{"dp_type": "Dataset", "free_text": "Reproduction"}
[{"awards": "1947453 Hunt, Kathleen", "bounds_geometry": ["POLYGON((150 -60,152.9 -60,155.8 -60,158.7 -60,161.6 -60,164.5 -60,167.4 -60,170.3 -60,173.2 -60,176.1 -60,179 -60,179 -61.6,179 -63.2,179 -64.8,179 -66.4,179 -68,179 -69.6,179 -71.2,179 -72.8,179 -74.4,179 -76,176.1 -76,173.2 -76,170.3 -76,167.4 -76,164.5 -76,161.6 -76,158.7 -76,155.8 -76,152.9 -76,150 -76,150 -74.4,150 -72.8,150 -71.2,150 -69.6,150 -68,150 -66.4,150 -64.8,150 -63.2,150 -61.6,150 -60))"], "date_created": "Tue, 25 Feb 2025 00:00:00 GMT", "description": "Hormone meta data from the baleen of 5 blue whales and 5 fin whales sampled at 2cm intervals along the length of the plate. Data set includes meta data information regarding the individual whale including specimen ID, species, sex, hormone type, and dilution.", "east": 179.0, "geometry": ["POINT(164.5 -68)"], "keywords": "Antarctica; Biota; Blue Whale; Cryosphere; Fin Whale; Hormones; Oceans; Reproduction; Whales", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Fleming, Alyson; Hunt, Kathleen", "project_titles": "Collaborative Research: A New Baseline for Antarctic Blue and Fin Whales", "projects": [{"proj_uid": "p0010240", "repository": "USAP-DC", "title": "Collaborative Research: A New Baseline for Antarctic Blue and Fin Whales"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.0, "title": "Hormone meta data for Antarctic blue and fin whales", "uid": "601908", "west": 150.0}, {"awards": "1947040 Postlethwait, John", "bounds_geometry": ["POLYGON((-63 -64,-57.8 -64,-52.6 -64,-47.4 -64,-42.2 -64,-37 -64,-31.799999999999997 -64,-26.6 -64,-21.4 -64,-16.199999999999996 -64,-11 -64,-11 -65.3,-11 -66.6,-11 -67.9,-11 -69.2,-11 -70.5,-11 -71.8,-11 -73.1,-11 -74.4,-11 -75.7,-11 -77,-16.2 -77,-21.4 -77,-26.6 -77,-31.8 -77,-37 -77,-42.2 -77,-47.4 -77,-52.6 -77,-57.800000000000004 -77,-63 -77,-63 -75.7,-63 -74.4,-63 -73.1,-63 -71.8,-63 -70.5,-63 -69.2,-63 -67.9,-63 -66.6,-63 -65.3,-63 -64))"], "date_created": "Tue, 11 Feb 2025 00:00:00 GMT", "description": "Morphological, fecundity, and age data of Trematomus scotti from Andvord Bay and the Weddell Sea.", "east": -11.0, "geometry": ["POINT(-37 -70.5)"], "keywords": "Age; Antarctica; Biota; Cryonotothenioid; Cryosphere; Fecundity; Growth; Length; Nototheniidae; Oceans; Otolith; Reproduction; Weight", "locations": "Antarctica; Antarctica", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Valdivieso, Alejandro; Sguotti, Camilla; Cal\u00ec, Federico; Riginella, Emilio; Streeter, Margaret; Grondin, Jacob; Le Francois, Nathalie; Lucassen, Magnus; Mark, Felix C; Detrich, H. William; Papetti, Chiara; Postlethwait, John; La Mesa, Mario", "project_titles": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish ", "projects": [{"proj_uid": "p0010221", "repository": "USAP-DC", "title": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Morphological, fecundity, and age data of Trematomus scotti from Andvord Bay and the Weddell Sea.", "uid": "601893", "west": -63.0}, {"awards": "1246463 Burns, Jennifer", "bounds_geometry": ["POLYGON((162 -75,162.6 -75,163.2 -75,163.8 -75,164.4 -75,165 -75,165.6 -75,166.2 -75,166.8 -75,167.4 -75,168 -75,168 -75.4,168 -75.8,168 -76.2,168 -76.6,168 -77,168 -77.4,168 -77.8,168 -78.2,168 -78.6,168 -79,167.4 -79,166.8 -79,166.2 -79,165.6 -79,165 -79,164.4 -79,163.8 -79,163.2 -79,162.6 -79,162 -79,162 -78.6,162 -78.2,162 -77.8,162 -77.4,162 -77,162 -76.6,162 -76.2,162 -75.8,162 -75.4,162 -75))"], "date_created": "Fri, 04 Oct 2024 00:00:00 GMT", "description": "Weddell seal metabolic hormone data. Body composition data were generated following protocols described in Shero et al. 2014. Serum hormone concentrations were determined using immunoassays. IGF binding protein concentrations were determined using protocols described in Richmond et al. 2010", "east": 168.0, "geometry": ["POINT(165 -77)"], "keywords": "Antarctica; Cryosphere; Hormones; McMurdo Sound; Ross Sea; Weddell Seal", "locations": "McMurdo Sound; Ross Sea; Antarctica", "north": -75.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Kirkham, Amy", "project_titles": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals", "projects": [{"proj_uid": "p0000229", "repository": "USAP-DC", "title": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "Weddell seal metabolic hormone data", "uid": "601840", "west": 162.0}, {"awards": "1850988 Teets, Nicholas", "bounds_geometry": ["POLYGON((-64.366767 -62.681,-63.991703599999994 -62.681,-63.6166402 -62.681,-63.2415768 -62.681,-62.866513399999995 -62.681,-62.49145 -62.681,-62.1163866 -62.681,-61.7413232 -62.681,-61.366259799999995 -62.681,-60.9911964 -62.681,-60.616133 -62.681,-60.616133 -62.9536677,-60.616133 -63.226335399999996,-60.616133 -63.4990031,-60.616133 -63.7716708,-60.616133 -64.04433850000001,-60.616133 -64.31700620000001,-60.616133 -64.58967390000001,-60.616133 -64.86234160000001,-60.616133 -65.13500930000001,-60.616133 -65.407677,-60.9911964 -65.407677,-61.366259799999995 -65.407677,-61.7413232 -65.407677,-62.1163866 -65.407677,-62.49145 -65.407677,-62.866513399999995 -65.407677,-63.2415768 -65.407677,-63.6166402 -65.407677,-63.991703599999994 -65.407677,-64.366767 -65.407677,-64.366767 -65.13500930000001,-64.366767 -64.86234160000001,-64.366767 -64.58967390000001,-64.366767 -64.31700620000001,-64.366767 -64.04433850000001,-64.366767 -63.7716708,-64.366767 -63.4990031,-64.366767 -63.226335399999996,-64.366767 -62.9536677,-64.366767 -62.681))"], "date_created": "Sun, 11 Jun 2023 00:00:00 GMT", "description": "Antarctic winters are challenging for terrestrial invertebrates, and species that\r\nlive there have specialised adaptations to conserve energy and protect against\r\ncold injury in the winter. However, rapidly occurring climate change in these\r\nregions will increase the unpredictability of winter conditions, and there is\r\ncurrently a dearth of knowledge on how the highly adapted invertebrates of\r\nAntarctica will respond to changes in winter temperatures.\r\n2. We evaluated the response of larvae of the Antarctic midge, Belgica antarctica,\r\nto simulated winters at three ecologically relevant mean temperature scenarios:\r\nwarm (\u22121\u00b0C), normal (\u22123\u00b0C) and cold (\u22125\u00b0C). Within each scenario, larvae were\r\nplaced into three distinct habitat types in which they are commonly observed\r\n(decaying organic matter, living moss, and Prasiola crispa algae). Following the\r\nsimulated overwintering period, a range of physiological outcomes were measured,\r\nnamely survival, locomotor activity, tissue damage, energy store levels and\r\nmolecular stress responses.\r\n3. Survival, energy stores and locomotor activity were significantly lower following\r\nthe Warm overwintering environment than at lower temperatures, but tissue\r\ndamage and heat shock protein expression (a proxy for protein damage) did not\r\nsignificantly differ between the three temperatures. Survival was also significantly\r\nlower in larvae overwintered in Prasiola crispa algae, although the underlying\r\nmechanism is unclear. Heat shock proteins were expressed least in larvae\r\noverwintering in living moss, suggesting it is less stressful to overwinter in this\r\nsubstrate, perhaps due to a more defined structure affording less direct contact\r\nwith ice.\r\n4. Our results demonstrate that a realistic 2\u00b0C increase in winter microhabitat temperature\r\nreduces survival and causes energy deficits that have implications for subsequent\r\ndevelopment and reproduction. While our Warm winter scenario was close tothe range of observed overwintering temperatures for this species, warmer winters\r\nare expected to become more common in response to climate change. Conversely,\r\nif climate change reduces the length of winter, some of the negative consequences\r\nof winter warming may be attenuated, so it will be important to consider this factor\r\nin future studies. Nonetheless, our results indicate that winter warming could\r\nnegatively impact cold-adapted insects such as the Antarctic midge.", "east": -60.616133, "geometry": ["POINT(-62.49145 -64.04433850000001)"], "keywords": "Antarctica", "locations": "Antarctica", "north": -62.681, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Devlin, Jack; Unfried, Laura; McCabe, Eleanor; Gantz, Josiah D.; Kawarasaki, Yuta; Elnitsky, Michael; Hotaling, Scott; Michel, Andrew; Convey, Peter; Hayward, Scott; Teets, Nicholas", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -65.407677, "title": "Simulated winter warming negatively impacts survival of Antarctica\u0027s only endemic insect", "uid": "601694", "west": -64.366767}, {"awards": "1246463 Burns, Jennifer", "bounds_geometry": ["POLYGON((162 -75,162.6 -75,163.2 -75,163.8 -75,164.4 -75,165 -75,165.6 -75,166.2 -75,166.8 -75,167.4 -75,168 -75,168 -75.4,168 -75.8,168 -76.2,168 -76.6,168 -77,168 -77.4,168 -77.8,168 -78.2,168 -78.6,168 -79,167.4 -79,166.8 -79,166.2 -79,165.6 -79,165 -79,164.4 -79,163.8 -79,163.2 -79,162.6 -79,162 -79,162 -78.6,162 -78.2,162 -77.8,162 -77.4,162 -77,162 -76.6,162 -76.2,162 -75.8,162 -75.4,162 -75))"], "date_created": "Tue, 05 Jul 2022 00:00:00 GMT", "description": "The profound impacts that maternal provisioning of finite energy resources has on offspring survival have been extensively studied across mammals. However, in addition to calories, we tested whether high hemoprotein concentrations in diving mammals necessitates exceptional female-to-pup iron transfer. To answer this question adult female Weddell seals (Leptonychotes weddellii) were handled across the austral summer. This included post-partum females during lactation and post-weaning. To demonstrate that any observed changes in iron dynamics were due to lactation, equivalent skip-breeding females (i.e., that did not produce a pup) were also handled. We measured numerous indices of iron mobilization (ferritin, serum iron, total-iron-binding-capacity, transferrin saturation, milk iron concentration), hemoprotein concentrations, and oxygen stores.", "east": 168.0, "geometry": ["POINT(165 -77)"], "keywords": "Aerobic; Antarctica; Dive Capacity; Iron; McMurdo Sound; Weddell Seal", "locations": "Antarctica; McMurdo Sound", "north": -75.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Shero, Michelle", "project_titles": "Collaborative Research: Physiological and Genetic Correlates of Reproductive Success in High- versus Low-Quality Weddell seals; The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals", "projects": [{"proj_uid": "p0000229", "repository": "USAP-DC", "title": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals"}, {"proj_uid": "p0010369", "repository": "USAP-DC", "title": "Collaborative Research: Physiological and Genetic Correlates of Reproductive Success in High- versus Low-Quality Weddell seals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "Weddell seal iron dynamics and oxygen stores across lactation", "uid": "601587", "west": 162.0}, {"awards": "1246407 Jenouvrier, Stephanie; 1840058 Jenouvrier, Stephanie", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Mon, 27 Jun 2022 00:00:00 GMT", "description": "Individuals differ in many ways. Most produce few offspring; a handful produce many. Some\r\ndie early; others live to old age. It is tempting to attribute these differences in outcomes to differences in individual traits, and thus in the demographic rates experienced. However, there is\r\nmore to individual variation than meets the eye of the biologist. Even among individuals sharing identical traits, life history outcomes (life expectancy and lifetime reproduction) will vary due\r\nto individual stochasticity, i.e., to chance. Quantifying the contributions of heterogeneity and\r\nchance is essential to understanding natural variability. Inter-individual differences vary across environmental conditions, hence heterogeneity and stochasticity depend on environmental conditions. We show that favorable conditions increase the contributions of individual stochasticity, and reduce the contributions of heterogeneity, to variance in demographic outcomes in a seabird population. The opposite is true under poor conditions. This result has important consequence for understanding the ecology and evolution of life history strategies.\r\n\r\nSpecifically, three life-history complexes exist in a population of southern fulmar (defined as sets of life-history characteristics that occur together through the lifetime of an individual). They are reminiscent of the gradient of life- history strategy observed among species:\r\n\r\n1. Group 1 (14% of offspring at fledging) is a slow-paced life history where individuals tend to delay recruitment, recruit successfully, and extend their reproductive lifespan.\r\n2. Group 2 (67% of offspring at fledging) consists of individuals that are less likely to recruit, have high adult survival, and skip breeding often.\r\n3. Group 3 (19% of offspring at fledging) is a fast-paced life history where individuals recruit early and attempt to breed often but have a short lifespan.\r\n\r\nIndividuals in groups 1 and 3 are considered \u201chigh-quality\u201d individuals because they produce, on average, more offspring over their lives than do individuals in group 2. But group 2 is made-up of individuals that experience the highest levels of adult survival.\r\n \r\nDifferences between these groups, i.e. individual heterogeneity, only explains a small fraction of variance in life expectancy (5.9%) and lifetime reproduction (22%) when environmental conditions are ordinary. We expect that the environmental context experienced, especially when environmental conditions get extreme, is key to characterizing individual heterogeneity and its contribution to life history outcomes. Here, we build on previous studies to quantify the impact of extreme environmental conditions on the relative contributions of individual heterogeneity and stochasticity to variance in life history outcomes.\r\nWe found that the differences in vital rates and demographic outcomes among complexes depend on the sea ice conditions individuals experience. Importantly, differences across life history complexes are amplified when sea ice concentration get extremely low. Sea ice conditions did not only affect patterns of life history traits, but also the variance of life history outcomes and the relative proportion of individual unobserved heterogeneity to the total variance. These new results advance the current debate on the relative importance heterogeneity (i.e. potentially adaptive) and stochasticity (i.e. enhances genetic drift) in shaping potentially neutral vs. adaptive changes in life histories.\r\n", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Biota; Birds; East Antarctica; Southern Fulmar", "locations": "Antarctica; East Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Jenouvrier, Stephanie", "project_titles": "Linking Foraging Behaviors to Demography to understand Albatrosses Population Responses to Climate Change; Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics", "projects": [{"proj_uid": "p0010002", "repository": "USAP-DC", "title": "Linking Foraging Behaviors to Demography to understand Albatrosses Population Responses to Climate Change"}, {"proj_uid": "p0010090", "repository": "USAP-DC", "title": "Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Demographic outputs and their variances for three life history complexes for the Southern Fulmar across contrasted sea ice conditions.", "uid": "601585", "west": -180.0}, {"awards": "1246463 Burns, Jennifer", "bounds_geometry": ["POINT(165 -77)"], "date_created": "Mon, 09 May 2022 00:00:00 GMT", "description": "This dataset includes dive records from Weddell seals located in McMurdo Sound, Antarctica from the austral summers of 1978, 1979, and 1981 using Kooyman-Billups Time Depth Recorders. The data were recovered from photocopied paper scrolls using a code package (https://doi.org/10.5281/zenodo.14025657). This recovery process involved record scanning, image processing, and bias correction such that the historic data are directly comparable with dive data from modern instruments. This dataset contains the scanned images of the paper dive records (KBTDR_record_scans) and comma-separated value files of the dive data after recovery (KBTDR_data). Only records from McMurdo Sound were recovered, but record scans from Terra Nova Bay and White Island are also provided for future long-term studies on diving behavior. ", "east": 165.0, "geometry": ["POINT(165 -77)"], "keywords": "Antarctica; Biota; Diving Behavior; McMurdo Sound; Weddell Seal", "locations": "McMurdo Sound; Antarctica", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Tsai, EmmaLi", "project_titles": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals", "projects": [{"proj_uid": "p0000229", "repository": "USAP-DC", "title": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "1970s - 1980s Kooyman-Billups TDR Dive Records from Weddell Seals in McMurdo Sound", "uid": "601560", "west": 165.0}, {"awards": "2037561 Jenouvrier, Stephanie; 1744794 Jenouvrier, Stephanie", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Wed, 08 Dec 2021 00:00:00 GMT", "description": "Climate impacts are not always easily discerned in wild populations as detecting climate change signals in populations is challenged by stochastic noise associated with natural climate variability, variability in biotic and abiotic processes, and observation error in demographic rates. Detection of the impact of climate change on populations requires making a formal distinction between signals in the population associated with long-term climate trends from those generated by stochastic noise. The time of emergence (ToE) identifies when the signal of anthropogenic climate change can be quantitatively distinguished from natural climate variability. This concept has been applied extensively in the climate sciences, but has not been explored in the context of population dynamics. \r\n\r\nIn Jenouvrier et al. (Global Change Biology, accepted), we outline an approach to detecting climate-driven signals in populations based on an assessment of when climate change drives population dynamics beyond the envelope characteristic of stochastic variations in an unperturbed state. \r\n\r\nThis data set is the code of a theoretical assessment of the time of emergence of climate-driven signals in population dynamics. We identify the dependence of time of emergence in populations on the magnitude of both trends and variability in climate and also explore the effect of intrinsic demographic controls on the time of emergence in population. We demonstrate that different life histories (fast species vs. slow species), demographic processes (survival, reproduction) and the relationships between climate and demographic rates, yield population dynamics that filter climate trends and variability differently. \r\n\r\nIn Jenouvrier et al. (accepted), we also illustrate empirically how to detect the point in time when anthropogenic signals in populations emerge from stochastic noise for a species threatened by climate change: the emperor penguin. This data set also includes a detailed Table and code to analyze those results.\r\n", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica", "locations": "Antarctica; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems", "persons": "Jenouvrier, Stephanie", "project_titles": "A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins; Integrating Antarctic Environmental and Biological Predictability to Obtain Optimal Forecasts", "projects": [{"proj_uid": "p0010282", "repository": "USAP-DC", "title": "Integrating Antarctic Environmental and Biological Predictability to Obtain Optimal Forecasts"}, {"proj_uid": "p0010447", "repository": "USAP-DC", "title": "A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins"}, {"proj_uid": "p0010229", "repository": "USAP-DC", "title": "A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Detecting climate signals in populations: case of emperor penguin", "uid": "601491", "west": -180.0}, {"awards": "1246463 Burns, Jennifer", "bounds_geometry": ["POINT(165 -77)"], "date_created": "Tue, 23 Jun 2020 00:00:00 GMT", "description": "For Figures 2 and 4 In Beltran et al. PNAS", "east": 165.0, "geometry": ["POINT(165 -77)"], "keywords": "Animal Behavior Observation; Antarctica; Biota; McMurdo Sound; Ross Sea; Seal Dive Data; Weddell Seal", "locations": "Antarctica; McMurdo Sound; Ross Sea", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Burns, Jennifer", "project_titles": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals", "projects": [{"proj_uid": "p0000229", "repository": "USAP-DC", "title": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Seasonal Dive Data ", "uid": "601338", "west": 165.0}, {"awards": "1246463 Burns, Jennifer", "bounds_geometry": null, "date_created": "Sat, 24 Nov 2018 00:00:00 GMT", "description": "We examined the influence of sea ice break-out on seasonal diving patterns and diet of a top predator, the Weddell seal, to understand how phytoplankton blooms impact the vertical distribution of the food web. We captured female seals during the November and December lactation period and attached a LOTEK LAT1800 time-depth recorder (TDR) flipper tag with a 6 second sampling interval. Data were processed using the Iknos toolbox in MATLAB. Benthic dives (1% of all dives) were excluded from analyses because we were interested in quantifying seasonal changes in mid-water dives. Thus, we analyzed dives from 59 Weddell seals to characterize the diving depth and foraging effort of each seal across the austral summer over four years. We characterized seasonal changes in diving depth by calculating the mean across all seals of the maximum dive depth on each day for each seal. For more information see: Beltran, R. S. Bridging the gap between pupping and molting phenology: behavioral and ecological drivers in Weddell seals PhD thesis, University of Alaska Fairbanks, (2018).", "east": null, "geometry": null, "keywords": "Antarctica; Biota; Ross Sea; Seals; Southern Ocean; Weddell Seal", "locations": "Southern Ocean; Ross Sea; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Beltran, Roxanne; Burns, Jennifer", "project_titles": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals", "projects": [{"proj_uid": "p0000229", "repository": "USAP-DC", "title": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Weddell seal summer diving behavior", "uid": "601137", "west": null}, {"awards": "1246463 Burns, Jennifer", "bounds_geometry": ["POLYGON((-180 -76,-177 -76,-174 -76,-171 -76,-168 -76,-165 -76,-162 -76,-159 -76,-156 -76,-153 -76,-150 -76,-150 -76.2,-150 -76.4,-150 -76.6,-150 -76.8,-150 -77,-150 -77.2,-150 -77.4,-150 -77.6,-150 -77.8,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -77.8,160 -77.6,160 -77.4,160 -77.2,160 -77,160 -76.8,160 -76.6,160 -76.4,160 -76.2,160 -76,162 -76,164 -76,166 -76,168 -76,170 -76,172 -76,174 -76,176 -76,178 -76,-180 -76))"], "date_created": "Thu, 08 Nov 2018 00:00:00 GMT", "description": "This dataset includes measurements of cortisol levels (pg/mg) extracted from Weddell Seal fur samples collected from adult females in colonies in the Erebus Bay region of Antarctica during 4 austral field seasons between November 2013 and February 2017. Observations recorded include body mass, body composition, reproductive status.", "east": 160.0, "geometry": ["POINT(-175 -77)"], "keywords": "Antarctica; Biota; Cortisol; Fur; Ross Sea; Seals; Southern Ocean; Visual Observations; Weddell Seal", "locations": "Ross Sea; Antarctica; Southern Ocean", "north": -76.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Burns, Jennifer", "project_titles": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals", "projects": [{"proj_uid": "p0000229", "repository": "USAP-DC", "title": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Cortisol levels in Weddell seal fur ", "uid": "601134", "west": -150.0}, {"awards": "1246463 Burns, Jennifer", "bounds_geometry": ["POLYGON((164 -76,164.2 -76,164.4 -76,164.6 -76,164.8 -76,165 -76,165.2 -76,165.4 -76,165.6 -76,165.8 -76,166 -76,166 -76.2,166 -76.4,166 -76.6,166 -76.8,166 -77,166 -77.2,166 -77.4,166 -77.6,166 -77.8,166 -78,165.8 -78,165.6 -78,165.4 -78,165.2 -78,165 -78,164.8 -78,164.6 -78,164.4 -78,164.2 -78,164 -78,164 -77.8,164 -77.6,164 -77.4,164 -77.2,164 -77,164 -76.8,164 -76.6,164 -76.4,164 -76.2,164 -76))"], "date_created": "Tue, 30 Oct 2018 00:00:00 GMT", "description": "All sightings of known, tagged, Weddell seals during molt seasons of Austral summers 2013, 14 15, and 2016. Seals that were sighted but for which molt status could not be determined are not included in this dataset. Seals without tags or IDs were not included. ", "east": 166.0, "geometry": ["POINT(165 -77)"], "keywords": "Antarctica; Biota; Ross Sea; Seals; Visual Observations; Weddell Seal", "locations": "Antarctica; Ross Sea", "north": -76.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Burns, Jennifer", "project_titles": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals", "projects": [{"proj_uid": "p0000229", "repository": "USAP-DC", "title": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Weddell Seal Molt Survey Data", "uid": "601133", "west": 164.0}, {"awards": "1246463 Burns, Jennifer", "bounds_geometry": null, "date_created": "Mon, 22 Oct 2018 00:00:00 GMT", "description": "Animals can respond to dynamic environments through phenological plasticity of life history events; however, changes in one part of the annual cycle can diminish the success of subsequent life history events. Our aims were to determine the associations between reproduction and moult phenology across years and to quantify phenological plasticity across varying environmental conditions. We conducted demographic surveys of 4,252 flipper-tagged Weddell seals (Leptonychotes weddellii) in the Ross Sea, Antarctica during four austral summers. At each sighting, seals were assigned a moult code based on the visible presence of new fur, and the start date of each animal\u2019s moult was back-calculated. This dataset contains data on pupping and moult timing for each animal used to address this question.", "east": null, "geometry": null, "keywords": "Antarctica; B-292-M; Biota; Ross Sea; Seals; Southern Ocean; Weddell Seal", "locations": "Southern Ocean; Ross Sea; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Burns, Jennifer", "project_titles": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals", "projects": [{"proj_uid": "p0000229", "repository": "USAP-DC", "title": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Weddell Seal Molt Phenology Dataset", "uid": "601131", "west": null}, {"awards": "1246463 Burns, Jennifer", "bounds_geometry": ["POINT(166.55 -77.75)"], "date_created": "Wed, 24 May 2017 00:00:00 GMT", "description": "This dataset includes an inventory of Weddell Seals captured by net, tagged, and observed at colonies in the Erebus Bay region of Antarctica during 4 austral field seasons between November 2013 and February 2017. Observations recorded include body mass, length, and molt category.", "east": 166.55, "geometry": ["POINT(166.55 -77.75)"], "keywords": "Antarctica; Biota; McMurdo Sound; Oceans; Ross Sea; Sample/collection Description; Sample/Collection Description; Seals", "locations": "Antarctica; McMurdo Sound; Ross Sea", "north": -77.75, "nsf_funding_programs": null, "persons": "Burns, Jennifer", "project_titles": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals", "projects": [{"proj_uid": "p0000229", "repository": "USAP-DC", "title": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.75, "title": "Specimen logs and observations from Weddell Seal colonies in Erebus Bay, 2013-2017", "uid": "601027", "west": 166.55}, {"awards": "1355533 Dayton, Paul", "bounds_geometry": ["POLYGON((163 -78,163.4 -78,163.8 -78,164.2 -78,164.6 -78,165 -78,165.4 -78,165.8 -78,166.2 -78,166.6 -78,167 -78,167 -78.05,167 -78.1,167 -78.15,167 -78.2,167 -78.25,167 -78.3,167 -78.35,167 -78.4,167 -78.45,167 -78.5,166.6 -78.5,166.2 -78.5,165.8 -78.5,165.4 -78.5,165 -78.5,164.6 -78.5,164.2 -78.5,163.8 -78.5,163.4 -78.5,163 -78.5,163 -78.45,163 -78.4,163 -78.35,163 -78.3,163 -78.25,163 -78.2,163 -78.15,163 -78.1,163 -78.05,163 -78))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "Antarctic benthic communities are characterized by many species of sponges (Phylum Porifera), long thought to exhibit extremely slow demographic patterns of settlement, growth and reproduction. This project will analyze many hundreds of diver and remotely operated underwater vehicle photographs documenting a unique, episodic settlement event that occurred between 2000 and 2010 in McMurdo Sound that challenges this paradigm of slow growth. Artificial structures were placed on the seafloor between 1967 and 1974 at several sites, but no sponges were observed to settle on these structures until 2004. By 2010 some 40 species of sponges had settled and grown to be surprisingly large. Given the paradigm of slow settlement and growth supported by the long observation period (37 years, 1967-2004), this extraordinary large-scale settlement and rapid growth over just a 6-year time span is astonishing. This project utilizes image processing software (ImageJ) to obtain metrics (linear dimensions to estimate size, frequency, percent cover) for sponges and other fauna visible in the photographs. It uses R to conduct multidimensional scaling to ordinate community data and ANOSIM to test for differences of community data among sites and times and structures. It will also use SIMPER and ranked species abundances to discriminate species responsible for any differences.\nThis work focuses on Antarctic sponges, but the observations of massive episodic recruitment and growth are important to understanding seafloor communities worldwide. Ecosystems are composed of populations, and populations are ecologically described by their distribution and abundance. A little appreciated fact is that sponges often dominate marine communities, but because sponges are so hard to study, most workers focus on other groups such as corals, kelps, or bivalves. Because most sponges settle and grow slowly their life history is virtually unstudied. The assumption of relative stasis of the Antarctic seafloor community is common, and this project will shatter this paradigm by documenting a dramatic episodic event. Finally, the project takes advantage of old transects from the 1960s and 1970s and compares them with extensive 2010 surveys of the same habitats and sometimes the same intact transect lines, offering a long-term perspective of community change. The investigators will publish these results in peer-reviewed journals, give presentations to the general public and will involve students from local outreach programs, high schools, and undergraduates at UCSD to help with the analysis.", "east": 167.0, "geometry": ["POINT(165 -78.25)"], "keywords": "Antarctica; Bentic Fauna; Biota; McMurdo Sound; Oceans; Ross Sea; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Antarctica; Ross Sea; McMurdo Sound; Southern Ocean", "north": -78.0, "nsf_funding_programs": null, "persons": "Dayton, Paul", "project_titles": "EAGER: A Multi-decadal Record of Antarctic Benthos: Image Analysis to Maximize Data Utilization", "projects": [{"proj_uid": "p0000401", "repository": "USAP-DC", "title": "EAGER: A Multi-decadal Record of Antarctic Benthos: Image Analysis to Maximize Data Utilization"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.5, "title": "A Multi-decadal Record of Antarctic Benthos: Image Analysis to Maximize Data Utilization", "uid": "600164", "west": 163.0}, {"awards": "0528728 Vernet, Maria", "bounds_geometry": ["POLYGON((-69.08 -64.8,-68.632 -64.8,-68.184 -64.8,-67.736 -64.8,-67.288 -64.8,-66.84 -64.8,-66.392 -64.8,-65.944 -64.8,-65.496 -64.8,-65.048 -64.8,-64.6 -64.8,-64.6 -65.121,-64.6 -65.442,-64.6 -65.763,-64.6 -66.084,-64.6 -66.405,-64.6 -66.726,-64.6 -67.047,-64.6 -67.368,-64.6 -67.689,-64.6 -68.01,-65.048 -68.01,-65.496 -68.01,-65.944 -68.01,-66.392 -68.01,-66.84 -68.01,-67.288 -68.01,-67.736 -68.01,-68.184 -68.01,-68.632 -68.01,-69.08 -68.01,-69.08 -67.689,-69.08 -67.368,-69.08 -67.047,-69.08 -66.726,-69.08 -66.405,-69.08 -66.084,-69.08 -65.763,-69.08 -65.442,-69.08 -65.121,-69.08 -64.8))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat. SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. This collaborative project is concerned with the synthesis and modeling of lower trophic levels.", "east": -64.6, "geometry": ["POINT(-66.84 -66.405)"], "keywords": "Bellingshausen Sea; Biota; Oceans; Phytoplankton; Southern Ocean", "locations": "Southern Ocean; Bellingshausen Sea", "north": -64.8, "nsf_funding_programs": null, "persons": "Vernet, Maria", "project_titles": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "projects": [{"proj_uid": "p0000522", "repository": "USAP-DC", "title": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -68.01, "title": "The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "uid": "600048", "west": -69.08}, {"awards": "0529087 Ross, Robin", "bounds_geometry": ["POLYGON((-71 -61,-70 -61,-69 -61,-68 -61,-67 -61,-66 -61,-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-61 -61.9,-61 -62.8,-61 -63.7,-61 -64.6,-61 -65.5,-61 -66.4,-61 -67.3,-61 -68.2,-61 -69.1,-61 -70,-62 -70,-63 -70,-64 -70,-65 -70,-66 -70,-67 -70,-68 -70,-69 -70,-70 -70,-71 -70,-71 -69.1,-71 -68.2,-71 -67.3,-71 -66.4,-71 -65.5,-71 -64.6,-71 -63.7,-71 -62.8,-71 -61.9,-71 -61))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat. SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. This collaborative project is concerned with the synthesis and modeling of lower trophic levels.", "east": -61.0, "geometry": ["POINT(-66 -65.5)"], "keywords": "Bellingshausen Sea; Biota; Oceans; Southern Ocean", "locations": "Bellingshausen Sea; Southern Ocean", "north": -61.0, "nsf_funding_programs": null, "persons": "Quetin, Langdon B.; Ross, Robin Macurda", "project_titles": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "projects": [{"proj_uid": "p0000522", "repository": "USAP-DC", "title": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "uid": "600049", "west": -71.0}, {"awards": "0529666 Fritsen, Christian", "bounds_geometry": ["POLYGON((-180 -39.23,-144 -39.23,-108 -39.23,-72 -39.23,-36 -39.23,0 -39.23,36 -39.23,72 -39.23,108 -39.23,144 -39.23,180 -39.23,180 -44.307,180 -49.384,180 -54.461,180 -59.538,180 -64.615,180 -69.692,180 -74.769,180 -79.846,180 -84.923,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.923,-180 -79.846,-180 -74.769,-180 -69.692,-180 -64.615,-180 -59.538,-180 -54.461,-180 -49.384,-180 -44.307,-180 -39.23))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat. SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. It is currently in a synthesis and modeling phase. This collaborative project is concerned with the lower trophic levels, and will be integrated with other synthesis and modeling studies that deal with grazers, predators, and other higher trophic levels.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Bellingshausen Sea; Cryosphere; Oceans; Photosynthetically Active Radiation (par); Sea Ice; Sea Surface; Southern Ocean; Total Integrated Exposure To PAR", "locations": "Bellingshausen Sea; Southern Ocean; Sea Surface", "north": -39.23, "nsf_funding_programs": null, "persons": "Fritsen, Christian", "project_titles": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "projects": [{"proj_uid": "p0000522", "repository": "USAP-DC", "title": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "uid": "600050", "west": -180.0}, {"awards": "0436190 Eastman, Joseph", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "Patterns of biodiversity, as revealed by basic research in organismal biology, may be derived from ecological and evolutionary processes expressed in unique settings, such as Antarctica. The polar regions and their faunas are commanding increased attention as declining species diversity, environmental change, commercial fisheries, and resource management are now being viewed in a global context. Commercial fishing is known to have a direct and pervasive effect on marine biodiversity, and occurs in the Southern Ocean as far south as the Ross Sea. The nature of fish biodiversity in the Antarctic is different than in all other ocean shelf areas. Waters of the Antarctic continental shelf are ice covered for most of the year and water temperatures are nearly constant at -1.5 C. In these waters components of the phyletically derived Antarctic clade of Notothenioids dominate fish diversity. In some regions, including the southwestern Ross Sea, Notothenioids are overwhelmingly dominant in terms of number of species, abundance, and biomass. Such dominance by a single taxonomic group is unique among shelf faunas of the world. In the absence of competition from a taxonomically diverse fauna, Notothenioids underwent a habitat or depth related diversification keyed to the utilization of unfilled niches in the water column, especially pelagic or partially pelagic zooplanktivory and piscivory. This has been accomplished in the absence of a swim bladder for buoyancy control. They also may form a special type of adaptive radiation known as a species flock, which is an assemblage of a disproportionately high number of related species that have evolved rapidly within a defined area where most species are endemic. Diversification in buoyancy is the hallmark of the notothenioid radiation. Buoyancy is the feature of notothenioid biology that determines whether a species lives on the substrate, in the water column or both. Buoyancy also influences other key aspects of life history including swimming, feeding and reproduction and thus has implications for the role of the species in the ecosystem. With similarities to classic evolutionary hot spots, the Antarctic shelf and its Notothenioid radiation merit further exploration. The 2004 \u0027International Collaborative Expedition to collect and study Fish Indigenous to Sub-Antarctic Habitats,\u0027 or, \u0027ICEFISH,\u0027 provided a platform for collection of notothenioid fishes from sub-Antarctic waters between South America and Africa, which will be examined in this project. This study will determine buoyancy for samples of all notothenioid species captured during the ICEFISH cruise. This essential aspect of the biology is known for only 19% of the notothenioid fauna. Also, the gross and microscopic anatomy of brains and sense organs of the phyletically basal families Bovichtidae, Eleginopidae, and of the non-Antarctic species of the primarily Antarctic family Nototheniidae will be examined. The fish biodiversity and endemicity in poorly known localities along the ICEFISH cruise track, seamounts and deep trenches will be quantified. Broader impacts include improved information for comprehending and conserving biodiversity, a scientific and societal priority.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Biota; NBP0404; Oceans; R/v Nathaniel B. Palmer; Southern Ocean", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Eastman, Joseph", "project_titles": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0000106", "repository": "USAP-DC", "title": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes", "uid": "600038", "west": -180.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Hormone meta data for Antarctic blue and fin whales
|
1947453 |
2025-02-25 | Fleming, Alyson; Hunt, Kathleen |
Collaborative Research: A New Baseline for Antarctic Blue and Fin Whales |
Hormone meta data from the baleen of 5 blue whales and 5 fin whales sampled at 2cm intervals along the length of the plate. Data set includes meta data information regarding the individual whale including specimen ID, species, sex, hormone type, and dilution. | ["POLYGON((150 -60,152.9 -60,155.8 -60,158.7 -60,161.6 -60,164.5 -60,167.4 -60,170.3 -60,173.2 -60,176.1 -60,179 -60,179 -61.6,179 -63.2,179 -64.8,179 -66.4,179 -68,179 -69.6,179 -71.2,179 -72.8,179 -74.4,179 -76,176.1 -76,173.2 -76,170.3 -76,167.4 -76,164.5 -76,161.6 -76,158.7 -76,155.8 -76,152.9 -76,150 -76,150 -74.4,150 -72.8,150 -71.2,150 -69.6,150 -68,150 -66.4,150 -64.8,150 -63.2,150 -61.6,150 -60))"] | ["POINT(164.5 -68)"] | false | false |
Morphological, fecundity, and age data of Trematomus scotti from Andvord Bay and the Weddell Sea.
|
1947040 |
2025-02-11 | Desvignes, Thomas; Valdivieso, Alejandro; Sguotti, Camilla; Calì, Federico; Riginella, Emilio; Streeter, Margaret; Grondin, Jacob; Le Francois, Nathalie; Lucassen, Magnus; Mark, Felix C; Detrich, H. William; Papetti, Chiara; Postlethwait, John; La Mesa, Mario |
EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish |
Morphological, fecundity, and age data of Trematomus scotti from Andvord Bay and the Weddell Sea. | ["POLYGON((-63 -64,-57.8 -64,-52.6 -64,-47.4 -64,-42.2 -64,-37 -64,-31.799999999999997 -64,-26.6 -64,-21.4 -64,-16.199999999999996 -64,-11 -64,-11 -65.3,-11 -66.6,-11 -67.9,-11 -69.2,-11 -70.5,-11 -71.8,-11 -73.1,-11 -74.4,-11 -75.7,-11 -77,-16.2 -77,-21.4 -77,-26.6 -77,-31.8 -77,-37 -77,-42.2 -77,-47.4 -77,-52.6 -77,-57.800000000000004 -77,-63 -77,-63 -75.7,-63 -74.4,-63 -73.1,-63 -71.8,-63 -70.5,-63 -69.2,-63 -67.9,-63 -66.6,-63 -65.3,-63 -64))"] | ["POINT(-37 -70.5)"] | false | false |
Weddell seal metabolic hormone data
|
1246463 |
2024-10-04 | Kirkham, Amy |
The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals |
Weddell seal metabolic hormone data. Body composition data were generated following protocols described in Shero et al. 2014. Serum hormone concentrations were determined using immunoassays. IGF binding protein concentrations were determined using protocols described in Richmond et al. 2010 | ["POLYGON((162 -75,162.6 -75,163.2 -75,163.8 -75,164.4 -75,165 -75,165.6 -75,166.2 -75,166.8 -75,167.4 -75,168 -75,168 -75.4,168 -75.8,168 -76.2,168 -76.6,168 -77,168 -77.4,168 -77.8,168 -78.2,168 -78.6,168 -79,167.4 -79,166.8 -79,166.2 -79,165.6 -79,165 -79,164.4 -79,163.8 -79,163.2 -79,162.6 -79,162 -79,162 -78.6,162 -78.2,162 -77.8,162 -77.4,162 -77,162 -76.6,162 -76.2,162 -75.8,162 -75.4,162 -75))"] | ["POINT(165 -77)"] | false | false |
Simulated winter warming negatively impacts survival of Antarctica's only endemic insect
|
1850988 |
2023-06-11 | Devlin, Jack; Unfried, Laura; McCabe, Eleanor; Gantz, Josiah D.; Kawarasaki, Yuta; Elnitsky, Michael; Hotaling, Scott; Michel, Andrew; Convey, Peter; Hayward, Scott; Teets, Nicholas | No project link provided | Antarctic winters are challenging for terrestrial invertebrates, and species that live there have specialised adaptations to conserve energy and protect against cold injury in the winter. However, rapidly occurring climate change in these regions will increase the unpredictability of winter conditions, and there is currently a dearth of knowledge on how the highly adapted invertebrates of Antarctica will respond to changes in winter temperatures. 2. We evaluated the response of larvae of the Antarctic midge, Belgica antarctica, to simulated winters at three ecologically relevant mean temperature scenarios: warm (−1°C), normal (−3°C) and cold (−5°C). Within each scenario, larvae were placed into three distinct habitat types in which they are commonly observed (decaying organic matter, living moss, and Prasiola crispa algae). Following the simulated overwintering period, a range of physiological outcomes were measured, namely survival, locomotor activity, tissue damage, energy store levels and molecular stress responses. 3. Survival, energy stores and locomotor activity were significantly lower following the Warm overwintering environment than at lower temperatures, but tissue damage and heat shock protein expression (a proxy for protein damage) did not significantly differ between the three temperatures. Survival was also significantly lower in larvae overwintered in Prasiola crispa algae, although the underlying mechanism is unclear. Heat shock proteins were expressed least in larvae overwintering in living moss, suggesting it is less stressful to overwinter in this substrate, perhaps due to a more defined structure affording less direct contact with ice. 4. Our results demonstrate that a realistic 2°C increase in winter microhabitat temperature reduces survival and causes energy deficits that have implications for subsequent development and reproduction. While our Warm winter scenario was close tothe range of observed overwintering temperatures for this species, warmer winters are expected to become more common in response to climate change. Conversely, if climate change reduces the length of winter, some of the negative consequences of winter warming may be attenuated, so it will be important to consider this factor in future studies. Nonetheless, our results indicate that winter warming could negatively impact cold-adapted insects such as the Antarctic midge. | ["POLYGON((-64.366767 -62.681,-63.991703599999994 -62.681,-63.6166402 -62.681,-63.2415768 -62.681,-62.866513399999995 -62.681,-62.49145 -62.681,-62.1163866 -62.681,-61.7413232 -62.681,-61.366259799999995 -62.681,-60.9911964 -62.681,-60.616133 -62.681,-60.616133 -62.9536677,-60.616133 -63.226335399999996,-60.616133 -63.4990031,-60.616133 -63.7716708,-60.616133 -64.04433850000001,-60.616133 -64.31700620000001,-60.616133 -64.58967390000001,-60.616133 -64.86234160000001,-60.616133 -65.13500930000001,-60.616133 -65.407677,-60.9911964 -65.407677,-61.366259799999995 -65.407677,-61.7413232 -65.407677,-62.1163866 -65.407677,-62.49145 -65.407677,-62.866513399999995 -65.407677,-63.2415768 -65.407677,-63.6166402 -65.407677,-63.991703599999994 -65.407677,-64.366767 -65.407677,-64.366767 -65.13500930000001,-64.366767 -64.86234160000001,-64.366767 -64.58967390000001,-64.366767 -64.31700620000001,-64.366767 -64.04433850000001,-64.366767 -63.7716708,-64.366767 -63.4990031,-64.366767 -63.226335399999996,-64.366767 -62.9536677,-64.366767 -62.681))"] | ["POINT(-62.49145 -64.04433850000001)"] | false | false |
Weddell seal iron dynamics and oxygen stores across lactation
|
1246463 |
2022-07-05 | Shero, Michelle |
The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals Collaborative Research: Physiological and Genetic Correlates of Reproductive Success in High- versus Low-Quality Weddell seals |
The profound impacts that maternal provisioning of finite energy resources has on offspring survival have been extensively studied across mammals. However, in addition to calories, we tested whether high hemoprotein concentrations in diving mammals necessitates exceptional female-to-pup iron transfer. To answer this question adult female Weddell seals (Leptonychotes weddellii) were handled across the austral summer. This included post-partum females during lactation and post-weaning. To demonstrate that any observed changes in iron dynamics were due to lactation, equivalent skip-breeding females (i.e., that did not produce a pup) were also handled. We measured numerous indices of iron mobilization (ferritin, serum iron, total-iron-binding-capacity, transferrin saturation, milk iron concentration), hemoprotein concentrations, and oxygen stores. | ["POLYGON((162 -75,162.6 -75,163.2 -75,163.8 -75,164.4 -75,165 -75,165.6 -75,166.2 -75,166.8 -75,167.4 -75,168 -75,168 -75.4,168 -75.8,168 -76.2,168 -76.6,168 -77,168 -77.4,168 -77.8,168 -78.2,168 -78.6,168 -79,167.4 -79,166.8 -79,166.2 -79,165.6 -79,165 -79,164.4 -79,163.8 -79,163.2 -79,162.6 -79,162 -79,162 -78.6,162 -78.2,162 -77.8,162 -77.4,162 -77,162 -76.6,162 -76.2,162 -75.8,162 -75.4,162 -75))"] | ["POINT(165 -77)"] | false | false |
Demographic outputs and their variances for three life history complexes for the Southern Fulmar across contrasted sea ice conditions.
|
1246407 1840058 |
2022-06-27 | Jenouvrier, Stephanie |
Linking Foraging Behaviors to Demography to understand Albatrosses Population Responses to Climate Change Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics |
Individuals differ in many ways. Most produce few offspring; a handful produce many. Some die early; others live to old age. It is tempting to attribute these differences in outcomes to differences in individual traits, and thus in the demographic rates experienced. However, there is more to individual variation than meets the eye of the biologist. Even among individuals sharing identical traits, life history outcomes (life expectancy and lifetime reproduction) will vary due to individual stochasticity, i.e., to chance. Quantifying the contributions of heterogeneity and chance is essential to understanding natural variability. Inter-individual differences vary across environmental conditions, hence heterogeneity and stochasticity depend on environmental conditions. We show that favorable conditions increase the contributions of individual stochasticity, and reduce the contributions of heterogeneity, to variance in demographic outcomes in a seabird population. The opposite is true under poor conditions. This result has important consequence for understanding the ecology and evolution of life history strategies. Specifically, three life-history complexes exist in a population of southern fulmar (defined as sets of life-history characteristics that occur together through the lifetime of an individual). They are reminiscent of the gradient of life- history strategy observed among species: 1. Group 1 (14% of offspring at fledging) is a slow-paced life history where individuals tend to delay recruitment, recruit successfully, and extend their reproductive lifespan. 2. Group 2 (67% of offspring at fledging) consists of individuals that are less likely to recruit, have high adult survival, and skip breeding often. 3. Group 3 (19% of offspring at fledging) is a fast-paced life history where individuals recruit early and attempt to breed often but have a short lifespan. Individuals in groups 1 and 3 are considered “high-quality” individuals because they produce, on average, more offspring over their lives than do individuals in group 2. But group 2 is made-up of individuals that experience the highest levels of adult survival. Differences between these groups, i.e. individual heterogeneity, only explains a small fraction of variance in life expectancy (5.9%) and lifetime reproduction (22%) when environmental conditions are ordinary. We expect that the environmental context experienced, especially when environmental conditions get extreme, is key to characterizing individual heterogeneity and its contribution to life history outcomes. Here, we build on previous studies to quantify the impact of extreme environmental conditions on the relative contributions of individual heterogeneity and stochasticity to variance in life history outcomes. We found that the differences in vital rates and demographic outcomes among complexes depend on the sea ice conditions individuals experience. Importantly, differences across life history complexes are amplified when sea ice concentration get extremely low. Sea ice conditions did not only affect patterns of life history traits, but also the variance of life history outcomes and the relative proportion of individual unobserved heterogeneity to the total variance. These new results advance the current debate on the relative importance heterogeneity (i.e. potentially adaptive) and stochasticity (i.e. enhances genetic drift) in shaping potentially neutral vs. adaptive changes in life histories. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
1970s - 1980s Kooyman-Billups TDR Dive Records from Weddell Seals in McMurdo Sound
|
1246463 |
2022-05-09 | Tsai, EmmaLi |
The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals |
This dataset includes dive records from Weddell seals located in McMurdo Sound, Antarctica from the austral summers of 1978, 1979, and 1981 using Kooyman-Billups Time Depth Recorders. The data were recovered from photocopied paper scrolls using a code package (https://doi.org/10.5281/zenodo.14025657). This recovery process involved record scanning, image processing, and bias correction such that the historic data are directly comparable with dive data from modern instruments. This dataset contains the scanned images of the paper dive records (KBTDR_record_scans) and comma-separated value files of the dive data after recovery (KBTDR_data). Only records from McMurdo Sound were recovered, but record scans from Terra Nova Bay and White Island are also provided for future long-term studies on diving behavior. | ["POINT(165 -77)"] | ["POINT(165 -77)"] | false | false |
Detecting climate signals in populations: case of emperor penguin
|
2037561 1744794 |
2021-12-08 | Jenouvrier, Stephanie |
Integrating Antarctic Environmental and Biological Predictability to Obtain Optimal Forecasts A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins |
Climate impacts are not always easily discerned in wild populations as detecting climate change signals in populations is challenged by stochastic noise associated with natural climate variability, variability in biotic and abiotic processes, and observation error in demographic rates. Detection of the impact of climate change on populations requires making a formal distinction between signals in the population associated with long-term climate trends from those generated by stochastic noise. The time of emergence (ToE) identifies when the signal of anthropogenic climate change can be quantitatively distinguished from natural climate variability. This concept has been applied extensively in the climate sciences, but has not been explored in the context of population dynamics. In Jenouvrier et al. (Global Change Biology, accepted), we outline an approach to detecting climate-driven signals in populations based on an assessment of when climate change drives population dynamics beyond the envelope characteristic of stochastic variations in an unperturbed state. This data set is the code of a theoretical assessment of the time of emergence of climate-driven signals in population dynamics. We identify the dependence of time of emergence in populations on the magnitude of both trends and variability in climate and also explore the effect of intrinsic demographic controls on the time of emergence in population. We demonstrate that different life histories (fast species vs. slow species), demographic processes (survival, reproduction) and the relationships between climate and demographic rates, yield population dynamics that filter climate trends and variability differently. In Jenouvrier et al. (accepted), we also illustrate empirically how to detect the point in time when anthropogenic signals in populations emerge from stochastic noise for a species threatened by climate change: the emperor penguin. This data set also includes a detailed Table and code to analyze those results. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Seasonal Dive Data
|
1246463 |
2020-06-23 | Burns, Jennifer |
The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals |
For Figures 2 and 4 In Beltran et al. PNAS | ["POINT(165 -77)"] | ["POINT(165 -77)"] | false | false |
Weddell seal summer diving behavior
|
1246463 |
2018-11-24 | Beltran, Roxanne; Burns, Jennifer |
The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals |
We examined the influence of sea ice break-out on seasonal diving patterns and diet of a top predator, the Weddell seal, to understand how phytoplankton blooms impact the vertical distribution of the food web. We captured female seals during the November and December lactation period and attached a LOTEK LAT1800 time-depth recorder (TDR) flipper tag with a 6 second sampling interval. Data were processed using the Iknos toolbox in MATLAB. Benthic dives (1% of all dives) were excluded from analyses because we were interested in quantifying seasonal changes in mid-water dives. Thus, we analyzed dives from 59 Weddell seals to characterize the diving depth and foraging effort of each seal across the austral summer over four years. We characterized seasonal changes in diving depth by calculating the mean across all seals of the maximum dive depth on each day for each seal. For more information see: Beltran, R. S. Bridging the gap between pupping and molting phenology: behavioral and ecological drivers in Weddell seals PhD thesis, University of Alaska Fairbanks, (2018). | [] | [] | false | false |
Cortisol levels in Weddell seal fur
|
1246463 |
2018-11-08 | Burns, Jennifer |
The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals |
This dataset includes measurements of cortisol levels (pg/mg) extracted from Weddell Seal fur samples collected from adult females in colonies in the Erebus Bay region of Antarctica during 4 austral field seasons between November 2013 and February 2017. Observations recorded include body mass, body composition, reproductive status. | ["POLYGON((-180 -76,-177 -76,-174 -76,-171 -76,-168 -76,-165 -76,-162 -76,-159 -76,-156 -76,-153 -76,-150 -76,-150 -76.2,-150 -76.4,-150 -76.6,-150 -76.8,-150 -77,-150 -77.2,-150 -77.4,-150 -77.6,-150 -77.8,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -77.8,160 -77.6,160 -77.4,160 -77.2,160 -77,160 -76.8,160 -76.6,160 -76.4,160 -76.2,160 -76,162 -76,164 -76,166 -76,168 -76,170 -76,172 -76,174 -76,176 -76,178 -76,-180 -76))"] | ["POINT(-175 -77)"] | false | false |
Weddell Seal Molt Survey Data
|
1246463 |
2018-10-30 | Burns, Jennifer |
The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals |
All sightings of known, tagged, Weddell seals during molt seasons of Austral summers 2013, 14 15, and 2016. Seals that were sighted but for which molt status could not be determined are not included in this dataset. Seals without tags or IDs were not included. | ["POLYGON((164 -76,164.2 -76,164.4 -76,164.6 -76,164.8 -76,165 -76,165.2 -76,165.4 -76,165.6 -76,165.8 -76,166 -76,166 -76.2,166 -76.4,166 -76.6,166 -76.8,166 -77,166 -77.2,166 -77.4,166 -77.6,166 -77.8,166 -78,165.8 -78,165.6 -78,165.4 -78,165.2 -78,165 -78,164.8 -78,164.6 -78,164.4 -78,164.2 -78,164 -78,164 -77.8,164 -77.6,164 -77.4,164 -77.2,164 -77,164 -76.8,164 -76.6,164 -76.4,164 -76.2,164 -76))"] | ["POINT(165 -77)"] | false | false |
Weddell Seal Molt Phenology Dataset
|
1246463 |
2018-10-22 | Burns, Jennifer |
The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals |
Animals can respond to dynamic environments through phenological plasticity of life history events; however, changes in one part of the annual cycle can diminish the success of subsequent life history events. Our aims were to determine the associations between reproduction and moult phenology across years and to quantify phenological plasticity across varying environmental conditions. We conducted demographic surveys of 4,252 flipper-tagged Weddell seals (Leptonychotes weddellii) in the Ross Sea, Antarctica during four austral summers. At each sighting, seals were assigned a moult code based on the visible presence of new fur, and the start date of each animal’s moult was back-calculated. This dataset contains data on pupping and moult timing for each animal used to address this question. | [] | [] | false | false |
Specimen logs and observations from Weddell Seal colonies in Erebus Bay, 2013-2017
|
1246463 |
2017-05-24 | Burns, Jennifer |
The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals |
This dataset includes an inventory of Weddell Seals captured by net, tagged, and observed at colonies in the Erebus Bay region of Antarctica during 4 austral field seasons between November 2013 and February 2017. Observations recorded include body mass, length, and molt category. | ["POINT(166.55 -77.75)"] | ["POINT(166.55 -77.75)"] | false | false |
A Multi-decadal Record of Antarctic Benthos: Image Analysis to Maximize Data Utilization
|
1355533 |
2016-01-01 | Dayton, Paul |
EAGER: A Multi-decadal Record of Antarctic Benthos: Image Analysis to Maximize Data Utilization |
Antarctic benthic communities are characterized by many species of sponges (Phylum Porifera), long thought to exhibit extremely slow demographic patterns of settlement, growth and reproduction. This project will analyze many hundreds of diver and remotely operated underwater vehicle photographs documenting a unique, episodic settlement event that occurred between 2000 and 2010 in McMurdo Sound that challenges this paradigm of slow growth. Artificial structures were placed on the seafloor between 1967 and 1974 at several sites, but no sponges were observed to settle on these structures until 2004. By 2010 some 40 species of sponges had settled and grown to be surprisingly large. Given the paradigm of slow settlement and growth supported by the long observation period (37 years, 1967-2004), this extraordinary large-scale settlement and rapid growth over just a 6-year time span is astonishing. This project utilizes image processing software (ImageJ) to obtain metrics (linear dimensions to estimate size, frequency, percent cover) for sponges and other fauna visible in the photographs. It uses R to conduct multidimensional scaling to ordinate community data and ANOSIM to test for differences of community data among sites and times and structures. It will also use SIMPER and ranked species abundances to discriminate species responsible for any differences. This work focuses on Antarctic sponges, but the observations of massive episodic recruitment and growth are important to understanding seafloor communities worldwide. Ecosystems are composed of populations, and populations are ecologically described by their distribution and abundance. A little appreciated fact is that sponges often dominate marine communities, but because sponges are so hard to study, most workers focus on other groups such as corals, kelps, or bivalves. Because most sponges settle and grow slowly their life history is virtually unstudied. The assumption of relative stasis of the Antarctic seafloor community is common, and this project will shatter this paradigm by documenting a dramatic episodic event. Finally, the project takes advantage of old transects from the 1960s and 1970s and compares them with extensive 2010 surveys of the same habitats and sometimes the same intact transect lines, offering a long-term perspective of community change. The investigators will publish these results in peer-reviewed journals, give presentations to the general public and will involve students from local outreach programs, high schools, and undergraduates at UCSD to help with the analysis. | ["POLYGON((163 -78,163.4 -78,163.8 -78,164.2 -78,164.6 -78,165 -78,165.4 -78,165.8 -78,166.2 -78,166.6 -78,167 -78,167 -78.05,167 -78.1,167 -78.15,167 -78.2,167 -78.25,167 -78.3,167 -78.35,167 -78.4,167 -78.45,167 -78.5,166.6 -78.5,166.2 -78.5,165.8 -78.5,165.4 -78.5,165 -78.5,164.6 -78.5,164.2 -78.5,163.8 -78.5,163.4 -78.5,163 -78.5,163 -78.45,163 -78.4,163 -78.35,163 -78.3,163 -78.25,163 -78.2,163 -78.15,163 -78.1,163 -78.05,163 -78))"] | ["POINT(165 -78.25)"] | false | false |
The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)
|
0528728 |
2011-01-01 | Vernet, Maria |
Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK) |
This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat. SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. This collaborative project is concerned with the synthesis and modeling of lower trophic levels. | ["POLYGON((-69.08 -64.8,-68.632 -64.8,-68.184 -64.8,-67.736 -64.8,-67.288 -64.8,-66.84 -64.8,-66.392 -64.8,-65.944 -64.8,-65.496 -64.8,-65.048 -64.8,-64.6 -64.8,-64.6 -65.121,-64.6 -65.442,-64.6 -65.763,-64.6 -66.084,-64.6 -66.405,-64.6 -66.726,-64.6 -67.047,-64.6 -67.368,-64.6 -67.689,-64.6 -68.01,-65.048 -68.01,-65.496 -68.01,-65.944 -68.01,-66.392 -68.01,-66.84 -68.01,-67.288 -68.01,-67.736 -68.01,-68.184 -68.01,-68.632 -68.01,-69.08 -68.01,-69.08 -67.689,-69.08 -67.368,-69.08 -67.047,-69.08 -66.726,-69.08 -66.405,-69.08 -66.084,-69.08 -65.763,-69.08 -65.442,-69.08 -65.121,-69.08 -64.8))"] | ["POINT(-66.84 -66.405)"] | false | false |
The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)
|
0529087 |
2011-01-01 | Quetin, Langdon B.; Ross, Robin Macurda |
Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK) |
This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat. SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. This collaborative project is concerned with the synthesis and modeling of lower trophic levels. | ["POLYGON((-71 -61,-70 -61,-69 -61,-68 -61,-67 -61,-66 -61,-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-61 -61.9,-61 -62.8,-61 -63.7,-61 -64.6,-61 -65.5,-61 -66.4,-61 -67.3,-61 -68.2,-61 -69.1,-61 -70,-62 -70,-63 -70,-64 -70,-65 -70,-66 -70,-67 -70,-68 -70,-69 -70,-70 -70,-71 -70,-71 -69.1,-71 -68.2,-71 -67.3,-71 -66.4,-71 -65.5,-71 -64.6,-71 -63.7,-71 -62.8,-71 -61.9,-71 -61))"] | ["POINT(-66 -65.5)"] | false | false |
The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)
|
0529666 |
2011-01-01 | Fritsen, Christian |
Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK) |
This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat. SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. It is currently in a synthesis and modeling phase. This collaborative project is concerned with the lower trophic levels, and will be integrated with other synthesis and modeling studies that deal with grazers, predators, and other higher trophic levels. | ["POLYGON((-180 -39.23,-144 -39.23,-108 -39.23,-72 -39.23,-36 -39.23,0 -39.23,36 -39.23,72 -39.23,108 -39.23,144 -39.23,180 -39.23,180 -44.307,180 -49.384,180 -54.461,180 -59.538,180 -64.615,180 -69.692,180 -74.769,180 -79.846,180 -84.923,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.923,-180 -79.846,-180 -74.769,-180 -69.692,-180 -64.615,-180 -59.538,-180 -54.461,-180 -49.384,-180 -44.307,-180 -39.23))"] | ["POINT(0 -89.999)"] | false | false |
Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes
|
0436190 |
2009-01-01 | Eastman, Joseph |
Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes |
Patterns of biodiversity, as revealed by basic research in organismal biology, may be derived from ecological and evolutionary processes expressed in unique settings, such as Antarctica. The polar regions and their faunas are commanding increased attention as declining species diversity, environmental change, commercial fisheries, and resource management are now being viewed in a global context. Commercial fishing is known to have a direct and pervasive effect on marine biodiversity, and occurs in the Southern Ocean as far south as the Ross Sea. The nature of fish biodiversity in the Antarctic is different than in all other ocean shelf areas. Waters of the Antarctic continental shelf are ice covered for most of the year and water temperatures are nearly constant at -1.5 C. In these waters components of the phyletically derived Antarctic clade of Notothenioids dominate fish diversity. In some regions, including the southwestern Ross Sea, Notothenioids are overwhelmingly dominant in terms of number of species, abundance, and biomass. Such dominance by a single taxonomic group is unique among shelf faunas of the world. In the absence of competition from a taxonomically diverse fauna, Notothenioids underwent a habitat or depth related diversification keyed to the utilization of unfilled niches in the water column, especially pelagic or partially pelagic zooplanktivory and piscivory. This has been accomplished in the absence of a swim bladder for buoyancy control. They also may form a special type of adaptive radiation known as a species flock, which is an assemblage of a disproportionately high number of related species that have evolved rapidly within a defined area where most species are endemic. Diversification in buoyancy is the hallmark of the notothenioid radiation. Buoyancy is the feature of notothenioid biology that determines whether a species lives on the substrate, in the water column or both. Buoyancy also influences other key aspects of life history including swimming, feeding and reproduction and thus has implications for the role of the species in the ecosystem. With similarities to classic evolutionary hot spots, the Antarctic shelf and its Notothenioid radiation merit further exploration. The 2004 'International Collaborative Expedition to collect and study Fish Indigenous to Sub-Antarctic Habitats,' or, 'ICEFISH,' provided a platform for collection of notothenioid fishes from sub-Antarctic waters between South America and Africa, which will be examined in this project. This study will determine buoyancy for samples of all notothenioid species captured during the ICEFISH cruise. This essential aspect of the biology is known for only 19% of the notothenioid fauna. Also, the gross and microscopic anatomy of brains and sense organs of the phyletically basal families Bovichtidae, Eleginopidae, and of the non-Antarctic species of the primarily Antarctic family Nototheniidae will be examined. The fish biodiversity and endemicity in poorly known localities along the ICEFISH cruise track, seamounts and deep trenches will be quantified. Broader impacts include improved information for comprehending and conserving biodiversity, a scientific and societal priority. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |