[{"awards": null, "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 12 Feb 2024 00:00:00 GMT", "description": "Undersea canyons play disproportionately important roles as oceanic biological hotspots and are critical for our understanding of many coastal ecosystems. Canyon-associated biological hotspots have persisted for thousands of years Along the Western Antarctic Peninsula, despite significant climate variability. Observations of currents over Palmer Deep canyon, a representative hotspot along the Western Antarctic Peninsula, indicate that surface phytoplankton blooms enter and exit the local hotspot on scales of ~1-2 days. This time of residence is in conflict with the prevailing idea that canyon associated hotspots are primarily maintained by phytoplankton that are locally grown in association with these features by the upwelling of deep waters rich with nutrients that fuel the phytoplankton growth. Instead, the implication is that horizontal ocean circulation is likely more important to maintaining these biological hotspots than local upwelling through its physical concentrating effects. This project seeks to better resolve the factors that create and maintain focused areas of biological activity at canyons along the Western Antarctic Peninsula and create local foraging areas for marine mammals and birds. The project focus is in the analysis of the ocean transport and concentration mechanisms that sustain these biological hotspots, connecting oceanography to phytoplankton and krill, up through the food web to one of the resident predators, penguins. In addition, the research will engage with teachers from school districts serving underrepresented and underserved students by integrating the instructors and their students completely with the science team. Students will conduct their own research with the same data over the same time as researchers on the project. Revealing the fundamental mechanisms that sustain these known hotspots will significantly advance our understanding of the observed connection between submarine canyons and persistent penguin population hotspots over ecological time, and provide a new model for how Antarctic hotspots function.\u003cbr/\u003e \u003cbr/\u003e \u003cbr/\u003eTo understand the physical mechanisms that support persistent hotspots along the Western Antarctic Peninsula (WAP), this project will integrate a modeling and field program that will target the processes responsible for transporting and concentrating phytoplankton and krill biomass to known penguin foraging locations. Within the Palmer Deep canyon, a representative hotspot, the team will deploy a High Frequency Radar (HFR) coastal surface current mapping network, uniquely equipped to identify the eddies and frontal regions that concentrate phytoplankton and krill. The field program, centered on surface features identified by the HFR, will include (i) a coordinated fleet of gliders to survey hydrography, chlorophyll fluorescence, optical backscatter, and active acoustics at the scale of the targeted convergent features; (ii) precise penguin tracking with GPS-linked satellite telemetry and time-depth recorders (TDRs); (iii) and weekly small boat surveys that adaptively target and track convergent features to measure phytoplankton, krill, and hydrography. A high resolution physical model will generalize our field measurements to other known hotspots along the WAP through simulation and determine which physical mechanisms lead to the maintenance of these hotspots. The project will also engage educators, students, and members of the general public in Antarctic research and data analysis with an education program that will advance teaching and learning as well as broadening participation of under-represented groups. This engagement includes professional development workshops, live connections to the public and classrooms, student research symposia, and program evaluation. Together the integrated research and engagement will advance our understanding of the role regional transport pathways and local depth dependent concentrating physical mechanisms play in sustaining these biological hotspots.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Palmer Station; BENTHIC; PENGUINS; FLUORESCENCE; PHYTOPLANKTON", "locations": "Palmer Station", "north": null, "nsf_funding_programs": null, "paleo_time": null, "persons": null, "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Physical Mechanisms Driving Food Web Focusing in Antarctic Biological Hotspots", "uid": "p0010448", "west": null}, {"awards": "2317927 Hills, Benjamin", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Radar Reflectivity at Whillans Ice Plain", "datasets": [{"dataset_uid": "200401", "doi": "10.5281/zenodo.11201199", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Radar Reflectivity at Whillans Ice Plain", "url": "https://doi.org/10.5281/zenodo.11201199"}], "date_created": "Mon, 07 Aug 2023 00:00:00 GMT", "description": "Ice flow is resisted by frictional forces that keep a glacier from immediately sliding into the ocean. Friction comes in two varieties: internal friction within the ice column which resists ice deformation and basal friction which resists ice sliding over its bedrock substrate. Partitioning between internal and basal friction is difficult since both have similar expressions at the most common target for data collection\u2014the ice-sheet surface. However, understanding this partitioning is important because the physical processes that control internal and basal friction act and evolve at different timescales. This project combines spaceborne remote sensing observations from the ice-sheet surface with ice-penetrating radar data that images the internal structure of the ice sheet in order to partition the contribution of each source of friction. Results will advance the fundamental understanding of ice flow and will strengthen projections of future sea-level rise. Broader Impacts of the project include facilitating data reuse for the ice-sheet research community; the strategy for distributing the software toolkit includes student mentorship and hackathon teaching. The researcher will expand the impact of existing ice-penetrating datasets by 1) developing new open-source algorithms for extraction of englacial stratigraphy; 2) creating stratigraphy data products that can be assimilated into future studies of ice motion; and 3) using statistical analyses to integrate radar datasets into larger-scale interpretations with remote sensing datasets of ice-surface velocity, altimetry, climate variables, and model-derived basal friction. The computational tools developed as part of this effort will be integrated and released as a reusable software toolkit for ice-penetrating radar data analysis. The toolkit will be validated and tested by deployment to cloud-hosted JupyterHub instances, which will serve as a singular interface to access radar and remote sensing data, load them into a unified framework, step through a predefined processing flow, and carry out statistical analyses. In some areas, the imaged englacial stratigraphy will deviate from the ice-dynamic setting expected based on surface measurements alone. There, the internal dynamics (or ice-dynamic history) are inconsistent with the surface dynamics, likely because internal friction is poorly constrained and misattributed to basal friction instead. This work will develop the data and statistical tools for constraining internal friction from ice-penetrating radar, making those data products and tools available for future work. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING", "is_usap_dc": true, "keywords": "GLACIER MOTION/ICE SHEET MOTION; BT-67; Antarctica; GLACIER TOPOGRAPHY/ICE SHEET TOPOGRAPHY; DHC-6; ICE SHEETS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Post Doc/Travel", "paleo_time": null, "persons": "Hills, Benjamin", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e BT-67; AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6", "repo": "Zenodo", "repositories": "Zenodo", "science_programs": null, "south": -90.0, "title": "Postdoctoral Fellowship: OPP-PRF: Disentangling Ice-sheet Internal and Basal Processes through Novel Ice-penetrating Radar Integration Built on Scalable, Cloud-based Infrastructure", "uid": "p0010428", "west": -180.0}, {"awards": "1625904 TBD", "bounds_geometry": "POLYGON((166 -77.5,166.4 -77.5,166.8 -77.5,167.2 -77.5,167.6 -77.5,168 -77.5,168.4 -77.5,168.8 -77.5,169.2 -77.5,169.6 -77.5,170 -77.5,170 -77.75,170 -78,170 -78.25,170 -78.5,170 -78.75,170 -79,170 -79.25,170 -79.5,170 -79.75,170 -80,169.6 -80,169.2 -80,168.8 -80,168.4 -80,168 -80,167.6 -80,167.2 -80,166.8 -80,166.4 -80,166 -80,166 -79.75,166 -79.5,166 -79.25,166 -79,166 -78.75,166 -78.5,166 -78.25,166 -78,166 -77.75,166 -77.5))", "dataset_titles": "Sarah PCWS unmodified ten-minute observational data, 2020 - present (ongoing).; Skomik PCWS unmodified ten-minute observational data, 2022 - present (ongoing).", "datasets": [{"dataset_uid": "200340", "doi": "https://doi.org/10.48567/h6qx-0613", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Skomik PCWS unmodified ten-minute observational data, 2022 - present (ongoing).", "url": "https://amrdcdata.ssec.wisc.edu/dataset/skomik-pcws-unmodified-ten-minute-observational-data-2022-present-ongoing"}, {"dataset_uid": "200341", "doi": "https://doi.org/10.48567/q4eh-nm67", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Sarah PCWS unmodified ten-minute observational data, 2020 - present (ongoing).", "url": "https://amrdcdata.ssec.wisc.edu/dataset/sarah-pcws-unmodified-ten-minute-observational-data-2022-present-ongoing"}], "date_created": "Mon, 12 Dec 2022 00:00:00 GMT", "description": "Our knowledge of Antarctic weather and climate relies on only a handful of direct observing stations located on this harsh and remote continent. This observing system reports meteorological measurements from an existing network of automatic weather stations (AWS) spread across a vast area. This MRI project will enable the development, testing and eventual deployment of a next generation of polar automatic climate and weather observing stations for unattended use in the Antarctic. The proposed new Automatic Weather Station (AWS) system will enhance the capabilities and accuracy of the meteorological observations, enabling climate quality measurements. This project will involve development of a more capable instrumentation core, with two major goals. The first goal is to lower the cost for an AWS electronic core to 3 times less than currently employed systems. The second is to enable an onboard temperature calibration capability, an innovative development for the Antarctic AWS. The capability for onboard calibration will add confidence in the critical climate measure of ambient temperature, along with other standard meteorological parameters. Observations made by a modernized AWS network will inform and extend future numerical climate modeling efforts, improve operational weather forecasts, capture weather phenomena, and support environmental science research in other disciplines. A theme of the project is the inclusion of community college students in all aspects of the effort. With an eye on training the next generation of research instrumentation expertise, while involving other science, technology, engineering and mathematics (STEM) fields, undergraduate students will be involved in the development, testing and deployment of new AWS systems. As well as reporting, data analysis and publication of scientific knowledge, students intending to transfer to a 4-year university, as well as those pursuing electronics or electrical engineering associate degrees will be introduced to weather and climate topics. This MRI award was supported with funds from the Division of Polar Programs and the Division of Atmospheric and Geospace Sciences, both of the Directorate of Geosciences.", "east": 170.0, "geometry": "POINT(168 -78.75)", "instruments": null, "is_usap_dc": true, "keywords": "ATMOSPHERIC WINDS; Madison Area Technical College; SNOW/ICE; SURFACE PRESSURE; ATMOSPHERIC RADIATION; HUMIDITY; AIR TEMPERATURE; METEOROLOGICAL STATIONS; WEATHER STATIONS", "locations": "Madison Area Technical College", "north": -77.5, "nsf_funding_programs": null, "paleo_time": null, "persons": "Lazzara, Matthew; Cassano, John; L\u0027\u0027Ecuyer, Tristan; Kulie, Mark", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e METEOROLOGICAL STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e WEATHER STATIONS", "repo": "AMRDC", "repositories": "AMRDC", "science_programs": null, "south": -80.0, "title": "MRI: Development of a Modern Polar Climate and Weather Automated Observing System", "uid": "p0010396", "west": 166.0}, {"awards": "2220969 Manucharyan, Georgy; 2220968 Stewart, Andrew", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Sun, 07 Aug 2022 00:00:00 GMT", "description": "The world ocean is continuously in motion, and a large fraction of this motion takes the form of \"eddies\", nearly-horizontal swirls of water spanning tens to hundreds of kilometers. These eddies affect the ocean by mediating large-scale currents, redistributing heat, and supplying nutrients to oceanic ecosystems. Consequently, the ocean science community has historically invested substantial effort in characterizing the properties and impact of these eddies. In polar regions, the sea ice cover inhibits observations of eddies, and the relatively small horizontal size of the eddies hampers computer simulations of their behavior. Nonetheless, previous studies have identified an active population of eddies beneath the Arctic sea ice and shown that these eddies play a crucial role in maintaining the large-scale circulation in the Arctic seas. However, there has been no systematic attempt to study such eddies under Antarctic sea ice, leaving a significant gap in our understanding of eddies and their contribution to the large-scale ocean circulation around Antarctica. The proposed research combines multiple approaches to improve our understanding of the eddy dynamics. Statistical characterizations of the sub-sea ice eddy field will be derived using hydrographic observations under Antarctic sea ice from Argo floats and instrumented seals. High-resolution global ocean and sea ice models will be used to track the simulated eddies back to their formation sites to identify the eddy formation mechanisms. Theoretical calculations will be conducted to test the hypothesis that the eddies primarily originate from hydrodynamic instabilities associated with subsurface density gradients. These theoretical, modeling, and data analysis approaches will be combined to estimate the eddies\u0027 contribution to lateral tracer transports and their impact on mean circulations of the near-Antarctic ocean. The proposed work will facilitate future scientific endeavors by providing publicly-available databases of detected eddy properties. This project will support the research of several junior scientists: an undergraduate student, two graduate students, and an early-career faculty member. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; OCEAN CURRENTS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Stewart, Andrew; Bianchi, Daniele", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Characteristics and Origins of Eddies beneath Antarctic Sea Ice", "uid": "p0010366", "west": -180.0}, {"awards": "2205008 Walker, Catherine", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Sun, 07 Aug 2022 00:00:00 GMT", "description": "Most of the mass loss from the Antarctic Ice Sheet, a major contributor to sea level rise, occurs at its margins, where ice meets the ocean. Glaciers and ice streams flow towards the coast and can go afloat over the water, forming ice shelves. Ice shelves make up almost half of the entire Antarctic coastline, and hold back the flow of inland ice in Antarctica continent; thus they are integral to the overall stability of the Antarctic Ice Sheet. Ice shelves lose mass by two main processes: iceberg calving and basal melting. Temporal and spatial fluctuations in both are driven by various processes; a major driver of ice shelf melt is the heat provided by the neighboring Southern Ocean. Ocean heat, in turn, is driven by various aspects of the ice shelf environment. One of the most significant contributors to changes in the ocean\u2019s heat content is the presence of sea ice. This research will focus on the effects of coastal polynyas (areas of open water amidst sea ice), how they modulate the local ocean environment, and how that environment drives ice shelf basal melting. To date, the relationship between polynyas and ice shelf melt has not been characterized on an Antarctic-wide scale. Understanding the feedbacks between polynya size and duration, ocean stratification, and ice shelf melt, and the strength of those feedbacks, will improve the ability to characterize influences on the long-term stability of ice shelves, and in turn, the Antarctic Ice Sheet as a whole. A critical aspect of this study is that it will provide a framework for understanding ice shelf-ocean interaction across a diverse range of geographic settings. This, together with improvements of various models, will help interpret the impacts of future climate change on these systems, as their responses are likely quite variable and, overall, different from the large-scale response of the ice sheet. This project will also provide a broader context to better design future observational studies of specific coastal polynya and ice shelf processes. This study focuses on four main hypotheses: 1) Variations of coastal polynya extent are correlated with those of the ice shelf melt rates, and this correlation varies around Antarctica; 2) Polynya extent modulates a feedback between ice shelf melt and accretion regimes through stratification of local waters; 3) Polynya extent together with seafloor bathymetry regulate the volume of warm offshore waters that reach ice margins; and 4) The strength of the feedback between polynya and glacier ice varies with geographic setting and influences the long-term stability of the glacial system. Observational data, including ice-penetrating radar, radar and laser altimetry, and in situ hydrographic data, and derived data sets from the Southern Ocean State Estimate (SOSE) project and BedMachine Antarctica, will be used in conjunction with ocean (MIT global circulation model, MITgcm) and ice sheet (Ice sheet and Sea-level System Model, ISSM) models to reveal underlying dynamics. The joint analysis of the observational data enables an investigation of polynya, ocean, and ice shelf signals and their interplay over time across a range of settings. The results of this data analysis also provide inputs and validation data for the modeling tasks, which will allow for characterization of the feedbacks in our observations. The coupled modeling will enable us to examine the interaction between polynya circulation and ice shelves in different dynamical regimes and to understand ice and ocean feedback over time. Diagnosing and interpreting the pan-Antarctic spatial variability of the polynya-ice shelf interaction are the main objectives of this research and separates this study from other projects targeted at the interactive processes in specific regions. As such, this research focuses on seven preliminary target sites around the Antarctic coast to establish a framework for interpreting coupled ice shelf-ocean variability across a diverse range of geographic settings. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "United States Of America; ICE EXTENT; GLACIERS/ICE SHEETS", "locations": "United States Of America", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science", "paleo_time": null, "persons": "Walker, Catherine; Zhang, Weifeng; Seroussi, Helene", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Investigating the Role of Coastal Polynya Variability in Modulating Antarctic Marine-Terminating Glacier Drawdown", "uid": "p0010364", "west": -180.0}, {"awards": "1745023 Hennon, Tyler; 1745009 Kohut, Josh; 1745011 Klinck, John; 1745081 Bernard, Kim; 1744884 Oliver, Matthew; 1745018 Fraser, William", "bounds_geometry": "POLYGON((-75 -60,-73 -60,-71 -60,-69 -60,-67 -60,-65 -60,-63 -60,-61 -60,-59 -60,-57 -60,-55 -60,-55 -61,-55 -62,-55 -63,-55 -64,-55 -65,-55 -66,-55 -67,-55 -68,-55 -69,-55 -70,-57 -70,-59 -70,-61 -70,-63 -70,-65 -70,-67 -70,-69 -70,-71 -70,-73 -70,-75 -70,-75 -69,-75 -68,-75 -67,-75 -66,-75 -65,-75 -64,-75 -63,-75 -62,-75 -61,-75 -60))", "dataset_titles": "Antarctic ACROBAT data; CTD Data from IFCB Sampling; Finite Time Lyapunov Exponent Results, Calculated from High Frequency Radar Observed Surface Currents; High Frequency Radar, Palmer Deep; IFCB Image Data; Relative Particle Density; SWARM AMLR moorings - acoustic data; SWARM Glider Data near Palmer Deep; WAP model float data; Winds from Joubin and Wauwerman Islands", "datasets": [{"dataset_uid": "200396", "doi": "10.26008/1912/bco-dmo.867442.2", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "WAP model float data", "url": "https://www.bco-dmo.org/dataset/867442"}, {"dataset_uid": "200390", "doi": "10.26008/1912/bco-dmo.865030.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "CTD Data from IFCB Sampling", "url": "https://www.bco-dmo.org/dataset/865030"}, {"dataset_uid": "200398", "doi": "", "keywords": null, "people": null, "repository": "IOOS Glider DAAC", "science_program": null, "title": "SWARM Glider Data near Palmer Deep", "url": "https://gliders.ioos.us/erddap/search/index.html?page=1\u0026itemsPerPage=1000\u0026searchFor=swarm"}, {"dataset_uid": "200392", "doi": "10.26008/1912/bco-dmo.917884.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "High Frequency Radar, Palmer Deep", "url": "https://www.bco-dmo.org/dataset/917884"}, {"dataset_uid": "200397", "doi": "10.26008/1912/bco-dmo.865098.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Winds from Joubin and Wauwerman Islands", "url": "https://www.bco-dmo.org/dataset/865098"}, {"dataset_uid": "200394", "doi": "10.26008/1912/bco-dmo.917926.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Relative Particle Density", "url": "https://www.bco-dmo.org/dataset/917926"}, {"dataset_uid": "200393", "doi": "10.26008/1912/bco-dmo.865002.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "IFCB Image Data", "url": "https://www.bco-dmo.org/dataset/865002"}, {"dataset_uid": "200389", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Antarctic ACROBAT data", "url": "https://www.bco-dmo.org/dataset/916046"}, {"dataset_uid": "200391", "doi": "10.26008/1912/bco-dmo.917914.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Finite Time Lyapunov Exponent Results, Calculated from High Frequency Radar Observed Surface Currents", "url": "https://www.bco-dmo.org/dataset/917914"}, {"dataset_uid": "200395", "doi": "10.26008/1912/bco-dmo.872729.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "SWARM AMLR moorings - acoustic data", "url": "https://www.bco-dmo.org/dataset/872729"}], "date_created": "Tue, 05 Jul 2022 00:00:00 GMT", "description": "Undersea canyons play disproportionately important roles as oceanic biological hotspots and are critical for our understanding of many coastal ecosystems. Canyon-associated biological hotspots have persisted for thousands of years Along the Western Antarctic Peninsula, despite significant climate variability. Observations of currents over Palmer Deep canyon, a representative hotspot along the Western Antarctic Peninsula, indicate that surface phytoplankton blooms enter and exit the local hotspot on scales of ~1-2 days. This time of residence is in conflict with the prevailing idea that canyon associated hotspots are primarily maintained by phytoplankton that are locally grown in association with these features by the upwelling of deep waters rich with nutrients that fuel the phytoplankton growth. Instead, the implication is that horizontal ocean circulation is likely more important to maintaining these biological hotspots than local upwelling through its physical concentrating effects. This project seeks to better resolve the factors that create and maintain focused areas of biological activity at canyons along the Western Antarctic Peninsula and create local foraging areas for marine mammals and birds. The project focus is in the analysis of the ocean transport and concentration mechanisms that sustain these biological hotspots, connecting oceanography to phytoplankton and krill, up through the food web to one of the resident predators, penguins. In addition, the research will engage with teachers from school districts serving underrepresented and underserved students by integrating the instructors and their students completely with the science team. Students will conduct their own research with the same data over the same time as researchers on the project. Revealing the fundamental mechanisms that sustain these known hotspots will significantly advance our understanding of the observed connection between submarine canyons and persistent penguin population hotspots over ecological time, and provide a new model for how Antarctic hotspots function. To understand the physical mechanisms that support persistent hotspots along the Western Antarctic Peninsula (WAP), this project will integrate a modeling and field program that will target the processes responsible for transporting and concentrating phytoplankton and krill biomass to known penguin foraging locations. Within the Palmer Deep canyon, a representative hotspot, the team will deploy a High Frequency Radar (HFR) coastal surface current mapping network, uniquely equipped to identify the eddies and frontal regions that concentrate phytoplankton and krill. The field program, centered on surface features identified by the HFR, will include (i) a coordinated fleet of gliders to survey hydrography, chlorophyll fluorescence, optical backscatter, and active acoustics at the scale of the targeted convergent features; (ii) precise penguin tracking with GPS-linked satellite telemetry and time-depth recorders (TDRs); (iii) and weekly small boat surveys that adaptively target and track convergent features to measure phytoplankton, krill, and hydrography. A high resolution physical model will generalize our field measurements to other known hotspots along the WAP through simulation and determine which physical mechanisms lead to the maintenance of these hotspots. The project will also engage educators, students, and members of the general public in Antarctic research and data analysis with an education program that will advance teaching and learning as well as broadening participation of under-represented groups. This engagement includes professional development workshops, live connections to the public and classrooms, student research symposia, and program evaluation. Together the integrated research and engagement will advance our understanding of the role regional transport pathways and local depth dependent concentrating physical mechanisms play in sustaining these biological hotspots. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -55.0, "geometry": "POINT(-65 -65)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CONDUCTIVITY SENSORS \u003e CONDUCTIVITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e RADIATION SENSORS", "is_usap_dc": true, "keywords": "MOORED; WATER TEMPERATURE; CONDUCTIVITY; FLUORESCENCE; UNCREWED VEHICLES; Palmer Station; PHOTOSYNTHETICALLY ACTIVE RADIATION; PELAGIC; OCEAN MIXED LAYER; SURFACE; SALINITY; WATER PRESSURE; LIVING ORGANISM; MODELS; ACOUSTIC SCATTERING", "locations": "Palmer Station", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Instrumentation and Support; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science", "paleo_time": "NOT APPLICABLE", "persons": "Bernard, Kim; Oliver, Matthew; Kohut, Josh; Fraser, William; Klinck, John M.; Statcewich, Hank", "platforms": "LIVING ORGANISM-BASED PLATFORMS \u003e LIVING ORGANISM; OTHER \u003e MODELS; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED; WATER-BASED PLATFORMS \u003e UNCREWED VEHICLES; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE", "repo": "BCO-DMO", "repositories": "BCO-DMO; IOOS Glider DAAC", "science_programs": null, "south": -70.0, "title": "Collaborative Research: Physical Mechanisms Driving Food Web Focusing in Antarctic Biological Hotspots", "uid": "p0010346", "west": -75.0}, {"awards": "2039432 Grapenthin, Ronni", "bounds_geometry": "POLYGON((165.5 -77.1,165.91 -77.1,166.32 -77.1,166.73 -77.1,167.14 -77.1,167.55 -77.1,167.96 -77.1,168.37 -77.1,168.78 -77.1,169.19 -77.1,169.6 -77.1,169.6 -77.18,169.6 -77.26,169.6 -77.34,169.6 -77.42,169.6 -77.5,169.6 -77.58,169.6 -77.66,169.6 -77.74,169.6 -77.82,169.6 -77.9,169.19 -77.9,168.78 -77.9,168.37 -77.9,167.96 -77.9,167.55 -77.9,167.14 -77.9,166.73 -77.9,166.32 -77.9,165.91 -77.9,165.5 -77.9,165.5 -77.82,165.5 -77.74,165.5 -77.66,165.5 -77.58,165.5 -77.5,165.5 -77.42,165.5 -77.34,165.5 -77.26,165.5 -77.18,165.5 -77.1))", "dataset_titles": "Erebus GPS timeseries ", "datasets": [{"dataset_uid": "601471", "doi": "10.15784/601471", "keywords": "Antarctica; GPS; Mount Erebus; Ross Island", "people": "Grapenthin, Ronni", "repository": "USAP-DC", "science_program": null, "title": "Erebus GPS timeseries ", "url": "https://www.usap-dc.org/view/dataset/601471"}], "date_created": "Fri, 03 Sep 2021 00:00:00 GMT", "description": "Nontechnical Abstract Mount Erebus volcano on Ross Island, Antarctica, is the southernmost active volcano on the planet. It provides a natural laboratory to study a volcanic system that has been in a continuous state of activity with a persistent lava lake over at least the last 40 years. Worldwide only four other volcanoes with such long-lived lava lakes exist: Erta Ale, Ethiopia; Kilauea, Hawaii; Nyiragongo, Congo; and Ambrym, Vanuatu. These volcanoes are a rare anomaly that provide a window into the underlying magmatic system and behavior. Erebus is of particular interest as it cycles through phases of very explosive activity every 20 thousand years. This project will investigate interactions between the magmatic system, the rift it is located in, and the impact of the gravitational load the volcano imposes on the underlying crust and its own magmatic system. Possible interactions between these factors may explain the changes in activity. The project will analyze geophysical data that have been collected at Erebus over at least the last two decades. The results of this work will be available to the public and scientific community and inform geodynamic models in this region. The project funds an early-career scientist and a graduate student at New Mexico Tech and contributes to the development of the next generation of scientists. Technical Abstract The proposed work targets scientific questions recently formulated by the community during the 2016 NSF-sponsored Scientific Drivers and Future of Mount Erebus Volcano Observatory workshop. The location and geometry of the magmatic plumbing from vent to lower crust system remain poorly constrained, particularly below 1 km depth. The style and causes for changes in volcanic and magmatic activity over the short term (minutes to hours) and on the decadal scale remains enigmatic. Two decades of campaign and continuous GPS data on Ross Island will inform about the longer term dynamics of both, Ross Island growing within the Terror Rift, and Erebus? deeper magmatic system. This project will organize and analyze all existing GPS data for Ross Island, and interpret any anomalies in the resulting time series. These activities require organization, consistent processing and interpretation/modeling of the existing ~20 years of GPS data, which include campaign, continuous, and high-rate GPS observations. We will generate these position time series in a consistent local reference frame and make the results, including models of transient deformation available to the community. Volcanic, tectonic and isostatic adjustment related deformation will be modeled to place Erebus in a broad volcano-tectonic framework of West Antarctica. During the data analysis phase, the utility of existing GPS data for reflection studies of snow and sea-level dynamics will also be evaluated.", "east": 169.6, "geometry": "POINT(167.55 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Ross Island; TECTONICS; USAP-DC; Amd/Us; AMD; CRUSTAL MOTION; USA/NSF; FIELD SURVEYS", "locations": "Ross Island", "north": -77.1, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Instrumentation and Facilities", "paleo_time": null, "persons": "Grapenthin, Ronni", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Collaborative Research: Multi-Parameter Geophysical Constraints on Volcano Dynamics of Mt. Erebus and Ross Island, Antarctica", "uid": "p0010255", "west": 165.5}, {"awards": "2031442 Learman, Deric", "bounds_geometry": "POLYGON((-180 -60,-167.5 -60,-155 -60,-142.5 -60,-130 -60,-117.5 -60,-105 -60,-92.5 -60,-80 -60,-67.5 -60,-55 -60,-55 -62,-55 -64,-55 -66,-55 -68,-55 -70,-55 -72,-55 -74,-55 -76,-55 -78,-55 -80,-67.5 -80,-80 -80,-92.5 -80,-105 -80,-117.5 -80,-130 -80,-142.5 -80,-155 -80,-167.5 -80,180 -80,178 -80,176 -80,174 -80,172 -80,170 -80,168 -80,166 -80,164 -80,162 -80,160 -80,160 -78,160 -76,160 -74,160 -72,160 -70,160 -68,160 -66,160 -64,160 -62,160 -60,162 -60,164 -60,166 -60,168 -60,170 -60,172 -60,174 -60,176 -60,178 -60,-180 -60))", "dataset_titles": "Physical and geochemical data from shelf sediments near the Antartic Pennisula", "datasets": [{"dataset_uid": "601607", "doi": "10.15784/601607", "keywords": "Antarctica; Antarctic Peninsula; Grain Size; Grain Size Analysis; Marine Geoscience; Marine Sediments; Organic Matter Geochemistry; Sediment Core Data; Shelf Sediments; Weddell Sea", "people": "Learman, Deric", "repository": "USAP-DC", "science_program": null, "title": "Physical and geochemical data from shelf sediments near the Antartic Pennisula", "url": "https://www.usap-dc.org/view/dataset/601607"}], "date_created": "Wed, 28 Jul 2021 00:00:00 GMT", "description": "Western Antarctica is one of the fastest warming locations on Earth. Its changing climate will lead to an increase in sea-level and will also alter regional water temperature and chemistry. These changes will directly alter the microbes that inhabit the ecosystem. Microbes are the smallest forms of life on Earth, but they are also the most abundant. They drive cycling of essential nutrients, such as carbon and nitrogen that are found in ocean sediments. In this way they form the foundation of the food chain that supports larger and more complex life. However, we do not know much about how different communities of microbes break down sediments in Antarctica and this will influence the chemistry of those waters. This research will determine how communities of microbes on the coastal shelf of Antarctica degrade complex organic sediments using genetic and chemical data. This data will identify the species in the community, what enzymes they are producing and what chemical reactions they are driving. This research will create broader impacts as the data will be used to create in-class activities that improve a student\u2019s data analysis and critical thinking skills. The data will be used in graduate, undergraduate and K-12 classrooms. This research will provide genetic and enzymatic insight into how microbial communities in benthic sediments on the coastal shelf of Antarctica degrade complex organic matter. The current understanding of how benthic microbial communities respond to and then degrade complex organic matter in Antarctica is fragmented. Recent work suggests benthic microbial communities are shaped by organic matter availability. However, those studies were observational and did not directly examine community function. A preliminary study of metagenomic data from western Antarctic marine sediments, indicates a genetic potential for organic matter degradation but functional data was not been collected. Other studies have examined either enzyme activity or metagenomic potential, but few have been able to directly connect the two. To address this gap in knowledge, this study will utilize metagenomics and metatranscriptomics, coupled with microcosm experiments, enzyme assays, and geochemical data. It will examine Antarctic microbial communities from the Ross Sea, the Bransfield Strait and Weddell Sea to document how the relationship between a communities\u2019 enzymatic activity and the genes used to degrade complex organic matter is related to sediment breakdown. The data will expand our current knowledge of microbial genetic potential and provide a solid understanding of enzyme function as it relates to degradation of complex organic matter in those marine sediments. It will thereby improve our understanding of temperature change on the chemistry of Antarctic seawater. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 160.0, "geometry": "POINT(-127.5 -70)", "instruments": null, "is_usap_dc": true, "keywords": "ECOSYSTEM FUNCTIONS; USAP-DC; Antarctic Peninsula; BENTHIC; SHIPS; SEDIMENT CHEMISTRY; Amd/Us; AMD; USA/NSF; Weddell Sea", "locations": "Antarctic Peninsula; Weddell Sea", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Learman, Deric", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "RAPID: Meta-genomic and Transcriptomic Investigation of Complex Organic Matter Degradation in Antarctic Benthic Sediments", "uid": "p0010235", "west": -55.0}, {"awards": "1746148 Sirovic, Ana", "bounds_geometry": "POLYGON((140 -65.5,140.8 -65.5,141.6 -65.5,142.4 -65.5,143.2 -65.5,144 -65.5,144.8 -65.5,145.6 -65.5,146.4 -65.5,147.2 -65.5,148 -65.5,148 -65.57,148 -65.64,148 -65.71,148 -65.78,148 -65.85,148 -65.92,148 -65.99,148 -66.06,148 -66.13,148 -66.2,147.2 -66.2,146.4 -66.2,145.6 -66.2,144.8 -66.2,144 -66.2,143.2 -66.2,142.4 -66.2,141.6 -66.2,140.8 -66.2,140 -66.2,140 -66.13,140 -66.06,140 -65.99,140 -65.92,140 -65.85,140 -65.78,140 -65.71,140 -65.64,140 -65.57,140 -65.5))", "dataset_titles": "Passive acoustic recording metadata from East Antarctica, Feb 2019", "datasets": [{"dataset_uid": "601465", "doi": "10.15784/601465", "keywords": "Antarctica; East Antarctica", "people": "Sirovic, Ana", "repository": "USAP-DC", "science_program": null, "title": "Passive acoustic recording metadata from East Antarctica, Feb 2019", "url": "https://www.usap-dc.org/view/dataset/601465"}], "date_created": "Tue, 13 Jul 2021 00:00:00 GMT", "description": "Understanding the interaction between blue whales and their prey is essential for understanding Antarctic ecosystem dynamics. In the austral summer of 2019 an international interdisciplinary research voyage will head to the Antarctic with the overall goal of mapping Antarctic krill and blue whale distributions to determine if foraging preferences of blue whales are dictated in part by the density and shape of Antarctic krill swarms. This research voyage will combine advanced research technologies (including autonomous underwater vehicles, short term-tags, photogrammetry, and ship-based, real-time passive listening and active echosounders) to answer questions about how the density, swarm shape and behavior of Antarctic krill influence Antarctic blue whales. U.S. participation on this voyage on an Australian research vessel will allow collection of concurrent predator and prey data through the use of passive listening and echosounders from a fixed mooring. By coupling moored data collection with the ship-based survey focusing on Antarctic blue whale behavior and krill dynamics, the project will contribute to the understanding of basic questions relating to the dynamics between blue whales and their prey as well as adding to the development of instrumentation and technologies that will enhance current capabilities for in situ observing on the continent and the surrounding ice-covered waters. The project will provide an educational platform for high school students and the general public to virtually experience Antarctica via \"virtual sailing\" through a project website and blog. Students and the general public also will be allowed the opportunity to participate in post-cruise data analysis. The Australian Antarctic Division and the University of Tasmania will lead an international voyage to the Antarctic in the austral summer of 2019. The overall goal of the voyage will be to map Antarctic krill (Euphausia superba) and blue whale (Balaenoptera musculus) distributions to determine if the foraging preferences of blue whales are dictated in part by the density and shape of Antarctic krill swarms. US participation in voyage will entail the deployment of passive and active acoustic instrumentation on a fixed mooring in concert with real-time acoustic and visual tracking and localizing of blue whales that will then allow better directing of ship operations towards aggregations of animals such that fine-scale acoustic tracking and prey field mapping can be achieved. This approach will be the first time such an acoustic system is deployed in Antarctica and used in an integrative fashion to assess foraging behaviors and krill. Thus, the project will advance understanding of the relationships between the acoustic ecology of blue whales, krill abundance, and blue whale densities. The technology deployment and testing will also be used to assess its potential use in ice-covered waters for similar studies in the future. Broader impacts of this project will occur through outreach and education, as well as through the collaborations with the broader international scientific community. The project will provide educational platforms for high school students and general public to virtually experience Antarctica. Research findings will be communicated to both the scientific community and the wider public through peer-reviewed publications, presentations, student lectures, seminars and communication through appropriate media channels by institutional communications teams. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 148.0, "geometry": "POINT(144 -65.85)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; AMD; USAP-DC; SPECIES/POPULATION INTERACTIONS; MAMMALS; PELAGIC; East Antarctica; USA/NSF; ACOUSTIC SCATTERING; FIELD SURVEYS; ARTHROPODS", "locations": "East Antarctica", "north": -65.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Sirovic, Ana; Stafford, Kathleen", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -66.2, "title": "EAGER: Collaborative Research: Acoustic Ecology of Foraging Antarctic Blue Whales in the Vicinity of Antarctic Krill", "uid": "p0010228", "west": 140.0}, {"awards": "2023244 Stewart, Andrew; 2023259 Thompson, Andrew; 2023303 Purkey, Sarah", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Code for reproducing the ocean-biogeochemical experiments in Sun et al. (2024); Hydrographic data collected from the Bellingshausen and Amundsen seas (NCEI Accession 0210639); Ocean CFC reconstructed data product", "datasets": [{"dataset_uid": "200427", "doi": "10.6084/m9.figshare.26787751", "keywords": null, "people": null, "repository": "Figshare (open repository)", "science_program": null, "title": "Code for reproducing the ocean-biogeochemical experiments in Sun et al. (2024)", "url": "https://doi.org/10.6084/m9.figshare.26787751"}, {"dataset_uid": "200428", "doi": "", "keywords": null, "people": null, "repository": "NOAA\u0027s National Centers for Environmental Information (NCEI)", "science_program": null, "title": "Hydrographic data collected from the Bellingshausen and Amundsen seas (NCEI Accession 0210639)", "url": "https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0210639"}, {"dataset_uid": "601752", "doi": "10.15784/601752", "keywords": "Antarctica; CFCs; GLODAP; Ocean Model; Ocean Ventilation; Southern Ocean", "people": "Cimoli, Laura; Gebbie, Jack; Purkey, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Ocean CFC reconstructed data product", "url": "https://www.usap-dc.org/view/dataset/601752"}], "date_created": "Thu, 01 Jul 2021 00:00:00 GMT", "description": "Part 1: Because of the manner in which it is formed at high latitudes in the Antarctic ice, Antarctic Bottom Water (AABW) is the coldest, saltiest and densest water on the planet. The global circulation of is often quanti\ufb01ed via the transport in a two-dimensional, latitude/depth coordinate space. However, AABW formation, northward \ufb02ow and distribution between the Atlantic, Indian and Paci\ufb01c basins are fundamentally three-dimensional processes. AABW is formed in a handful of distinct sites around the Antarctic coast, notably the southern Weddell Sea, the western Ross Sea, along the Ad\u00b4elie coast, and in Prydz Bay. AABW is one of the key components of the global ocean overturning circulation, and plays a critical role in regulating Earth\u0027s climate, on multi-decadal-to-millennial time scales. Part 2: Mapping of AABW transport to northern basins is not well constrained, with conflicting conclusions drawn in previous studies. At one extreme the ACC has been suggested to be a \u201cconduit\" that simply allows each variety of AABW to transit directly northward. At the other extreme, it has been suggested that the ACC \u201cblends\" all shelf AABW sources together before they reach the northern basins. To close the gap in understanding, this collaborative project draws on three complementary analytical tools: process-oriented modeling of AABW export across the ACC, a high-resolution global ocean model, and an observationally-constrained estimate of the global circulation. The proposed identification and mechanistic understanding of AABW pathways. This project will also advance the careers of three postdoctoral researchers and two early-career faculty members, and will continue collaborative links between the PI and a foreign investigator. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e DATA ANALYSIS \u003e ENVIRONMENTAL MODELING \u003e COMPUTER", "is_usap_dc": true, "keywords": "AMD; MODELS; USAP-DC; WATER MASSES; Southern Ocean; Amd/Us; OCEAN CURRENTS; COMPUTERS; Antarctic Circumpolar Current; USA/NSF", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Stewart, Andrew; Thompson, Andrew; Purkey, Sarah", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e MODELS \u003e MODELS", "repo": "Figshare (open repository)", "repositories": "Figshare (open repository); NOAA\u0027s National Centers for Environmental Information (NCEI); USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: The Antarctic Circumpolar Current: A Conduit or Blender of Antarctic Bottom Waters?", "uid": "p0010220", "west": -180.0}, {"awards": "1937748 Sumner, Dawn", "bounds_geometry": "POINT(163.183333 -77.616667)", "dataset_titles": "Lake Fryxell 2022-2023 benthic microbial mat thickness and number of laminae", "datasets": [{"dataset_uid": "601839", "doi": "10.15784/601839", "keywords": "Antarctica; Cryosphere; Dry Valleys; Lake Fryxell; Laminae; Microbial Mat; Thickness", "people": "Juarez Rivera, Marisol; Mackey, Tyler; Paul, Ann; Hawes, Ian; Sumner, Dawn", "repository": "USAP-DC", "science_program": null, "title": "Lake Fryxell 2022-2023 benthic microbial mat thickness and number of laminae", "url": "https://www.usap-dc.org/view/dataset/601839"}], "date_created": "Wed, 30 Jun 2021 00:00:00 GMT", "description": "Part I: Non-technical summary: This project focuses on understanding annual changes in microbial life that grows on the bottom of Lake Fryxell, Antarctica. Because of its polar latitude, photosynthesis can only occur during the summer months. During summer, photosynthetic bacteria supply communities with energy and oxygen. However, it is unknown how the microbes behave in the dark winter, when observations are not possible. This project will install environmental monitors and light-blocking shades over parts of these communities. The shades will extend winter conditions into the spring to allow researchers to characterize the winter behavior of the microbial communities. Researchers will measure changes in the water chemistry due to microbial activities when the shades are removed and the mats first receive light. Results are expected to provide insights into how organisms interact with and change their environments. The project includes training of graduate students and early career scientists in fieldwork, including scientific ice diving techniques. In addition, the members of the project team will develop a web-based \u201cGuide to Thrive\u201d, which will compile field tips ranging from basic gear use to advanced environmental protection techniques. This will be a valuable resource for group leaders ranging from undergraduate teaching assistants to Antarctic expedition leaders to lead well-planned and tailored field expeditions. Part II: Technical summary: The research team will measure seasonal metabolic and biogeochemical changes in benthic mats using differential gene expression and geochemical gradients. They will identify seasonal phenotypic differences in microbial communities and ecosystem effects induced by spring oxygen production. To do so, researchers will install environmental sensors and opaque shades over mats at three depths in the lake. The following spring, shaded and unshaded mats will be sampled. The shades will then be removed, and changes in pore water O2, H2S, pH, and redox will be measured using microelectrodes. Mats will also be sampled for transcriptomic gene expression analyses at intervals guided by geochemical changes. Pore water will be sampled for nutrient analyses. Field research will be supplemented with laboratory experiments to refine field techniques, gene expression data analysis, and integration of results into a seasonal model of productivity and nitrogen cycling in Lake Fryxell. Results will provide insights into several key priorities for NSF, including how biotic, abiotic and environmental components of the benthic mats interact to affect Antarctic lakes. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 163.183333, "geometry": "POINT(163.183333 -77.616667)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Amd/Us; AMD; USA/NSF; FIELD SURVEYS; ECOSYSTEM FUNCTIONS; Lake Fryxell; USAP-DC; LAKE/POND", "locations": "Antarctica; Lake Fryxell", "north": -77.616667, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Integrated System Science", "paleo_time": null, "persons": "Sumner, Dawn; Mackey, Tyler", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.616667, "title": "Seasonal Primary Productivity and Nitrogen Cycling in Photosynthetic Mats, Lake Fryxell, McMurdo Dry Valleys", "uid": "p0010219", "west": 163.183333}, {"awards": "1443690 Young, Duncan", "bounds_geometry": "POLYGON((95 -68,100.5 -68,106 -68,111.5 -68,117 -68,122.5 -68,128 -68,133.5 -68,139 -68,144.5 -68,150 -68,150 -70.2,150 -72.4,150 -74.6,150 -76.8,150 -79,150 -81.2,150 -83.4,150 -85.6,150 -87.8,150 -90,144.5 -90,139 -90,133.5 -90,128 -90,122.5 -90,117 -90,111.5 -90,106 -90,100.5 -90,95 -90,95 -87.8,95 -85.6,95 -83.4,95 -81.2,95 -79,95 -76.8,95 -74.6,95 -72.4,95 -70.2,95 -68))", "dataset_titles": "Airborne potential fields data from Titan Dome, Antarctica; ICECAP Basal Interface Specularity Content Profiles: IPY and OIB; ICECAP: Gridded boundary conditions for Little Dome C, Antarctica, and extracted subglacial lake locations; ICECAP: High resolution survey of the Little Dome C region in support of the IPICS Old Ice goal; ICECAP radargrams in support of the international old ice search at Dome C - 2016; Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau; SPICECAP/ICECAP II Instrument Measurements (LASER, MAGNETICS and POSITIONING); Titan Dome, East Antarctica, Aerogeophysical Survey", "datasets": [{"dataset_uid": "601411", "doi": "10.15784/601411", "keywords": "Antarctica; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; ICECAP; Ice Penetrating Radar; Internal Reflecting Horizons", "people": "Tozer, Carly; Ritz, Catherine; Blankenship, Donald D.; Schroeder, Dustin; Mulvaney, Robert; Roberts, Jason; Frezzotti, Massimo; Paden, John; Muldoon, Gail R.; Quartini, Enrica; Kempf, Scott D.; Ng, Gregory; Greenbaum, Jamin; Cavitte, Marie G. P; Young, Duncan A.", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau", "url": "https://www.usap-dc.org/view/dataset/601411"}, {"dataset_uid": "601461", "doi": "10.15784/601461", "keywords": "Antarctica; ICECAP; Titan Dome", "people": "Greenbaum, Jamin; Jingxue, Guo; Blankenship, Donald D.; Young, Duncan A.; Bo, Sun", "repository": "USAP-DC", "science_program": null, "title": "Airborne potential fields data from Titan Dome, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601461"}, {"dataset_uid": "601463", "doi": "10.15784/601463", "keywords": "Antarctica; Epica Dome C; ICECAP; Ice Penetrating Radar; Subglacial Lake", "people": "Young, Duncan A.; Roberts, Jason; Ritz, Catherine; Frezzotti, Massimo; Quartini, Enrica; Cavitte, Marie G. P; Van Ommen, Tas; Blankenship, Donald D.; Steinhage, Daniel; Tozer, Carly; Urbini, Stefano; Corr, Hugh F. J.", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "ICECAP: Gridded boundary conditions for Little Dome C, Antarctica, and extracted subglacial lake locations", "url": "https://www.usap-dc.org/view/dataset/601463"}, {"dataset_uid": "200233", "doi": "http://dx.doi.org/doi:10.26179/5wkf-7361", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "ICECAP radargrams in support of the international old ice search at Dome C - 2016", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_ICECAP_OIA_RADARGRAMS"}, {"dataset_uid": "601371", "doi": "10.15784/601371", "keywords": "Antarctica; East Antarctica; ICECAP; Ice Penetrating Radar; Radar Echo Sounder; Radar Echo Sounding; Subglacial Hydrology", "people": "Young, Duncan A.; Roberts, Jason; Greenbaum, Jamin; Blankenship, Donald D.; Schroeder, Dustin; Siegert, Martin; van Ommen, Tas", "repository": "USAP-DC", "science_program": null, "title": "ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "url": "https://www.usap-dc.org/view/dataset/601371"}, {"dataset_uid": "601437", "doi": "10.15784/601437", "keywords": "Airborne Laser Altimetry; Airborne Radar; Airplane; Antarctica; Bedrock Elevation; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness; Radar Echo Sounder; Surface Elevation; Titan Dome", "people": "Young, Duncan; Beem, Lucas H.; Young, Duncan A.; Greenbaum, Jamin; Ng, Gregory; Blankenship, Donald D.; Cavitte, Marie G. P; Jingxue, Guo; Bo, Sun", "repository": "USAP-DC", "science_program": null, "title": "Titan Dome, East Antarctica, Aerogeophysical Survey", "url": "https://www.usap-dc.org/view/dataset/601437"}, {"dataset_uid": "601355", "doi": "10.15784/601355", "keywords": "Aerogeophysics; Antarctica; Bed Elevation; Bed Reflectivity; Epica Dome C; Ice Thickness", "people": "Ng, Gregory; Young, Duncan A.; Roberts, Jason; Blankenship, Donald D.; van Ommen, Tas; Richter, Thomas; Greenbaum, Jamin; Cavitte, Marie G. P; Beem, Lucas H.; Quartini, Enrica; Tozer, Carly; Habbal, Feras; Kempf, Scott D.; Ritz, Catherine", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "ICECAP: High resolution survey of the Little Dome C region in support of the IPICS Old Ice goal", "url": "https://www.usap-dc.org/view/dataset/601355"}, {"dataset_uid": "200235", "doi": "10.26179/jydx-yz69", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "SPICECAP/ICECAP II Instrument Measurements (LASER, MAGNETICS and POSITIONING)", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_ICECAP_OIA_Level1B_AEROGEOPHYSICS"}], "date_created": "Tue, 07 Jul 2020 00:00:00 GMT", "description": "Non-technical description: East Antarctica holds a vast, ancient ice sheet. The bedrock hidden beneath this ice sheet may provide clues to how today\u0027s continents formed, while the ice itself contains records of Earth\u0027s atmosphere from distant eras. New drilling technologies are now available to allow for direct sampling of these materials from more than two kilometers below the ice surface. However, getting this material will require knowing where to look. The Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP) project will use internationally collected airborne survey data to search East Antarctica near the South Pole for key locations that will provide insight into Antarctica\u0027s geology and for locating the oldest intact ice on Earth. Ultimately, scientists are interested in obtaining samples of the oldest ice to address fundamental questions about the causes of changes in the timing of ice-age conditions from 40,000 to 100,000 year cycles. SPICECAP data analysis will provide site survey data for future drilling and will increase the overall understanding of Antarctica\u0027s hidden ice and geologic records. The project involves international collaboration and leveraging of internationally collected data. The SPICECAP project will train new interdisciplinary scientists at the undergraduate, graduate, and postdoctoral levels. Technical description: This study focuses on processing and interpretation of internationally collected aerogeophysical data from the Southern Plateau of the East Antarctic Ice Sheet. The data include ice penetrating radar data, laser altimetry, gravity and magnetics.\u00a0 The project will provide information on geological trends under the ice, the topography and character of the ice/rock interface, and the stratigraphy of the ice. The project will also provide baseline site characterization for future drilling. Future drilling sites and deep ice cores for old ice require that the base of the ice sheet be frozen to the bed (i.e. no free water at the interface between rock and ice) and the assessment will map the extent of frozen vs. thawed areas. Specifically, three main outcomes are anticipated for this project. First, the study will provide an assessment of the viability of Titan Dome, a subglacial highland region located near South Pole, as a potential old ice drilling prospect. The assessment will include determining the\u00a0hydraulic context of the bed by processing and interpreting the radar data,\u00a0ice sheet mass balance through time by mapping englacial reflectors in the ice and connecting them to ice stratigraphy in the recent South Pole,\u00a0and ice sheet geometry using laser altimetry. Second, the study will provide an assessment of the geological context of the Titan Dome region with respect to understanding regional geologic boundaries and the potential for bedrock sampling. For these two goals, we will use data opportunistically collected by China, and the recent PolarGAP dataset. Third, the study will provide an assessment of the risk posture for RAID site targeting in the Titan Dome region, and the Dome C region. This will use a high-resolution dataset the team collected previously at Dome C, an area similar to the coarser resolution data collected at Titan Dome, and will enable an understanding of what is missed by the wide lines spacing at Titan Dome. Specifically, we will model subglacial hydrology with and without the high resolution data, and statistically examine the detection of subglacial mountains (which could preserve old ice) and subglacial lakes (which could destroy old ice), as a function of line spacing.", "east": 150.0, "geometry": "POINT(122.5 -79)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e LIDAR ALTIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e NUCLEAR PRECESSION MAGNETOMETER", "is_usap_dc": true, "keywords": "BT-67; MAGNETIC ANOMALIES; Epica Dome C; GRAVITY ANOMALIES; GLACIER ELEVATION/ICE SHEET ELEVATION; GLACIER THICKNESS/ICE SHEET THICKNESS", "locations": "Epica Dome C", "north": -68.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Young, Duncan A.; Blankenship, Donald D.; Roberts, Jason; Bo, Sun", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e BT-67", "repo": "USAP-DC", "repositories": "AADC; USAP-DC", "science_programs": "Dome C Ice Core", "south": -90.0, "title": "Collaborative Research: Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP)", "uid": "p0010115", "west": 95.0}, {"awards": "1235094 Thurnherr, Andreas", "bounds_geometry": "POLYGON((-19 -19,-18.2 -19,-17.4 -19,-16.6 -19,-15.8 -19,-15 -19,-14.2 -19,-13.4 -19,-12.6 -19,-11.8 -19,-11 -19,-11 -19.4,-11 -19.8,-11 -20.2,-11 -20.6,-11 -21,-11 -21.4,-11 -21.8,-11 -22.2,-11 -22.6,-11 -23,-11.8 -23,-12.6 -23,-13.4 -23,-14.2 -23,-15 -23,-15.8 -23,-16.6 -23,-17.4 -23,-18.2 -23,-19 -23,-19 -22.6,-19 -22.2,-19 -21.8,-19 -21.4,-19 -21,-19 -20.6,-19 -20.2,-19 -19.8,-19 -19.4,-19 -19))", "dataset_titles": "Expedition Data; NBP1406 Expedition data; NBP1508 Expedition data; Processed Current Measurement Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508; Processed Current Measurement, Pressure and Temperature Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508 (2015); Processed Current Measurement, Pressure, Salinity and Temperature Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508", "datasets": [{"dataset_uid": "601353", "doi": null, "keywords": "CTD; CTD Data; Current Measurements; Current Meter; Mid-Ocean Ridge; Mooring; NBP1508; Oceans; Physical Oceanography; Pressure; R/v Nathaniel B. Palmer; Salinity; South Atlantic Ocean; Temperature", "people": "Thurnherr, Andreas", "repository": "USAP-DC", "science_program": null, "title": "Processed Current Measurement, Pressure and Temperature Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508 (2015)", "url": "https://www.usap-dc.org/view/dataset/601353"}, {"dataset_uid": "200153", "doi": "10.7284/903009", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1406 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1406"}, {"dataset_uid": "601352", "doi": null, "keywords": "CTD; Mid-Ocean Ridge; Mooring; NBP1508; Oceans; Physical Oceanography; Pressure; R/v Nathaniel B. Palmer; Salinity; South Atlantic Ocean; Temperature", "people": "Thurnherr, Andreas", "repository": "USAP-DC", "science_program": null, "title": "Processed Current Measurement, Pressure, Salinity and Temperature Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508", "url": "https://www.usap-dc.org/view/dataset/601352"}, {"dataset_uid": "601354", "doi": "10.15784/601354", "keywords": "Current Measurements; LADCP; Mid-Ocean Ridge; NBP1508; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; South Atlantic Ocean", "people": "Thurnherr, Andreas", "repository": "USAP-DC", "science_program": null, "title": "Processed Current Measurement Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508", "url": "https://www.usap-dc.org/view/dataset/601354"}, {"dataset_uid": "001408", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1406"}, {"dataset_uid": "200154", "doi": "10.7284/906708", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1508 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1508"}], "date_created": "Thu, 02 Jul 2020 00:00:00 GMT", "description": "Overview: In order to close the global overturning circulation, high-density deep- and bottom waters produced at high latitudes must be made less dense and upwell to shallower depths. Available observations from the subtropical South Atlantic indicate that the bulk of the mixing in the deep ocean there takes place over the topographically rough Mid-Atlantic Ridge, in particular in the quasi-regularly spaced \"fracture zone canyons\" corrugating the ridge flanks. There, dense water is advected toward the ridge crest (i.e. upwelled) by persistent along-valley currents that flow down the unidirectional density gradients, which are maintained by strong turbulence (diapycnal mixing). Most of the data on which these inferences are based were collected during the Brazil Basin Tracer Release Experiment (BBTRE) along a single ridge-flank canyon in the western South Atlantic near 22S where previous analyses have shown that both tidal mixing and overflow processes are important. Therefore, it is likely that both processes must be considered in order to understand and parameterize the effects of turbulence and mixing in the canyons corrugating the flanks of all slow-spreading ridges, which make up large fractions of the sea floor, in particular in the Atlantic, Indian and Southern Oceans. The primary aim of this follow-on project is to improve our understanding of the dynamics over the corrugated flanks of slow-spreading mid-ocean ridges. Due to the coarse sampling resolution and choice of station locations it is not possible to answer important questions, such as the relative importance of tidal and sill mixing, from the BBTRE data. Therefore, high-resolution surveys of hydrography, three-dimensional flow, turbulence and mixing will be carried out in two neighboring canyons and over the intervening topographic spur in the BBTRE region to determine the relative contributions of tidal and sill-related mixing. Furthermore, profiling moorings deployed on two nearby sill regions will be used to derive time series of spatially integrated mixing related buoyancy fluxes and to investigate the strong but unexplained sub-inertial variability of the along-canyon flow recorded previously. Additionally, three small moorings will be deployed in saddles between the two canyons to investigate inter-canyon exchange. The data analysis will include available data from previous experiments, including a set of tracer profiles that has not been analyzed before. Intellectual Merit: The corrugated flanks of slow-spreading ridges cover large areas of the sea floor of several major ocean basins. Therefore, understanding the dynamics in the ~100 km of ridge-flank canyons and its effects on the buoyancy and upwelling budget of the abyssal ocean is of global significance. In addition to determining the relative importance of tidal mixing and cross-sill flows in two canyons, the temporal variability of turbulence and mixing from tidal to yearly time scales will be investigated to gain insights into the forcing of the along-canyon flows, the exchange between neighboring canyons, and the eventual fate of the canyon waters. Broader Impacts: It is anticipated that insights gained during this project will improve our understanding of abyssal mixing in many different regions with similar bottom topography and provide the basis for better parameterizations of the effects of turbulence and mixing in large-scale circulation and climate models that cannot resolve these small-scale processes. As part of the project, a graduate student and a post-doctoral researcher will be trained in all aspects of observational physical oceanography, from data acquisition to interpretation.", "east": -11.0, "geometry": "POINT(-15 -21)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "OCEAN CURRENTS; South Atlantic Ocean; R/V NBP; WATER MASSES", "locations": "South Atlantic Ocean", "north": -19.0, "nsf_funding_programs": null, "paleo_time": null, "persons": "Thurnherr, Andreas", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -23.0, "title": "Collaborative Research: Flow, Turbulence and Mixing in Mid-Ocean Ridge Fracture Zone Canyons", "uid": "p0010114", "west": -19.0}, {"awards": "1443347 Condron, Alan; 1443394 Pollard, David", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctic Ice Sheet simulations for role of freshwater in future warming scenarios; Future climate response to Antarctic Ice Sheet melt caused by anthropogenic warming; Simulated changes in Southern Ocean salinity", "datasets": [{"dataset_uid": "601449", "doi": "10.15784/601449", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Meltwater", "people": "Condron, Alan", "repository": "USAP-DC", "science_program": null, "title": "Future climate response to Antarctic Ice Sheet melt caused by anthropogenic warming", "url": "https://www.usap-dc.org/view/dataset/601449"}, {"dataset_uid": "601154", "doi": "10.15784/601154 ", "keywords": "Antarctic; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Ice Sheet Model; Meltwater; Model Data; Modeling; Model Output", "people": "Pollard, David", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Ice Sheet simulations for role of freshwater in future warming scenarios", "url": "https://www.usap-dc.org/view/dataset/601154"}, {"dataset_uid": "601442", "doi": "10.15784/601442", "keywords": "Antarctica; Computer Model; Freshwater; Glaciers/ice Sheet; Glaciers/Ice Sheet; Model Data; Ocean Model; Oceans; Salinity", "people": "Condron, Alan", "repository": "USAP-DC", "science_program": null, "title": "Simulated changes in Southern Ocean salinity", "url": "https://www.usap-dc.org/view/dataset/601442"}], "date_created": "Mon, 04 Feb 2019 00:00:00 GMT", "description": "There is compelling historical evidence that the West Antarctic Ice Sheet (WAIS) is vulnerable to rapid retreat and collapse. Recent observations, compared to observations made 20-30 years before, indicate that both ice shelves (thick ice with ocean below) and land ice (thick ice with land below), are now melting at a much faster rate. Some numerical models suggest that significant ice retreat may begin within many of our lifetimes, starting with the abrupt collapse of Pine Island and Thwaites Glaciers in the next 50 years. This may be followed by retreat of much of the WAIS and then the collapse of parts of the East Antarctic ice sheet (EAIS). This research project will assess the extent to which global ocean circulation and climate will be impacted if enormous volumes of fresh water and ice flow into the Southern Ocean. It will establish whether a rapid collapse of WAIS in the near-future poses any significant threat to the stability of modern-day climate and human society. This is a topic that has so far received little attention as most prior research has focused on the response of climate to melting the Greenland ice sheet. Yet model simulations predict that the volumes of fresh water and ice released from Antarctica in the next few centuries could be up at least ten-times larger than from Greenland. The Intellectual Merit of this project stems from its ability to establish a link between the physical Antarctic system (ice sheet dynamics, fresh water discharge and iceberg calving) and global climate. The PIs (Principal Investigators) will assess the sensitivity of ocean circulation and climate to increased ice sheet melt using a combination of ocean, iceberg, ice sheet and climate models. Results from this study will help identify areas of the ice sheet that are vulnerable to collapse and also regions of the ocean where a significant freshening will have a considerable impact on climate, and serve to guide the deployment of an observational monitoring system capable of warning us when ice and fresh water discharge start to approach levels capable of disrupting ocean circulation and global climate. This project will support and train two graduate students, and each PI will be involved with local primary and secondary schools, making presentations, mentoring science fair projects, and contributing to curriculum development. A novel, web-based, interactive, cryosphere learning tool will be developed to help make school children more aware of the importance of the Polar Regions in global climate, and this software will be introduced to science teachers at a half day workshop organized by the UMass STEM Education Institute. Recent numerical simulations using a continental ice sheet/shelf model show the potential for more rapid and greater Antarctic ice sheet retreat in the next 50-300 years (under the full range of IPCC RCP (Intergovernmental Panel on Climate Change, Representative Concentration Pathways) future warming scenarios) than previously projected. Exactly how the release of enormous volumes of ice and fresh water to the Southern Ocean will impact global ocean circulation and climate has yet to be accurately assessed. This is in part because previous model simulations were too coarse to accurately resolve narrow coastal boundary currents, shelf breaks, fronts, and mesoscale eddies that are all very important for realistically simulating fresh water transport in the ocean. In this award, future projections of fresh water discharge and iceberg calving from Antarctic will be used to force a high resolution eddy-resolving ocean model (MITgcm) coupled to a new iceberg module and a fully-coupled global climate model (CCSM4). High resolution ocean/iceberg simulations will determine the role of mesoscale eddies in freshwater transport and give new insight into how fresh water is advected to far-field locations, including deep water formation sites in the North Atlantic. These simulations will provide detailed information about subsurface temperatures and changes in ocean circulation close to the ice front and grounding line. An accompanying set of fully coupled climate model simulations (NCAR CCSM4) will identify multidecadal-to-centennial changes in the climate system triggered by increased high-latitude Southern Ocean freshwater forcing. Particular attention will be given to changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC), wind stress, sea ice formation, and global temperatures. In doing so, this project will more accurately determine whether abrupt and potentially catastrophic changes in global climate are likely to be triggered by changes in the Antarctic system in the near-future.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e DATA ANALYSIS \u003e ENVIRONMENTAL MODELING \u003e COMPUTER", "is_usap_dc": true, "keywords": "USAP-DC; USA/NSF; AMD; MODELS; Amd/Us; Antarctica; GLACIERS/ICE SHEETS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Pollard, David; Condron, Alan; DeConto, Robert", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Assessing the Global Climate Response to Melting of the Antarctic Ice Sheet", "uid": "p0010007", "west": -180.0}, {"awards": "1341311 Timmermann, Axel", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "784 ka transient Antarctic ice-sheet model simulation data", "datasets": [{"dataset_uid": "000247", "doi": "", "keywords": null, "people": null, "repository": "IBS Center for Climate Physics ICCP", "science_program": null, "title": "784 ka transient Antarctic ice-sheet model simulation data", "url": "http://climatedata.ibs.re.kr/grav/data/psu-love/antarctic-ice-sheet"}], "date_created": "Tue, 26 Jun 2018 00:00:00 GMT", "description": "Timmerman/1341311 This award supports a project to study the physical processes that synchronize glacial-scale variability between the Northern Hemisphere ice sheets and the Antarctic ice-sheet. Using a coupled numerical ice-sheet earth-system model, the research team will explore the cryospheric responses to past changes in greenhouse gas concentrations and variations in earth\u0027s orbit and tilt. First capturing the sensitivity of each individual ice-sheet to these forcings and then determining their joint variability induced by changes in sea level, ocean temperatures and atmospheric circulation, the researchers will quantify the relative roles of local versus remote effects on long-term ice volume variability. The numerical experiments will provide deeper physical insights into the underlying dynamics of past Antarctic ice-volume changes and their contribution to global sea level. Output from the transient earth system model simulations will be directly compared with ice-core data from previous and ongoing drilling efforts, such as West Antarctic Ice Sheet (WAIS) Divide. Specific questions that will be addressed include: 1) Did the high-latitude Southern Hemispheric atmospheric and oceanic climate, relevant to Antarctic ice sheet forcing, respond to local insolation variations, CO2, Northern Hemispheric changes, or a combination thereof?; 2) How did WAIS and East Antarctic Ice Sheet (EAIS) vary through the Last Glacial Termination and into the Holocene (21 ka- present)?; 3) Did the WAIS (or EAIS) contribute to rapid sea-level fluctuations during this period, such as Meltwater Pulse 1A? 4) Did WAIS collapse fully at Stage 5e (~ 125 ka), and what was its timing relative to the maximum Greenland retreat?; and 5) How did the synchronized behavior of Northern Hemisphere and Southern Hemisphere ice-sheet variations affect the strength of North Atlantic Deep Water and Antarctic Bottom Water formation and the respective overturning cells? The transient earth-system model simulations conducted as part of this project will be closely compared with paleo-climate reconstructions from ice cores, sediment cores and terrestrial data. This will generate an integrated understanding of the hemispheric contributions of deglacial climate change, the origin of meltwater pulses, and potential thresholds in the coupled ice-sheet climate system in response to different types of forcings. A well-informed long-term societal response to sea level rise requires a detailed understanding of ice-sheet sensitivities to external forcing. The proposed research will strongly contribute to this task through numerical modeling and paleo-data analysis. The research team will make the resulting model simulations available on the web-based data server at the Asia Pacific Data Research Center (APDRC) to enable further analysis by the scientific community. As part of this project a female graduate student and a postdoctoral researcher will receive training in earth-system and ice-sheet modeling and paleo-climate dynamics. This award has no field work in Antarctica.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Timmermann, Axel", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "IBS Center for Climate Physics ICCP", "repositories": "IBS Center for Climate Physics ICCP", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Bipolar Coupling of late Quaternary Ice Sheet Variability", "uid": "p0000379", "west": -180.0}, {"awards": "1341362 Gast, Rebecca", "bounds_geometry": "POLYGON((-180 -65,-176 -65,-172 -65,-168 -65,-164 -65,-160 -65,-156 -65,-152 -65,-148 -65,-144 -65,-140 -65,-140 -66.5,-140 -68,-140 -69.5,-140 -71,-140 -72.5,-140 -74,-140 -75.5,-140 -77,-140 -78.5,-140 -80,-144 -80,-148 -80,-152 -80,-156 -80,-160 -80,-164 -80,-168 -80,-172 -80,-176 -80,180 -80,178 -80,176 -80,174 -80,172 -80,170 -80,168 -80,166 -80,164 -80,162 -80,160 -80,160 -78.5,160 -77,160 -75.5,160 -74,160 -72.5,160 -71,160 -69.5,160 -68,160 -66.5,160 -65,162 -65,164 -65,166 -65,168 -65,170 -65,172 -65,174 -65,176 -65,178 -65,-180 -65))", "dataset_titles": "Dinoflagellate sequende data", "datasets": [{"dataset_uid": "000240", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Dinoflagellate sequende data", "url": "http://www.ncbi.nlm.nih.gov/bioproject/428208"}], "date_created": "Mon, 12 Feb 2018 00:00:00 GMT", "description": "Kleptoplasty, the temporary acquisition and use of functional chloroplasts derived from algal prey, is viewed as an important model for the early evolution of the permanent, endosymbiotically-derived chloroplasts found in all permanently photosynthetic eukaryotes. This project will study the evolutionary history and expression of plastid-targeted genes in an abundant Antarctic dinoflagellate that steals chloroplasts from an ecologically important alga, the haptophyte Phaeocystis. Algae play an important role in the fixation and export of CO2 in the Southern Ocean, and this project will explore the genetic basis for the function of these chimeric cells with regard to their functional adaptation to extreme environments and will study the evolutionary history and expression of plastid-targeted genes in both the host and recipient. The project seeks to determine whether the kleptoplastidic dinoflagellate utilizes ancestral plastid proteins to regulate its stolen plastid, and how their transcription is related to environmental factors that are relevant to the Southern Ocean environment (temperature and light). To accomplish these goals, the project will utilize high throughput transcriptome analysis and RNA-sequencing experiments with the dinoflagellate and Phaeocystis. This work will help biologists understand the environmental success of this alternative nutritional strategy, and to assess the potential impact of anthropogenic climate change on the organism. The project will also contribute to the maintenance of a culture collection of heterotrophic, phototrophic and mixotrophic Antarctic protists that are available to the scientific community, and it will support the mentoring of a graduate student and a postdoctoral fellow. The work is being accomplished as an international collaboration between US and Canadian scientists, and in addition to publishing results in peer-reviewed journals, the investigators will incorporate aspects of this work into public outreach activities. These include field data analysis opportunities for middle school students and science-based art projects with local schools and museums.", "east": -140.0, "geometry": "POINT(-170 -72.5)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": -65.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Gast, Rebecca", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "NCBI GenBank", "repositories": "NCBI GenBank", "science_programs": null, "south": -80.0, "title": "You are what you eat: The Role of Kleptoplasty in an Antarctic Dinoflagellate", "uid": "p0000302", "west": 160.0}, {"awards": "1245879 Nitsche, Frank O.", "bounds_geometry": null, "dataset_titles": "NBP1503 data collected during field expedition", "datasets": [{"dataset_uid": "200001", "doi": "10.7284/901478", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1503 data collected during field expedition", "url": "https://www.rvdata.us/search/cruise/NBP1503"}], "date_created": "Sun, 30 Jul 2017 00:00:00 GMT", "description": "Intellectual Merit: This project will determine the potential vulnerability of key ice streams to incursions of warmer ocean water onto the continental shelf and if this mechanism could already explain any of the observed thinning of the ice sheet. It will provide important constrains on ice dynamic of the investigated section of the EAIS, and thus will be critical for future ice sheet models and provide mechanisms for EAIS contributions to past sea level high-stand. The PI proposes to investigate four key ice stream systems on the continental shelf between ~90\u00b0E and 160\u00b0E. They will use multibeam bathymetry to identify if and where cross-shelf troughs exist to help determine whether these troughs could provide potential pathways for warmer ocean water. Furthermore, detailed analysis of morphological features of these troughs could provide information on past ice dynamic, maximum extent, and flow direction of related paleo ice streams. The PIs will also conduct water column measurements along these troughs and on the continental slope to determine whether warmer ocean water could enter the shelf in the near future, or if such water has already entered any troughs, and thus might be causing the observed thinning of some ice streams. Broader impacts: This project includes the participation and support of undergraduate and graduate students in field work and data analysis. The possible involvement of a PolarTREC teacher and the Earth2Class teachers program will reach out to K-12 students.", "east": 134.6, "geometry": "POINT(125.05 -64.5)", "instruments": null, "is_usap_dc": true, "keywords": "WATER TEMPERATURE; Polar; SALINITY; Antarctica; Southern Ocean; R/V NBP; BATHYMETRY", "locations": "Polar; Antarctica; Southern Ocean", "north": -63.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Nitsche, Frank O.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -66.0, "title": "Vulnerability of East Antarctic Ice Streams to warm Ocean Water Incursions", "uid": "p0000394", "west": 115.5}, {"awards": "1148982 Hansen, Samantha", "bounds_geometry": "POLYGON((153.327 -73.032547,154.5063012 -73.032547,155.6856024 -73.032547,156.8649036 -73.032547,158.0442048 -73.032547,159.223506 -73.032547,160.4028072 -73.032547,161.5821084 -73.032547,162.7614096 -73.032547,163.9407108 -73.032547,165.120012 -73.032547,165.120012 -73.3530275,165.120012 -73.673508,165.120012 -73.9939885,165.120012 -74.314469,165.120012 -74.6349495,165.120012 -74.95543,165.120012 -75.2759105,165.120012 -75.596391,165.120012 -75.9168715,165.120012 -76.237352,163.9407108 -76.237352,162.7614096 -76.237352,161.5821084 -76.237352,160.4028072 -76.237352,159.223506 -76.237352,158.0442048 -76.237352,156.8649036 -76.237352,155.6856024 -76.237352,154.5063012 -76.237352,153.327 -76.237352,153.327 -75.9168715,153.327 -75.596391,153.327 -75.2759105,153.327 -74.95543,153.327 -74.6349495,153.327 -74.314469,153.327 -73.9939885,153.327 -73.673508,153.327 -73.3530275,153.327 -73.032547))", "dataset_titles": "Crustal Structure beneath the Northern Transantarctic Mountains and Wilkes Subglacial Basin: Implications for Tectonic Origins; Shear Wave Splitting Analysis and Seismic Anisotropy beneath the Northern Transantarctic Mountains; Upper Mantle Seismic Structure beneath the Northern Transantarctic Mountains from Regional P- and S-wave Tomography; Upper Mantle Shear Wave Velocity Structure beneath the Northern Transantarctic Mountains", "datasets": [{"dataset_uid": "601019", "doi": "10.15784/601019", "keywords": "Antarctica; Geology/Geophysics - Other; GPS; Sample/collection Description; Sample/Collection Description; Seismology; Shearwave Spitting; Solid Earth; Transantarctic Mountains", "people": "Hansen, Samantha", "repository": "USAP-DC", "science_program": null, "title": "Shear Wave Splitting Analysis and Seismic Anisotropy beneath the Northern Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/601019"}, {"dataset_uid": "601017", "doi": "10.15784/601017", "keywords": "Antarctica; Geology/Geophysics - Other; Model; Seismology; Solid Earth; Tomography; Transantarctic Mountains", "people": "Hansen, Samantha", "repository": "USAP-DC", "science_program": null, "title": "Upper Mantle Seismic Structure beneath the Northern Transantarctic Mountains from Regional P- and S-wave Tomography", "url": "https://www.usap-dc.org/view/dataset/601017"}, {"dataset_uid": "601018", "doi": "10.15784/601018", "keywords": "Antarctica; Geology/Geophysics - Other; Model; Seismology; Solid Earth; Tomography; Transantarctic Mountains", "people": "Hansen, Samantha", "repository": "USAP-DC", "science_program": null, "title": "Upper Mantle Shear Wave Velocity Structure beneath the Northern Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/601018"}, {"dataset_uid": "601194", "doi": "10.15784/601194", "keywords": "Antarctica; Transantarctic Mountains", "people": "Hansen, Samantha", "repository": "USAP-DC", "science_program": null, "title": "Crustal Structure beneath the Northern Transantarctic Mountains and Wilkes Subglacial Basin: Implications for Tectonic Origins", "url": "https://www.usap-dc.org/view/dataset/601194"}], "date_created": "Sun, 04 Jun 2017 00:00:00 GMT", "description": "Intellectual Merit: To understand Antarctica\u0027s geodynamic development, origin of the Transantarctic Mountains (TAMs) and the Wilkes Subglacial Basin (WSB) must be determined. Current constraints on the crustal thickness and seismic velocity structure beneath the TAMs and the WSB are limited, leading to uncertainties over competing geologic models that have been suggested to explain their formation. The PI proposes to broaden the investigation of this region with a new seismic deployment, the Transantarctic Mountains Northern Network (TAMNNET), a 15-station array across the northern TAMs and the WSB that will fill a major gap in seismic coverage. Data from TAMNNET will be combined with that from other previous and ongoing seismic initiatives and will be analyzed using proven modeling techniques to generate a detailed image of the seismic structure beneath the TAMs and the WSB. These data will be used to test three fundamental hypotheses: the TAMs are underlain by thickened crust, the WSB is characterized by thin crust and thick sedimentary layers, and slow seismic velocities are prevalent along strike beneath the TAMs. Results from the proposed study will provide new information about the nature and formation of the Antarctic continent and will help to advance our understanding of important global processes, such as mountain building and basin formation. The proposed research also has important implications for other fields of Antarctic science. Constraints on the origin of the TAMs uplift are critical for climate and ice sheet models, and new information acquired about variations in the thermal and lithospheric structure beneath the TAMs and the WSB will be used to estimate critical ice sheet boundary conditions. Broader impacts: This project incorporates three educational strategies to promote the integration of teaching and research. Graduate students will be trained in Antarctic tectonics and seismic processing through hands-on fieldwork and data analysis techniques. Through NSF\u0027s PolarTREC program, the PI will work with K-12 educators. The PI will develop a three-week summer field program for recent high school graduates and early-career undergraduate students from Minority-Serving Institutions in Alabama. Teaching materials and participant experiences will be shared with individuals outside the program via a course website. Following the summer program, participants who were particularly engaged will be offered internship opportunities to analyze TAMNNET data. In successive years, the students could assist with fieldwork and could be recruited into the graduate program under the PI\u0027s supervision. Ultimately, this program would not only serve to educate undergraduates but would also generate a pipeline of underrepresented students into the geosciences.", "east": 165.120012, "geometry": "POINT(159.223506 -74.6349495)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": -73.032547, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Hansen, Samantha", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.237352, "title": "CAREER: Deciphering the Tectonic History of the Transantarctic Mountains and the Wilkes Subglacial Basin", "uid": "p0000300", "west": 153.327}, {"awards": "1043018 Pollard, David; 1043485 Curtice, Josh; 1043517 Clark, Peter", "bounds_geometry": "POLYGON((163.5 -77.57,163.685 -77.57,163.87 -77.57,164.055 -77.57,164.24 -77.57,164.425 -77.57,164.61 -77.57,164.795 -77.57,164.98 -77.57,165.165 -77.57,165.35 -77.57,165.35 -77.645,165.35 -77.72,165.35 -77.795,165.35 -77.87,165.35 -77.945,165.35 -78.02,165.35 -78.095,165.35 -78.17,165.35 -78.245,165.35 -78.32,165.165 -78.32,164.98 -78.32,164.795 -78.32,164.61 -78.32,164.425 -78.32,164.24 -78.32,164.055 -78.32,163.87 -78.32,163.685 -78.32,163.5 -78.32,163.5 -78.245,163.5 -78.17,163.5 -78.095,163.5 -78.02,163.5 -77.945,163.5 -77.87,163.5 -77.795,163.5 -77.72,163.5 -77.645,163.5 -77.57))", "dataset_titles": "A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea; Ice Sheet Model Output, West Antarctic Ice Sheet Deglaciation", "datasets": [{"dataset_uid": "600123", "doi": "10.15784/600123", "keywords": "Antarctica; Cosmogenic Dating; Ross Sea; Sample/collection Description; Sample/Collection Description; Southern Ocean; WAIS", "people": "Kurz, Mark D.; Curtice, Josh", "repository": "USAP-DC", "science_program": null, "title": "A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/600123"}, {"dataset_uid": "609639", "doi": "10.7265/N5NC5Z53", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model", "people": "Pollard, David", "repository": "USAP-DC", "science_program": null, "title": "Ice Sheet Model Output, West Antarctic Ice Sheet Deglaciation", "url": "https://www.usap-dc.org/view/dataset/609639"}], "date_created": "Sat, 15 Oct 2016 00:00:00 GMT", "description": "1043517/Clark This award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation.", "east": 165.35, "geometry": "POINT(164.425 -77.945)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e DATA ANALYSIS \u003e ENVIRONMENTAL MODELING \u003e COMPUTER", "is_usap_dc": true, "keywords": "Ocean Depth; Not provided; Bed Elevation; Model Output; Sea Level Rise; Surface Accumulation Rate; Surface Melt Rate; Ocean Melt Rate; Total Ice Volume; Modeling; Calving Rate; Total Ice Area; LABORATORY", "locations": null, "north": -77.57, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Pollard, David; Curtice, Josh; Clark, Peter; Kurz, Mark D.", "platforms": "Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.32, "title": "Collaborative Research: A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea", "uid": "p0000194", "west": 163.5}, {"awards": "0739779 Warren, Stephen; 1142963 Warren, Stephen", "bounds_geometry": "POLYGON((157 -76,158.1 -76,159.2 -76,160.3 -76,161.4 -76,162.5 -76,163.6 -76,164.7 -76,165.8 -76,166.9 -76,168 -76,168 -76.2,168 -76.4,168 -76.6,168 -76.8,168 -77,168 -77.2,168 -77.4,168 -77.6,168 -77.8,168 -78,166.9 -78,165.8 -78,164.7 -78,163.6 -78,162.5 -78,161.4 -78,160.3 -78,159.2 -78,158.1 -78,157 -78,157 -77.8,157 -77.6,157 -77.4,157 -77.2,157 -77,157 -76.8,157 -76.6,157 -76.4,157 -76.2,157 -76))", "dataset_titles": "Ice on the Oceans of Snowball Earth Project Data", "datasets": [{"dataset_uid": "000183", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Ice on the Oceans of Snowball Earth Project Data", "url": "https://digital.lib.washington.edu/researchworks/handle/1773/37320"}], "date_created": "Wed, 10 Jul 2013 00:00:00 GMT", "description": "The climatic changes of late Precambrian time, 600-800 million years ago, included episodes of extreme glaciation, during which ice may have covered nearly the entire ocean for several million years, according to the Snowball Earth hypothesis. These episodes would hold an important place in Earth?s evolutionary history; they could have encouraged biodiversity by trapping life forms in small isolated ice-free areas, or they could have caused massive extinctions that cleared the path for new life forms to fill empty niches. What caused the Earth to become iced over, and what later caused the ice to melt? Scientific investigation of these questions will result in greater understanding of the climatic changes that the Earth can experience, and will enable better predictions of future climate. This project involves Antarctic field observations as well as laboratory studies and computer modeling. The aim of this project is not to prove or disprove the Snowball Earth hypothesis but rather to quantify processes that are important for simulating snowball events in climate models. The principal goal is to identify the types of ice that would have been present on the frozen ocean, and to determine how much sunlight they would reflect back to space. Reflection of sunlight by bright surfaces of snow and ice is what would maintain the cold climate at low latitudes. The melting of the ocean required buildup of greenhouse gases, but it was probably aided by deposition of desert dust and volcanic ash darkening the snow and ice. With so much ice on the Earth?s surface, even small differences in the amount of light that the ice absorbed or reflected could cause significant changes in climate. The properties of the ice would also determine where, and in what circumstances, photosynthetic life could have survived. Some kinds of ice that are rare on the modern Earth may have been pivotal in allowing the tropical ocean to freeze. The ocean surfaces would have included some ice types that now exist only in Antarctica: bare cold sea ice with precipitated salts, and \"blue ice\" areas of the Transantarctic Mountains that were exposed by sublimation and have not experienced melting. Field expeditions were mounted to examine these ice types, and the data analysis is underway. A third ice type, sea ice with a salt crust, is being studied in a freezer laboratory. Modeling will show how sunlight would interact with ice containing light-absorbing dust and volcanic ash. Aside from its reflection of sunlight, ice on the Snowball ocean would have been thick enough to flow under its own weight, invading all parts of the ocean. Yet evidence for the survival of photosynthetic life indicates that some regions of liquid water were maintained at the ocean surface. One possible refuge for photosynthetic organisms is a bay at the far end of a nearly enclosed tropical sea, formed by continental rifting and surrounded by desert, such as the modern Red Sea. A model of glacier flow is being developed to determine the dimensions of the channel, connecting the sea to the ocean, necessary to prevent invasion by the flowing ice yet maintain a water supply to replenish evaporation.", "east": 168.0, "geometry": "POINT(162.5 -77)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -76.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Warren, Stephen; Light, Bonnie; Campbell, Adam; Carns, Regina; Dadic, Ruzica; Mullen, Peter; Brandt, Richard; Waddington, Edwin D.", "platforms": "Not provided", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": -78.0, "title": "Ocean Surfaces on Snowball Earth", "uid": "p0000402", "west": 157.0}, {"awards": "0739743 Bay, Ryan", "bounds_geometry": "POINT(123.35 -75.1)", "dataset_titles": "Dome C optical logging data", "datasets": [{"dataset_uid": "000234", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Dome C optical logging data", "url": "http://icecube.berkeley.edu/~bay/edc99/"}], "date_created": "Wed, 27 Jun 2012 00:00:00 GMT", "description": "Bay 0739743\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to make high-resolution logs of dust and ash in the Dome C borehole using an optical dust logger. Logging at 20-50 cm/sec, in a matter of hours, mm-scale depth resolution of dust concentration and volcanic ash layers over the entire 3270 m borehole back to ~800 ka can be provided. The logger probes an area of order m2 of the horizon compared to the ~0.02 m2 core, greatly suppressing depositional noise and making the technique immune to core damage or loss. The method achieves unprecedented resolution of climate variations for matching or comparing ice core records, can detect particulate layers from explosive fallout which are invisible or missing in the core, and often reveals subtle trend changes which can elude standard core analyses. With the highly resolved dust record, it is expected to find new synchronous age markers between East Antarctica, West Antarctica and Greenland. The data could be instrumental in unifying global climate records, or resolving mysteries such as the transition from 41-kyr glacial cycles to apparent 100-kyr cycles. The project will extend previous finding, which make the most convincing case to date for a causal relationship between explosive volcanic events and abrupt climate change on millennial timescales. A search will also be made for evidence that some of the worldwide explosive fallout events that have been identified may have resulted from impacts by comets or asteroids. The investigators will evaluate the reliability of terrestrial impact crater records and the possibility that Earth impacts are considerably more frequent than is generally appreciated. Better understanding of the factors which force abrupt climate changes, the recurrence rate and triggering mechanisms of large volcanic eruptions, and the frequency of Gt to Tt-energy bolide impacts are of vital interest for civilization. The work plan for 2008-11 comprises modifying and testing of existing hardware in year one; logging field work, most likely in year two; data analysis and publication of results in year three. Because the EPICA collaborators will provide a suitable logging winch onsite, the logistical needs of this project are modest and can be accommodated by Twin Otter from McMurdo. The proposal is in the spirit of the International Polar Year (IPY) by forging an international collaboration with potential societal benefit. The project will provide interdisciplinary training to students and postdoctoral fellows from the U.S. and other countries.", "east": 123.35, "geometry": "POINT(123.35 -75.1)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS", "is_usap_dc": false, "keywords": "Ash Layer; LABORATORY; Not provided; FIELD INVESTIGATION; Climate; Antarctica; Ice Core; Bolides; Borehole; Climate Change; Paleoclimate; FIELD SURVEYS; Volcanic", "locations": "Antarctica", "north": -75.1, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bay, Ryan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": -75.1, "title": "Dust Logging at Dome C for Abrupt Climate Changes, Large Volcanic Eruptions and Bolide Impacts", "uid": "p0000717", "west": 123.35}, {"awards": "9726186 Pilskaln, Cynthia", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0101", "datasets": [{"dataset_uid": "002641", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0101", "url": "https://www.rvdata.us/search/cruise/NBP0101"}, {"dataset_uid": "002580", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0101", "url": "https://www.rvdata.us/search/cruise/NBP0101"}], "date_created": "Thu, 03 Mar 2011 00:00:00 GMT", "description": "*** 9726186 Pilskaln This proposed work is a study of the biological production and export flux of biogenic matter in response to ventilation of intermediate and deep water masses within the Polar Front zone. It is a collaborative work between the University of Maine and the Chinese Antarctic Research Expedition (CHINARE). The shipboard work is proposed for the Chinese antarctic resupply vessel off Prydz Bay in the Indian Ocean sector. In the austral Spring, this region experiences phytoplankton blooms that are thought to be the result of nutrient transport by the ventilation of intermediate and deep water masses. On an annual basis, it is believed that such blooms are the primary source of particulate organic carbon and biogenic silica flux to the ocean bottom. At this time however no data exists on the amount of particulate organic matter that sinks through the water column, leaving the quantitative relationships between production and export largely undefined in this region. The initial phase of the work consists of setting out a time-series sediment trap mooring at approximately 64 deg S latitude and 73 deg E longitude to take advantage of the historical data set that CHINARE has obtained in this area over the past decade. The biweekly to monthly trap samples will be analyzed for their organic constituents, and in conjunction with primary productivity observations will provide the basic data from which export values can be derived. This work will be carried out in collaboration with the State Oceanic Administration of the People\u0027s Republic of China, and the Chinese Antarctic Research Expedition. In addition to providing time on the antarctic resupply vessel, the SOA will sponsor the shipboard primary productivity experiments and the supporting hydrographic measurements. The collaborating American scientists will provide guidance in making these observations to standards developed for the Joint Global Ocean Flux Study, and provide the hardware for the moored sediment trap. There will be a mutual sharing between the U.S. and Chinese investigators of all samples and data sets, and the data analysis will be carried out jointly. ***", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Leventer, Amy", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "POC Production and Export in the Indian Ocean Sector of the Southern Ocean: A US-China Collaborative Research Program", "uid": "p0000800", "west": null}, {"awards": "0538097 Anandakrishnan, Sridhar", "bounds_geometry": "POLYGON((140 -89.8,144 -89.8,148 -89.8,152 -89.8,156 -89.8,160 -89.8,164 -89.8,168 -89.8,172 -89.8,176 -89.8,180 -89.8,180 -89.82,180 -89.84,180 -89.86,180 -89.88,180 -89.9,180 -89.92,180 -89.94,180 -89.96,180 -89.98,180 -90,176 -90,172 -90,168 -90,164 -90,160 -90,156 -90,152 -90,148 -90,144 -90,140 -90,140 -89.98,140 -89.96,140 -89.94,140 -89.92,140 -89.9,140 -89.88,140 -89.86,140 -89.84,140 -89.82,140 -89.8))", "dataset_titles": "IRIS Data Management Center (DMC) holds the full resolution seismic data. Keyword: POLELAKE. Dataset ID: 10-019; seismic data. Keyword: POLELAKE. Dataset ID: 10-019", "datasets": [{"dataset_uid": "001466", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IRIS Data Management Center (DMC) holds the full resolution seismic data. Keyword: POLELAKE. Dataset ID: 10-019", "url": "http://www.iris.edu/dms/dmc"}, {"dataset_uid": "000102", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "seismic data. Keyword: POLELAKE. Dataset ID: 10-019", "url": "http://ds.iris.edu/ds/nodes/dmc/"}], "date_created": "Wed, 08 Sep 2010 00:00:00 GMT", "description": "0538097\u003cbr/\u003eAnandakrishnan\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to intensively study a subglacial Antarctic lake near the geographic South Pole using seismic and radar methods. These ground-based experiments are better suited to determine the presence of water and its thickness than are airborne methods. We hypothesize that there are two end-member explanations for this feature: either the lake is thawed, but freezing on (and likely to have been freezing on through much of the current interglacial period), or it is a frozen, relict lake for which the high basal radar reflectivity is due to intergranular water in a permafrost-like layer beneath the ice. The seismic experiment we propose is ideally suited to examine these alternatives. Intermediate cases of, e.g., a thawed saturated sedimentary base or a smooth crystalline basement layer would also be resolved by this experiment. Seismic reflections are sensitive to changes in acoustic impedance which is strongly variable with fluid content, porosity, and lithology. Water has low density relative to most rocks and low seismic velocity (and nil shear wave velocity) relative to both ice and rock. Thus, discriminating between subglacial water and subglacial rock is a task ideally suited to the seismic reflection technique. This project has significant impacts outside the directly affected fields of Antarctic glaciology and geology. The lake (either thawed or sediments with thin liquid layers around the matrix particles) will have the potential for harboring novel life forms. The experiment has the potential for expanding our information about the newest frontier in life on Earth. The collaboration between PIs in the seismic community and the marine acoustics community will foster cross-disciplinary pollination of ideas, techniques, and tools. In addition to traditional seismic techniques, new methods of data analysis that have been developed by acousticians will be applied to this problem as an independent measure of lake properties. We will train students who will have a wider view of seismology than would be possible in a traditional ocean acoustics or traditional geoscience seismology program of study.", "east": 180.0, "geometry": "POINT(160 -89.9)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e SEISMIC REFLECTION PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS", "is_usap_dc": false, "keywords": "Antarctica; South Pole; Porosity; Not provided; Seismic; Lithology; FIELD INVESTIGATION; Subglacial; Subglacial Lake; FIELD SURVEYS; LABORATORY; Fluid Content; Acoustic Impedance", "locations": "Antarctica; South Pole", "north": -89.8, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Anandakrishnan, Sridhar; Holland, Charles", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": -90.0, "title": "Characterization of Lake Amundsen-Scott, S. Pole: A Ground Geophysical Program", "uid": "p0000693", "west": 140.0}, {"awards": "9117721 Jeffries, Martin", "bounds_geometry": "POLYGON((-110.149 -52.353,-104.86076 -52.353,-99.57252 -52.353,-94.28428 -52.353,-88.99604 -52.353,-83.7078 -52.353,-78.41956 -52.353,-73.13132 -52.353,-67.84308 -52.353,-62.55484 -52.353,-57.2666 -52.353,-57.2666 -54.17539,-57.2666 -55.99778,-57.2666 -57.82017,-57.2666 -59.64256,-57.2666 -61.46495,-57.2666 -63.28734,-57.2666 -65.10973,-57.2666 -66.93212,-57.2666 -68.75451,-57.2666 -70.5769,-62.55484 -70.5769,-67.84308 -70.5769,-73.13132 -70.5769,-78.41956 -70.5769,-83.7078 -70.5769,-88.99604 -70.5769,-94.28428 -70.5769,-99.57252 -70.5769,-104.86076 -70.5769,-110.149 -70.5769,-110.149 -68.75451,-110.149 -66.93212,-110.149 -65.10973,-110.149 -63.28734,-110.149 -61.46495,-110.149 -59.64256,-110.149 -57.82017,-110.149 -55.99778,-110.149 -54.17539,-110.149 -52.353))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002253", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9405"}, {"dataset_uid": "002283", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9305"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project is an examination of the physical and structural properties of the antarctic ice pack in the Amundsen, Bellingshausen, and Ross Seas, with the goal of defining the geographical variability of various ice types, the deformation processes that are active in the antarctic ice pack, and the large-scale thermodynamics and heat exchange processes of the ice- covered Southern Ocean. An additional goal is to relate specific characteristics of antarctic sea ice to its synthetic aperture radar (SAR) signature as observed from satellites. Physical properties include the salinity, temperature, and brine volumes, while structural properties include the fraction of frazil, platelet, and congelation ice of the seasonal antarctic pack ice. Differences in ice types are the result of differences in the environment in which the ice forms: frazil ice is formed in supercooled sea water, normally through wind or wave-induced turbulence, while platelet and congelation ice is formed under quiescent conditions. The fraction of frazil ice (which has been observed to be generally in excess of 50% in Weddell Sea ice floes) is an important variable in the energy budget of the upper ocean, and contributes significantly to the stabilization of the surface layers. The integration of sea ice field observations and synthetic aperture radar data analysis and modeling studies will contribute to a better understanding of sea ice parameters and their geophysical controls, and will be useful in defining the kind of air-ice-ocean interactions that can be studied using SAR data, as well as having broader relevance and application to atmospheric, biological, and oceanographic investigations of the Southern Ocean.", "east": -57.2666, "geometry": "POINT(-83.7078 -61.46495)", "instruments": null, "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.353, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jeffries, Martin", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -70.5769, "title": "Sea Ice Physical-Structrual Characteristics: Development and SAR Signature in the Pacific Sector of the Southern Ocean", "uid": "p0000647", "west": -110.149}, {"awards": "0636706 Sivjee, Gulamabas", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "NCAR Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) Data System ID# 5700 (full data link not provided)", "datasets": [{"dataset_uid": "000137", "doi": "", "keywords": null, "people": null, "repository": "NCAR", "science_program": null, "title": "NCAR Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) Data System ID# 5700 (full data link not provided)", "url": "http://cedarweb.hao.ucar.edu/"}], "date_created": "Thu, 23 Oct 2008 00:00:00 GMT", "description": "This project will provide for the continued operation and data analysis of an electro-optical remote sensing facility at South Pole Station. The facility will be used to examine 1) the source(s) and propagation of patches of enhanced plasma density in the F-region of the Antarctic ionosphere, 2) changes in the Antarctic E-region O/N2 ratio in the center of the night-sector of the auroral oval and compare the ratios with those found in the sun-aligned auroral arcs in the Polar Cap region, 3) Antarctic middle atmosphere disturbances generated by Stratospheric Warming Events (SWE), 4) quantitative characterization of the effects of solar variability on the temperature of the upper mesosphere region, 5) Antarctic thermospheric response to Solar Magnetic Cloud/Coronal Mass Ejection (SMC/CME) events, and 6) the effects of Joule heating on the thermodynamics of the Antarctic F-region. Data for all these studies will come from two sets of remote-sensing facilities at SPS: 1) Auroral emissions brightness measurements from the sun-synchronous Meridian Scanning Photon Counting Multichannel photometer; 2) Airglow and Auroral emission spectra recorded continuously during Austral winter at SPS with the high throughput, high resolution Infrared Michelson Interferometer as well as Visible - Near Infrared CCD spectrographs. \u003cbr/\u003e\u003cbr/\u003eMeridional variations in the brightness of F-region\u0027s auroral emissions provide the necessary data for investigations of the dynamics and IMF control, as well as the excitation mechanism(s), of the F-region patches. The brightness of auroral emissions from O and N relative to those from molecular species (O2 and N2) can be analyzed to assess, quantitatively, changes in the thermospheric composition. These data (from continuous (24 hours a day) measurements during the totally dark six months of each Austral winter at SPS) will be used to investigate the effects of solar-terrestrial disturbances on Antarctic thermospheric composition and thermodynamics, including response of the mesopause to solar cycle variations. Changes in airglow temperature (derived from OH and O2 bands), from different mesosphere/lower-thermosphere (MLT) heights, permit studies of the dynamical effects of Planetary, Tidal and Gravity waves propagating in the MLT regions as well as non-linear interactions among these waves. Coupling of different atmospheric regions over SPS, through enhanced gravity wave activities during SWE that lead to a precursor as Mesospheric cooling, will be investigated through the observed changes in MLT kinetic air temperature and density. \u003cbr/\u003e\u003cbr/\u003eThe project will enhance the infrastructure for research and education at Embry-Riddle Aeronautical University, bringing together the PI/Co-I and students from Departments of Physical Sciences and Aerospace Engineering. Graduate and undergraduate students will participate in modern research and software development.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Astrophysics and Geospace Sciences", "paleo_time": null, "persons": "Gulamabas, Sivjee; Azeem, Syed", "platforms": "Not provided", "repo": "NCAR", "repositories": "NCAR", "science_programs": null, "south": -90.0, "title": "Observations of Upper Atmospheric Energetics, Dynamics, and Long-Term Variations over the South Pole Station", "uid": "p0000292", "west": -180.0}, {"awards": "0088047 Bell, Robin", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 03 Jan 2006 00:00:00 GMT", "description": "0088047\u003cbr/\u003eBell\u003cbr/\u003e\u003cbr/\u003eThis award supports a two year project to address fundamental questions about the mass and energy flux through Lake Vostok, a subglacial lake in East Antarctica, sealed beneath almost 4 kilometers of ice. The project will involve developing lake circulation models, complemented by the analysis of new ice penetrating radar data over the lake and surrounding regions. This project will help to accurately define the regions of melting and freezing within the lake and help to provide an improved estimate of the form of the lake. The combined data analysis and modeling effort will provide a critical framework for developing international plans to sample the waters of Lake Vostok for biota and to recover sediments from Lake Vostok for paleoclimate studies.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Paleoclimate; Circulation Models; Lake Vostok; Data Analysis; Subglacial; Modeling; Not provided", "locations": "Lake Vostok", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bell, Robin; Tremblay, Bruno; Hohmann, Roland; Clarke, Garry; Studinger, Michael S.", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Mass and Energy Fluxes Through Lake Vostok: Observations and Models", "uid": "p0000093", "west": null}, {"awards": "9909167 Rust, David", "bounds_geometry": "POLYGON((-180 -62.83,-144 -62.83,-108 -62.83,-72 -62.83,-36 -62.83,0 -62.83,36 -62.83,72 -62.83,108 -62.83,144 -62.83,180 -62.83,180 -65.547,180 -68.264,180 -70.981,180 -73.698,180 -76.415,180 -79.132,180 -81.849,180 -84.566,180 -87.283,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.283,-180 -84.566,-180 -81.849,-180 -79.132,-180 -76.415,-180 -73.698,-180 -70.981,-180 -68.264,-180 -65.547,-180 -62.83))", "dataset_titles": "Solar Magnetograms and Filtergrams", "datasets": [{"dataset_uid": "600022", "doi": "", "keywords": null, "people": "Rust, David M.", "repository": "USAP-DC", "science_program": null, "title": "Solar Magnetograms and Filtergrams", "url": "https://www.usap-dc.org/view/dataset/600022"}], "date_created": "Wed, 19 Oct 2005 00:00:00 GMT", "description": "This award provides funding for one year of data analysis of the solar images produced by the Flare Genesis Experiment telescope during a long-duration balloon flight over Antarctica in early 2000, near the peak of solar activity for this solar cycle. The telescope produced many thousands of images and maps of solar magnetic fields with unprecedented resolution. It is expected that the detailed analysis of the data will improve understanding of how energy stored in solar magnetic fields is converted to high temperatures and velocities associated with solar activity. This project is jointly supported by NASA, NSF/OPP and NSF/ATM.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": -62.83, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Rust, David M.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Flare Genesis Experiment", "uid": "p0000245", "west": -180.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
The Results Map and the Results Table
The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
As the map is panned or zoomed, the highlighted rows in the table will update.
If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page.
The bounds for the project(s)/dataset(s) selected will be displayed in red.
The selected result(s) will be highlighted in red and brought to the top of the table.
The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds
and highlight the centroid on the Results Map.
Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other
search criteria already selected.
After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
Clicking Clear in the map will clear any drawn polygon.
Clicking Search in the map, or Search on the form will have the same effect.
The returned results will be any projects/datasets with bounds that intersect the polygon.
Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Undersea canyons play disproportionately important roles as oceanic biological hotspots and are critical for our understanding of many coastal ecosystems. Canyon-associated biological hotspots have persisted for thousands of years Along the Western Antarctic Peninsula, despite significant climate variability. Observations of currents over Palmer Deep canyon, a representative hotspot along the Western Antarctic Peninsula, indicate that surface phytoplankton blooms enter and exit the local hotspot on scales of ~1-2 days. This time of residence is in conflict with the prevailing idea that canyon associated hotspots are primarily maintained by phytoplankton that are locally grown in association with these features by the upwelling of deep waters rich with nutrients that fuel the phytoplankton growth. Instead, the implication is that horizontal ocean circulation is likely more important to maintaining these biological hotspots than local upwelling through its physical concentrating effects. This project seeks to better resolve the factors that create and maintain focused areas of biological activity at canyons along the Western Antarctic Peninsula and create local foraging areas for marine mammals and birds. The project focus is in the analysis of the ocean transport and concentration mechanisms that sustain these biological hotspots, connecting oceanography to phytoplankton and krill, up through the food web to one of the resident predators, penguins. In addition, the research will engage with teachers from school districts serving underrepresented and underserved students by integrating the instructors and their students completely with the science team. Students will conduct their own research with the same data over the same time as researchers on the project. Revealing the fundamental mechanisms that sustain these known hotspots will significantly advance our understanding of the observed connection between submarine canyons and persistent penguin population hotspots over ecological time, and provide a new model for how Antarctic hotspots function.<br/> <br/> <br/>To understand the physical mechanisms that support persistent hotspots along the Western Antarctic Peninsula (WAP), this project will integrate a modeling and field program that will target the processes responsible for transporting and concentrating phytoplankton and krill biomass to known penguin foraging locations. Within the Palmer Deep canyon, a representative hotspot, the team will deploy a High Frequency Radar (HFR) coastal surface current mapping network, uniquely equipped to identify the eddies and frontal regions that concentrate phytoplankton and krill. The field program, centered on surface features identified by the HFR, will include (i) a coordinated fleet of gliders to survey hydrography, chlorophyll fluorescence, optical backscatter, and active acoustics at the scale of the targeted convergent features; (ii) precise penguin tracking with GPS-linked satellite telemetry and time-depth recorders (TDRs); (iii) and weekly small boat surveys that adaptively target and track convergent features to measure phytoplankton, krill, and hydrography. A high resolution physical model will generalize our field measurements to other known hotspots along the WAP through simulation and determine which physical mechanisms lead to the maintenance of these hotspots. The project will also engage educators, students, and members of the general public in Antarctic research and data analysis with an education program that will advance teaching and learning as well as broadening participation of under-represented groups. This engagement includes professional development workshops, live connections to the public and classrooms, student research symposia, and program evaluation. Together the integrated research and engagement will advance our understanding of the role regional transport pathways and local depth dependent concentrating physical mechanisms play in sustaining these biological hotspots.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Ice flow is resisted by frictional forces that keep a glacier from immediately sliding into the ocean. Friction comes in two varieties: internal friction within the ice column which resists ice deformation and basal friction which resists ice sliding over its bedrock substrate. Partitioning between internal and basal friction is difficult since both have similar expressions at the most common target for data collection—the ice-sheet surface. However, understanding this partitioning is important because the physical processes that control internal and basal friction act and evolve at different timescales. This project combines spaceborne remote sensing observations from the ice-sheet surface with ice-penetrating radar data that images the internal structure of the ice sheet in order to partition the contribution of each source of friction. Results will advance the fundamental understanding of ice flow and will strengthen projections of future sea-level rise. Broader Impacts of the project include facilitating data reuse for the ice-sheet research community; the strategy for distributing the software toolkit includes student mentorship and hackathon teaching. The researcher will expand the impact of existing ice-penetrating datasets by 1) developing new open-source algorithms for extraction of englacial stratigraphy; 2) creating stratigraphy data products that can be assimilated into future studies of ice motion; and 3) using statistical analyses to integrate radar datasets into larger-scale interpretations with remote sensing datasets of ice-surface velocity, altimetry, climate variables, and model-derived basal friction. The computational tools developed as part of this effort will be integrated and released as a reusable software toolkit for ice-penetrating radar data analysis. The toolkit will be validated and tested by deployment to cloud-hosted JupyterHub instances, which will serve as a singular interface to access radar and remote sensing data, load them into a unified framework, step through a predefined processing flow, and carry out statistical analyses. In some areas, the imaged englacial stratigraphy will deviate from the ice-dynamic setting expected based on surface measurements alone. There, the internal dynamics (or ice-dynamic history) are inconsistent with the surface dynamics, likely because internal friction is poorly constrained and misattributed to basal friction instead. This work will develop the data and statistical tools for constraining internal friction from ice-penetrating radar, making those data products and tools available for future work. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Our knowledge of Antarctic weather and climate relies on only a handful of direct observing stations located on this harsh and remote continent. This observing system reports meteorological measurements from an existing network of automatic weather stations (AWS) spread across a vast area. This MRI project will enable the development, testing and eventual deployment of a next generation of polar automatic climate and weather observing stations for unattended use in the Antarctic. The proposed new Automatic Weather Station (AWS) system will enhance the capabilities and accuracy of the meteorological observations, enabling climate quality measurements. This project will involve development of a more capable instrumentation core, with two major goals. The first goal is to lower the cost for an AWS electronic core to 3 times less than currently employed systems. The second is to enable an onboard temperature calibration capability, an innovative development for the Antarctic AWS. The capability for onboard calibration will add confidence in the critical climate measure of ambient temperature, along with other standard meteorological parameters. Observations made by a modernized AWS network will inform and extend future numerical climate modeling efforts, improve operational weather forecasts, capture weather phenomena, and support environmental science research in other disciplines. A theme of the project is the inclusion of community college students in all aspects of the effort. With an eye on training the next generation of research instrumentation expertise, while involving other science, technology, engineering and mathematics (STEM) fields, undergraduate students will be involved in the development, testing and deployment of new AWS systems. As well as reporting, data analysis and publication of scientific knowledge, students intending to transfer to a 4-year university, as well as those pursuing electronics or electrical engineering associate degrees will be introduced to weather and climate topics. This MRI award was supported with funds from the Division of Polar Programs and the Division of Atmospheric and Geospace Sciences, both of the Directorate of Geosciences.
The world ocean is continuously in motion, and a large fraction of this motion takes the form of "eddies", nearly-horizontal swirls of water spanning tens to hundreds of kilometers. These eddies affect the ocean by mediating large-scale currents, redistributing heat, and supplying nutrients to oceanic ecosystems. Consequently, the ocean science community has historically invested substantial effort in characterizing the properties and impact of these eddies. In polar regions, the sea ice cover inhibits observations of eddies, and the relatively small horizontal size of the eddies hampers computer simulations of their behavior. Nonetheless, previous studies have identified an active population of eddies beneath the Arctic sea ice and shown that these eddies play a crucial role in maintaining the large-scale circulation in the Arctic seas. However, there has been no systematic attempt to study such eddies under Antarctic sea ice, leaving a significant gap in our understanding of eddies and their contribution to the large-scale ocean circulation around Antarctica. The proposed research combines multiple approaches to improve our understanding of the eddy dynamics. Statistical characterizations of the sub-sea ice eddy field will be derived using hydrographic observations under Antarctic sea ice from Argo floats and instrumented seals. High-resolution global ocean and sea ice models will be used to track the simulated eddies back to their formation sites to identify the eddy formation mechanisms. Theoretical calculations will be conducted to test the hypothesis that the eddies primarily originate from hydrodynamic instabilities associated with subsurface density gradients. These theoretical, modeling, and data analysis approaches will be combined to estimate the eddies' contribution to lateral tracer transports and their impact on mean circulations of the near-Antarctic ocean. The proposed work will facilitate future scientific endeavors by providing publicly-available databases of detected eddy properties. This project will support the research of several junior scientists: an undergraduate student, two graduate students, and an early-career faculty member. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Walker, Catherine; Zhang, Weifeng; Seroussi, Helene
No dataset link provided
Most of the mass loss from the Antarctic Ice Sheet, a major contributor to sea level rise, occurs at its margins, where ice meets the ocean. Glaciers and ice streams flow towards the coast and can go afloat over the water, forming ice shelves. Ice shelves make up almost half of the entire Antarctic coastline, and hold back the flow of inland ice in Antarctica continent; thus they are integral to the overall stability of the Antarctic Ice Sheet. Ice shelves lose mass by two main processes: iceberg calving and basal melting. Temporal and spatial fluctuations in both are driven by various processes; a major driver of ice shelf melt is the heat provided by the neighboring Southern Ocean. Ocean heat, in turn, is driven by various aspects of the ice shelf environment. One of the most significant contributors to changes in the ocean’s heat content is the presence of sea ice. This research will focus on the effects of coastal polynyas (areas of open water amidst sea ice), how they modulate the local ocean environment, and how that environment drives ice shelf basal melting. To date, the relationship between polynyas and ice shelf melt has not been characterized on an Antarctic-wide scale. Understanding the feedbacks between polynya size and duration, ocean stratification, and ice shelf melt, and the strength of those feedbacks, will improve the ability to characterize influences on the long-term stability of ice shelves, and in turn, the Antarctic Ice Sheet as a whole. A critical aspect of this study is that it will provide a framework for understanding ice shelf-ocean interaction across a diverse range of geographic settings. This, together with improvements of various models, will help interpret the impacts of future climate change on these systems, as their responses are likely quite variable and, overall, different from the large-scale response of the ice sheet. This project will also provide a broader context to better design future observational studies of specific coastal polynya and ice shelf processes. This study focuses on four main hypotheses: 1) Variations of coastal polynya extent are correlated with those of the ice shelf melt rates, and this correlation varies around Antarctica; 2) Polynya extent modulates a feedback between ice shelf melt and accretion regimes through stratification of local waters; 3) Polynya extent together with seafloor bathymetry regulate the volume of warm offshore waters that reach ice margins; and 4) The strength of the feedback between polynya and glacier ice varies with geographic setting and influences the long-term stability of the glacial system. Observational data, including ice-penetrating radar, radar and laser altimetry, and in situ hydrographic data, and derived data sets from the Southern Ocean State Estimate (SOSE) project and BedMachine Antarctica, will be used in conjunction with ocean (MIT global circulation model, MITgcm) and ice sheet (Ice sheet and Sea-level System Model, ISSM) models to reveal underlying dynamics. The joint analysis of the observational data enables an investigation of polynya, ocean, and ice shelf signals and their interplay over time across a range of settings. The results of this data analysis also provide inputs and validation data for the modeling tasks, which will allow for characterization of the feedbacks in our observations. The coupled modeling will enable us to examine the interaction between polynya circulation and ice shelves in different dynamical regimes and to understand ice and ocean feedback over time. Diagnosing and interpreting the pan-Antarctic spatial variability of the polynya-ice shelf interaction are the main objectives of this research and separates this study from other projects targeted at the interactive processes in specific regions. As such, this research focuses on seven preliminary target sites around the Antarctic coast to establish a framework for interpreting coupled ice shelf-ocean variability across a diverse range of geographic settings. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Undersea canyons play disproportionately important roles as oceanic biological hotspots and are critical for our understanding of many coastal ecosystems. Canyon-associated biological hotspots have persisted for thousands of years Along the Western Antarctic Peninsula, despite significant climate variability. Observations of currents over Palmer Deep canyon, a representative hotspot along the Western Antarctic Peninsula, indicate that surface phytoplankton blooms enter and exit the local hotspot on scales of ~1-2 days. This time of residence is in conflict with the prevailing idea that canyon associated hotspots are primarily maintained by phytoplankton that are locally grown in association with these features by the upwelling of deep waters rich with nutrients that fuel the phytoplankton growth. Instead, the implication is that horizontal ocean circulation is likely more important to maintaining these biological hotspots than local upwelling through its physical concentrating effects. This project seeks to better resolve the factors that create and maintain focused areas of biological activity at canyons along the Western Antarctic Peninsula and create local foraging areas for marine mammals and birds. The project focus is in the analysis of the ocean transport and concentration mechanisms that sustain these biological hotspots, connecting oceanography to phytoplankton and krill, up through the food web to one of the resident predators, penguins. In addition, the research will engage with teachers from school districts serving underrepresented and underserved students by integrating the instructors and their students completely with the science team. Students will conduct their own research with the same data over the same time as researchers on the project. Revealing the fundamental mechanisms that sustain these known hotspots will significantly advance our understanding of the observed connection between submarine canyons and persistent penguin population hotspots over ecological time, and provide a new model for how Antarctic hotspots function. To understand the physical mechanisms that support persistent hotspots along the Western Antarctic Peninsula (WAP), this project will integrate a modeling and field program that will target the processes responsible for transporting and concentrating phytoplankton and krill biomass to known penguin foraging locations. Within the Palmer Deep canyon, a representative hotspot, the team will deploy a High Frequency Radar (HFR) coastal surface current mapping network, uniquely equipped to identify the eddies and frontal regions that concentrate phytoplankton and krill. The field program, centered on surface features identified by the HFR, will include (i) a coordinated fleet of gliders to survey hydrography, chlorophyll fluorescence, optical backscatter, and active acoustics at the scale of the targeted convergent features; (ii) precise penguin tracking with GPS-linked satellite telemetry and time-depth recorders (TDRs); (iii) and weekly small boat surveys that adaptively target and track convergent features to measure phytoplankton, krill, and hydrography. A high resolution physical model will generalize our field measurements to other known hotspots along the WAP through simulation and determine which physical mechanisms lead to the maintenance of these hotspots. The project will also engage educators, students, and members of the general public in Antarctic research and data analysis with an education program that will advance teaching and learning as well as broadening participation of under-represented groups. This engagement includes professional development workshops, live connections to the public and classrooms, student research symposia, and program evaluation. Together the integrated research and engagement will advance our understanding of the role regional transport pathways and local depth dependent concentrating physical mechanisms play in sustaining these biological hotspots. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Nontechnical Abstract Mount Erebus volcano on Ross Island, Antarctica, is the southernmost active volcano on the planet. It provides a natural laboratory to study a volcanic system that has been in a continuous state of activity with a persistent lava lake over at least the last 40 years. Worldwide only four other volcanoes with such long-lived lava lakes exist: Erta Ale, Ethiopia; Kilauea, Hawaii; Nyiragongo, Congo; and Ambrym, Vanuatu. These volcanoes are a rare anomaly that provide a window into the underlying magmatic system and behavior. Erebus is of particular interest as it cycles through phases of very explosive activity every 20 thousand years. This project will investigate interactions between the magmatic system, the rift it is located in, and the impact of the gravitational load the volcano imposes on the underlying crust and its own magmatic system. Possible interactions between these factors may explain the changes in activity. The project will analyze geophysical data that have been collected at Erebus over at least the last two decades. The results of this work will be available to the public and scientific community and inform geodynamic models in this region. The project funds an early-career scientist and a graduate student at New Mexico Tech and contributes to the development of the next generation of scientists. Technical Abstract The proposed work targets scientific questions recently formulated by the community during the 2016 NSF-sponsored Scientific Drivers and Future of Mount Erebus Volcano Observatory workshop. The location and geometry of the magmatic plumbing from vent to lower crust system remain poorly constrained, particularly below 1 km depth. The style and causes for changes in volcanic and magmatic activity over the short term (minutes to hours) and on the decadal scale remains enigmatic. Two decades of campaign and continuous GPS data on Ross Island will inform about the longer term dynamics of both, Ross Island growing within the Terror Rift, and Erebus? deeper magmatic system. This project will organize and analyze all existing GPS data for Ross Island, and interpret any anomalies in the resulting time series. These activities require organization, consistent processing and interpretation/modeling of the existing ~20 years of GPS data, which include campaign, continuous, and high-rate GPS observations. We will generate these position time series in a consistent local reference frame and make the results, including models of transient deformation available to the community. Volcanic, tectonic and isostatic adjustment related deformation will be modeled to place Erebus in a broad volcano-tectonic framework of West Antarctica. During the data analysis phase, the utility of existing GPS data for reflection studies of snow and sea-level dynamics will also be evaluated.
Western Antarctica is one of the fastest warming locations on Earth. Its changing climate will lead to an increase in sea-level and will also alter regional water temperature and chemistry. These changes will directly alter the microbes that inhabit the ecosystem. Microbes are the smallest forms of life on Earth, but they are also the most abundant. They drive cycling of essential nutrients, such as carbon and nitrogen that are found in ocean sediments. In this way they form the foundation of the food chain that supports larger and more complex life. However, we do not know much about how different communities of microbes break down sediments in Antarctica and this will influence the chemistry of those waters. This research will determine how communities of microbes on the coastal shelf of Antarctica degrade complex organic sediments using genetic and chemical data. This data will identify the species in the community, what enzymes they are producing and what chemical reactions they are driving. This research will create broader impacts as the data will be used to create in-class activities that improve a student’s data analysis and critical thinking skills. The data will be used in graduate, undergraduate and K-12 classrooms. This research will provide genetic and enzymatic insight into how microbial communities in benthic sediments on the coastal shelf of Antarctica degrade complex organic matter. The current understanding of how benthic microbial communities respond to and then degrade complex organic matter in Antarctica is fragmented. Recent work suggests benthic microbial communities are shaped by organic matter availability. However, those studies were observational and did not directly examine community function. A preliminary study of metagenomic data from western Antarctic marine sediments, indicates a genetic potential for organic matter degradation but functional data was not been collected. Other studies have examined either enzyme activity or metagenomic potential, but few have been able to directly connect the two. To address this gap in knowledge, this study will utilize metagenomics and metatranscriptomics, coupled with microcosm experiments, enzyme assays, and geochemical data. It will examine Antarctic microbial communities from the Ross Sea, the Bransfield Strait and Weddell Sea to document how the relationship between a communities’ enzymatic activity and the genes used to degrade complex organic matter is related to sediment breakdown. The data will expand our current knowledge of microbial genetic potential and provide a solid understanding of enzyme function as it relates to degradation of complex organic matter in those marine sediments. It will thereby improve our understanding of temperature change on the chemistry of Antarctic seawater. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Understanding the interaction between blue whales and their prey is essential for understanding Antarctic ecosystem dynamics. In the austral summer of 2019 an international interdisciplinary research voyage will head to the Antarctic with the overall goal of mapping Antarctic krill and blue whale distributions to determine if foraging preferences of blue whales are dictated in part by the density and shape of Antarctic krill swarms. This research voyage will combine advanced research technologies (including autonomous underwater vehicles, short term-tags, photogrammetry, and ship-based, real-time passive listening and active echosounders) to answer questions about how the density, swarm shape and behavior of Antarctic krill influence Antarctic blue whales. U.S. participation on this voyage on an Australian research vessel will allow collection of concurrent predator and prey data through the use of passive listening and echosounders from a fixed mooring. By coupling moored data collection with the ship-based survey focusing on Antarctic blue whale behavior and krill dynamics, the project will contribute to the understanding of basic questions relating to the dynamics between blue whales and their prey as well as adding to the development of instrumentation and technologies that will enhance current capabilities for in situ observing on the continent and the surrounding ice-covered waters. The project will provide an educational platform for high school students and the general public to virtually experience Antarctica via "virtual sailing" through a project website and blog. Students and the general public also will be allowed the opportunity to participate in post-cruise data analysis. The Australian Antarctic Division and the University of Tasmania will lead an international voyage to the Antarctic in the austral summer of 2019. The overall goal of the voyage will be to map Antarctic krill (Euphausia superba) and blue whale (Balaenoptera musculus) distributions to determine if the foraging preferences of blue whales are dictated in part by the density and shape of Antarctic krill swarms. US participation in voyage will entail the deployment of passive and active acoustic instrumentation on a fixed mooring in concert with real-time acoustic and visual tracking and localizing of blue whales that will then allow better directing of ship operations towards aggregations of animals such that fine-scale acoustic tracking and prey field mapping can be achieved. This approach will be the first time such an acoustic system is deployed in Antarctica and used in an integrative fashion to assess foraging behaviors and krill. Thus, the project will advance understanding of the relationships between the acoustic ecology of blue whales, krill abundance, and blue whale densities. The technology deployment and testing will also be used to assess its potential use in ice-covered waters for similar studies in the future. Broader impacts of this project will occur through outreach and education, as well as through the collaborations with the broader international scientific community. The project will provide educational platforms for high school students and general public to virtually experience Antarctica. Research findings will be communicated to both the scientific community and the wider public through peer-reviewed publications, presentations, student lectures, seminars and communication through appropriate media channels by institutional communications teams. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part 1: Because of the manner in which it is formed at high latitudes in the Antarctic ice, Antarctic Bottom Water (AABW) is the coldest, saltiest and densest water on the planet. The global circulation of is often quantified via the transport in a two-dimensional, latitude/depth coordinate space. However, AABW formation, northward flow and distribution between the Atlantic, Indian and Pacific basins are fundamentally three-dimensional processes. AABW is formed in a handful of distinct sites around the Antarctic coast, notably the southern Weddell Sea, the western Ross Sea, along the Ad´elie coast, and in Prydz Bay. AABW is one of the key components of the global ocean overturning circulation, and plays a critical role in regulating Earth's climate, on multi-decadal-to-millennial time scales. Part 2: Mapping of AABW transport to northern basins is not well constrained, with conflicting conclusions drawn in previous studies. At one extreme the ACC has been suggested to be a “conduit" that simply allows each variety of AABW to transit directly northward. At the other extreme, it has been suggested that the ACC “blends" all shelf AABW sources together before they reach the northern basins. To close the gap in understanding, this collaborative project draws on three complementary analytical tools: process-oriented modeling of AABW export across the ACC, a high-resolution global ocean model, and an observationally-constrained estimate of the global circulation. The proposed identification and mechanistic understanding of AABW pathways. This project will also advance the careers of three postdoctoral researchers and two early-career faculty members, and will continue collaborative links between the PI and a foreign investigator. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part I: Non-technical summary: This project focuses on understanding annual changes in microbial life that grows on the bottom of Lake Fryxell, Antarctica. Because of its polar latitude, photosynthesis can only occur during the summer months. During summer, photosynthetic bacteria supply communities with energy and oxygen. However, it is unknown how the microbes behave in the dark winter, when observations are not possible. This project will install environmental monitors and light-blocking shades over parts of these communities. The shades will extend winter conditions into the spring to allow researchers to characterize the winter behavior of the microbial communities. Researchers will measure changes in the water chemistry due to microbial activities when the shades are removed and the mats first receive light. Results are expected to provide insights into how organisms interact with and change their environments. The project includes training of graduate students and early career scientists in fieldwork, including scientific ice diving techniques. In addition, the members of the project team will develop a web-based “Guide to Thrive”, which will compile field tips ranging from basic gear use to advanced environmental protection techniques. This will be a valuable resource for group leaders ranging from undergraduate teaching assistants to Antarctic expedition leaders to lead well-planned and tailored field expeditions. Part II: Technical summary: The research team will measure seasonal metabolic and biogeochemical changes in benthic mats using differential gene expression and geochemical gradients. They will identify seasonal phenotypic differences in microbial communities and ecosystem effects induced by spring oxygen production. To do so, researchers will install environmental sensors and opaque shades over mats at three depths in the lake. The following spring, shaded and unshaded mats will be sampled. The shades will then be removed, and changes in pore water O2, H2S, pH, and redox will be measured using microelectrodes. Mats will also be sampled for transcriptomic gene expression analyses at intervals guided by geochemical changes. Pore water will be sampled for nutrient analyses. Field research will be supplemented with laboratory experiments to refine field techniques, gene expression data analysis, and integration of results into a seasonal model of productivity and nitrogen cycling in Lake Fryxell. Results will provide insights into several key priorities for NSF, including how biotic, abiotic and environmental components of the benthic mats interact to affect Antarctic lakes. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Non-technical description: East Antarctica holds a vast, ancient ice sheet. The bedrock hidden beneath this ice sheet may provide clues to how today's continents formed, while the ice itself contains records of Earth's atmosphere from distant eras. New drilling technologies are now available to allow for direct sampling of these materials from more than two kilometers below the ice surface. However, getting this material will require knowing where to look. The Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP) project will use internationally collected airborne survey data to search East Antarctica near the South Pole for key locations that will provide insight into Antarctica's geology and for locating the oldest intact ice on Earth. Ultimately, scientists are interested in obtaining samples of the oldest ice to address fundamental questions about the causes of changes in the timing of ice-age conditions from 40,000 to 100,000 year cycles. SPICECAP data analysis will provide site survey data for future drilling and will increase the overall understanding of Antarctica's hidden ice and geologic records. The project involves international collaboration and leveraging of internationally collected data. The SPICECAP project will train new interdisciplinary scientists at the undergraduate, graduate, and postdoctoral levels. Technical description: This study focuses on processing and interpretation of internationally collected aerogeophysical data from the Southern Plateau of the East Antarctic Ice Sheet. The data include ice penetrating radar data, laser altimetry, gravity and magnetics. The project will provide information on geological trends under the ice, the topography and character of the ice/rock interface, and the stratigraphy of the ice. The project will also provide baseline site characterization for future drilling. Future drilling sites and deep ice cores for old ice require that the base of the ice sheet be frozen to the bed (i.e. no free water at the interface between rock and ice) and the assessment will map the extent of frozen vs. thawed areas. Specifically, three main outcomes are anticipated for this project. First, the study will provide an assessment of the viability of Titan Dome, a subglacial highland region located near South Pole, as a potential old ice drilling prospect. The assessment will include determining the hydraulic context of the bed by processing and interpreting the radar data, ice sheet mass balance through time by mapping englacial reflectors in the ice and connecting them to ice stratigraphy in the recent South Pole, and ice sheet geometry using laser altimetry. Second, the study will provide an assessment of the geological context of the Titan Dome region with respect to understanding regional geologic boundaries and the potential for bedrock sampling. For these two goals, we will use data opportunistically collected by China, and the recent PolarGAP dataset. Third, the study will provide an assessment of the risk posture for RAID site targeting in the Titan Dome region, and the Dome C region. This will use a high-resolution dataset the team collected previously at Dome C, an area similar to the coarser resolution data collected at Titan Dome, and will enable an understanding of what is missed by the wide lines spacing at Titan Dome. Specifically, we will model subglacial hydrology with and without the high resolution data, and statistically examine the detection of subglacial mountains (which could preserve old ice) and subglacial lakes (which could destroy old ice), as a function of line spacing.
Overview: In order to close the global overturning circulation, high-density deep- and bottom waters produced at high latitudes must be made less dense and upwell to shallower depths. Available observations from the subtropical South Atlantic indicate that the bulk of the mixing in the deep ocean there takes place over the topographically rough Mid-Atlantic Ridge, in particular in the quasi-regularly spaced "fracture zone canyons" corrugating the ridge flanks. There, dense water is advected toward the ridge crest (i.e. upwelled) by persistent along-valley currents that flow down the unidirectional density gradients, which are maintained by strong turbulence (diapycnal mixing). Most of the data on which these inferences are based were collected during the Brazil Basin Tracer Release Experiment (BBTRE) along a single ridge-flank canyon in the western South Atlantic near 22S where previous analyses have shown that both tidal mixing and overflow processes are important. Therefore, it is likely that both processes must be considered in order to understand and parameterize the effects of turbulence and mixing in the canyons corrugating the flanks of all slow-spreading ridges, which make up large fractions of the sea floor, in particular in the Atlantic, Indian and Southern Oceans. The primary aim of this follow-on project is to improve our understanding of the dynamics over the corrugated flanks of slow-spreading mid-ocean ridges. Due to the coarse sampling resolution and choice of station locations it is not possible to answer important questions, such as the relative importance of tidal and sill mixing, from the BBTRE data. Therefore, high-resolution surveys of hydrography, three-dimensional flow, turbulence and mixing will be carried out in two neighboring canyons and over the intervening topographic spur in the BBTRE region to determine the relative contributions of tidal and sill-related mixing. Furthermore, profiling moorings deployed on two nearby sill regions will be used to derive time series of spatially integrated mixing related buoyancy fluxes and to investigate the strong but unexplained sub-inertial variability of the along-canyon flow recorded previously. Additionally, three small moorings will be deployed in saddles between the two canyons to investigate inter-canyon exchange. The data analysis will include available data from previous experiments, including a set of tracer profiles that has not been analyzed before. Intellectual Merit: The corrugated flanks of slow-spreading ridges cover large areas of the sea floor of several major ocean basins. Therefore, understanding the dynamics in the ~100 km of ridge-flank canyons and its effects on the buoyancy and upwelling budget of the abyssal ocean is of global significance. In addition to determining the relative importance of tidal mixing and cross-sill flows in two canyons, the temporal variability of turbulence and mixing from tidal to yearly time scales will be investigated to gain insights into the forcing of the along-canyon flows, the exchange between neighboring canyons, and the eventual fate of the canyon waters. Broader Impacts: It is anticipated that insights gained during this project will improve our understanding of abyssal mixing in many different regions with similar bottom topography and provide the basis for better parameterizations of the effects of turbulence and mixing in large-scale circulation and climate models that cannot resolve these small-scale processes. As part of the project, a graduate student and a post-doctoral researcher will be trained in all aspects of observational physical oceanography, from data acquisition to interpretation.
There is compelling historical evidence that the West Antarctic Ice Sheet (WAIS) is vulnerable to rapid retreat and collapse. Recent observations, compared to observations made 20-30 years before, indicate that both ice shelves (thick ice with ocean below) and land ice (thick ice with land below), are now melting at a much faster rate. Some numerical models suggest that significant ice retreat may begin within many of our lifetimes, starting with the abrupt collapse of Pine Island and Thwaites Glaciers in the next 50 years. This may be followed by retreat of much of the WAIS and then the collapse of parts of the East Antarctic ice sheet (EAIS). This research project will assess the extent to which global ocean circulation and climate will be impacted if enormous volumes of fresh water and ice flow into the Southern Ocean. It will establish whether a rapid collapse of WAIS in the near-future poses any significant threat to the stability of modern-day climate and human society. This is a topic that has so far received little attention as most prior research has focused on the response of climate to melting the Greenland ice sheet. Yet model simulations predict that the volumes of fresh water and ice released from Antarctica in the next few centuries could be up at least ten-times larger than from Greenland. The Intellectual Merit of this project stems from its ability to establish a link between the physical Antarctic system (ice sheet dynamics, fresh water discharge and iceberg calving) and global climate. The PIs (Principal Investigators) will assess the sensitivity of ocean circulation and climate to increased ice sheet melt using a combination of ocean, iceberg, ice sheet and climate models. Results from this study will help identify areas of the ice sheet that are vulnerable to collapse and also regions of the ocean where a significant freshening will have a considerable impact on climate, and serve to guide the deployment of an observational monitoring system capable of warning us when ice and fresh water discharge start to approach levels capable of disrupting ocean circulation and global climate. This project will support and train two graduate students, and each PI will be involved with local primary and secondary schools, making presentations, mentoring science fair projects, and contributing to curriculum development. A novel, web-based, interactive, cryosphere learning tool will be developed to help make school children more aware of the importance of the Polar Regions in global climate, and this software will be introduced to science teachers at a half day workshop organized by the UMass STEM Education Institute. Recent numerical simulations using a continental ice sheet/shelf model show the potential for more rapid and greater Antarctic ice sheet retreat in the next 50-300 years (under the full range of IPCC RCP (Intergovernmental Panel on Climate Change, Representative Concentration Pathways) future warming scenarios) than previously projected. Exactly how the release of enormous volumes of ice and fresh water to the Southern Ocean will impact global ocean circulation and climate has yet to be accurately assessed. This is in part because previous model simulations were too coarse to accurately resolve narrow coastal boundary currents, shelf breaks, fronts, and mesoscale eddies that are all very important for realistically simulating fresh water transport in the ocean. In this award, future projections of fresh water discharge and iceberg calving from Antarctic will be used to force a high resolution eddy-resolving ocean model (MITgcm) coupled to a new iceberg module and a fully-coupled global climate model (CCSM4). High resolution ocean/iceberg simulations will determine the role of mesoscale eddies in freshwater transport and give new insight into how fresh water is advected to far-field locations, including deep water formation sites in the North Atlantic. These simulations will provide detailed information about subsurface temperatures and changes in ocean circulation close to the ice front and grounding line. An accompanying set of fully coupled climate model simulations (NCAR CCSM4) will identify multidecadal-to-centennial changes in the climate system triggered by increased high-latitude Southern Ocean freshwater forcing. Particular attention will be given to changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC), wind stress, sea ice formation, and global temperatures. In doing so, this project will more accurately determine whether abrupt and potentially catastrophic changes in global climate are likely to be triggered by changes in the Antarctic system in the near-future.
Timmerman/1341311 This award supports a project to study the physical processes that synchronize glacial-scale variability between the Northern Hemisphere ice sheets and the Antarctic ice-sheet. Using a coupled numerical ice-sheet earth-system model, the research team will explore the cryospheric responses to past changes in greenhouse gas concentrations and variations in earth's orbit and tilt. First capturing the sensitivity of each individual ice-sheet to these forcings and then determining their joint variability induced by changes in sea level, ocean temperatures and atmospheric circulation, the researchers will quantify the relative roles of local versus remote effects on long-term ice volume variability. The numerical experiments will provide deeper physical insights into the underlying dynamics of past Antarctic ice-volume changes and their contribution to global sea level. Output from the transient earth system model simulations will be directly compared with ice-core data from previous and ongoing drilling efforts, such as West Antarctic Ice Sheet (WAIS) Divide. Specific questions that will be addressed include: 1) Did the high-latitude Southern Hemispheric atmospheric and oceanic climate, relevant to Antarctic ice sheet forcing, respond to local insolation variations, CO2, Northern Hemispheric changes, or a combination thereof?; 2) How did WAIS and East Antarctic Ice Sheet (EAIS) vary through the Last Glacial Termination and into the Holocene (21 ka- present)?; 3) Did the WAIS (or EAIS) contribute to rapid sea-level fluctuations during this period, such as Meltwater Pulse 1A? 4) Did WAIS collapse fully at Stage 5e (~ 125 ka), and what was its timing relative to the maximum Greenland retreat?; and 5) How did the synchronized behavior of Northern Hemisphere and Southern Hemisphere ice-sheet variations affect the strength of North Atlantic Deep Water and Antarctic Bottom Water formation and the respective overturning cells? The transient earth-system model simulations conducted as part of this project will be closely compared with paleo-climate reconstructions from ice cores, sediment cores and terrestrial data. This will generate an integrated understanding of the hemispheric contributions of deglacial climate change, the origin of meltwater pulses, and potential thresholds in the coupled ice-sheet climate system in response to different types of forcings. A well-informed long-term societal response to sea level rise requires a detailed understanding of ice-sheet sensitivities to external forcing. The proposed research will strongly contribute to this task through numerical modeling and paleo-data analysis. The research team will make the resulting model simulations available on the web-based data server at the Asia Pacific Data Research Center (APDRC) to enable further analysis by the scientific community. As part of this project a female graduate student and a postdoctoral researcher will receive training in earth-system and ice-sheet modeling and paleo-climate dynamics. This award has no field work in Antarctica.
Kleptoplasty, the temporary acquisition and use of functional chloroplasts derived from algal prey, is viewed as an important model for the early evolution of the permanent, endosymbiotically-derived chloroplasts found in all permanently photosynthetic eukaryotes. This project will study the evolutionary history and expression of plastid-targeted genes in an abundant Antarctic dinoflagellate that steals chloroplasts from an ecologically important alga, the haptophyte Phaeocystis. Algae play an important role in the fixation and export of CO2 in the Southern Ocean, and this project will explore the genetic basis for the function of these chimeric cells with regard to their functional adaptation to extreme environments and will study the evolutionary history and expression of plastid-targeted genes in both the host and recipient. The project seeks to determine whether the kleptoplastidic dinoflagellate utilizes ancestral plastid proteins to regulate its stolen plastid, and how their transcription is related to environmental factors that are relevant to the Southern Ocean environment (temperature and light). To accomplish these goals, the project will utilize high throughput transcriptome analysis and RNA-sequencing experiments with the dinoflagellate and Phaeocystis. This work will help biologists understand the environmental success of this alternative nutritional strategy, and to assess the potential impact of anthropogenic climate change on the organism. The project will also contribute to the maintenance of a culture collection of heterotrophic, phototrophic and mixotrophic Antarctic protists that are available to the scientific community, and it will support the mentoring of a graduate student and a postdoctoral fellow. The work is being accomplished as an international collaboration between US and Canadian scientists, and in addition to publishing results in peer-reviewed journals, the investigators will incorporate aspects of this work into public outreach activities. These include field data analysis opportunities for middle school students and science-based art projects with local schools and museums.
Intellectual Merit: This project will determine the potential vulnerability of key ice streams to incursions of warmer ocean water onto the continental shelf and if this mechanism could already explain any of the observed thinning of the ice sheet. It will provide important constrains on ice dynamic of the investigated section of the EAIS, and thus will be critical for future ice sheet models and provide mechanisms for EAIS contributions to past sea level high-stand. The PI proposes to investigate four key ice stream systems on the continental shelf between ~90°E and 160°E. They will use multibeam bathymetry to identify if and where cross-shelf troughs exist to help determine whether these troughs could provide potential pathways for warmer ocean water. Furthermore, detailed analysis of morphological features of these troughs could provide information on past ice dynamic, maximum extent, and flow direction of related paleo ice streams. The PIs will also conduct water column measurements along these troughs and on the continental slope to determine whether warmer ocean water could enter the shelf in the near future, or if such water has already entered any troughs, and thus might be causing the observed thinning of some ice streams. Broader impacts: This project includes the participation and support of undergraduate and graduate students in field work and data analysis. The possible involvement of a PolarTREC teacher and the Earth2Class teachers program will reach out to K-12 students.
Intellectual Merit: To understand Antarctica's geodynamic development, origin of the Transantarctic Mountains (TAMs) and the Wilkes Subglacial Basin (WSB) must be determined. Current constraints on the crustal thickness and seismic velocity structure beneath the TAMs and the WSB are limited, leading to uncertainties over competing geologic models that have been suggested to explain their formation. The PI proposes to broaden the investigation of this region with a new seismic deployment, the Transantarctic Mountains Northern Network (TAMNNET), a 15-station array across the northern TAMs and the WSB that will fill a major gap in seismic coverage. Data from TAMNNET will be combined with that from other previous and ongoing seismic initiatives and will be analyzed using proven modeling techniques to generate a detailed image of the seismic structure beneath the TAMs and the WSB. These data will be used to test three fundamental hypotheses: the TAMs are underlain by thickened crust, the WSB is characterized by thin crust and thick sedimentary layers, and slow seismic velocities are prevalent along strike beneath the TAMs. Results from the proposed study will provide new information about the nature and formation of the Antarctic continent and will help to advance our understanding of important global processes, such as mountain building and basin formation. The proposed research also has important implications for other fields of Antarctic science. Constraints on the origin of the TAMs uplift are critical for climate and ice sheet models, and new information acquired about variations in the thermal and lithospheric structure beneath the TAMs and the WSB will be used to estimate critical ice sheet boundary conditions. Broader impacts: This project incorporates three educational strategies to promote the integration of teaching and research. Graduate students will be trained in Antarctic tectonics and seismic processing through hands-on fieldwork and data analysis techniques. Through NSF's PolarTREC program, the PI will work with K-12 educators. The PI will develop a three-week summer field program for recent high school graduates and early-career undergraduate students from Minority-Serving Institutions in Alabama. Teaching materials and participant experiences will be shared with individuals outside the program via a course website. Following the summer program, participants who were particularly engaged will be offered internship opportunities to analyze TAMNNET data. In successive years, the students could assist with fieldwork and could be recruited into the graduate program under the PI's supervision. Ultimately, this program would not only serve to educate undergraduates but would also generate a pipeline of underrepresented students into the geosciences.
1043517/Clark This award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation.
The climatic changes of late Precambrian time, 600-800 million years ago, included episodes of extreme glaciation, during which ice may have covered nearly the entire ocean for several million years, according to the Snowball Earth hypothesis. These episodes would hold an important place in Earth?s evolutionary history; they could have encouraged biodiversity by trapping life forms in small isolated ice-free areas, or they could have caused massive extinctions that cleared the path for new life forms to fill empty niches. What caused the Earth to become iced over, and what later caused the ice to melt? Scientific investigation of these questions will result in greater understanding of the climatic changes that the Earth can experience, and will enable better predictions of future climate. This project involves Antarctic field observations as well as laboratory studies and computer modeling. The aim of this project is not to prove or disprove the Snowball Earth hypothesis but rather to quantify processes that are important for simulating snowball events in climate models. The principal goal is to identify the types of ice that would have been present on the frozen ocean, and to determine how much sunlight they would reflect back to space. Reflection of sunlight by bright surfaces of snow and ice is what would maintain the cold climate at low latitudes. The melting of the ocean required buildup of greenhouse gases, but it was probably aided by deposition of desert dust and volcanic ash darkening the snow and ice. With so much ice on the Earth?s surface, even small differences in the amount of light that the ice absorbed or reflected could cause significant changes in climate. The properties of the ice would also determine where, and in what circumstances, photosynthetic life could have survived. Some kinds of ice that are rare on the modern Earth may have been pivotal in allowing the tropical ocean to freeze. The ocean surfaces would have included some ice types that now exist only in Antarctica: bare cold sea ice with precipitated salts, and "blue ice" areas of the Transantarctic Mountains that were exposed by sublimation and have not experienced melting. Field expeditions were mounted to examine these ice types, and the data analysis is underway. A third ice type, sea ice with a salt crust, is being studied in a freezer laboratory. Modeling will show how sunlight would interact with ice containing light-absorbing dust and volcanic ash. Aside from its reflection of sunlight, ice on the Snowball ocean would have been thick enough to flow under its own weight, invading all parts of the ocean. Yet evidence for the survival of photosynthetic life indicates that some regions of liquid water were maintained at the ocean surface. One possible refuge for photosynthetic organisms is a bay at the far end of a nearly enclosed tropical sea, formed by continental rifting and surrounded by desert, such as the modern Red Sea. A model of glacier flow is being developed to determine the dimensions of the channel, connecting the sea to the ocean, necessary to prevent invasion by the flowing ice yet maintain a water supply to replenish evaporation.
Bay 0739743<br/><br/>This award supports a project to make high-resolution logs of dust and ash in the Dome C borehole using an optical dust logger. Logging at 20-50 cm/sec, in a matter of hours, mm-scale depth resolution of dust concentration and volcanic ash layers over the entire 3270 m borehole back to ~800 ka can be provided. The logger probes an area of order m2 of the horizon compared to the ~0.02 m2 core, greatly suppressing depositional noise and making the technique immune to core damage or loss. The method achieves unprecedented resolution of climate variations for matching or comparing ice core records, can detect particulate layers from explosive fallout which are invisible or missing in the core, and often reveals subtle trend changes which can elude standard core analyses. With the highly resolved dust record, it is expected to find new synchronous age markers between East Antarctica, West Antarctica and Greenland. The data could be instrumental in unifying global climate records, or resolving mysteries such as the transition from 41-kyr glacial cycles to apparent 100-kyr cycles. The project will extend previous finding, which make the most convincing case to date for a causal relationship between explosive volcanic events and abrupt climate change on millennial timescales. A search will also be made for evidence that some of the worldwide explosive fallout events that have been identified may have resulted from impacts by comets or asteroids. The investigators will evaluate the reliability of terrestrial impact crater records and the possibility that Earth impacts are considerably more frequent than is generally appreciated. Better understanding of the factors which force abrupt climate changes, the recurrence rate and triggering mechanisms of large volcanic eruptions, and the frequency of Gt to Tt-energy bolide impacts are of vital interest for civilization. The work plan for 2008-11 comprises modifying and testing of existing hardware in year one; logging field work, most likely in year two; data analysis and publication of results in year three. Because the EPICA collaborators will provide a suitable logging winch onsite, the logistical needs of this project are modest and can be accommodated by Twin Otter from McMurdo. The proposal is in the spirit of the International Polar Year (IPY) by forging an international collaboration with potential societal benefit. The project will provide interdisciplinary training to students and postdoctoral fellows from the U.S. and other countries.
*** 9726186 Pilskaln This proposed work is a study of the biological production and export flux of biogenic matter in response to ventilation of intermediate and deep water masses within the Polar Front zone. It is a collaborative work between the University of Maine and the Chinese Antarctic Research Expedition (CHINARE). The shipboard work is proposed for the Chinese antarctic resupply vessel off Prydz Bay in the Indian Ocean sector. In the austral Spring, this region experiences phytoplankton blooms that are thought to be the result of nutrient transport by the ventilation of intermediate and deep water masses. On an annual basis, it is believed that such blooms are the primary source of particulate organic carbon and biogenic silica flux to the ocean bottom. At this time however no data exists on the amount of particulate organic matter that sinks through the water column, leaving the quantitative relationships between production and export largely undefined in this region. The initial phase of the work consists of setting out a time-series sediment trap mooring at approximately 64 deg S latitude and 73 deg E longitude to take advantage of the historical data set that CHINARE has obtained in this area over the past decade. The biweekly to monthly trap samples will be analyzed for their organic constituents, and in conjunction with primary productivity observations will provide the basic data from which export values can be derived. This work will be carried out in collaboration with the State Oceanic Administration of the People's Republic of China, and the Chinese Antarctic Research Expedition. In addition to providing time on the antarctic resupply vessel, the SOA will sponsor the shipboard primary productivity experiments and the supporting hydrographic measurements. The collaborating American scientists will provide guidance in making these observations to standards developed for the Joint Global Ocean Flux Study, and provide the hardware for the moored sediment trap. There will be a mutual sharing between the U.S. and Chinese investigators of all samples and data sets, and the data analysis will be carried out jointly. ***
0538097<br/>Anandakrishnan<br/><br/>This award supports a project to intensively study a subglacial Antarctic lake near the geographic South Pole using seismic and radar methods. These ground-based experiments are better suited to determine the presence of water and its thickness than are airborne methods. We hypothesize that there are two end-member explanations for this feature: either the lake is thawed, but freezing on (and likely to have been freezing on through much of the current interglacial period), or it is a frozen, relict lake for which the high basal radar reflectivity is due to intergranular water in a permafrost-like layer beneath the ice. The seismic experiment we propose is ideally suited to examine these alternatives. Intermediate cases of, e.g., a thawed saturated sedimentary base or a smooth crystalline basement layer would also be resolved by this experiment. Seismic reflections are sensitive to changes in acoustic impedance which is strongly variable with fluid content, porosity, and lithology. Water has low density relative to most rocks and low seismic velocity (and nil shear wave velocity) relative to both ice and rock. Thus, discriminating between subglacial water and subglacial rock is a task ideally suited to the seismic reflection technique. This project has significant impacts outside the directly affected fields of Antarctic glaciology and geology. The lake (either thawed or sediments with thin liquid layers around the matrix particles) will have the potential for harboring novel life forms. The experiment has the potential for expanding our information about the newest frontier in life on Earth. The collaboration between PIs in the seismic community and the marine acoustics community will foster cross-disciplinary pollination of ideas, techniques, and tools. In addition to traditional seismic techniques, new methods of data analysis that have been developed by acousticians will be applied to this problem as an independent measure of lake properties. We will train students who will have a wider view of seismology than would be possible in a traditional ocean acoustics or traditional geoscience seismology program of study.
This project is an examination of the physical and structural properties of the antarctic ice pack in the Amundsen, Bellingshausen, and Ross Seas, with the goal of defining the geographical variability of various ice types, the deformation processes that are active in the antarctic ice pack, and the large-scale thermodynamics and heat exchange processes of the ice- covered Southern Ocean. An additional goal is to relate specific characteristics of antarctic sea ice to its synthetic aperture radar (SAR) signature as observed from satellites. Physical properties include the salinity, temperature, and brine volumes, while structural properties include the fraction of frazil, platelet, and congelation ice of the seasonal antarctic pack ice. Differences in ice types are the result of differences in the environment in which the ice forms: frazil ice is formed in supercooled sea water, normally through wind or wave-induced turbulence, while platelet and congelation ice is formed under quiescent conditions. The fraction of frazil ice (which has been observed to be generally in excess of 50% in Weddell Sea ice floes) is an important variable in the energy budget of the upper ocean, and contributes significantly to the stabilization of the surface layers. The integration of sea ice field observations and synthetic aperture radar data analysis and modeling studies will contribute to a better understanding of sea ice parameters and their geophysical controls, and will be useful in defining the kind of air-ice-ocean interactions that can be studied using SAR data, as well as having broader relevance and application to atmospheric, biological, and oceanographic investigations of the Southern Ocean.
This project will provide for the continued operation and data analysis of an electro-optical remote sensing facility at South Pole Station. The facility will be used to examine 1) the source(s) and propagation of patches of enhanced plasma density in the F-region of the Antarctic ionosphere, 2) changes in the Antarctic E-region O/N2 ratio in the center of the night-sector of the auroral oval and compare the ratios with those found in the sun-aligned auroral arcs in the Polar Cap region, 3) Antarctic middle atmosphere disturbances generated by Stratospheric Warming Events (SWE), 4) quantitative characterization of the effects of solar variability on the temperature of the upper mesosphere region, 5) Antarctic thermospheric response to Solar Magnetic Cloud/Coronal Mass Ejection (SMC/CME) events, and 6) the effects of Joule heating on the thermodynamics of the Antarctic F-region. Data for all these studies will come from two sets of remote-sensing facilities at SPS: 1) Auroral emissions brightness measurements from the sun-synchronous Meridian Scanning Photon Counting Multichannel photometer; 2) Airglow and Auroral emission spectra recorded continuously during Austral winter at SPS with the high throughput, high resolution Infrared Michelson Interferometer as well as Visible - Near Infrared CCD spectrographs. <br/><br/>Meridional variations in the brightness of F-region's auroral emissions provide the necessary data for investigations of the dynamics and IMF control, as well as the excitation mechanism(s), of the F-region patches. The brightness of auroral emissions from O and N relative to those from molecular species (O2 and N2) can be analyzed to assess, quantitatively, changes in the thermospheric composition. These data (from continuous (24 hours a day) measurements during the totally dark six months of each Austral winter at SPS) will be used to investigate the effects of solar-terrestrial disturbances on Antarctic thermospheric composition and thermodynamics, including response of the mesopause to solar cycle variations. Changes in airglow temperature (derived from OH and O2 bands), from different mesosphere/lower-thermosphere (MLT) heights, permit studies of the dynamical effects of Planetary, Tidal and Gravity waves propagating in the MLT regions as well as non-linear interactions among these waves. Coupling of different atmospheric regions over SPS, through enhanced gravity wave activities during SWE that lead to a precursor as Mesospheric cooling, will be investigated through the observed changes in MLT kinetic air temperature and density. <br/><br/>The project will enhance the infrastructure for research and education at Embry-Riddle Aeronautical University, bringing together the PI/Co-I and students from Departments of Physical Sciences and Aerospace Engineering. Graduate and undergraduate students will participate in modern research and software development.
Bell, Robin; Tremblay, Bruno; Hohmann, Roland; Clarke, Garry; Studinger, Michael S.
No dataset link provided
0088047<br/>Bell<br/><br/>This award supports a two year project to address fundamental questions about the mass and energy flux through Lake Vostok, a subglacial lake in East Antarctica, sealed beneath almost 4 kilometers of ice. The project will involve developing lake circulation models, complemented by the analysis of new ice penetrating radar data over the lake and surrounding regions. This project will help to accurately define the regions of melting and freezing within the lake and help to provide an improved estimate of the form of the lake. The combined data analysis and modeling effort will provide a critical framework for developing international plans to sample the waters of Lake Vostok for biota and to recover sediments from Lake Vostok for paleoclimate studies.
This award provides funding for one year of data analysis of the solar images produced by the Flare Genesis Experiment telescope during a long-duration balloon flight over Antarctica in early 2000, near the peak of solar activity for this solar cycle. The telescope produced many thousands of images and maps of solar magnetic fields with unprecedented resolution. It is expected that the detailed analysis of the data will improve understanding of how energy stored in solar magnetic fields is converted to high temperatures and velocities associated with solar activity. This project is jointly supported by NASA, NSF/OPP and NSF/ATM.