[{"awards": "2142914 Baker, Bill; 2142912 Murray, Alison; 2142913 Tresguerres, Martin", "bounds_geometry": "POLYGON((-180 -60,-168 -60,-156 -60,-144 -60,-132 -60,-120 -60,-108 -60,-96 -60,-84 -60,-72 -60,-60 -60,-60 -62,-60 -64,-60 -66,-60 -68,-60 -70,-60 -72,-60 -74,-60 -76,-60 -78,-60 -80,-72 -80,-84 -80,-96 -80,-108 -80,-120 -80,-132 -80,-144 -80,-156 -80,-168 -80,180 -80,178 -80,176 -80,174 -80,172 -80,170 -80,168 -80,166 -80,164 -80,162 -80,160 -80,160 -78,160 -76,160 -74,160 -72,160 -70,160 -68,160 -66,160 -64,160 -62,160 -60,162 -60,164 -60,166 -60,168 -60,170 -60,172 -60,174 -60,176 -60,178 -60,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 17 Oct 2024 00:00:00 GMT", "description": "Non-technical description\u003cbr/\u003eMarine invertebrates often have mutually beneficial partnerships with microorganisms that biosynthesize compounds with nutritive or defensive functions and are integral for survival. Additionally, these \u201cnatural products\u201d often have bioactive properties with human health applications fighting infection or different types of cancer. This project focuses on the ascidian (\u201csea squirt\u201d) Synoicum adareanum, found in the Anvers Island region of the Antarctic Peninsula, and was recently discovered to contain high levels of a natural product, palmerolide A (palA) in its tissues. The microorganism that produces palA is a new bacterial species, Candidatus Synoicihabitans palmerolidicus, found in a persistent partnership with the sea squirt. There is still much to be learned about the fundamental properties of this sea squirt-microbe-palA system including the geographical range of the animal-microbe partnership, its chemical and microbiome complexity and diversity, and the biological effect of palA in the sea squirt. To address these questions, this multidisciplinary research team will investigate the sea squirt-microbiome partnership in the Antarctic Peninsula and McMurdo Sound regions of the Ross Sea using a state-of-the-art strategy that will advance our understanding of the structural and functional features of the sea squirt and microbiome in detail, and reveal the roles that the palA natural product plays in the host ecology in its native Antarctic seafloor habitat. The project will broaden diversity and provide new opportunities for early career students and postdoctoral researchers to participate in field and laboratory-based research that builds an integrative understanding of Antarctic marine biology, ecology, physiology and chemistry. In addition, advancing the understanding of palA and its biological properties may be of future benefit to biomedicine and human health.\u003cbr/\u003e\u003cbr/\u003eTechnical description\u003cbr/\u003eMarine invertebrates and their associated microbiomes can produce bioactive natural products; in fact, \u003e600 such compounds have been identified in species from polar waters. Although such compounds are typically hypothesized to serve ecological roles in host survival through deterring predation, fouling, and microbial infection, in most cases neither the producing organism nor the genome-encoded biosynthetic enzymes are known. This project will study an emerging biosynthetic system from a polar ascidian-microbe association that produces palA, a natural product with bioactivity against the proton-pumping enzyme V-type H+-ATPase (VHA). The objectives include: (i) Determining the microbiome composition, metabolome complexity, palA levels, and mitochondrial DNA sequence of S. adareanum morphotypes at sites in the Antarctic Peninsula and in McMurdo Sound, (ii) Characterizing the Synoicum microbiome using a multi-omics strategy, and (iii) Assessing the potential for co-occurrence of Ca. S. palmerolidicus-palA-VHA in host tissues, and (iv) exploring the role of palA in modulating VHA activity in vivo and its effects on ascidian-microbe ecophysiology. Through a coupled study of palA-producing and non-producing S. adareanum specimens, structural and functional features of the ascidian microbiome metagenome will be characterized to better understand the relationship between predicted secondary metabolite pathways and whether they are expressed in situ using a paired metatranscriptome sequencing and secondary metabolite detection strategy. Combined with tissue co-localization results, functional ecophysiological assays aim to determine the roles that the natural product plays in the host ecology in its native Antarctic seafloor habitat. The contributions of the project will inform this intimate host-microbial association in which the ascidian host bioaccumulates VHA-inhibiting palA, yet its geo-spatial distribution, cellular localization, ecological and physiological role(s) are not known. In addition to elucidating the ecophysiological roles of palA in their native ascidian-microbe association, the results will contribute to the success of translational science, which aligns with NSF\u2019s interests in promoting basic research that leads to advances in Biotechnology and Bioeconomy. The project will also broaden diversity and provide new opportunities for early career students and postdoctoral researchers to participate in field and laboratory-based research that builds an integrative understanding of Antarctic marine biology, ecology, physiology and chemistry.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027\u0027s intellectual merit and broader impacts review criteria.", "east": 160.0, "geometry": "POINT(-130 -70)", "instruments": null, "is_usap_dc": true, "keywords": "ECOSYSTEM FUNCTIONS; BACTERIA/ARCHAEA; BENTHIC; R/V NBP; Antarctic Peninsula; ANIMALS/INVERTEBRATES", "locations": "Antarctic Peninsula", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Baker, Bill; Murray, Alison; Tresguerres, Martin", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repositories": null, "science_programs": null, "south": -80.0, "title": "Collaborative Research: ANT LIA: Diving into the Ecology of an Antarctic Ascidian-Microbiome-Palmerolide Association using a Multi-omic and Functional Approach", "uid": "p0010485", "west": -60.0}, {"awards": "2038149 Warner, Jacob", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 09 Oct 2024 00:00:00 GMT", "description": " Antarctic marine invertebrates exhibit extraordinarily slow rates of development. This phenomenon has arisen repeatedly in independent Antarctic lineages, including sea urchins, sea stars, brachiopods, and ribbon worms. Despite these observations, little is known about the molecular mechanisms responsible for slow developmental rates in Antarctic marine invertebrates. This proposal is developing the Antarctic sea urchin, Sterechinus neumayeri, as a model invertebrate organism to evaluate cold water organismal adaptation and development. Urchins collected from McMurdo Sound are being studied in carefully controlled laboratory experiments. \u003cbr/\u003e\u003cbr/\u003eThis work is specifically identifying the gene regulatory network components responsible for regulating developmental timing in S. neumayeri and, more generally, which gene regulatory network elements evolved during adaption to the extreme environment of the Southern Ocean. The lab-based work is focusing in two specific areas: 1) Identify unique gene regulatory network components of S. neumayeri that evolved during its developmental adaptation to the Southern Ocean, and 2) Analyze spatial expression and functions of key genes in the early S. neumayeri gene regulatory networks controlling specification and patterning of territories along the early anterior-posterior axis. A comparative analysis of better studied urchins from warmer regions will be used to inform this work. This effort is relevant to several fields of biology ranging from polar biology, developmental biology, evolution, and genomics while explicitly tying genotype to phenotype. Broader impacts: The proposal included three early career investigators who are new to Antarctic research programs working alongside a well-established Antarctic investigator. The team has developed an ambitious program for science and technology training in computer coding and biology targeted for underrepresented students. They also have developed web-based bioinformatics training blog, ?2-bitbio?, which aims to decrease the ?barrier to entry? into the field of bioinformatics.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; ECHINODERMS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Warner, Jacob", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: LIA: Genomic Mechanisms Controlling the Slow Development of the Antarctic Urchin Sterechinus Neumayeri", "uid": "p0010480", "west": -180.0}, {"awards": "2332479 MacAyeal, Douglas", "bounds_geometry": "POLYGON((161 -76,162.4 -76,163.8 -76,165.2 -76,166.6 -76,168 -76,169.4 -76,170.8 -76,172.2 -76,173.6 -76,175 -76,175 -76.3,175 -76.6,175 -76.9,175 -77.2,175 -77.5,175 -77.8,175 -78.1,175 -78.4,175 -78.7,175 -79,173.6 -79,172.2 -79,170.8 -79,169.4 -79,168 -79,166.6 -79,165.2 -79,163.8 -79,162.4 -79,161 -79,161 -78.7,161 -78.4,161 -78.1,161 -77.8,161 -77.5,161 -77.2,161 -76.9,161 -76.6,161 -76.3,161 -76))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 08 Oct 2024 00:00:00 GMT", "description": "Non-Technical Abstract:\u003cbr/\u003eThis project explores the areas or crash-zones where floating ice shelves in Antarctica compressively flow against obstructions such as islands and plugs of stagnant ice frozen to the sea bed. The significance of these crash-zones is that they are responsible for generating the resistive forces that allow ice shelves to slow down the flow of ice farther inland into the ocean. Ice conditions within these boundaries thus determine how Antarctica\u2019s ice sheets contribute to sea-level rise. The research will feature on-the-ice glaciological and geophysical field measurements near pressure ridges near Scott Base and the transition to the ice road where large wave-like pressure ridges form on the ice-shelf surface. This field area is along the coast of Ross Island adjacent to major logistical stations of the US and New Zealand Antarctic programs. Thus the research will help station managers better preserve one of the key roadways that connects the stations to the major runway used to fly to virtually all other parts of Antarctica. The research will also interact with educational programs such as featured in the long-standing Juneau Icefield Research Project as well as potential involvement of an artist from the US Antarctic Program\u2019s Polar STEAM in the second field season.\u003cbr/\u003e\u003cbr/\u003eTechnical Abstract:\u003cbr/\u003eThis project explores the dynamics of boundaries where ice shelves compressively flow against obstructions such as islands and areas of grounded ice. The significance of these boundaries is that they are responsible for generating the resistive forces that allow ice shelves to impede or slow down the flow of grounded inland ice into the ocean. Ice conditions within these boundaries thus determine how Antarctica\u2019s ice sheets contribute to sea-level rise. The research will feature glaciological and geophysical field surveys in a compressive boundary area near pressure ridges adjacent to Scott Base and the transition to the ice road along the coast of Ross Island, an area affecting access to major logistical hubs of the US and New Zealand Antarctic programs. Field data will be combined with remote sensing, numerical modeling and theory development to answer key questions about the dynamics of compressive boundaries such as: is there a limit to compressive stress due to ice fracture and the bending of the ice shelf into sinusoidal pressure ridges? Over what time scales does this compressive stress build, fluctuate and decay, and how is it related to the processes that form rumples? Are there ways in which the ridges actually protect the compressive boundary from damage such as by setting up a means to scatter ocean swell impinging from the open ocean? How should compressive ice-shelf boundaries be represented in large scale ice-sheet/shelf models for the prediction of future sea-level rise? A variety of broader impact work will be done both specifically targeting the research field area and more broadly addressing scientific and societal concerns. The field area contains a critical logistics roadway that connects McMurdo Station, Scott Base and a runway essential for continent-wide air logistics. The project will inform how to stabilize the roadway against excessive damage from summer ablation and other factors. Other broader impacts include: (a) Open-Science evaluation of climate systems engineering strategies for glacial geoengineering mitigation of sea-level rise, (b) cooperation with the Juneau Icefield Research Program (JIRP) education component, (c) support and facilitation of an online FieldSafe workshop and associated panel discussion to support early-career Antarctic field teams to mitigate environmental and interpersonal risks in remote field sites, and (d) potential involvement of an artist from the US Antarctic Program\u2019s Polar STEAM in the second field season.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027\u0027s intellectual merit and broader impacts review criteria.", "east": 175.0, "geometry": "POINT(168 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "ICE SHEETS; Ice Shelf Dynamics; McMurdo Sound", "locations": "McMurdo Sound", "north": -76.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "MacAyeal, Douglas; Banwell, Alison; Campbell, Seth; Schild, Kristin; Cassoto, Ryan", "platforms": null, "repositories": null, "science_programs": null, "south": -79.0, "title": "Collaborative Research: Ice-Shelf Rumpling and its Influence on Ice-Shelf Buttressing Processes.", "uid": "p0010478", "west": 161.0}, {"awards": "2031121 Junge, Karen", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 30 Jul 2024 00:00:00 GMT", "description": "The ozone hole that develops over the Antarctic continent every spring is one of the features attributed to human activity, in particular production of the CFC (chlorofluorocarbons in refrigerants) released to the atmosphere. In spite of the CFC ban from the Montreal Protocol established in the year 1987, the recovery has been slower than predicted. Bromocarbons, known to produce the stratospheric ozone depletion, have recently been estimated to contribute to the pool of bromines in the lower atmosphere. What is the origin of the bromocarbons in Antarctic sea ice? Is this an additional source of chemicals creating the ozone hole? This project will test if bromocarbons in sea ice are produced and degraded by microalgae and bacteria found in sea ice, in snow and the interface between the two. The project will collect a suite of chemical and biological measurements of sea ice and snow to determine bromocarbon concentrations, microbial activity associated with them, and intra-cellular genes and proteins involved in bromocarbon metabolism. This project benefits NSF\u2019s goals of expanding fundamental knowledge of Antarctic systems, biota, and processes, and improving the understanding of interactions among the Antarctic systems, cryosphere and organisms. The work will be carried out at McMurdo Station in late austral spring, including sampling of snow and ice that will be concentrated in the laboratory, and 24-hour experiments to measure algal and bacterial activity. Genes controlling synthesis of enzymes involved in bromocarbon metabolism are of interest in biotechnology and bioremediation, including products that repair damaged skin from UltraViolet Radiation. The project will train undergraduate students on chemical and biological techniques. The Principal Investigators will be involved in the Pacific Science Center in Seattle with ~10,000 visitors per weekend where they will develop a project-specific exhibit. The microbial processes in snow and ice associated with bromocarbon synthesis and degradation have not been studied in Antarctica during winter and spring. This study will inform about microbial activity in relation to the release of bromocarbons compounds from the snow and ice surfaces, compounds known to degrade stratospheric ozone. The estimation of chemical bromocarbons will be combined with metagenomics and metaproteomics approaches for understanding the potential role of microbes in snow and sea ice. The environmental, chemical and biological data will be synthesized with multivariate analysis and significant differences between sites and experimental treatments with ANOVA. A collaborator from the University of Goteborg in Sweden will collaborate on bromocarbon analyses. The study will also address \u201csaline snow\u201d a new environment not previously studied for microbial life. In addition, this is the first study of meta-proteomics in snow and ice. The Principal Investigators expect their results will help inform ozone hole recovery in the 21st century.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "McMurdo Sound; COASTAL; BACTERIA/ARCHAEA; SEA ICE; SNOW/ICE", "locations": "McMurdo Sound", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Junge, Karen; Nunn, Brook L", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "Sea-ice Snow Microbial Communities\u2019 Impact on Antarctic Bromocarbon Budgets and Processes", "uid": "p0010472", "west": null}, {"awards": "2325046 Thurber, Andrew", "bounds_geometry": "POLYGON((162 -77,162.6 -77,163.2 -77,163.8 -77,164.4 -77,165 -77,165.6 -77,166.2 -77,166.8 -77,167.4 -77,168 -77,168 -77.1,168 -77.2,168 -77.3,168 -77.4,168 -77.5,168 -77.6,168 -77.7,168 -77.8,168 -77.9,168 -78,167.4 -78,166.8 -78,166.2 -78,165.6 -78,165 -78,164.4 -78,163.8 -78,163.2 -78,162.6 -78,162 -78,162 -77.9,162 -77.8,162 -77.7,162 -77.6,162 -77.5,162 -77.4,162 -77.3,162 -77.2,162 -77.1,162 -77))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 10 May 2024 00:00:00 GMT", "description": "This RAPID project aims to study a sporadic occurrence of sea star wasting syndrome (SSWS) in McMurdo sound by leveraging diving resources of a CAREER grant to Thurber. The disease was first noted in 2019, with a second occurrence documented by the group at their study site near a methane seep at Cinder Cone in McMurdo Sound in 2022. Sea stars are key species in many benthic ecosystems, including the Antarctic, and this disease has caused significant losses in populations worldwide. In the Southern Ocean, the sea star Odontaster validus preys upon Acodontaster conspicuous, a predator of Antarctic giant sponges. In 2022, about 30% of the O. validus at the methane seep were affected. The conditions associated with the disease in other areas are environmental hypoxia, warm temperatures, and organic enrichment. This recent outbreak provides the opportunity to study how the disease may progress in the Southern Ocean, and test the hypothesis that oxygen dynamics play a key role in the development of SSWS. The investigators aim to measure oxygen concentrations on and off the Cinder Cone seep and at the surface of affected and unaffected sea stars and identify whether the disease causes and microbiome characteristics of SSWS are similar between Antarctic and non-Antarctic outbreaks. These findings can be used to understand the potential effects of future climate conditions on disease outbreaks of Southern Ocean marine organisms critical to ecosystem function and health. In addition to disease dynamics, the study will also help to understand how methane seepage impacts benthic oxygen dynamics. Other broader impacts include communicating the research through a student led YouTube documentary and facilitating the transition of an early career URM researcher from NSF postdoc to a faculty position (lead on viral component of the project).", "east": 168.0, "geometry": "POINT(165 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "BENTHIC; Antarctica; Sea Star Wasting Disease", "locations": "Antarctica", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Thurber, Andrew; Moran, Amy", "platforms": null, "repositories": null, "science_programs": null, "south": -78.0, "title": "Collaborative Research: RAPID: Sea Star Wasting Disease in the High Antarctic: Deciphering the Role of Shifting Carbon and Climate Cycles on a Keystone Predator", "uid": "p0010458", "west": 162.0}, {"awards": "1645087 Catchen, Julian", "bounds_geometry": null, "dataset_titles": "Chromosome-Level Genome Assembly and Circadian Gene Repertoire of the Patagonia Blennie Eleginops maclovinus\u2014The Closest Ancestral Proxy of Antarctic Cryonotothenioids; Evaluating Illumina-, Nanopore-, and PacBio-based genome assembly strategies with the bald notothen, Trematomus borchgrevinki; Genomics of Secondarily Temperate Adaptation in the Only Non-Antarctic Icefish", "datasets": [{"dataset_uid": "200380", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "Genomics of Secondarily Temperate Adaptation in the Only Non-Antarctic Icefish", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA857989"}, {"dataset_uid": "200330", "doi": "", "keywords": null, "people": null, "repository": "NCBI ", "science_program": null, "title": "Evaluating Illumina-, Nanopore-, and PacBio-based genome assembly strategies with the bald notothen, Trematomus borchgrevinki", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA861284"}, {"dataset_uid": "200331", "doi": "10.5061/dryad.ghx3ffbs3", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Evaluating Illumina-, Nanopore-, and PacBio-based genome assembly strategies with the bald notothen, Trematomus borchgrevinki", "url": "https://datadryad.org/stash/dataset/doi:10.5061/dryad.ghx3ffbs3"}, {"dataset_uid": "200381", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "Chromosome-Level Genome Assembly and Circadian Gene Repertoire of the Patagonia Blennie Eleginops maclovinus\u2014The Closest Ancestral Proxy of Antarctic Cryonotothenioids", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA917608"}], "date_created": "Mon, 10 Oct 2022 00:00:00 GMT", "description": "As plate tectonics pushed Antarctica into a polar position, by ~34 million years ago, the continent and its surrounding Southern Ocean (SO) became geographically and thermally isolated by the Antarctic Circumpolar Current. Terrestrial and marine glaciation followed, resulting in extinctions as well as the survival and radiation of unique flora and fauna. The notothenioid fish survived and arose from a common ancestral stock into tax with 120 species that dominates today\u0027s SO fish fauna. The Notothenioids evolved adaptive traits including novel antifreeze proteins for survival in extreme cold, but also suffered seemingly adverse trait loss including red blood cells in the icefish family, and the ability to mount cellular responses to mitigate heat stress ? otherwise ubiquitous across all life. This project aims to understand how the notothenoid genomes have changed and contributed to their evolution in the cold. The project will sequence, analyze and compare the genomes of two strategic pairs of notothenioid fishes representing both red-blooded and white-blooded species. Each pair will consist of one Antarctic species and one that has readapted to the temperate waters of S. America or New Zealand. The project will also compare the Antarctic species genomes to a genome of the closet non-Antarctic relative representing the temperate notothenioid ancestor. The work aims to uncover the mechanisms that enabled the adaptive evolution of this ecologically vital group of fish in the freezing Southern Ocean, and shed light on their adaptability to a warming world. The finished genomes will be made available to promote and advance Antarctic research and the project will host a symposium of Polar researchers to discuss the cutting edge developments regarding of genomic adaptations in the polar region.\u003cbr/\u003eDespite subzero, icy conditions that are perilous to teleost fish, the fish fauna of the isolated Southern Ocean (SO) surrounding Antarctica is remarkably bountiful. A single teleost group - the notothenioid fishes - dominate the fauna, comprising over 120 species that arose from a common ancestor. When Antarctica became isolated and SO temperatures began to plunge in early Oligocene, the prior temperate fishes became extinct. The ancestor of Antarctic notothenioids overcame forbidding polar conditions and, absent niche competition, it diversified and filled the SO. How did notothenioids adapt to freezing environmental selection pressures and achieve such extraordinary success? And having specialized to life in chronic cold for 30 myr, can they evolve in pace with today\u0027s warming climate to stay viable? Past studies of Antarctic notothenioid evolutionary adaptation have discovered various remarkable traits including the key, life-saving antifreeze proteins. But life specialized to cold also led to paradoxical trait changes such as the loss of the otherwise universal heat shock response, and of the O2-transporting hemoglobin and red blood cells in the icefish family. A few species interestingly regained abilities to live in temperate waters following the escape of their ancestor out of the freezing SO. \u003cbr/\u003eThis proposed project is the first major effort to advance the field from single trait studies to understanding the full spectrum of genomic and genetic responses to climatic and environmental change during notothenioid evolution, and to evaluate their adaptability to continuing climate change. To this end, the project will sequence the genomes of four key species that embody genomic responses to different thermal selection regimes during notothenioids\u0027 evolutionary history, and by comparative analyses of genomic structure, architecture and content, deduce the responding changes. Specifically, the project will (i) obtain whole genome assemblies of the red-blooded T. borchgrevinki and the S. American icefish C. esox; (ii) using the finished genomes from (i) as template, obtain assemblies of the New Zealand notothenioid N. angustata, and the white-blooded icefish C. gunnari, representing a long (11 myr) and recent (1 myr) secondarily temperate evolutionary history respectively. Genes that are under selection in the temperate environment but not in the Antarctic environment can be inferred to be directly necessary for that environment and the reverse is also true for genes under selection in the Antarctic but not in the temperate environment. Further, genes important for survival in temperate waters will show parallel selection between N. angustata and C. esox despite the fact that the two fish left the Antarctic at far separated time points. Finally, gene families that expanded due to strong selection within the cold Antarctic should show a degradation of duplicates in the temperate environment. The project will test these hypotheses using a number of techniques to compare the content and form of genes, the structure of the chromosomes containing those genes, and through the identification of key characters, such as selfish genetic elements, introns, and structural variants.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Genome Assembly; FISH; McMurdo Sound; Icefish; SHIPS; Notothenioid; Puerto Natales, Chile", "locations": "McMurdo Sound; Puerto Natales, Chile", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Catchen, Julian; Cheng, Chi-Hing", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "NCBI", "repositories": "Dryad; NCBI; NCBI ", "science_programs": null, "south": null, "title": "Evolutionary Genomic Responses in Antarctic Notothenioid Fishes", "uid": "p0010384", "west": null}, {"awards": "1853377 Shero, Michelle", "bounds_geometry": "POLYGON((162 -76,162.6 -76,163.2 -76,163.8 -76,164.4 -76,165 -76,165.6 -76,166.2 -76,166.8 -76,167.4 -76,168 -76,168 -76.2,168 -76.4,168 -76.6,168 -76.8,168 -77,168 -77.2,168 -77.4,168 -77.6,168 -77.8,168 -78,167.4 -78,166.8 -78,166.2 -78,165.6 -78,165 -78,164.4 -78,163.8 -78,163.2 -78,162.6 -78,162 -78,162 -77.8,162 -77.6,162 -77.4,162 -77.2,162 -77,162 -76.8,162 -76.6,162 -76.4,162 -76.2,162 -76))", "dataset_titles": "Weddell seal dive behavior and rhythmicity from 2010-2012 in the Ross Sea; Weddell seal iron dynamics and oxygen stores across lactation", "datasets": [{"dataset_uid": "601835", "doi": "10.15784/601835", "keywords": "Aerobic; Antarctica; Cryosphere; Weddell Seal", "people": "Shero, Michelle", "repository": "USAP-DC", "science_program": null, "title": "Weddell seal dive behavior and rhythmicity from 2010-2012 in the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/601835"}, {"dataset_uid": "601587", "doi": "10.15784/601587", "keywords": "Aerobic; Antarctica; Dive Capacity; Iron; McMurdo Sound; Weddell Seal", "people": "Shero, Michelle", "repository": "USAP-DC", "science_program": null, "title": "Weddell seal iron dynamics and oxygen stores across lactation", "url": "https://www.usap-dc.org/view/dataset/601587"}], "date_created": "Tue, 09 Aug 2022 00:00:00 GMT", "description": "Within any wild animal population there is substantial heterogeneity in reproductive rates and animal fitness. Not all individuals contribute to the population equally; some are able to produce more offspring than others and thus are considered to be of higher quality. This study aims to distinguish which physiological mechanisms (energy dynamics, aerobic capacity, and fertility) and underlying genetic factors make some Weddell seal females particularly successful at producing pups year after year, while others produce far fewer pups than the population average. In this project, an Organismal Energetics approach will identify key differences between high- and low-quality females in how they balance current and future reproductive success by tracking lactation costs, midsummer foraging success and pregnancy rates, and overwinter foraging patterns and live births the next year. Repeated sampling of individuals\u0027 physiological status (body composition, endocrinology, ovulation and pregnancy timing), will be paired with a whole-genome sequencing study. The second component of this study uses a Genome to Phenome approach to better understand how genetic differences between high- and low-quality females directly correspond to functional differences in transcription, translation, and ultimately phenotype. This component will contribute to the functional analysis and annotation of the Weddell seal genome. In combination, this project will make strides towards distinguishing the roles that plastic (physiological, behavioral) and fixed (genetic) factors play in complex, multifaceted traits such as fitness in a long-lived wild mammal. The project partners with established programs to implement extensive educational and outreach activities that will ensure wide dissemination to educators, students, and the public. It will contribute to a marine mammal exhibit at the Pink Palace Museum, and a PolarTREC science educator will participate in field work in Antarctica.", "east": 168.0, "geometry": "POINT(165 -77)", "instruments": null, "is_usap_dc": true, "keywords": "McMurdo; MAMMALS", "locations": "McMurdo", "north": -76.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Shero, Michelle; Hindle, Allyson; Burns, Jennifer; Briggs, Brandon", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Physiological and Genetic Correlates of Reproductive Success in High- versus Low-Quality Weddell seals", "uid": "p0010369", "west": 162.0}, {"awards": "1640481 Rotella, Jay; 2147553 Rotella, Jay; 2147554 Chen, Nancy", "bounds_geometry": "POLYGON((162 -74.95,162.8 -74.95,163.6 -74.95,164.4 -74.95,165.2 -74.95,166 -74.95,166.8 -74.95,167.6 -74.95,168.4 -74.95,169.2 -74.95,170 -74.95,170 -75.295,170 -75.64,170 -75.985,170 -76.33,170 -76.67500000000001,170 -77.02000000000001,170 -77.36500000000001,170 -77.71000000000001,170 -78.055,170 -78.4,169.2 -78.4,168.4 -78.4,167.6 -78.4,166.8 -78.4,166 -78.4,165.2 -78.4,164.4 -78.4,163.6 -78.4,162.8 -78.4,162 -78.4,162 -78.055,162 -77.71000000000001,162 -77.36500000000001,162 -77.02000000000001,162 -76.67500000000001,162 -76.33,162 -75.985,162 -75.64,162 -75.295,162 -74.95))", "dataset_titles": "Demographic data for Weddell Seal colonies in Erebus Bay through the 2023 Antarctic field season", "datasets": [{"dataset_uid": "601837", "doi": "10.15784/601837", "keywords": "AMD; Amd/Us; Antarctica; Cryosphere; McMurdo Sound; Population Dynamics; USA/NSF; USAP-DC; Weddell Seal", "people": "Rotella, Jay", "repository": "USAP-DC", "science_program": null, "title": "Demographic data for Weddell Seal colonies in Erebus Bay through the 2023 Antarctic field season", "url": "https://www.usap-dc.org/view/dataset/601837"}], "date_created": "Sun, 07 Aug 2022 00:00:00 GMT", "description": "Reliable predictions are needed for how populations of wild species, especially those at high latitudes, will respond to future environmental conditions. This study will use a strategic extension of the long-term demographic research program that has been conducted annually on the Erebus Bay population of Weddell seals since 1978 to help meet that need. Recent analyses of the study population indicate strong annual variation in reproduction, abundance, and population composition. The number of new immigrant mothers that join the population each year has recently grown such that most new mothers are now immigrants. Despite the growing number of immigrants, the demographic importance and geographic origins of immigrants are unknown. The research will (1) add new information on drivers of annual variation in immigrant numbers, (2) compare and combine information on the vital rates and demographic role of immigrant females and their offspring with that of locally born females, and (3) add genomic analyses that will quantify levels of genetic variation in and gene flow among the study population and other populations in the Ross Sea. The project will continue the long-term monitoring of the population at Erebus Bay and characterize population dynamics and the role of immigration using a combination of mark-recapture analyses, stochastic population modeling, and genomic analyses. The study will continue to (1) provide detailed data on individual seals to other science teams, (2) educate and mentor individuals in the next generation of ecologists, (3) introduce two early-career, female scientists to Antarctic research, and (4) add genomics approaches to the long-term population study of Erebus Bay Weddell seals. The Informal Science Education program will expand on the project\u2019s recent and successful efforts by producing and delivering short-form videos through an interactive web portal and diverse social-media technologies. The Informal Science Education program will continue to update and add new topics to a multimedia-enhanced electronic book about the project\u2019s research on Weddell seals that will be freely available to the public. The outreach efforts will increase the length of the book from ~140 to ~225 pages and add new topics such as learning about seals using genomics and how seals respond to a changing world.", "east": 170.0, "geometry": "POINT(166 -76.67500000000001)", "instruments": null, "is_usap_dc": true, "keywords": "SPECIES/POPULATION INTERACTIONS; McMurdo Sound", "locations": "McMurdo Sound", "north": -74.95, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Rotella, Jay; Chen, Nancy", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.4, "title": "Collaborative Research: The Drivers and Role of Immigration in the Dynamics of the Largest Population of Weddell Seals in Antarctica under Changing Conditions", "uid": "p0010361", "west": 162.0}, {"awards": "2037598 Alberto, Filipe; 2037670 Heine, John", "bounds_geometry": "POLYGON((162 -76,162.8 -76,163.6 -76,164.4 -76,165.2 -76,166 -76,166.8 -76,167.6 -76,168.4 -76,169.2 -76,170 -76,170 -76.3,170 -76.6,170 -76.9,170 -77.2,170 -77.5,170 -77.8,170 -78.1,170 -78.4,170 -78.7,170 -79,169.2 -79,168.4 -79,167.6 -79,166.8 -79,166 -79,165.2 -79,164.4 -79,163.6 -79,162.8 -79,162 -79,162 -78.7,162 -78.4,162 -78.1,162 -77.8,162 -77.5,162 -77.2,162 -76.9,162 -76.6,162 -76.3,162 -76))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 23 May 2022 00:00:00 GMT", "description": "Collaborative Research: Biogeography, population genetics, and ecology of two common species of fleshy red algae in McMurdo Sound\r\n\r\nClimate change is predicted to increase the period of fast ice-free conditions in polar habitats. As early colonizers, macroalgae may take advantage of increased light availability to outcompete invertebrates (e.g., sponges, bryozoans, tunicates, and polychaetes) for space in shallow subtidal hardbottom habitats. The project will compare patterns in vegetative and reproductive characteristics of two macroalgal species Phyllophora antarctica and Iridaea cordata collected from the 1980s to present-day. Populations will be collected from coastal and offshore sites in shallow (3\u20134 m) and greater (approx.12 m) depths at Cape Royds, Cape Evans, Little Razorback Islands, Turtle Rock, Arrival Heights, Granite Harbor, and Dellbridge Seamount. Genetic diversity of the two algal species will be measured and is expected to be relatively low due to limited dispersal in McMurdo Sound. No previous research has investigated the potential effects of climate, in particular reductions in annual sea ice cover and resulting increase in light intensity and duration, on macroalgal communities in McMurdo Sound. For the first time, photogrammetry will be used to collect community-level data on the newly discovered offshore Dellbridge Seamount and 3D visualization from the video footage will be shared with web-based interactive applications to engage and educate the public in subtidal polar ecology and the importance of Antarctic science to their lives.\r\n", "east": 170.0, "geometry": "POINT(166 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; McMurdo Sound; USAP-DC; Amd/Us; COMMUNITY DYNAMICS; FIELD INVESTIGATION; MACROALGAE (SEAWEEDS); USA/NSF", "locations": "McMurdo Sound", "north": -76.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Heine, John; Goldberg, Nisse; Alberto, Filipe", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": -79.0, "title": "Collaborative Research: Biogeography, Population Genetics, and Ecology of two Common Species of Fleshy Red Algae in McMurdo Sound", "uid": "p0010322", "west": 162.0}, {"awards": "2053726 Hofmann, Gretchen", "bounds_geometry": "POLYGON((163 -77,163.4 -77,163.8 -77,164.2 -77,164.6 -77,165 -77,165.4 -77,165.8 -77,166.2 -77,166.6 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.6 -78,166.2 -78,165.8 -78,165.4 -78,165 -78,164.6 -78,164.2 -78,163.8 -78,163.4 -78,163 -78,163 -77.9,163 -77.8,163 -77.7,163 -77.6,163 -77.5,163 -77.4,163 -77.3,163 -77.2,163 -77.1,163 -77))", "dataset_titles": "Analyses combining ATAC-seq, RRBS, and RNA-seq data for purple urchins", "datasets": [{"dataset_uid": "200288", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Analyses combining ATAC-seq, RRBS, and RNA-seq data for purple urchins", "url": "https://github.com/snbogan/Sp_RRBS_ATAC"}], "date_created": "Thu, 14 Apr 2022 00:00:00 GMT", "description": "Part 1: Non-technical description:\r\n\tWith support from the Office of Polar Programs, this project will evaluate how an important part of the food web in the coastal ocean of Antarctica will respond to climate change. The focal study organism in the plankton is a shelled mollusk, the Antarctic pteropod, Limacina helicina antarctica, a Southern Ocean organism that this known to respond to climate driven changes in ocean acidification and ocean warming. Ocean acidification, the lowering of ocean pH via the absorption of atmospheric carbon dioxide in the surface of the ocean, is a change in the ocean that is expected to cross deleterious thresholds of pH within decades. This study will improve understanding of how pteropods will respond, which will provide insight into predicting the resilience of the Antarctic marine ecosystem during future changes, one of the planets last marine wildernesses. The project will use tools of molecular biology to examine specifically how gene expression is modulated in the pteropods, and further, how the changes and regulation of genes act to resist the stress of low pH and high temperature. In addition, this project supports the training of Ph.D. graduate students and advances the goal of inclusive excellence in STEM and in marine sciences, in particular. The students involved in this project are from groups traditionally under-represented in marine science including first-generation college students. Overall, the project contributes to the development of the U.S. work force and contributes to diversity and inclusive excellence in the geosciences.\r\n\r\nPart 2: Technical description: \r\nThe overarching goal of this project is to investigate the molecular response of the Antarctic thecosome pteropod, Limacina helicina antarctica to ocean acidification (OA) and ocean warming. The project will investigate changes in the epigenome of juvenile L. h. antarctica, by assessing the dynamics of DNA methylation in response to three scenarios of environmental conditions that were simulated in laboratory mesocosm CO2 experiments: (1) present-day pCO2 conditions for summer and winter, (2) future ocean acidification expected within 10-15 years, and (3) a multiple stressor experiment to investigate synergistic interaction of OA and high temperature stress. Recent lab-based mesocosm experiment research showed significant changes in the dynamics of global DNA methylation in the pteropod genome, along with variation in gene expression in response to abiotic changes. Thus, it is clear that juvenile L. h. antarctica are capable of mounting a substantial epigenetic response to ocean acidification. However, it is not known how DNA methylation, as an epigenetic process, is modulating changes in the transcriptome. In order to address this gap in the epigenetic knowledge regarding pteropods, the project will use next-generation sequencing approaches (e.g., RNA sequencing and reduced representation bisulfite sequencing) to integrate changes in methylation status with changes in gene expression in juvenile pteropods. Overall, this investigation is an important step in exploring environmental transcriptomics and phenotypic plasticity of an ecologically important member of Southern Ocean macrozoooplankton in response to anthropogenic climate change.\r\n\r\nThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 167.0, "geometry": "POINT(165 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; McMurdo Sound; Amd/Us; FIELD INVESTIGATION; USA/NSF; AMD; MARINE ECOSYSTEMS; ANIMALS/INVERTEBRATES", "locations": "McMurdo Sound", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Hofmann, Gretchen", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "GitHub", "repositories": "GitHub", "science_programs": null, "south": -78.0, "title": "The Role of the Epigenetic Mechanism, DNA Methylation, in the Tolerance and Resistance of Antarctic Pteropods to Ocean Acidification and Warming", "uid": "p0010313", "west": 163.0}, {"awards": "0944150 Hall, Brenda", "bounds_geometry": "POLYGON((163.6 -77.5,163.7 -77.5,163.8 -77.5,163.9 -77.5,164 -77.5,164.1 -77.5,164.2 -77.5,164.3 -77.5,164.4 -77.5,164.5 -77.5,164.6 -77.5,164.6 -77.57,164.6 -77.64,164.6 -77.71,164.6 -77.78,164.6 -77.85,164.6 -77.92,164.6 -77.99,164.6 -78.06,164.6 -78.13,164.6 -78.2,164.5 -78.2,164.4 -78.2,164.3 -78.2,164.2 -78.2,164.1 -78.2,164 -78.2,163.9 -78.2,163.8 -78.2,163.7 -78.2,163.6 -78.2,163.6 -78.13,163.6 -78.06,163.6 -77.99,163.6 -77.92,163.6 -77.85,163.6 -77.78,163.6 -77.71,163.6 -77.64,163.6 -77.57,163.6 -77.5))", "dataset_titles": "Marshall Valley Radiocarbon Data; Marshall Valley U-Series Data; Royal Society Range Headland Moraine Belt Radiocarbon Data; Salmon Valley Radiocarbon Data", "datasets": [{"dataset_uid": "601556", "doi": "10.15784/601556", "keywords": "Antarctica; Last Glacial Maximum; McMurdo Sound; Radiocarbon Dates; Ross Sea Drift; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Salmon Valley Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601556"}, {"dataset_uid": "601529", "doi": "10.15784/601529", "keywords": "Algae; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marshall Valley; Radiocarbon; Ross Sea Drift; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Marshall Valley Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601529"}, {"dataset_uid": "601555", "doi": "10.15784/601555", "keywords": "Antarctica; Last Glacial Maximum; McMurdo Sound; Radiocarbon Dates; Ross Sea Drift; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Royal Society Range Headland Moraine Belt Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601555"}, {"dataset_uid": "601528", "doi": "10.15784/601528", "keywords": "234U/230Th Dating; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Last Glacial Maximum; Marshall Drift; Marshall Valley; MIS 6; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Marshall Valley U-Series Data", "url": "https://www.usap-dc.org/view/dataset/601528"}], "date_created": "Thu, 03 Mar 2022 00:00:00 GMT", "description": "This award supports a project to investigate the sensitivity of the Antarctic ice sheet (AIS) to global climate change over the last two Glacial/Interglacial cycles. The intellectual merit of the project is that despite its importance to Earth\u0027s climate system, we currently lack a full understanding of AIS sensitivity to global climate change. This project will reconstruct and precisely date the history of marine-based ice in the Ross Sea sector over the last two glacial/interglacial cycles, which will enable a better understanding of the potential driving mechanisms (i.e., sea-level rise, ice dynamics, ocean temperature variations) for ice fluctuations. This will also help to place present ice?]sheet behavior in a long-term context. During the last glacial maximum (LGM), the AIS is known to have filled the Ross Embayment and although much has been done both in the marine and terrestrial settings to constrain its extent, the chronology of the ice sheet, particularly the timing and duration of the maximum and the pattern of initial recession, remains uncertain. In addition, virtually nothing is known of the penultimate glaciation, other than it is presumed to have been generally similar to the LGM. These shortcomings greatly limit our ability to understand AIS evolution and the driving mechanisms behind ice sheet fluctuations. This project will develop a detailed record of ice extent and chronology in the western Ross Embayment for not only the LGM, but also for the penultimate glaciation (Stage 6), from well-dated glacial geologic data in the Royal Society Range. Chronology will come primarily from high-precision Accelerator Mass Spectrometry (AMS) Carbon-14 (14C) and multi-collector Inductively Coupled Plasma (ICP)-Mass Spectrometry (MS) 234Uranium/230Thorium dating of lake algae and carbonates known to be widespread in the proposed field area. ", "east": 164.6, "geometry": "POINT(164.1 -77.85)", "instruments": null, "is_usap_dc": true, "keywords": "LABORATORY; Amd/Us; AMD; USA/NSF; GLACIAL LANDFORMS; USAP-DC; Royal Society Range; GLACIER ELEVATION/ICE SHEET ELEVATION", "locations": "Royal Society Range", "north": -77.5, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hall, Brenda; Denton, George", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.2, "title": "Sensitivity of the Antarctic Ice Sheet to Climate Change over the Last Two Glacial/Interglacial Cycles", "uid": "p0010302", "west": 163.6}, {"awards": "1643248 Hall, Brenda", "bounds_geometry": "POLYGON((163.3 -77.8,163.43 -77.8,163.56 -77.8,163.69 -77.8,163.82 -77.8,163.95 -77.8,164.08 -77.8,164.21 -77.8,164.34 -77.8,164.47 -77.8,164.6 -77.8,164.6 -77.85,164.6 -77.9,164.6 -77.95,164.6 -78,164.6 -78.05,164.6 -78.1,164.6 -78.15,164.6 -78.2,164.6 -78.25,164.6 -78.3,164.47 -78.3,164.34 -78.3,164.21 -78.3,164.08 -78.3,163.95 -78.3,163.82 -78.3,163.69 -78.3,163.56 -78.3,163.43 -78.3,163.3 -78.3,163.3 -78.25,163.3 -78.2,163.3 -78.15,163.3 -78.1,163.3 -78.05,163.3 -78,163.3 -77.95,163.3 -77.9,163.3 -77.85,163.3 -77.8))", "dataset_titles": "Marshall Valley Radiocarbon Data; Marshall Valley U-Series Data; Pyramid Trough Radiocarbon Data; Walcott Glacier area radiocarbon data; Walcott Glacier Exposure Data", "datasets": [{"dataset_uid": "601614", "doi": "10.15784/601614", "keywords": "Algae; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Pyramid Trough; Radiocarbon; Radiocarbon Dates; Ross Sea Drift; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Pyramid Trough Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601614"}, {"dataset_uid": "601615", "doi": "10.15784/601615", "keywords": "Algae; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Howchin Glacier; Radiocarbon; Radiocarbon Dates; Ross Sea Drift; Royal Society Range; Walcott Glacier", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Walcott Glacier area radiocarbon data", "url": "https://www.usap-dc.org/view/dataset/601615"}, {"dataset_uid": "601528", "doi": "10.15784/601528", "keywords": "234U/230Th Dating; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Last Glacial Maximum; Marshall Drift; Marshall Valley; MIS 6; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Marshall Valley U-Series Data", "url": "https://www.usap-dc.org/view/dataset/601528"}, {"dataset_uid": "601529", "doi": "10.15784/601529", "keywords": "Algae; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marshall Valley; Radiocarbon; Ross Sea Drift; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Marshall Valley Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601529"}, {"dataset_uid": "601616", "doi": "10.15784/601616", "keywords": "Antarctica; Beryllium-10; Exposure Age; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; McMurdo Sound; Royal Society Range; Walcott Glacier", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Walcott Glacier Exposure Data", "url": "https://www.usap-dc.org/view/dataset/601616"}], "date_created": "Thu, 03 Mar 2022 00:00:00 GMT", "description": "The Antarctic Ice Sheet is the greatest potential contributor to sea-level change. However, the future response of the ice sheet to warming climate is recognized as one of the greatest uncertainties in sea-level projections. An understanding of past ice fluctuations can afford insight into ice-sheet response to climate change and thus is critical for improving sea-level predictions. In this project, we will reconstruct the behavior of the Antarctic Ice Sheet in the western Ross Sea region during the great global warming that ended the last ice age. Fluctuations in ice volume during this time period will allow us to characterize the factors that cause the ice sheet to advance and retreat and will enable us to distinguish between models that suggest repeated episodes of ice-sheet collapse vs those that indicate ice-sheet growth during warming climate. An understanding of the cause(s) of changes in ice volume during the warming that ended the last ice age has important implications for the future of the Antarctic Ice Sheet. ", "east": 164.6, "geometry": "POINT(163.95 -78.05)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIER ELEVATION/ICE SHEET ELEVATION; Royal Society Range; USA/NSF; USAP-DC; Amd/Us; AMD; LABORATORY; GLACIAL LANDFORMS", "locations": "Royal Society Range", "north": -77.8, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Hall, Brenda; Denton, George", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.3, "title": "Response of the Antarctic Ice Sheet to the last great global warming", "uid": "p0010301", "west": 163.3}, {"awards": "0342484 Harwood, David", "bounds_geometry": "POINT(167.083333 -77.888889)", "dataset_titles": "Particle-size measurements at 3-m intervals for AND-2A sediment core, McMurdo Sound", "datasets": [{"dataset_uid": "601451", "doi": "10.15784/601451", "keywords": "Andrill; Antarctica; Continental Shelf; Diamict; McMurdo Sound; Miocene; Paleoclimate; Particle Size", "people": "Passchier, Sandra; Candice, Falk", "repository": "USAP-DC", "science_program": "ANDRILL", "title": "Particle-size measurements at 3-m intervals for AND-2A sediment core, McMurdo Sound", "url": "https://www.usap-dc.org/view/dataset/601451"}], "date_created": "Fri, 04 Feb 2022 00:00:00 GMT", "description": "ANDRILL is a scientific drilling program to investigate Antarctica\u0027s role in global climate change over the last sixty million years. The approach integrates geophysical surveys, new drilling technology, multidisciplinary core analysis, and ice sheet modeling to address four scientific themes: (1) the history of Antarctica\u0027s climate and ice sheets; (2) the evolution of polar biota and ecosystems; (3) the timing and nature of major tectonic and volcanic episodes; and (4) the role of Antarctica in the Earth\u0027s ocean-climate system. \u003cbr/\u003e\u003cbr/\u003eThis award initiates what may become a long-term program with drilling of two previously inaccessible sediment records beneath the McMurdo Ice Shelf and in South McMurdo Sound. These stratigraphic records cover critical time periods in the development of Antarctica\u0027s major ice sheets. The McMurdo Ice Shelf site focuses on the Ross Ice Shelf, whose size is a sensitive indicator of global climate change. It has recently undergone major calving events, and there is evidence of a thousand-kilometer contraction since the last glacial maximum. As a generator of cold bottom water, the shelf may also play a key role in ocean circulation. The core obtained from this site will also offer insight into sub-ice shelf sedimentary, biologic, and oceanographic processes; the history of Ross Island volcanism; and the flexural response of the lithosphere to volcanic loading, which is important for geophysical and tectonic studies of the region.\u003cbr/\u003e\u003cbr/\u003eThe South McMurdo Sound site is located adjacent to the Dry Valleys, and focuses on the major ice sheet overlying East Antarctica. A debate persists regarding the stability of this ice sheet. Evidence from the Dry Valleys supports contradictory conclusions; a stable ice sheet for at least the last fifteen million years or an active ice sheet that cycled through expansions and contractions as recently as a few millions of years ago. Constraining this history is critical to deep-time models of global climate change. The sediment cores will be used to construct an overall glacial and interglacial history for the region; including documentation of sea-ice coverage, sea level, terrestrial vegetation, and melt-water discharge events. The core will also provide a general chronostratigraphic framework for regional seismic studies and help unravel the area\u0027s complex tectonic history.\u003cbr/\u003e\u003cbr/\u003eThe broader impacts of this project include formal and informal education, new research infrastructure, various forms of collaboration, and improving society\u0027s understanding of global climate change. Education is supported at the postdoctoral, graduate, undergraduate, and K-12 levels. Teachers and curriculum specialists are integrated into the research program, and a range of video resources will be produced, including a science documentary for television release. New research infrastructure includes equipment for core analysis and ice sheet modeling, as well as development of a unique drilling system to penetrate ice shelves. Drill development and the overall project are co-supported by international collaboration with scientists and the National Antarctic programs of New Zealand, Germany, and Italy. The program also forges new collaborations between research and primarily undergraduate institutions within the United States. \u003cbr/\u003e\u003cbr/\u003eAs key factors in sea-level rise and oceanic and atmospheric circulation, Antarctica\u0027s ice sheets are important to society\u0027s understanding of global climate change. ANDRILL offers new data on marine and terrestrial temperatures, and changes our understanding of extreme climate events like the formation of polar ice caps. Such data are critical to developing accurate models of the Earth\u0027s climatic future.", "east": 167.083333, "geometry": "POINT(167.083333 -77.888889)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; USAP-DC; FIELD SURVEYS; ICE SHEETS; USA/NSF; Amd/Us; PALEOCLIMATE RECONSTRUCTIONS; Ross Ice Shelf; SEDIMENTS", "locations": "Ross Ice Shelf", "north": -77.888889, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Harwood, David; Levy, Richard", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ANDRILL", "south": -77.888889, "title": "Collaborative Research: ANDRILL - - Investigating Antarcticas Role in Cenozoic Global Environmental Change", "uid": "p0010297", "west": 167.083333}, {"awards": "2020706 Hindle, Allyson; 2020664 Vazquez-Medina, Jose Pablo", "bounds_geometry": "POLYGON((164 -77.2,164.3 -77.2,164.6 -77.2,164.9 -77.2,165.2 -77.2,165.5 -77.2,165.8 -77.2,166.1 -77.2,166.4 -77.2,166.7 -77.2,167 -77.2,167 -77.265,167 -77.33,167 -77.395,167 -77.46,167 -77.525,167 -77.59,167 -77.655,167 -77.72,167 -77.785,167 -77.85,166.7 -77.85,166.4 -77.85,166.1 -77.85,165.8 -77.85,165.5 -77.85,165.2 -77.85,164.9 -77.85,164.6 -77.85,164.3 -77.85,164 -77.85,164 -77.785,164 -77.72,164 -77.655,164 -77.59,164 -77.525,164 -77.46,164 -77.395,164 -77.33,164 -77.265,164 -77.2))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 09 Sep 2021 00:00:00 GMT", "description": "The Weddell seal is a champion diver with high natural tolerance for low blood oxygen concentration (hypoxemia) and inadequate blood supply (ischemia). The processes unique to this species protects their tissues from inflammation and oxidative stress observed in other mammalian tissues exposed to such physiological conditions. This project aims to understand the signatures of the processes that protect seals from inflammation and oxidant stress, using molecular, cellular and metabolic tools. Repetitive short dives before long ones are hypothesized to precondition seal tissues and activate the protective processes. The new aspect of this work is the study of endothelial cells, which sense changes in oxygen and blood flow, providing a link between breath-holding and cellular function. The approach is one of laboratory experiments combined with 2-years of field work in an ice camp off McMurdo Station in Antarctica. The study is structured by three main objectives: 1) laboratory experiments with arterial endothelial cells exposed to changes in oxygen and flow to identify molecular pathways responsible for tolerance of hypoxia and ischemia using several physiological, biochemical and genomic tools including CRSPR/Cas9 knockout and knockdown approaches. 2) Metabolomic analyses of blood metabolites produced by seals during long dives. And 3) Metabolomic and genomic determinations of seal physiology during short dives hypothesized to pre-condition tolerance responses. In the field, blood samples will be taken after seals dive in an isolated ice hole and its diving performance recorded. It is expected that the blood will contain metabolites that can be related to molecular pathways identified in lab experiments. ", "east": 167.0, "geometry": "POINT(165.5 -77.525)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; USA/NSF; AMD; MAMMALS; McMurdo Sound; Amd/Us", "locations": "McMurdo Sound", "north": -77.2, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Hindle, Allyson", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -77.85, "title": "Collaborative Research: Role of Endothelial Cell Activation in Hypoxia Tolerance of an Elite Diver, the Weddell Seal", "uid": "p0010257", "west": 164.0}, {"awards": "2046800 Thurber, Andrew", "bounds_geometry": "POLYGON((162 -77,162.6 -77,163.2 -77,163.8 -77,164.4 -77,165 -77,165.6 -77,166.2 -77,166.8 -77,167.4 -77,168 -77,168 -77.1,168 -77.2,168 -77.3,168 -77.4,168 -77.5,168 -77.6,168 -77.7,168 -77.8,168 -77.9,168 -78,167.4 -78,166.8 -78,166.2 -78,165.6 -78,165 -78,164.4 -78,163.8 -78,163.2 -78,162.6 -78,162 -78,162 -77.9,162 -77.8,162 -77.7,162 -77.6,162 -77.5,162 -77.4,162 -77.3,162 -77.2,162 -77.1,162 -77))", "dataset_titles": null, "datasets": null, "date_created": "Sat, 21 Aug 2021 00:00:00 GMT", "description": "Due to persistent cold temperatures, geographical isolation, and resulting evolutionary distinctness of Southern Ocean fauna, the study of Antarctic reducing habitats has the potential to fundamentally alter our understanding of the biologic processes that inhibit greenhouse gas emissions from our oceans. Marine methane, a greenhouse gas 25x as potent as carbon dioxide for warming our atmosphere, is currently a minor component of atmospheric forcing due to the microbial oxidation of methane within the oceans. Based on studies of persistent deep-sea seeps at mid- and northern latitudes we have learned that bacteria and archaea create a \u2018sediment filter\u2019 that oxidizes methane prior to its release. As increasing global temperatures have and will continue to alter the rate and variance of methane release, the ability of the microbial filter to respond to fluctuations in methane cycles is a critical yet unexplored avenue of research. Antarctica contains vast reservoirs of methane, equivalent to all of the permafrost in the Arctic, and yet we know almost nothing about the fauna that may mitigate its release, as until recently, we had not discovered an active methane seep.\r\n\r\nIn 2012, a methane seep was discovered in the Ross Sea, Antarctica that formed in 2011 providing the first opportunity to study an active Antarctic methane-fueled habitat and simultaneously the impact of microbial succession on the oxidation of methane, a critical ecosystem service. Previous work has shown that after 5 years of seepage, the community was at an early stage of succession and unable to mitigate the release of methane from the seafloor. In addition, additional areas of seepage had begun nearby. This research aims to quantify the community trajectory of these seeps in relation to their role in the Antarctic Ecosystem, from greenhouse gas mitigation through supporting the food web. Through the application of genomic and transcriptomic approaches, taxa involved in methane cycling and genes activated by the addition of methane will be identified and contrasted with those from other geographical locations. These comparisons will elucidate how taxa have evolved and adapted to the polar environment.\r\n\r\nThis research uses a \u2018genome to ecosystem\u2019 approach to advance our understanding of organismal and systems ecology in Antarctica. By quantifying the trajectory of community succession following the onset of methane emission, the research will decipher temporal shifts in biodiversity/ecosystem function relationships. Phylogenomic approaches focusing on taxa involved in methane cycling will advance the burgeoning field of microbial biogeography on a continent where earth\u2019s history may have had a profound yet unquantified impact on microbial evolution. Further, the research will empirically quantify the role of chemosynthesis as a form of export production from seeps and in non-seep habitats in the nearshore Ross Sea benthos, informing our understanding of Antarctic carbon cycling.\r\n", "east": 168.0, "geometry": "POINT(165 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; USA/NSF; USAP-DC; BACTERIA/ARCHAEA; McMurdo Sound; BENTHIC; FIELD SURVEYS; Amd/Us; ECOSYSTEM FUNCTIONS", "locations": "McMurdo Sound", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Thurber, Andrew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -78.0, "title": "CAREER: Ecosystem Impacts of Microbial Succession and Production at Antarctic Methane Seeps", "uid": "p0010250", "west": 162.0}, {"awards": "1744999 Todgham, Anne", "bounds_geometry": "POLYGON((162 -77,162.8 -77,163.6 -77,164.4 -77,165.2 -77,166 -77,166.8 -77,167.6 -77,168.4 -77,169.2 -77,170 -77,170 -77.1,170 -77.2,170 -77.3,170 -77.4,170 -77.5,170 -77.6,170 -77.7,170 -77.8,170 -77.9,170 -78,169.2 -78,168.4 -78,167.6 -78,166.8 -78,166 -78,165.2 -78,164.4 -78,163.6 -78,162.8 -78,162 -78,162 -77.9,162 -77.8,162 -77.7,162 -77.6,162 -77.5,162 -77.4,162 -77.3,162 -77.2,162 -77.1,162 -77))", "dataset_titles": "A comparative and ontogenetic examination of mitochondrial function in Antarctic notothenioid species; Differential temperature preferences exhibited in the juvenile Antarctic notothenioids Trematomus bernacchii and Trematomus pennellii", "datasets": [{"dataset_uid": "601766", "doi": null, "keywords": "Antarctica; McMurdo Sound", "people": "Frazier, Amanda; Todgham, Anne; Mandic, Milica; Naslund, Andrew", "repository": "USAP-DC", "science_program": null, "title": "A comparative and ontogenetic examination of mitochondrial function in Antarctic notothenioid species", "url": "https://www.usap-dc.org/view/dataset/601766"}, {"dataset_uid": "601765", "doi": null, "keywords": "Antarctica; McMurdo Sound; Ross Sea", "people": "Frazier, Amanda; Todgham, Anne; Naslund, Andrew; Zillig, Ken; Mandic, Milica", "repository": "USAP-DC", "science_program": null, "title": "Differential temperature preferences exhibited in the juvenile Antarctic notothenioids Trematomus bernacchii and Trematomus pennellii", "url": "https://www.usap-dc.org/view/dataset/601765"}], "date_created": "Thu, 12 Aug 2021 00:00:00 GMT", "description": "This project fits within the second of three major themes identified by the National Academy of Science report \u201cA Strategic Vision for NSF Investments in Antarctic and Southern Ocean Research\u201d. How do Antarctic biota evolve and adapt to the changing environment? Decoding the genomic and transcriptomic bases of biological adaptation and response across Antarctic organisms and ecosystems. Central in this theme is the physiological capacity of animals to cope with changes in environmental conditions over their lifetime, which this research firmly addresses. In the Southern Ocean surrounding Antarctica there is an extraordinary diversity of marine life. Much of our understanding of the biology of these animals comes from studies of the adaptations of these animals to sub-zero ocean conditions. Antarctic marine organisms have evolved to survive in stable, cold ocean conditions and possess a limited capacity to respond to environmental change. Research to date on Antarctic fishes has focused on adult life stages with much less research on early life stages that likely prioritize growth and development and not physiological mechanisms of stress tolerance. This project addresses the mechanisms that early life stages (embryos, larvae and juveniles) of Antarctic fishes use to respond to changes in ocean conditions. Specifically, the project will examine energetic trade-offs between key developmental processes in the context of environmental change. While the project focuses on Antarctic species, the research is highly translatable to stress tolerance mechanisms of fishes along the coast of North America, many of which are also experiencing changes in multiple environmental factors. Research in the Antarctic allows scientists to identify unifying themes or generalities in physiology that extend beyond the waters of the Southern Ocean and therefore have broad implications for understanding what is limiting the performance of fishes globally. BROADER IMPACTS \u2013To build environmental stewardship and awareness, we must increase science literacy in the broader community. This project does this through three main objectives. First is to increase the diversity of students involved in environmental science research. Student diversity, in turn, gives the scientific community a broader perspective for addressing critical challenges in environmental biology. This project provides resources to support three PhD students, one postdoctoral scholar and two undergraduate students and promotes the diversity of young scientists and the advancement of groups traditionally underrepresented in environmental biology. Todgham will broaden the outreach effort by developing exhibits on environmental change impacts on polar regions for large public events, an opportunity to engage K-12 students, government officials in Sacramento and local and statewide communities. Lastly, through a collaboration with PolarTREC and teacher Denise Hardoy, lesson plans have been developed to teach K-12 students about experimental design, polar environments and sensitivity of Antarctic species to climate change.", "east": 170.0, "geometry": "POINT(166 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; AMD; McMurdo Sound; FISH; USA/NSF; Amd/Us; USAP-DC", "locations": "McMurdo Sound", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Todgham, Anne", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Interacting Stressors: Metabolic Capacity to Acclimate under Ocean Warming and CO2- Acidification in Early Developmental Stages of Antarctic Fishes", "uid": "p0010241", "west": 162.0}, {"awards": "1745057 Walker, Sally; 1745064 Perez-Huerta, Alberto; 1745080 Gillikin, David", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Analysis of striae groups and interstrial increments from Adamussium colbecki valves from Explorers Cove and Bay of Sails; Annual growth of Adamussium colbecki from Explorers Cove and Bay of Sails; Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores; Nitrogen, carbon, and oxygen isotopes in the shell of the Antarctic scallop Adamussium colbecki as a proxy for sea ice cover in Antarctica.; Stable isotopes of Oxygen and Carbon in Adamissium colbecki from Explorers Cove and Bay of Sails", "datasets": [{"dataset_uid": "601761", "doi": "10.15784/601761", "keywords": "Adamussium Colbecki; Antarctica; Bay Of Sails; Carbon; Explorers Cove; McMurdo Sound; Oxygen; Stable Isotopes", "people": "Walker, Sally; Cronin, Kelly; Gillikin, David; Puhalski, Emma; Camarra, Steve; Andrus, Fred; Perez-Huerta, Alberto; Verheyden, Anouk; Bowser, Samuel S.", "repository": "USAP-DC", "science_program": null, "title": "Stable isotopes of Oxygen and Carbon in Adamissium colbecki from Explorers Cove and Bay of Sails", "url": "https://www.usap-dc.org/view/dataset/601761"}, {"dataset_uid": "601764", "doi": null, "keywords": "Adamussium Colbecki; Antarctica; Biota; Carbon Isotopes; Explorers Cove; Nitrogen Isotopes; Oxygen Isotope; Scallop", "people": "Puhalski, Emma; Gillikin, David; Camarra, Steve; Cronin, Kelly; Verheyden, Anouk; Walker, Sally", "repository": "USAP-DC", "science_program": null, "title": "Nitrogen, carbon, and oxygen isotopes in the shell of the Antarctic scallop Adamussium colbecki as a proxy for sea ice cover in Antarctica.", "url": "https://www.usap-dc.org/view/dataset/601764"}, {"dataset_uid": "601469", "doi": "10.15784/601469", "keywords": "Adamussium Colbecki; Antarctica; McMurdo", "people": "Walker, Sally; Cronin, Kelly", "repository": "USAP-DC", "science_program": null, "title": "Analysis of striae groups and interstrial increments from Adamussium colbecki valves from Explorers Cove and Bay of Sails", "url": "https://www.usap-dc.org/view/dataset/601469"}, {"dataset_uid": "601468", "doi": "10.15784/601468", "keywords": "Adamussium Colbecki; Antarctica; Growth; McMurdo Sound; Shell Fish", "people": "Cronin, Kelly; Walker, Sally", "repository": "USAP-DC", "science_program": null, "title": "Annual growth of Adamussium colbecki from Explorers Cove and Bay of Sails", "url": "https://www.usap-dc.org/view/dataset/601468"}, {"dataset_uid": "600077", "doi": "10.15784/600077", "keywords": "Antarctica; Biota; Glaciers/ice Sheet; Glaciers/Ice Sheet; McMurdo Sound; Oceans; Sample/collection Description; Sample/Collection Description", "people": "Walker, Sally", "repository": "USAP-DC", "science_program": null, "title": "Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores", "url": "https://www.usap-dc.org/view/dataset/600077"}], "date_created": "Fri, 06 Aug 2021 00:00:00 GMT", "description": "The goal of this project is to discover whether the Antarctic scallop, Adamussium colbecki, provides a guide to sea-ice conditions in nearshore Antarctica today and in the past. Scallops may grow slower and live longer in habitats where sea ice persists for many years, limited by food, compared to habitats where sea ice melts out annually. Also, the chemicals retained in the shell during growth may provide crucial habitat information related to not only changing sea-ice conditions but also the type of food, whether it is recycled from the seafloor or produced by algae blooming when sea ice has melted. Unlocking the ecological imprint captured within the shell of the Antarctic Scallop will increase our understanding of changing sea-ice conditions in Antarctica. Further, because the Antarctic scallop had relatives living at the time when the Antarctic ice sheet first appeared, the scallop shell record may contain information on the stability of the ice sheet and the history of Antarctic shallow seas. Funding will also be integral for training a new generation of geoscientists in fossil and chemical forensics related to shallow sea habitats in Antarctica.\r\n\r\nScallops are worldwide in distribution, are integral for structuring marine communities have an extensive fossil record dating to the late Devonian, and are increasingly recognized as important paleoenvironmental proxies because they are generally well preserved in the sediment and rock record. The primary goal of this project is to assess the differences in growth, lifespan, and chemistry (stable isotopes, trace elements) archived in the shell of the Antarctic scallop that may be indicative of two ice states: persistent (multiannual) sea ice at Explorers Cove (EC) and annual sea ice (that melts out every year) at Bay of Sails (BOS), western McMurdo Sound, Antarctica. This project will investigate growth and lifespan proxies (physical and geochemical) and will use high-resolution records of stable oxygen isotopes to determine if a melt-water signal is archived in A. colbecki shells and whether that signal captures the differing ice behavior at two sites (EC versus BOS). Stable isotopes of carbon and nitrogen in association with trace elements will be used to examine subannual productivity spikes indicative of phytoplankton blooms, which are predicted to be more pronounced during open ocean conditions. Small growth increments in the outer calcite layer will be assessed to determine if they represent fortnightly growth, if so, they could provide a high-resolution proxy for monthly environmental processes. Unlocking the environmental archive preserved in A. colbecki shells may prove to be an important proxy for understanding changing sea-ice conditions in Antarctica\u0027s past. Funding will support a Ph.D. student and undergraduates from multiple institutions working on independent research projects. Web content focused on Antarctic marine communities will be designed for museum outreach, reaching thousands of middle-school children each year.\r\n", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; PALEOCLIMATE RECONSTRUCTIONS; AMD; Dry Valleys; USAP-DC; LABORATORY; USA/NSF", "locations": "Dry Valleys", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Walker, Sally; Gillikin, David; Perez-Huerta, Alberto; Andrus, Fred", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past", "uid": "p0010238", "west": -180.0}, {"awards": "1643532 Ponganis, Paul", "bounds_geometry": "POLYGON((163 -77,163.4 -77,163.8 -77,164.2 -77,164.6 -77,165 -77,165.4 -77,165.8 -77,166.2 -77,166.6 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.6 -78,166.2 -78,165.8 -78,165.4 -78,165 -78,164.6 -78,164.2 -78,163.8 -78,163.4 -78,163 -78,163 -77.9,163 -77.8,163 -77.7,163 -77.6,163 -77.5,163 -77.4,163 -77.3,163 -77.2,163 -77.1,163 -77))", "dataset_titles": "Blood oxygen transport and depletion in diving emperor penguins; Emperor penguin air sac oxygen", "datasets": [{"dataset_uid": "200236", "doi": "10.5061/dryad.3tx95x6f5", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Emperor penguin air sac oxygen", "url": "https://doi.org/10.6076/D1H01Z"}, {"dataset_uid": "200409", "doi": "10.5061/dryad.qv9s4mwnp", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Blood oxygen transport and depletion in diving emperor penguins", "url": "https://doi.org/10.5061/dryad.qv9s4mwnp"}], "date_created": "Fri, 30 Jul 2021 00:00:00 GMT", "description": "Part 1: Air sac-to-tissue oxygen delivery is essential to the dive capacity and foraging strategy of any penguin species as well as to flight and migration in other birds. Such transport of oxygen is dependent on the complex, highly efficient avian respiratory system (air sacs and lungs) and on the cardiovascular system. This delivery of oxygen allows emperor penguins to dive deeper than 500 meters and bar-headed geese to fly over the Himalayas. However, the physiological mechanisms underlying the transfer of oxygen from air sacs to blood and the subsequent distribution of oxygen to tissues are poorly understood. The emperor penguin is ideal for investigation of this oxygen cascade because of its body size, dive capacity, physiological data base, and the prior development of research techniques and protocols for this species. This study should provide insight into a) the mechanisms underlying the efficiency of the bird oxygen transport system, b) the physiological basis of penguin dive behavior, and the ability of penguins to adapt to environmental change, and c) perhaps, even the design of better therapeutic strategies and tools for treatment of respiratory disease. The project also includes educational exhibits and lecture programs on penguin biology at SeaWorld of San Diego. These educational programs at SeaWorld have outreach to diverse groups of grade school and high school students.\r\n\r\nPart 2: This project will examine the transport of oxygen from air sacs to tissues in a series of studies with temporarily captive emperor penguins that are free-diving at an isolated dive hole research camp in McMurdo Sound. Physiological data will be obtained with application of backpack recorders for the partial pressure of oxygen (PO2) in air sacs and/or blood, and backpack heart rate/stroke rate recorders. This experimental approach will be transformative in avian biology because it will also lay the groundwork for future investigations of air sac to lung to blood oxygen transfer during exercise of volant and cursorial birds.\r\n\r\nFour major topics are examined in this project: a) air sac oxygen distribution/depletion and the movement of air between anterior and posterior air sacs, b) anterior air sac to arterial PO2 differences and parabronchial gas exchange, c) blood oxygen transport and depletion throughout dives, and the nature of the aerobic dive limit, and d) the relationship of venous oxygen depletion patterns to both heart rate and stroke effort during dives. \r\n\r\nSpecific educational outreach goals include a) short video features to be displayed in the Penguin Encounter exhibit at SeaWorld of San Diego, and b) lectures, video presentations, and pre- and post-course evaluations for student campers and participants in SeaWorld\u2019s education programs. Underwater video for exhibits/presentations with be obtained with use of a penguin backpack camera in the Antarctic.\r\n", "east": 167.0, "geometry": "POINT(165 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "McMurdo Sound; USAP-DC; FIELD SURVEYS; USA/NSF; Amd/Us; AMD; PENGUINS", "locations": "McMurdo Sound", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ponganis, Paul", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "Dryad", "repositories": "Dryad", "science_programs": null, "south": -78.0, "title": "From Air Sacs to Tissues: Oxygen Transfer and Utilization in Diving Emperor Penguins", "uid": "p0010236", "west": 163.0}, {"awards": "1640481 Rotella, Jay", "bounds_geometry": "POLYGON((162 -75,162.8 -75,163.6 -75,164.4 -75,165.2 -75,166 -75,166.8 -75,167.6 -75,168.4 -75,169.2 -75,170 -75,170 -75.38,170 -75.76,170 -76.14,170 -76.52,170 -76.9,170 -77.28,170 -77.66,170 -78.03999999999999,170 -78.42,170 -78.8,169.2 -78.8,168.4 -78.8,167.6 -78.8,166.8 -78.8,166 -78.8,165.2 -78.8,164.4 -78.8,163.6 -78.8,162.8 -78.8,162 -78.8,162 -78.42,162 -78.03999999999999,162 -77.66,162 -77.28,162 -76.9,162 -76.52,162 -76.14,162 -75.76,162 -75.38,162 -75))", "dataset_titles": "Demographic data for Weddell Seal colonies in Erebus Bay through the 2017 Antarctic field season; Demographic data for Weddell Seal colonies in Erebus Bay through the 2023 Antarctic field season", "datasets": [{"dataset_uid": "200300", "doi": " https://doi.org/10.15784/601125 ", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "Demographic data for Weddell Seal colonies in Erebus Bay through the 2017 Antarctic field season", "url": "https://www.usap-dc.org/view/dataset/601125"}, {"dataset_uid": "601837", "doi": "10.15784/601837", "keywords": "AMD; Amd/Us; Antarctica; Cryosphere; McMurdo Sound; Population Dynamics; USA/NSF; USAP-DC; Weddell Seal", "people": "Rotella, Jay", "repository": "USAP-DC", "science_program": null, "title": "Demographic data for Weddell Seal colonies in Erebus Bay through the 2023 Antarctic field season", "url": "https://www.usap-dc.org/view/dataset/601837"}], "date_created": "Thu, 24 Jun 2021 00:00:00 GMT", "description": "The Erebus Bay population of Weddell seals in the Ross Sea of Antarctica is the most southerly breeding population of mammal in the world, closely associated with persistent shore-fast ice, and one that has been intensively studied since 1969. The resulting long-term database, which includes data for over 25,000 marked individuals, contains detailed population information that provides an excellent opportunity to study linkages between environmental conditions and demographic processes in the Antarctic. The study population is of special interest as the Ross Sea is one of the most productive areas of the Southern Ocean and one of the most pristine marine environments on the planet. The study provides long-term demographic data for individual seals", "east": 170.0, "geometry": "POINT(166 -76.9)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; ANIMAL ECOLOGY AND BEHAVIOR; Amd/Us; FIELD INVESTIGATION; Ross Sea; USA/NSF; USAP-DC", "locations": "Ross Sea", "north": -75.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Rotella, Jay; Garrott, Robert", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.8, "title": "The consequences of maternal effects and environmental conditions on offspring success in an Antarctic predator", "uid": "p0010198", "west": 162.0}, {"awards": "1745130 Moran, Amy", "bounds_geometry": "POLYGON((163 -76,163.3 -76,163.6 -76,163.9 -76,164.2 -76,164.5 -76,164.8 -76,165.1 -76,165.4 -76,165.7 -76,166 -76,166 -76.2,166 -76.4,166 -76.6,166 -76.8,166 -77,166 -77.2,166 -77.4,166 -77.6,166 -77.8,166 -78,165.7 -78,165.4 -78,165.1 -78,164.8 -78,164.5 -78,164.2 -78,163.9 -78,163.6 -78,163.3 -78,163 -78,163 -77.8,163 -77.6,163 -77.4,163 -77.2,163 -77,163 -76.8,163 -76.6,163 -76.4,163 -76.2,163 -76))", "dataset_titles": "Egg diameters of Colossendeis megalonyx; Video of Colossendeis megalonyx behavior around egg mass", "datasets": [{"dataset_uid": "601717", "doi": "10.15784/601717", "keywords": "Antarctica; McMurdo", "people": "Moran, Amy", "repository": "USAP-DC", "science_program": null, "title": "Egg diameters of Colossendeis megalonyx", "url": "https://www.usap-dc.org/view/dataset/601717"}, {"dataset_uid": "601716", "doi": "10.15784/601716", "keywords": "Antarctica; McMurdo; Pycnogonida; Sea Spider", "people": "Moran, Amy; Lobert, Graham", "repository": "USAP-DC", "science_program": null, "title": "Video of Colossendeis megalonyx behavior around egg mass", "url": "https://www.usap-dc.org/view/dataset/601716"}], "date_created": "Wed, 09 Jun 2021 00:00:00 GMT", "description": "Antarctic marine ectotherms exhibit universally slow growth, low metabolic rates, and extended development, yet many of their rate processes related to physiology and metabolism are highly thermally sensitive. This suggests that small changes in temperature may result in dramatic changes to energy metabolism, growth, and the rate and duration of development. This project will measure the effects of temperature on metabolism, developmental rate, and the energetic cost of development of four common and ecologically important species of benthic Antarctic marine invertebrates. These effects will be measured over the functional ranges of the organisms and in the context of environmentally relevant seasonal shifts in temperature around McMurdo Sound. Recent data show that seasonal warming of ~1\u00b0C near McMurdo Station is accompanied by long-lasting hyperoxic events that impact the benthos in the nearshore boundary layer. This research will provide a more comprehensive understanding of both annual variation in environmental oxygen and temperature across the Sound, and whether this variation drives changes in developmental rate and energetics that are consistent with physiological acclimatization. These data will provide key information about potential impacts of warming Antarctic ectotherms. In addition, this project will support undergraduate and graduate research and partner with large-enrollment undergraduate courses and REU programs at an ANNH and AANAPISI Title III minority-serving institution. \r\nWe have completed one of our two scheduled field and data-collecting seasons, but our research was put on hold by COVID and by equipment and sea ice conditions at McMurdo. We have established baseline information on energy utilization by embryos of several species under ambient conditions and early data suggest that metabolism is highly affected by temperature in the range of -2.0 C to 1 C, and less so thereafter.", "east": 166.0, "geometry": "POINT(164.5 -77)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; Amd/Us; McMurdo Sound; AMD; BENTHIC; USA/NSF; FIELD INVESTIGATION", "locations": "McMurdo Sound", "north": -76.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Moran, Amy", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development ", "uid": "p0010187", "west": 163.0}, {"awards": "1644196 Cziko, Paul", "bounds_geometry": "POLYGON((163.47 -77.14,163.803 -77.14,164.136 -77.14,164.469 -77.14,164.802 -77.14,165.135 -77.14,165.468 -77.14,165.801 -77.14,166.134 -77.14,166.467 -77.14,166.8 -77.14,166.8 -77.216,166.8 -77.292,166.8 -77.368,166.8 -77.444,166.8 -77.52,166.8 -77.596,166.8 -77.672,166.8 -77.748,166.8 -77.824,166.8 -77.9,166.467 -77.9,166.134 -77.9,165.801 -77.9,165.468 -77.9,165.135 -77.9,164.802 -77.9,164.469 -77.9,164.136 -77.9,163.803 -77.9,163.47 -77.9,163.47 -77.824,163.47 -77.748,163.47 -77.672,163.47 -77.596,163.47 -77.52,163.47 -77.444,163.47 -77.368,163.47 -77.292,163.47 -77.216,163.47 -77.14))", "dataset_titles": "High-resolution nearshore benthic seawater temperature from around McMurdo Sound, Antarctica (2017-2019); Long-Term broadband underwater acoustic recordings from McMurdo Sound, Antarctica (2017-2019); Long-term underwater images from around a single mooring site in McMurdo Sound, Antarctica (2017-2019)", "datasets": [{"dataset_uid": "601417", "doi": "10.15784/601417", "keywords": "Antarctica; Benthic Ecology; Benthic Invertebrates; Biota; McMurdo Sound; Notothenioid; Notothenioid Fishes; Photo/video; Photo/Video; Rocky Reef Community; Soft-Bottom Community; Timelaps Images", "people": "Cziko, Paul", "repository": "USAP-DC", "science_program": null, "title": "Long-term underwater images from around a single mooring site in McMurdo Sound, Antarctica (2017-2019)", "url": "https://www.usap-dc.org/view/dataset/601417"}, {"dataset_uid": "601420", "doi": "10.15784/601420", "keywords": "Antarctica; Benthic Ecology; CTD; Depth; McMurdo Sound; Oceanography; Oceans; Physical Oceanography; Pressure; Salinity; Seawater Measurements; Seawater Temperature; Supercooling; Tides", "people": "Cziko, Paul", "repository": "USAP-DC", "science_program": null, "title": "High-resolution nearshore benthic seawater temperature from around McMurdo Sound, Antarctica (2017-2019)", "url": "https://www.usap-dc.org/view/dataset/601420"}, {"dataset_uid": "601416", "doi": "10.15784/601416", "keywords": "Antarctica; Bioacoustics; Biota; Hydroacoustics; Killer Whales; Leptonychotes Weddellii; McMurdo Sound; Oceans; Orcinus Orca; Sea Ice; Weddell Seal; Whales", "people": "Cziko, Paul", "repository": "USAP-DC", "science_program": null, "title": "Long-Term broadband underwater acoustic recordings from McMurdo Sound, Antarctica (2017-2019)", "url": "https://www.usap-dc.org/view/dataset/601416"}], "date_created": "Tue, 15 Dec 2020 00:00:00 GMT", "description": "Notothenioid fishes live in the world\u0027s coldest marine waters surrounding Antarctica and have evolved strategies to avoid freezing. Past studies have shown that most Antarctic notothenioids produce special antifreeze proteins that prevent the growth of ice crystals that enter the body. While these proteins help prevent individuals from being killed by growing ice crystals, it is unclear how these fish avoid the accumulation of these small ice crystals inside their tissues over time. This project will observe how ice crystal accumulation relates to the harshness of a fish\u0027s environment within different habitats of McMurdo Sound, Antarctica. The researchers collected fishes and ocean observations at different field sites that cover a range of habitat severity in terms of temperature and iciness. The researchers installed an underwater ocean observatory near McMurdo Station (The McMurdo Oceanographic Observatory, MOO; Nov. 2017 - Nov. 2019) which included a conductivity-temperature-depth sensor (CTD), a high-definition video/still image camera and a research quality hydrophone. The observatory produced oceanographic data, time-lapse images of the immediate environs, and a high-resolution hydroacoustic dataset from the entire deployment. Seawater temperature data loggers were also deployed at other shallow, nearshore sites around McMurdo Sound to provide context and assessment of environmental conditions experienced by the fishes. ", "east": 166.8, "geometry": "POINT(165.135 -77.52)", "instruments": null, "is_usap_dc": true, "keywords": "Benthic Ecology; ANIMALS/VERTEBRATES; USA/NSF; OCEAN TEMPERATURE; USAP-DC; MAMMALS; FIELD INVESTIGATION; Amd/Us; McMurdo Sound; FISH; AMD", "locations": "McMurdo Sound", "north": -77.14, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Cziko, Paul; DeVries, Arthur", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes", "uid": "p0010147", "west": 163.47}, {"awards": "1543539 Liwanag, Heather", "bounds_geometry": null, "dataset_titles": "metabolic measurements; Sedation dose and response; TDR and weather data", "datasets": [{"dataset_uid": "601524", "doi": "10.15784/601524", "keywords": "Antarctica; McMurdo Sound; Metabolic Rate; Thermoregulation; Weddell Seal", "people": "Pearson, Linnea", "repository": "USAP-DC", "science_program": null, "title": "metabolic measurements", "url": "https://www.usap-dc.org/view/dataset/601524"}, {"dataset_uid": "601631", "doi": "10.15784/601631", "keywords": "Antarctica; McMurdo Sound; Weddell Seal", "people": "Pearson, Linnea", "repository": "USAP-DC", "science_program": null, "title": "Sedation dose and response", "url": "https://www.usap-dc.org/view/dataset/601631"}, {"dataset_uid": "601435", "doi": "10.15784/601435", "keywords": "Antarctica; McMurdo Sound; Weddell Seal", "people": "Liwanag, Heather; Pearson, Linnea; Weitzner, Emma", "repository": "USAP-DC", "science_program": null, "title": "TDR and weather data", "url": "https://www.usap-dc.org/view/dataset/601435"}], "date_created": "Sat, 12 Dec 2020 00:00:00 GMT", "description": "The transition of young from parental care to independence is a critical stage in the life of many animals. Surviving this stage can be especially challenging for polar mammals where the extreme cold requires extra energy to keep warm, rather than using the majority of energy for growth, development and physical activities. Young Weddell seals (Leptonychotes weddellii) have only weeks to develop the capabilities to survive both on top of the sea ice and within the -1.9\u00b0C seawater where they can forage for food. The project seeks to better understand how Weddell seal pups rapidly develop (within weeks) the capacity to transition between these two extreme environments (that differ greatly in their abilities to conduct heat) and how they budget their energy during the transition. Though the biology and physiology of adult Weddell seals is well studied, the energetic and physiological strategies of pups during development is still unclear. Understanding factors that may affect survival at critical life history events is essential for better understanding factors that might affect marine mammal populations. Weddell seals are the southernmost breeding mammal and are easily recognizable as quintessential Antarctic seals. Determining potential vulnerabilities at critical life stages to change in the Antarctic environment will facilitate the researchers\u0027 ability to not only gain public interest but also communicate how research is revealing ways in which changes are occurring at the poles and how these changes may affect polar ecosystems. By collaborating with the Marine Mammal Center, the project will directly reach the public, through curricular educational materials and public outreach that will impact over 100,000 visitors annually.\u003cbr/\u003e\u003cbr/\u003eTo elucidate the physiological strategies that facilitate the survival of Weddell seal pups from birth to independence, the proposed study examines the development of their thermoregulation and diving capability. To achieve this, the project will determine the mechanisms that Weddell seal pups use to maintain a stable, warm body temperature in air and in water and then examine the development of diving capability as the animals prepare for independent foraging. The researchers will take a fully integrative approach- making assessments from proteins to tissues to the whole-animal level- when investigating both these objectives. To assess the development of thermoregulatory capability, researchers will quantify body insulation, resting metabolic rates in air and in water, muscle thermogenesis (shivering), and body surface temperatures in the field. The project will also assess the development of dive capability by quantifying oxygen storage capacities and measuring early dive behavior. To identify possible cellular mechanisms for how Weddell seals navigate this trade-off during development, the program will quantify several key developmental regulators of increased hypoxic capacity (HIF, VEGF and EPO) using qPCR, as well as follow the proteomic changes of adipose and muscle tissue, which will include abundance changes of metabolic, antioxidant, cytoskeletal, and Ca2+-regulating proteins. The study of the physiological development leading up to the transition to independence in pinnipeds will help researchers better predict the effects of climate change on the distribution and abundance of this species and how this will affect other trophic levels. Environmental changes that alter habitat suitability have been shown to decrease population health, specifically because of declines in juvenile survival.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "MAMMALS; FIELD INVESTIGATION; McMurdo Sound", "locations": "McMurdo Sound", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Liwanag, Heather; Pearson, Linnea; Tomanek, Lars", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "RUI: Growing Up on Ice: Physiological Adaptations and Developmental Plasticity in Weddell Seal Pups Across Two Extreme Physical Environments", "uid": "p0010144", "west": null}, {"awards": "1142158 Cheng, Chi-Hing; 0231006 DeVries, Arthur", "bounds_geometry": "POLYGON((163 -76.5,163.5 -76.5,164 -76.5,164.5 -76.5,165 -76.5,165.5 -76.5,166 -76.5,166.5 -76.5,167 -76.5,167.5 -76.5,168 -76.5,168 -76.63,168 -76.76,168 -76.89,168 -77.02,168 -77.15,168 -77.28,168 -77.41,168 -77.54,168 -77.67,168 -77.8,167.5 -77.8,167 -77.8,166.5 -77.8,166 -77.8,165.5 -77.8,165 -77.8,164.5 -77.8,164 -77.8,163.5 -77.8,163 -77.8,163 -77.67,163 -77.54,163 -77.41,163 -77.28,163 -77.15,163 -77.02,163 -76.89,163 -76.76,163 -76.63,163 -76.5))", "dataset_titles": "High-resolution benthic seawater temperature record 1999-2012 (25-40m depth) from near intake jetty at McMurdo Station, Antarctica; Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)", "datasets": [{"dataset_uid": "601275", "doi": null, "keywords": "Antarctica; Benthic; McMurdo Sound; Mcmurdo Station; Oceans; Physical Oceanography; Temperature Probe; Water Temperature", "people": "Devries, Arthur; Cheng, Chi-Hing; Cziko, Paul", "repository": "USAP-DC", "science_program": null, "title": "High-resolution benthic seawater temperature record 1999-2012 (25-40m depth) from near intake jetty at McMurdo Station, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601275"}, {"dataset_uid": "601811", "doi": null, "keywords": "Antarctica; Bellingshausen Sea; Cryosphere; Southern Ocean", "people": "Steinberg, Deborah; McDowell, Jan; Biesack, Ellen; Cheng, Chi-Hing; Hilton, Eric; Corso, Andrew; Desvignes, Thomas", "repository": "USAP-DC", "science_program": "LTER", "title": "Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)", "url": "https://www.usap-dc.org/view/dataset/601811"}], "date_created": "Wed, 08 Apr 2020 00:00:00 GMT", "description": "Antarctic notothenioid fishes exhibit two adaptive traits to survive in frigid temperatures. The first of these is the production of anti-freeze proteins in their blood and tissues. The second is a system-wide ability to perform cellular and physiological functions at extremely cold temperatures.The proposal goals are to show how Antarctic fishes use these characteristics to avoid freezing, and which additional genes are turned on, or suppressed in order for these fishes to maintain normal physiological function in extreme cold temperatures. Progressively colder habitats are encountered in the high latitude McMurdo Sound and Ross Shelf region, along with somewhat milder near?shore water environments in the Western Antarctic Peninsula (WAP). By quantifying the extent of ice crystals invading and lodging in the spleen, the percentage of McMurdo Sound fish during austral summer (Oct-Feb) will be compared to the WAP intertidal fish during austral winter (Jul-Sep) to demonstrate their capability and extent of freeze avoidance. Resistance to ice entry in surface epithelia (e.g. skin, gill and intestinal lining) is another expression of the adaptation of these fish to otherwise lethally freezing conditions.\u003cbr/\u003e\u003cbr/\u003eThe adaptive nature of a uniquely characteristic polar genome will be explored by the study of the transcriptome (the set of expressed RNA transcripts that constitutes the precursor to set of proteins expressed by an entire genome). Three notothenioid species (E.maclovinus, D. Mawsoni and C. aceratus) will be analysed to document evolutionary genetic changes (both gain and loss) shaped by life under extreme chronic cold. A differential gene expression (DGE) study will be carried out on these different species to evaluate evolutionary modification of tissue-wide response to heat challenges. The transcriptomes and other sequencing libraries will contribute to de novo ice-fish genome sequencing efforts.", "east": 168.0, "geometry": "POINT(165.5 -77.15)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD", "is_usap_dc": true, "keywords": "McMurdo Sound; MARINE ECOSYSTEMS; Water Temperature; AQUATIC SCIENCES; OCEAN TEMPERATURE; FIELD INVESTIGATION; USAP-DC", "locations": "McMurdo Sound", "north": -76.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Cheng, Chi-Hing; Devries, Arthur", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.8, "title": "Antarctic Notothenioid Fish Freeze Avoidance and Genome-wide Evolution for Life in the Cold", "uid": "p0010091", "west": 163.0}, {"awards": "1543230 Ainley, David; 1543003 Stammerjohn, Sharon; 1543311 LaRue, Michelle; 1542791 Salas, Leonardo", "bounds_geometry": "POLYGON((-180 -64,-144 -64,-108 -64,-72 -64,-36 -64,0 -64,36 -64,72 -64,108 -64,144 -64,180 -64,180 -65.4,180 -66.8,180 -68.2,180 -69.6,180 -71,180 -72.4,180 -73.8,180 -75.2,180 -76.6,180 -78,144 -78,108 -78,72 -78,36 -78,0 -78,-36 -78,-72 -78,-108 -78,-144 -78,-180 -78,-180 -76.6,-180 -75.2,-180 -73.8,-180 -72.4,-180 -71,-180 -69.6,-180 -68.2,-180 -66.8,-180 -65.4,-180 -64))", "dataset_titles": "ContinentalWESEestimates; Counting seals from space tutorial; Fast Ice Tool; Weddell seals habitat suitability model for the Ross Sea", "datasets": [{"dataset_uid": "200045", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Fast Ice Tool", "url": "https://github.com/leosalas/FastIceCovars"}, {"dataset_uid": "200047", "doi": "", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Counting seals from space tutorial", "url": "https://www.int-res.com/articles/suppl/m612p193_supp.pdf"}, {"dataset_uid": "200234", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "ContinentalWESEestimates", "url": "https://github.com/leosalas/ContinentalWESEestimates"}, {"dataset_uid": "200046", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Weddell seals habitat suitability model for the Ross Sea", "url": "https://github.com/leosalas/WeddellSeal_SOS"}], "date_created": "Fri, 02 Aug 2019 00:00:00 GMT", "description": "The Weddell seal is the southern-most mammal in the world, having a circumpolar distribution around Antarctica; the McMurdo Sound population in Antarctica is one of the best-studied mammal populations on earth. However, despite this, an understanding of how populations around the continent will fare under climate change is poorly understood. A complicating matter is the potential effects of a commercial enterprise in the Antarctic: a fishery targeting toothfish, which are important prey for Weddell seals. Although the species is easily detected and counted during the breeding season, no reliable estimates of continent-wide Weddell seal numbers exist, due to the logistic difficulties of surveying vast regions of Antarctica. Large-scale estimates are needed to understand how seal populations are responding to the fishery and climate change, because these drivers of change operate at scales larger than any single population, and may affect seals differently in different regions of the continent. We will take advantage of the ease of detectability of darkly colored seals when they the on ice to develop estimates of abundance from satellite images. This project will generate baseline data on the global distribution and abundance of Weddell seals around the Antarctic and will link environmental variables to population changes to better understand how the species will fare as their sea ice habitat continues to change. These results will help disentangle the effects of climate change and fishery operations, results that are necessary for appropriate international policy regarding fishery catch limits, impacts on the environment, and the value of marine protected areas. The project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. It will engage \"arm-chair\" scientists of all ages through connections with several non-governmental organizations and the general public. Anyone with access to the internet, including people who are physically unable to participate in field research directly, can participate in this project while simultaneously learning about multiple aspects of polar ecology through the project\u0027s interactive website. \u003cbr/\u003e\u003cbr/\u003eSpecifically, this research project will: 1) Quantify the distribution of Weddell seals around Antarctica and 2) Determine the impact of environmental variables (such as fast ice extent, ocean productivity, bathymetry) on habitat suitability and occupancy. To do this, the project will crowd-source counting of seals on high-resolution satellite images via a commercial citizen science platform. Variation in seal around the continent will then be related to habitat variables through generalized linear models. Specific variables, such as fast ice extent will be tested to determine their influence on population variability through both space and time. The project includes a rigorous plan for ensuring quality control in the dataset including ground truth data from other, localized projects concurrently funded by the National Science Foundation\u0027s Antarctic Science Program.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "COASTAL; Southern Ocean; COMMUNITY DYNAMICS; MAMMALS; SEA ICE; NOT APPLICABLE; Antarctica; PENGUINS; USAP-DC", "locations": "Antarctica; Southern Ocean", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "LaRue, Michelle; Stamatiou, Kostas", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "GitHub", "repositories": "GitHub; Publication", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Determining Factors Affecting Distribution and Population Variability of the Ice-obligate Weddell Seal", "uid": "p0010041", "west": -180.0}, {"awards": "1642570 Thurber, Andrew", "bounds_geometry": "POINT(166.666 -77.8)", "dataset_titles": "Microbial community composition of the Cinder Cones Cold Seep", "datasets": [{"dataset_uid": "200035", "doi": "DOI:10.1575/1912/bco-dmo.756997.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Microbial community composition of the Cinder Cones Cold Seep", "url": "https://www.bco-dmo.org/dataset/756997"}], "date_created": "Fri, 24 May 2019 00:00:00 GMT", "description": "Methane is a potent greenhouse gas that is naturally emitted into the oceans by geologic seeps and microbial production. Based on studies of persistent deep-sea seeps at mid- and northern latitudes, researchers have learned that bacteria and archaea can create a \"sediment filter\" that oxidizes methane prior to its release. Antarctica is thought to contain large reservoirs of organic carbon buried beneath its ice which could a quantity of methane equivalent to all of the permafrost in the Arctic and yet we know almost nothing about the methane oxidizing microbes in this region. How these microbial communities develop and potentially respond to fluctuations in methane levels is an under-explored avenue of research. A bacterial mat was recently discovered at 78 degrees south, suggesting the possible presence of a methane seep, and associated microbial communities. This project will explore this environment in detail to assess the levels and origin of methane, and the nature of the microbial ecosystem present. \u003cbr/\u003e \u003cbr/\u003eAn expansive bacterial mat appeared and/or was discovered at 78 degrees south in 2011. This site, near McMurdo Station Antarctica, has been visited since the mid-1960s, but this mat was not observed until 2011. The finding of this site provides an unusual opportunity to study an Antarctic marine benthic habitat with active methane cycling and to examine the dynamics of recruitment and community succession of seep fauna including bacteria, archaea, protists and metazoans. This project will collect the necessary baseline data to facilitate further studies of Antarctic methane cycling. The concentration and source of methane will be determined at this site and at potentially analogous sites in McMurdo Sound. In addition to biogeochemical characterization of the sites, molecular analysis of the microbial community will quantify the time scales on which bacteria and archaea respond to methane input and provide information on rates of community development and succession in the Southern Ocean. Project activities will facilitate the training of at least one graduate student and results will be shared at both local and international levels. A female graduate student will be mentored as part of this project and data collected will form part of her dissertation. Lectures will be given in K-12 classrooms in Oregon to excite students about polar science. National and international audiences will be reached through blogs and presentations at a scientific conference. The PI\u0027s previous blogs have been used by K-12 classrooms as part of their lesson plans and followed in over 65 countries.\u003cbr/\u003e", "east": 166.666, "geometry": "POINT(166.666 -77.8)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Sea Floor; USAP-DC; Ross Sea; BACTERIA/ARCHAEA; NOT APPLICABLE", "locations": "Ross Sea; Sea Floor", "north": -77.8, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Thurber, Andrew", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": -77.8, "title": "EAGER: Elucidating the Antarctic Methane Cycle at the Cinder Cones Reducing Habitat.", "uid": "p0010030", "west": 166.666}, {"awards": "1341476 Moran, Amy", "bounds_geometry": "POINT(166.666 -77.84999)", "dataset_titles": "Cuticle morphology and oxygen gradients of Antarctic sea spiders; Physiological and biochemical measurements on Pycnogonida from McMurdo Sound; Physiological, biomechanical, and locomotory data on Antarctic sea spiders fouled and unfouled with epibionts; Size scaling of oxygen physiology and metabolic rate of Antarctic sea spiders", "datasets": [{"dataset_uid": "601149", "doi": "10.15784/601149", "keywords": "Antarctica; Barnacles; Biota; Cuticle; Epibionts; Fouling; Grooming; Locomotion; Oxygen; Respiration", "people": "Lane, Steven J.; Woods, H. Arthur; Shishido, Caitlin; Moran, Amy; Tobalske, Bret", "repository": "USAP-DC", "science_program": null, "title": "Physiological, biomechanical, and locomotory data on Antarctic sea spiders fouled and unfouled with epibionts", "url": "https://www.usap-dc.org/view/dataset/601149"}, {"dataset_uid": "601142", "doi": "10.15784/601142", "keywords": "Antarctica; Biomechanics; Biota; Cold Adaptation; McMurdo Sound; Metabolism; Oceans; Oxygen; Pycnogonida; Southern Ocean", "people": "Tobalske, Bret; Woods, H. Arthur; Moran, Amy", "repository": "USAP-DC", "science_program": null, "title": "Physiological and biochemical measurements on Pycnogonida from McMurdo Sound", "url": "https://www.usap-dc.org/view/dataset/601142"}, {"dataset_uid": "601145", "doi": "10.15784/601145", "keywords": "Antarctica; Benthos; Biota; Body Size; Cuticle; McMurdo Sound; Microelectrodes; Microscope; Microscopy; Oxygen; Pore; Respiration; Sea Spider; Southern Ocean", "people": "Arthur Woods, H.; Woods, H. Arthur", "repository": "USAP-DC", "science_program": null, "title": "Cuticle morphology and oxygen gradients of Antarctic sea spiders", "url": "https://www.usap-dc.org/view/dataset/601145"}, {"dataset_uid": "601150", "doi": "10.15784/601150", "keywords": "Antarctica; Biota; Body Size; Cuticle; Metabolic Rate; Oxygen; Polar Gigantism; Respiration; Size Limits; Southern Ocean; Temperature", "people": "Moran, Amy; Lane, Steven J.; Woods, H. Arthur; Shishido, Caitlin", "repository": "USAP-DC", "science_program": null, "title": "Size scaling of oxygen physiology and metabolic rate of Antarctic sea spiders", "url": "https://www.usap-dc.org/view/dataset/601150"}], "date_created": "Mon, 10 Dec 2018 00:00:00 GMT", "description": "Beginning with the earliest expeditions to the poles, scientists have noted that many polar taxa grow to unusually large body sizes, a phenomenon now known as \u0027polar gigantism.\u0027 Although scientists have been interested in polar giants for many years, many questions still remain about the biology of this significant form of polar diversity. This award from the Antarctic Organisms and Ecosystems program within the Polar Sciences Division at the National Science Foundation will investigate the respiratory and biomechanical mechanisms underlying polar gigantism in Antarctic pycnogonids (commonly known as sea spiders). The project will use a series of manipulative experiments to investigate the effects of temperature and oxygen availability on respiratory capacity and biomechanical strength, and will compare Antarctic sea spiders to related species from temperate and tropical regions. The research will provide insight into the ability of polar giants to withstand the warming polar ocean temperatures associated with climate change.\u003cbr/\u003e\u003cbr/\u003eThe prevailing hypothesis to explain the evolution of gigantism invokes shifts in respiratory relationships in extremely cold ocean waters: in the cold, oxygen is more plentiful while at the same time metabolic rates are very low. Together these effects alleviate constraints on oxygen supply that restrict organisms living in warmer waters. Respiratory capacity must evolve in the context of adaptive tradeoffs, so for organisms including pycnogonids there must be tradeoffs between respiratory capacity and resistance to biomechanical stresses. The investigators will test a novel hypothesis that respiratory challenges are not associated with particular body sizes, and will answer the following questions: What are the dynamics of oxygen transport and consumption in Antarctic pycnogonids; how do structural features related to oxygen diffusion trade off with requirements for body support and locomotion; how does body size influence vulnerability to environmental hypoxia and to temperature-oxygen interactions; and does the cold-driven high oxygen availability in the Antarctic raise the limit on body size by reducing trade-offs between diffusivity and structural integrity? The research will explore the effects of increased ocean temperatures upon organisms that have different body sizes. In addition, it will provide training for graduate and undergraduate students affiliated with universities in EPSCOR states.", "east": 166.666, "geometry": "POINT(166.666 -77.84999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; NOT APPLICABLE", "locations": null, "north": -77.84999, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Moran, Amy; Woods, H. Arthur", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.84999, "title": "Collaborative Research: Body Size, Oxygen, and Vulnerability to Climate Change in Antarctic Pycnogonida", "uid": "p0000007", "west": 166.666}, {"awards": "1341612 Bowser, Samuel", "bounds_geometry": null, "dataset_titles": "Aerial survey of Explorers Cove shoreline, late January 2005; Astrammina rara genome sequencing and assembly; Astrammina triangularis genome sequencing and assembly; Crithionina delacai mitochondrial genome sequence and assembly; Scanning electron micrographs: Influence of heavy metal (Pb, Cd) exposure on shell morphogenesis in Astrammina rara, a giant agglutinated Antarctic foraminiferan protist", "datasets": [{"dataset_uid": "601229", "doi": "10.15784/601229", "keywords": "Aerial Imagery; Antarctica; Camera; Delta; Freshwater; Helicopter; Moat; Shoreline Survey; Small Ponds; Snow Melt; Tide Pools", "people": "Bowser, Samuel; Alexander, Steve", "repository": "USAP-DC", "science_program": null, "title": "Aerial survey of Explorers Cove shoreline, late January 2005", "url": "https://www.usap-dc.org/view/dataset/601229"}, {"dataset_uid": "601138", "doi": "10.15784/601138", "keywords": "Antarctica; Biota; Foraminifera; Heavy Metal Toxicity; Scanning Electron Microscop; Scanning Electron Microscope (SEM) Images; Scanning Electron Microscopy; Transantarctic Mountains", "people": "Bowser, Samuel; Andreas, Amanda", "repository": "USAP-DC", "science_program": null, "title": "Scanning electron micrographs: Influence of heavy metal (Pb, Cd) exposure on shell morphogenesis in Astrammina rara, a giant agglutinated Antarctic foraminiferan protist", "url": "https://www.usap-dc.org/view/dataset/601138"}, {"dataset_uid": "200090", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Astrammina rara genome sequencing and assembly", "url": "https://dataview.ncbi.nlm.nih.gov/object/PRJNA521081?reviewer=25e190ih1svottjkrrpfa7huoe"}, {"dataset_uid": "200091", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Crithionina delacai mitochondrial genome sequence and assembly", "url": "https://dataview.ncbi.nlm.nih.gov/object/PRJNA592714?reviewer=ivse8455h3gfaiilg4nqle0vm1"}, {"dataset_uid": "200089", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Astrammina triangularis genome sequencing and assembly", "url": "https://dataview.ncbi.nlm.nih.gov/object/PRJNA521279?reviewer=g418tpq02sif2g6do94dpmmjdv"}], "date_created": "Thu, 29 Nov 2018 00:00:00 GMT", "description": "Agglutinated foraminifera (forams for short) are early-evolving, single-celled organisms. These \"living fossils\" construct protective shells using sediment grains held together by adhesive substances that they secrete. During shell construction, agglutinated forams display amazing properties of selection - for example, some species build their shells of clear quartz grains, while other species use only grains of a specific size. Understanding how these single cells assemble complex structures may contribute to nanotechnology by enabling people to use forams as \"cellular machines\" to aid in the construction of nano-devices. This project will analyze the genomes of at least six key foram species, and then \"mine\" these genomes for technologically useful products and processes. The project will focus initially on the adhesive materials forams secrete, which may have wide application in biomedicine and biotechnology. Furthermore, the work will further develop a molecular toolkit which could open up new avenues of research on the physiology, ecology, and population dynamics of this important group of Antarctic organisms. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. Educational experiences related to the \"thrill of scientific exploration and discovery\" for students and the general public will be provided through freely-available short films and a traveling art/science exhibition. The project will also provide hands-on research opportunities for undergraduate students.\u003cbr/\u003e\u003cbr/\u003eExplorers Cove, situated on the western shore of McMurdo Sound, harbors a unique population of foraminiferan taxa at depths accessible by scuba diving that otherwise are primarily found in the deep sea. The project will use next-generation DNA sequencing and microdissection methods to obtain and analyze nuclear and mitochondrial genomes from crown members of two species each from three distinct, early-evolving foraminiferal groups. It will also use next generation sequencing methods to characterize the in-situ prokaryotic assemblages (microbiomes) of one of these groups and compare them to reference sediment microbiomes. The phyogenomic studies of the targeted Antarctic genera will help fill significant gaps in our current understanding of early foram evolution. Furthermore, comparative genomic analyses of these six species are expected to yield a better understanding of the physiology of single-chambered agglutinated forams, especially the bioadhesive proteins and regulatory factors involved in shell composition and morphogenesis. Additionally, the molecular basis of cold adaptation in forams will be examined, particularly with respect to key proteins.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; NOT APPLICABLE", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Bowser, Samuel", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "NCBI GenBank; USAP-DC", "science_programs": null, "south": null, "title": "Assembling and Mining the Genomes of Giant Antarctic Foraminifera", "uid": "p0000004", "west": null}, {"awards": "1245899 Kowalewski, Douglas", "bounds_geometry": "POLYGON((-180 -70,-174 -70,-168 -70,-162 -70,-156 -70,-150 -70,-144 -70,-138 -70,-132 -70,-126 -70,-120 -70,-120 -71.5,-120 -73,-120 -74.5,-120 -76,-120 -77.5,-120 -79,-120 -80.5,-120 -82,-120 -83.5,-120 -85,-126 -85,-132 -85,-138 -85,-144 -85,-150 -85,-156 -85,-162 -85,-168 -85,-174 -85,180 -85,178 -85,176 -85,174 -85,172 -85,170 -85,168 -85,166 -85,164 -85,162 -85,160 -85,160 -83.5,160 -82,160 -80.5,160 -79,160 -77.5,160 -76,160 -74.5,160 -73,160 -71.5,160 -70,162 -70,164 -70,166 -70,168 -70,170 -70,172 -70,174 -70,176 -70,178 -70,-180 -70))", "dataset_titles": "Region Climate Model Output Plio-Pleistocene", "datasets": [{"dataset_uid": "601080", "doi": "10.15784/601080", "keywords": "Antarctica; Climate Model; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; McMurdo; Paleoclimate; Ross Sea", "people": "Kowalewski, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Region Climate Model Output Plio-Pleistocene", "url": "https://www.usap-dc.org/view/dataset/601080"}], "date_created": "Tue, 16 Jan 2018 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe PIs propose to complement the ANDRILL marine record with a terrestrial project that will provide chronological control for past fluctuations of the West Antarctic Ice Sheet (WAIS) and alpine glaciers in McMurdo Sound. The project will develop high-resolution maps of drifts deposited from grounded marine-based ice and alpine glaciers on islands and peninsulas in McMurdo Sound. In addition, the PIs will acquire multi-clast/multi-nuclide cosmogenic analyses of these mapped drift sheets and alpine moraines and use regional climate modeling to shed light on the range of possible environmental conditions in the McMurdo region during periods of grounded ice expansion and recession. The PIs will make use of geological records for ice sheet and alpine glacier fluctuations preserved on the flanks of Mount Discovery, Black Island, and Brown Peninsula. Drifts deposited from grounded, marine-based ice will yield spatial constraints for former advances and retreats of the WAIS. Moraines from alpine glaciers, hypothesized to be of interglacial origin, could yield a first-order record of hydrologic change in the region. Synthesizing the field data, the team proposes to improve the resolution of existing regional-scale climate models for the Ross Embayment. The overall approach and anticipated results will provide the first steps towards linking the marine and terrestrial records in this critical sector of Antarctica.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eResults from the proposed work will be integrated with outreach programs at Boston University, Columbia University, and Worcester State University. The team will actively collaborate with the American Museum of Natural History to feature this project prominently in museum outreach. The team will also include a PolarTREC teacher as a member of the research team. The geomorphological results will be presented in 3D at Boston University?s Antarctic Digital Image Analyses Lab. The research will form the basis of a PhD dissertation at Boston University.", "east": -120.0, "geometry": "POINT(-160 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -70.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kowalewski, Douglas", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Collaborative Research: West Antarctic Ice Sheet stability, Alpine Glaciation, and Climate Variability: a Terrestrial Perspective from Cosmogenic-nuclide Dating in McMurdo Sound", "uid": "p0000391", "west": 160.0}, {"awards": "1341390 Frank, Tracy", "bounds_geometry": null, "dataset_titles": "Stable carbon and oxygen isotope data from drill cores from McMurdo Sound, Antarctica", "datasets": [{"dataset_uid": "000195", "doi": "", "keywords": null, "people": null, "repository": "EarthChem", "science_program": null, "title": "Stable carbon and oxygen isotope data from drill cores from McMurdo Sound, Antarctica", "url": "http://dx.doi.org/10.1594/IEDA/100718"}], "date_created": "Fri, 06 Oct 2017 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThis project will use sediment cores from the Victoria Land Basin (VLB), Antarctica, to study secondary (diagenetic) carbonate minerals, as indicators of the basin?s fluid-flow history, within the well-constrained tectonic, depositional, and climatic context provided by sediment cores. This study will provide insights into subsurface processes in Victoria Land Basin, Antarctica and their relationships with the region?s climatic, cryospheric, and tectonic history. The work will utilize cores previously recovered by US-sponsored stratigraphic drilling projects (CIROS, CRP, and ANDRILL projects). This work is motivated by the unexpected discovery of dense brine in the subsurface of Southern McMurdo Sound during drilling by the ANDRILL Southern McMurdo Sound project. The presence of the brine is intriguing because it contradicts previous models for the origin of subsurface fluids that called upon large contributions from glacial melt water. Project objectives involve documenting the distribution of the brine (and potentially other fluids) via characterization of diagenetic precipitates. The approach will involve integration of petrographic and geochemical data (including conventional carbon, oxygen, and ?clumped? isotopes) to fully characterize diagenetic phases and allow development of a robust paragenetic history. This work will provide novel insights into the Cenozoic evolution of the VLB and, more broadly, the role of glacial processes in generating subsurface fluids. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eResults from this project will help understand the origins of brines, groundwater and hydrocarbon reservoirs in analogous modern and ancient deposits elsewhere, which is of broad interest. This project will support the training of one graduate and one undergraduate student at the University of Nebraska-Lincoln (UNL) providing learning opportunities in sedimentary geology and diagenesis, fields with wide applicability. This proposal emphasizes rapid dissemination of results to the scientific community via conference presentations and contributions to peer-reviewed publications. The results will be integrated into education activities designed to develop skills in petrography and diagenesis, which are highly sought after in the energy sector. The project will generate a well-constrained dataset that allows direct linkage of diagenetic phases to environmental and tectonic change across a large sedimentary basin which will provide the basis for a comprehensive case study in an upper-level course (Sedimentary Petrography and Diagenesis) at UNL. In addition, online exercises will be developed and submitted to an open-access site (SEPM Stratigraphy Web) dedicated to sedimentary geology.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Earth Sciences", "paleo_time": null, "persons": "Frank, Tracy; Fielding, Christopher", "platforms": "Not provided", "repo": "EarthChem", "repositories": "EarthChem", "science_programs": null, "south": null, "title": "Insights into the Burial, Tectonic, and Hydrologic History of the Cenozoic Succession in McMurdo Sound, Antarctica through Analysis of Diagenetic Phases", "uid": "p0000256", "west": null}, {"awards": "1142122 Miller, Nathan", "bounds_geometry": "POLYGON((166.163 -76.665,166.2635 -76.665,166.364 -76.665,166.4645 -76.665,166.565 -76.665,166.6655 -76.665,166.766 -76.665,166.8665 -76.665,166.967 -76.665,167.0675 -76.665,167.168 -76.665,167.168 -76.782,167.168 -76.899,167.168 -77.016,167.168 -77.133,167.168 -77.25,167.168 -77.367,167.168 -77.484,167.168 -77.601,167.168 -77.718,167.168 -77.835,167.0675 -77.835,166.967 -77.835,166.8665 -77.835,166.766 -77.835,166.6655 -77.835,166.565 -77.835,166.4645 -77.835,166.364 -77.835,166.2635 -77.835,166.163 -77.835,166.163 -77.718,166.163 -77.601,166.163 -77.484,166.163 -77.367,166.163 -77.25,166.163 -77.133,166.163 -77.016,166.163 -76.899,166.163 -76.782,166.163 -76.665))", "dataset_titles": "Antarctic emerald rockcod have the capacity to compensate for warming when uncoupled from CO2-acidification; Physiological and biochemical measurements on Antarctic dragonfish (Gymnodraco acuticeps) from McMurdo Sound; Physiological and biochemical measurements on juvenile Antarctic rockcod (Trematomus bernacchii) from McMurdo Sound; Thermal windows and metabolic performance curves in a developing Antarctic fish", "datasets": [{"dataset_uid": "601040", "doi": "10.15784/601040", "keywords": "Antarctica; Biota; Fish; McMurdo Sound; Oceans; Ross Sea; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Todgham, Anne; Miller, Nathan", "repository": "USAP-DC", "science_program": null, "title": "Thermal windows and metabolic performance curves in a developing Antarctic fish", "url": "https://www.usap-dc.org/view/dataset/601040"}, {"dataset_uid": "601039", "doi": "10.15784/601039", "keywords": "Antarctica; Biota; Chemistry:fluid; Chemistry:Fluid; CTD Data; Fish; McMurdo Sound; Ocean Acidification; Oceans; Physical Oceanography; Ross Sea; Southern Ocean", "people": "Miller, Nathan; Todgham, Anne", "repository": "USAP-DC", "science_program": null, "title": "Antarctic emerald rockcod have the capacity to compensate for warming when uncoupled from CO2-acidification", "url": "https://www.usap-dc.org/view/dataset/601039"}, {"dataset_uid": "601026", "doi": "10.15784/601026", "keywords": "Antarctica; Biota; Chemistry:fluid; Chemistry:Fluid; CTD Data; Fish; McMurdo Sound; Ocean Acidification; Oceans; Physical Oceanography; Ross Sea; Southern Ocean", "people": "Flynn, Erin; Davis, Brittany; Todgham, Anne; Miller, Nathan", "repository": "USAP-DC", "science_program": null, "title": "Physiological and biochemical measurements on Antarctic dragonfish (Gymnodraco acuticeps) from McMurdo Sound", "url": "https://www.usap-dc.org/view/dataset/601026"}, {"dataset_uid": "601025", "doi": "10.15784/601025", "keywords": "Antarctica; Biota; Fish; McMurdo Sound; Oceans; Ross Sea; Southern Ocean", "people": "Flynn, Erin; Todgham, Anne; Miller, Nathan; Davis, Brittany", "repository": "USAP-DC", "science_program": null, "title": "Physiological and biochemical measurements on juvenile Antarctic rockcod (Trematomus bernacchii) from McMurdo Sound", "url": "https://www.usap-dc.org/view/dataset/601025"}], "date_created": "Tue, 15 Aug 2017 00:00:00 GMT", "description": "Ocean acidification and increased temperatures are projected to be the primary impacts of global climate change on polar marine ecosystems over the next century. While recent research has focused on the effects of these drivers on calcifying organisms, less is known about how these changes may affect vertebrates. This research will focus on two Antarctic fishes, Trematomus bernacchii and Pagothenia borchgrevinki. Fish eggs and larvae will be collected in McMurdo Sound and reared under different temperature and pH regimes. Modern techniques will be used to examine subsequent changes in physiology, growth, development and gene expression over both short and long timescales. The results will fill a missing gap in our knowledge about the response of non-calcifying organisms to projected changes in pH and temperature. Results will be widely disseminated through publications as well as through presentations at national and international meetings; raw data will also be made available through open-access, web-based databases. This project will support the research and training of three graduate and three undergraduate students. As well, this project will foster the development of two modules on climate change and ocean acidification for an Introduction to Biology course.", "east": 167.168, "geometry": "POINT(166.6655 -77.25)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -76.665, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Miller, Nathan; Todgham, Anne", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.835, "title": "RUI: Synergistic effects of Ocean Acidification and Warming on Larval Development in Antarctic Fishes", "uid": "p0000411", "west": 166.163}, {"awards": "1443554 Buys, Emmanuel", "bounds_geometry": "POLYGON((166.163 -76.665,166.2635 -76.665,166.364 -76.665,166.4645 -76.665,166.565 -76.665,166.6655 -76.665,166.766 -76.665,166.8665 -76.665,166.967 -76.665,167.0675 -76.665,167.168 -76.665,167.168 -76.782,167.168 -76.899,167.168 -77.016,167.168 -77.133,167.168 -77.25,167.168 -77.367,167.168 -77.484,167.168 -77.601,167.168 -77.718,167.168 -77.835,167.0675 -77.835,166.967 -77.835,166.8665 -77.835,166.766 -77.835,166.6655 -77.835,166.565 -77.835,166.4645 -77.835,166.364 -77.835,166.2635 -77.835,166.163 -77.835,166.163 -77.718,166.163 -77.601,166.163 -77.484,166.163 -77.367,166.163 -77.25,166.163 -77.133,166.163 -77.016,166.163 -76.899,166.163 -76.782,166.163 -76.665))", "dataset_titles": "Biosamples and observations from Weddell Seal colonies in McMurdo Sound during the 2015-2016 Antarctic field season", "datasets": [{"dataset_uid": "601028", "doi": "10.15784/601028", "keywords": "Antarctica; Biota; McMurdo Sound; Ross Sea; Sample/collection Description; Sample/Collection Description; Seals", "people": "Buys, Emmanuel; Hindle, Allyson", "repository": "USAP-DC", "science_program": null, "title": "Biosamples and observations from Weddell Seal colonies in McMurdo Sound during the 2015-2016 Antarctic field season", "url": "https://www.usap-dc.org/view/dataset/601028"}], "date_created": "Fri, 26 May 2017 00:00:00 GMT", "description": "The Weddell seal is a champion diving mammal. The physiology that permits these animals to sustain extended breath-hold periods and survive the extreme pressure of diving deep allows them to thrive in icy Antarctic waters. Key elements of their physiological specializations to breath-hold diving are their ability for remarkable adjustment of their heart and blood vessel system, coordinating blood pressure and flow to specific body regions based on their metabolic requirements, and their ability to sustain periods without oxygen. Identifying the details of these strategies has tremendous potential to better inform human medicine, helping us to develop novel therapies for cardiovascular trauma (e.g. stroke, heart attack) and diseases associated with blunted oxygen delivery to tissues (e.g. pneumonia, sepsis, or cancer). The goal of this project is to document specific genes that control these cardiovascular adjustments in seals, and to compare their abundance and activity with humans. Specifically, the investigators will study a signaling pathway that coordinates local blood flow. They will also use tissue samples to generate cultured cells from Weddell seals that can be used to study the molecular effects of low oxygen conditions in the laboratory. The project will further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. The project will train a pre-veterinary student researcher will conduct public outreach via a center for community health improvement, a multicultural affairs office, and a public aquarium. The goal of this study is to unravel the molecular mechanisms underlying the dive response. A hallmark of the dive response is tissue-specific vascular system regulation, likely resulting from variation in both nerve inputs and in production of local signaling molecules produced by blood vessel cells. The investigators will use emerging genomic information to begin to unravel the genetics underlying redistribution of the circulation during diving. They will also directly test the hypothesis that modifications in the signaling system prevent local blood vessel changes under low oxygen conditions, thereby allowing the centrally mediated diving reflex to override local physiological responses and to control the constriction of blood vessel walls in Weddell seals. They will perform RNA-sequencing of Weddell seal tissues and use the resulting sequence, along with information from other mammals such as dog, to obtain a full annotation (identifying all genes based on named features of reference genomes) of the existing genome assembly for the Weddell seal, facilitating comparative and species-specific genomic research. They will also generate a Weddell seal pluripotent stem cell line which should be a valuable research tool for cell biologists, molecular biologists and physiologists that will allow them to further test their hypotheses. It is expected that the proposed studies will advance our knowledge of the biochemical and physiological adaptations that allow the Weddell seal to thrive in the Antarctic environment.", "east": 167.168, "geometry": "POINT(166.6655 -77.25)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -76.665, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Buys, Emmanuel; Costa, Daniel; Zapol, Warren; Hindle, Allyson", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.835, "title": "Unraveling the Genomic and Molecular Basis of the Dive Response: Nitric Oxide Signaling and Vasoregulation in the Weddell Seal", "uid": "p0000072", "west": 166.163}, {"awards": "1246463 Burns, Jennifer", "bounds_geometry": "POINT(149 -80)", "dataset_titles": "1970s - 1980s Kooyman-Billups TDR Dive Records from Weddell Seals in McMurdo Sound; Cortisol levels in Weddell seal fur; Seasonal Dive Data ; Specimen logs and observations from Weddell Seal colonies in Erebus Bay, 2013-2017; Weddell Seal Heat Flux Dataset; Weddell seal iron dynamics and oxygen stores across lactation; Weddell seal metabolic hormone data; Weddell Seal Molt Phenology Dataset; Weddell Seal Molt Survey Data; Weddell seal summer diving behavior", "datasets": [{"dataset_uid": "601560", "doi": "10.15784/601560", "keywords": "Antarctica; Biota; Diving Behavior; McMurdo Sound; Weddell Seal", "people": "Tsai, EmmaLi", "repository": "USAP-DC", "science_program": null, "title": "1970s - 1980s Kooyman-Billups TDR Dive Records from Weddell Seals in McMurdo Sound", "url": "https://www.usap-dc.org/view/dataset/601560"}, {"dataset_uid": "601587", "doi": "10.15784/601587", "keywords": "Aerobic; Antarctica; Dive Capacity; Iron; McMurdo Sound; Weddell Seal", "people": "Shero, Michelle", "repository": "USAP-DC", "science_program": null, "title": "Weddell seal iron dynamics and oxygen stores across lactation", "url": "https://www.usap-dc.org/view/dataset/601587"}, {"dataset_uid": "601840", "doi": "10.15784/601840", "keywords": "Antarctica; Cryosphere; Hormones; McMurdo Sound; Ross Sea; Weddell Seal", "people": "Kirkham, Amy", "repository": "USAP-DC", "science_program": null, "title": "Weddell seal metabolic hormone data", "url": "https://www.usap-dc.org/view/dataset/601840"}, {"dataset_uid": "601137", "doi": "10.15784/601137", "keywords": "Antarctica; Biota; Ross Sea; Seals; Southern Ocean; Weddell Seal", "people": "Beltran, Roxanne; Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Weddell seal summer diving behavior", "url": "https://www.usap-dc.org/view/dataset/601137"}, {"dataset_uid": "601131", "doi": "10.15784/601131", "keywords": "Antarctica; B-292-M; Biota; Ross Sea; Seals; Southern Ocean; Weddell Seal", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Weddell Seal Molt Phenology Dataset", "url": "https://www.usap-dc.org/view/dataset/601131"}, {"dataset_uid": "601338", "doi": "10.15784/601338", "keywords": "Animal Behavior Observation; Antarctica; Biota; McMurdo Sound; Ross Sea; Seal Dive Data; Weddell Seal", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Seasonal Dive Data ", "url": "https://www.usap-dc.org/view/dataset/601338"}, {"dataset_uid": "601134", "doi": "10.15784/601134", "keywords": "Antarctica; Biota; Cortisol; Fur; Ross Sea; Seals; Southern Ocean; Visual Observations; Weddell Seal", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Cortisol levels in Weddell seal fur", "url": "https://www.usap-dc.org/view/dataset/601134"}, {"dataset_uid": "601027", "doi": "10.15784/601027", "keywords": "Antarctica; Biota; McMurdo Sound; Oceans; Ross Sea; Sample/collection Description; Sample/Collection Description; Seals", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Specimen logs and observations from Weddell Seal colonies in Erebus Bay, 2013-2017", "url": "https://www.usap-dc.org/view/dataset/601027"}, {"dataset_uid": "601271", "doi": "10.15784/601271", "keywords": "Antarctica; Heat Flux; Infrared Thermography; Physiological Conditions; Surface Temperatures; Thermoregulation; Weddell Seal", "people": "Walcott, Skyla", "repository": "USAP-DC", "science_program": null, "title": "Weddell Seal Heat Flux Dataset", "url": "https://www.usap-dc.org/view/dataset/601271"}, {"dataset_uid": "601133", "doi": "10.15784/601133", "keywords": "Antarctica; Biota; Ross Sea; Seals; Visual Observations; Weddell Seal", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Weddell Seal Molt Survey Data", "url": "https://www.usap-dc.org/view/dataset/601133"}], "date_created": "Wed, 24 May 2017 00:00:00 GMT", "description": "Marine mammals that inhabit high latitude environments have evolved unique mechanisms to execute a suite of energetically-costly life history events (CLHEs) within a relatively short timeframe when conditions are most favorable. Understanding the intrinsic and extrinsic factors that regulate CLHEs is particularly important in species such as Weddell seals, as both reproduction and molt are associated with large reductions in foraging effort, and the timing and outcome of each appears linked with the other. The long-term mark recapture program on Erebus Bay\u0027s Weddell seals provides a unique opportunity to examine CLHEs in a known-history population. The proposed work will monitor physiological condition, pregnancy status, and behavior at various times throughout the year to determine if molt timing is influenced by prior reproductive outcome, and if it, in turn, influences future reproductive success. These data will then be used to address the demographic consequences of trade-offs between CLHEs in Weddell seals. The impact of environmental conditions and CLHE timing on population health will also be modeled so that results can be extended to other climates and species. \u003cbr/\u003e\u003cbr/\u003eAn improved understanding of the interactions between CLHEs and the environment is important in predicting the response of organisms from higher trophic levels to climate change. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of graduate students and a post-doctoral researcher and will further foster an extensive public outreach collaboration.", "east": 165.0, "geometry": "POINT(165 -77)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; USAP-DC; Seal Dive Data; Weddell Seal", "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Burns, Jennifer", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals", "uid": "p0000229", "west": 165.0}, {"awards": "1246202 Hofmann, Gretchen", "bounds_geometry": "POLYGON((163.317388 -77.3354,163.6520742 -77.3354,163.9867604 -77.3354,164.3214466 -77.3354,164.6561328 -77.3354,164.990819 -77.3354,165.3255052 -77.3354,165.6601914 -77.3354,165.9948776 -77.3354,166.3295638 -77.3354,166.66425 -77.3354,166.66425 -77.386975,166.66425 -77.43855,166.66425 -77.490125,166.66425 -77.5417,166.66425 -77.593275,166.66425 -77.64485,166.66425 -77.696425,166.66425 -77.748,166.66425 -77.799575,166.66425 -77.85115,166.3295638 -77.85115,165.9948776 -77.85115,165.6601914 -77.85115,165.3255052 -77.85115,164.990819 -77.85115,164.6561328 -77.85115,164.3214466 -77.85115,163.9867604 -77.85115,163.6520742 -77.85115,163.317388 -77.85115,163.317388 -77.799575,163.317388 -77.748,163.317388 -77.696425,163.317388 -77.64485,163.317388 -77.593275,163.317388 -77.5417,163.317388 -77.490125,163.317388 -77.43855,163.317388 -77.386975,163.317388 -77.3354))", "dataset_titles": "mRNA sequencing - RNAseq; Nearshore pH, temperature, (salinity, depth) at mooring sites in McMurdo Sound, Antarctica, Overwinter 2011-2016; pH temp sal measurement data", "datasets": [{"dataset_uid": "601141", "doi": "10.15784/601141", "keywords": "Antarctica; McMurdo Sound; Mcmurdo Station; Mooring; Oceans; Ocean Temperature; PH; Physical Oceanography; Ross Sea; Sea Surface Temperature; Seawater Measurements; Southern Ocean; Temperature", "people": "Hofmann, Gretchen; Hoshijima, Umihiko; Kapsenberg, Lydia", "repository": "USAP-DC", "science_program": null, "title": "Nearshore pH, temperature, (salinity, depth) at mooring sites in McMurdo Sound, Antarctica, Overwinter 2011-2016", "url": "https://www.usap-dc.org/view/dataset/601141"}, {"dataset_uid": "000181", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "mRNA sequencing - RNAseq", "url": "http://www.bco-dmo.org/dataset/639502"}, {"dataset_uid": "002576", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "pH temp sal measurement data", "url": "https://www.bco-dmo.org/dataset/639502"}], "date_created": "Tue, 13 Sep 2016 00:00:00 GMT", "description": "The research supported in this project will examine the effects of environmental change on a key Antarctic marine invertebrate, a pelagic mollusk, the pteropod, Limacina helicina antarctica. There are two main activities in this project: (1) to deploy oceanographic equipment ? in this case, autonomously recording pH sensors called SeaFETs and other devices that record temperature and salinity, and (2) to use these environmental data in the laboratory at McMurdo Station to study the response of the marine invertebrates to future changes in water quality that is expected in the next few decades. Notably, changes in oceanic pH (aka ocean acidification) and ocean warming are projected to be particularly threatening to calcifying marine organisms in cold-water, high latitude seas, making tolerance data on these organisms a critical research need in Antarctic marine ecosystems. \u003cbr/\u003e\u003cbr/\u003eThese Antarctic shelled-animals are especially vulnerable to dissolution stress from ocean acidification because they currently inhabit seawater that is barely at the saturation level to support biogenic calcification. Indeed, these polar animals are considered to be the \u0027first responders\u0027 to chemical changes in the surface oceans. Thus, this project will lead to information about the adaptive capacity of L. helcina antarctica. From an ecological perspective this is important because this animal is a critical part of the Antarctic food chain in coastal waters and changes in its abundance will impact other species. Finally, the research conducted in this project will serve as a training and educational opportunity for undergraduate and graduate students as well as postdoctoral scholars.", "east": 166.66425, "geometry": "POINT(164.990819 -77.593275)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.3354, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Hofmann, Gretchen", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "BCO-DMO; USAP-DC", "science_programs": null, "south": -77.85115, "title": "Ocean Acidification Seascape: Linking Natural Variability and Anthropogenic changes in pH and Temperature to Performance in Calcifying Antarctic Marine Invertebrates", "uid": "p0000390", "west": 163.317388}, {"awards": "1355533 Dayton, Paul", "bounds_geometry": "POLYGON((163 -78,163.4 -78,163.8 -78,164.2 -78,164.6 -78,165 -78,165.4 -78,165.8 -78,166.2 -78,166.6 -78,167 -78,167 -78.05,167 -78.1,167 -78.15,167 -78.2,167 -78.25,167 -78.3,167 -78.35,167 -78.4,167 -78.45,167 -78.5,166.6 -78.5,166.2 -78.5,165.8 -78.5,165.4 -78.5,165 -78.5,164.6 -78.5,164.2 -78.5,163.8 -78.5,163.4 -78.5,163 -78.5,163 -78.45,163 -78.4,163 -78.35,163 -78.3,163 -78.25,163 -78.2,163 -78.15,163 -78.1,163 -78.05,163 -78))", "dataset_titles": "A Multi-decadal Record of Antarctic Benthos: Image Analysis to Maximize Data Utilization", "datasets": [{"dataset_uid": "600164", "doi": "10.15784/600164", "keywords": "Antarctica; Bentic Fauna; Biota; McMurdo Sound; Oceans; Ross Sea; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Dayton, Paul", "repository": "USAP-DC", "science_program": null, "title": "A Multi-decadal Record of Antarctic Benthos: Image Analysis to Maximize Data Utilization", "url": "https://www.usap-dc.org/view/dataset/600164"}], "date_created": "Tue, 31 May 2016 00:00:00 GMT", "description": "Antarctic benthic communities are characterized by many species of sponges (Phylum Porifera), long thought to exhibit extremely slow demographic patterns of settlement, growth and reproduction. This project will analyze many hundreds of diver and remotely operated underwater vehicle photographs documenting a unique, episodic settlement event that occurred between 2000 and 2010 in McMurdo Sound that challenges this paradigm of slow growth. Artificial structures were placed on the seafloor between 1967 and 1974 at several sites, but no sponges were observed to settle on these structures until 2004. By 2010 some 40 species of sponges had settled and grown to be surprisingly large. Given the paradigm of slow settlement and growth supported by the long observation period (37 years, 1967-2004), this extraordinary large-scale settlement and rapid growth over just a 6-year time span is astonishing. This project utilizes image processing software (ImageJ) to obtain metrics (linear dimensions to estimate size, frequency, percent cover) for sponges and other fauna visible in the photographs. It uses R to conduct multidimensional scaling to ordinate community data and ANOSIM to test for differences of community data among sites and times and structures. It will also use SIMPER and ranked species abundances to discriminate species responsible for any differences. \u003cbr/\u003e\u003cbr/\u003eThis work focuses on Antarctic sponges, but the observations of massive episodic recruitment and growth are important to understanding seafloor communities worldwide. Ecosystems are composed of populations, and populations are ecologically described by their distribution and abundance. A little appreciated fact is that sponges often dominate marine communities, but because sponges are so hard to study, most workers focus on other groups such as corals, kelps, or bivalves. Because most sponges settle and grow slowly their life history is virtually unstudied. The assumption of relative stasis of the Antarctic seafloor community is common, and this project will shatter this paradigm by documenting a dramatic episodic event. Finally, the project takes advantage of old transects from the 1960s and 1970s and compares them with extensive 2010 surveys of the same habitats and sometimes the same intact transect lines, offering a long-term perspective of community change. The investigators will publish these results in peer-reviewed journals, give presentations to the general public and will involve students from local outreach programs, high schools, and undergraduates at UCSD to help with the analysis.", "east": 167.0, "geometry": "POINT(165 -78.25)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -78.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Dayton, Paul", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.5, "title": "EAGER: A Multi-decadal Record of Antarctic Benthos: Image Analysis to Maximize Data Utilization", "uid": "p0000401", "west": 163.0}, {"awards": "1332492 Lohmann, Rainer", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Origin of Persistent Organic Pollutants in the Antarctic Atmosphere, Snow and Marine Food Web", "datasets": [{"dataset_uid": "600138", "doi": "10.15784/600138", "keywords": "Animal Tracking; Antarctica; Antarctic Peninsula; Atmosphere; Biota; Chemistry:fluid; Chemistry:Fluid; Human Dimensions; McMurdo Sound; Oceans; Palmer Station; Pollution; Ross Sea; Sample/collection Description; Sample/Collection Description; Seals; Southern Ocean; Weddell Sea", "people": "Lohmann, Rainer", "repository": "USAP-DC", "science_program": null, "title": "Origin of Persistent Organic Pollutants in the Antarctic Atmosphere, Snow and Marine Food Web", "url": "https://www.usap-dc.org/view/dataset/600138"}], "date_created": "Tue, 09 Jun 2015 00:00:00 GMT", "description": "Many persistent organic pollutants (POPs), though banned in the U.S. since the 1970s, remain in the environment and continue to reach hitherto pristine regions such as the Arctic and Antarctic. The overall goals of this RAPID project are to better understand the remobilization of POPs from melting glaciers in the Antarctic, and their transfer into the food-web. Legacy POPs have characteristic chemical signatures that will be used ascertain the origin of POPs in the Antarctic atmosphere and marine food-web. Samples that were collected in 2010 will be analyzed for a wide range of legacy POPs, and their behavior will be contrasted with results for emerging contaminants. The intellectual merit of the proposed research combines (a) the use of chemical signatures to assess whether melting glaciers are releasing legacy POPs back into the Antarctic marine ecosystem, and (b) a better understanding of the food-web dynamics of legacy POPs versus emerging organic pollutants.\u003cbr/\u003e\u003cbr/\u003eThe broader impacts of the proposed research project will include the training of the next generation of scientists through support for a graduate student and a postdoctoral scholar. As well, this work will result in a better understanding of the relationship between pollutants, trophic food web ecology and global climate change in the pristine Antarctic ecosystem.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Lohmann, Rainer", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "RAPID: Origin of Persistent Organic Pollutants in the Antarctic Atmosphere, Snow and Marine Food WEB", "uid": "p0000344", "west": -180.0}, {"awards": "1043217 Zagorodnov, Victor", "bounds_geometry": null, "dataset_titles": "Fiber-Optic Distributed Temperature Sensing at Windless Bight", "datasets": [{"dataset_uid": "609604", "doi": "10.7265/N5V122QS", "keywords": "Antarctica; Ice Shelf; McMurdo Sound; Mooring; Oceans; Physical Oceanography; Ross Ice Shelf; Southern Ocean", "people": "Zagorodnov, Victor; Holland, David; Tyler, Scott W.", "repository": "USAP-DC", "science_program": null, "title": "Fiber-Optic Distributed Temperature Sensing at Windless Bight", "url": "https://www.usap-dc.org/view/dataset/609604"}], "date_created": "Tue, 05 May 2015 00:00:00 GMT", "description": "Abstract\u003cbr/\u003e\u003cbr/\u003eResearchers will explore the use of a distributed temperature sensing monitoring system (DTS), using fiber-optical (FO) technology, as the basis of a sustainable, sub-ice cavity sensing array. FO cable systems, such as may be deployed through a hot-water drilled hole through an ice shelf, passing through the underlying cavity to the sea floor, are capable of measuring temperatures down fiber at 1 meter intervals, and at time frequencies as high as 15 seconds. DTS FO systems operate via optical time domain reflectometry along the fiber waveguide using inelastic backscatter of coherent laser light as a probe beam in the FO environment.\u003cbr/\u003e\u003cbr/\u003eThe introduction of new technologies to the harsh environmental conditions of the Antarctic are often associated with high risk. However, the potential rewards of this approach (e.g. multiyear capability, minimal submerged mechanical or electrical components that may fail, relative simplicity of deployment and measurement principle, yet yielding distributed real time and spatial observation) are attractive enough to conduct a pilot project at a field-ready location (McMurdo). \u003cbr/\u003e\u003cbr/\u003eCurrent indications are that the instability of some of the world\u0027s largest ice sheets located around the Antarctic and Greenland may be caused by the presence of warming, deep ocean waters, shoaling over continental shelves, and melting the underside of floating ice shelves. Additional knowledge of the temporal and spatial variability of the temperature fields underneath terminal ice shelves, such as those draining the West Antarctic Ice Sheet, are needed to accurately project future global climate effects on ice-shelf ocean interactions, and in order to inform societal and technological aspects of adaption to changing sea-level.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e TEMPERATURE LOGGERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS", "is_usap_dc": true, "keywords": "GROUND STATIONS; Not provided; Conservative Temperature; MOORINGS; Ice Shelf Temperature; Ocean Temperature", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Zagorodnov, Victor; Holland, David; Tyler, Scott W.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED \u003e MOORINGS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Application of Distributed Temperature Sensors (DTS) for Antarctic Ice Shelves and Cavities", "uid": "p0000183", "west": null}, {"awards": "1043740 Lenczewski, Melissa", "bounds_geometry": "POLYGON((165 -77.5,165.3 -77.5,165.6 -77.5,165.9 -77.5,166.2 -77.5,166.5 -77.5,166.8 -77.5,167.1 -77.5,167.4 -77.5,167.7 -77.5,168 -77.5,168 -77.6,168 -77.7,168 -77.8,168 -77.9,168 -78,168 -78.1,168 -78.2,168 -78.3,168 -78.4,168 -78.5,167.7 -78.5,167.4 -78.5,167.1 -78.5,166.8 -78.5,166.5 -78.5,166.2 -78.5,165.9 -78.5,165.6 -78.5,165.3 -78.5,165 -78.5,165 -78.4,165 -78.3,165 -78.2,165 -78.1,165 -78,165 -77.9,165 -77.8,165 -77.7,165 -77.6,165 -77.5))", "dataset_titles": "Fate of Drilling Fluids during the South McMurdo Sound Project (SMS) of the Antarctic Geological Drilling Program (ANDRILL)", "datasets": [{"dataset_uid": "600129", "doi": "10.15784/600129", "keywords": "Andrill; Antarctica; Chemistry:fluid; Chemistry:Fluid; Chemistry:rock; Chemistry:Rock; Drilling Fluid; Geochemistry; McMurdo; Ross Sea; Sediment Core", "people": "Lenczewski, Melissa", "repository": "USAP-DC", "science_program": "ANDRILL", "title": "Fate of Drilling Fluids during the South McMurdo Sound Project (SMS) of the Antarctic Geological Drilling Program (ANDRILL)", "url": "https://www.usap-dc.org/view/dataset/600129"}], "date_created": "Mon, 27 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe PI proposes to utilize computer models used by hydrogeologists to establish the fate and transport of contamination and determine the extent of drilling fluid contamination in the ANDRILL SMS core. For these models, previously collected logs of lithology, porosity, fracture density, fracture type, fracture orientation, drilling fluid loss, drilling fluid characteristics and temperature will be used as input parameters. In addition, biodegradation and sorption constants for the drilling fluid will be determined and incorporated into the models. Samples of drilling fluids used during coring as well as the return fluids were collected at the drill site using standard microbiological sampling techniques. Fluids will be tested at in situ temperatures under aerobic and anaerobic conditions to determine biodegradation constants. Sorption will be determined between the drilling fluids and core samples using standard isotherm methods. Geochemical and microbial fingerprints of the fluids and the changes during biodegradation will determine the potential impact of the drilling fluids on the isolated microbial communities and the geochemistry within various subsurface lithologic units beneath the southern McMurdo Sound in Antarctica. The results of this study could potentially provide guidelines on developing less detrimental methods for future exploration, if deemed necessary through this research.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis proposed project will train a graduate student. The methods developed for analyses of samples in this project will serve as a guide for future studies of similar interest and will improve the understanding of ecological impacts of geologic drilling in Antarctica. The results of this study will be used as a reference for comparison with future studies examining newly developed, and improved, sample collection methods in future exploratory drilling projects in pristine environments. The PI is new to Antarctic research.", "east": 168.0, "geometry": "POINT(166.5 -78)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Lenczewski, Melissa", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ANDRILL", "south": -78.5, "title": "Fate of Drilling Fluids during the South McMurdo Sound Project (SMS) of the Antarctic Geological Drilling Program (ANDRILL)", "uid": "p0000468", "west": 165.0}, {"awards": "0838937 Costa, Daniel; 0838892 Burns, Jennifer; 0838911 Hofmann, Eileen", "bounds_geometry": "POLYGON((160 -68,162 -68,164 -68,166 -68,168 -68,170 -68,172 -68,174 -68,176 -68,178 -68,180 -68,180 -68.8,180 -69.6,180 -70.4,180 -71.2,180 -72,180 -72.8,180 -73.6,180 -74.4,180 -75.2,180 -76,178 -76,176 -76,174 -76,172 -76,170 -76,168 -76,166 -76,164 -76,162 -76,160 -76,160 -75.2,160 -74.4,160 -73.6,160 -72.8,160 -72,160 -71.2,160 -70.4,160 -69.6,160 -68.8,160 -68))", "dataset_titles": "Weddell seal dive behavior and rhythmicity from 2010-2012 in the Ross Sea; Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea", "datasets": [{"dataset_uid": "600025", "doi": "10.15784/600025", "keywords": "Antarctica; Biota; Oceans; Ross Sea; Southern Ocean", "people": "Costa, Daniel", "repository": "USAP-DC", "science_program": null, "title": "Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/600025"}, {"dataset_uid": "601835", "doi": "10.15784/601835", "keywords": "Aerobic; Antarctica; Cryosphere; Weddell Seal", "people": "Shero, Michelle", "repository": "USAP-DC", "science_program": null, "title": "Weddell seal dive behavior and rhythmicity from 2010-2012 in the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/601835"}, {"dataset_uid": "600101", "doi": "10.15784/600101", "keywords": "Biota; Oceans; Ross Sea; Seals; Southern Ocean", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/600101"}], "date_created": "Mon, 11 Nov 2013 00:00:00 GMT", "description": "Abstract \u003cbr/\u003eThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). \u003cbr/\u003e\u003cbr/\u003eMarine mammals of the Southern Ocean have evolved diverse life history patterns and foraging strategies to accommodate extreme fluctuations in the physical and biological environment. In light of ongoing climate change and the dramatic shifts in the extent and persistence of sea ice in the Ross Sea, it is critical to understand how Weddell seals, Leptonychotes weddellii, a key apex predator, select and utilize foraging habitats. Recent advances in satellite-linked animal-borne conductivity, temperature and depth (CTD) tags make it possible to simultaneously collect data on seal locations, their diving patterns, and the temperature and salinity profiles of the water columns they utilize. In other ecosystems, such data have revealed that marine predators selectively forage in areas where currents and fronts serve to locally concentrate prey resources, and that these conditions are required to sustain populations. Weddell seals will be studied in McMurdo Sound and at Terra Nova Bay, Ross Sea and will provide the first new data on Weddell seal winter diving behavior and habitat use in almost two decades. The relationship between an animal\u0027s diving behavior and physical habitat has enormous potential to enhance monitoring studies and to provide insight into how changes in ice conditions (due either to warming or the impact of large icebergs, such as B15) might impact individual time budgets and foraging success. The second thrust of this project is to use the profiles obtained from CTD seal tags to model the physical oceanography of this region. Current mathematical models of physical oceanographic processes in the Southern Ocean are directed at better understanding the role that it plays in global climate processes, and the linkages between physical and biological oceanographic processes. However, these efforts are limited by the scarcity of oceanographic data at high latitudes in the winter months; CTD tags deployed on animals will collect data at sufficient spatial and temporal resolution to improve data density. The project will contribute to two IPY endorsed initiatives: MEOP (Marine Mammals as Explorers of the Ocean Pole to Pole) and CAML (Census of Antarctic Marine Life). In addition, the highly visual nature of the data and analysis lends itself to public and educational display and outreach, particularly as they relate to global climate change, and we have collaborations with undergraduate and graduate training programs, the Seymour Marine Discovery Center, and the ARMADA program to foster these broader impacts.", "east": 180.0, "geometry": "POINT(170 -72)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -68.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Burns, Jennifer; Hofmann, Eileen; Costa, Daniel", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.0, "title": "Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea", "uid": "p0000661", "west": 160.0}, {"awards": "0737168 Prentice, Michael; 0541054 Sletten, Ronald", "bounds_geometry": "POLYGON((162.2335 -77.5047,162.3803 -77.5047,162.5271 -77.5047,162.6739 -77.5047,162.8207 -77.5047,162.9675 -77.5047,163.1143 -77.5047,163.2611 -77.5047,163.4079 -77.5047,163.5547 -77.5047,163.7015 -77.5047,163.7015 -77.52814,163.7015 -77.55158,163.7015 -77.57502,163.7015 -77.59846,163.7015 -77.6219,163.7015 -77.64534,163.7015 -77.66878,163.7015 -77.69222,163.7015 -77.71566,163.7015 -77.7391,163.5547 -77.7391,163.4079 -77.7391,163.2611 -77.7391,163.1143 -77.7391,162.9675 -77.7391,162.8207 -77.7391,162.6739 -77.7391,162.5271 -77.7391,162.3803 -77.7391,162.2335 -77.7391,162.2335 -77.71566,162.2335 -77.69222,162.2335 -77.66878,162.2335 -77.64534,162.2335 -77.6219,162.2335 -77.59846,162.2335 -77.57502,162.2335 -77.55158,162.2335 -77.52814,162.2335 -77.5047))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 06 Oct 2010 00:00:00 GMT", "description": "This award supports a project to examine the stratigraphy of near-surface sediments in Taylor Valley, Antarctica. Two contrasting hypotheses have been proposed for surface sediments in lower Taylor Valley, which have important and very different implications for how the West Antarctic Ice Sheet (WAIS) responded to the sea-level rise of the last deglaciation and Holocene environmental changes. One hypothesis holds that the sediments, designated Ross I drift, directly reflect \u003e10,000 14C-years of WAIS shrinkage in the Ross Sea during and perhaps driven by deglacial sea-level rise. The other hypothesis, holds that the Taylor sediments have little significance for WAIS change during the deglaciation. These two hypotheses reflect fundamentally different interpretations of the sediment record. Over the course of two field seasons and a third year at the home institutions, the project will test these two hypotheses using glacial geology, geochemistry, ground penetrating radar (GPR) at both 100 MHz and 400 MHz, and portable sediment coring. The intellectual merit of the proposed work is that it will test these two hypotheses and make novel use of the subsurface record that may result in new insights into WAIS sensitivity during the deglaciation. The study will also directly test the conclusion that Glacial Lake Washburn was much larger than previously proposed during the Last Glacial Maximum (LGM). This occurrence, if real, represents a stunning climate anomaly. Answers to these local ice sheet and lake questions directly pertain to larger scale issues concerning the influences of sea-level rise, climate change, and internal ice-sheet dynamics on the recession of the WAIS since the LGM. There are numerous broader impacts to this project. Understanding the glacial and lake history in the McMurdo Sound region has important implications for the role that the WAIS will play in future sea-level and global climate change. Moreover, the history of Taylor Valley has significance for the ecosystem studies currently being conducted by the LTER group. Lastly, during the course of the proposed research, the project will train two graduate and undergraduate students and the research will be featured prominently in the teaching of students.", "east": 163.7015, "geometry": "POINT(162.9675 -77.6219)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR", "is_usap_dc": false, "keywords": "Not provided; Salt", "locations": null, "north": -77.5047, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "Prentice, Michael; Sletten, Ronald S.", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -77.7391, "title": "Collaborative Research: Fluctuations of the West Antarctic Ice Sheet in Relation to Lake History in Taylor Valley, Antarctica, Since the Last Glacial Maximum", "uid": "p0000656", "west": 162.2335}, {"awards": "0838842 Passchier, Sandra", "bounds_geometry": "POLYGON((-180 -68,-177 -68,-174 -68,-171 -68,-168 -68,-165 -68,-162 -68,-159 -68,-156 -68,-153 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -77,160 -76,160 -75,160 -74,160 -73,160 -72,160 -71,160 -70,160 -69,160 -68,162 -68,164 -68,166 -68,168 -68,170 -68,172 -68,174 -68,176 -68,178 -68,-180 -68))", "dataset_titles": "Particle-size measurements for diamictites AND-2A sediment core, McMurdo Sound", "datasets": [{"dataset_uid": "601452", "doi": "10.15784/601452", "keywords": "Antarctica; McMurdo Sound; Miocene; Particle Size; Pleistocene; Pliocene", "people": "Hansen, Melissa A.; Passchier, Sandra", "repository": "USAP-DC", "science_program": "ANDRILL", "title": "Particle-size measurements for diamictites AND-2A sediment core, McMurdo Sound", "url": "https://www.usap-dc.org/view/dataset/601452"}], "date_created": "Fri, 27 Aug 2010 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The project aims on studying sediment cores collected from Prydz Bay and the Ross Sea to unravel the Neogene paleoclimatic history of the East Antarctic ice sheet. In the light of current measurements and predictions of a substantial rise in global temperature, investigations into the sensitivity of the East Antarctic ice sheet to climate change and its role in the climate system are essential. Geological records of former periods of climate change provide an opportunity to ground truth model predictions. The scientific objective of this project is to identify a previously proposed middle Miocene transition from a more dynamic wet-based East Antarctic ice sheet to the present semi-permanent ice sheet that is partially frozen to its bed. The timing and significance of this transition is controversial due to a lack of quantitative studies on well-dated ice-proximal sedimentary sequences. This project partially fills that gap using the composition and physical properties of diamictites and sandstones to establish shifts in ice-sheet drainage pathways, paleoenvironments and basal ice conditions. The results from the two key areas around the Antarctic continental margin will provide insight into the behavior of the East Antarctic ice sheet across the middle Miocene transition and through known times of warming in the late Miocene and Pliocene.", "east": -150.0, "geometry": "POINT(-175 -73)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -68.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Passchier, Sandra", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Determining Middle Miocene through Pliocene Changes in Paleo Ice-flow and Basal Ice Conditions in East Antarctica through Sedimentological Analyses of Core Samples", "uid": "p0000147", "west": 160.0}, {"awards": "0649609 Horning, Markus", "bounds_geometry": "POLYGON((165.975 -77.54,166.0631 -77.54,166.1512 -77.54,166.2393 -77.54,166.3274 -77.54,166.4155 -77.54,166.5036 -77.54,166.5917 -77.54,166.6798 -77.54,166.7679 -77.54,166.856 -77.54,166.856 -77.5709,166.856 -77.6018,166.856 -77.6327,166.856 -77.6636,166.856 -77.6945,166.856 -77.7254,166.856 -77.7563,166.856 -77.7872,166.856 -77.8181,166.856 -77.849,166.7679 -77.849,166.6798 -77.849,166.5917 -77.849,166.5036 -77.849,166.4155 -77.849,166.3274 -77.849,166.2393 -77.849,166.1512 -77.849,166.0631 -77.849,165.975 -77.849,165.975 -77.8181,165.975 -77.7872,165.975 -77.7563,165.975 -77.7254,165.975 -77.6945,165.975 -77.6636,165.975 -77.6327,165.975 -77.6018,165.975 -77.5709,165.975 -77.54))", "dataset_titles": "Aging in Weddell Seals: Proximate Mechanisms of Age-Related Changes in Adaptations to Breath-Hold Hunting in an Extreme Environment", "datasets": [{"dataset_uid": "600071", "doi": "10.15784/600071", "keywords": "Antarctica; Biota; McMurdo; Oceans; Seals; Southern Ocean", "people": "Horning, Markus", "repository": "USAP-DC", "science_program": null, "title": "Aging in Weddell Seals: Proximate Mechanisms of Age-Related Changes in Adaptations to Breath-Hold Hunting in an Extreme Environment", "url": "https://www.usap-dc.org/view/dataset/600071"}], "date_created": "Wed, 04 Aug 2010 00:00:00 GMT", "description": "The primary objectives of this research are to investigate the proximate effects of aging on diving capability in the Weddell Seal and to describe mechanisms by which aging may influence foraging ecology, through physiology and behavior. This model pinniped species has been the focus of three decades of research in McMurdo Sound, Antarctica. Compared to the knowledge of pinniped diving physiology and ecology during early development and young adulthood, little is known about individuals nearing the upper limit of their normal reproductive age range. Evolutionary aging theories predict that elderly diving seals should exhibit senescence. This should be exacerbated by surges in the generation of oxygen free radicals via hypoxia-reoxygenation during breath-hold diving and hunting, which are implicated in age-related damage to cellular mitochondria. Surprisingly, limited observations of non-threatened pinniped populations indicate that senescence does not occur to a level where reproductive output is affected. The ability of pinnipeds to avoid apparent senescence raises two major questions: what specific physiological and morphological changes occur with advancing age in pinnipeds and what subtle adjustments are made by these animals to cope with such changes? This investigation will focus on specific, functional physiological and behavioral changes relating to dive capability with advancing age. The investigators will quantify age-related changes in general health and body condition, combined with fine scale assessments of external and internal ability to do work in the form of diving. Specifically, patterns of oxidative status and oxygen use with age will be examined. The effects of age on muscular function, contractile capacity in vascular smooth muscle, and exercise capacity via exercise performance in skeletal muscle will be examined. Data will be compared between Weddell seals in the peak, and near the end, of their reproductive age range. An assessment will be made of the ability to do external work (i.e. diving) as well as muscle functionality (ability to do internal work). The investigators hypothesize that senescence does occur in Weddell seals at the level of small-scale, proximate physiological effects and performance, but that behavioral plasticity allows for a given degree of compensation. Broader impacts include the training of students and outreach activities including interviews and articles written for the popular media. Photographs and project summaries will be available to the interested public on the project website. This study should also establish diving seals as a novel model for the study of cardiovascular and muscular physiology of aging. Research on Weddell seals could validate this model and thus develop a foundation for similar research on other species. Advancement of the understanding of aging by medical science has been impressive in recent years and the development of new models for the study of aging has tremendous potential benefits to society at large", "east": 166.856, "geometry": "POINT(166.4155 -77.6945)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.54, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Horning, Markus", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.849, "title": "Collaborative Research: Aging in Weddell Seals: Proximate Mechanisms of Age-Related Changes in Adaptations to Breath-Hold Hunting in an Extreme Environment", "uid": "p0000487", "west": 165.975}, {"awards": "0636696 DeVries, Arthur", "bounds_geometry": "POLYGON((-68.0025 -52.7599,-67.07254 -52.7599,-66.14258 -52.7599,-65.21262 -52.7599,-64.28266 -52.7599,-63.3527 -52.7599,-62.42274 -52.7599,-61.49278 -52.7599,-60.56282 -52.7599,-59.63286 -52.7599,-58.7029 -52.7599,-58.7029 -53.98242,-58.7029 -55.20494,-58.7029 -56.42746,-58.7029 -57.64998,-58.7029 -58.8725,-58.7029 -60.09502,-58.7029 -61.31754,-58.7029 -62.54006,-58.7029 -63.76258,-58.7029 -64.9851,-59.63286 -64.9851,-60.56282 -64.9851,-61.49278 -64.9851,-62.42274 -64.9851,-63.3527 -64.9851,-64.28266 -64.9851,-65.21262 -64.9851,-66.14258 -64.9851,-67.07254 -64.9851,-68.0025 -64.9851,-68.0025 -63.76258,-68.0025 -62.54006,-68.0025 -61.31754,-68.0025 -60.09502,-68.0025 -58.8725,-68.0025 -57.64998,-68.0025 -56.42746,-68.0025 -55.20494,-68.0025 -53.98242,-68.0025 -52.7599))", "dataset_titles": "Expedition Data; Expedition data of LMG0809; Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)", "datasets": [{"dataset_uid": "601811", "doi": null, "keywords": "Antarctica; Bellingshausen Sea; Cryosphere; Southern Ocean", "people": "Steinberg, Deborah; McDowell, Jan; Biesack, Ellen; Cheng, Chi-Hing; Hilton, Eric; Corso, Andrew; Desvignes, Thomas", "repository": "USAP-DC", "science_program": "LTER", "title": "Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)", "url": "https://www.usap-dc.org/view/dataset/601811"}, {"dataset_uid": "001493", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0810"}, {"dataset_uid": "001504", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0809"}, {"dataset_uid": "002728", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0809", "url": "https://www.rvdata.us/search/cruise/LMG0809"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Antarctic notothenioid fish evolved antifreeze (AF) proteins that prevent ice crystals that enter their body fluids from growing, and thereby avoid freezing in their icy habitats. However, even in the extreme cold Antarctic marine environment, regional gradations of severity are found. The biological correlate for environmental severity in fish is the endogenous ice load, which likely determines the tolerable limit of environmental severity for notothenioid habitation. The endogenous ice load develops from environmental ice crystals entering through body surfaces and somehow localizing to the spleen. How prone the surface tissues are to ice entry, how ice reaches the spleen, and what the fate of splenic ice is, requires elucidation. Spleen sequestration of ice raises the hypothesis that macrophages may play a role in the translocation and perhaps elimination of AF-bound ice crystals. Antifreeze glycoproteins (AFGP) act in concert with a second, recently discovered antifreeze called antifreeze potentiating protein (AFPP), necessitating an assessment of the contribution of AFPP to freezing avoidance. Recent research suggests that the exocrine pancreas and the anterior stomach, not the liver, synthesize AFGPs and secrete them into the intestine, from where they may be returned to the blood. A GI-to-blood transport is a highly unconventional path for a major plasma protein and also begs the questions, What is the source of blood AFPP?. Why are two distinct AF proteins needed and what is the chronology of their evolution? What genomic changes in the DNA are associated with the development or loss of the antifreeze trait? Experiments described in this proposal address these interrelated questions of environmental, organismal, and evolutionary physiology, and will further our understanding of novel vertebrate physiologies, the limits of environmental adaptation, and climatically driven changes in the genome. The proposed research will (1) determine the temporal and spatial heterogeneity of environmental temperature and iciness in progressively more severe fish habitats in the greater McMurdo Sound area, and in the milder Arthur Harbor at Palmer Station. The splenic ice load in fishes inhabiting these sites will be determined to correlate to environmental severity and habitability. (2) Assess the surface tissue site of ice entry and their relative barrier properties in intact fish and isolated tissues preparations (3) Assess the role of immune cells in the fate of endogenous ice, (4) determine whether the blood AFGPs are from intestinal/rectal uptake, (5) examine the contribution of AFPP to the total blood AF activity (6) evaluate the progression of genomic changes in the AFGP locus across Notothenioidei as modulated by disparate thermal environments, in four selected species through the analyses of large insert DNA BAC clones. The origin and evolution of AFPP will be examined also by analyzing BAC clones encompassing the AFPP genomic locus. The broader impacts of the proposed research include training of graduate and undergraduate students in research approaches ranging from physical field measurements to cutting edge genomics. Undergraduate research projects have lead to co-authored publications and will continue to do so. Outreach includes establishing Wiki websites on topics of Antarctic fish biology and freeze avoidance, providing advisory services to the San Francisco Science Exploratorium, and making BAC libraries available to interested polar biologists. This research theme has repeatedly received national and international science news coverage and will continue to be disseminated to the public in that manner.", "east": -58.7029, "geometry": "POINT(-63.3527 -58.8725)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -52.7599, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Devries, Arthur", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -64.9851, "title": "Environmental, Organismal and Evolutionary Physiology of Freeze Avoidance in Antarctic Notothenioid Fishes", "uid": "p0000560", "west": -68.0025}, {"awards": "0088143 Luyendyk, Bruce; 0087392 Bartek, Louis", "bounds_geometry": "POLYGON((-179.99786 -75.91667,-143.99852 -75.91667,-107.99918 -75.91667,-71.99984 -75.91667,-36.0005 -75.91667,-0.00115999999997 -75.91667,35.99818 -75.91667,71.99752 -75.91667,107.99686 -75.91667,143.9962 -75.91667,179.99554 -75.91667,179.99554 -76.183531,179.99554 -76.450392,179.99554 -76.717253,179.99554 -76.984114,179.99554 -77.250975,179.99554 -77.517836,179.99554 -77.784697,179.99554 -78.051558,179.99554 -78.318419,179.99554 -78.58528,143.9962 -78.58528,107.99686 -78.58528,71.99752 -78.58528,35.99818 -78.58528,-0.00116000000003 -78.58528,-36.0005 -78.58528,-71.99984 -78.58528,-107.99918 -78.58528,-143.99852 -78.58528,-179.99786 -78.58528,-179.99786 -78.318419,-179.99786 -78.051558,-179.99786 -77.784697,-179.99786 -77.517836,-179.99786 -77.250975,-179.99786 -76.984114,-179.99786 -76.717253,-179.99786 -76.450392,-179.99786 -76.183531,-179.99786 -75.91667))", "dataset_titles": "Expedition Data; NBP0301 data; NBP0306 data", "datasets": [{"dataset_uid": "001724", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0301"}, {"dataset_uid": "001668", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0306"}, {"dataset_uid": "000105", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0306 data", "url": "https://www.rvdata.us/search/cruise/NBP0306"}, {"dataset_uid": "000104", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0301 data", "url": "https://www.rvdata.us/search/cruise/NBP0301"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Luyendyk et.al.: OPP 0088143\u003cbr/\u003eBartek: OPP 0087392\u003cbr/\u003eDiebold: OPP 0087983\u003cbr/\u003e\u003cbr/\u003eThis award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research program in marine geology and geophysics in the southern central and eastern Ross Sea. The project will conduct sites surveys for drilling from the Ross Ice Shelf into the seafloor beneath it. Many of the outstanding problems concerning the evolution of the East and West Antarctic Ice Sheets, Antarctic climate, global sea level, and the tectonic history of the West Antarctic Rift System can be addressed by drilling into the seafloor of the Ross Sea. Climate data for Cretaceous and Early Cenozoic time are lacking for this sector of Antarctica. Climate questions include: Was there any ice in Late Cretaceous time? What was the Antarctic climate during the Paleocene-Eocene global warming? When was the Cenozoic onset of Antarctic glaciation, when did glaciers reach the coast and when did they advance out onto the margin? Was the Ross Sea shelf non-marine in Late Cretaceous time; when did it become marine? Tectonic questions include: What was the timing of the Cretaceous extension in the Ross Sea rift; where was it located? What is the basement composition and structure? Where are the time and space limits of the effects of Adare Trough spreading? Another drilling objective is to sample and date the sedimentary section bounding the mapped RSU6 unconformity in the Eastern Basin and Central Trough to resolve questions about its age and regional extent. Deep Sea Drilling Project (DSDP) Leg 28 completed sampling at four drill sites in the early 1970\u0027s but had low recovery and did not sample the Early Cenozoic. Other drilling has been restricted to the McMurdo Sound area of the western Ross Sea and results can be correlated into the Victoria Land Basin but not eastward across basement highs. Further, Early Cenozoic and Cretaceous rocks have not been sampled. A new opportunity is developing to drill from the Ross Ice Shelf. This is a successor program to the Cape Roberts Drilling Project. One overriding difficulty is the need for site surveys at drilling locations under the ice shelf. This project will overcome this impediment by conducting marine geophysical drill site surveys at the front of the Ross Ice Shelf in the Central Trough and Eastern Basin. The surveys will be conducted a kilometer or two north of the ice shelf front where recent calving events have resulted in a southerly position of the ice shelf edge. In several years the northward advance of the ice shelf will override the surveyed locations and drilling could be accomplished. Systems to be used include swath bathymetry, gravity, magnetics, chirp sonar, high resolution seismic profiling, and 48 fold seismics. Cores will be collected to obtain samples for geotechnical properties, to study sub-ice shelf modern sedimentary processes, and at locations where deeper section is exposed.\u003cbr/\u003e\u003cbr/\u003eThis survey will include long profiles and detailed grids over potential drill sites. Survey lines will be tied to existing geophysical profiles and DSDP 270. A recent event that makes this plan timely is the calving of giant iceberg B-15 (in March, 2000) and others from the ice front in the eastern Ross Sea. This new calving event and one in 1987 have exposed 16,000 square kilometers of seafloor that had been covered by ice shelf for decades and is not explored. Newly exposed territory can now be mapped by modern geophysical methods. This project will map geological structure and stratigraphy below unconformity RSU6 farther south and east, study the place of Roosevelt Island in the Ross Sea rifting history, and determine subsidence history during Late Cenozoic time (post RSU6) in the far south and east. Finally the project will observe present day sedimentary processes beneath the ice shelf in the newly exposed areas.", "east": 179.99554, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": true, "keywords": "R/V NBP", "locations": null, "north": -75.91667, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Bartek, Louis; Luyendyk, Bruce P.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -78.58528, "title": "Collaborative Research: Antarctic Cretaceous-Cenozoic Climate, Glaciation, and Tectonics: Site surveys for drilling from the edge of the Ross Ice Shelf", "uid": "p0000425", "west": -179.99786}, {"awards": "0229403 Tauxe, Lisa", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Paleomagnetism and40Ar/39Ar ages from volcanics extruded during the Matuyama and Brunhes Chrons near McMurdo Sound, Antarctica", "datasets": [{"dataset_uid": "000116", "doi": "", "keywords": null, "people": null, "repository": "EarthRef", "science_program": null, "title": "Paleomagnetism and40Ar/39Ar ages from volcanics extruded during the Matuyama and Brunhes Chrons near McMurdo Sound, Antarctica", "url": "http://dx.doi.org/10.7288/V4/MAGIC/12395"}], "date_created": "Tue, 01 Sep 2009 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate Earth\u0027s magnetic field over the past 5 million years in order to test models of Earth\u0027s geomagnetic dynamo. Paleomagnetic data (directions of ancient geomagnetic fields obtained from rocks) play an important role in a variety of geophysical studies of the Earth, including plate tectonic reconstructions, magnetostratigraphy, and studies of the behavior of the ancient geomagnetic field (which is called paleo-geomagnetism). Over the past four decades the key assumption in many paleomagnetic studies has been that the average direction of the paleomagnetic field corresponds to one that would have been produced by a geocentric axial dipole (GAD) (analogous to a bar magnet at the center of the Earth), and that paleoinclinations (the dip of magnetic directions from rocks) provide data of sufficient accuracy to enable their use in plate reconstructions. A recent re-examination of the fundamental data underlying models of the time averaged field has shown that the most glaring deficiency in the existing data base is a dearth of high quality data, including paleointensity information, from high latitudes. This project will undertake a sampling and laboratory program on suitable sites from the Mt. Erebus Volcanic Province (Antarctica) that will produce the quality data from high southern latitudes that are essential to an enhanced understanding of the time averaged field and its long term variations.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Tauxe, Lisa; Staudigel, Hubertus; Constable, Catherine; Koppers, Anthony", "platforms": "Not provided", "repo": "EarthRef", "repositories": "EarthRef", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Geomagnetic Field as Recorded in the Mt Erebus Volcanic Province: Key to Field Structure at High Southern Latitudes", "uid": "p0000228", "west": -180.0}, {"awards": "0634682 Kanatous, Shane", "bounds_geometry": "POLYGON((160 -77,160.7 -77,161.4 -77,162.1 -77,162.8 -77,163.5 -77,164.2 -77,164.9 -77,165.6 -77,166.3 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.3 -78,165.6 -78,164.9 -78,164.2 -78,163.5 -78,162.8 -78,162.1 -78,161.4 -78,160.7 -78,160 -78,160 -77.9,160 -77.8,160 -77.7,160 -77.6,160 -77.5,160 -77.4,160 -77.3,160 -77.2,160 -77.1,160 -77))", "dataset_titles": "The Molecular Signals that Regulate the Ontogeny of Aerobic Capacity, Lipid Metabolism and Elevated Myoglobin Concentrations in the Skeletal Muscles of Weddell Seals", "datasets": [{"dataset_uid": "600063", "doi": "10.15784/600063", "keywords": "Antarctica; Biota; Oceans; Seals; Sea Surface; Southern Ocean", "people": "Kanatous, Shane; Lyons, W. Berry", "repository": "USAP-DC", "science_program": null, "title": "The Molecular Signals that Regulate the Ontogeny of Aerobic Capacity, Lipid Metabolism and Elevated Myoglobin Concentrations in the Skeletal Muscles of Weddell Seals", "url": "https://www.usap-dc.org/view/dataset/600063"}], "date_created": "Fri, 31 Jul 2009 00:00:00 GMT", "description": "During the past three decades, intensive field studies have revealed much about the\u003cbr/\u003ebehavior, physiology, life history, and population dynamics of the Weddell seal (Leptonychotes weddelli) population of McMurdo Sound, Antarctica. These animals are marine predators that are highly adapted for an aquatic life in shore-fast and pack ice habitats. They must locate and capture sparsely distributed under the ice. Most of what is known about their diving behavior is based on studies of adult animals with little known about the development or the genetic controls of diving behavior of young animals. The goal of this project is to examine the temporal development of aerobic capacity, lipid metabolism and oxygen stores in the skeletal muscles of young Weddell seals and to determine which aspects of the cellular environment are important in the regulation of these adaptations during maturation. This project builds on past results to investigate the molecular controls that underlie the development of these adaptations. The first objective is to further characterize the ontogenetic changes in muscle aerobic capacity, lipid metabolism and myoglobin concentration and distribution using enzymatic, immuno-histochemical and myoglobin assays in newly weaned, subadult, and adult seals. The second objective is to determine the molecular controls that regulate these changes in aerobic capacity, fiber type distribution and myoglobin in skeletal muscles during maturation. Through subtractive hybridization and subsequent analysis, differences in mRNA populations in the swimming muscles of the different age classes of Weddell seals will be determined. These techniques will allow for the identification of the proteins and transcription factors that influence the ontogenetic changes in myoglobin concentration, fiber type distribution and aerobic capacity. These results will increase our\u003cbr/\u003eunderstanding of both the ontogeny and molecular mechanisms by which young seals acquire the physiological capabilities to make deep (up to 700 m) and long aerobic dives (ca 20 min). This study will advance knowledge of the molecular regulation for the\u003cbr/\u003eadaptations that enable active skeletal muscle to function under hypoxic conditions; this has a broader application for human medicine especially in regards to cardiac and pulmonary disease. Additional broader impacts include the participation of underrepresented scientists and a continuation of a website in collaboration\u003cbr/\u003ewith the Science Teachers Access to Resources at Southwestern University (STARS Program) which involves weekly updates about research efforts during the field season, weekly questions/answer session involving students and teachers, and updates on research results throughout the year.", "east": 167.0, "geometry": "POINT(163.5 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Kanatous, Shane; Lyons, W. Berry", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "The Molecular Signals that Regulate the Ontogeny of Aerobic Capacity, Lipid Metabolism and Elevated Myoglobin Concentrations in the Skeletal Muscles of Weddell Seals", "uid": "p0000536", "west": 160.0}, {"awards": "0739496 Miller, Molly; 0739512 Walker, Sally; 0739583 Bowser, Samuel", "bounds_geometry": "POLYGON((163.41667 -77.33333,163.46667 -77.33333,163.51667 -77.33333,163.56667 -77.33333,163.61667 -77.33333,163.66667 -77.33333,163.71667 -77.33333,163.76667 -77.33333,163.81667 -77.33333,163.86667 -77.33333,163.91667 -77.33333,163.91667 -77.369997,163.91667 -77.406664,163.91667 -77.443331,163.91667 -77.479998,163.91667 -77.516665,163.91667 -77.553332,163.91667 -77.589999,163.91667 -77.626666,163.91667 -77.663333,163.91667 -77.7,163.86667 -77.7,163.81667 -77.7,163.76667 -77.7,163.71667 -77.7,163.66667 -77.7,163.61667 -77.7,163.56667 -77.7,163.51667 -77.7,163.46667 -77.7,163.41667 -77.7,163.41667 -77.663333,163.41667 -77.626666,163.41667 -77.589999,163.41667 -77.553332,163.41667 -77.516665,163.41667 -77.479998,163.41667 -77.443331,163.41667 -77.406664,163.41667 -77.369997,163.41667 -77.33333))", "dataset_titles": "Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores; Nitrogen, carbon, and oxygen isotopes in the shell of the Antarctic scallop Adamussium colbecki as a proxy for sea ice cover in Antarctica.; Sequence Data", "datasets": [{"dataset_uid": "601764", "doi": null, "keywords": "Adamussium Colbecki; Antarctica; Biota; Carbon Isotopes; Explorers Cove; Nitrogen Isotopes; Oxygen Isotope; Scallop", "people": "Puhalski, Emma; Gillikin, David; Camarra, Steve; Cronin, Kelly; Verheyden, Anouk; Walker, Sally", "repository": "USAP-DC", "science_program": null, "title": "Nitrogen, carbon, and oxygen isotopes in the shell of the Antarctic scallop Adamussium colbecki as a proxy for sea ice cover in Antarctica.", "url": "https://www.usap-dc.org/view/dataset/601764"}, {"dataset_uid": "000144", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Sequence Data", "url": "http://www.ncbi.nlm.nih.gov/sites/myncbi/collections/public/1rMU2lBNcxWAsa9h9WyD8rzA8/"}, {"dataset_uid": "600077", "doi": "10.15784/600077", "keywords": "Antarctica; Biota; Glaciers/ice Sheet; Glaciers/Ice Sheet; McMurdo Sound; Oceans; Sample/collection Description; Sample/Collection Description", "people": "Walker, Sally", "repository": "USAP-DC", "science_program": null, "title": "Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores", "url": "https://www.usap-dc.org/view/dataset/600077"}, {"dataset_uid": "600076", "doi": "10.15784/600076", "keywords": "Biota; Geochronology; Marine Sediments; Oceans; Southern Ocean", "people": "Miller, Molly; Furbish, David", "repository": "USAP-DC", "science_program": null, "title": "Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores", "url": "https://www.usap-dc.org/view/dataset/600076"}], "date_created": "Wed, 15 Jul 2009 00:00:00 GMT", "description": "This project answers a simple question: why are there so few fossils in sediment cores from Antarctica?s continental shelf? Antarctica?s benthos are as biologically rich as those of the tropics. Shell-secreting organisms should have left a trail throughout geologic time, but have not. This trail is particularly important because these organisms record regional climate in ways that are critical to interpreting the global climate record. This study uses field experiments and targeted observations of modern benthic systems to examine the biases inflicted by fossil preservation. By examining a spectrum of ice-affected habitats, this project provides paleoenvironmental insights into carbonate preservation, sedimentation rates, and burial processes; and will provide new approaches to reconstructing the Cenozoic history of Antarctica. Broader impacts include graduate and undergraduate research and education, development of undergraduate curricula to link art and science, K12 outreach, public outreach via the web, and societal relevance through improved understanding of records of global climate change.", "east": 163.91667, "geometry": "POINT(163.66667 -77.516665)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.33333, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Walker, Sally; Bowser, Samuel; Miller, Molly; Furbish, David", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "NCBI GenBank; USAP-DC", "science_programs": null, "south": -77.7, "title": "Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores", "uid": "p0000203", "west": 163.41667}, {"awards": "0440478 Tang, Kam", "bounds_geometry": "POINT(166.66267 -77.85067)", "dataset_titles": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial Forms of Phaeocystis Antarctica", "datasets": [{"dataset_uid": "600043", "doi": "10.15784/600043", "keywords": "Biota; McMurdo Sound; Oceans; Phytoplankton; Ross Sea; Southern Ocean; Zooplankton", "people": "Tang, Kam; Smith, Walker", "repository": "USAP-DC", "science_program": null, "title": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial Forms of Phaeocystis Antarctica", "url": "https://www.usap-dc.org/view/dataset/600043"}], "date_created": "Mon, 04 May 2009 00:00:00 GMT", "description": "Phaeocystis Antarctica is a widely distributed phytoplankton that forms dense blooms and aggregates in the Southern Ocean. This phytoplankton and plays important roles in polar ecology and biogeochemistry, in part because it is a dominant primary producer, a main component of organic matter vertical fluxes, and the principal producer of volatile organic sulfur in the region. Yet P. Antarctica is also one of the lesser known species in terms of its physiology, life history and trophic relationships with other organisms; furthermore, information collected on other Phaeocystis species and from different locations may not be applicable to P. Antarctica in the Ross Sea. P. Antarctica occurs mainly as two morphotypes: solitary cells and mucilaginous colonies, which differ significantly in size, architecture and chemical composition. Relative dominance between solitary cells and colonies determines not only the size spectrum of the population, but also its carbon dynamics, nutrient uptake and utilization. Conventional thinking of the planktonic trophic processes is also challenged by the fact that colony formation could effectively alter the predator-prey interactions and interspecific competition. However, the factors that regulate the differences between solitary and colonial forms of P. Antarctica are not well-understood. The research objective of this proposal is therefore to address these over-arching questions:\u003cbr/\u003eo Do P. Antarctica solitary cells and colonies differ in growth, composition and\u003cbr/\u003ephotosynthetic rates?\u003cbr/\u003eo How do nutrients and grazers affect colony development and size distribution of P. \u003cbr/\u003eAntarctica?\u003cbr/\u003eo How do nutrients and grazers act synergistically to affect the long-term population\u003cbr/\u003edynamics of P. Antarctica? Experiments will be conducted in the McMurdo station with natural P. Antarctica assemblages and co-occurring grazers. Laboratory experiments will be conducted to study size-specific growth and photosynthetic rates of P. Antarctica, size-specific grazing mortality due to microzooplankton and mesozooplankton, the effects of macronutrients on the (nitrogen compounds) relative dominance of solitary cells and colonies, and the effects of micronutrient (Fe) and grazing related chemical signals on P. Antarctica colony development. Because this species is of critical importance in the Southern Ocean, and because this research will provide critical information on factors that regulate the role of P.Antarctica in food webs and biogeochemical cycles, a major gap in knowledge will be addressed. This project will train two marine science PhD students. The investigators will also collaborate with the School of Education and a marine science museum to communicate polar science to a broader audience.", "east": 166.66267, "geometry": "POINT(166.66267 -77.85067)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.85067, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Tang, Kam; Smith, Walker", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.85067, "title": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial forms of Phaeocystis antarctica", "uid": "p0000214", "west": 166.66267}, {"awards": "0225110 Garrott, Robert", "bounds_geometry": "POLYGON((163.1 -70.3,163.59 -70.3,164.08 -70.3,164.57 -70.3,165.06 -70.3,165.55 -70.3,166.04 -70.3,166.53 -70.3,167.02 -70.3,167.51 -70.3,168 -70.3,168 -70.98,168 -71.66,168 -72.34,168 -73.02,168 -73.7,168 -74.38,168 -75.06,168 -75.74,168 -76.42,168 -77.1,167.51 -77.1,167.02 -77.1,166.53 -77.1,166.04 -77.1,165.55 -77.1,165.06 -77.1,164.57 -77.1,164.08 -77.1,163.59 -77.1,163.1 -77.1,163.1 -76.42,163.1 -75.74,163.1 -75.06,163.1 -74.38,163.1 -73.7,163.1 -73.02,163.1 -72.34,163.1 -71.66,163.1 -70.98,163.1 -70.3))", "dataset_titles": "Weddell Seal data", "datasets": [{"dataset_uid": "000120", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Weddell Seal data", "url": "http://www.montana.edu/weddellseals/"}], "date_created": "Wed, 28 Jan 2009 00:00:00 GMT", "description": "The Erebus Bay Weddell seal population study in eastern McMurdo Sound, Antarctica was initiated in 1968 and represents one of the longest intensive field investigations of a long-lived mammal in existence. Over the thirty-four year period of this study a total of 15,636 animals have been tagged with 144,927 re-sighting records logged in the current database. As such, this study is an extremely valuable resource for understanding population dynamics of not only Weddell seals, but also other species of both terrestrial and marine mammals with similar life-history characteristics. With the retirement of the original investigator, Dr. Donald Siniff, this proposal represents an effort to transition the long-term studies to a new team of investigators. Dr. Robert Garrott and Dr. Jay Rotella propose building upon the foundation with two lines of investigation that combine use of the long-term database with new field initiatives. The continuity of the demographic data will be maintained by annually marking all pups born, replace lost or broken tags, and perform multiple mark-recapture censuses of the Erebus Bay seal colonies. The new data will be combined with the existing database and a progressively complex series of analyses will be performed using recently developed mark-recapture methods to decompose, evaluate, and integrate the demographic characteristics of the Erebus Bay Weddell seal population. These analyses will allow the testing of specific hypotheses about population regulation as well as temporal and spatial patterns of variation in vital rates among colonies within the population that have been posed by previous investigators, but have not been adequately evaluated due to data and analytical limitations. The primary new field initiative will involve an intensive study of mass dynamics of both pups and adult females as a surrogate measure for assessing annual variation in marine resources and their potential role in limiting and/or regulating the population. In conjunction with the collection of data on body mass dynamics the investigators will use satellite imagery to develop an extended time series of sea ice extent in McMurdo Sound. Regional extent of sea ice affects both regional primary productivity and availability of haul out areas for Weddell seals. Increased primary productivity may increase marine resources which would be expected to have a positive affect on Weddell seal foraging efficiency, leading to increased body mass. These data combined with the large proportion of known-aged seals in the current study population (\u003e60%) will allow the investigators to develop a powerful database to test specific hypotheses about ecological processes affecting Weddell seals. Knowledge of the mechanisms that limit and/or regulate Weddell seal populations and the specific bio-physical linkages between climate, oceans, ice, and Antarctic food webs can provide important contributions to understanding of pinniped population dynamics, as well as contribute more generally to theoretical understanding of population, community, and ecosystem patterns and processes. Such knowledge can be readily applied elsewhere to enhance the ability of natural resource managers to effectively maintain assemblages of other large-mammal species and the ecological processes that they facilitate. Continuation of this long-term study may also contribute to understanding the potential impacts of human activities such as global climate warming and the commercial exploitation of Antarctic marine resources. And finally, the study can contribute significantly to the development and testing of new research and analytical methodologies that will almost certainly have many other applications.", "east": 168.0, "geometry": "POINT(165.55 -73.7)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -70.3, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Garrott, Robert; Siniff, Donald; Rotella, Jay", "platforms": "Not provided", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": -77.1, "title": "Patterns and Processes: Dynamics of the Erebus Bay Weddell Seal Population", "uid": "p0000109", "west": 163.1}, {"awards": "0741428 Hutchins, David", "bounds_geometry": "POINT(-106 -73)", "dataset_titles": null, "datasets": null, "date_created": "Sun, 23 Nov 2008 00:00:00 GMT", "description": "Abstract\u003cbr/\u003e\u003cbr/\u003eThis Small Grants for Exploratory Research (SGER) proposal describes global change-related experimental research designed to take full advantage of a unique science opportunity on short notice, the leasing of the Oden to conduct ice-breaking operations in McMurdo Sound. \u003cbr/\u003e\u003cbr/\u003eOur emphasis will be on using this opportunistic research platform to ask two questions about present day and future controls on Antarctic margin phytoplankton communities. These are: 1. How will expected alterations in pCO2, pH, and Fe availability in the Southern Ocean, due to future anthropogenic climate change affect phytoplankton species assemblages, carbon and nutrient biogeochemistry, and remineralization processes? 2. What is the current role of organic co-factors (vitamins) in limiting or co-limiting (along with iron ) phytoplankton growth and production in the Antarctic margin? The research approach includes experimental incubations with variation in iron enrichment, carbon dioxide concentration, and temperature. A second suite of experiments will examine co-limitation effects between vitamin B12 and Fe and B12 uptake kinetics. Changes in phytoplankton community structure, and carbon and nutrient cycling will be determined, in collaboration with many of the participating U.S. and Swedish investigators. Together, these two main objectives should allow us to obtain novel insights into the current and future controls on Antarctic margin phytoplankton growth, productivity, and carbon and nutrient biogeochemistry. In particular, the experiments in the Amundsen Sea represent a one-of-a-kind opportunity to understand algal dynamics and potential future responses to climate change in this little-studied ecosystem, and compare these results to those from the better-known Ross Sea. An important result of this study will be to build strong international collaborations with the Swedish marine science community. Additional broader impacts include participatin of an Hispanic Ph.D. student in cruise work and post-cruise analyses, and integration of results into graduate courses at the USC Catalina Lab facility. Public outreach will include presentations on global change impacts on the ocean targeted at audiences ranging from legislators and policymakers to the general public.", "east": -106.0, "geometry": "POINT(-106 -73)", "instruments": null, "is_usap_dc": true, "keywords": "SHIPS", "locations": null, "north": -73.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Hutchins, David", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repositories": null, "science_programs": null, "south": -73.0, "title": "SGER: Science-of-Opportunity Aboard Icebreaker Oden - Phytoplankton Global Change Experiments and Vitamin/Iron Co-Limitation in the Amundsen and Ross Seas", "uid": "p0000224", "west": -106.0}, {"awards": "0124049 Berger, Glenn", "bounds_geometry": "POLYGON((161.4 -77.5,161.6 -77.5,161.8 -77.5,162 -77.5,162.20000000000002 -77.5,162.4 -77.5,162.6 -77.5,162.8 -77.5,163 -77.5,163.20000000000002 -77.5,163.4 -77.5,163.4 -77.52,163.4 -77.54,163.4 -77.56,163.4 -77.58,163.4 -77.6,163.4 -77.62,163.4 -77.64,163.4 -77.66,163.4 -77.68,163.4 -77.7,163.20000000000002 -77.7,163 -77.7,162.8 -77.7,162.6 -77.7,162.4 -77.7,162.20000000000002 -77.7,162 -77.7,161.8 -77.7,161.6 -77.7,161.4 -77.7,161.4 -77.68,161.4 -77.66,161.4 -77.64,161.4 -77.62,161.4 -77.6,161.4 -77.58,161.4 -77.56,161.4 -77.54,161.4 -77.52,161.4 -77.5))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 25 Aug 2008 00:00:00 GMT", "description": "0124049\u003cbr/\u003eBerger\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to add to the understanding of what drives glacial cycles. Most researchers agree that Milankovitch seasonal forcing paces the ice ages but how these insolation changes are leveraged into abrupt global climate change remains unknown. A current popular view is that the climate of Antarctica and the Southern Ocean leads that of the rest of the world by a couple thousand years at Termination I and by even greater margins during previous terminations. This project will integrate the geomorphological record of glacial history with a series of cores taken from the lake bottoms in the Dry Valleys of the McMurdo Sound region of Antarctica. Using a modified Livingstone corer, transects of long cores will be obtained from Lakes Fryxell, Bonney, Joyce, and Vanda. A multiparameter approach will be employed which is designed to extract the greatest possible amount of former water-level, glaciological, and paleoenvironmental data from Dry Valleys lakes. Estimates of hydrologic changes will come from different proxies, including grain size, stratigraphy, evaporite mineralogy, stable isotope and trace element chemistry, and diatom assemblage analysis. The chronology, necessary to integrate the cores with the geomorphological record, as well as for comparisons with Antarctic ice-core and glacial records, will come from Uranium-Thorium, Uranium-Helium, and Carbon-14 dating of carbonates, as well as luminescence sediment dating. Evaluation of the link between lake-level and climate will come from hydrological and energy-balance modelling. Combination of the more continuous lake-core sequences with the spatially extensive geomorphological record will result in an integrated Antarctic lake-level and paleoclimate dataset that extends back at least 30,000 years. This record will be compared to Dry Valleys glacier records and to the Antarctic ice cores to address questions of regional climate variability, and then to other Southern Hemisphere and Northern Hemisphere records to assess interhemispheric synchrony or asynchrony of climate change.", "east": 163.4, "geometry": "POINT(162.4 -77.6)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LASERS", "is_usap_dc": false, "keywords": "Stratigraphy; Climate Variability; Shoreline Deposits; Dry Valleys; Antarctic Lake-level; Luminescence Geochronology; Grain Size; Paleoclimate; Antarctica; LABORATORY; Lake Cores", "locations": "Dry Valleys; Antarctica", "north": -77.5, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Berger, Glenn; Hall, Brenda; Doran, Peter", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -77.7, "title": "Collaborative Research: Millennial Scale Fluctuations of Dry Valleys Lakes: Implications for Regional Climate Variability and the Interhemispheric (a)Synchrony of Climate Change", "uid": "p0000219", "west": 161.4}, {"awards": "0238281 Marsh, Adam", "bounds_geometry": "POLYGON((163 -77,163.4 -77,163.8 -77,164.2 -77,164.6 -77,165 -77,165.4 -77,165.8 -77,166.2 -77,166.6 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.6 -78,166.2 -78,165.8 -78,165.4 -78,165 -78,164.6 -78,164.2 -78,163.8 -78,163.4 -78,163 -78,163 -77.9,163 -77.8,163 -77.7,163 -77.6,163 -77.5,163 -77.4,163 -77.3,163 -77.2,163 -77.1,163 -77))", "dataset_titles": "Marine Invertebrates of McMurdo Sound", "datasets": [{"dataset_uid": "600034", "doi": "10.15784/600034", "keywords": "Antarctica; Biota; McMurdo Sound; Oceans; Photo/video; Photo/Video; Southern Ocean", "people": "Marsh, Adam G.", "repository": "USAP-DC", "science_program": null, "title": "Marine Invertebrates of McMurdo Sound", "url": "https://www.usap-dc.org/view/dataset/600034"}], "date_created": "Mon, 09 Jun 2008 00:00:00 GMT", "description": "Although the cold ocean ecosystems comprise seventy-two percent of the biosphere on Earth by volume, they remain sparsely inhabited and relatively unexploited, particularly in terms of metazoan phyla. Consequently, the few animals that can exist at this border of intracellular freezing represent ideal systems for exploring genomic-level processes of environmental adaptations. Understanding life at a margin of the biosphere is likely to convey significant insights into the essential genomic processes necessary for survival under intense selection pressures. This study of adaptive mechanisms in genomic networks focuses on an experimental system that faces a formidable challenge for viability at low water temperatures: embryonic development at sea water temperatures of -1.8 o C in two Antarctic echinoderms, the sea star Odontaster validus and the sea urchin Sterechinus neumayeri. The project strategy will quantify temperature effects on gene expression and protein turnover networks during early development using a Bayesian network analysis to identify clusters of genes and proteins whose expression levels are associated in fixed, synergistic interactions. Ultimately, there is a simple question to be addressed: Is it more or less difficult (complex) for an embryo to develop in an extreme environment? To answer this question, the research plan will decipher network topologies and subnet structuring to uncover gene connectivity patterns associated with embryo development in this polar environment. This is the new area of Environmental Genomics that the PI will explore by expanding his research experience into computational network analyses. Overall, there is a significant need for integrative biologists in the future development of environmental sciences, particularly for the application of genomic-scale technologies to answer ecological-scale questions. The educational goals of this CAREER proposal are focused at two levels in terms of interesting young students in the developing field of environmental genomics: 1) increasing the racial diversity of the scientists attracted to environmental research, and 2) increasing the awareness of career opportunities within environmental research.\u003cbr/\u003eThese educational objectives are incorporated into the research plan to engage students with the excitement of working in an extreme environment such as Antarctica and to interest them in the insights that genome-level research can reveal about how organisms are adapted to specific habitats. Working in a remote, extreme environment such as Antarctica is always a challenge. However, the adventurous nature of the work can be utilized to establish educational and outreach components of high interest to both undergraduate students and the public in general. The proposed plan will bring the experience of working in Antarctica to a larger audience through several means. These include the following: the project theme of environmental genomics will be incorporated into a new Bioinformatics curriculum currently being developed at the University of Delaware; an intern program will be implemented to involved minority undergraduate students in summer research in the United States and then to bring the students to Antarctica to participate in the research; and a K-12 education program will bring the excitement of working in Antarctica to the classrooms of thousands of children (U.S. and international) through a program produced with the Marine Science Public Education Office at the University of Delaware.", "east": 167.0, "geometry": "POINT(165 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS", "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Marsh, Adam G.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "CAREER: Genomic Networks for Cold-Adaptation in Embryos of Polar Marine Invertebrates", "uid": "p0000240", "west": 163.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
The Results Map and the Results Table
The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
As the map is panned or zoomed, the highlighted rows in the table will update.
If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page.
The bounds for the project(s)/dataset(s) selected will be displayed in red.
The selected result(s) will be highlighted in red and brought to the top of the table.
The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds
and highlight the centroid on the Results Map.
Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other
search criteria already selected.
After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
Clicking Clear in the map will clear any drawn polygon.
Clicking Search in the map, or Search on the form will have the same effect.
The returned results will be any projects/datasets with bounds that intersect the polygon.
Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Non-technical description<br/>Marine invertebrates often have mutually beneficial partnerships with microorganisms that biosynthesize compounds with nutritive or defensive functions and are integral for survival. Additionally, these “natural products” often have bioactive properties with human health applications fighting infection or different types of cancer. This project focuses on the ascidian (“sea squirt”) Synoicum adareanum, found in the Anvers Island region of the Antarctic Peninsula, and was recently discovered to contain high levels of a natural product, palmerolide A (palA) in its tissues. The microorganism that produces palA is a new bacterial species, Candidatus Synoicihabitans palmerolidicus, found in a persistent partnership with the sea squirt. There is still much to be learned about the fundamental properties of this sea squirt-microbe-palA system including the geographical range of the animal-microbe partnership, its chemical and microbiome complexity and diversity, and the biological effect of palA in the sea squirt. To address these questions, this multidisciplinary research team will investigate the sea squirt-microbiome partnership in the Antarctic Peninsula and McMurdo Sound regions of the Ross Sea using a state-of-the-art strategy that will advance our understanding of the structural and functional features of the sea squirt and microbiome in detail, and reveal the roles that the palA natural product plays in the host ecology in its native Antarctic seafloor habitat. The project will broaden diversity and provide new opportunities for early career students and postdoctoral researchers to participate in field and laboratory-based research that builds an integrative understanding of Antarctic marine biology, ecology, physiology and chemistry. In addition, advancing the understanding of palA and its biological properties may be of future benefit to biomedicine and human health.<br/><br/>Technical description<br/>Marine invertebrates and their associated microbiomes can produce bioactive natural products; in fact, >600 such compounds have been identified in species from polar waters. Although such compounds are typically hypothesized to serve ecological roles in host survival through deterring predation, fouling, and microbial infection, in most cases neither the producing organism nor the genome-encoded biosynthetic enzymes are known. This project will study an emerging biosynthetic system from a polar ascidian-microbe association that produces palA, a natural product with bioactivity against the proton-pumping enzyme V-type H+-ATPase (VHA). The objectives include: (i) Determining the microbiome composition, metabolome complexity, palA levels, and mitochondrial DNA sequence of S. adareanum morphotypes at sites in the Antarctic Peninsula and in McMurdo Sound, (ii) Characterizing the Synoicum microbiome using a multi-omics strategy, and (iii) Assessing the potential for co-occurrence of Ca. S. palmerolidicus-palA-VHA in host tissues, and (iv) exploring the role of palA in modulating VHA activity in vivo and its effects on ascidian-microbe ecophysiology. Through a coupled study of palA-producing and non-producing S. adareanum specimens, structural and functional features of the ascidian microbiome metagenome will be characterized to better understand the relationship between predicted secondary metabolite pathways and whether they are expressed in situ using a paired metatranscriptome sequencing and secondary metabolite detection strategy. Combined with tissue co-localization results, functional ecophysiological assays aim to determine the roles that the natural product plays in the host ecology in its native Antarctic seafloor habitat. The contributions of the project will inform this intimate host-microbial association in which the ascidian host bioaccumulates VHA-inhibiting palA, yet its geo-spatial distribution, cellular localization, ecological and physiological role(s) are not known. In addition to elucidating the ecophysiological roles of palA in their native ascidian-microbe association, the results will contribute to the success of translational science, which aligns with NSF’s interests in promoting basic research that leads to advances in Biotechnology and Bioeconomy. The project will also broaden diversity and provide new opportunities for early career students and postdoctoral researchers to participate in field and laboratory-based research that builds an integrative understanding of Antarctic marine biology, ecology, physiology and chemistry.<br/><br/>This award reflects NSF''s statutory mission and has been deemed worthy of support through evaluation using the Foundation''s intellectual merit and broader impacts review criteria.
Antarctic marine invertebrates exhibit extraordinarily slow rates of development. This phenomenon has arisen repeatedly in independent Antarctic lineages, including sea urchins, sea stars, brachiopods, and ribbon worms. Despite these observations, little is known about the molecular mechanisms responsible for slow developmental rates in Antarctic marine invertebrates. This proposal is developing the Antarctic sea urchin, Sterechinus neumayeri, as a model invertebrate organism to evaluate cold water organismal adaptation and development. Urchins collected from McMurdo Sound are being studied in carefully controlled laboratory experiments. <br/><br/>This work is specifically identifying the gene regulatory network components responsible for regulating developmental timing in S. neumayeri and, more generally, which gene regulatory network elements evolved during adaption to the extreme environment of the Southern Ocean. The lab-based work is focusing in two specific areas: 1) Identify unique gene regulatory network components of S. neumayeri that evolved during its developmental adaptation to the Southern Ocean, and 2) Analyze spatial expression and functions of key genes in the early S. neumayeri gene regulatory networks controlling specification and patterning of territories along the early anterior-posterior axis. A comparative analysis of better studied urchins from warmer regions will be used to inform this work. This effort is relevant to several fields of biology ranging from polar biology, developmental biology, evolution, and genomics while explicitly tying genotype to phenotype. Broader impacts: The proposal included three early career investigators who are new to Antarctic research programs working alongside a well-established Antarctic investigator. The team has developed an ambitious program for science and technology training in computer coding and biology targeted for underrepresented students. They also have developed web-based bioinformatics training blog, ?2-bitbio?, which aims to decrease the ?barrier to entry? into the field of bioinformatics.
MacAyeal, Douglas; Banwell, Alison; Campbell, Seth; Schild, Kristin; Cassoto, Ryan
No dataset link provided
Non-Technical Abstract:<br/>This project explores the areas or crash-zones where floating ice shelves in Antarctica compressively flow against obstructions such as islands and plugs of stagnant ice frozen to the sea bed. The significance of these crash-zones is that they are responsible for generating the resistive forces that allow ice shelves to slow down the flow of ice farther inland into the ocean. Ice conditions within these boundaries thus determine how Antarctica’s ice sheets contribute to sea-level rise. The research will feature on-the-ice glaciological and geophysical field measurements near pressure ridges near Scott Base and the transition to the ice road where large wave-like pressure ridges form on the ice-shelf surface. This field area is along the coast of Ross Island adjacent to major logistical stations of the US and New Zealand Antarctic programs. Thus the research will help station managers better preserve one of the key roadways that connects the stations to the major runway used to fly to virtually all other parts of Antarctica. The research will also interact with educational programs such as featured in the long-standing Juneau Icefield Research Project as well as potential involvement of an artist from the US Antarctic Program’s Polar STEAM in the second field season.<br/><br/>Technical Abstract:<br/>This project explores the dynamics of boundaries where ice shelves compressively flow against obstructions such as islands and areas of grounded ice. The significance of these boundaries is that they are responsible for generating the resistive forces that allow ice shelves to impede or slow down the flow of grounded inland ice into the ocean. Ice conditions within these boundaries thus determine how Antarctica’s ice sheets contribute to sea-level rise. The research will feature glaciological and geophysical field surveys in a compressive boundary area near pressure ridges adjacent to Scott Base and the transition to the ice road along the coast of Ross Island, an area affecting access to major logistical hubs of the US and New Zealand Antarctic programs. Field data will be combined with remote sensing, numerical modeling and theory development to answer key questions about the dynamics of compressive boundaries such as: is there a limit to compressive stress due to ice fracture and the bending of the ice shelf into sinusoidal pressure ridges? Over what time scales does this compressive stress build, fluctuate and decay, and how is it related to the processes that form rumples? Are there ways in which the ridges actually protect the compressive boundary from damage such as by setting up a means to scatter ocean swell impinging from the open ocean? How should compressive ice-shelf boundaries be represented in large scale ice-sheet/shelf models for the prediction of future sea-level rise? A variety of broader impact work will be done both specifically targeting the research field area and more broadly addressing scientific and societal concerns. The field area contains a critical logistics roadway that connects McMurdo Station, Scott Base and a runway essential for continent-wide air logistics. The project will inform how to stabilize the roadway against excessive damage from summer ablation and other factors. Other broader impacts include: (a) Open-Science evaluation of climate systems engineering strategies for glacial geoengineering mitigation of sea-level rise, (b) cooperation with the Juneau Icefield Research Program (JIRP) education component, (c) support and facilitation of an online FieldSafe workshop and associated panel discussion to support early-career Antarctic field teams to mitigate environmental and interpersonal risks in remote field sites, and (d) potential involvement of an artist from the US Antarctic Program’s Polar STEAM in the second field season.<br/><br/>This award reflects NSF''s statutory mission and has been deemed worthy of support through evaluation using the Foundation''s intellectual merit and broader impacts review criteria.
The ozone hole that develops over the Antarctic continent every spring is one of the features attributed to human activity, in particular production of the CFC (chlorofluorocarbons in refrigerants) released to the atmosphere. In spite of the CFC ban from the Montreal Protocol established in the year 1987, the recovery has been slower than predicted. Bromocarbons, known to produce the stratospheric ozone depletion, have recently been estimated to contribute to the pool of bromines in the lower atmosphere. What is the origin of the bromocarbons in Antarctic sea ice? Is this an additional source of chemicals creating the ozone hole? This project will test if bromocarbons in sea ice are produced and degraded by microalgae and bacteria found in sea ice, in snow and the interface between the two. The project will collect a suite of chemical and biological measurements of sea ice and snow to determine bromocarbon concentrations, microbial activity associated with them, and intra-cellular genes and proteins involved in bromocarbon metabolism. This project benefits NSF’s goals of expanding fundamental knowledge of Antarctic systems, biota, and processes, and improving the understanding of interactions among the Antarctic systems, cryosphere and organisms. The work will be carried out at McMurdo Station in late austral spring, including sampling of snow and ice that will be concentrated in the laboratory, and 24-hour experiments to measure algal and bacterial activity. Genes controlling synthesis of enzymes involved in bromocarbon metabolism are of interest in biotechnology and bioremediation, including products that repair damaged skin from UltraViolet Radiation. The project will train undergraduate students on chemical and biological techniques. The Principal Investigators will be involved in the Pacific Science Center in Seattle with ~10,000 visitors per weekend where they will develop a project-specific exhibit. The microbial processes in snow and ice associated with bromocarbon synthesis and degradation have not been studied in Antarctica during winter and spring. This study will inform about microbial activity in relation to the release of bromocarbons compounds from the snow and ice surfaces, compounds known to degrade stratospheric ozone. The estimation of chemical bromocarbons will be combined with metagenomics and metaproteomics approaches for understanding the potential role of microbes in snow and sea ice. The environmental, chemical and biological data will be synthesized with multivariate analysis and significant differences between sites and experimental treatments with ANOVA. A collaborator from the University of Goteborg in Sweden will collaborate on bromocarbon analyses. The study will also address “saline snow” a new environment not previously studied for microbial life. In addition, this is the first study of meta-proteomics in snow and ice. The Principal Investigators expect their results will help inform ozone hole recovery in the 21st century.
This RAPID project aims to study a sporadic occurrence of sea star wasting syndrome (SSWS) in McMurdo sound by leveraging diving resources of a CAREER grant to Thurber. The disease was first noted in 2019, with a second occurrence documented by the group at their study site near a methane seep at Cinder Cone in McMurdo Sound in 2022. Sea stars are key species in many benthic ecosystems, including the Antarctic, and this disease has caused significant losses in populations worldwide. In the Southern Ocean, the sea star Odontaster validus preys upon Acodontaster conspicuous, a predator of Antarctic giant sponges. In 2022, about 30% of the O. validus at the methane seep were affected. The conditions associated with the disease in other areas are environmental hypoxia, warm temperatures, and organic enrichment. This recent outbreak provides the opportunity to study how the disease may progress in the Southern Ocean, and test the hypothesis that oxygen dynamics play a key role in the development of SSWS. The investigators aim to measure oxygen concentrations on and off the Cinder Cone seep and at the surface of affected and unaffected sea stars and identify whether the disease causes and microbiome characteristics of SSWS are similar between Antarctic and non-Antarctic outbreaks. These findings can be used to understand the potential effects of future climate conditions on disease outbreaks of Southern Ocean marine organisms critical to ecosystem function and health. In addition to disease dynamics, the study will also help to understand how methane seepage impacts benthic oxygen dynamics. Other broader impacts include communicating the research through a student led YouTube documentary and facilitating the transition of an early career URM researcher from NSF postdoc to a faculty position (lead on viral component of the project).
As plate tectonics pushed Antarctica into a polar position, by ~34 million years ago, the continent and its surrounding Southern Ocean (SO) became geographically and thermally isolated by the Antarctic Circumpolar Current. Terrestrial and marine glaciation followed, resulting in extinctions as well as the survival and radiation of unique flora and fauna. The notothenioid fish survived and arose from a common ancestral stock into tax with 120 species that dominates today's SO fish fauna. The Notothenioids evolved adaptive traits including novel antifreeze proteins for survival in extreme cold, but also suffered seemingly adverse trait loss including red blood cells in the icefish family, and the ability to mount cellular responses to mitigate heat stress ? otherwise ubiquitous across all life. This project aims to understand how the notothenoid genomes have changed and contributed to their evolution in the cold. The project will sequence, analyze and compare the genomes of two strategic pairs of notothenioid fishes representing both red-blooded and white-blooded species. Each pair will consist of one Antarctic species and one that has readapted to the temperate waters of S. America or New Zealand. The project will also compare the Antarctic species genomes to a genome of the closet non-Antarctic relative representing the temperate notothenioid ancestor. The work aims to uncover the mechanisms that enabled the adaptive evolution of this ecologically vital group of fish in the freezing Southern Ocean, and shed light on their adaptability to a warming world. The finished genomes will be made available to promote and advance Antarctic research and the project will host a symposium of Polar researchers to discuss the cutting edge developments regarding of genomic adaptations in the polar region.<br/>Despite subzero, icy conditions that are perilous to teleost fish, the fish fauna of the isolated Southern Ocean (SO) surrounding Antarctica is remarkably bountiful. A single teleost group - the notothenioid fishes - dominate the fauna, comprising over 120 species that arose from a common ancestor. When Antarctica became isolated and SO temperatures began to plunge in early Oligocene, the prior temperate fishes became extinct. The ancestor of Antarctic notothenioids overcame forbidding polar conditions and, absent niche competition, it diversified and filled the SO. How did notothenioids adapt to freezing environmental selection pressures and achieve such extraordinary success? And having specialized to life in chronic cold for 30 myr, can they evolve in pace with today's warming climate to stay viable? Past studies of Antarctic notothenioid evolutionary adaptation have discovered various remarkable traits including the key, life-saving antifreeze proteins. But life specialized to cold also led to paradoxical trait changes such as the loss of the otherwise universal heat shock response, and of the O2-transporting hemoglobin and red blood cells in the icefish family. A few species interestingly regained abilities to live in temperate waters following the escape of their ancestor out of the freezing SO. <br/>This proposed project is the first major effort to advance the field from single trait studies to understanding the full spectrum of genomic and genetic responses to climatic and environmental change during notothenioid evolution, and to evaluate their adaptability to continuing climate change. To this end, the project will sequence the genomes of four key species that embody genomic responses to different thermal selection regimes during notothenioids' evolutionary history, and by comparative analyses of genomic structure, architecture and content, deduce the responding changes. Specifically, the project will (i) obtain whole genome assemblies of the red-blooded T. borchgrevinki and the S. American icefish C. esox; (ii) using the finished genomes from (i) as template, obtain assemblies of the New Zealand notothenioid N. angustata, and the white-blooded icefish C. gunnari, representing a long (11 myr) and recent (1 myr) secondarily temperate evolutionary history respectively. Genes that are under selection in the temperate environment but not in the Antarctic environment can be inferred to be directly necessary for that environment and the reverse is also true for genes under selection in the Antarctic but not in the temperate environment. Further, genes important for survival in temperate waters will show parallel selection between N. angustata and C. esox despite the fact that the two fish left the Antarctic at far separated time points. Finally, gene families that expanded due to strong selection within the cold Antarctic should show a degradation of duplicates in the temperate environment. The project will test these hypotheses using a number of techniques to compare the content and form of genes, the structure of the chromosomes containing those genes, and through the identification of key characters, such as selfish genetic elements, introns, and structural variants.
Within any wild animal population there is substantial heterogeneity in reproductive rates and animal fitness. Not all individuals contribute to the population equally; some are able to produce more offspring than others and thus are considered to be of higher quality. This study aims to distinguish which physiological mechanisms (energy dynamics, aerobic capacity, and fertility) and underlying genetic factors make some Weddell seal females particularly successful at producing pups year after year, while others produce far fewer pups than the population average. In this project, an Organismal Energetics approach will identify key differences between high- and low-quality females in how they balance current and future reproductive success by tracking lactation costs, midsummer foraging success and pregnancy rates, and overwinter foraging patterns and live births the next year. Repeated sampling of individuals' physiological status (body composition, endocrinology, ovulation and pregnancy timing), will be paired with a whole-genome sequencing study. The second component of this study uses a Genome to Phenome approach to better understand how genetic differences between high- and low-quality females directly correspond to functional differences in transcription, translation, and ultimately phenotype. This component will contribute to the functional analysis and annotation of the Weddell seal genome. In combination, this project will make strides towards distinguishing the roles that plastic (physiological, behavioral) and fixed (genetic) factors play in complex, multifaceted traits such as fitness in a long-lived wild mammal. The project partners with established programs to implement extensive educational and outreach activities that will ensure wide dissemination to educators, students, and the public. It will contribute to a marine mammal exhibit at the Pink Palace Museum, and a PolarTREC science educator will participate in field work in Antarctica.
Reliable predictions are needed for how populations of wild species, especially those at high latitudes, will respond to future environmental conditions. This study will use a strategic extension of the long-term demographic research program that has been conducted annually on the Erebus Bay population of Weddell seals since 1978 to help meet that need. Recent analyses of the study population indicate strong annual variation in reproduction, abundance, and population composition. The number of new immigrant mothers that join the population each year has recently grown such that most new mothers are now immigrants. Despite the growing number of immigrants, the demographic importance and geographic origins of immigrants are unknown. The research will (1) add new information on drivers of annual variation in immigrant numbers, (2) compare and combine information on the vital rates and demographic role of immigrant females and their offspring with that of locally born females, and (3) add genomic analyses that will quantify levels of genetic variation in and gene flow among the study population and other populations in the Ross Sea. The project will continue the long-term monitoring of the population at Erebus Bay and characterize population dynamics and the role of immigration using a combination of mark-recapture analyses, stochastic population modeling, and genomic analyses. The study will continue to (1) provide detailed data on individual seals to other science teams, (2) educate and mentor individuals in the next generation of ecologists, (3) introduce two early-career, female scientists to Antarctic research, and (4) add genomics approaches to the long-term population study of Erebus Bay Weddell seals. The Informal Science Education program will expand on the project’s recent and successful efforts by producing and delivering short-form videos through an interactive web portal and diverse social-media technologies. The Informal Science Education program will continue to update and add new topics to a multimedia-enhanced electronic book about the project’s research on Weddell seals that will be freely available to the public. The outreach efforts will increase the length of the book from ~140 to ~225 pages and add new topics such as learning about seals using genomics and how seals respond to a changing world.
Collaborative Research: Biogeography, population genetics, and ecology of two common species of fleshy red algae in McMurdo Sound
Climate change is predicted to increase the period of fast ice-free conditions in polar habitats. As early colonizers, macroalgae may take advantage of increased light availability to outcompete invertebrates (e.g., sponges, bryozoans, tunicates, and polychaetes) for space in shallow subtidal hardbottom habitats. The project will compare patterns in vegetative and reproductive characteristics of two macroalgal species Phyllophora antarctica and Iridaea cordata collected from the 1980s to present-day. Populations will be collected from coastal and offshore sites in shallow (3–4 m) and greater (approx.12 m) depths at Cape Royds, Cape Evans, Little Razorback Islands, Turtle Rock, Arrival Heights, Granite Harbor, and Dellbridge Seamount. Genetic diversity of the two algal species will be measured and is expected to be relatively low due to limited dispersal in McMurdo Sound. No previous research has investigated the potential effects of climate, in particular reductions in annual sea ice cover and resulting increase in light intensity and duration, on macroalgal communities in McMurdo Sound. For the first time, photogrammetry will be used to collect community-level data on the newly discovered offshore Dellbridge Seamount and 3D visualization from the video footage will be shared with web-based interactive applications to engage and educate the public in subtidal polar ecology and the importance of Antarctic science to their lives.
Part 1: Non-technical description:
With support from the Office of Polar Programs, this project will evaluate how an important part of the food web in the coastal ocean of Antarctica will respond to climate change. The focal study organism in the plankton is a shelled mollusk, the Antarctic pteropod, Limacina helicina antarctica, a Southern Ocean organism that this known to respond to climate driven changes in ocean acidification and ocean warming. Ocean acidification, the lowering of ocean pH via the absorption of atmospheric carbon dioxide in the surface of the ocean, is a change in the ocean that is expected to cross deleterious thresholds of pH within decades. This study will improve understanding of how pteropods will respond, which will provide insight into predicting the resilience of the Antarctic marine ecosystem during future changes, one of the planets last marine wildernesses. The project will use tools of molecular biology to examine specifically how gene expression is modulated in the pteropods, and further, how the changes and regulation of genes act to resist the stress of low pH and high temperature. In addition, this project supports the training of Ph.D. graduate students and advances the goal of inclusive excellence in STEM and in marine sciences, in particular. The students involved in this project are from groups traditionally under-represented in marine science including first-generation college students. Overall, the project contributes to the development of the U.S. work force and contributes to diversity and inclusive excellence in the geosciences.
Part 2: Technical description:
The overarching goal of this project is to investigate the molecular response of the Antarctic thecosome pteropod, Limacina helicina antarctica to ocean acidification (OA) and ocean warming. The project will investigate changes in the epigenome of juvenile L. h. antarctica, by assessing the dynamics of DNA methylation in response to three scenarios of environmental conditions that were simulated in laboratory mesocosm CO2 experiments: (1) present-day pCO2 conditions for summer and winter, (2) future ocean acidification expected within 10-15 years, and (3) a multiple stressor experiment to investigate synergistic interaction of OA and high temperature stress. Recent lab-based mesocosm experiment research showed significant changes in the dynamics of global DNA methylation in the pteropod genome, along with variation in gene expression in response to abiotic changes. Thus, it is clear that juvenile L. h. antarctica are capable of mounting a substantial epigenetic response to ocean acidification. However, it is not known how DNA methylation, as an epigenetic process, is modulating changes in the transcriptome. In order to address this gap in the epigenetic knowledge regarding pteropods, the project will use next-generation sequencing approaches (e.g., RNA sequencing and reduced representation bisulfite sequencing) to integrate changes in methylation status with changes in gene expression in juvenile pteropods. Overall, this investigation is an important step in exploring environmental transcriptomics and phenotypic plasticity of an ecologically important member of Southern Ocean macrozoooplankton in response to anthropogenic climate change.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This award supports a project to investigate the sensitivity of the Antarctic ice sheet (AIS) to global climate change over the last two Glacial/Interglacial cycles. The intellectual merit of the project is that despite its importance to Earth's climate system, we currently lack a full understanding of AIS sensitivity to global climate change. This project will reconstruct and precisely date the history of marine-based ice in the Ross Sea sector over the last two glacial/interglacial cycles, which will enable a better understanding of the potential driving mechanisms (i.e., sea-level rise, ice dynamics, ocean temperature variations) for ice fluctuations. This will also help to place present ice?]sheet behavior in a long-term context. During the last glacial maximum (LGM), the AIS is known to have filled the Ross Embayment and although much has been done both in the marine and terrestrial settings to constrain its extent, the chronology of the ice sheet, particularly the timing and duration of the maximum and the pattern of initial recession, remains uncertain. In addition, virtually nothing is known of the penultimate glaciation, other than it is presumed to have been generally similar to the LGM. These shortcomings greatly limit our ability to understand AIS evolution and the driving mechanisms behind ice sheet fluctuations. This project will develop a detailed record of ice extent and chronology in the western Ross Embayment for not only the LGM, but also for the penultimate glaciation (Stage 6), from well-dated glacial geologic data in the Royal Society Range. Chronology will come primarily from high-precision Accelerator Mass Spectrometry (AMS) Carbon-14 (14C) and multi-collector Inductively Coupled Plasma (ICP)-Mass Spectrometry (MS) 234Uranium/230Thorium dating of lake algae and carbonates known to be widespread in the proposed field area.
The Antarctic Ice Sheet is the greatest potential contributor to sea-level change. However, the future response of the ice sheet to warming climate is recognized as one of the greatest uncertainties in sea-level projections. An understanding of past ice fluctuations can afford insight into ice-sheet response to climate change and thus is critical for improving sea-level predictions. In this project, we will reconstruct the behavior of the Antarctic Ice Sheet in the western Ross Sea region during the great global warming that ended the last ice age. Fluctuations in ice volume during this time period will allow us to characterize the factors that cause the ice sheet to advance and retreat and will enable us to distinguish between models that suggest repeated episodes of ice-sheet collapse vs those that indicate ice-sheet growth during warming climate. An understanding of the cause(s) of changes in ice volume during the warming that ended the last ice age has important implications for the future of the Antarctic Ice Sheet.
ANDRILL is a scientific drilling program to investigate Antarctica's role in global climate change over the last sixty million years. The approach integrates geophysical surveys, new drilling technology, multidisciplinary core analysis, and ice sheet modeling to address four scientific themes: (1) the history of Antarctica's climate and ice sheets; (2) the evolution of polar biota and ecosystems; (3) the timing and nature of major tectonic and volcanic episodes; and (4) the role of Antarctica in the Earth's ocean-climate system. <br/><br/>This award initiates what may become a long-term program with drilling of two previously inaccessible sediment records beneath the McMurdo Ice Shelf and in South McMurdo Sound. These stratigraphic records cover critical time periods in the development of Antarctica's major ice sheets. The McMurdo Ice Shelf site focuses on the Ross Ice Shelf, whose size is a sensitive indicator of global climate change. It has recently undergone major calving events, and there is evidence of a thousand-kilometer contraction since the last glacial maximum. As a generator of cold bottom water, the shelf may also play a key role in ocean circulation. The core obtained from this site will also offer insight into sub-ice shelf sedimentary, biologic, and oceanographic processes; the history of Ross Island volcanism; and the flexural response of the lithosphere to volcanic loading, which is important for geophysical and tectonic studies of the region.<br/><br/>The South McMurdo Sound site is located adjacent to the Dry Valleys, and focuses on the major ice sheet overlying East Antarctica. A debate persists regarding the stability of this ice sheet. Evidence from the Dry Valleys supports contradictory conclusions; a stable ice sheet for at least the last fifteen million years or an active ice sheet that cycled through expansions and contractions as recently as a few millions of years ago. Constraining this history is critical to deep-time models of global climate change. The sediment cores will be used to construct an overall glacial and interglacial history for the region; including documentation of sea-ice coverage, sea level, terrestrial vegetation, and melt-water discharge events. The core will also provide a general chronostratigraphic framework for regional seismic studies and help unravel the area's complex tectonic history.<br/><br/>The broader impacts of this project include formal and informal education, new research infrastructure, various forms of collaboration, and improving society's understanding of global climate change. Education is supported at the postdoctoral, graduate, undergraduate, and K-12 levels. Teachers and curriculum specialists are integrated into the research program, and a range of video resources will be produced, including a science documentary for television release. New research infrastructure includes equipment for core analysis and ice sheet modeling, as well as development of a unique drilling system to penetrate ice shelves. Drill development and the overall project are co-supported by international collaboration with scientists and the National Antarctic programs of New Zealand, Germany, and Italy. The program also forges new collaborations between research and primarily undergraduate institutions within the United States. <br/><br/>As key factors in sea-level rise and oceanic and atmospheric circulation, Antarctica's ice sheets are important to society's understanding of global climate change. ANDRILL offers new data on marine and terrestrial temperatures, and changes our understanding of extreme climate events like the formation of polar ice caps. Such data are critical to developing accurate models of the Earth's climatic future.
The Weddell seal is a champion diver with high natural tolerance for low blood oxygen concentration (hypoxemia) and inadequate blood supply (ischemia). The processes unique to this species protects their tissues from inflammation and oxidative stress observed in other mammalian tissues exposed to such physiological conditions. This project aims to understand the signatures of the processes that protect seals from inflammation and oxidant stress, using molecular, cellular and metabolic tools. Repetitive short dives before long ones are hypothesized to precondition seal tissues and activate the protective processes. The new aspect of this work is the study of endothelial cells, which sense changes in oxygen and blood flow, providing a link between breath-holding and cellular function. The approach is one of laboratory experiments combined with 2-years of field work in an ice camp off McMurdo Station in Antarctica. The study is structured by three main objectives: 1) laboratory experiments with arterial endothelial cells exposed to changes in oxygen and flow to identify molecular pathways responsible for tolerance of hypoxia and ischemia using several physiological, biochemical and genomic tools including CRSPR/Cas9 knockout and knockdown approaches. 2) Metabolomic analyses of blood metabolites produced by seals during long dives. And 3) Metabolomic and genomic determinations of seal physiology during short dives hypothesized to pre-condition tolerance responses. In the field, blood samples will be taken after seals dive in an isolated ice hole and its diving performance recorded. It is expected that the blood will contain metabolites that can be related to molecular pathways identified in lab experiments.
Due to persistent cold temperatures, geographical isolation, and resulting evolutionary distinctness of Southern Ocean fauna, the study of Antarctic reducing habitats has the potential to fundamentally alter our understanding of the biologic processes that inhibit greenhouse gas emissions from our oceans. Marine methane, a greenhouse gas 25x as potent as carbon dioxide for warming our atmosphere, is currently a minor component of atmospheric forcing due to the microbial oxidation of methane within the oceans. Based on studies of persistent deep-sea seeps at mid- and northern latitudes we have learned that bacteria and archaea create a ‘sediment filter’ that oxidizes methane prior to its release. As increasing global temperatures have and will continue to alter the rate and variance of methane release, the ability of the microbial filter to respond to fluctuations in methane cycles is a critical yet unexplored avenue of research. Antarctica contains vast reservoirs of methane, equivalent to all of the permafrost in the Arctic, and yet we know almost nothing about the fauna that may mitigate its release, as until recently, we had not discovered an active methane seep.
In 2012, a methane seep was discovered in the Ross Sea, Antarctica that formed in 2011 providing the first opportunity to study an active Antarctic methane-fueled habitat and simultaneously the impact of microbial succession on the oxidation of methane, a critical ecosystem service. Previous work has shown that after 5 years of seepage, the community was at an early stage of succession and unable to mitigate the release of methane from the seafloor. In addition, additional areas of seepage had begun nearby. This research aims to quantify the community trajectory of these seeps in relation to their role in the Antarctic Ecosystem, from greenhouse gas mitigation through supporting the food web. Through the application of genomic and transcriptomic approaches, taxa involved in methane cycling and genes activated by the addition of methane will be identified and contrasted with those from other geographical locations. These comparisons will elucidate how taxa have evolved and adapted to the polar environment.
This research uses a ‘genome to ecosystem’ approach to advance our understanding of organismal and systems ecology in Antarctica. By quantifying the trajectory of community succession following the onset of methane emission, the research will decipher temporal shifts in biodiversity/ecosystem function relationships. Phylogenomic approaches focusing on taxa involved in methane cycling will advance the burgeoning field of microbial biogeography on a continent where earth’s history may have had a profound yet unquantified impact on microbial evolution. Further, the research will empirically quantify the role of chemosynthesis as a form of export production from seeps and in non-seep habitats in the nearshore Ross Sea benthos, informing our understanding of Antarctic carbon cycling.
This project fits within the second of three major themes identified by the National Academy of Science report “A Strategic Vision for NSF Investments in Antarctic and Southern Ocean Research”. How do Antarctic biota evolve and adapt to the changing environment? Decoding the genomic and transcriptomic bases of biological adaptation and response across Antarctic organisms and ecosystems. Central in this theme is the physiological capacity of animals to cope with changes in environmental conditions over their lifetime, which this research firmly addresses. In the Southern Ocean surrounding Antarctica there is an extraordinary diversity of marine life. Much of our understanding of the biology of these animals comes from studies of the adaptations of these animals to sub-zero ocean conditions. Antarctic marine organisms have evolved to survive in stable, cold ocean conditions and possess a limited capacity to respond to environmental change. Research to date on Antarctic fishes has focused on adult life stages with much less research on early life stages that likely prioritize growth and development and not physiological mechanisms of stress tolerance. This project addresses the mechanisms that early life stages (embryos, larvae and juveniles) of Antarctic fishes use to respond to changes in ocean conditions. Specifically, the project will examine energetic trade-offs between key developmental processes in the context of environmental change. While the project focuses on Antarctic species, the research is highly translatable to stress tolerance mechanisms of fishes along the coast of North America, many of which are also experiencing changes in multiple environmental factors. Research in the Antarctic allows scientists to identify unifying themes or generalities in physiology that extend beyond the waters of the Southern Ocean and therefore have broad implications for understanding what is limiting the performance of fishes globally. BROADER IMPACTS –To build environmental stewardship and awareness, we must increase science literacy in the broader community. This project does this through three main objectives. First is to increase the diversity of students involved in environmental science research. Student diversity, in turn, gives the scientific community a broader perspective for addressing critical challenges in environmental biology. This project provides resources to support three PhD students, one postdoctoral scholar and two undergraduate students and promotes the diversity of young scientists and the advancement of groups traditionally underrepresented in environmental biology. Todgham will broaden the outreach effort by developing exhibits on environmental change impacts on polar regions for large public events, an opportunity to engage K-12 students, government officials in Sacramento and local and statewide communities. Lastly, through a collaboration with PolarTREC and teacher Denise Hardoy, lesson plans have been developed to teach K-12 students about experimental design, polar environments and sensitivity of Antarctic species to climate change.
The goal of this project is to discover whether the Antarctic scallop, Adamussium colbecki, provides a guide to sea-ice conditions in nearshore Antarctica today and in the past. Scallops may grow slower and live longer in habitats where sea ice persists for many years, limited by food, compared to habitats where sea ice melts out annually. Also, the chemicals retained in the shell during growth may provide crucial habitat information related to not only changing sea-ice conditions but also the type of food, whether it is recycled from the seafloor or produced by algae blooming when sea ice has melted. Unlocking the ecological imprint captured within the shell of the Antarctic Scallop will increase our understanding of changing sea-ice conditions in Antarctica. Further, because the Antarctic scallop had relatives living at the time when the Antarctic ice sheet first appeared, the scallop shell record may contain information on the stability of the ice sheet and the history of Antarctic shallow seas. Funding will also be integral for training a new generation of geoscientists in fossil and chemical forensics related to shallow sea habitats in Antarctica.
Scallops are worldwide in distribution, are integral for structuring marine communities have an extensive fossil record dating to the late Devonian, and are increasingly recognized as important paleoenvironmental proxies because they are generally well preserved in the sediment and rock record. The primary goal of this project is to assess the differences in growth, lifespan, and chemistry (stable isotopes, trace elements) archived in the shell of the Antarctic scallop that may be indicative of two ice states: persistent (multiannual) sea ice at Explorers Cove (EC) and annual sea ice (that melts out every year) at Bay of Sails (BOS), western McMurdo Sound, Antarctica. This project will investigate growth and lifespan proxies (physical and geochemical) and will use high-resolution records of stable oxygen isotopes to determine if a melt-water signal is archived in A. colbecki shells and whether that signal captures the differing ice behavior at two sites (EC versus BOS). Stable isotopes of carbon and nitrogen in association with trace elements will be used to examine subannual productivity spikes indicative of phytoplankton blooms, which are predicted to be more pronounced during open ocean conditions. Small growth increments in the outer calcite layer will be assessed to determine if they represent fortnightly growth, if so, they could provide a high-resolution proxy for monthly environmental processes. Unlocking the environmental archive preserved in A. colbecki shells may prove to be an important proxy for understanding changing sea-ice conditions in Antarctica's past. Funding will support a Ph.D. student and undergraduates from multiple institutions working on independent research projects. Web content focused on Antarctic marine communities will be designed for museum outreach, reaching thousands of middle-school children each year.
Part 1: Air sac-to-tissue oxygen delivery is essential to the dive capacity and foraging strategy of any penguin species as well as to flight and migration in other birds. Such transport of oxygen is dependent on the complex, highly efficient avian respiratory system (air sacs and lungs) and on the cardiovascular system. This delivery of oxygen allows emperor penguins to dive deeper than 500 meters and bar-headed geese to fly over the Himalayas. However, the physiological mechanisms underlying the transfer of oxygen from air sacs to blood and the subsequent distribution of oxygen to tissues are poorly understood. The emperor penguin is ideal for investigation of this oxygen cascade because of its body size, dive capacity, physiological data base, and the prior development of research techniques and protocols for this species. This study should provide insight into a) the mechanisms underlying the efficiency of the bird oxygen transport system, b) the physiological basis of penguin dive behavior, and the ability of penguins to adapt to environmental change, and c) perhaps, even the design of better therapeutic strategies and tools for treatment of respiratory disease. The project also includes educational exhibits and lecture programs on penguin biology at SeaWorld of San Diego. These educational programs at SeaWorld have outreach to diverse groups of grade school and high school students.
Part 2: This project will examine the transport of oxygen from air sacs to tissues in a series of studies with temporarily captive emperor penguins that are free-diving at an isolated dive hole research camp in McMurdo Sound. Physiological data will be obtained with application of backpack recorders for the partial pressure of oxygen (PO2) in air sacs and/or blood, and backpack heart rate/stroke rate recorders. This experimental approach will be transformative in avian biology because it will also lay the groundwork for future investigations of air sac to lung to blood oxygen transfer during exercise of volant and cursorial birds.
Four major topics are examined in this project: a) air sac oxygen distribution/depletion and the movement of air between anterior and posterior air sacs, b) anterior air sac to arterial PO2 differences and parabronchial gas exchange, c) blood oxygen transport and depletion throughout dives, and the nature of the aerobic dive limit, and d) the relationship of venous oxygen depletion patterns to both heart rate and stroke effort during dives.
Specific educational outreach goals include a) short video features to be displayed in the Penguin Encounter exhibit at SeaWorld of San Diego, and b) lectures, video presentations, and pre- and post-course evaluations for student campers and participants in SeaWorld’s education programs. Underwater video for exhibits/presentations with be obtained with use of a penguin backpack camera in the Antarctic.
The Erebus Bay population of Weddell seals in the Ross Sea of Antarctica is the most southerly breeding population of mammal in the world, closely associated with persistent shore-fast ice, and one that has been intensively studied since 1969. The resulting long-term database, which includes data for over 25,000 marked individuals, contains detailed population information that provides an excellent opportunity to study linkages between environmental conditions and demographic processes in the Antarctic. The study population is of special interest as the Ross Sea is one of the most productive areas of the Southern Ocean and one of the most pristine marine environments on the planet. The study provides long-term demographic data for individual seals
Antarctic marine ectotherms exhibit universally slow growth, low metabolic rates, and extended development, yet many of their rate processes related to physiology and metabolism are highly thermally sensitive. This suggests that small changes in temperature may result in dramatic changes to energy metabolism, growth, and the rate and duration of development. This project will measure the effects of temperature on metabolism, developmental rate, and the energetic cost of development of four common and ecologically important species of benthic Antarctic marine invertebrates. These effects will be measured over the functional ranges of the organisms and in the context of environmentally relevant seasonal shifts in temperature around McMurdo Sound. Recent data show that seasonal warming of ~1°C near McMurdo Station is accompanied by long-lasting hyperoxic events that impact the benthos in the nearshore boundary layer. This research will provide a more comprehensive understanding of both annual variation in environmental oxygen and temperature across the Sound, and whether this variation drives changes in developmental rate and energetics that are consistent with physiological acclimatization. These data will provide key information about potential impacts of warming Antarctic ectotherms. In addition, this project will support undergraduate and graduate research and partner with large-enrollment undergraduate courses and REU programs at an ANNH and AANAPISI Title III minority-serving institution.
We have completed one of our two scheduled field and data-collecting seasons, but our research was put on hold by COVID and by equipment and sea ice conditions at McMurdo. We have established baseline information on energy utilization by embryos of several species under ambient conditions and early data suggest that metabolism is highly affected by temperature in the range of -2.0 C to 1 C, and less so thereafter.
Notothenioid fishes live in the world's coldest marine waters surrounding Antarctica and have evolved strategies to avoid freezing. Past studies have shown that most Antarctic notothenioids produce special antifreeze proteins that prevent the growth of ice crystals that enter the body. While these proteins help prevent individuals from being killed by growing ice crystals, it is unclear how these fish avoid the accumulation of these small ice crystals inside their tissues over time. This project will observe how ice crystal accumulation relates to the harshness of a fish's environment within different habitats of McMurdo Sound, Antarctica. The researchers collected fishes and ocean observations at different field sites that cover a range of habitat severity in terms of temperature and iciness. The researchers installed an underwater ocean observatory near McMurdo Station (The McMurdo Oceanographic Observatory, MOO; Nov. 2017 - Nov. 2019) which included a conductivity-temperature-depth sensor (CTD), a high-definition video/still image camera and a research quality hydrophone. The observatory produced oceanographic data, time-lapse images of the immediate environs, and a high-resolution hydroacoustic dataset from the entire deployment. Seawater temperature data loggers were also deployed at other shallow, nearshore sites around McMurdo Sound to provide context and assessment of environmental conditions experienced by the fishes.
The transition of young from parental care to independence is a critical stage in the life of many animals. Surviving this stage can be especially challenging for polar mammals where the extreme cold requires extra energy to keep warm, rather than using the majority of energy for growth, development and physical activities. Young Weddell seals (Leptonychotes weddellii) have only weeks to develop the capabilities to survive both on top of the sea ice and within the -1.9°C seawater where they can forage for food. The project seeks to better understand how Weddell seal pups rapidly develop (within weeks) the capacity to transition between these two extreme environments (that differ greatly in their abilities to conduct heat) and how they budget their energy during the transition. Though the biology and physiology of adult Weddell seals is well studied, the energetic and physiological strategies of pups during development is still unclear. Understanding factors that may affect survival at critical life history events is essential for better understanding factors that might affect marine mammal populations. Weddell seals are the southernmost breeding mammal and are easily recognizable as quintessential Antarctic seals. Determining potential vulnerabilities at critical life stages to change in the Antarctic environment will facilitate the researchers' ability to not only gain public interest but also communicate how research is revealing ways in which changes are occurring at the poles and how these changes may affect polar ecosystems. By collaborating with the Marine Mammal Center, the project will directly reach the public, through curricular educational materials and public outreach that will impact over 100,000 visitors annually.<br/><br/>To elucidate the physiological strategies that facilitate the survival of Weddell seal pups from birth to independence, the proposed study examines the development of their thermoregulation and diving capability. To achieve this, the project will determine the mechanisms that Weddell seal pups use to maintain a stable, warm body temperature in air and in water and then examine the development of diving capability as the animals prepare for independent foraging. The researchers will take a fully integrative approach- making assessments from proteins to tissues to the whole-animal level- when investigating both these objectives. To assess the development of thermoregulatory capability, researchers will quantify body insulation, resting metabolic rates in air and in water, muscle thermogenesis (shivering), and body surface temperatures in the field. The project will also assess the development of dive capability by quantifying oxygen storage capacities and measuring early dive behavior. To identify possible cellular mechanisms for how Weddell seals navigate this trade-off during development, the program will quantify several key developmental regulators of increased hypoxic capacity (HIF, VEGF and EPO) using qPCR, as well as follow the proteomic changes of adipose and muscle tissue, which will include abundance changes of metabolic, antioxidant, cytoskeletal, and Ca2+-regulating proteins. The study of the physiological development leading up to the transition to independence in pinnipeds will help researchers better predict the effects of climate change on the distribution and abundance of this species and how this will affect other trophic levels. Environmental changes that alter habitat suitability have been shown to decrease population health, specifically because of declines in juvenile survival.
Antarctic notothenioid fishes exhibit two adaptive traits to survive in frigid temperatures. The first of these is the production of anti-freeze proteins in their blood and tissues. The second is a system-wide ability to perform cellular and physiological functions at extremely cold temperatures.The proposal goals are to show how Antarctic fishes use these characteristics to avoid freezing, and which additional genes are turned on, or suppressed in order for these fishes to maintain normal physiological function in extreme cold temperatures. Progressively colder habitats are encountered in the high latitude McMurdo Sound and Ross Shelf region, along with somewhat milder near?shore water environments in the Western Antarctic Peninsula (WAP). By quantifying the extent of ice crystals invading and lodging in the spleen, the percentage of McMurdo Sound fish during austral summer (Oct-Feb) will be compared to the WAP intertidal fish during austral winter (Jul-Sep) to demonstrate their capability and extent of freeze avoidance. Resistance to ice entry in surface epithelia (e.g. skin, gill and intestinal lining) is another expression of the adaptation of these fish to otherwise lethally freezing conditions.<br/><br/>The adaptive nature of a uniquely characteristic polar genome will be explored by the study of the transcriptome (the set of expressed RNA transcripts that constitutes the precursor to set of proteins expressed by an entire genome). Three notothenioid species (E.maclovinus, D. Mawsoni and C. aceratus) will be analysed to document evolutionary genetic changes (both gain and loss) shaped by life under extreme chronic cold. A differential gene expression (DGE) study will be carried out on these different species to evaluate evolutionary modification of tissue-wide response to heat challenges. The transcriptomes and other sequencing libraries will contribute to de novo ice-fish genome sequencing efforts.
The Weddell seal is the southern-most mammal in the world, having a circumpolar distribution around Antarctica; the McMurdo Sound population in Antarctica is one of the best-studied mammal populations on earth. However, despite this, an understanding of how populations around the continent will fare under climate change is poorly understood. A complicating matter is the potential effects of a commercial enterprise in the Antarctic: a fishery targeting toothfish, which are important prey for Weddell seals. Although the species is easily detected and counted during the breeding season, no reliable estimates of continent-wide Weddell seal numbers exist, due to the logistic difficulties of surveying vast regions of Antarctica. Large-scale estimates are needed to understand how seal populations are responding to the fishery and climate change, because these drivers of change operate at scales larger than any single population, and may affect seals differently in different regions of the continent. We will take advantage of the ease of detectability of darkly colored seals when they the on ice to develop estimates of abundance from satellite images. This project will generate baseline data on the global distribution and abundance of Weddell seals around the Antarctic and will link environmental variables to population changes to better understand how the species will fare as their sea ice habitat continues to change. These results will help disentangle the effects of climate change and fishery operations, results that are necessary for appropriate international policy regarding fishery catch limits, impacts on the environment, and the value of marine protected areas. The project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. It will engage "arm-chair" scientists of all ages through connections with several non-governmental organizations and the general public. Anyone with access to the internet, including people who are physically unable to participate in field research directly, can participate in this project while simultaneously learning about multiple aspects of polar ecology through the project's interactive website. <br/><br/>Specifically, this research project will: 1) Quantify the distribution of Weddell seals around Antarctica and 2) Determine the impact of environmental variables (such as fast ice extent, ocean productivity, bathymetry) on habitat suitability and occupancy. To do this, the project will crowd-source counting of seals on high-resolution satellite images via a commercial citizen science platform. Variation in seal around the continent will then be related to habitat variables through generalized linear models. Specific variables, such as fast ice extent will be tested to determine their influence on population variability through both space and time. The project includes a rigorous plan for ensuring quality control in the dataset including ground truth data from other, localized projects concurrently funded by the National Science Foundation's Antarctic Science Program.
Methane is a potent greenhouse gas that is naturally emitted into the oceans by geologic seeps and microbial production. Based on studies of persistent deep-sea seeps at mid- and northern latitudes, researchers have learned that bacteria and archaea can create a "sediment filter" that oxidizes methane prior to its release. Antarctica is thought to contain large reservoirs of organic carbon buried beneath its ice which could a quantity of methane equivalent to all of the permafrost in the Arctic and yet we know almost nothing about the methane oxidizing microbes in this region. How these microbial communities develop and potentially respond to fluctuations in methane levels is an under-explored avenue of research. A bacterial mat was recently discovered at 78 degrees south, suggesting the possible presence of a methane seep, and associated microbial communities. This project will explore this environment in detail to assess the levels and origin of methane, and the nature of the microbial ecosystem present. <br/> <br/>An expansive bacterial mat appeared and/or was discovered at 78 degrees south in 2011. This site, near McMurdo Station Antarctica, has been visited since the mid-1960s, but this mat was not observed until 2011. The finding of this site provides an unusual opportunity to study an Antarctic marine benthic habitat with active methane cycling and to examine the dynamics of recruitment and community succession of seep fauna including bacteria, archaea, protists and metazoans. This project will collect the necessary baseline data to facilitate further studies of Antarctic methane cycling. The concentration and source of methane will be determined at this site and at potentially analogous sites in McMurdo Sound. In addition to biogeochemical characterization of the sites, molecular analysis of the microbial community will quantify the time scales on which bacteria and archaea respond to methane input and provide information on rates of community development and succession in the Southern Ocean. Project activities will facilitate the training of at least one graduate student and results will be shared at both local and international levels. A female graduate student will be mentored as part of this project and data collected will form part of her dissertation. Lectures will be given in K-12 classrooms in Oregon to excite students about polar science. National and international audiences will be reached through blogs and presentations at a scientific conference. The PI's previous blogs have been used by K-12 classrooms as part of their lesson plans and followed in over 65 countries.<br/>
Beginning with the earliest expeditions to the poles, scientists have noted that many polar taxa grow to unusually large body sizes, a phenomenon now known as 'polar gigantism.' Although scientists have been interested in polar giants for many years, many questions still remain about the biology of this significant form of polar diversity. This award from the Antarctic Organisms and Ecosystems program within the Polar Sciences Division at the National Science Foundation will investigate the respiratory and biomechanical mechanisms underlying polar gigantism in Antarctic pycnogonids (commonly known as sea spiders). The project will use a series of manipulative experiments to investigate the effects of temperature and oxygen availability on respiratory capacity and biomechanical strength, and will compare Antarctic sea spiders to related species from temperate and tropical regions. The research will provide insight into the ability of polar giants to withstand the warming polar ocean temperatures associated with climate change.<br/><br/>The prevailing hypothesis to explain the evolution of gigantism invokes shifts in respiratory relationships in extremely cold ocean waters: in the cold, oxygen is more plentiful while at the same time metabolic rates are very low. Together these effects alleviate constraints on oxygen supply that restrict organisms living in warmer waters. Respiratory capacity must evolve in the context of adaptive tradeoffs, so for organisms including pycnogonids there must be tradeoffs between respiratory capacity and resistance to biomechanical stresses. The investigators will test a novel hypothesis that respiratory challenges are not associated with particular body sizes, and will answer the following questions: What are the dynamics of oxygen transport and consumption in Antarctic pycnogonids; how do structural features related to oxygen diffusion trade off with requirements for body support and locomotion; how does body size influence vulnerability to environmental hypoxia and to temperature-oxygen interactions; and does the cold-driven high oxygen availability in the Antarctic raise the limit on body size by reducing trade-offs between diffusivity and structural integrity? The research will explore the effects of increased ocean temperatures upon organisms that have different body sizes. In addition, it will provide training for graduate and undergraduate students affiliated with universities in EPSCOR states.
Agglutinated foraminifera (forams for short) are early-evolving, single-celled organisms. These "living fossils" construct protective shells using sediment grains held together by adhesive substances that they secrete. During shell construction, agglutinated forams display amazing properties of selection - for example, some species build their shells of clear quartz grains, while other species use only grains of a specific size. Understanding how these single cells assemble complex structures may contribute to nanotechnology by enabling people to use forams as "cellular machines" to aid in the construction of nano-devices. This project will analyze the genomes of at least six key foram species, and then "mine" these genomes for technologically useful products and processes. The project will focus initially on the adhesive materials forams secrete, which may have wide application in biomedicine and biotechnology. Furthermore, the work will further develop a molecular toolkit which could open up new avenues of research on the physiology, ecology, and population dynamics of this important group of Antarctic organisms. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. Educational experiences related to the "thrill of scientific exploration and discovery" for students and the general public will be provided through freely-available short films and a traveling art/science exhibition. The project will also provide hands-on research opportunities for undergraduate students.<br/><br/>Explorers Cove, situated on the western shore of McMurdo Sound, harbors a unique population of foraminiferan taxa at depths accessible by scuba diving that otherwise are primarily found in the deep sea. The project will use next-generation DNA sequencing and microdissection methods to obtain and analyze nuclear and mitochondrial genomes from crown members of two species each from three distinct, early-evolving foraminiferal groups. It will also use next generation sequencing methods to characterize the in-situ prokaryotic assemblages (microbiomes) of one of these groups and compare them to reference sediment microbiomes. The phyogenomic studies of the targeted Antarctic genera will help fill significant gaps in our current understanding of early foram evolution. Furthermore, comparative genomic analyses of these six species are expected to yield a better understanding of the physiology of single-chambered agglutinated forams, especially the bioadhesive proteins and regulatory factors involved in shell composition and morphogenesis. Additionally, the molecular basis of cold adaptation in forams will be examined, particularly with respect to key proteins.
Intellectual Merit: <br/>The PIs propose to complement the ANDRILL marine record with a terrestrial project that will provide chronological control for past fluctuations of the West Antarctic Ice Sheet (WAIS) and alpine glaciers in McMurdo Sound. The project will develop high-resolution maps of drifts deposited from grounded marine-based ice and alpine glaciers on islands and peninsulas in McMurdo Sound. In addition, the PIs will acquire multi-clast/multi-nuclide cosmogenic analyses of these mapped drift sheets and alpine moraines and use regional climate modeling to shed light on the range of possible environmental conditions in the McMurdo region during periods of grounded ice expansion and recession. The PIs will make use of geological records for ice sheet and alpine glacier fluctuations preserved on the flanks of Mount Discovery, Black Island, and Brown Peninsula. Drifts deposited from grounded, marine-based ice will yield spatial constraints for former advances and retreats of the WAIS. Moraines from alpine glaciers, hypothesized to be of interglacial origin, could yield a first-order record of hydrologic change in the region. Synthesizing the field data, the team proposes to improve the resolution of existing regional-scale climate models for the Ross Embayment. The overall approach and anticipated results will provide the first steps towards linking the marine and terrestrial records in this critical sector of Antarctica.<br/><br/>Broader impacts: <br/>Results from the proposed work will be integrated with outreach programs at Boston University, Columbia University, and Worcester State University. The team will actively collaborate with the American Museum of Natural History to feature this project prominently in museum outreach. The team will also include a PolarTREC teacher as a member of the research team. The geomorphological results will be presented in 3D at Boston University?s Antarctic Digital Image Analyses Lab. The research will form the basis of a PhD dissertation at Boston University.
Intellectual Merit: <br/>This project will use sediment cores from the Victoria Land Basin (VLB), Antarctica, to study secondary (diagenetic) carbonate minerals, as indicators of the basin?s fluid-flow history, within the well-constrained tectonic, depositional, and climatic context provided by sediment cores. This study will provide insights into subsurface processes in Victoria Land Basin, Antarctica and their relationships with the region?s climatic, cryospheric, and tectonic history. The work will utilize cores previously recovered by US-sponsored stratigraphic drilling projects (CIROS, CRP, and ANDRILL projects). This work is motivated by the unexpected discovery of dense brine in the subsurface of Southern McMurdo Sound during drilling by the ANDRILL Southern McMurdo Sound project. The presence of the brine is intriguing because it contradicts previous models for the origin of subsurface fluids that called upon large contributions from glacial melt water. Project objectives involve documenting the distribution of the brine (and potentially other fluids) via characterization of diagenetic precipitates. The approach will involve integration of petrographic and geochemical data (including conventional carbon, oxygen, and ?clumped? isotopes) to fully characterize diagenetic phases and allow development of a robust paragenetic history. This work will provide novel insights into the Cenozoic evolution of the VLB and, more broadly, the role of glacial processes in generating subsurface fluids. <br/><br/>Broader impacts: <br/>Results from this project will help understand the origins of brines, groundwater and hydrocarbon reservoirs in analogous modern and ancient deposits elsewhere, which is of broad interest. This project will support the training of one graduate and one undergraduate student at the University of Nebraska-Lincoln (UNL) providing learning opportunities in sedimentary geology and diagenesis, fields with wide applicability. This proposal emphasizes rapid dissemination of results to the scientific community via conference presentations and contributions to peer-reviewed publications. The results will be integrated into education activities designed to develop skills in petrography and diagenesis, which are highly sought after in the energy sector. The project will generate a well-constrained dataset that allows direct linkage of diagenetic phases to environmental and tectonic change across a large sedimentary basin which will provide the basis for a comprehensive case study in an upper-level course (Sedimentary Petrography and Diagenesis) at UNL. In addition, online exercises will be developed and submitted to an open-access site (SEPM Stratigraphy Web) dedicated to sedimentary geology.
Ocean acidification and increased temperatures are projected to be the primary impacts of global climate change on polar marine ecosystems over the next century. While recent research has focused on the effects of these drivers on calcifying organisms, less is known about how these changes may affect vertebrates. This research will focus on two Antarctic fishes, Trematomus bernacchii and Pagothenia borchgrevinki. Fish eggs and larvae will be collected in McMurdo Sound and reared under different temperature and pH regimes. Modern techniques will be used to examine subsequent changes in physiology, growth, development and gene expression over both short and long timescales. The results will fill a missing gap in our knowledge about the response of non-calcifying organisms to projected changes in pH and temperature. Results will be widely disseminated through publications as well as through presentations at national and international meetings; raw data will also be made available through open-access, web-based databases. This project will support the research and training of three graduate and three undergraduate students. As well, this project will foster the development of two modules on climate change and ocean acidification for an Introduction to Biology course.
The Weddell seal is a champion diving mammal. The physiology that permits these animals to sustain extended breath-hold periods and survive the extreme pressure of diving deep allows them to thrive in icy Antarctic waters. Key elements of their physiological specializations to breath-hold diving are their ability for remarkable adjustment of their heart and blood vessel system, coordinating blood pressure and flow to specific body regions based on their metabolic requirements, and their ability to sustain periods without oxygen. Identifying the details of these strategies has tremendous potential to better inform human medicine, helping us to develop novel therapies for cardiovascular trauma (e.g. stroke, heart attack) and diseases associated with blunted oxygen delivery to tissues (e.g. pneumonia, sepsis, or cancer). The goal of this project is to document specific genes that control these cardiovascular adjustments in seals, and to compare their abundance and activity with humans. Specifically, the investigators will study a signaling pathway that coordinates local blood flow. They will also use tissue samples to generate cultured cells from Weddell seals that can be used to study the molecular effects of low oxygen conditions in the laboratory. The project will further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. The project will train a pre-veterinary student researcher will conduct public outreach via a center for community health improvement, a multicultural affairs office, and a public aquarium. The goal of this study is to unravel the molecular mechanisms underlying the dive response. A hallmark of the dive response is tissue-specific vascular system regulation, likely resulting from variation in both nerve inputs and in production of local signaling molecules produced by blood vessel cells. The investigators will use emerging genomic information to begin to unravel the genetics underlying redistribution of the circulation during diving. They will also directly test the hypothesis that modifications in the signaling system prevent local blood vessel changes under low oxygen conditions, thereby allowing the centrally mediated diving reflex to override local physiological responses and to control the constriction of blood vessel walls in Weddell seals. They will perform RNA-sequencing of Weddell seal tissues and use the resulting sequence, along with information from other mammals such as dog, to obtain a full annotation (identifying all genes based on named features of reference genomes) of the existing genome assembly for the Weddell seal, facilitating comparative and species-specific genomic research. They will also generate a Weddell seal pluripotent stem cell line which should be a valuable research tool for cell biologists, molecular biologists and physiologists that will allow them to further test their hypotheses. It is expected that the proposed studies will advance our knowledge of the biochemical and physiological adaptations that allow the Weddell seal to thrive in the Antarctic environment.
Marine mammals that inhabit high latitude environments have evolved unique mechanisms to execute a suite of energetically-costly life history events (CLHEs) within a relatively short timeframe when conditions are most favorable. Understanding the intrinsic and extrinsic factors that regulate CLHEs is particularly important in species such as Weddell seals, as both reproduction and molt are associated with large reductions in foraging effort, and the timing and outcome of each appears linked with the other. The long-term mark recapture program on Erebus Bay's Weddell seals provides a unique opportunity to examine CLHEs in a known-history population. The proposed work will monitor physiological condition, pregnancy status, and behavior at various times throughout the year to determine if molt timing is influenced by prior reproductive outcome, and if it, in turn, influences future reproductive success. These data will then be used to address the demographic consequences of trade-offs between CLHEs in Weddell seals. The impact of environmental conditions and CLHE timing on population health will also be modeled so that results can be extended to other climates and species. <br/><br/>An improved understanding of the interactions between CLHEs and the environment is important in predicting the response of organisms from higher trophic levels to climate change. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of graduate students and a post-doctoral researcher and will further foster an extensive public outreach collaboration.
The research supported in this project will examine the effects of environmental change on a key Antarctic marine invertebrate, a pelagic mollusk, the pteropod, Limacina helicina antarctica. There are two main activities in this project: (1) to deploy oceanographic equipment ? in this case, autonomously recording pH sensors called SeaFETs and other devices that record temperature and salinity, and (2) to use these environmental data in the laboratory at McMurdo Station to study the response of the marine invertebrates to future changes in water quality that is expected in the next few decades. Notably, changes in oceanic pH (aka ocean acidification) and ocean warming are projected to be particularly threatening to calcifying marine organisms in cold-water, high latitude seas, making tolerance data on these organisms a critical research need in Antarctic marine ecosystems. <br/><br/>These Antarctic shelled-animals are especially vulnerable to dissolution stress from ocean acidification because they currently inhabit seawater that is barely at the saturation level to support biogenic calcification. Indeed, these polar animals are considered to be the 'first responders' to chemical changes in the surface oceans. Thus, this project will lead to information about the adaptive capacity of L. helcina antarctica. From an ecological perspective this is important because this animal is a critical part of the Antarctic food chain in coastal waters and changes in its abundance will impact other species. Finally, the research conducted in this project will serve as a training and educational opportunity for undergraduate and graduate students as well as postdoctoral scholars.
Antarctic benthic communities are characterized by many species of sponges (Phylum Porifera), long thought to exhibit extremely slow demographic patterns of settlement, growth and reproduction. This project will analyze many hundreds of diver and remotely operated underwater vehicle photographs documenting a unique, episodic settlement event that occurred between 2000 and 2010 in McMurdo Sound that challenges this paradigm of slow growth. Artificial structures were placed on the seafloor between 1967 and 1974 at several sites, but no sponges were observed to settle on these structures until 2004. By 2010 some 40 species of sponges had settled and grown to be surprisingly large. Given the paradigm of slow settlement and growth supported by the long observation period (37 years, 1967-2004), this extraordinary large-scale settlement and rapid growth over just a 6-year time span is astonishing. This project utilizes image processing software (ImageJ) to obtain metrics (linear dimensions to estimate size, frequency, percent cover) for sponges and other fauna visible in the photographs. It uses R to conduct multidimensional scaling to ordinate community data and ANOSIM to test for differences of community data among sites and times and structures. It will also use SIMPER and ranked species abundances to discriminate species responsible for any differences. <br/><br/>This work focuses on Antarctic sponges, but the observations of massive episodic recruitment and growth are important to understanding seafloor communities worldwide. Ecosystems are composed of populations, and populations are ecologically described by their distribution and abundance. A little appreciated fact is that sponges often dominate marine communities, but because sponges are so hard to study, most workers focus on other groups such as corals, kelps, or bivalves. Because most sponges settle and grow slowly their life history is virtually unstudied. The assumption of relative stasis of the Antarctic seafloor community is common, and this project will shatter this paradigm by documenting a dramatic episodic event. Finally, the project takes advantage of old transects from the 1960s and 1970s and compares them with extensive 2010 surveys of the same habitats and sometimes the same intact transect lines, offering a long-term perspective of community change. The investigators will publish these results in peer-reviewed journals, give presentations to the general public and will involve students from local outreach programs, high schools, and undergraduates at UCSD to help with the analysis.
Many persistent organic pollutants (POPs), though banned in the U.S. since the 1970s, remain in the environment and continue to reach hitherto pristine regions such as the Arctic and Antarctic. The overall goals of this RAPID project are to better understand the remobilization of POPs from melting glaciers in the Antarctic, and their transfer into the food-web. Legacy POPs have characteristic chemical signatures that will be used ascertain the origin of POPs in the Antarctic atmosphere and marine food-web. Samples that were collected in 2010 will be analyzed for a wide range of legacy POPs, and their behavior will be contrasted with results for emerging contaminants. The intellectual merit of the proposed research combines (a) the use of chemical signatures to assess whether melting glaciers are releasing legacy POPs back into the Antarctic marine ecosystem, and (b) a better understanding of the food-web dynamics of legacy POPs versus emerging organic pollutants.<br/><br/>The broader impacts of the proposed research project will include the training of the next generation of scientists through support for a graduate student and a postdoctoral scholar. As well, this work will result in a better understanding of the relationship between pollutants, trophic food web ecology and global climate change in the pristine Antarctic ecosystem.
Abstract<br/><br/>Researchers will explore the use of a distributed temperature sensing monitoring system (DTS), using fiber-optical (FO) technology, as the basis of a sustainable, sub-ice cavity sensing array. FO cable systems, such as may be deployed through a hot-water drilled hole through an ice shelf, passing through the underlying cavity to the sea floor, are capable of measuring temperatures down fiber at 1 meter intervals, and at time frequencies as high as 15 seconds. DTS FO systems operate via optical time domain reflectometry along the fiber waveguide using inelastic backscatter of coherent laser light as a probe beam in the FO environment.<br/><br/>The introduction of new technologies to the harsh environmental conditions of the Antarctic are often associated with high risk. However, the potential rewards of this approach (e.g. multiyear capability, minimal submerged mechanical or electrical components that may fail, relative simplicity of deployment and measurement principle, yet yielding distributed real time and spatial observation) are attractive enough to conduct a pilot project at a field-ready location (McMurdo). <br/><br/>Current indications are that the instability of some of the world's largest ice sheets located around the Antarctic and Greenland may be caused by the presence of warming, deep ocean waters, shoaling over continental shelves, and melting the underside of floating ice shelves. Additional knowledge of the temporal and spatial variability of the temperature fields underneath terminal ice shelves, such as those draining the West Antarctic Ice Sheet, are needed to accurately project future global climate effects on ice-shelf ocean interactions, and in order to inform societal and technological aspects of adaption to changing sea-level.
Intellectual Merit: <br/>The PI proposes to utilize computer models used by hydrogeologists to establish the fate and transport of contamination and determine the extent of drilling fluid contamination in the ANDRILL SMS core. For these models, previously collected logs of lithology, porosity, fracture density, fracture type, fracture orientation, drilling fluid loss, drilling fluid characteristics and temperature will be used as input parameters. In addition, biodegradation and sorption constants for the drilling fluid will be determined and incorporated into the models. Samples of drilling fluids used during coring as well as the return fluids were collected at the drill site using standard microbiological sampling techniques. Fluids will be tested at in situ temperatures under aerobic and anaerobic conditions to determine biodegradation constants. Sorption will be determined between the drilling fluids and core samples using standard isotherm methods. Geochemical and microbial fingerprints of the fluids and the changes during biodegradation will determine the potential impact of the drilling fluids on the isolated microbial communities and the geochemistry within various subsurface lithologic units beneath the southern McMurdo Sound in Antarctica. The results of this study could potentially provide guidelines on developing less detrimental methods for future exploration, if deemed necessary through this research.<br/><br/>Broader impacts: <br/>This proposed project will train a graduate student. The methods developed for analyses of samples in this project will serve as a guide for future studies of similar interest and will improve the understanding of ecological impacts of geologic drilling in Antarctica. The results of this study will be used as a reference for comparison with future studies examining newly developed, and improved, sample collection methods in future exploratory drilling projects in pristine environments. The PI is new to Antarctic research.
Abstract <br/>This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). <br/><br/>Marine mammals of the Southern Ocean have evolved diverse life history patterns and foraging strategies to accommodate extreme fluctuations in the physical and biological environment. In light of ongoing climate change and the dramatic shifts in the extent and persistence of sea ice in the Ross Sea, it is critical to understand how Weddell seals, Leptonychotes weddellii, a key apex predator, select and utilize foraging habitats. Recent advances in satellite-linked animal-borne conductivity, temperature and depth (CTD) tags make it possible to simultaneously collect data on seal locations, their diving patterns, and the temperature and salinity profiles of the water columns they utilize. In other ecosystems, such data have revealed that marine predators selectively forage in areas where currents and fronts serve to locally concentrate prey resources, and that these conditions are required to sustain populations. Weddell seals will be studied in McMurdo Sound and at Terra Nova Bay, Ross Sea and will provide the first new data on Weddell seal winter diving behavior and habitat use in almost two decades. The relationship between an animal's diving behavior and physical habitat has enormous potential to enhance monitoring studies and to provide insight into how changes in ice conditions (due either to warming or the impact of large icebergs, such as B15) might impact individual time budgets and foraging success. The second thrust of this project is to use the profiles obtained from CTD seal tags to model the physical oceanography of this region. Current mathematical models of physical oceanographic processes in the Southern Ocean are directed at better understanding the role that it plays in global climate processes, and the linkages between physical and biological oceanographic processes. However, these efforts are limited by the scarcity of oceanographic data at high latitudes in the winter months; CTD tags deployed on animals will collect data at sufficient spatial and temporal resolution to improve data density. The project will contribute to two IPY endorsed initiatives: MEOP (Marine Mammals as Explorers of the Ocean Pole to Pole) and CAML (Census of Antarctic Marine Life). In addition, the highly visual nature of the data and analysis lends itself to public and educational display and outreach, particularly as they relate to global climate change, and we have collaborations with undergraduate and graduate training programs, the Seymour Marine Discovery Center, and the ARMADA program to foster these broader impacts.
This award supports a project to examine the stratigraphy of near-surface sediments in Taylor Valley, Antarctica. Two contrasting hypotheses have been proposed for surface sediments in lower Taylor Valley, which have important and very different implications for how the West Antarctic Ice Sheet (WAIS) responded to the sea-level rise of the last deglaciation and Holocene environmental changes. One hypothesis holds that the sediments, designated Ross I drift, directly reflect >10,000 14C-years of WAIS shrinkage in the Ross Sea during and perhaps driven by deglacial sea-level rise. The other hypothesis, holds that the Taylor sediments have little significance for WAIS change during the deglaciation. These two hypotheses reflect fundamentally different interpretations of the sediment record. Over the course of two field seasons and a third year at the home institutions, the project will test these two hypotheses using glacial geology, geochemistry, ground penetrating radar (GPR) at both 100 MHz and 400 MHz, and portable sediment coring. The intellectual merit of the proposed work is that it will test these two hypotheses and make novel use of the subsurface record that may result in new insights into WAIS sensitivity during the deglaciation. The study will also directly test the conclusion that Glacial Lake Washburn was much larger than previously proposed during the Last Glacial Maximum (LGM). This occurrence, if real, represents a stunning climate anomaly. Answers to these local ice sheet and lake questions directly pertain to larger scale issues concerning the influences of sea-level rise, climate change, and internal ice-sheet dynamics on the recession of the WAIS since the LGM. There are numerous broader impacts to this project. Understanding the glacial and lake history in the McMurdo Sound region has important implications for the role that the WAIS will play in future sea-level and global climate change. Moreover, the history of Taylor Valley has significance for the ecosystem studies currently being conducted by the LTER group. Lastly, during the course of the proposed research, the project will train two graduate and undergraduate students and the research will be featured prominently in the teaching of students.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The project aims on studying sediment cores collected from Prydz Bay and the Ross Sea to unravel the Neogene paleoclimatic history of the East Antarctic ice sheet. In the light of current measurements and predictions of a substantial rise in global temperature, investigations into the sensitivity of the East Antarctic ice sheet to climate change and its role in the climate system are essential. Geological records of former periods of climate change provide an opportunity to ground truth model predictions. The scientific objective of this project is to identify a previously proposed middle Miocene transition from a more dynamic wet-based East Antarctic ice sheet to the present semi-permanent ice sheet that is partially frozen to its bed. The timing and significance of this transition is controversial due to a lack of quantitative studies on well-dated ice-proximal sedimentary sequences. This project partially fills that gap using the composition and physical properties of diamictites and sandstones to establish shifts in ice-sheet drainage pathways, paleoenvironments and basal ice conditions. The results from the two key areas around the Antarctic continental margin will provide insight into the behavior of the East Antarctic ice sheet across the middle Miocene transition and through known times of warming in the late Miocene and Pliocene.
The primary objectives of this research are to investigate the proximate effects of aging on diving capability in the Weddell Seal and to describe mechanisms by which aging may influence foraging ecology, through physiology and behavior. This model pinniped species has been the focus of three decades of research in McMurdo Sound, Antarctica. Compared to the knowledge of pinniped diving physiology and ecology during early development and young adulthood, little is known about individuals nearing the upper limit of their normal reproductive age range. Evolutionary aging theories predict that elderly diving seals should exhibit senescence. This should be exacerbated by surges in the generation of oxygen free radicals via hypoxia-reoxygenation during breath-hold diving and hunting, which are implicated in age-related damage to cellular mitochondria. Surprisingly, limited observations of non-threatened pinniped populations indicate that senescence does not occur to a level where reproductive output is affected. The ability of pinnipeds to avoid apparent senescence raises two major questions: what specific physiological and morphological changes occur with advancing age in pinnipeds and what subtle adjustments are made by these animals to cope with such changes? This investigation will focus on specific, functional physiological and behavioral changes relating to dive capability with advancing age. The investigators will quantify age-related changes in general health and body condition, combined with fine scale assessments of external and internal ability to do work in the form of diving. Specifically, patterns of oxidative status and oxygen use with age will be examined. The effects of age on muscular function, contractile capacity in vascular smooth muscle, and exercise capacity via exercise performance in skeletal muscle will be examined. Data will be compared between Weddell seals in the peak, and near the end, of their reproductive age range. An assessment will be made of the ability to do external work (i.e. diving) as well as muscle functionality (ability to do internal work). The investigators hypothesize that senescence does occur in Weddell seals at the level of small-scale, proximate physiological effects and performance, but that behavioral plasticity allows for a given degree of compensation. Broader impacts include the training of students and outreach activities including interviews and articles written for the popular media. Photographs and project summaries will be available to the interested public on the project website. This study should also establish diving seals as a novel model for the study of cardiovascular and muscular physiology of aging. Research on Weddell seals could validate this model and thus develop a foundation for similar research on other species. Advancement of the understanding of aging by medical science has been impressive in recent years and the development of new models for the study of aging has tremendous potential benefits to society at large
Antarctic notothenioid fish evolved antifreeze (AF) proteins that prevent ice crystals that enter their body fluids from growing, and thereby avoid freezing in their icy habitats. However, even in the extreme cold Antarctic marine environment, regional gradations of severity are found. The biological correlate for environmental severity in fish is the endogenous ice load, which likely determines the tolerable limit of environmental severity for notothenioid habitation. The endogenous ice load develops from environmental ice crystals entering through body surfaces and somehow localizing to the spleen. How prone the surface tissues are to ice entry, how ice reaches the spleen, and what the fate of splenic ice is, requires elucidation. Spleen sequestration of ice raises the hypothesis that macrophages may play a role in the translocation and perhaps elimination of AF-bound ice crystals. Antifreeze glycoproteins (AFGP) act in concert with a second, recently discovered antifreeze called antifreeze potentiating protein (AFPP), necessitating an assessment of the contribution of AFPP to freezing avoidance. Recent research suggests that the exocrine pancreas and the anterior stomach, not the liver, synthesize AFGPs and secrete them into the intestine, from where they may be returned to the blood. A GI-to-blood transport is a highly unconventional path for a major plasma protein and also begs the questions, What is the source of blood AFPP?. Why are two distinct AF proteins needed and what is the chronology of their evolution? What genomic changes in the DNA are associated with the development or loss of the antifreeze trait? Experiments described in this proposal address these interrelated questions of environmental, organismal, and evolutionary physiology, and will further our understanding of novel vertebrate physiologies, the limits of environmental adaptation, and climatically driven changes in the genome. The proposed research will (1) determine the temporal and spatial heterogeneity of environmental temperature and iciness in progressively more severe fish habitats in the greater McMurdo Sound area, and in the milder Arthur Harbor at Palmer Station. The splenic ice load in fishes inhabiting these sites will be determined to correlate to environmental severity and habitability. (2) Assess the surface tissue site of ice entry and their relative barrier properties in intact fish and isolated tissues preparations (3) Assess the role of immune cells in the fate of endogenous ice, (4) determine whether the blood AFGPs are from intestinal/rectal uptake, (5) examine the contribution of AFPP to the total blood AF activity (6) evaluate the progression of genomic changes in the AFGP locus across Notothenioidei as modulated by disparate thermal environments, in four selected species through the analyses of large insert DNA BAC clones. The origin and evolution of AFPP will be examined also by analyzing BAC clones encompassing the AFPP genomic locus. The broader impacts of the proposed research include training of graduate and undergraduate students in research approaches ranging from physical field measurements to cutting edge genomics. Undergraduate research projects have lead to co-authored publications and will continue to do so. Outreach includes establishing Wiki websites on topics of Antarctic fish biology and freeze avoidance, providing advisory services to the San Francisco Science Exploratorium, and making BAC libraries available to interested polar biologists. This research theme has repeatedly received national and international science news coverage and will continue to be disseminated to the public in that manner.
Luyendyk et.al.: OPP 0088143<br/>Bartek: OPP 0087392<br/>Diebold: OPP 0087983<br/><br/>This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research program in marine geology and geophysics in the southern central and eastern Ross Sea. The project will conduct sites surveys for drilling from the Ross Ice Shelf into the seafloor beneath it. Many of the outstanding problems concerning the evolution of the East and West Antarctic Ice Sheets, Antarctic climate, global sea level, and the tectonic history of the West Antarctic Rift System can be addressed by drilling into the seafloor of the Ross Sea. Climate data for Cretaceous and Early Cenozoic time are lacking for this sector of Antarctica. Climate questions include: Was there any ice in Late Cretaceous time? What was the Antarctic climate during the Paleocene-Eocene global warming? When was the Cenozoic onset of Antarctic glaciation, when did glaciers reach the coast and when did they advance out onto the margin? Was the Ross Sea shelf non-marine in Late Cretaceous time; when did it become marine? Tectonic questions include: What was the timing of the Cretaceous extension in the Ross Sea rift; where was it located? What is the basement composition and structure? Where are the time and space limits of the effects of Adare Trough spreading? Another drilling objective is to sample and date the sedimentary section bounding the mapped RSU6 unconformity in the Eastern Basin and Central Trough to resolve questions about its age and regional extent. Deep Sea Drilling Project (DSDP) Leg 28 completed sampling at four drill sites in the early 1970's but had low recovery and did not sample the Early Cenozoic. Other drilling has been restricted to the McMurdo Sound area of the western Ross Sea and results can be correlated into the Victoria Land Basin but not eastward across basement highs. Further, Early Cenozoic and Cretaceous rocks have not been sampled. A new opportunity is developing to drill from the Ross Ice Shelf. This is a successor program to the Cape Roberts Drilling Project. One overriding difficulty is the need for site surveys at drilling locations under the ice shelf. This project will overcome this impediment by conducting marine geophysical drill site surveys at the front of the Ross Ice Shelf in the Central Trough and Eastern Basin. The surveys will be conducted a kilometer or two north of the ice shelf front where recent calving events have resulted in a southerly position of the ice shelf edge. In several years the northward advance of the ice shelf will override the surveyed locations and drilling could be accomplished. Systems to be used include swath bathymetry, gravity, magnetics, chirp sonar, high resolution seismic profiling, and 48 fold seismics. Cores will be collected to obtain samples for geotechnical properties, to study sub-ice shelf modern sedimentary processes, and at locations where deeper section is exposed.<br/><br/>This survey will include long profiles and detailed grids over potential drill sites. Survey lines will be tied to existing geophysical profiles and DSDP 270. A recent event that makes this plan timely is the calving of giant iceberg B-15 (in March, 2000) and others from the ice front in the eastern Ross Sea. This new calving event and one in 1987 have exposed 16,000 square kilometers of seafloor that had been covered by ice shelf for decades and is not explored. Newly exposed territory can now be mapped by modern geophysical methods. This project will map geological structure and stratigraphy below unconformity RSU6 farther south and east, study the place of Roosevelt Island in the Ross Sea rifting history, and determine subsidence history during Late Cenozoic time (post RSU6) in the far south and east. Finally the project will observe present day sedimentary processes beneath the ice shelf in the newly exposed areas.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate Earth's magnetic field over the past 5 million years in order to test models of Earth's geomagnetic dynamo. Paleomagnetic data (directions of ancient geomagnetic fields obtained from rocks) play an important role in a variety of geophysical studies of the Earth, including plate tectonic reconstructions, magnetostratigraphy, and studies of the behavior of the ancient geomagnetic field (which is called paleo-geomagnetism). Over the past four decades the key assumption in many paleomagnetic studies has been that the average direction of the paleomagnetic field corresponds to one that would have been produced by a geocentric axial dipole (GAD) (analogous to a bar magnet at the center of the Earth), and that paleoinclinations (the dip of magnetic directions from rocks) provide data of sufficient accuracy to enable their use in plate reconstructions. A recent re-examination of the fundamental data underlying models of the time averaged field has shown that the most glaring deficiency in the existing data base is a dearth of high quality data, including paleointensity information, from high latitudes. This project will undertake a sampling and laboratory program on suitable sites from the Mt. Erebus Volcanic Province (Antarctica) that will produce the quality data from high southern latitudes that are essential to an enhanced understanding of the time averaged field and its long term variations.
During the past three decades, intensive field studies have revealed much about the<br/>behavior, physiology, life history, and population dynamics of the Weddell seal (Leptonychotes weddelli) population of McMurdo Sound, Antarctica. These animals are marine predators that are highly adapted for an aquatic life in shore-fast and pack ice habitats. They must locate and capture sparsely distributed under the ice. Most of what is known about their diving behavior is based on studies of adult animals with little known about the development or the genetic controls of diving behavior of young animals. The goal of this project is to examine the temporal development of aerobic capacity, lipid metabolism and oxygen stores in the skeletal muscles of young Weddell seals and to determine which aspects of the cellular environment are important in the regulation of these adaptations during maturation. This project builds on past results to investigate the molecular controls that underlie the development of these adaptations. The first objective is to further characterize the ontogenetic changes in muscle aerobic capacity, lipid metabolism and myoglobin concentration and distribution using enzymatic, immuno-histochemical and myoglobin assays in newly weaned, subadult, and adult seals. The second objective is to determine the molecular controls that regulate these changes in aerobic capacity, fiber type distribution and myoglobin in skeletal muscles during maturation. Through subtractive hybridization and subsequent analysis, differences in mRNA populations in the swimming muscles of the different age classes of Weddell seals will be determined. These techniques will allow for the identification of the proteins and transcription factors that influence the ontogenetic changes in myoglobin concentration, fiber type distribution and aerobic capacity. These results will increase our<br/>understanding of both the ontogeny and molecular mechanisms by which young seals acquire the physiological capabilities to make deep (up to 700 m) and long aerobic dives (ca 20 min). This study will advance knowledge of the molecular regulation for the<br/>adaptations that enable active skeletal muscle to function under hypoxic conditions; this has a broader application for human medicine especially in regards to cardiac and pulmonary disease. Additional broader impacts include the participation of underrepresented scientists and a continuation of a website in collaboration<br/>with the Science Teachers Access to Resources at Southwestern University (STARS Program) which involves weekly updates about research efforts during the field season, weekly questions/answer session involving students and teachers, and updates on research results throughout the year.
This project answers a simple question: why are there so few fossils in sediment cores from Antarctica?s continental shelf? Antarctica?s benthos are as biologically rich as those of the tropics. Shell-secreting organisms should have left a trail throughout geologic time, but have not. This trail is particularly important because these organisms record regional climate in ways that are critical to interpreting the global climate record. This study uses field experiments and targeted observations of modern benthic systems to examine the biases inflicted by fossil preservation. By examining a spectrum of ice-affected habitats, this project provides paleoenvironmental insights into carbonate preservation, sedimentation rates, and burial processes; and will provide new approaches to reconstructing the Cenozoic history of Antarctica. Broader impacts include graduate and undergraduate research and education, development of undergraduate curricula to link art and science, K12 outreach, public outreach via the web, and societal relevance through improved understanding of records of global climate change.
Phaeocystis Antarctica is a widely distributed phytoplankton that forms dense blooms and aggregates in the Southern Ocean. This phytoplankton and plays important roles in polar ecology and biogeochemistry, in part because it is a dominant primary producer, a main component of organic matter vertical fluxes, and the principal producer of volatile organic sulfur in the region. Yet P. Antarctica is also one of the lesser known species in terms of its physiology, life history and trophic relationships with other organisms; furthermore, information collected on other Phaeocystis species and from different locations may not be applicable to P. Antarctica in the Ross Sea. P. Antarctica occurs mainly as two morphotypes: solitary cells and mucilaginous colonies, which differ significantly in size, architecture and chemical composition. Relative dominance between solitary cells and colonies determines not only the size spectrum of the population, but also its carbon dynamics, nutrient uptake and utilization. Conventional thinking of the planktonic trophic processes is also challenged by the fact that colony formation could effectively alter the predator-prey interactions and interspecific competition. However, the factors that regulate the differences between solitary and colonial forms of P. Antarctica are not well-understood. The research objective of this proposal is therefore to address these over-arching questions:<br/>o Do P. Antarctica solitary cells and colonies differ in growth, composition and<br/>photosynthetic rates?<br/>o How do nutrients and grazers affect colony development and size distribution of P. <br/>Antarctica?<br/>o How do nutrients and grazers act synergistically to affect the long-term population<br/>dynamics of P. Antarctica? Experiments will be conducted in the McMurdo station with natural P. Antarctica assemblages and co-occurring grazers. Laboratory experiments will be conducted to study size-specific growth and photosynthetic rates of P. Antarctica, size-specific grazing mortality due to microzooplankton and mesozooplankton, the effects of macronutrients on the (nitrogen compounds) relative dominance of solitary cells and colonies, and the effects of micronutrient (Fe) and grazing related chemical signals on P. Antarctica colony development. Because this species is of critical importance in the Southern Ocean, and because this research will provide critical information on factors that regulate the role of P.Antarctica in food webs and biogeochemical cycles, a major gap in knowledge will be addressed. This project will train two marine science PhD students. The investigators will also collaborate with the School of Education and a marine science museum to communicate polar science to a broader audience.
The Erebus Bay Weddell seal population study in eastern McMurdo Sound, Antarctica was initiated in 1968 and represents one of the longest intensive field investigations of a long-lived mammal in existence. Over the thirty-four year period of this study a total of 15,636 animals have been tagged with 144,927 re-sighting records logged in the current database. As such, this study is an extremely valuable resource for understanding population dynamics of not only Weddell seals, but also other species of both terrestrial and marine mammals with similar life-history characteristics. With the retirement of the original investigator, Dr. Donald Siniff, this proposal represents an effort to transition the long-term studies to a new team of investigators. Dr. Robert Garrott and Dr. Jay Rotella propose building upon the foundation with two lines of investigation that combine use of the long-term database with new field initiatives. The continuity of the demographic data will be maintained by annually marking all pups born, replace lost or broken tags, and perform multiple mark-recapture censuses of the Erebus Bay seal colonies. The new data will be combined with the existing database and a progressively complex series of analyses will be performed using recently developed mark-recapture methods to decompose, evaluate, and integrate the demographic characteristics of the Erebus Bay Weddell seal population. These analyses will allow the testing of specific hypotheses about population regulation as well as temporal and spatial patterns of variation in vital rates among colonies within the population that have been posed by previous investigators, but have not been adequately evaluated due to data and analytical limitations. The primary new field initiative will involve an intensive study of mass dynamics of both pups and adult females as a surrogate measure for assessing annual variation in marine resources and their potential role in limiting and/or regulating the population. In conjunction with the collection of data on body mass dynamics the investigators will use satellite imagery to develop an extended time series of sea ice extent in McMurdo Sound. Regional extent of sea ice affects both regional primary productivity and availability of haul out areas for Weddell seals. Increased primary productivity may increase marine resources which would be expected to have a positive affect on Weddell seal foraging efficiency, leading to increased body mass. These data combined with the large proportion of known-aged seals in the current study population (>60%) will allow the investigators to develop a powerful database to test specific hypotheses about ecological processes affecting Weddell seals. Knowledge of the mechanisms that limit and/or regulate Weddell seal populations and the specific bio-physical linkages between climate, oceans, ice, and Antarctic food webs can provide important contributions to understanding of pinniped population dynamics, as well as contribute more generally to theoretical understanding of population, community, and ecosystem patterns and processes. Such knowledge can be readily applied elsewhere to enhance the ability of natural resource managers to effectively maintain assemblages of other large-mammal species and the ecological processes that they facilitate. Continuation of this long-term study may also contribute to understanding the potential impacts of human activities such as global climate warming and the commercial exploitation of Antarctic marine resources. And finally, the study can contribute significantly to the development and testing of new research and analytical methodologies that will almost certainly have many other applications.
Abstract<br/><br/>This Small Grants for Exploratory Research (SGER) proposal describes global change-related experimental research designed to take full advantage of a unique science opportunity on short notice, the leasing of the Oden to conduct ice-breaking operations in McMurdo Sound. <br/><br/>Our emphasis will be on using this opportunistic research platform to ask two questions about present day and future controls on Antarctic margin phytoplankton communities. These are: 1. How will expected alterations in pCO2, pH, and Fe availability in the Southern Ocean, due to future anthropogenic climate change affect phytoplankton species assemblages, carbon and nutrient biogeochemistry, and remineralization processes? 2. What is the current role of organic co-factors (vitamins) in limiting or co-limiting (along with iron ) phytoplankton growth and production in the Antarctic margin? The research approach includes experimental incubations with variation in iron enrichment, carbon dioxide concentration, and temperature. A second suite of experiments will examine co-limitation effects between vitamin B12 and Fe and B12 uptake kinetics. Changes in phytoplankton community structure, and carbon and nutrient cycling will be determined, in collaboration with many of the participating U.S. and Swedish investigators. Together, these two main objectives should allow us to obtain novel insights into the current and future controls on Antarctic margin phytoplankton growth, productivity, and carbon and nutrient biogeochemistry. In particular, the experiments in the Amundsen Sea represent a one-of-a-kind opportunity to understand algal dynamics and potential future responses to climate change in this little-studied ecosystem, and compare these results to those from the better-known Ross Sea. An important result of this study will be to build strong international collaborations with the Swedish marine science community. Additional broader impacts include participatin of an Hispanic Ph.D. student in cruise work and post-cruise analyses, and integration of results into graduate courses at the USC Catalina Lab facility. Public outreach will include presentations on global change impacts on the ocean targeted at audiences ranging from legislators and policymakers to the general public.
0124049<br/>Berger<br/><br/>This award supports a project to add to the understanding of what drives glacial cycles. Most researchers agree that Milankovitch seasonal forcing paces the ice ages but how these insolation changes are leveraged into abrupt global climate change remains unknown. A current popular view is that the climate of Antarctica and the Southern Ocean leads that of the rest of the world by a couple thousand years at Termination I and by even greater margins during previous terminations. This project will integrate the geomorphological record of glacial history with a series of cores taken from the lake bottoms in the Dry Valleys of the McMurdo Sound region of Antarctica. Using a modified Livingstone corer, transects of long cores will be obtained from Lakes Fryxell, Bonney, Joyce, and Vanda. A multiparameter approach will be employed which is designed to extract the greatest possible amount of former water-level, glaciological, and paleoenvironmental data from Dry Valleys lakes. Estimates of hydrologic changes will come from different proxies, including grain size, stratigraphy, evaporite mineralogy, stable isotope and trace element chemistry, and diatom assemblage analysis. The chronology, necessary to integrate the cores with the geomorphological record, as well as for comparisons with Antarctic ice-core and glacial records, will come from Uranium-Thorium, Uranium-Helium, and Carbon-14 dating of carbonates, as well as luminescence sediment dating. Evaluation of the link between lake-level and climate will come from hydrological and energy-balance modelling. Combination of the more continuous lake-core sequences with the spatially extensive geomorphological record will result in an integrated Antarctic lake-level and paleoclimate dataset that extends back at least 30,000 years. This record will be compared to Dry Valleys glacier records and to the Antarctic ice cores to address questions of regional climate variability, and then to other Southern Hemisphere and Northern Hemisphere records to assess interhemispheric synchrony or asynchrony of climate change.
Although the cold ocean ecosystems comprise seventy-two percent of the biosphere on Earth by volume, they remain sparsely inhabited and relatively unexploited, particularly in terms of metazoan phyla. Consequently, the few animals that can exist at this border of intracellular freezing represent ideal systems for exploring genomic-level processes of environmental adaptations. Understanding life at a margin of the biosphere is likely to convey significant insights into the essential genomic processes necessary for survival under intense selection pressures. This study of adaptive mechanisms in genomic networks focuses on an experimental system that faces a formidable challenge for viability at low water temperatures: embryonic development at sea water temperatures of -1.8 o C in two Antarctic echinoderms, the sea star Odontaster validus and the sea urchin Sterechinus neumayeri. The project strategy will quantify temperature effects on gene expression and protein turnover networks during early development using a Bayesian network analysis to identify clusters of genes and proteins whose expression levels are associated in fixed, synergistic interactions. Ultimately, there is a simple question to be addressed: Is it more or less difficult (complex) for an embryo to develop in an extreme environment? To answer this question, the research plan will decipher network topologies and subnet structuring to uncover gene connectivity patterns associated with embryo development in this polar environment. This is the new area of Environmental Genomics that the PI will explore by expanding his research experience into computational network analyses. Overall, there is a significant need for integrative biologists in the future development of environmental sciences, particularly for the application of genomic-scale technologies to answer ecological-scale questions. The educational goals of this CAREER proposal are focused at two levels in terms of interesting young students in the developing field of environmental genomics: 1) increasing the racial diversity of the scientists attracted to environmental research, and 2) increasing the awareness of career opportunities within environmental research.<br/>These educational objectives are incorporated into the research plan to engage students with the excitement of working in an extreme environment such as Antarctica and to interest them in the insights that genome-level research can reveal about how organisms are adapted to specific habitats. Working in a remote, extreme environment such as Antarctica is always a challenge. However, the adventurous nature of the work can be utilized to establish educational and outreach components of high interest to both undergraduate students and the public in general. The proposed plan will bring the experience of working in Antarctica to a larger audience through several means. These include the following: the project theme of environmental genomics will be incorporated into a new Bioinformatics curriculum currently being developed at the University of Delaware; an intern program will be implemented to involved minority undergraduate students in summer research in the United States and then to bring the students to Antarctica to participate in the research; and a K-12 education program will bring the excitement of working in Antarctica to the classrooms of thousands of children (U.S. and international) through a program produced with the Marine Science Public Education Office at the University of Delaware.