic samples allow exploration of potential mechanisms for carbon dioxide drawdown during glacial periods through the use of geochemical proxies. Nitrogen and silicon isotope signatures from fossil diatoms (microscopic plants) are used to investigate changes in the physical supply and biological demand for nutrients (like nitrogen and silicon and carbon) in the Southern Ocean. The project will evaluate the use the nitrogen and silicon isotope proxies through a series of laboratory experiments and Southern Ocean field sampling. The results will provide quantification of real relationships between nitrogen and silicon isotopes and nutrient usage in the Southern Ocean and allow exploration of the role of other factors, including biological diversity, ice cover, and mixing, in altering the chemical signatures recorded by diatoms. Seafloor sediment samples will be used to evaluate how well the signal created in the water column is recorded by fossil diatoms buried in the seafloor. Improving the nutrient isotope proxies will allow for a more quantitative understanding of the role of polar biology in regulating natural variation in atmospheric carbon dioxide. The project will also result in the training of a graduate student and development of outreach materials targeting a broad popular audience. This project seeks to test the fidelity of the diatom nitrogen and silicon isotope proxies, two commonly used paleoceanographic tools for investigating the role of the Southern Ocean biological pump in regulating atmospheric CO2 concentrations on glacial-interglacial timescales. Existing ground-truthing data, including culture experiments, surface sediment data and downcore reconstructions, all suggest that nutrient utilization is the primary driver of isotopic variation in the Southern Ocean. However, strong contribution of interspecific variation is implied by recent culture results. Moreover, field and laboratory studies present some contradictory results in terms of the relative importance of interspecific variation and of inferred post-depositional alteration of the nutrient isotope signals. Here, a first order test of the N and Si diatom nutrient isotope paleo-proxies, involving water column dissolved and particulate sampling and laboratory culturing of field-isolates, is proposed. Southern Ocean water, biomass, live diatoms and fossil diatom sampling will be conducted to investigate species and assemblage related variability in diatom nitrogen and silicon isotopes and their relationship to surface nutrient fields and early diagenesis. Access to fresh materials produced in an analogous environmental context to the sediments of primary interest is critical for making robust paleoceanographic reconstructions. Field sampling will occur along 175\u00b0W, transecting the Antarctic Circumpolar Current from the subtropics to the marginal ice edge. Collection of water, sinking/suspended particles and multi-core samples from 13 stations and 3 shipboard incubation experiments will be used to test four proposed hypotheses that together evaluate the significance of existing culture results and seek to allow the best use of diatom nutrient isotope proxies in evaluating the biological pump.", "east": -165.0, "geometry": "POINT(-170 -60.5)", "instruments": null, "is_usap_dc": true, "keywords": "Southern Ocean; AMD; NITROGEN ISOTOPES; R/V NBP; NSF/USA; NUTRIENTS; USAP-DC; Amd/Us", "locations": "Southern Ocean", "north": -54.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Robinson, Rebecca; Brzezinski, Mark", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -67.0, "title": "Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump", "uid": "p0010083", "west": -175.0}, {"awards": "1745036 Marchetti, Adrian; 1744760 Hopkinson, Brian", "bounds_geometry": "POLYGON((-77 -61,-75.2 -61,-73.4 -61,-71.6 -61,-69.8 -61,-68 -61,-66.2 -61,-64.4 -61,-62.6 -61,-60.8 -61,-59 -61,-59 -62.1,-59 -63.2,-59 -64.3,-59 -65.4,-59 -66.5,-59 -67.6,-59 -68.7,-59 -69.8,-59 -70.9,-59 -72,-60.8 -72,-62.6 -72,-64.4 -72,-66.2 -72,-68 -72,-69.8 -72,-71.6 -72,-73.4 -72,-75.2 -72,-77 -72,-77 -70.9,-77 -69.8,-77 -68.7,-77 -67.6,-77 -66.5,-77 -65.4,-77 -64.3,-77 -63.2,-77 -62.1,-77 -61))", "dataset_titles": "Photosynthetic physiological data of Proteorhodopsin containing diatoms under differing iron availabilities", "datasets": [{"dataset_uid": "601530", "doi": "10.15784/601530", "keywords": "Antarctica; Diatom", "people": "Andrew, Sarah; Hopkinson, Brian; Plumb, Kaylie; Marchetti, Adrian", "repository": "USAP-DC", "science_program": null, "title": "Photosynthetic physiological data of Proteorhodopsin containing diatoms under differing iron availabilities", "url": "https://www.usap-dc.org/view/dataset/601530"}], "date_created": "Sun, 16 Jun 2019 00:00:00 GMT", "description": "Proteorhodopsins are proteins that are embedded in membranes that can act as light-driven proton pumps to generate energy for metabolism and growth. The discovery of proteorhodopsins in many diverse marine prokaryotic microbes has initiated extensive investigation into their distributions and functional roles. Recently, a proton-pumping, rhodopsin-like gene was identified in diatoms, a group of marine phytoplankton that dominates the base of the food web in much of the Southern Ocean. Since this time, proteorhodopsins have been identified in many, but not all, diatom species. The proteorhodopsin gene is more frequently found in diatoms residing in cold, iron-limited regions of the ocean, including the Southern Ocean, than in diatoms from other regions. It is thought that proteorhodopsin is especially suited for use energy production in the Southern Ocean since it uses no iron and its reaction rate is insensitive to temperature (unlike conventional photosynthesis). The overall objective of the project is to characterize Antarctic diatom-proteorhodopsin and determine its role in the adaptation of these diatoms to low iron concentrations and extremely low temperatures found in Antarctic waters. This research will provide new information on the genetic underpinnings that contribute to the success of diatoms in the Southern Ocean and how this unique molecule may play a pivotal role in providing energy to the base of the Antarctic food web. Broader impact activities are aimed to promote the teaching and learning of polar marine-sciences related topics by translating research objectives into readily accessible educational materials for middle-school students. This project will combine molecular, biochemical and physiological measurements to determine the role and importance of proteorhodopsin in diatom isolates from the Western Antarctic Peninsula region. Proton-pumping characteristics and pumping rates of proteorhodopsin as a function of light intensity and temperature, the resultant proteorhodopsin-linked intracellular ATP production rates, and the cellular localization of the protein will be determined. The project will examine the environmental conditions where Antarctic diatom-proteorhodopsin is most highly expressed and construct a cellular energy budget that includes diatom-proteorhodopsin when grown under these different environmental conditions. Estimates of the energy flux generated by proteorhodopsin will be compared to total energy generation by the photosynthetic light reactions and metabolically coupled respiration rates. Finally, the characteristics and gene expression of diatom-proteorhodopsin in Antarctic diatoms and a proteorhodopsin-containing diatom isolates from temperate regions will be compared in order to determine if there is a preferential dependence on energy production through proteorhodopsin in diatoms residing in cold, iron-limited regions of the ocean. Educational activities will be performed in collaboration with the Morehead Planetarium and Science Center who co-ordinates the SciVentures program, a popular summer camp for middle-school students from Chapel Hill and surrounding areas. In collaboration with the Planetarium, the researchers will develop activities that focus on phytoplankton and the important role they play within polar marine food webs for the SciVentures participants. Additionally, a teaching module on Antarctic phytoplankton will be developed for classrooms and made available to educational networking websites and presented at workshops for science educators nationwide. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -59.0, "geometry": "POINT(-68 -66.5)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; NSF/USA; Southern Ocean; AMD; Amd/Us; LABORATORY; USAP-DC; BIOGEOCHEMICAL CYCLES", "locations": "Southern Ocean", "north": -61.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Marchetti, Adrian; Septer, Alecia; Hopkinson, Brian", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -72.0, "title": "Collaborative research: Antarctic diatom proteorhodopsins: Characterization and a potential role in the iron-limitation response", "uid": "p0010033", "west": -77.0}, {"awards": "0440775 Jacobs, Stanley", "bounds_geometry": null, "dataset_titles": "Amundsen Sea Continental Shelf Mooring Data (2006-2007); Expedition data of NBP0702; NBP0702 surface sediment sample information and images", "datasets": [{"dataset_uid": "002645", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0702", "url": "https://www.rvdata.us/search/cruise/NBP0702"}, {"dataset_uid": "601473", "doi": "10.15784/601473", "keywords": "Amundsen Sea; Antarctica; Marine Geoscience; Marine Sediments; NBP0702; Photo; R/v Nathaniel B. Palmer; Seafloor Sampling; Sediment Description; Smith-Mcintyre Grab", "people": "Jacobs, Stanley; Leventer, Amy", "repository": "USAP-DC", "science_program": null, "title": "NBP0702 surface sediment sample information and images", "url": "https://www.usap-dc.org/view/dataset/601473"}, {"dataset_uid": "601809", "doi": "10.15784/601809", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Mooring; Ocean Currents; Pressure; Salinity; Temperature", "people": "Giulivi, Claudia F.; Jacobs, Stanley", "repository": "USAP-DC", "science_program": null, "title": "Amundsen Sea Continental Shelf Mooring Data (2006-2007)", "url": "https://www.usap-dc.org/view/dataset/601809"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This collaborative study between Columbia University and the Southampton Oceanography Centre will investigate the dynamics of warm water intrusions under antarctic floating ice shelves. The study will focus on the Amundsen Sea and Pine Island Glacier, and will document how this water gains access to the continental shelf, transports heat into the ice shelf cavities via deep, glacially-scoured troughs, and rises beneath the ice to drive basal melting. The resulting seawater-meltwater mixtures upwell near the ice fronts, contributing to the formation of atypical coastal polynyas with strong geochemical signatures. Multidecadal freshening downstream is consistent with thinning ice shelves, which may be triggering changes inland, increasing the flow of grounded ice into the sea. This work will be carried out in combination with parallel modeling, remote sensing and data based projects, in an effort to narrow uncertainties about the response of West Antarctic Ice Sheet to climate change. Using state-of-the-art facilities and instruments, this work will enhance knowledge of water mass production and modification, and the understanding of interactions between the ocean circulation, sea floor and ice shelves. The data and findings will be reported to publicly accessible archives and submitted for publication in the scientific literature. The information obtained should prove invaluable for the development and validation of general circulation models, needed to predict the future role of the Antarctic Ice Sheet in sea level change.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "AMD; Amd/Us; R/V NBP; NSF/USA; Amundsen Sea; USAP-DC", "locations": "Amundsen Sea", "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jacobs, Stanley", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": null, "title": "The Amundsen Continental Shelf and the Antarctic Ice Sheet", "uid": "p0000836", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RAPID: Monographing the Antarctic and Subantarctic Cumacea
|
2032029 |
2022-06-13 | Gerken, Sarah |
|
Ocean communities play an important role in determining the natural and human impacts of global change. The most conspicuous members of those communities are generally large vertebrates such as marine mammals and sea birds. But smaller animals often determine how the changes impact those charismatic animals. In the Antarctic, where some of the most dramatic physical changes are taking place, we do not know much about what small animals exist. This project will sample the sub-Antarctic and three different Antarctic seas with a hope of identifying, quantifying and discovering the variation in species of a group of small invertebrates. Comma shrimp, also called cumaceans, are rarely seen elsewhere but may be common and important in the communities of these locations. Antarctic sampling traditionally used gear that was not very effective at catching cumaceans so we do not know what species exist there and how common they are. This study will utilize modern sampling methods that will allow comma shrimp to be sampled. This will lead to discoveries about the diversity and abundance of comma shrimp, as well as their relationship to other invertebrate species. Major impacts of this work will be an enhancement of museum collections, the development of description of all the comma shrimp of Antarctica including new and unnamed species. Those contributions may be especially important as we strive to understand what drives the dynamics of charismatic vertebrates and fisheries that are tied to Antarctic food webs. This project will collect cumaceans from benthic samples from Argentinian waters, Bransfield Strait, and the Weddell Sea using benthic sleds. Specimens will be fixed in 95% ethanol and preserved in 95% ethanol and 5% glycerin to preserve both morphology and DNA. The specimens will form the basis for a monograph synthesizing current knowledge on the Subantarctic and Antarctic Cumacea, including diagnoses of all species, descriptions of new species, additional description for currently unknown life stages of known species, and vouchered gene sequences for all species collected. The monograph will include keys to all families, genera and species known from the region. Monographic revisions that include identification resources are typically useful for decades to a broad spectrum of other scientists. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-70 -62,-68.5 -62,-67 -62,-65.5 -62,-64 -62,-62.5 -62,-61 -62,-59.5 -62,-58 -62,-56.5 -62,-55 -62,-55 -62.8,-55 -63.6,-55 -64.4,-55 -65.2,-55 -66,-55 -66.8,-55 -67.6,-55 -68.4,-55 -69.2,-55 -70,-56.5 -70,-58 -70,-59.5 -70,-61 -70,-62.5 -70,-64 -70,-65.5 -70,-67 -70,-68.5 -70,-70 -70,-70 -69.2,-70 -68.4,-70 -67.6,-70 -66.8,-70 -66,-70 -65.2,-70 -64.4,-70 -63.6,-70 -62.8,-70 -62)) | POINT(-62.5 -66) | false | false | |||||||
What Processes Drive Southern Ocean Sea Ice Variability and Trends? Insights from the Energy Budget of the Coupled Cryosphere-ocean-atmosphere System
|
1643436 |
2022-06-10 | Donohoe, Aaron; Schweiger, Axel |
|
This project will use observations and coupled climate model simulations to examine the causes of sea ice variability. Sea ice in the Southern Ocean has increased in area over the observational record but researchers have yet to agree on the cause. Researchers suggests that changes in surface winds, upper-ocean freshening, or internal ocean/atmosphere variability could be the main driver for the increase in sea ice area. This project will determine how much of the change in sea ice area from year to year is due to oceanic, atmospheric, and radiative processes. Reconciling the observation-based understanding with model representations of sea ice variability will improve confidence in projections of future changes in Southern Ocean sea ice. The goal of this proposal is to improve our understanding of the processes that drive Southern Ocean sea ice year-to-year variability and long term trends. This knowledge will provide insight into how Southern Ocean sea ice responded to greenhouse gas and ozone forcing in the past and how it will respond in the future. The energy budget of the coupled cryosphere/ocean/atmosphere climate system will be used as a framework to disentangle drivers and responses during sea ice loss events. The technique consists of: (i) calculating the coupled energy budget of the climate system at the monthly timescale, (ii) isolating the radiative impact of sea ice variability from the radiative impact of cloud variability in the observed satellite radiation record and (iii) analyzing the vertical structure of atmospheric energy transport to determine the vertical profile of energy transport into the atmospheric column. This framework will allow the investigators to distinguish whether ice loss events are triggered by oceanic processes, atmospheric dynamics, or radiative processes. Preliminary results show that a diversity of mechanisms can drive Southern Ocean sea ice variability in coupled climate models whereas observed sea ice variability appears to be dominated by atmospheric dynamics. The exploration of biases between models and observations in both the mean state and in specific processes will yield more accurate projections of the future of sea ice in the Southern Ocean. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||
EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish
|
1947040 |
2021-07-01 | Postlethwait, John; Varsani, Arvind; Desvignes, Thomas | Antarctica’s native animals face increasing stressors from warming oceans. A key unanswered question is how Antarctic life will respond. If warmer waters contribute to fish disease susceptibility, then iconic Antarctic predators they support, including penguins, seals, and killer whales, will suffer. A recent scientific cruise on the Antarctic peninsula encountered a population of crowned notothen fish that were plagued by pink, wart-like tumors that covered 10% to 30% of the body surface on about a third of the animals. Similar tumors had not previously been reported, suggesting that this might be a new disease that threatens Antarctic fish. The goal of proposed work is to identify the biological origins of the tumor and how it affects cell function and organismal physiology. The work is potentially transformative because it studies what might be a harbinger of Antarctic fish responses to global climate change. The project has several Broader Impacts. First, it will publicize the tumors. Because Antarctic researchers have never reported a tumor epidemic, the community must become aware of the outbreak and the tumor’s distinct diagnostic features. Second, dissemination of project results will stir further research to determine if this is an isolated event or is becoming a general phenomenon, and thus a broad concern for Antarctic ecosystems. Third, assays the project develops to detect the disease will enhance research infrastructure. Finally, work will broaden the nation’s scientific workforce by providing authentic research experiences for high school students and undergraduates from groups underrepresented in scientific research. The overall goal of proposed work is to identify the biological origins of the neoplasia and how it affects cell function and physiology. Aim 1 is to identify the pathogenic agent. Aim 1a is to test the hypothesis that a virus causes the neoplasia by isolating and sequencing viral nucleic acids from neoplasias and from animals that are not visibly affected. Aim 1b is to test neoplasias for bacteria, fungi, protozoa, or invertebrate parasites not present in healthy skin. Aim 2 is to learn how the disease alters the biology of affected cells. Aim 2a is to examine histological sections of affected and control tissues to see if the neoplasias are similar to previously reported skin diseases in temperate water fishes. Aim 2b is to examine the function of neoplastic cells by RNA-seq transcriptomics to identify genes that are differentially expressed in neoplasias and normal skin. Achieving these Aims will advance knowledge by identifying the causes and consequences of an outbreak of neoplasias in Antarctic fish. Proposed work is significant because it is the first to investigate a neoplasia cluster in Antarctic fish. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-65.3 -63.3,-65 -63.3,-64.7 -63.3,-64.4 -63.3,-64.1 -63.3,-63.8 -63.3,-63.5 -63.3,-63.2 -63.3,-62.9 -63.3,-62.6 -63.3,-62.3 -63.3,-62.3 -63.47,-62.3 -63.64,-62.3 -63.81,-62.3 -63.98,-62.3 -64.15,-62.3 -64.32,-62.3 -64.49,-62.3 -64.66,-62.3 -64.83,-62.3 -65,-62.6 -65,-62.9 -65,-63.2 -65,-63.5 -65,-63.8 -65,-64.1 -65,-64.4 -65,-64.7 -65,-65 -65,-65.3 -65,-65.3 -64.83,-65.3 -64.66,-65.3 -64.49,-65.3 -64.32,-65.3 -64.15,-65.3 -63.98,-65.3 -63.81,-65.3 -63.64,-65.3 -63.47,-65.3 -63.3)) | POINT(-63.8 -64.15) | false | false | ||||||||
EAGER: Pilot Fiber Seismic Networks at the Amundsen-Scott South Pole Station
|
2022920 |
2021-06-30 | Zhan, Zhongwen | No dataset link provided | This EAGER award will explore the Distributed Acoustic Sensing emerging technology that transforms a single optical fiber into a massively multichannel seismic array. This technology may provide a scalable and affordable way to deploy dense seismic networks. Experimental Distributed Acoustic Sensing equipment will be tested in the Antarctic exploiting unused (dark) strands in the existing fiber-optic cable that connects the U.S. Amundsen-Scott South Pole Station to the Remote Earth Science and Seismological Observatory (SPRESSO) located about 7.5-km from the main station. Upon processing the seismic signals, the Distributed Acoustic Sensing may provide a new tool to structurally image firn, glacial ice, and glacial bedrock. Learning how Distributed Acoustic Sensing would work on the ice sheet, scientists can then check seismological signals propagating through the Earth's crust and mantle variously using natural icequakes and earthquakes events in the surrounding area. The investigators propose to convert at least 8 km of pre-existing fiber optic cable at the Amundsen-Scott South Pole station into more than 8000 sensors to explore the potential of Distributed acoustic sensing (DAS) as a breakthrough data engine for polar seismology. The DAS array will operate for about one year, allowing them to (1) evaluate and calibrate the performance of the DAS technology in the extreme cold, very low noise (including during the exceptionally quiet austral winter) polar plateau environment; (2) record and analyze local ambient and transient signals from ice, anthropogenic signals, ocean microseism, atmospheric and other processes, as well as to study local, regional, and teleseismic tectonic events; (3) structurally image the firn, glacial ice, glacial bed, crust, and mantle, variously using active sources, ambient seismic noise, and natural icequake and earthquake events. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POINT(180 -90) | POINT(180 -90) | false | false | |||||||
CAREER: "The Omnivore's Dilemma": The Effect of Autumn Diet on Winter Physiology and Condition of Juvenile Antarctic Krill
|
1753101 |
2020-08-31 | Bernard, Kim | Antarctic krill are essential in the Southern Ocean as they support vast numbers of marine mammals, seabirds and fishes, some of which feed almost exclusively on krill. Antarctic krill also constitute a target species for industrial fisheries in the Southern Ocean. The success of Antarctic krill populations is largely determined by the ability of their young to survive the long, dark winter, where food is extremely scarce. To survive the long-dark winter, young Antarctic krill must have a high-quality diet in autumn. However, warming in certain parts of Antarctica is changing the dynamics and quality of the polar food web, resulting in a shift in the type of food available to young krill in autumn. It is not yet clear how these dynamic changes are affecting the ability of krill to survive the winter. This project aims to fill an important gap in current knowledge on an understudied stage of the Antarctic krill life cycle, the 1-year old juveniles. The results derived from this work will contribute to the development of improved bioenergetic, population and ecosystem models, and will advance current scientific understanding of this critical Antarctic species. This CAREER project's core education and outreach objectives seek to enhance education and increase diversity within STEM fields. An undergraduate course will be developed that will integrate undergraduate research and writing in way that promotes authentic scientific inquiry and analysis of original research data by the students, and that enhances their communication skills. A graduate course will be developed that will promote students' skills in communicating their own research to a non-scientific audience. Graduate students will be supported through the proposed study and will gain valuable research experience. Traditionally underserved undergraduate students will be recruited to conduct independent research under the umbrella of the larger project. Throughout each field season, the research team will maintain a weekly blog that will include short videos, photographs and text highlighting the research, as well as their experiences living and working in Antarctica. The aim of the blog will be to engage the public and increase awareness and understanding of Antarctic ecosystems and the impact of warming, and of the scientific process of research and discovery. In this 5-year CAREER project, the investigator will use a combination of empirical and theoretical techniques to assess the effects of diet on 1-year old krill in autumn-winter. The research is centered on four hypotheses: (H1) autumn diet affects 1-year old krill physiology and condition at the onset of winter; (H2) autumn diet has an effect on winter physiology and condition of 1-year old krill under variable winter food conditions; (H3) the rate of change in physiology and condition of 1-year old krill from autumn to winter is dependent on autumn diet; and (H4) the winter energy budget of 1-year old krill will vary between years and will be dependent on autumn diet. Long-term feeding experiments and in situ sampling will be used to measure changes in the physiology and condition of krill in relation to their diet and feeding environment. Empirically-derived data will be used to develop theoretical models of growth rates and energy budgets to determine how diet will influence the overwinter survival of 1-year old krill. The research will be integrated with an education and outreach plan to (1) develop engaging undergraduate and graduate courses, (2) train and develop young scientists for careers in polar research, and (3) engage the public and increase their awareness and understanding. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-65 -64,-64.7 -64,-64.4 -64,-64.1 -64,-63.8 -64,-63.5 -64,-63.2 -64,-62.9 -64,-62.6 -64,-62.3 -64,-62 -64,-62 -64.1,-62 -64.2,-62 -64.3,-62 -64.4,-62 -64.5,-62 -64.6,-62 -64.7,-62 -64.8,-62 -64.9,-62 -65,-62.3 -65,-62.6 -65,-62.9 -65,-63.2 -65,-63.5 -65,-63.8 -65,-64.1 -65,-64.4 -65,-64.7 -65,-65 -65,-65 -64.9,-65 -64.8,-65 -64.7,-65 -64.6,-65 -64.5,-65 -64.4,-65 -64.3,-65 -64.2,-65 -64.1,-65 -64)) | POINT(-63.5 -64.5) | false | false | ||||||||
Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump
|
1341464 1341432 |
2020-02-26 | Robinson, Rebecca; Brzezinski, Mark | Collaborative Proposal: A field and laboratory examination of the diatom N and Si isotope proxies: Implications for assessing the Southern Ocean biological pump The rise in atmospheric carbon dioxide concentrations and associated climate changes make understanding the role of the ocean in large scale carbon cycle a priority. Geologic samples allow exploration of potential mechanisms for carbon dioxide drawdown during glacial periods through the use of geochemical proxies. Nitrogen and silicon isotope signatures from fossil diatoms (microscopic plants) are used to investigate changes in the physical supply and biological demand for nutrients (like nitrogen and silicon and carbon) in the Southern Ocean. The project will evaluate the use the nitrogen and silicon isotope proxies through a series of laboratory experiments and Southern Ocean field sampling. The results will provide quantification of real relationships between nitrogen and silicon isotopes and nutrient usage in the Southern Ocean and allow exploration of the role of other factors, including biological diversity, ice cover, and mixing, in altering the chemical signatures recorded by diatoms. Seafloor sediment samples will be used to evaluate how well the signal created in the water column is recorded by fossil diatoms buried in the seafloor. Improving the nutrient isotope proxies will allow for a more quantitative understanding of the role of polar biology in regulating natural variation in atmospheric carbon dioxide. The project will also result in the training of a graduate student and development of outreach materials targeting a broad popular audience. This project seeks to test the fidelity of the diatom nitrogen and silicon isotope proxies, two commonly used paleoceanographic tools for investigating the role of the Southern Ocean biological pump in regulating atmospheric CO2 concentrations on glacial-interglacial timescales. Existing ground-truthing data, including culture experiments, surface sediment data and downcore reconstructions, all suggest that nutrient utilization is the primary driver of isotopic variation in the Southern Ocean. However, strong contribution of interspecific variation is implied by recent culture results. Moreover, field and laboratory studies present some contradictory results in terms of the relative importance of interspecific variation and of inferred post-depositional alteration of the nutrient isotope signals. Here, a first order test of the N and Si diatom nutrient isotope paleo-proxies, involving water column dissolved and particulate sampling and laboratory culturing of field-isolates, is proposed. Southern Ocean water, biomass, live diatoms and fossil diatom sampling will be conducted to investigate species and assemblage related variability in diatom nitrogen and silicon isotopes and their relationship to surface nutrient fields and early diagenesis. Access to fresh materials produced in an analogous environmental context to the sediments of primary interest is critical for making robust paleoceanographic reconstructions. Field sampling will occur along 175°W, transecting the Antarctic Circumpolar Current from the subtropics to the marginal ice edge. Collection of water, sinking/suspended particles and multi-core samples from 13 stations and 3 shipboard incubation experiments will be used to test four proposed hypotheses that together evaluate the significance of existing culture results and seek to allow the best use of diatom nutrient isotope proxies in evaluating the biological pump. | POLYGON((-175 -54,-174 -54,-173 -54,-172 -54,-171 -54,-170 -54,-169 -54,-168 -54,-167 -54,-166 -54,-165 -54,-165 -55.3,-165 -56.6,-165 -57.9,-165 -59.2,-165 -60.5,-165 -61.8,-165 -63.1,-165 -64.4,-165 -65.7,-165 -67,-166 -67,-167 -67,-168 -67,-169 -67,-170 -67,-171 -67,-172 -67,-173 -67,-174 -67,-175 -67,-175 -65.7,-175 -64.4,-175 -63.1,-175 -61.8,-175 -60.5,-175 -59.2,-175 -57.9,-175 -56.6,-175 -55.3,-175 -54)) | POINT(-170 -60.5) | false | false | ||||||||
Collaborative research: Antarctic diatom proteorhodopsins: Characterization and a potential role in the iron-limitation response
|
1745036 1744760 |
2019-06-16 | Marchetti, Adrian; Septer, Alecia; Hopkinson, Brian |
|
Proteorhodopsins are proteins that are embedded in membranes that can act as light-driven proton pumps to generate energy for metabolism and growth. The discovery of proteorhodopsins in many diverse marine prokaryotic microbes has initiated extensive investigation into their distributions and functional roles. Recently, a proton-pumping, rhodopsin-like gene was identified in diatoms, a group of marine phytoplankton that dominates the base of the food web in much of the Southern Ocean. Since this time, proteorhodopsins have been identified in many, but not all, diatom species. The proteorhodopsin gene is more frequently found in diatoms residing in cold, iron-limited regions of the ocean, including the Southern Ocean, than in diatoms from other regions. It is thought that proteorhodopsin is especially suited for use energy production in the Southern Ocean since it uses no iron and its reaction rate is insensitive to temperature (unlike conventional photosynthesis). The overall objective of the project is to characterize Antarctic diatom-proteorhodopsin and determine its role in the adaptation of these diatoms to low iron concentrations and extremely low temperatures found in Antarctic waters. This research will provide new information on the genetic underpinnings that contribute to the success of diatoms in the Southern Ocean and how this unique molecule may play a pivotal role in providing energy to the base of the Antarctic food web. Broader impact activities are aimed to promote the teaching and learning of polar marine-sciences related topics by translating research objectives into readily accessible educational materials for middle-school students. This project will combine molecular, biochemical and physiological measurements to determine the role and importance of proteorhodopsin in diatom isolates from the Western Antarctic Peninsula region. Proton-pumping characteristics and pumping rates of proteorhodopsin as a function of light intensity and temperature, the resultant proteorhodopsin-linked intracellular ATP production rates, and the cellular localization of the protein will be determined. The project will examine the environmental conditions where Antarctic diatom-proteorhodopsin is most highly expressed and construct a cellular energy budget that includes diatom-proteorhodopsin when grown under these different environmental conditions. Estimates of the energy flux generated by proteorhodopsin will be compared to total energy generation by the photosynthetic light reactions and metabolically coupled respiration rates. Finally, the characteristics and gene expression of diatom-proteorhodopsin in Antarctic diatoms and a proteorhodopsin-containing diatom isolates from temperate regions will be compared in order to determine if there is a preferential dependence on energy production through proteorhodopsin in diatoms residing in cold, iron-limited regions of the ocean. Educational activities will be performed in collaboration with the Morehead Planetarium and Science Center who co-ordinates the SciVentures program, a popular summer camp for middle-school students from Chapel Hill and surrounding areas. In collaboration with the Planetarium, the researchers will develop activities that focus on phytoplankton and the important role they play within polar marine food webs for the SciVentures participants. Additionally, a teaching module on Antarctic phytoplankton will be developed for classrooms and made available to educational networking websites and presented at workshops for science educators nationwide. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-77 -61,-75.2 -61,-73.4 -61,-71.6 -61,-69.8 -61,-68 -61,-66.2 -61,-64.4 -61,-62.6 -61,-60.8 -61,-59 -61,-59 -62.1,-59 -63.2,-59 -64.3,-59 -65.4,-59 -66.5,-59 -67.6,-59 -68.7,-59 -69.8,-59 -70.9,-59 -72,-60.8 -72,-62.6 -72,-64.4 -72,-66.2 -72,-68 -72,-69.8 -72,-71.6 -72,-73.4 -72,-75.2 -72,-77 -72,-77 -70.9,-77 -69.8,-77 -68.7,-77 -67.6,-77 -66.5,-77 -65.4,-77 -64.3,-77 -63.2,-77 -62.1,-77 -61)) | POINT(-68 -66.5) | false | false | |||||||
The Amundsen Continental Shelf and the Antarctic Ice Sheet
|
0440775 |
2010-05-04 | Jacobs, Stanley |
|
This collaborative study between Columbia University and the Southampton Oceanography Centre will investigate the dynamics of warm water intrusions under antarctic floating ice shelves. The study will focus on the Amundsen Sea and Pine Island Glacier, and will document how this water gains access to the continental shelf, transports heat into the ice shelf cavities via deep, glacially-scoured troughs, and rises beneath the ice to drive basal melting. The resulting seawater-meltwater mixtures upwell near the ice fronts, contributing to the formation of atypical coastal polynyas with strong geochemical signatures. Multidecadal freshening downstream is consistent with thinning ice shelves, which may be triggering changes inland, increasing the flow of grounded ice into the sea. This work will be carried out in combination with parallel modeling, remote sensing and data based projects, in an effort to narrow uncertainties about the response of West Antarctic Ice Sheet to climate change. Using state-of-the-art facilities and instruments, this work will enhance knowledge of water mass production and modification, and the understanding of interactions between the ocean circulation, sea floor and ice shelves. The data and findings will be reported to publicly accessible archives and submitted for publication in the scientific literature. The information obtained should prove invaluable for the development and validation of general circulation models, needed to predict the future role of the Antarctic Ice Sheet in sea level change. | None | None | false | false |