{"dp_type": "Dataset", "free_text": "gases"}
[{"awards": "1744993 Higgins, John", "bounds_geometry": ["POINT(159.356125 -76.732376)"], "date_created": "Wed, 12 Feb 2025 00:00:00 GMT", "description": "Between about 2.8-0.9 Ma, Earth\u2019s climate was characterized by 40 kyr cycles, driven or paced by changes in the tilt of Earth\u2019s spin axis. Much is known about the 40k world from studies of deep-sea sediments, but our understanding of climate change during this period and the transition between the 40kyr glacial cycles from 2.8-0.9 Ma and the 100kyr glacial cycles of the last 0.9 Myr is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of \u003e1 Ma ice discovered in shallow ice cores in the Allan Hills Blue Ice Area (BIA), Antarctica. During the 2015-2016 field season we recovered ice from two nearby drill cores that dates to \u003e 2 million years in age using the 40Ar/38Ar ratio of the trapped gases. Our discovery of ice of this antiquity in two cores demonstrates that there is gas-record quality ice from the 40k world in the Allan Hills BIA. To further characterize the composition of Earth\u2019s atmosphere and Antarctic climate during the 40k world we request support for two field seasons to drill new large-volume (4\u201d or 9\u201d diameter) ice cores at sites where we have previously identified \u003e1 Ma ice and nearby sites where ground penetrating radar has identified bedrock features conducive to the preservation of old ice.", "east": 159.356125, "geometry": ["POINT(159.356125 -76.732376)"], "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciology; Ice Core Data; MOT; Ocean Temperature; Paleoclimate; Xe/Kr", "locations": "Antarctica; Allan Hills", "north": -76.732376, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Higgins, John", "project_titles": "Center for Oldest Ice Exploration; Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "projects": [{"proj_uid": "p0010253", "repository": "USAP-DC", "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area "}, {"proj_uid": "p0010321", "repository": "USAP-DC", "title": "Center for Oldest Ice Exploration"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.732376, "title": "MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903", "uid": "601897", "west": 159.356125}, {"awards": "1744993 Higgins, John", "bounds_geometry": ["POINT(159.3562 -76.73243)"], "date_created": "Wed, 12 Feb 2025 00:00:00 GMT", "description": "Between about 2.8-0.9 Ma, Earth\u2019s climate was characterized by 40 kyr cycles, driven or paced by changes in the tilt of Earth\u2019s spin axis. Much is known about the 40k world from studies of deep-sea sediments, but our understanding of climate change during this period and the transition between the 40kyr glacial cycles from 2.8-0.9 Ma and the 100kyr glacial cycles of the last 0.9 Myr is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of \u003e1 Ma ice discovered in shallow ice cores in the Allan Hills Blue Ice Area (BIA), Antarctica. During the 2015-2016 field season we recovered ice from two nearby drill cores that dates to \u003e 2 million years in age using the 40Ar/38Ar ratio of the trapped gases. Our discovery of ice of this antiquity in two cores demonstrates that there is gas-record quality ice from the 40k world in the Allan Hills BIA. To further characterize the composition of Earth\u2019s atmosphere and Antarctic climate during the 40k world we request support for two field seasons to drill new large-volume (4\u201d or 9\u201d diameter) ice cores at sites where we have previously identified \u003e1 Ma ice and nearby sites where ground penetrating radar has identified bedrock features conducive to the preservation of old ice.\r\n\u003cbr/\u003e", "east": 159.3562, "geometry": ["POINT(159.3562 -76.73243)"], "keywords": "Allan Hills; Antarctica; Ch4; CO2; Cryosphere; Glaciology; Glaciology; Ice Core Data; Ice Core Records", "locations": "Allan Hills; Antarctica", "north": -76.73243, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Higgins, John", "project_titles": "Center for Oldest Ice Exploration; Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "projects": [{"proj_uid": "p0010321", "repository": "USAP-DC", "title": "Center for Oldest Ice Exploration"}, {"proj_uid": "p0010253", "repository": "USAP-DC", "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73243, "title": "CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903", "uid": "601896", "west": 159.3562}, {"awards": "1744993 Higgins, John", "bounds_geometry": null, "date_created": "Tue, 11 Feb 2025 00:00:00 GMT", "description": "Between about 2.8-0.9 Ma, Earth\u2019s climate was characterized by 40 kyr cycles, driven or paced by changes in the tilt of Earth\u2019s spin axis. Much is known about the 40k world from studies of deep-sea sediments, but our understanding of climate change during this period and the transition between the 40kyr glacial cycles from 2.8-0.9 Ma and the 100kyr glacial cycles of the last 0.9 Myr is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of \u003e1 Ma ice discovered in shallow ice cores in the Allan Hills Blue Ice Area (BIA), Antarctica. During the 2015-2016 field season we recovered ice from two nearby drill cores that dates to \u003e 2 million years in age using the 40Ar/38Ar ratio of the trapped gases. Our discovery of ice of this antiquity in two cores demonstrates that there is gas-record quality ice from the 40k world in the Allan Hills BIA. To further characterize the composition of Earth\u2019s atmosphere and Antarctic climate during the 40k world we request support for two field seasons to drill new large-volume (4\u201d or 9\u201d diameter) ice cores at sites where we have previously identified \u003e1 Ma ice and nearby sites where ground penetrating radar has identified bedrock features conducive to the preservation of old ice. ", "east": null, "geometry": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Noble Gas", "locations": "Allan Hills; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Higgins, John", "project_titles": "Center for Oldest Ice Exploration; Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "projects": [{"proj_uid": "p0010321", "repository": "USAP-DC", "title": "Center for Oldest Ice Exploration"}, {"proj_uid": "p0010253", "repository": "USAP-DC", "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": null, "title": "Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903", "uid": "601895", "west": null}, {"awards": "1745078 Brook, Edward J.", "bounds_geometry": null, "date_created": "Tue, 23 Jul 2024 00:00:00 GMT", "description": "This dataset includes ~60-year resolution measurements of the Carbon-13 and Deuterium isotopic Composition of Atmospheric Methane (\u03b413C-CH4 and \u03b4D-CH4, respectively) of gas bubbles from the WAIS Divide Replicate Ice Core. All measurements were made at the University of Bern Ice Core Laboratory (Bern, Switzerland) using a new methane stable isotope analytical system. The data includes depth-adjacent replicate samples (separated by no more than 0.3m of depth). The data are displayed as a function of WAIS Divide Replicate Core depth and were corrected for gravitational and diffusional fractionation that occurs in the firn column according to Buizert et al., 2013. 1-sigma measurement uncertainty is also included and is determined from analytical uncertainty and uncertainties associated with diffusional and gravitational fractionation. Additional funding for this work was provided by the Swiss National Foundation, Awards #200020_172506 and #200020B_200328L.", "east": null, "geometry": null, "keywords": "Abrupt Climate Change; Antarctica; Atmospheric Gases; Biogeochemical Cycles; Carbon Cycle; Cryosphere; Greenhouse Gas; Methane; West Antarctic Ice Sheet Divide", "locations": "West Antarctic Ice Sheet Divide; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Riddell-Young, Benjamin; Lee, James; Schmitt, Jochen; Fischer, Hubertus; Bauska, Thomas; Menking, Andy; Iseli, Rene; Clark, Reid; Brook, Edward J.", "project_titles": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores", "projects": [{"proj_uid": "p0010416", "repository": "USAP-DC", "title": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Carbon-13 and Deuterium isotopic composition of atmospheric methane across Heinrich Stadial 4, and Dansgaard Oesgher Event 8, WAIS Divide Replicate Ice Core, Antarctica", "uid": "601813", "west": null}, {"awards": "1543537 Priscu, John", "bounds_geometry": ["POINT(-149.50134 -84.640287)"], "date_created": "Fri, 03 Feb 2023 00:00:00 GMT", "description": "This dataset contains measurements of sediment porewater properties from cores collected from Mercer Subglacial Lake by the SALSA project. Included are: specific conductance; water stable isotopes (\u03b42H and \u03b418O); dissolved gases (methane and its stable isotopes \u03b413C and \u03b42H, ethylene, and ethane); and major anions and cations.", "east": -149.50134, "geometry": ["POINT(-149.50134 -84.640287)"], "keywords": "Antarctica; Gas; Geochemistry; Glacier; Glaciology; Mercer Subglacial Lake; Methane; SALSA; Sediment Core; West Antarctic Ice Sheet", "locations": "Mercer Subglacial Lake; Mercer Subglacial Lake; West Antarctic Ice Sheet; Antarctica", "north": -84.640287, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Dore, John; Michaud, Alexander; Skidmore, Mark; Tranter, Martyn; Steigmeyer, August; Science Team, SALSA", "project_titles": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments", "projects": [{"proj_uid": "p0010119", "repository": "USAP-DC", "title": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.640287, "title": "Sediment porewater properties data from Mercer Subglacial Lake", "uid": "601664", "west": -149.50134}, {"awards": "1543537 Priscu, John", "bounds_geometry": ["POINT(-149.50134 -84.640287)"], "date_created": "Wed, 01 Feb 2023 00:00:00 GMT", "description": "This dataset contains water column biogeochemical properties measured on discrete samples collected from Mercer Subglacial Lake by the SALSA project. Data included are: specific conductance; carbonic acid system parameters (total alkalinity, total inorganic carbon, and pH); water stable isotopes (\u03b42H and \u03b418O); dissolved gases (oxygen, methane, nitrous oxide, and hydrogen); dissolved nutrients (ammonium, nitrite and phosphate), major anions (including nitrate) and cations; size-fractionated colloidal and dissolved trace elements); dissolved organic carbon; and microbial cell and virus-like particle counts.", "east": -149.50134, "geometry": ["POINT(-149.50134 -84.640287)"], "keywords": "Antarctica; Carbon; Cell Counts; Geochemistry; Glacier; Glaciers/ice Sheet; Glaciers/Ice Sheet; Mercer Subglacial Lake; Microbes; Nutrients; SALSA; Stable Isotopes; Trace Elements; West Antarctic Ice Sheet", "locations": "Mercer Subglacial Lake; Antarctica; West Antarctic Ice Sheet; Mercer Subglacial Lake", "north": -84.640287, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Dore, John; Skidmore, Mark; Hawkings, Jon; Steigmeyer, August; Li, Wei; Barker, Joel; Tranter, Martyn; Priscu, John; Science Team, SALSA", "project_titles": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments", "projects": [{"proj_uid": "p0010119", "repository": "USAP-DC", "title": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.640287, "title": "Water column biogeochemical data from Mercer Subglacial Lake", "uid": "601663", "west": -149.50134}, {"awards": "1341717 Ackley, Stephen; 1744562 Loose, Brice", "bounds_geometry": ["POLYGON((-180 -71,-179.9 -71,-179.8 -71,-179.7 -71,-179.6 -71,-179.5 -71,-179.4 -71,-179.3 -71,-179.2 -71,-179.1 -71,-179 -71,-179 -71.7,-179 -72.4,-179 -73.1,-179 -73.8,-179 -74.5,-179 -75.2,-179 -75.9,-179 -76.6,-179 -77.3,-179 -78,-179.1 -78,-179.2 -78,-179.3 -78,-179.4 -78,-179.5 -78,-179.6 -78,-179.7 -78,-179.8 -78,-179.9 -78,180 -78,177.5 -78,175 -78,172.5 -78,170 -78,167.5 -78,165 -78,162.5 -78,160 -78,157.5 -78,155 -78,155 -77.3,155 -76.6,155 -75.9,155 -75.2,155 -74.5,155 -73.8,155 -73.1,155 -72.4,155 -71.7,155 -71,157.5 -71,160 -71,162.5 -71,165 -71,167.5 -71,170 -71,172.5 -71,175 -71,177.5 -71,-180 -71))"], "date_created": "Thu, 15 Sep 2022 00:00:00 GMT", "description": "Discrete noble gases were collected by cold-welded copper tubes within the Amundsen and Ross Sea polynyas. ", "east": -179.0, "geometry": ["POINT(168 -74.5)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Mass Spectrometer; NBP1704; Noble Gas; Oceans; Ross Sea; R/v Nathaniel B. Palmer", "locations": "Antarctica; Ross Sea", "north": -71.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science", "persons": "Loose, Brice", "project_titles": "Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica; Measuring Dissolved Gases to Reveal the Processes that Drive the Solubility Pump and Determine Gas Concentration in Antarctic Bottom Water", "projects": [{"proj_uid": "p0010032", "repository": "USAP-DC", "title": "Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica"}, {"proj_uid": "p0010376", "repository": "USAP-DC", "title": "Measuring Dissolved Gases to Reveal the Processes that Drive the Solubility Pump and Determine Gas Concentration in Antarctic Bottom Water"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "PIPERS Noble Gases", "uid": "601609", "west": 155.0}, {"awards": "1643664 Severinghaus, Jeffrey", "bounds_geometry": null, "date_created": "Tue, 16 Aug 2022 00:00:00 GMT", "description": "This data set consists of high-precision krypton and argon isotope measurements, along with 15N and 18O of O2. This data tests the hypothesis that the 2nd order parameter 86Krexcess (86Kr/82Kr - 40Ar/36Ar) serves as a proxy indicator of past storminess, via atmospheric pressure changes that cause barometric pumping in the firn and hence greater gravitational disequilibrium in the heavier Kr atom than in Ar. These measurements were made as part of the US-Australian Law Dome DE08-OH campaign in 2018-2019. Nitrogen and dioxygen isotopes were also measured.", "east": null, "geometry": null, "keywords": "Antarctica; Ice Core; Law Dome; Noble Gas", "locations": "Law Dome; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.", "project_titles": "Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability", "projects": [{"proj_uid": "p0010341", "repository": "USAP-DC", "title": "Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Law Dome DE08-OH site noble gases in ice: testing the 86Krexcess proxy", "uid": "601597", "west": null}, {"awards": "1643664 Severinghaus, Jeffrey", "bounds_geometry": null, "date_created": "Tue, 16 Aug 2022 00:00:00 GMT", "description": "This data set comprises measurements of noble and inert gases in the firn at the DE08-OH site sampled in 2018-2019 near the summit of Law Dome, Antarctica. The data show the expected gravitational enrichment of heavy isotopes with depth, somewhat attenuated by the high accumulation rate and a near-surface well-mixed zone (convective zone), and the \"lock-in\" horizon at 68 m depth. As seen at many other sites, the heavy isotope of oxygen 18O is depleted progressively with depth within the lock-in zone due to faster gas permeation of 16O16O relative to 18O16O from compressed air bubbles.", "east": null, "geometry": null, "keywords": "Antarctica; Firn; Firn Density; Gravitational Settling; Inert Gases; Law Dome", "locations": "Antarctica; Law Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.", "project_titles": "Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability", "projects": [{"proj_uid": "p0010341", "repository": "USAP-DC", "title": "Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Law Dome DE08-OH firn air 15N, O2/N2, Ar/N2, 18O of O2", "uid": "601598", "west": null}, {"awards": "1543453 Lyons, W. Berry", "bounds_geometry": ["POINT(-149.50134 -84.640287)"], "date_created": "Thu, 23 Dec 2021 00:00:00 GMT", "description": "This dataset includes the following measurements from Niskin casts at Mercer Subglacial Lake as part of the SALSA project: noble gases and their isotopes, d13C-DIC, Ge, 87Sr/86Sr, and 234U/238U", "east": -149.50134, "geometry": ["POINT(-149.50134 -84.640287)"], "keywords": "Antarctica; Mercer Subglacial Lake; Noble Gas", "locations": "Antarctica; Mercer Subglacial Lake", "north": -84.640287, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Gardner, Christopher B.; Lyons, W. Berry", "project_titles": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments", "projects": [{"proj_uid": "p0010119", "repository": "USAP-DC", "title": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.640287, "title": "Mercer Subglacial Lake (SLM) noble gas and isotopic data", "uid": "601498", "west": -149.50134}, {"awards": "1644245 Aydin, Murat", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 30 Jul 2020 00:00:00 GMT", "description": "This is a data set of ice core air ethane and acetylene measurements. Both gases were analyzed in air extracted from the South Pole SPC14 ice core at 149 discrete depths as shown in the data file. Ice core air was extracted using a wet extraction method. This data set includes the ethane and acetylene measurements from the younger (last 2ky) sections of the SPC14 ice core published separately in an earlier data set from the same ice core (doi:10.18739/A2J09W45H). ", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Ethane", "locations": "Antarctica; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Aydin, Murat; Saltzman, Eric", "project_titles": "Ethane Measurements in the Intermediate Depth South Pole Ice Core (SPICECORE)", "projects": [{"proj_uid": "p0000762", "repository": "USAP-DC", "title": "Ethane Measurements in the Intermediate Depth South Pole Ice Core (SPICECORE)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Ice Core Air Ethane and Acetylene Measurements - South Pole SPC14 Ice Core (SPICEcore project)", "uid": "601367", "west": -180.0}, {"awards": "0636953 Saltzman, Eric; 1043780 Aydin, Murat; 0839122 Saltzman, Eric", "bounds_geometry": null, "date_created": "Wed, 15 Jul 2020 00:00:00 GMT", "description": "This is a data set of ice core carbonyl sulfide data. Carbonyl sulfide was analyzed in air extracted from the Taylor Dome M3C1 ice core at 106 discrete depths as indicated in the data file. This data set includes all COS data presented in a prior data set from the same ice core (/doi.org/10.7265/N5S75D8P) that were analyzed from 2008 through 2010. This data set includes additional data from the same ice core that were analyzed at a later date in 2014. The two sets of measurements are presented as one data set as the same extraction and analytical methods were used for both sets of analyses. Refer to the references associated with the data set for details on the methods. ", "east": null, "geometry": null, "keywords": "Antarctica; Carbonyl Sulfide; Trace Gases", "locations": "Antarctica; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "persons": "Aydin, Murat; Saltzman, Eric", "project_titles": "Carbonyl Sulfide Measurements in the Deep West Antarctic Ice Sheet Divide Ice Core; Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core; Methyl Chloride, Methyl Bromide, and Carbonyl Sulfide in Deep Antarctic Ice Cores", "projects": [{"proj_uid": "p0000273", "repository": "USAP-DC", "title": "Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core"}, {"proj_uid": "p0000042", "repository": "USAP-DC", "title": "Methyl Chloride, Methyl Bromide, and Carbonyl Sulfide in Deep Antarctic Ice Cores"}, {"proj_uid": "p0000055", "repository": "USAP-DC", "title": "Carbonyl Sulfide Measurements in the Deep West Antarctic Ice Sheet Divide Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core", "uid": "601361", "west": null}, {"awards": "0440602 Saltzman, Eric; 0338359 Saltzman, Eric", "bounds_geometry": null, "date_created": "Fri, 10 Jul 2020 00:00:00 GMT", "description": "This is a data set of ice core carbonyl sulfide data. Carbonyl sulfide was analyzed in air extracted from the SPRESSO ice core at 106 discrete depths as indicated in the data file. SPRESSO is a shallow, dry-drilled ice core from the South Pole. ", "east": null, "geometry": null, "keywords": "Antarctica; Atmospheric Gases; Gas Measurement; Ice Core; Ice Core Gas Records; Trace Gases", "locations": "Antarctica; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "persons": "Aydin, Murat; Saltzman, Eric", "project_titles": "Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site; Methyl chloride and methyl bromide in Antarctic ice cores", "projects": [{"proj_uid": "p0000032", "repository": "USAP-DC", "title": "Methyl chloride and methyl bromide in Antarctic ice cores"}, {"proj_uid": "p0000368", "repository": "USAP-DC", "title": "Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - SPRESSO Ice Core", "uid": "601357", "west": null}, {"awards": "1443263 Higgins, John", "bounds_geometry": ["POINT(159.35507 -76.73286)"], "date_created": "Wed, 14 Aug 2019 00:00:00 GMT", "description": "This file includes argon isotope composition and xenon-to-krypton ratios measured in Allan Hills ice cores.", "east": 159.35507, "geometry": ["POINT(159.35507 -76.73286)"], "keywords": "Allan Hills; Allan Hills Project; Antarctica; Argon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Data; Ice Core Gas Records; Krypton; Mass Spectrometer; Noble Gas; Snow/ice; Snow/Ice; Xenon", "locations": "Allan Hills; Antarctica", "north": -76.73286, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Yan, Yuzhen; Bender, Michael; Higgins, John; Ng, Jessica; Severinghaus, Jeffrey P.", "project_titles": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area", "projects": [{"proj_uid": "p0000760", "repository": "USAP-DC", "title": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73286, "title": "Elemental and isotopic composition of heavy noble gases in Allan Hills ice cores", "uid": "601201", "west": 159.35507}, {"awards": "1245821 Brook, Edward J.; 1246148 Severinghaus, Jeffrey; 1245659 Petrenko, Vasilii; 0739766 Brook, Edward J.", "bounds_geometry": ["POLYGON((161.68 -77.73,161.7 -77.73,161.72 -77.73,161.74 -77.73,161.76 -77.73,161.78 -77.73,161.8 -77.73,161.82 -77.73,161.84 -77.73,161.86 -77.73,161.88 -77.73,161.88 -77.734,161.88 -77.738,161.88 -77.742,161.88 -77.746,161.88 -77.75,161.88 -77.754,161.88 -77.758,161.88 -77.762,161.88 -77.766,161.88 -77.77,161.86 -77.77,161.84 -77.77,161.82 -77.77,161.8 -77.77,161.78 -77.77,161.76 -77.77,161.74 -77.77,161.72 -77.77,161.7 -77.77,161.68 -77.77,161.68 -77.766,161.68 -77.762,161.68 -77.758,161.68 -77.754,161.68 -77.75,161.68 -77.746,161.68 -77.742,161.68 -77.738,161.68 -77.734,161.68 -77.73))"], "date_created": "Tue, 23 Apr 2019 00:00:00 GMT", "description": "Noble gas data from Taylor Glacier for mean ocean temperature reconstruction during the Younger Dryas. Also includes field measurements of methane and standard deviations of replicate CO2 measurements from WAIS Divide. ", "east": 161.88, "geometry": ["POINT(161.78 -77.75)"], "keywords": "Antarctica; CO2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Methane; Noble Gas; Noble Gas Isotopes; Snow/ice; Snow/Ice; Taylor Glacier; Younger Dryas", "locations": "Antarctica; Taylor Glacier", "north": -77.73, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Shackleton, Sarah", "project_titles": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "projects": [{"proj_uid": "p0000283", "repository": "USAP-DC", "title": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": -77.77, "title": "Taylor Glacier Noble Gases - Younger Dryas", "uid": "601176", "west": 161.68}, {"awards": "1443710 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(0 -90)"], "date_created": "Sat, 02 Feb 2019 00:00:00 GMT", "description": "This data set includes major atmospheric gas and gas isotope data from the SPICECORE project, which recovered a 1750-m ice core at the South Pole in 2015. 15N, 18O of O2, O2/N2, and Ar/N2 are included.", "east": 0.0, "geometry": ["POINT(0 -90)"], "keywords": "Antarctica; Antarctic Ice Sheet; Chemistry:gas; Chemistry:Gas; Chemistry:ice; Chemistry:Ice; Delta 18O; Dole Effect; Firn Thickness; Gas Isotopes; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Gravitational Settling; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Inert Gases; Nitrogen; Nitrogen Isotopes; Oxygen; Oxygen Isotope; Snow/ice; Snow/Ice; South Pole; SPICEcore", "locations": "South Pole; Antarctic Ice Sheet; Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.", "project_titles": "Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core", "projects": [{"proj_uid": "p0010005", "repository": "USAP-DC", "title": "Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "South Pole (SPICECORE) 15N, 18O, O2/N2 and Ar/N2", "uid": "601152", "west": 0.0}, {"awards": "1245580 Castro, M. Clara", "bounds_geometry": ["POINT(163.1833 -77.6767)", "POINT(162.3667 -77.7166)"], "date_created": "Mon, 30 Jan 2017 00:00:00 GMT", "description": null, "east": 163.1833, "geometry": ["POINT(163.1833 -77.6767)", "POINT(162.3667 -77.7166)"], "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Critical Zone; Geochemistry; Noble Gas; Paleoclimate; Ross Ice Shelf; Ross Sea; Taylor Valley", "locations": "Antarctica; Ross Ice Shelf; Ross Sea; Taylor Valley", "north": -77.6767, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Castro, M. Clara", "project_titles": "Developing a New Paleoclimate Proxy for Polar and Alpine Glacial Regions Based on Noble Gases", "projects": [{"proj_uid": "p0000388", "repository": "USAP-DC", "title": "Developing a New Paleoclimate Proxy for Polar and Alpine Glacial Regions Based on Noble Gases"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.7166, "title": "Developing a New Paleoclimate Proxy for Polar and Alpine Glacial Regions Based on Noble Gases", "uid": "600389", "west": 162.3667}, {"awards": "1043145 Obbard, Rachel", "bounds_geometry": ["POLYGON((164.1005 -77.1188,164.36443 -77.1188,164.62836 -77.1188,164.89229 -77.1188,165.15622 -77.1188,165.42015 -77.1188,165.68408 -77.1188,165.94801 -77.1188,166.21194 -77.1188,166.47587 -77.1188,166.7398 -77.1188,166.7398 -77.19337,166.7398 -77.26794,166.7398 -77.34251,166.7398 -77.41708,166.7398 -77.49165,166.7398 -77.56622,166.7398 -77.64079,166.7398 -77.71536,166.7398 -77.78993,166.7398 -77.8645,166.47587 -77.8645,166.21194 -77.8645,165.94801 -77.8645,165.68408 -77.8645,165.42015 -77.8645,165.15622 -77.8645,164.89229 -77.8645,164.62836 -77.8645,164.36443 -77.8645,164.1005 -77.8645,164.1005 -77.78993,164.1005 -77.71536,164.1005 -77.64079,164.1005 -77.56622,164.1005 -77.49165,164.1005 -77.41708,164.1005 -77.34251,164.1005 -77.26794,164.1005 -77.19337,164.1005 -77.1188))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "A range of chemical and microphysical pathways in polar latitudes, including spring time (tropospheric) ozone depletion, oxidative pathways for mercury, and cloud condensation nuclei (CCN) production leading to changes in the cloud cover and attendant surface energy budgets, have been invoked as being dependent upon the emission of halogen gases formed in sea-ice.\nThe prospects for climate warming induced reductions in sea ice extent causing alteration of these incompletely known surface-atmospheric feedbacks and interactions requires confirmation of mechanistic details in both laboratory studies and field campaigns. One such mechanistic question is how bromine (BrO and Br) enriched snow migrates or is formed through processes in sea-ice, prior to its subsequent mobilization as an aerosol fraction into the atmosphere by strong winds. Once aloft, it may react with ozone and other atmospheric species. Dartmouth researchers will collect snow from the surface of sea ice, from freely blowing snow and in sea-ice cores from Cape Byrd, Ross Sea. A range of spectroscopic, microanalytic and and microstructural approaches will be subsequently used to determine the Br distribution gradients through sea-ice, in order to shed light on how sea-ice first forms and then releases bromine species into the polar atmospheric boundary layer.", "east": 166.7398, "geometry": ["POINT(165.42015 -77.49165)"], "keywords": "Atmosphere; Chemistry:ice; Chemistry:Ice; Critical Zone; Crystals; Glaciology; Oceans; Photo/video; Photo/Video; Ross Sea; Sea Ice; Sea Surface; Snow; Southern Ocean", "locations": "Southern Ocean; Sea Surface; Ross Sea", "north": -77.1188, "nsf_funding_programs": null, "persons": "Obbard, Rachel", "project_titles": "Bromide in Snow in the Sea Ice Zone", "projects": [{"proj_uid": "p0000414", "repository": "USAP-DC", "title": "Bromide in Snow in the Sea Ice Zone"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.8645, "title": "Bromide in Snow in the Sea Ice Zone", "uid": "600158", "west": 164.1005}, {"awards": "1043780 Aydin, Murat", "bounds_geometry": ["POINT(-112.1 -79.5)"], "date_created": "Tue, 27 Oct 2015 00:00:00 GMT", "description": "These data contain the results of gas chromatography mass spectrometry (GC-MS) analysis of 207 samples from the WAIS Divide 06A ice core. The trace gases found in the 207 samples are ethane (C2H6), propane (C3H8), n-butane (n-C4H10), carbonyl sulfide (COS), carbon disulfide (CS2), methyl chloride (CH3Cl), and methyl bromide (CH3Br).\u00a0", "east": -112.1, "geometry": ["POINT(-112.1 -79.5)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.5, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Aydin, Murat; Saltzman, Eric", "project_titles": "Carbonyl Sulfide Measurements in the Deep West Antarctic Ice Sheet Divide Ice Core", "projects": [{"proj_uid": "p0000055", "repository": "USAP-DC", "title": "Carbonyl Sulfide Measurements in the Deep West Antarctic Ice Sheet Divide Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.5, "title": "Ultra-trace Measurements in the WAIS Divide 06A Ice Core", "uid": "609659", "west": -112.1}, {"awards": "0440701 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(-112.125 -79.463)"], "date_created": "Mon, 08 Jun 2015 00:00:00 GMT", "description": "This data set shows the modeled surface temperature reconstruction from an inversion of the 300 m WDC05A borehole at the West Antarctic Divide Ice core site.", "east": -112.125, "geometry": ["POINT(-112.125 -79.463)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Temperature; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.463, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.; Orsi, Anais J.", "project_titles": "Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site", "projects": [{"proj_uid": "p0000368", "repository": "USAP-DC", "title": "Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.463, "title": "Surface Temperature Reconstruction from Borehole Temperature Measurement in WDC05A", "uid": "609638", "west": -112.125}, {"awards": "0739598 Aydin, Murat", "bounds_geometry": ["POINT(-38.3833 72.5833)", "POINT(112.09 -79.47)", "POINT(0 -90)"], "date_created": "Wed, 30 Nov 2011 00:00:00 GMT", "description": "This data set contains ethane, propane, and n-butane measurements in firn air from the South Pole and the West Antarctic Ice Sheet (WAIS) Divide in Antarctica, and from Summit, Greenland. The WAIS Divide and South Pole samples were collected in December to January of of 2005/06 and 2008/09, respectively. The Summit firn was sampled in the summer of 2006. Analyses were conducted on a gas chromatography - mass spectrometry (GC-MS) system at the University of California, Irvine. Measurements and the associated uncertainties are reported as dry air molar mixing ratios in part per trillion (ppt). The reported measurements for each sampling depth represent a mean of multiple measurements on more than one flask in most cases.\n\nData are available via FTP in Microsoft Excel (.xls) format.", "east": 112.09, "geometry": ["POINT(-38.3833 72.5833)", "POINT(112.09 -79.47)", "POINT(0 -90)"], "keywords": "Antarctica; Arctic; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Greenland; Snow/ice; Snow/Ice; South Pole; WAIS Divide", "locations": "Antarctica; Greenland; South Pole; WAIS Divide; Arctic", "north": 72.5833, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Aydin, Murat; Saltzman, Eric", "project_titles": "Collaborative Research: Methane Isotopes, Hydrocarbons, and other Trace Gases in South Pole Firn Air", "projects": [{"proj_uid": "p0000162", "repository": "USAP-DC", "title": "Collaborative Research: Methane Isotopes, Hydrocarbons, and other Trace Gases in South Pole Firn Air"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Alkanes in Firn Air Samples, Antarctica and Greenland", "uid": "609504", "west": -38.3833}, {"awards": "0538427 McConnell, Joseph; 0538538 Sowers, Todd; 0520523 Brook, Edward J.; 0538578 Brook, Edward J.; 0739780 Taylor, Kendrick", "bounds_geometry": ["POINT(112.09 -79.47)"], "date_created": "Fri, 27 May 2011 00:00:00 GMT", "description": "This data set provides a high-precision and high-resolution record of atmospheric methane from the West Antarctic Ice Sheet (WAIS) Divide ice core WDC05A, spanning the years 1000 to 1800 C.E. The data include methane (CH4) concentration measurements and ice age chronology. Methane concentration data include mean sample depth, gas age, mean concentration, and concentrations from individual measurements, at a temporal resolution of approximately nine years. Ice chronology data include depth and ice age.\n\nData are available via FTP, in Microsoft Excel (.xlsx) format.", "east": 112.09, "geometry": ["POINT(112.09 -79.47)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology", "persons": "McConnell, Joseph; Brook, Edward J.; Mitchell, Logan E; Sowers, Todd A.; Taylor, Kendrick C.", "project_titles": "Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site", "projects": [{"proj_uid": "p0000368", "repository": "USAP-DC", "title": "Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.47, "title": "Methane Concentration and Chronology from the WAIS Divide Ice Core (WDC05A)", "uid": "609493", "west": 112.09}, {"awards": "0739780 Taylor, Kendrick", "bounds_geometry": ["POINT(-112.117 -79.666)"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "This award supports a project to develop a 2,000-year high-temporal resolution record of biomass burning from the analysis of black carbon in the WAIS Divide bedrock ice core. Pilot data for the WAIS WD05A core demonstrates that we now have the ability to reconstruct this record with minimal impact on the amount of ice available for other projects. The intellectual merit of this project is that black carbon (BC) aerosols result solely from combustion and play a critical but poorly quantified role in global climate forcing and the carbon cycle. When incorporated into snow and ice, BC increases absorption of solar radiation making seasonal snow packs, mountain glaciers, polar ice sheets, and sea ice much more vulnerable to climate warming. BC emissions in the Southern Hemisphere are dominated by biomass burning in the tropical regions of Southern Africa, South America and South Asia. Biomass burning, which results from both climate and human activities, alters the atmospheric composition of greenhouse gases, aerosols and perturbs key biogeochemical cycles. A long-term record of biomass burning is needed to aid in the interpretation of ice core gas composition and will provide important information regarding human impacts on the environment and climate before instrumental records.", "east": -112.117, "geometry": ["POINT(-112.117 -79.666)"], "keywords": "Antarctica; Atmosphere; Black Carbon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.666, "nsf_funding_programs": null, "persons": "Taylor, Kendrick C.", "project_titles": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "projects": [{"proj_uid": "p0000022", "repository": "USAP-DC", "title": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.666, "title": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "uid": "600142", "west": -112.117}, {"awards": "0739491 Sowers, Todd", "bounds_geometry": ["POLYGON((-180 90,-144 90,-108 90,-72 90,-36 90,0 90,36 90,72 90,108 90,144 90,180 90,180 72,180 54,180 36,180 18,180 0,180 -18,180 -36,180 -54,180 -72,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -72,-180 -54,-180 -36,-180 -18,-180 0,-180 18,-180 36,-180 54,-180 72,-180 90))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "This data set contains depth profiles for delta carbon-13 (\u0026#948;13C) and delta deuterium (\u0026#948;D) of methane (CH\u003csub\u003e4\u003c/sub\u003e) in South Pole firn air. The investigators obtained air samples from two boreholes during December 2008 and January 2009, and subsequently determined isotope ratios at 18 depths. The profiles represent a roughly 100-year history of the isotopic composition of CH\u003csub\u003e4\u003c/sub\u003e at South Pole Station (no depth-age model provided).\n\nData are available via FTP as an ASCII text file (.txt) and a Microsoft Excel file (.xlsx).", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Isotope; Paleoclimate; Snow/ice; Snow/Ice; South Pole", "locations": "Antarctica; South Pole", "north": 90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Sowers, Todd A.", "project_titles": "Collaborative Research: Methane Isotopes, Hydrocarbons, and other Trace Gases in South Pole Firn Air", "projects": [{"proj_uid": "p0000162", "repository": "USAP-DC", "title": "Collaborative Research: Methane Isotopes, Hydrocarbons, and other Trace Gases in South Pole Firn Air"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Methane Isotopes in South Pole Firn Air, 2008", "uid": "609502", "west": -180.0}, {"awards": "0836061 Dennett, Mark", "bounds_geometry": ["POLYGON((-170 -69,-163 -69,-156 -69,-149 -69,-142 -69,-135 -69,-128 -69,-121 -69,-114 -69,-107 -69,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-100 -77,-100 -78,-100 -79,-107 -79,-114 -79,-121 -79,-128 -79,-135 -79,-142 -79,-149 -79,-156 -79,-163 -79,-170 -79,-170 -78,-170 -77,-170 -76,-170 -75,-170 -74,-170 -73,-170 -72,-170 -71,-170 -70,-170 -69))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "Convincing evidence now confirms that polar regions are changing rapidly in response to human activities. Changes in sea ice extent and thickness will have profound implications for productivity, food webs and carbon fluxes at high latitudes, since sea ice biota are a significant source of biogenic matter for the ecosystem. While sea ice is often thought to be a barrier to gas exchange between the ocean and the atmosphere, it more likely functions as a source or sink for climate-active gases such as carbon dioxide and ozone-depleting organohalogens, due in part to activities of microbes embedded in the sea ice matrix. This project brings together experienced US and Swedish investigators to examine the controls by sea-ice biota on the production and degradation of key climate-active gases in the Pacific sector of the Southern Ocean. We hypothesize that 1) the physical properties of the sea-ice environment will determine the community structure and activities of the sea ice biota; 2) the productivity, biomass, physiological state and species composition of ice algae will determine the production of specific classes of organic carbon, including organohalogens; 3) heterotrophic co-metabolism within the ice will break down these compounds to some extent, depending on the microbial community structure and productivity, and 4) the sea ice to atmosphere fluxes of CO2 and organohalogens will be inversely related. This project will build close scientific collaborations between US and Swedish researchers and also train young scientists, including members of underrepresented groups. Dissemination of results will include the scientific literature, and public outreach venues including interactions with a PolarTrec teacher.", "east": -100.0, "geometry": ["POINT(-135 -74)"], "keywords": "Amundsen Sea; Antarctica; Biota; Oceans; Oden; Oden2008; Plankton; Sea Ice; Southern Ocean", "locations": "Southern Ocean; Amundsen Sea; Antarctica", "north": -69.0, "nsf_funding_programs": null, "persons": "Dennett, Mark", "project_titles": "Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota", "projects": [{"proj_uid": "p0000137", "repository": "USAP-DC", "title": "Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "Controls on Climate-Active Gases by Amundsen Sea Ice Biota", "uid": "600091", "west": -170.0}, {"awards": "0836112 Smith, Walker", "bounds_geometry": ["POLYGON((-170 -69,-163 -69,-156 -69,-149 -69,-142 -69,-135 -69,-128 -69,-121 -69,-114 -69,-107 -69,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-100 -77,-100 -78,-100 -79,-107 -79,-114 -79,-121 -79,-128 -79,-135 -79,-142 -79,-149 -79,-156 -79,-163 -79,-170 -79,-170 -78,-170 -77,-170 -76,-170 -75,-170 -74,-170 -73,-170 -72,-170 -71,-170 -70,-170 -69))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Convincing evidence now confirms that polar regions are changing rapidly in response to human activities. Changes in sea ice extent and thickness will have profound implications for productivity, food webs and carbon fluxes at high latitudes, since sea ice biota are a significant source of biogenic matter for the ecosystem. While sea ice is often thought to be a barrier to gas exchange between the ocean and the atmosphere, it more likely functions as a source or sink for climate-active gases such as carbon dioxide and ozone-depleting organohalogens, due in part to activities of microbes embedded in the sea ice matrix. This project brings together experienced US and Swedish investigators to examine the controls by sea-ice biota on the production and degradation of key climate-active gases in the Pacific sector of the Southern Ocean. We hypothesize that 1) the physical properties of the sea-ice environment will determine the community structure and activities of the sea ice biota; 2) the productivity, biomass, physiological state and species composition of ice algae will determine the production of specific classes of organic carbon, including organohalogens; 3) heterotrophic co-metabolism within the ice will break down these compounds to some extent, depending on the microbial community structure and productivity, and 4) the sea ice to atmosphere fluxes of CO2 and organohalogens will be inversely related. This project will build close scientific collaborations between US and Swedish researchers and also train young scientists, including members of underrepresented groups. Dissemination of results will include the scientific literature, and public outreach venues including interactions with a PolarTrec teacher.\n", "east": -100.0, "geometry": ["POINT(-135 -74)"], "keywords": "Amundsen Sea; Antarctica; Chemistry:fluid; Chemistry:Fluid; CTD Data; Oceans; Oden; Oden2008; Sea Ice; Sea Surface; Southern Ocean", "locations": "Antarctica; Sea Surface; Amundsen Sea; Southern Ocean", "north": -69.0, "nsf_funding_programs": null, "persons": "Smith, Walker", "project_titles": "Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota", "projects": [{"proj_uid": "p0000137", "repository": "USAP-DC", "title": "Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "Controls on Climate-Active Gases by Amundsen Sea Ice Biota", "uid": "600092", "west": -170.0}, {"awards": "0440759 Sowers, Todd", "bounds_geometry": ["POINT(112.09 -79.47)"], "date_created": "Tue, 01 Dec 2009 00:00:00 GMT", "description": "This data set includes methane (CH4) isotope data from the West Antarctic Ice Sheet (WAIS) Divide ice core, WDC05A, in Antarctica. The data include depth, gas age, and the isotopic composition of methane (\u0026#8706;13C and \u0026#8706;D of CH4). The ice core was collected during the 2005-2006 Antarctic field season. The CH4 isotope data was generated in 2008 using wet extraction methodology. Samples span the last 1,000 years, at a resolution of about 15 years. Data for samples above 69 meters were from firn air, and data below 69 meters from ice. The dating of the ice was based on continuous chemical analyses above 69 meters and Electrical Conductivity/Dielectric Property (ECM/DEP) measurements from ice. Dating uncertainty is estimated to be better than five years.\n\nData are available via FTP in Microsoft Excel (.xls) tab delimited format", "east": 112.09, "geometry": ["POINT(112.09 -79.47)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Methane; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Sowers, Todd A.", "project_titles": "Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site", "projects": [{"proj_uid": "p0000368", "repository": "USAP-DC", "title": "Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.47, "title": "Methane Isotopes from the WAIS Divide Ice Core", "uid": "609435", "west": 112.09}, {"awards": "0440602 Saltzman, Eric", "bounds_geometry": ["POINT(112.09 -79.47)"], "date_created": "Thu, 30 Jul 2009 00:00:00 GMT", "description": "This data set contains trace gas measurements of air extracted from ice core samples from the West Antarctic Ice Sheet Divide A core (WAIS-D 05A). The WAIS A core was dry-drilled at the WAIS site during the 2005-2006 Antarctic field season. Data include trace gas species including ethane (C2H6), propane (C3H8), n-butane (n-C4H10), carbonyl sulfide (COS), carbon disulfide (CS2), methyl chloride (CH3Cl), methyl bromide (CH3Br), acetonitrile (CH3CN), and chlorofluorocarbon-12 (CFC-12), for 57 ice core samples. The data are available via FTP in Microsoft Excel (.xls) file format.", "east": 112.09, "geometry": ["POINT(112.09 -79.47)"], "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Saltzman, Eric", "project_titles": "Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site", "projects": [{"proj_uid": "p0000368", "repository": "USAP-DC", "title": "Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.47, "title": "Gases in Firn Air and Shallow Ice at the WAIS Drilling Site, Antarctica", "uid": "609412", "west": 112.09}, {"awards": "0338359 Saltzman, Eric", "bounds_geometry": ["POINT(-144.39 -89.93)"], "date_created": "Sat, 10 Nov 2007 00:00:00 GMT", "description": "This data set is an analysis of methyl chloride (CH3Cl) and methyl bromide (CH3Br) in Antarctic ice core samples. Investigators reported mixing ratios of methyl chloride gas extracted from samples taken from the South Pole Remote Earth Science and Seismological Observatory (SPRESSO) core, drilled as part of the International Trans Antarctic Science Expedition (ITASE). This data covers an age range of 2159 - 140 years before present (Y.B.P.) where the year 2000 was used as present. Investigators analyzed trace gases in ice core samples from Siple Dome, West Antarctica (dry-drilled C core and deep, fluid-drilled A core) and from South Pole, Antarctica (300 m dry drilled SPRESSO core). Data are available in Microsoft Excel format and are available via FTP.", "east": -144.39, "geometry": ["POINT(-144.39 -89.93)"], "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; ITASE; Paleoclimate; Siple Dome Ice Core; South Pole; SPRESSO; SPRESSO Ice Core", "locations": "South Pole; Antarctica", "north": -89.93, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Saltzman, Eric; Aydin, Murat; Williams, Margaret; Tatum, Cheryl", "project_titles": "Methyl chloride and methyl bromide in Antarctic ice cores", "projects": [{"proj_uid": "p0000032", "repository": "USAP-DC", "title": "Methyl chloride and methyl bromide in Antarctic ice cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -89.93, "title": "Antarctic Ice Cores: Methyl Chloride and Methyl Bromide", "uid": "609313", "west": -144.39}, {"awards": "0337891 Brook, Edward J.", "bounds_geometry": ["POINT(158 -77.666667)"], "date_created": "Mon, 05 Nov 2007 00:00:00 GMT", "description": "Using new and existing ice core CO2 data from 65 - 30 ka BP a new chronology for Taylor Dome ice core CO2 is established and synchronized with Greenland ice core records to study how high latitude climate change and the carbon cycle were linked during the last glacial period. The new data and chronology should provide a better target for models attempting to explain CO2 variability and abrupt climate change.", "east": 158.0, "geometry": ["POINT(158 -77.666667)"], "keywords": "Antarctica; Atmosphere; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Taylor Dome; Taylor Dome Ice Core", "locations": "Antarctica; Taylor Dome", "north": -77.666667, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Brook, Edward J.; Ahn, Jinho", "project_titles": "Developing Dry Extraction of Ice Core Gases and Application to Millennial-Scale Variability in Atmospheric CO2", "projects": [{"proj_uid": "p0000268", "repository": "USAP-DC", "title": "Developing Dry Extraction of Ice Core Gases and Application to Millennial-Scale Variability in Atmospheric CO2"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": -77.666667, "title": "Atmospheric CO2 and Climate: Taylor Dome Ice Core, Antarctica", "uid": "609315", "west": 158.0}, {"awards": "0337891 Brook, Edward J.", "bounds_geometry": ["POINT(-119.833611 -80.01)"], "date_created": "Fri, 26 Oct 2007 00:00:00 GMT", "description": "Reconstructions of ancient atmospheric CO2 variations help us better understand how the global carbon cycle and climate are linked. This data set compares CO2 variations on millennial time scales between 20,000 and 90,000 years with an Antarctic temperature proxy and records of abrupt climate change in the Northern hemisphere.", "east": -119.833611, "geometry": ["POINT(-119.833611 -80.01)"], "keywords": "Antarctica; Atmosphere; Byrd Glacier; Byrd Ice Core; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate", "locations": "Byrd Glacier; Antarctica", "north": -80.01, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Brook, Edward J.; Ahn, Jinho", "project_titles": "Developing Dry Extraction of Ice Core Gases and Application to Millennial-Scale Variability in Atmospheric CO2", "projects": [{"proj_uid": "p0000268", "repository": "USAP-DC", "title": "Developing Dry Extraction of Ice Core Gases and Application to Millennial-Scale Variability in Atmospheric CO2"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Byrd Ice Core", "south": -80.01, "title": "Atmospheric CO2 and Climate: Byrd Ice Core, Antarctica", "uid": "609314", "west": -119.833611}, {"awards": "9725918 Brook, Edward J.; 9714687 Brook, Edward J.", "bounds_geometry": ["POINT(-119.516667 -80.016667)"], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "This data set consists of microparticle and chemistry data from Byrd Ice Core, the first ice core to reach bedrock in Antarctica. The core was drilled with a cable-suspended electromechanical rotary drill at Byrd Station, Antarctica. The vertical thickness of the ice was 2164 meters and more than 99 percent of the core was recovered. Cores were sought for investigations of the physical properties of the ice sheet, the nature of the ice-rock contact, and the composition of the underlying bedrock.", "east": -119.516667, "geometry": ["POINT(-119.516667 -80.016667)"], "keywords": "Antarctica; Byrd; Byrd Ice Core; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate", "locations": "Antarctica", "north": -80.016667, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Blunier, Thomas; Fluckiger, Jacqueline; Thompson, Lonnie G.; Brook, Edward J.", "project_titles": "Collaborative Research: Studies of Trapped Gases in Firn and Ice from Antarctic Deep Ice Cores", "projects": [{"proj_uid": "p0000168", "repository": "USAP-DC", "title": "Collaborative Research: Studies of Trapped Gases in Firn and Ice from Antarctic Deep Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Byrd Ice Core", "south": -80.016667, "title": "Byrd Ice Core Microparticle and Chemistry Data", "uid": "609247", "west": -119.516667}, {"awards": "9222121 Dalziel, Ian; 9318121 Anandakrishnan, Sridhar", "bounds_geometry": ["POINT(106.48 -72.28)"], "date_created": "Tue, 01 Jan 2002 00:00:00 GMT", "description": "These data describe the d18O of O2, d15N of N2, d18Oatm, and O2/N2 ratios of trapped gases in the Vostok ice core from East Antarctica. The investigator used a mass spectrometer to measure gas concentrations and isotopic compositions. Data extend to approximately 420,000 years ago. Two different age models are included.\n\nData are available in tab-delimited ASCII format via ftp.", "east": 106.48, "geometry": ["POINT(106.48 -72.28)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciology; Ice Core Records; Lake Vostok; Paleoclimate; UPLC-Q-TOF; Vostok Ice Core", "locations": "Lake Vostok; Antarctica", "north": -72.28, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Bender, Michael", "project_titles": "Collaborative Research: Seismic Traverse of the Byrd Subglacial Basin-Field Test", "projects": [{"proj_uid": "p0000150", "repository": "USAP-DC", "title": "Collaborative Research: Seismic Traverse of the Byrd Subglacial Basin-Field Test"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -72.28, "title": "Concentration and Isotopic Composition of O2 and N2 in Trapped Gases of the Vostok Ice Core", "uid": "609107", "west": 106.48}, {"awards": "9725918 Brook, Edward J.; 9725305 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(-148.767 -81.667)", "POINT(-102 -89.997)"], "date_created": "Mon, 01 Jan 2001 00:00:00 GMT", "description": "This data set includes d15N, d18O/2, dO2/N2/4, d40Ar/4, d38/Ar/2,\nd84Kr/48, and d132Xe/96 values for air drawn from the top 15 to 50 m\nof firn at the South Pole (summer and winter 1998) and a site at Siple\nDome (summers 1996 and 1998). Data also include related firn\ntemperature measurements.\n\nThe objective of this research was to better understand thermal\nfractionation processes affecting records of atmospheric history from\nfirn and ice core gases. Recent work (e.g., Severinghaus and Brook,\n1999) has exploited trapped air in ice and deep firn as a record of\npast atmospheric composition and climate change. Interpretation of these paleoclimate archives is complicated by artifacts of thermal\ndiffusion, a process in which heavier gases migrate down temperature\ngradients toward colder regions in the firn. Seasonal temperature\nchange at the snow surface creates strong temperature gradients in the\ntop few meters of the firn, which cause isotopic fractionation of firn\ngases. A specific goal of this research is to identify any long-term\neffects of seasonal temperature fluctuations on firn air isotopic\nanomalies.", "east": -102.0, "geometry": ["POINT(-148.767 -81.667)", "POINT(-102 -89.997)"], "keywords": "Antarctica; Atmosphere; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciology; Isotope; Paleoclimate; Siple Dome; Snow/ice; Snow/Ice; South Pole; Temperature", "locations": "Siple Dome; Antarctica; South Pole", "north": -81.667, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.; Battle, Mark; Grachev, Alexi", "project_titles": "Thermal Fractionation of Firn Air and the Ice Core Record of Abrupt Interstadial Climate Change", "projects": [{"proj_uid": "p0000160", "repository": "USAP-DC", "title": "Thermal Fractionation of Firn Air and the Ice Core Record of Abrupt Interstadial Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -89.997, "title": "Firn Air Isotope and Temperature Measurements from Siple Dome and South Pole", "uid": "609098", "west": -148.767}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903
|
1744993 |
2025-02-12 | Higgins, John |
Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area Center for Oldest Ice Exploration |
Between about 2.8-0.9 Ma, Earth’s climate was characterized by 40 kyr cycles, driven or paced by changes in the tilt of Earth’s spin axis. Much is known about the 40k world from studies of deep-sea sediments, but our understanding of climate change during this period and the transition between the 40kyr glacial cycles from 2.8-0.9 Ma and the 100kyr glacial cycles of the last 0.9 Myr is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of >1 Ma ice discovered in shallow ice cores in the Allan Hills Blue Ice Area (BIA), Antarctica. During the 2015-2016 field season we recovered ice from two nearby drill cores that dates to > 2 million years in age using the 40Ar/38Ar ratio of the trapped gases. Our discovery of ice of this antiquity in two cores demonstrates that there is gas-record quality ice from the 40k world in the Allan Hills BIA. To further characterize the composition of Earth’s atmosphere and Antarctic climate during the 40k world we request support for two field seasons to drill new large-volume (4” or 9” diameter) ice cores at sites where we have previously identified >1 Ma ice and nearby sites where ground penetrating radar has identified bedrock features conducive to the preservation of old ice. | ["POINT(159.356125 -76.732376)"] | ["POINT(159.356125 -76.732376)"] | false | false |
CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903
|
1744993 |
2025-02-12 | Higgins, John |
Center for Oldest Ice Exploration Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area |
Between about 2.8-0.9 Ma, Earth’s climate was characterized by 40 kyr cycles, driven or paced by changes in the tilt of Earth’s spin axis. Much is known about the 40k world from studies of deep-sea sediments, but our understanding of climate change during this period and the transition between the 40kyr glacial cycles from 2.8-0.9 Ma and the 100kyr glacial cycles of the last 0.9 Myr is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of >1 Ma ice discovered in shallow ice cores in the Allan Hills Blue Ice Area (BIA), Antarctica. During the 2015-2016 field season we recovered ice from two nearby drill cores that dates to > 2 million years in age using the 40Ar/38Ar ratio of the trapped gases. Our discovery of ice of this antiquity in two cores demonstrates that there is gas-record quality ice from the 40k world in the Allan Hills BIA. To further characterize the composition of Earth’s atmosphere and Antarctic climate during the 40k world we request support for two field seasons to drill new large-volume (4” or 9” diameter) ice cores at sites where we have previously identified >1 Ma ice and nearby sites where ground penetrating radar has identified bedrock features conducive to the preservation of old ice. <br/> | ["POINT(159.3562 -76.73243)"] | ["POINT(159.3562 -76.73243)"] | false | false |
Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903
|
1744993 |
2025-02-11 | Higgins, John |
Center for Oldest Ice Exploration Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area |
Between about 2.8-0.9 Ma, Earth’s climate was characterized by 40 kyr cycles, driven or paced by changes in the tilt of Earth’s spin axis. Much is known about the 40k world from studies of deep-sea sediments, but our understanding of climate change during this period and the transition between the 40kyr glacial cycles from 2.8-0.9 Ma and the 100kyr glacial cycles of the last 0.9 Myr is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of >1 Ma ice discovered in shallow ice cores in the Allan Hills Blue Ice Area (BIA), Antarctica. During the 2015-2016 field season we recovered ice from two nearby drill cores that dates to > 2 million years in age using the 40Ar/38Ar ratio of the trapped gases. Our discovery of ice of this antiquity in two cores demonstrates that there is gas-record quality ice from the 40k world in the Allan Hills BIA. To further characterize the composition of Earth’s atmosphere and Antarctic climate during the 40k world we request support for two field seasons to drill new large-volume (4” or 9” diameter) ice cores at sites where we have previously identified >1 Ma ice and nearby sites where ground penetrating radar has identified bedrock features conducive to the preservation of old ice. | [] | [] | false | false |
Carbon-13 and Deuterium isotopic composition of atmospheric methane across Heinrich Stadial 4, and Dansgaard Oesgher Event 8, WAIS Divide Replicate Ice Core, Antarctica
|
1745078 |
2024-07-23 | Riddell-Young, Benjamin; Lee, James; Schmitt, Jochen; Fischer, Hubertus; Bauska, Thomas; Menking, Andy; Iseli, Rene; Clark, Reid; Brook, Edward J. |
Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores |
This dataset includes ~60-year resolution measurements of the Carbon-13 and Deuterium isotopic Composition of Atmospheric Methane (δ13C-CH4 and δD-CH4, respectively) of gas bubbles from the WAIS Divide Replicate Ice Core. All measurements were made at the University of Bern Ice Core Laboratory (Bern, Switzerland) using a new methane stable isotope analytical system. The data includes depth-adjacent replicate samples (separated by no more than 0.3m of depth). The data are displayed as a function of WAIS Divide Replicate Core depth and were corrected for gravitational and diffusional fractionation that occurs in the firn column according to Buizert et al., 2013. 1-sigma measurement uncertainty is also included and is determined from analytical uncertainty and uncertainties associated with diffusional and gravitational fractionation. Additional funding for this work was provided by the Swiss National Foundation, Awards #200020_172506 and #200020B_200328L. | [] | [] | false | false |
Sediment porewater properties data from Mercer Subglacial Lake
|
1543537 |
2023-02-03 | Dore, John; Michaud, Alexander; Skidmore, Mark; Tranter, Martyn; Steigmeyer, August; Science Team, SALSA |
Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments |
This dataset contains measurements of sediment porewater properties from cores collected from Mercer Subglacial Lake by the SALSA project. Included are: specific conductance; water stable isotopes (δ2H and δ18O); dissolved gases (methane and its stable isotopes δ13C and δ2H, ethylene, and ethane); and major anions and cations. | ["POINT(-149.50134 -84.640287)"] | ["POINT(-149.50134 -84.640287)"] | false | false |
Water column biogeochemical data from Mercer Subglacial Lake
|
1543537 |
2023-02-01 | Dore, John; Skidmore, Mark; Hawkings, Jon; Steigmeyer, August; Li, Wei; Barker, Joel; Tranter, Martyn; Priscu, John; Science Team, SALSA |
Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments |
This dataset contains water column biogeochemical properties measured on discrete samples collected from Mercer Subglacial Lake by the SALSA project. Data included are: specific conductance; carbonic acid system parameters (total alkalinity, total inorganic carbon, and pH); water stable isotopes (δ2H and δ18O); dissolved gases (oxygen, methane, nitrous oxide, and hydrogen); dissolved nutrients (ammonium, nitrite and phosphate), major anions (including nitrate) and cations; size-fractionated colloidal and dissolved trace elements); dissolved organic carbon; and microbial cell and virus-like particle counts. | ["POINT(-149.50134 -84.640287)"] | ["POINT(-149.50134 -84.640287)"] | false | false |
PIPERS Noble Gases
|
1341717 1744562 |
2022-09-15 | Loose, Brice |
Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica Measuring Dissolved Gases to Reveal the Processes that Drive the Solubility Pump and Determine Gas Concentration in Antarctic Bottom Water |
Discrete noble gases were collected by cold-welded copper tubes within the Amundsen and Ross Sea polynyas. | ["POLYGON((-180 -71,-179.9 -71,-179.8 -71,-179.7 -71,-179.6 -71,-179.5 -71,-179.4 -71,-179.3 -71,-179.2 -71,-179.1 -71,-179 -71,-179 -71.7,-179 -72.4,-179 -73.1,-179 -73.8,-179 -74.5,-179 -75.2,-179 -75.9,-179 -76.6,-179 -77.3,-179 -78,-179.1 -78,-179.2 -78,-179.3 -78,-179.4 -78,-179.5 -78,-179.6 -78,-179.7 -78,-179.8 -78,-179.9 -78,180 -78,177.5 -78,175 -78,172.5 -78,170 -78,167.5 -78,165 -78,162.5 -78,160 -78,157.5 -78,155 -78,155 -77.3,155 -76.6,155 -75.9,155 -75.2,155 -74.5,155 -73.8,155 -73.1,155 -72.4,155 -71.7,155 -71,157.5 -71,160 -71,162.5 -71,165 -71,167.5 -71,170 -71,172.5 -71,175 -71,177.5 -71,-180 -71))"] | ["POINT(168 -74.5)"] | false | false |
Law Dome DE08-OH site noble gases in ice: testing the 86Krexcess proxy
|
1643664 |
2022-08-16 | Severinghaus, Jeffrey P. |
Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability |
This data set consists of high-precision krypton and argon isotope measurements, along with 15N and 18O of O2. This data tests the hypothesis that the 2nd order parameter 86Krexcess (86Kr/82Kr - 40Ar/36Ar) serves as a proxy indicator of past storminess, via atmospheric pressure changes that cause barometric pumping in the firn and hence greater gravitational disequilibrium in the heavier Kr atom than in Ar. These measurements were made as part of the US-Australian Law Dome DE08-OH campaign in 2018-2019. Nitrogen and dioxygen isotopes were also measured. | [] | [] | false | false |
Law Dome DE08-OH firn air 15N, O2/N2, Ar/N2, 18O of O2
|
1643664 |
2022-08-16 | Severinghaus, Jeffrey P. |
Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability |
This data set comprises measurements of noble and inert gases in the firn at the DE08-OH site sampled in 2018-2019 near the summit of Law Dome, Antarctica. The data show the expected gravitational enrichment of heavy isotopes with depth, somewhat attenuated by the high accumulation rate and a near-surface well-mixed zone (convective zone), and the "lock-in" horizon at 68 m depth. As seen at many other sites, the heavy isotope of oxygen 18O is depleted progressively with depth within the lock-in zone due to faster gas permeation of 16O16O relative to 18O16O from compressed air bubbles. | [] | [] | false | false |
Mercer Subglacial Lake (SLM) noble gas and isotopic data
|
1543453 |
2021-12-23 | Gardner, Christopher B.; Lyons, W. Berry |
Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments |
This dataset includes the following measurements from Niskin casts at Mercer Subglacial Lake as part of the SALSA project: noble gases and their isotopes, d13C-DIC, Ge, 87Sr/86Sr, and 234U/238U | ["POINT(-149.50134 -84.640287)"] | ["POINT(-149.50134 -84.640287)"] | false | false |
Ice Core Air Ethane and Acetylene Measurements - South Pole SPC14 Ice Core (SPICEcore project)
|
1644245 |
2020-07-30 | Aydin, Murat; Saltzman, Eric |
Ethane Measurements in the Intermediate Depth South Pole Ice Core (SPICECORE) |
This is a data set of ice core air ethane and acetylene measurements. Both gases were analyzed in air extracted from the South Pole SPC14 ice core at 149 discrete depths as shown in the data file. Ice core air was extracted using a wet extraction method. This data set includes the ethane and acetylene measurements from the younger (last 2ky) sections of the SPC14 ice core published separately in an earlier data set from the same ice core (doi:10.18739/A2J09W45H). | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core
|
0636953 1043780 0839122 |
2020-07-15 | Aydin, Murat; Saltzman, Eric |
Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core Methyl Chloride, Methyl Bromide, and Carbonyl Sulfide in Deep Antarctic Ice Cores Carbonyl Sulfide Measurements in the Deep West Antarctic Ice Sheet Divide Ice Core |
This is a data set of ice core carbonyl sulfide data. Carbonyl sulfide was analyzed in air extracted from the Taylor Dome M3C1 ice core at 106 discrete depths as indicated in the data file. This data set includes all COS data presented in a prior data set from the same ice core (/doi.org/10.7265/N5S75D8P) that were analyzed from 2008 through 2010. This data set includes additional data from the same ice core that were analyzed at a later date in 2014. The two sets of measurements are presented as one data set as the same extraction and analytical methods were used for both sets of analyses. Refer to the references associated with the data set for details on the methods. | [] | [] | false | false |
Ice Core Air Carbonyl Sulfide Measurements - SPRESSO Ice Core
|
0440602 0338359 |
2020-07-10 | Aydin, Murat; Saltzman, Eric |
Methyl chloride and methyl bromide in Antarctic ice cores Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site |
This is a data set of ice core carbonyl sulfide data. Carbonyl sulfide was analyzed in air extracted from the SPRESSO ice core at 106 discrete depths as indicated in the data file. SPRESSO is a shallow, dry-drilled ice core from the South Pole. | [] | [] | false | false |
Elemental and isotopic composition of heavy noble gases in Allan Hills ice cores
|
1443263 |
2019-08-14 | Yan, Yuzhen; Bender, Michael; Higgins, John; Ng, Jessica; Severinghaus, Jeffrey P. |
Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area |
This file includes argon isotope composition and xenon-to-krypton ratios measured in Allan Hills ice cores. | ["POINT(159.35507 -76.73286)"] | ["POINT(159.35507 -76.73286)"] | false | false |
Taylor Glacier Noble Gases - Younger Dryas
|
1245821 1246148 1245659 0739766 |
2019-04-23 | Shackleton, Sarah |
Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive |
Noble gas data from Taylor Glacier for mean ocean temperature reconstruction during the Younger Dryas. Also includes field measurements of methane and standard deviations of replicate CO2 measurements from WAIS Divide. | ["POLYGON((161.68 -77.73,161.7 -77.73,161.72 -77.73,161.74 -77.73,161.76 -77.73,161.78 -77.73,161.8 -77.73,161.82 -77.73,161.84 -77.73,161.86 -77.73,161.88 -77.73,161.88 -77.734,161.88 -77.738,161.88 -77.742,161.88 -77.746,161.88 -77.75,161.88 -77.754,161.88 -77.758,161.88 -77.762,161.88 -77.766,161.88 -77.77,161.86 -77.77,161.84 -77.77,161.82 -77.77,161.8 -77.77,161.78 -77.77,161.76 -77.77,161.74 -77.77,161.72 -77.77,161.7 -77.77,161.68 -77.77,161.68 -77.766,161.68 -77.762,161.68 -77.758,161.68 -77.754,161.68 -77.75,161.68 -77.746,161.68 -77.742,161.68 -77.738,161.68 -77.734,161.68 -77.73))"] | ["POINT(161.78 -77.75)"] | false | false |
South Pole (SPICECORE) 15N, 18O, O2/N2 and Ar/N2
|
1443710 |
2019-02-02 | Severinghaus, Jeffrey P. |
Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core |
This data set includes major atmospheric gas and gas isotope data from the SPICECORE project, which recovered a 1750-m ice core at the South Pole in 2015. 15N, 18O of O2, O2/N2, and Ar/N2 are included. | ["POINT(0 -90)"] | ["POINT(0 -90)"] | false | false |
Developing a New Paleoclimate Proxy for Polar and Alpine Glacial Regions Based on Noble Gases
|
1245580 |
2017-01-30 | Castro, M. Clara |
Developing a New Paleoclimate Proxy for Polar and Alpine Glacial Regions Based on Noble Gases |
None | ["POINT(163.1833 -77.6767)", "POINT(162.3667 -77.7166)"] | ["POINT(163.1833 -77.6767)", "POINT(162.3667 -77.7166)"] | false | false |
Bromide in Snow in the Sea Ice Zone
|
1043145 |
2016-01-01 | Obbard, Rachel |
Bromide in Snow in the Sea Ice Zone |
A range of chemical and microphysical pathways in polar latitudes, including spring time (tropospheric) ozone depletion, oxidative pathways for mercury, and cloud condensation nuclei (CCN) production leading to changes in the cloud cover and attendant surface energy budgets, have been invoked as being dependent upon the emission of halogen gases formed in sea-ice. The prospects for climate warming induced reductions in sea ice extent causing alteration of these incompletely known surface-atmospheric feedbacks and interactions requires confirmation of mechanistic details in both laboratory studies and field campaigns. One such mechanistic question is how bromine (BrO and Br) enriched snow migrates or is formed through processes in sea-ice, prior to its subsequent mobilization as an aerosol fraction into the atmosphere by strong winds. Once aloft, it may react with ozone and other atmospheric species. Dartmouth researchers will collect snow from the surface of sea ice, from freely blowing snow and in sea-ice cores from Cape Byrd, Ross Sea. A range of spectroscopic, microanalytic and and microstructural approaches will be subsequently used to determine the Br distribution gradients through sea-ice, in order to shed light on how sea-ice first forms and then releases bromine species into the polar atmospheric boundary layer. | ["POLYGON((164.1005 -77.1188,164.36443 -77.1188,164.62836 -77.1188,164.89229 -77.1188,165.15622 -77.1188,165.42015 -77.1188,165.68408 -77.1188,165.94801 -77.1188,166.21194 -77.1188,166.47587 -77.1188,166.7398 -77.1188,166.7398 -77.19337,166.7398 -77.26794,166.7398 -77.34251,166.7398 -77.41708,166.7398 -77.49165,166.7398 -77.56622,166.7398 -77.64079,166.7398 -77.71536,166.7398 -77.78993,166.7398 -77.8645,166.47587 -77.8645,166.21194 -77.8645,165.94801 -77.8645,165.68408 -77.8645,165.42015 -77.8645,165.15622 -77.8645,164.89229 -77.8645,164.62836 -77.8645,164.36443 -77.8645,164.1005 -77.8645,164.1005 -77.78993,164.1005 -77.71536,164.1005 -77.64079,164.1005 -77.56622,164.1005 -77.49165,164.1005 -77.41708,164.1005 -77.34251,164.1005 -77.26794,164.1005 -77.19337,164.1005 -77.1188))"] | ["POINT(165.42015 -77.49165)"] | false | false |
Ultra-trace Measurements in the WAIS Divide 06A Ice Core
|
1043780 |
2015-10-27 | Aydin, Murat; Saltzman, Eric |
Carbonyl Sulfide Measurements in the Deep West Antarctic Ice Sheet Divide Ice Core |
These data contain the results of gas chromatography mass spectrometry (GC-MS) analysis of 207 samples from the WAIS Divide 06A ice core. The trace gases found in the 207 samples are ethane (C2H6), propane (C3H8), n-butane (n-C4H10), carbonyl sulfide (COS), carbon disulfide (CS2), methyl chloride (CH3Cl), and methyl bromide (CH3Br). | ["POINT(-112.1 -79.5)"] | ["POINT(-112.1 -79.5)"] | false | false |
Surface Temperature Reconstruction from Borehole Temperature Measurement in WDC05A
|
0440701 |
2015-06-08 | Severinghaus, Jeffrey P.; Orsi, Anais J. |
Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site |
This data set shows the modeled surface temperature reconstruction from an inversion of the 300 m WDC05A borehole at the West Antarctic Divide Ice core site. | ["POINT(-112.125 -79.463)"] | ["POINT(-112.125 -79.463)"] | false | false |
Alkanes in Firn Air Samples, Antarctica and Greenland
|
0739598 |
2011-11-30 | Aydin, Murat; Saltzman, Eric |
Collaborative Research: Methane Isotopes, Hydrocarbons, and other Trace Gases in South Pole Firn Air |
This data set contains ethane, propane, and n-butane measurements in firn air from the South Pole and the West Antarctic Ice Sheet (WAIS) Divide in Antarctica, and from Summit, Greenland. The WAIS Divide and South Pole samples were collected in December to January of of 2005/06 and 2008/09, respectively. The Summit firn was sampled in the summer of 2006. Analyses were conducted on a gas chromatography - mass spectrometry (GC-MS) system at the University of California, Irvine. Measurements and the associated uncertainties are reported as dry air molar mixing ratios in part per trillion (ppt). The reported measurements for each sampling depth represent a mean of multiple measurements on more than one flask in most cases. Data are available via FTP in Microsoft Excel (.xls) format. | ["POINT(-38.3833 72.5833)", "POINT(112.09 -79.47)", "POINT(0 -90)"] | ["POINT(-38.3833 72.5833)", "POINT(112.09 -79.47)", "POINT(0 -90)"] | false | false |
Methane Concentration and Chronology from the WAIS Divide Ice Core (WDC05A)
|
0538427 0538538 0520523 0538578 0739780 |
2011-05-27 | McConnell, Joseph; Brook, Edward J.; Mitchell, Logan E; Sowers, Todd A.; Taylor, Kendrick C. |
Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site |
This data set provides a high-precision and high-resolution record of atmospheric methane from the West Antarctic Ice Sheet (WAIS) Divide ice core WDC05A, spanning the years 1000 to 1800 C.E. The data include methane (CH4) concentration measurements and ice age chronology. Methane concentration data include mean sample depth, gas age, mean concentration, and concentrations from individual measurements, at a temporal resolution of approximately nine years. Ice chronology data include depth and ice age. Data are available via FTP, in Microsoft Excel (.xlsx) format. | ["POINT(112.09 -79.47)"] | ["POINT(112.09 -79.47)"] | false | false |
WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning
|
0739780 |
2011-01-01 | Taylor, Kendrick C. |
WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning |
This award supports a project to develop a 2,000-year high-temporal resolution record of biomass burning from the analysis of black carbon in the WAIS Divide bedrock ice core. Pilot data for the WAIS WD05A core demonstrates that we now have the ability to reconstruct this record with minimal impact on the amount of ice available for other projects. The intellectual merit of this project is that black carbon (BC) aerosols result solely from combustion and play a critical but poorly quantified role in global climate forcing and the carbon cycle. When incorporated into snow and ice, BC increases absorption of solar radiation making seasonal snow packs, mountain glaciers, polar ice sheets, and sea ice much more vulnerable to climate warming. BC emissions in the Southern Hemisphere are dominated by biomass burning in the tropical regions of Southern Africa, South America and South Asia. Biomass burning, which results from both climate and human activities, alters the atmospheric composition of greenhouse gases, aerosols and perturbs key biogeochemical cycles. A long-term record of biomass burning is needed to aid in the interpretation of ice core gas composition and will provide important information regarding human impacts on the environment and climate before instrumental records. | ["POINT(-112.117 -79.666)"] | ["POINT(-112.117 -79.666)"] | false | false |
Methane Isotopes in South Pole Firn Air, 2008
|
0739491 |
2011-01-01 | Sowers, Todd A. |
Collaborative Research: Methane Isotopes, Hydrocarbons, and other Trace Gases in South Pole Firn Air |
This data set contains depth profiles for delta carbon-13 (δ13C) and delta deuterium (δD) of methane (CH<sub>4</sub>) in South Pole firn air. The investigators obtained air samples from two boreholes during December 2008 and January 2009, and subsequently determined isotope ratios at 18 depths. The profiles represent a roughly 100-year history of the isotopic composition of CH<sub>4</sub> at South Pole Station (no depth-age model provided). Data are available via FTP as an ASCII text file (.txt) and a Microsoft Excel file (.xlsx). | ["POLYGON((-180 90,-144 90,-108 90,-72 90,-36 90,0 90,36 90,72 90,108 90,144 90,180 90,180 72,180 54,180 36,180 18,180 0,180 -18,180 -36,180 -54,180 -72,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -72,-180 -54,-180 -36,-180 -18,-180 0,-180 18,-180 36,-180 54,-180 72,-180 90))"] | ["POINT(0 -89.999)"] | false | false |
Controls on Climate-Active Gases by Amundsen Sea Ice Biota
|
0836061 |
2011-01-01 | Dennett, Mark |
Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota |
Convincing evidence now confirms that polar regions are changing rapidly in response to human activities. Changes in sea ice extent and thickness will have profound implications for productivity, food webs and carbon fluxes at high latitudes, since sea ice biota are a significant source of biogenic matter for the ecosystem. While sea ice is often thought to be a barrier to gas exchange between the ocean and the atmosphere, it more likely functions as a source or sink for climate-active gases such as carbon dioxide and ozone-depleting organohalogens, due in part to activities of microbes embedded in the sea ice matrix. This project brings together experienced US and Swedish investigators to examine the controls by sea-ice biota on the production and degradation of key climate-active gases in the Pacific sector of the Southern Ocean. We hypothesize that 1) the physical properties of the sea-ice environment will determine the community structure and activities of the sea ice biota; 2) the productivity, biomass, physiological state and species composition of ice algae will determine the production of specific classes of organic carbon, including organohalogens; 3) heterotrophic co-metabolism within the ice will break down these compounds to some extent, depending on the microbial community structure and productivity, and 4) the sea ice to atmosphere fluxes of CO2 and organohalogens will be inversely related. This project will build close scientific collaborations between US and Swedish researchers and also train young scientists, including members of underrepresented groups. Dissemination of results will include the scientific literature, and public outreach venues including interactions with a PolarTrec teacher. | ["POLYGON((-170 -69,-163 -69,-156 -69,-149 -69,-142 -69,-135 -69,-128 -69,-121 -69,-114 -69,-107 -69,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-100 -77,-100 -78,-100 -79,-107 -79,-114 -79,-121 -79,-128 -79,-135 -79,-142 -79,-149 -79,-156 -79,-163 -79,-170 -79,-170 -78,-170 -77,-170 -76,-170 -75,-170 -74,-170 -73,-170 -72,-170 -71,-170 -70,-170 -69))"] | ["POINT(-135 -74)"] | false | false |
Controls on Climate-Active Gases by Amundsen Sea Ice Biota
|
0836112 |
2010-01-01 | Smith, Walker |
Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota |
Convincing evidence now confirms that polar regions are changing rapidly in response to human activities. Changes in sea ice extent and thickness will have profound implications for productivity, food webs and carbon fluxes at high latitudes, since sea ice biota are a significant source of biogenic matter for the ecosystem. While sea ice is often thought to be a barrier to gas exchange between the ocean and the atmosphere, it more likely functions as a source or sink for climate-active gases such as carbon dioxide and ozone-depleting organohalogens, due in part to activities of microbes embedded in the sea ice matrix. This project brings together experienced US and Swedish investigators to examine the controls by sea-ice biota on the production and degradation of key climate-active gases in the Pacific sector of the Southern Ocean. We hypothesize that 1) the physical properties of the sea-ice environment will determine the community structure and activities of the sea ice biota; 2) the productivity, biomass, physiological state and species composition of ice algae will determine the production of specific classes of organic carbon, including organohalogens; 3) heterotrophic co-metabolism within the ice will break down these compounds to some extent, depending on the microbial community structure and productivity, and 4) the sea ice to atmosphere fluxes of CO2 and organohalogens will be inversely related. This project will build close scientific collaborations between US and Swedish researchers and also train young scientists, including members of underrepresented groups. Dissemination of results will include the scientific literature, and public outreach venues including interactions with a PolarTrec teacher. | ["POLYGON((-170 -69,-163 -69,-156 -69,-149 -69,-142 -69,-135 -69,-128 -69,-121 -69,-114 -69,-107 -69,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-100 -77,-100 -78,-100 -79,-107 -79,-114 -79,-121 -79,-128 -79,-135 -79,-142 -79,-149 -79,-156 -79,-163 -79,-170 -79,-170 -78,-170 -77,-170 -76,-170 -75,-170 -74,-170 -73,-170 -72,-170 -71,-170 -70,-170 -69))"] | ["POINT(-135 -74)"] | false | false |
Methane Isotopes from the WAIS Divide Ice Core
|
0440759 |
2009-12-01 | Sowers, Todd A. |
Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site |
This data set includes methane (CH4) isotope data from the West Antarctic Ice Sheet (WAIS) Divide ice core, WDC05A, in Antarctica. The data include depth, gas age, and the isotopic composition of methane (∂13C and ∂D of CH4). The ice core was collected during the 2005-2006 Antarctic field season. The CH4 isotope data was generated in 2008 using wet extraction methodology. Samples span the last 1,000 years, at a resolution of about 15 years. Data for samples above 69 meters were from firn air, and data below 69 meters from ice. The dating of the ice was based on continuous chemical analyses above 69 meters and Electrical Conductivity/Dielectric Property (ECM/DEP) measurements from ice. Dating uncertainty is estimated to be better than five years. Data are available via FTP in Microsoft Excel (.xls) tab delimited format | ["POINT(112.09 -79.47)"] | ["POINT(112.09 -79.47)"] | false | false |
Gases in Firn Air and Shallow Ice at the WAIS Drilling Site, Antarctica
|
0440602 |
2009-07-30 | Saltzman, Eric |
Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site |
This data set contains trace gas measurements of air extracted from ice core samples from the West Antarctic Ice Sheet Divide A core (WAIS-D 05A). The WAIS A core was dry-drilled at the WAIS site during the 2005-2006 Antarctic field season. Data include trace gas species including ethane (C2H6), propane (C3H8), n-butane (n-C4H10), carbonyl sulfide (COS), carbon disulfide (CS2), methyl chloride (CH3Cl), methyl bromide (CH3Br), acetonitrile (CH3CN), and chlorofluorocarbon-12 (CFC-12), for 57 ice core samples. The data are available via FTP in Microsoft Excel (.xls) file format. | ["POINT(112.09 -79.47)"] | ["POINT(112.09 -79.47)"] | false | false |
Antarctic Ice Cores: Methyl Chloride and Methyl Bromide
|
0338359 |
2007-11-10 | Saltzman, Eric; Aydin, Murat; Williams, Margaret; Tatum, Cheryl |
Methyl chloride and methyl bromide in Antarctic ice cores |
This data set is an analysis of methyl chloride (CH3Cl) and methyl bromide (CH3Br) in Antarctic ice core samples. Investigators reported mixing ratios of methyl chloride gas extracted from samples taken from the South Pole Remote Earth Science and Seismological Observatory (SPRESSO) core, drilled as part of the International Trans Antarctic Science Expedition (ITASE). This data covers an age range of 2159 - 140 years before present (Y.B.P.) where the year 2000 was used as present. Investigators analyzed trace gases in ice core samples from Siple Dome, West Antarctica (dry-drilled C core and deep, fluid-drilled A core) and from South Pole, Antarctica (300 m dry drilled SPRESSO core). Data are available in Microsoft Excel format and are available via FTP. | ["POINT(-144.39 -89.93)"] | ["POINT(-144.39 -89.93)"] | false | false |
Atmospheric CO2 and Climate: Taylor Dome Ice Core, Antarctica
|
0337891 |
2007-11-05 | Brook, Edward J.; Ahn, Jinho |
Developing Dry Extraction of Ice Core Gases and Application to Millennial-Scale Variability in Atmospheric CO2 |
Using new and existing ice core CO2 data from 65 - 30 ka BP a new chronology for Taylor Dome ice core CO2 is established and synchronized with Greenland ice core records to study how high latitude climate change and the carbon cycle were linked during the last glacial period. The new data and chronology should provide a better target for models attempting to explain CO2 variability and abrupt climate change. | ["POINT(158 -77.666667)"] | ["POINT(158 -77.666667)"] | false | false |
Atmospheric CO2 and Climate: Byrd Ice Core, Antarctica
|
0337891 |
2007-10-26 | Brook, Edward J.; Ahn, Jinho |
Developing Dry Extraction of Ice Core Gases and Application to Millennial-Scale Variability in Atmospheric CO2 |
Reconstructions of ancient atmospheric CO2 variations help us better understand how the global carbon cycle and climate are linked. This data set compares CO2 variations on millennial time scales between 20,000 and 90,000 years with an Antarctic temperature proxy and records of abrupt climate change in the Northern hemisphere. | ["POINT(-119.833611 -80.01)"] | ["POINT(-119.833611 -80.01)"] | false | false |
Byrd Ice Core Microparticle and Chemistry Data
|
9725918 9714687 |
2004-08-26 | Blunier, Thomas; Fluckiger, Jacqueline; Thompson, Lonnie G.; Brook, Edward J. |
Collaborative Research: Studies of Trapped Gases in Firn and Ice from Antarctic Deep Ice Cores |
This data set consists of microparticle and chemistry data from Byrd Ice Core, the first ice core to reach bedrock in Antarctica. The core was drilled with a cable-suspended electromechanical rotary drill at Byrd Station, Antarctica. The vertical thickness of the ice was 2164 meters and more than 99 percent of the core was recovered. Cores were sought for investigations of the physical properties of the ice sheet, the nature of the ice-rock contact, and the composition of the underlying bedrock. | ["POINT(-119.516667 -80.016667)"] | ["POINT(-119.516667 -80.016667)"] | false | false |
Concentration and Isotopic Composition of O2 and N2 in Trapped Gases of the Vostok Ice Core
|
9222121 9318121 |
2002-01-01 | Bender, Michael |
Collaborative Research: Seismic Traverse of the Byrd Subglacial Basin-Field Test |
These data describe the d18O of O2, d15N of N2, d18Oatm, and O2/N2 ratios of trapped gases in the Vostok ice core from East Antarctica. The investigator used a mass spectrometer to measure gas concentrations and isotopic compositions. Data extend to approximately 420,000 years ago. Two different age models are included. Data are available in tab-delimited ASCII format via ftp. | ["POINT(106.48 -72.28)"] | ["POINT(106.48 -72.28)"] | false | false |
Firn Air Isotope and Temperature Measurements from Siple Dome and South Pole
|
9725918 9725305 |
2001-01-01 | Severinghaus, Jeffrey P.; Battle, Mark; Grachev, Alexi |
Thermal Fractionation of Firn Air and the Ice Core Record of Abrupt Interstadial Climate Change |
This data set includes d15N, d18O/2, dO2/N2/4, d40Ar/4, d38/Ar/2, d84Kr/48, and d132Xe/96 values for air drawn from the top 15 to 50 m of firn at the South Pole (summer and winter 1998) and a site at Siple Dome (summers 1996 and 1998). Data also include related firn temperature measurements. The objective of this research was to better understand thermal fractionation processes affecting records of atmospheric history from firn and ice core gases. Recent work (e.g., Severinghaus and Brook, 1999) has exploited trapped air in ice and deep firn as a record of past atmospheric composition and climate change. Interpretation of these paleoclimate archives is complicated by artifacts of thermal diffusion, a process in which heavier gases migrate down temperature gradients toward colder regions in the firn. Seasonal temperature change at the snow surface creates strong temperature gradients in the top few meters of the firn, which cause isotopic fractionation of firn gases. A specific goal of this research is to identify any long-term effects of seasonal temperature fluctuations on firn air isotopic anomalies. | ["POINT(-148.767 -81.667)", "POINT(-102 -89.997)"] | ["POINT(-148.767 -81.667)", "POINT(-102 -89.997)"] | false | false |