{"dp_type": "Dataset", "free_text": "Pleistocene"}
[{"awards": "1939146 Siddoway, Christine", "bounds_geometry": ["POLYGON((-109.1 -68.6,-108.94 -68.6,-108.78 -68.6,-108.61999999999999 -68.6,-108.46 -68.6,-108.3 -68.6,-108.14 -68.6,-107.98 -68.6,-107.82 -68.6,-107.66 -68.6,-107.5 -68.6,-107.5 -68.64,-107.5 -68.67999999999999,-107.5 -68.72,-107.5 -68.75999999999999,-107.5 -68.8,-107.5 -68.84,-107.5 -68.88,-107.5 -68.92,-107.5 -68.96,-107.5 -69,-107.66 -69,-107.82 -69,-107.98 -69,-108.14 -69,-108.3 -69,-108.46 -69,-108.61999999999999 -69,-108.78 -69,-108.94 -69,-109.1 -69,-109.1 -68.96,-109.1 -68.92,-109.1 -68.88,-109.1 -68.84,-109.1 -68.8,-109.1 -68.75999999999999,-109.1 -68.72,-109.1 -68.67999999999999,-109.1 -68.64,-109.1 -68.6))"], "date_created": "Tue, 27 Aug 2024 00:00:00 GMT", "description": "The table contains sample identifiers, location data, and geochronology data (U-Pb zircon dates; apatite fission track determinations) from selected intervals of sediment cores obtained at sites U1532 (A, B, C, G) and U1533 (A, B) recovered during IODP Expedition 379 to the outer Amundsen Sea, Antarctica.", "east": -107.5, "geometry": ["POINT(-108.3 -68.8)"], "keywords": "Amundsen Sea; Antarctica; Cryosphere; Geochronology; Marie Byrd Land; Subglacial Bedrock; Thermochronology", "locations": "Amundsen Sea; Amundsen Sea; Antarctica; Marie Byrd Land", "north": -68.6, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Siddoway, Christine", "project_titles": "Collaborative Research: Testing the Linchpin of WAIS Collapse with Diatoms and IRD in Pleistocene and Late Pliocene Strata of the Resolution Drift, Amundsen Sea, Antarctica", "projects": [{"proj_uid": "p0010451", "repository": "USAP-DC", "title": "Collaborative Research: Testing the Linchpin of WAIS Collapse with Diatoms and IRD in Pleistocene and Late Pliocene Strata of the Resolution Drift, Amundsen Sea, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -69.0, "title": "U-Pb zircon and apatite fission track dates for IRD (ice-rafted cobbles and mineral grains) from IODP379 drill sites", "uid": "601828", "west": -109.1}, {"awards": "2000992 Romans, Brian", "bounds_geometry": ["POLYGON((-174 -74.1667,-173.93 -74.1667,-173.86 -74.1667,-173.79 -74.1667,-173.72 -74.1667,-173.65 -74.1667,-173.58 -74.1667,-173.51000000000002 -74.1667,-173.44 -74.1667,-173.37 -74.1667,-173.3 -74.1667,-173.3 -74.25503,-173.3 -74.34336,-173.3 -74.43169,-173.3 -74.52002,-173.3 -74.60835,-173.3 -74.69668,-173.3 -74.78501,-173.3 -74.87334,-173.3 -74.96167,-173.3 -75.05,-173.37 -75.05,-173.44 -75.05,-173.51000000000002 -75.05,-173.58 -75.05,-173.65 -75.05,-173.72 -75.05,-173.79 -75.05,-173.86 -75.05,-173.93 -75.05,-174 -75.05,-174 -74.96167,-174 -74.87334,-174 -74.78501,-174 -74.69668,-174 -74.60835,-174 -74.52002,-174 -74.43169,-174 -74.34336,-174 -74.25503,-174 -74.1667))"], "date_created": "Wed, 10 Jul 2024 00:00:00 GMT", "description": "This data set includes grain size information from late Pliocene through Pleistocene aged sediment recovered in cores from International Ocean Discovery Program (IODP) Expedition 374 Sites U1524 and U1525, on the continental slope and rise of the Ross Sea margin. There are two types of particle size data: (1) laser diffraction (Mastersizer 3000) data of silt-range sediment subsampled from mm-scale thick laminae/beds, and (2) x-ray-monitored settling (SediGraph 5120) data from muddy intervals directly overlying the silt laminae/beds. For Site U1524, there are 100 samples of Mastersizer data coupled with 100 samples of SediGraph data. For Site U1525, there are 50 samples of Mastersizer data coupled with 50 samples of SediGraph data. For both sites, the analyzed samples span the depth range of the core that contains the silty laminae/beds. ", "east": -173.3, "geometry": ["POINT(-173.65 -74.60835)"], "keywords": "Antarctica; Cryosphere; Grain Size; Ross Sea", "locations": "Ross Sea; Antarctica", "north": -74.1667, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Romans, Brian W.; Varela, Natalia", "project_titles": "COLLABORATIVE RESEARCH: Orbital-scale Variability of the West Antarctic Ice Sheet and the Formation of Bottom Water in the Ross Sea during the Pliocene-Pleistocene", "projects": [{"proj_uid": "p0010227", "repository": "USAP-DC", "title": "COLLABORATIVE RESEARCH: Orbital-scale Variability of the West Antarctic Ice Sheet and the Formation of Bottom Water in the Ross Sea during the Pliocene-Pleistocene"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.05, "title": "Grain size of Plio-Pleistocene continental slope and rise sediments, Hillary Canyon, Ross Sea", "uid": "601807", "west": -174.0}, {"awards": "1939139 Scherer, Reed", "bounds_geometry": null, "date_created": "Thu, 27 Jun 2024 00:00:00 GMT", "description": "This dataset contains physical measurements of specimens of the Southern Ocean diatom Fragilariopsis kerguelensis. We used the image segmentation software SHERPA (Kloster et al., 2017) to make physical measurements of each valve including \"rectangularity\". F. kerguelensis rectangularity has been posited to change in response to Sea Surface Temperature, a relationship that we explore in this study by calculating SSTs using established and new valve rectangularity/SST calibrations. ", "east": null, "geometry": null, "keywords": "Amundsen Sea; Antarctica; Cryosphere; Oceanography; Sabrina Coast; Sea Surface Temperature; Southern Ocean", "locations": "Antarctica; Sabrina Coast; Amundsen Sea; Southern Ocean; Antarctica; Sabrina Coast; Amundsen Sea", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Ruggiero, Joseph", "project_titles": "Collaborative Research: Testing the Linchpin of WAIS Collapse with Diatoms and IRD in Pleistocene and Late Pliocene Strata of the Resolution Drift, Amundsen Sea, Antarctica", "projects": [{"proj_uid": "p0010451", "repository": "USAP-DC", "title": "Collaborative Research: Testing the Linchpin of WAIS Collapse with Diatoms and IRD in Pleistocene and Late Pliocene Strata of the Resolution Drift, Amundsen Sea, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Population morphometrics of the Southern Ocean diatom Fragilariopsis kerguelensis related to Sea Surface Temperature", "uid": "601804", "west": null}, {"awards": "1939139 Scherer, Reed", "bounds_geometry": null, "date_created": "Tue, 20 Feb 2024 00:00:00 GMT", "description": "", "east": null, "geometry": null, "keywords": "Antarctica; Biogenic Silica; Diatom", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Scherer, Reed Paul; Furlong, Heather", "project_titles": "Collaborative Research: Testing the Linchpin of WAIS Collapse with Diatoms and IRD in Pleistocene and Late Pliocene Strata of the Resolution Drift, Amundsen Sea, Antarctica", "projects": [{"proj_uid": "p0010451", "repository": "USAP-DC", "title": "Collaborative Research: Testing the Linchpin of WAIS Collapse with Diatoms and IRD in Pleistocene and Late Pliocene Strata of the Resolution Drift, Amundsen Sea, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Pliocene diatom abundance, IODP 379-U1532", "uid": "601769", "west": null}, {"awards": "1744993 Higgins, John", "bounds_geometry": ["POLYGON((159.17 -76.67,159.195 -76.67,159.22 -76.67,159.24499999999998 -76.67,159.26999999999998 -76.67,159.295 -76.67,159.32 -76.67,159.345 -76.67,159.36999999999998 -76.67,159.39499999999998 -76.67,159.42 -76.67,159.42 -76.676,159.42 -76.682,159.42 -76.688,159.42 -76.694,159.42 -76.7,159.42 -76.706,159.42 -76.712,159.42 -76.718,159.42 -76.724,159.42 -76.73,159.39499999999998 -76.73,159.36999999999998 -76.73,159.345 -76.73,159.32 -76.73,159.295 -76.73,159.26999999999998 -76.73,159.24499999999998 -76.73,159.22 -76.73,159.195 -76.73,159.17 -76.73,159.17 -76.724,159.17 -76.718,159.17 -76.712,159.17 -76.706,159.17 -76.7,159.17 -76.694,159.17 -76.688,159.17 -76.682,159.17 -76.676,159.17 -76.67))"], "date_created": "Fri, 16 Jun 2023 00:00:00 GMT", "description": "Unpublished field report describing drilling, sampling, and temperature profiles for shallow ice cores and boreholes at Allan Hills in 2022-2023 field season", "east": 159.42, "geometry": ["POINT(159.295 -76.7)"], "keywords": "Allan Hills; Antarctica; Ice Core", "locations": "Antarctica; Allan Hills", "north": -76.67, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Shackleton, Sarah; Brook, Edward J.", "project_titles": "Center for Oldest Ice Exploration; Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "projects": [{"proj_uid": "p0010321", "repository": "USAP-DC", "title": "Center for Oldest Ice Exploration"}, {"proj_uid": "p0010253", "repository": "USAP-DC", "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73, "title": "Allan Hills 2022-23 Shallow Ice Core Field Report", "uid": "601696", "west": 159.17}, {"awards": "1744993 Higgins, John", "bounds_geometry": ["POLYGON((159.16667 -76.66667,159.19167000000002 -76.66667,159.21667000000002 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667000000002 -76.66667,159.34167000000002 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.67333599999999,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.69999999999999,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.71999799999999,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167000000002 -76.73333,159.31667000000002 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667000000002 -76.73333,159.19167000000002 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.71999799999999,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.69999999999999,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.67333599999999,159.16667 -76.66667))"], "date_created": "Fri, 03 Mar 2023 00:00:00 GMT", "description": "This document details the ground-penetrating radar (GPR) collection activities carried out by I. Nesbitt in the Allan Hills during the 2019-2020 field season. This document is intended as an informal catalogue of the fild work and post-processing activities performed at the Allan Hills and later at McMurdo and elsewhere. It contains preliminary post-processing and analysis only. Any interpretation made and presented in this report based on the data herein is subject to change pending further examination. GPR was used to examine sub-ice bedrock topography and the stratigraphic relationship between two shallow ice core drill sites (CMC1 and CMC2), as well as to explore potential future drill sites. In accordance with. the project\u0027s objective to drill and analyze ancient ice at relatively shallow depths, the two main features of interest in this study are 1) bedrock topographic features in which ancient ice could be trapped, and 2) englacial stratigraphic layers, especially those which may represent large age discontinuities.", "east": 159.41667, "geometry": ["POINT(159.29167 -76.69999999999999)"], "keywords": "Allan Hills; Antarctica; GPR; Ice Core; Report", "locations": "Allan Hills; Antarctica", "north": -76.66667, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Nesbitt, Ian; Brook, Edward J.", "project_titles": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "projects": [{"proj_uid": "p0010253", "repository": "USAP-DC", "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73333, "title": "I-165-M GPR Field Report 2019-2020", "uid": "601669", "west": 159.16667}, {"awards": "1744832 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(159.3562 -76.73243)"], "date_created": "Tue, 22 Nov 2022 00:00:00 GMT", "description": "These data cover the penultimate glacial period (MIS 6) and parts of MIS5, in Allan Hills ice. The d18Oatm data are useful for dating the core, and the 15N is useful for inferring firn thickness. Importantly, the data have only been corrected for gas loss using published methods (i.e. Baggenstos et al. 2017), but not for recently recognized (and unpublished) effects of declining contemporary atmospheric O2/N2 due to fossil fuel burning. These changes unfortunately affect the La Jolla Air standard gas O2/N2 ratio that is used in our lab to make the measurements. Users of this data are encouraged to contact Jeff Severinghaus for help in making these novel corrections to the standard gas.", "east": 159.3562, "geometry": ["POINT(159.3562 -76.73243)"], "keywords": "18O; Allan Hills; Allan Hills Blue Ice; Antarctica; Blue Ice; Delta 15N; Delta 18O; Dole Effect; Firn Thickness; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Chronology; Ice Core Records", "locations": "Antarctica; Allan Hills", "north": -76.73243, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.", "project_titles": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "projects": [{"proj_uid": "p0010253", "repository": "USAP-DC", "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73243, "title": "Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 \u0026 2022", "uid": "601620", "west": 159.3562}, {"awards": "2042495 Blackburn, Terrence", "bounds_geometry": null, "date_created": "Wed, 10 Aug 2022 00:00:00 GMT", "description": "", "east": null, "geometry": null, "keywords": "Antarctica; East Antarctica", "locations": "East Antarctica; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Piccione, Gavin; Blackburn, Terrence", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": null, "title": " Subglacial Precipitates Record Antarctic Ice Sheet Response to Pleistocene Millennial Climate Cycles", "uid": "601594", "west": null}, {"awards": "0838842 Passchier, Sandra", "bounds_geometry": ["POINT(167.0833 -77.8889)"], "date_created": "Mon, 14 Jun 2021 00:00:00 GMT", "description": "This dataset contains measurements of particle-size distributions on four intervals of diamicitites from ANDRILL Site AND-2A. Carbonate, and organic matter were removed through addition of 10mL aliquots of 30% H2O2 and 2mL aliquots of 10% HCl to ~50-100mL suspension on a hot plate. Dispersion was through heating with sodium pyrophosphate. Samples were measured on a Malvern Mastersizer 2000 with a Hydro 2000MU (A) accessory, using a Refractive index of 1.544 (Quartz) and an absorption coefficient of 0.9. Results are in (vol. %) per size class, with diameter range equivalent to the diameter of spheres with the same volume as measured particles.", "east": 167.0833, "geometry": ["POINT(167.0833 -77.8889)"], "keywords": "Antarctica; McMurdo Sound; Miocene; Particle Size; Pleistocene; Pliocene", "locations": "Antarctica; McMurdo Sound", "north": -77.8889, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Passchier, Sandra; Hansen, Melissa A.", "project_titles": "Determining Middle Miocene through Pliocene Changes in Paleo Ice-flow and Basal Ice Conditions in East Antarctica through Sedimentological Analyses of Core Samples", "projects": [{"proj_uid": "p0000147", "repository": "USAP-DC", "title": "Determining Middle Miocene through Pliocene Changes in Paleo Ice-flow and Basal Ice Conditions in East Antarctica through Sedimentological Analyses of Core Samples"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ANDRILL", "south": -77.8889, "title": "Particle-size measurements for diamictites AND-2A sediment core, McMurdo Sound", "uid": "601452", "west": 167.0833}, {"awards": "0424589 Gogineni, S. Prasad; 1443690 Young, Duncan; 0733025 Blankenship, Donald; 0941678 ", "bounds_geometry": ["POLYGON((114 -74,115.2 -74,116.4 -74,117.6 -74,118.8 -74,120 -74,121.2 -74,122.4 -74,123.6 -74,124.8 -74,126 -74,126 -74.3,126 -74.6,126 -74.9,126 -75.2,126 -75.5,126 -75.8,126 -76.1,126 -76.4,126 -76.7,126 -77,124.8 -77,123.6 -77,122.4 -77,121.2 -77,120 -77,118.8 -77,117.6 -77,116.4 -77,115.2 -77,114 -77,114 -76.7,114 -76.4,114 -76.1,114 -75.8,114 -75.5,114 -75.2,114 -74.9,114 -74.6,114 -74.3,114 -74))"], "date_created": "Fri, 18 Dec 2020 00:00:00 GMT", "description": "The data set published here consists of 26 ice-penetrating radar IRHs (internal reflecting horizons) which were traced across multiple ice-penetrating radar surveys that deployed several generations of modern ice-penetrating radar sounders over a decade, between 2008 and 2018, over the Dome C region of the East Antarctic Plateau. The data set is associated to publication: Cavitte, M. G. P, Young, D. A, Mulvaney, R., Ritz, C., Greenbaum, J. S., Ng, G., Kempf, S. D., Quartini, E., Muldoon, G. R., Paden, J., Frezzotti, M., Roberts, J. L. , Tozer, C. R. , Schroeder, D. M. and Blankenship, D. D. A detailed radiostratigraphic data set for the central East Antarctic Plateau spanning from the Holocene to the mid-Pleistocene, Earth Syst. Sci. Data, 13, 4759\u20134777, 2021, https://doi.org/10.5194/essd-13-4759-2021.\r\n\r\nWe can subdivide the radar sounders used into three sets. The primary set was collected by the University of Texas at Austin Institute for Geophysics (UTIG) and the Australian Antarctic Division (AAD) as part of the ICECAP project) between 2008 and 2015. This includes the Oldest Ice candidate A (OIA) survey flown by ICECAP in January 2016. Data were collected with the High Capacity Airborne Radar Sounder (HiCARS) 1 \u0026 2 and its Multifrequency Airborne Radar-sounder for Full-phase Assessment (MARFA) descendant. The data was collected from a DC-3T Basler which operated from Concordia Station. \r\n\r\nThe second set consists of the Vostok-Dome C airborne radar transect was flown by the Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas using the Multi-Channel Coherent Radar Depth Sounder (MCoRDS) in a single flight line in 2013. A P-3 Orion operating from McMurdo Station collected these data as part of NASA Operation Ice Bridge. \r\n\r\nThe third set consists of a subset of the LDC ground-based radar survey, towed behind a PistenBully PB300 tractor, collected by the Beyond EPICA - Oldest Ice (BE-OI) European Consortium using the British Antarctic Survey\u2019s (BAS) Deep Looking Radio Echo Sounder (DELORES) radar system. Each IRH has been traced in all three radar sets and is published here as a single csv and netcdf file. Formats are self-documented in these csv/netcdf files. \r\n\r\nWhere HiCARS and MCoRDS radar transects are used, the IRH is provided at a 1 km spatial resolution, where DELORES radar transects are used, the IRH is provided at a 250 m spatial resolution. \r\n\r\nThe 26 IRHs published here were traced semi-automatically by first author Marie Cavitte, using Landmark\u0027s Decision Space Desktop software and its built-in picker. \r\n\r\nThe IRHs are dated at the EDC ice core using the AICC2012 timescale (Veres et al., 2013; Bazin et al., 2013). \r\n\r\nIce core ages are transferred onto the IRHs on radar transect MCM/JKB1a/EDMC01a at distance_m (column in the data sets) = 110.153 m along the transect. That radar point of closest approach is 94\u2009m away from the ice core site. Depth and age uncertainties associated to each IRH are quantified n the associated publication: Cavitte, M. G. P, Young, D. A, Mulvaney, R., Ritz, C., Greenbaum, J. S., Ng, G., Kempf, S. D., Quartini, E., Muldoon, G. R., Paden, J., Frezzotti, M., Roberts, J. L. , Tozer, C. R. , Schroeder, D. M. and Blankenship, D. D. A detailed radiostratigraphic data set for the central East Antarctic Plateau spanning from the Holocene to the mid-Pleistocene, Earth Syst. Sci. Data, 13, 4759\u20134777, 2021, https://doi.org/10.5194/essd-13-4759-2021. \r\n\n\r\n\r\nBesides NSF this dataset is the result of additional support from NERC grant - NE/D003733/1, NASA grants - NX08AN68G, NNX09AR52G, NNX11AD33G, NNX13AD53A, and funding from the G. Unger Vetlesen Foundation.\n\n\\nNote that the dataset was archived before the accompanying paper was officially published. The abstract and dataset description has been updated to cite the correct reference to the ESSD paper (Cavitte et al., 2021) after the paper was published. The headers of the actual data files contain only a placeholder to this reference.", "east": 126.0, "geometry": ["POINT(120 -75.5)"], "keywords": "Antarctica; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; ICECAP; Ice Penetrating Radar; Internal Reflecting Horizons", "locations": "Antarctica; East Antarctic Plateau", "north": -74.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Glaciology", "persons": "Cavitte, Marie G. P; Young, Duncan A.; Mulvaney, Robert; Ritz, Catherine; Greenbaum, Jamin; Ng, Gregory; Kempf, Scott D.; Quartini, Enrica; Muldoon, Gail R.; Paden, John; Frezzotti, Massimo; Roberts, Jason; Tozer, Carly; Schroeder, Dustin; Blankenship, Donald D.", "project_titles": "Center for Remote Sensing of Ice Sheets (CReSIS); Collaborative Research: Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP); IPY Research: Investigating the Cryospheric Evolution of the Central Antarctic Plate (ICECAP)", "projects": [{"proj_uid": "p0000102", "repository": "USAP-DC", "title": "Center for Remote Sensing of Ice Sheets (CReSIS)"}, {"proj_uid": "p0010115", "repository": "USAP-DC", "title": "Collaborative Research: Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP)"}, {"proj_uid": "p0000719", "repository": "USAP-DC", "title": "IPY Research: Investigating the Cryospheric Evolution of the Central Antarctic Plate (ICECAP)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Dome C Ice Core", "south": -77.0, "title": "Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau", "uid": "601411", "west": 114.0}, {"awards": "1245821 Brook, Edward J.; 1245659 Petrenko, Vasilii; 1246148 Severinghaus, Jeffrey", "bounds_geometry": null, "date_created": "Mon, 02 Nov 2020 00:00:00 GMT", "description": "Ice core measurements of the concentration and stable isotopic composition of atmospheric nitrous oxide (N2O) 74,000-59,000 years ago constrain marine and terrestrial emissions. The data include two major Dansgaard-Oeschger (D-O) events and the N2O decrease during global cooling at the Marine Isotope Stage (MIS) 5a-4 transition. The N2O increase associated with D-O 19 (~73-71.5 ka) was driven by equal contributions from marine and terrestrial emissions. The N2O decrease during the transition into MIS 4 (~71.5-67.5 ka) was caused by gradual reductions of similar magnitude in both marine and terrestrial sources. A 50 ppb increase in N2O concentration at the end of MIS 4 was caused by gradual increases in marine and terrestrial emissions between ~64-61 ka, followed by an abrupt increase in marine emissions at the onset of D-O 16/17 (59.5 ka). This suggests that the importance of marine versus terrestrial emissions in controlling millennial-scale N2O fluctuations varied in time.", "east": null, "geometry": null, "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Gas Records; Ice Core Records; Marine Isotope Stage 4; MIS 4; Nitrous Oxide; Pleistocene; Taylor Dome Ice Core; Taylor Glacier", "locations": "Taylor Glacier; Antarctica; Taylor Glacier", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "persons": "Menking, James; Brook, Edward J.; Schilt, Adrian; Shackleton, Sarah; Dyonisius, Michael; Severinghaus, Jeffrey P.; Petrenko, Vasilii", "project_titles": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "projects": [{"proj_uid": "p0000283", "repository": "USAP-DC", "title": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": null, "title": "N2O Concentration and Isotope Data for 74-59 ka from Taylor Glacier, Antarctica", "uid": "601398", "west": null}, {"awards": "1341658 Mukhopadhyay, Sujoy", "bounds_geometry": ["POLYGON((-116.46 -84.78,-116.452 -84.78,-116.444 -84.78,-116.436 -84.78,-116.428 -84.78,-116.42 -84.78,-116.412 -84.78,-116.404 -84.78,-116.396 -84.78,-116.388 -84.78,-116.38 -84.78,-116.38 -84.781,-116.38 -84.782,-116.38 -84.783,-116.38 -84.784,-116.38 -84.785,-116.38 -84.786,-116.38 -84.787,-116.38 -84.788,-116.38 -84.789,-116.38 -84.79,-116.388 -84.79,-116.396 -84.79,-116.404 -84.79,-116.412 -84.79,-116.42 -84.79,-116.428 -84.79,-116.436 -84.79,-116.444 -84.79,-116.452 -84.79,-116.46 -84.79,-116.46 -84.789,-116.46 -84.788,-116.46 -84.787,-116.46 -84.786,-116.46 -84.785,-116.46 -84.784,-116.46 -84.783,-116.46 -84.782,-116.46 -84.781,-116.46 -84.78))"], "date_created": "Sun, 28 Jun 2020 00:00:00 GMT", "description": "The data set consists of cosmogenic berrylium-10 and aluminum-26, along with neon-21, in a set of 4 rock-cores obtained from the Ohio Range, West Antarctica. The rock cores were obtained using the WInkie drill. The depth to the cores varies from 12 meters to 28 meters. The recovered rock cores analyzed for the cosmogenic isotopes varies from 22 cm long to 50 cm long. The data include the following formation: sample details, cosmogenic berrylium-10, aluminum-26 and upper bounds for cosmogenic 21 (since samples have nucleogenic 21) and the step heating data for neon. The data are in Mircrosoft excel format.", "east": -116.38, "geometry": ["POINT(-116.42 -84.785)"], "keywords": "Aluminum-26; Antarctica; Beryllium-10; Cosmogenic Dating; Cosmogenic Radionuclides; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Fluctuations; Ohio Range; Rocks", "locations": "Antarctica; Ohio Range", "north": -84.78, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Mukhopadhyay, Sujoy", "project_titles": "Constraining Plio-Pleistocene West Antarctic Ice Sheet Behavior from the Ohio Range and Scott Glacier", "projects": [{"proj_uid": "p0010113", "repository": "USAP-DC", "title": "Constraining Plio-Pleistocene West Antarctic Ice Sheet Behavior from the Ohio Range and Scott Glacier"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.79, "title": "Ohio Range Subglacial rock core cosmogenic nuclide data", "uid": "601351", "west": -116.46}, {"awards": "1245821 Brook, Edward J.; 1245659 Petrenko, Vasilii; 1246148 Severinghaus, Jeffrey", "bounds_geometry": ["POLYGON((123.3 -75.1,127.138 -75.1,130.976 -75.1,134.814 -75.1,138.652 -75.1,142.49 -75.1,146.328 -75.1,150.166 -75.1,154.004 -75.1,157.842 -75.1,161.68 -75.1,161.68 -75.367,161.68 -75.634,161.68 -75.901,161.68 -76.168,161.68 -76.435,161.68 -76.702,161.68 -76.969,161.68 -77.236,161.68 -77.503,161.68 -77.77,157.842 -77.77,154.004 -77.77,150.166 -77.77,146.328 -77.77,142.49 -77.77,138.652 -77.77,134.814 -77.77,130.976 -77.77,127.138 -77.77,123.3 -77.77,123.3 -77.503,123.3 -77.236,123.3 -76.969,123.3 -76.702,123.3 -76.435,123.3 -76.168,123.3 -75.901,123.3 -75.634,123.3 -75.367,123.3 -75.1))"], "date_created": "Fri, 18 Oct 2019 00:00:00 GMT", "description": "Noble gas data from Taylor Glacier and EPICA Dome C (EDC) for mean ocean temperature reconstruction during the Last Interglacial. Also includes trace gas measurements of d18Oatm, CO2, and CH4 from Taylor Glacier from chronology construction. ", "east": 161.68, "geometry": ["POINT(142.49 -76.435)"], "keywords": "Antarctica; Carbon-14; Carbon Dioxide; Chemistry:ice; Chemistry:Ice; CO2; Dome C Ice Core; Epica; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Isotope Data; Last Interglacial; Mass Spectrometer; Mass Spectrometry; Methane; Oxygen; Oxygen Isotope; Paleotemperature; Pleistocene; Snow/ice; Snow/Ice; Taylor Dome Ice Core; Taylor Glacier", "locations": "Epica Dome C; Taylor Glacier; Antarctica", "north": -75.1, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Shackleton, Sarah", "project_titles": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "projects": [{"proj_uid": "p0000283", "repository": "USAP-DC", "title": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core; Dome C Ice Core", "south": -77.77, "title": "Last Interglacial Mean Ocean Temperature", "uid": "601218", "west": 123.3}, {"awards": "1443336 Osterberg, Erich", "bounds_geometry": ["POINT(-180 -90)"], "date_created": "Thu, 29 Aug 2019 00:00:00 GMT", "description": "The South Pole Ice Core (SPICEcore) was drilled in 2014-2016 to provide a detailed multi-proxy archive of paleoclimate conditions in East Antarctica during the Holocene and late Pleistocene. Interpretation of these records requires an accurate depth-age relationship. Here, we present the SP19 timescale for the age of the ice of SPICEcore. SP19 is synchronized to the WD2014 chronology from the West Antarctic Ice Sheet Divide (WAIS Divide) ice core using stratigraphic matching of 251 volcanic events. These events indicate an age of 54,302 +/- 519 years BP (before the year 1950) at the bottom of SPICEcore. Annual layers identified in sodium and magnesium ions to 11,341 BP were used to interpolate between stratigraphic volcanic tie points, yielding an annually-resolved chronology through the Holocene. Estimated timescale uncertainty during the Holocene is less than 18 years relative to WD2014, with the exception of the interval between 1800 to 3100 BP when uncertainty estimates reach +/- 25 years due to widely spaced volcanic tie points. Prior to the Holocene, uncertainties remain within 124 years relative to WD2014. Results show an average Holocene accumulation rate of 7.4 cm/yr (water equivalent). The time variability of accumulation rate is consistent with expectations for steady-state ice flow through the modern spatial pattern of accumulation rate. Time variations in nitrate concentration, nitrate seasonal amplitude, and \u03b415N of N2 in turn are as expected for the accumulation-rate variations. The highly variable yet well-constrained Holocene accumulation history at the site can help improve scientific understanding of deposition-sensitive climate proxies such as \u03b415N of N2 and photolyzed chemical compounds.", "east": -180.0, "geometry": ["POINT(-180 -90)"], "keywords": "Antarctica; Calcium (ca); Chemistry:ice; Chemistry:Ice; Depth; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciochemistry; Glaciology; Ice; Ice Core; Ice Core Chemistry; Ice Core Data; Ice Core Records; Ice Core Stratigraphy; Nitrate; Nitrogen Isotopes; Paleoclimate; Snow/ice; Snow/Ice; South Pole; SPICEcore", "locations": "South Pole; Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Winski, Dominic A.; Fudge, T. J.; Dunbar, Nelia; Buizert, Christo; Bay, Ryan; Souney, Joseph Jr.; Sigl, Michael; McConnell, Joseph; Fegyveresi, John; Cole-Dai, Jihong; Thundercloud, Zayta; Cox, Thomas S.; Kreutz, Karl; Epifanio, Jenna; Ortman, Nikolas; Brook, Edward J.; Beaudette, Ross; Sowers, Todd A.; Steig, Eric J.; Morris, Valerie; Kahle, Emma; Ferris, David G.; Aydin, Murat; Nicewonger, Melinda R.; Casey, Kimberly A.; Alley, Richard; Waddington, Edwin D.; Osterberg, Erich; Severinghaus, Jeffrey P.; Jones, Tyler R.; Iverson, Nels", "project_titles": "Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements", "projects": [{"proj_uid": "p0010051", "repository": "USAP-DC", "title": "Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "The South Pole Ice Core (SPICEcore) chronology and supporting data", "uid": "601206", "west": -180.0}, {"awards": "1245899 Kowalewski, Douglas", "bounds_geometry": ["POLYGON((160 -70,168 -70,176 -70,184 -70,192 -70,200 -70,208 -70,216 -70,224 -70,232 -70,240 -70,240 -71.5,240 -73,240 -74.5,240 -76,240 -77.5,240 -79,240 -80.5,240 -82,240 -83.5,240 -85,232 -85,224 -85,216 -85,208 -85,200 -85,192 -85,184 -85,176 -85,168 -85,160 -85,160 -83.5,160 -82,160 -80.5,160 -79,160 -77.5,160 -76,160 -74.5,160 -73,160 -71.5,160 -70))"], "date_created": "Tue, 16 Jan 2018 00:00:00 GMT", "description": "Data here is output from regional climate modeling to shed light on the range of possible environmental conditions in the McMurdo region during periods of grounded ice expansion and recession during the Plio-Pleistocene.", "east": 240.0, "geometry": ["POINT(-160 -77.5)"], "keywords": "Antarctica; Climate Model; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; McMurdo; Paleoclimate; Ross Sea", "locations": "Antarctica; Ross Sea; McMurdo", "north": -70.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Kowalewski, Douglas", "project_titles": "Collaborative Research: West Antarctic Ice Sheet stability, Alpine Glaciation, and Climate Variability: a Terrestrial Perspective from Cosmogenic-nuclide Dating in McMurdo Sound", "projects": [{"proj_uid": "p0000391", "repository": "USAP-DC", "title": "Collaborative Research: West Antarctic Ice Sheet stability, Alpine Glaciation, and Climate Variability: a Terrestrial Perspective from Cosmogenic-nuclide Dating in McMurdo Sound"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Region Climate Model Output Plio-Pleistocene", "uid": "601080", "west": 160.0}, {"awards": "1142166 McConnell, Joseph", "bounds_geometry": ["POINT(-112.1115 -79.481)"], "date_created": "Wed, 22 Mar 2017 00:00:00 GMT", "description": "A state-of-the-art continuous ice core analytical system was used to analyze ~3 cm by ~3 cm longitudinal samples from ~1300 to ~3404 m depth in the recently collected WAIS Divide deep ice core from West Antarctica. Interpretation of these records and publication of findings is ongoing.", "east": -112.1115, "geometry": ["POINT(-112.1115 -79.481)"], "keywords": "Aerosol; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.481, "nsf_funding_programs": null, "persons": "McConnell, Joseph", "project_titles": "Collaborative Research: Investigating Upper Pleistocene Rapid Climate Change using Continuous, Ultra-High-Resolution Aerosol and Gas Measurements in the WAIS Divide Ice Core", "projects": [{"proj_uid": "p0000287", "repository": "USAP-DC", "title": "Collaborative Research: Investigating Upper Pleistocene Rapid Climate Change using Continuous, Ultra-High-Resolution Aerosol and Gas Measurements in the WAIS Divide Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "WAIS Divide Ice-Core Aerosol Records from 1300 to 3404 m", "uid": "601008", "west": -112.1115}, {"awards": "1043554 Willenbring, Jane", "bounds_geometry": ["POINT(161.5 -77.5)"], "date_created": "Wed, 09 Nov 2016 00:00:00 GMT", "description": "The PIs propose to address the question of whether ice surface melting zones developed at high elevations during warm climatic phases in the Transantarctic Mountains. Evidence from sediment cores drilled by the ANDRILL program indicates that open water in the Ross Sea could have been a source of warmth during Pliocene and Pleistocene. The question is whether marine warmth penetrated inland to the ice sheet margins. The glacial record may be ill suited to answer this question, as cold-based glaciers may respond too slowly to register brief warmth. Questions also surround possible orbital controls on regional climate and ice sheet margins. Northern Hemisphere insolation at obliquity and precession timescales is thought to control Antarctic climate through oceanic or atmospheric connections, but new thinking suggests that the duration of Southern Hemisphere summer may be more important. The PIs propose to use high elevation alluvial deposits in the Transantarctic Mountains as a proxy for inland warmth. These relatively young fans, channels, and debris flow levees stand out as visible evidence for the presence of melt water in an otherwise ancient, frozen landscape. Based on initial analyses of an alluvial fan in the Olympus Range, these deposits are sensitive recorders of rare melt events that occur at orbital timescales. For their study they will 1) map alluvial deposits using aerial photography, satellite imagery and GPS assisted field surveys to establish water sources and to quantify parameters effecting melt water production, 2) date stratigraphic sequences within these deposits using OSL, cosmogenic nuclide, and interbedded volcanic ash chronologies, 3) use paired nuclide analyses to estimate exposure and burial times, and rates of deposition and erosion, and 4) use micro and regional scale climate modeling to estimate paleoenvironmental conditions associated with melt events.\nThis study will produce a record of inland melting from sites adjacent to ice sheet margins to help determine controls on regional climate along margins of the East Antarctic Ice Sheet to aid ice sheet and sea level modeling studies. The proposal will support several graduate and undergraduates. A PhD student will be supported on existing funding. The PIs will work with multiple K-12 schools to conduct interviews and webcasts from Antarctica and they will make follow up visits to classrooms after the field season is complete.", "east": 161.5, "geometry": ["POINT(161.5 -77.5)"], "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Cosmogenic Radionuclides; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Isotope; Sample/collection Description; Sample/Collection Description; Transantarctic Mountains", "locations": "Antarctica; Transantarctic Mountains", "north": -77.5, "nsf_funding_programs": null, "persons": "Willenbring, Jane", "project_titles": "Collaborative Research: Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins", "projects": [{"proj_uid": "p0000429", "repository": "USAP-DC", "title": "Collaborative Research: Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.5, "title": "Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins", "uid": "600379", "west": 161.5}, {"awards": "0739575 Emslie, Steven", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "The research combines interdisciplinary study in geology, paleontology, and biology, using stable isotope and radiocarbon analyses, to examine how climate change and resource utilization have influenced population distribution, movement, and diet in penguins during the mid-to-late Holocene. Previous investigations have demonstrated that abandoned colonies contain well-preserved remains that can be used to examine differential responses of penguins to climate change in various sectors of Antarctica. As such, the research team will investigate abandoned and active pygoscelid penguin (Adelie, Chinstrap, and Gentoo) colonies in the Antarctic Peninsula and Ross Sea regions, and possibly Prydz Bay, in collaboration with Chinese scientists during four field seasons. Stable isotope analyses will be conducted on recovered penguin tissues and prey remains in guano to address hypotheses on penguin occupation history, population movement, and diet in relation to climate change since the late Pleistocene. The study will include one Ph.D., two Masters and 16 undergraduate students in advanced research over the project period. Students will be exposed to a variety of fields, the scientific method, and international scientific research. They will complete field and lab research for individual projects or Honor\u0027s theses for academic credit. The project also will include web-based outreach, lectures to middle school students, and the development of interactive exercises that highlight hypothesis-driven research and the ecology of Antarctica. Two undergraduate students in French and Spanish languages at UNCW will be hired to assist in translating the Web page postings for broader access to this information.\n", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Antarctic Peninsula; Biota; Geochronology; Global; Penguin; Ross Sea; Sample/collection Description; Sample/Collection Description; Scotia Sea; Southern Ocean", "locations": "Southern Ocean; Global; Antarctic Peninsula; Antarctica; Scotia Sea; Ross Sea", "north": -60.0, "nsf_funding_programs": null, "persons": "Emslie, Steven; Patterson, William; Polito, Michael", "project_titles": "Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica", "projects": [{"proj_uid": "p0000317", "repository": "USAP-DC", "title": "Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica", "uid": "600145", "west": -180.0}, {"awards": "0838849 Bender, Michael", "bounds_geometry": ["POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "This award supports a project to generate an absolute timescale for the Allan Hills Blue Ice Area (BIA), and then to reconstruct details of past climate changes and greenhouse gas concentrations for certain time periods back to 2.5 Ma. Ice ages will be determined by applying emerging methods for absolute and relative dating of trapped air bubbles (based on Argon-40/Argon-38, delta-18O of O2, and the O2/N2 ratio). To demonstrate the potential of the Allan Hills BIAs as a paleoclimate archive trenches and ice cores will be collected for age intervals corresponding to 110-140 ka, 1 Ma, and 2.5 Ma. During the proposed two field seasons a total of 6x100 m and additional 15 m cores will be combined with trenching. The intellectual merit of the proposed activity is that the results of this work will extend the landmark work of EPICA and other deep ice coring efforts, which give records dating back to 0.8 Ma, and will complement work planned by IPICS to drill a continuous Antarctic ice core extending to 1.5 Ma. The results will help to advance understanding of major climate regimes and transitions that took place between 0-2.5 Ma, including the 40 kyr world and the mid-Pleistocene climate transition. A major long-term scientific goal is to provide a transformative approach to the collection of paleoclimate records by establishing an \u0027International Climate Park\u0027 in the Allan Hills BIA that would enable sampling of large quantities of known age ice as old as 2.5 Ma, by any interested American or foreign investigator. The broader impacts resulting from the proposed activity include training students who are well versed in advanced field, laboratory and numerical modeling methods combining geochemistry, glaciology, and paleoclimatology. We will include material relevant to our proposed research in our ongoing efforts in local education and in our outreach efforts for media. The University of Maine already has cyberinfrastructure, using state of the art web-based technology, which can provide a wide community of scientists with fast access to the results of our research. The work will contribute to the broad array of climate change studies that is informing worldwide understanding of natural and anthropogenic forced climate change, and the options for responding. This award has field work in Antarctica.\n", "east": 159.41667, "geometry": ["POINT(159.29167 -76.7)"], "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Ice Core Records; Paleoclimate; Solid Earth", "locations": "Allan Hills; Antarctica", "north": -76.66667, "nsf_funding_programs": null, "persons": "Bender, Michael", "project_titles": "Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "projects": [{"proj_uid": "p0000046", "repository": "USAP-DC", "title": "Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73333, "title": "Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "uid": "600099", "west": 159.16667}, {"awards": "1043690 Scherer, Reed", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: Diatom abundance in sediment cores is typically used as a proxy for paleo primary productivity. This record is complicated by variable preservation, with most loss occurring in the water column via dissolution and zooplankton grazing. This study will investigate preservational biases via a series of controlled experiments to create proxies of original productivity based on morphological changes associated with diatom dissolution and fracture. The PIs will utilize fresh diatoms from culture. Specific objectives include: (1) Linking changes in diatom morphology to availability of dissolved silica and other physical and chemical parameters; (2) Documenting the dissolution process under controlled conditions; (3) Assessment of changes in morphology and diatom surface roughness with increased dissolution; (4) Documenting the physical effects of grazing and fecal pellet formation on diatom fragmentation and dissolution; and (5) Analyzing the impact of diatom dissolution on silica and carbon export. These objectives will be achieved by growing Southern Ocean diatom species in the laboratory under differing physical and chemical conditions; controlled serial dissolution experiments on cultured diatoms; analysis of the dissolution process by imaging frustules under scanning electron microscopy (SEM) and with micro-analysis of surface texture by atomic force microscopy (AFM); making the cultures available to krill and other live zooplankton crustaceans in order to analyze the specific effects of grazing and pelletization on diatom morphology; and comparing experimental results with natural plankton, sediment trap material, and selected Holocene, Pleistocene and Pliocene sediment core material.\nBroader impacts: This work will contribute to understanding of the use of diatom abundance as an indicator of paleoproductivity. The proposed experiments are multi-disciplinary in nature. Importantly, the project was designed, and the proposal largely written, by a Ph.D. candidate. The research proposed here will lead to peer-reviewed publications and provide a base for future studies over the course of an extremely promising scientific career. The project will also support an undergraduate research student at NIU. The PI is heavily involved in science outreach, including classroom visits, museum events and webinars related to evolution and climate change, and is active with NSF-funded outreach activities linked to the ANDRILL and WISSARD programs. He will continue these efforts with this project.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Biota; Diatom; Marine Sediments; Oceans; Sediment Core; Southern Ocean", "locations": "Southern Ocean; Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Haji-Sheikh, Michael; Scherer, Reed Paul", "project_titles": "Southern Ocean Diatom Taphonomy and Paleoproductivity: A Laboratory Study of Silica Degradation and Export", "projects": [{"proj_uid": "p0000360", "repository": "USAP-DC", "title": "Southern Ocean Diatom Taphonomy and Paleoproductivity: A Laboratory Study of Silica Degradation and Export"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Southern Ocean Diatom Taphonomy and Paleoproductivity: A Laboratory Study of Silica Degradation and Export", "uid": "600127", "west": -180.0}, {"awards": "0944475 Kaplan, Michael", "bounds_geometry": ["POLYGON((-180 -84.1,-176.97 -84.1,-173.94 -84.1,-170.91 -84.1,-167.88 -84.1,-164.85 -84.1,-161.82 -84.1,-158.79 -84.1,-155.76 -84.1,-152.73 -84.1,-149.7 -84.1,-149.7 -84.43,-149.7 -84.76,-149.7 -85.09,-149.7 -85.42,-149.7 -85.75,-149.7 -86.08,-149.7 -86.41,-149.7 -86.74,-149.7 -87.07,-149.7 -87.4,-152.73 -87.4,-155.76 -87.4,-158.79 -87.4,-161.82 -87.4,-164.85 -87.4,-167.88 -87.4,-170.91 -87.4,-173.94 -87.4,-176.97 -87.4,180 -87.4,178.12 -87.4,176.24 -87.4,174.36 -87.4,172.48 -87.4,170.6 -87.4,168.72 -87.4,166.84 -87.4,164.96 -87.4,163.08 -87.4,161.2 -87.4,161.2 -87.07,161.2 -86.74,161.2 -86.41,161.2 -86.08,161.2 -85.75,161.2 -85.42,161.2 -85.09,161.2 -84.76,161.2 -84.43,161.2 -84.1,163.08 -84.1,164.96 -84.1,166.84 -84.1,168.72 -84.1,170.6 -84.1,172.48 -84.1,174.36 -84.1,176.24 -84.1,178.12 -84.1,-180 -84.1))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: The proposed work will investigate changes in the compositional variation of glacial tills over time across two concentric sequences of Pleistocene moraines located adjacent to the heads of East Antarctic outlet glaciers in the Transantarctic Mountains (TAM). The chronologic framework for this work will be generated from cosmogenic exposure ages of boulders on prominent morainal ridges. The PIs hypothesize that variations in till composition may indicate a change in ice flow direction or a change in the composition of the original source area, while ages of the moraines provide a long-term terrestrial perspective on ice sheet dynamics. Both results are vital for modeling experiments that aim to reconstruct the East Antarctic Ice Sheet and assess its role in the global climate system and its potential impact on global sea level rise. The variation of till compositions through time also allows for a more accurate interpretation of sediment cores from the Ross Sea and the Southern Ocean. Additionally, till exposures at the head of some East Antarctic outlet glaciers have been shown to contain subglacial material derived from East Antarctic bedrock, providing a window through the ice to view East Antarctica\u0027s inaccessible bedrock. Till samples will be collected from two well-preserved sequences of moraine crests at Mt. Howe (head of Scott Glacier) and Mt. Achernar (between Beardmore and Nimrod Glaciers). Each size fraction in glacial till provides potentially valuable information, and the PIs will measure the petrography of the clast and sand fractions, quantitative X-ray diffraction on the crushed \u003c2mm fraction, elemental abundance of the silt/clay fraction, and U/Pb of detrital zircons in the sand fraction. Data collection will rely on established methods previously used in this region and the PIs will also explore new methods to assess their efficacy. On the same moraines crests sampled for provenance studies, the PIs will sample for cosmogenic surface exposure analyses to provide a chronologic framework at the sites for provenance changes through time.\nBroader Impact: The proposed research involves graduate and undergraduate training in a diverse array of laboratory methods. Students and PIs will be make presentations to community and campus groups, as well as conduct interviews with local news outlets. The proposed work also establishes a new, potentially long-term, collaboration between scientists at IUPUI and LDEO and brings a new PI (Kaplan) into the field of Antarctic Earth Sciences.", "east": -149.7, "geometry": ["POINT(-174.25 -85.75)"], "keywords": "Antarctica; Cosmogenic Dating; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica", "north": -84.1, "nsf_funding_programs": null, "persons": "Kaplan, Michael", "project_titles": "Collaborative Research: Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines", "projects": [{"proj_uid": "p0000459", "repository": "USAP-DC", "title": "Collaborative Research: Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.4, "title": "Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines", "uid": "600115", "west": 161.2}, {"awards": "0838843 Kurbatov, Andrei", "bounds_geometry": ["POLYGON((159 -75.67,159.025 -75.67,159.05 -75.67,159.075 -75.67,159.1 -75.67,159.125 -75.67,159.15 -75.67,159.175 -75.67,159.2 -75.67,159.225 -75.67,159.25 -75.67,159.25 -75.786,159.25 -75.902,159.25 -76.018,159.25 -76.134,159.25 -76.25,159.25 -76.366,159.25 -76.482,159.25 -76.598,159.25 -76.714,159.25 -76.83,159.225 -76.83,159.2 -76.83,159.175 -76.83,159.15 -76.83,159.125 -76.83,159.1 -76.83,159.075 -76.83,159.05 -76.83,159.025 -76.83,159 -76.83,159 -76.714,159 -76.598,159 -76.482,159 -76.366,159 -76.25,159 -76.134,159 -76.018,159 -75.902,159 -75.786,159 -75.67))"], "date_created": "Thu, 24 Oct 2013 00:00:00 GMT", "description": "This data set includes stable water isotope values at 10 m resolution along an approximately 5 km transect through the main icefield of the Allan Hills Blue Ice Area, and at 15 cm within a 225 m core drilled at the midpoint of the transect.", "east": 159.25, "geometry": ["POINT(159.125 -76.25)"], "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Isotope", "locations": "Antarctica; Allan Hills", "north": -75.67, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Kurbatov, Andrei V.; Spaulding, Nicole; Mayewski, Paul A.; Introne, Douglas", "project_titles": "Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA); Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "projects": [{"proj_uid": "p0010253", "repository": "USAP-DC", "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area "}, {"proj_uid": "p0000046", "repository": "USAP-DC", "title": "Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.83, "title": "Allan Hills Stable Water Isotopes", "uid": "609541", "west": 159.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
U-Pb zircon and apatite fission track dates for IRD (ice-rafted cobbles and mineral grains) from IODP379 drill sites
|
1939146 |
2024-08-27 | Siddoway, Christine |
Collaborative Research: Testing the Linchpin of WAIS Collapse with Diatoms and IRD in Pleistocene and Late Pliocene Strata of the Resolution Drift, Amundsen Sea, Antarctica |
The table contains sample identifiers, location data, and geochronology data (U-Pb zircon dates; apatite fission track determinations) from selected intervals of sediment cores obtained at sites U1532 (A, B, C, G) and U1533 (A, B) recovered during IODP Expedition 379 to the outer Amundsen Sea, Antarctica. | ["POLYGON((-109.1 -68.6,-108.94 -68.6,-108.78 -68.6,-108.61999999999999 -68.6,-108.46 -68.6,-108.3 -68.6,-108.14 -68.6,-107.98 -68.6,-107.82 -68.6,-107.66 -68.6,-107.5 -68.6,-107.5 -68.64,-107.5 -68.67999999999999,-107.5 -68.72,-107.5 -68.75999999999999,-107.5 -68.8,-107.5 -68.84,-107.5 -68.88,-107.5 -68.92,-107.5 -68.96,-107.5 -69,-107.66 -69,-107.82 -69,-107.98 -69,-108.14 -69,-108.3 -69,-108.46 -69,-108.61999999999999 -69,-108.78 -69,-108.94 -69,-109.1 -69,-109.1 -68.96,-109.1 -68.92,-109.1 -68.88,-109.1 -68.84,-109.1 -68.8,-109.1 -68.75999999999999,-109.1 -68.72,-109.1 -68.67999999999999,-109.1 -68.64,-109.1 -68.6))"] | ["POINT(-108.3 -68.8)"] | false | false |
Grain size of Plio-Pleistocene continental slope and rise sediments, Hillary Canyon, Ross Sea
|
2000992 |
2024-07-10 | Romans, Brian W.; Varela, Natalia |
COLLABORATIVE RESEARCH: Orbital-scale Variability of the West Antarctic Ice Sheet and the Formation of Bottom Water in the Ross Sea during the Pliocene-Pleistocene |
This data set includes grain size information from late Pliocene through Pleistocene aged sediment recovered in cores from International Ocean Discovery Program (IODP) Expedition 374 Sites U1524 and U1525, on the continental slope and rise of the Ross Sea margin. There are two types of particle size data: (1) laser diffraction (Mastersizer 3000) data of silt-range sediment subsampled from mm-scale thick laminae/beds, and (2) x-ray-monitored settling (SediGraph 5120) data from muddy intervals directly overlying the silt laminae/beds. For Site U1524, there are 100 samples of Mastersizer data coupled with 100 samples of SediGraph data. For Site U1525, there are 50 samples of Mastersizer data coupled with 50 samples of SediGraph data. For both sites, the analyzed samples span the depth range of the core that contains the silty laminae/beds. | ["POLYGON((-174 -74.1667,-173.93 -74.1667,-173.86 -74.1667,-173.79 -74.1667,-173.72 -74.1667,-173.65 -74.1667,-173.58 -74.1667,-173.51000000000002 -74.1667,-173.44 -74.1667,-173.37 -74.1667,-173.3 -74.1667,-173.3 -74.25503,-173.3 -74.34336,-173.3 -74.43169,-173.3 -74.52002,-173.3 -74.60835,-173.3 -74.69668,-173.3 -74.78501,-173.3 -74.87334,-173.3 -74.96167,-173.3 -75.05,-173.37 -75.05,-173.44 -75.05,-173.51000000000002 -75.05,-173.58 -75.05,-173.65 -75.05,-173.72 -75.05,-173.79 -75.05,-173.86 -75.05,-173.93 -75.05,-174 -75.05,-174 -74.96167,-174 -74.87334,-174 -74.78501,-174 -74.69668,-174 -74.60835,-174 -74.52002,-174 -74.43169,-174 -74.34336,-174 -74.25503,-174 -74.1667))"] | ["POINT(-173.65 -74.60835)"] | false | false |
Population morphometrics of the Southern Ocean diatom Fragilariopsis kerguelensis related to Sea Surface Temperature
|
1939139 |
2024-06-27 | Ruggiero, Joseph |
Collaborative Research: Testing the Linchpin of WAIS Collapse with Diatoms and IRD in Pleistocene and Late Pliocene Strata of the Resolution Drift, Amundsen Sea, Antarctica |
This dataset contains physical measurements of specimens of the Southern Ocean diatom Fragilariopsis kerguelensis. We used the image segmentation software SHERPA (Kloster et al., 2017) to make physical measurements of each valve including "rectangularity". F. kerguelensis rectangularity has been posited to change in response to Sea Surface Temperature, a relationship that we explore in this study by calculating SSTs using established and new valve rectangularity/SST calibrations. | [] | [] | false | false |
Pliocene diatom abundance, IODP 379-U1532
|
1939139 |
2024-02-20 | Scherer, Reed Paul; Furlong, Heather |
Collaborative Research: Testing the Linchpin of WAIS Collapse with Diatoms and IRD in Pleistocene and Late Pliocene Strata of the Resolution Drift, Amundsen Sea, Antarctica |
[] | [] | false | false | |
Allan Hills 2022-23 Shallow Ice Core Field Report
|
1744993 |
2023-06-16 | Shackleton, Sarah; Brook, Edward J. |
Center for Oldest Ice Exploration Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area |
Unpublished field report describing drilling, sampling, and temperature profiles for shallow ice cores and boreholes at Allan Hills in 2022-2023 field season | ["POLYGON((159.17 -76.67,159.195 -76.67,159.22 -76.67,159.24499999999998 -76.67,159.26999999999998 -76.67,159.295 -76.67,159.32 -76.67,159.345 -76.67,159.36999999999998 -76.67,159.39499999999998 -76.67,159.42 -76.67,159.42 -76.676,159.42 -76.682,159.42 -76.688,159.42 -76.694,159.42 -76.7,159.42 -76.706,159.42 -76.712,159.42 -76.718,159.42 -76.724,159.42 -76.73,159.39499999999998 -76.73,159.36999999999998 -76.73,159.345 -76.73,159.32 -76.73,159.295 -76.73,159.26999999999998 -76.73,159.24499999999998 -76.73,159.22 -76.73,159.195 -76.73,159.17 -76.73,159.17 -76.724,159.17 -76.718,159.17 -76.712,159.17 -76.706,159.17 -76.7,159.17 -76.694,159.17 -76.688,159.17 -76.682,159.17 -76.676,159.17 -76.67))"] | ["POINT(159.295 -76.7)"] | false | false |
I-165-M GPR Field Report 2019-2020
|
1744993 |
2023-03-03 | Nesbitt, Ian; Brook, Edward J. |
Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area |
This document details the ground-penetrating radar (GPR) collection activities carried out by I. Nesbitt in the Allan Hills during the 2019-2020 field season. This document is intended as an informal catalogue of the fild work and post-processing activities performed at the Allan Hills and later at McMurdo and elsewhere. It contains preliminary post-processing and analysis only. Any interpretation made and presented in this report based on the data herein is subject to change pending further examination. GPR was used to examine sub-ice bedrock topography and the stratigraphic relationship between two shallow ice core drill sites (CMC1 and CMC2), as well as to explore potential future drill sites. In accordance with. the project's objective to drill and analyze ancient ice at relatively shallow depths, the two main features of interest in this study are 1) bedrock topographic features in which ancient ice could be trapped, and 2) englacial stratigraphic layers, especially those which may represent large age discontinuities. | ["POLYGON((159.16667 -76.66667,159.19167000000002 -76.66667,159.21667000000002 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667000000002 -76.66667,159.34167000000002 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.67333599999999,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.69999999999999,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.71999799999999,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167000000002 -76.73333,159.31667000000002 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667000000002 -76.73333,159.19167000000002 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.71999799999999,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.69999999999999,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.67333599999999,159.16667 -76.66667))"] | ["POINT(159.29167 -76.69999999999999)"] | false | false |
Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 & 2022
|
1744832 |
2022-11-22 | Severinghaus, Jeffrey P. |
Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area |
These data cover the penultimate glacial period (MIS 6) and parts of MIS5, in Allan Hills ice. The d18Oatm data are useful for dating the core, and the 15N is useful for inferring firn thickness. Importantly, the data have only been corrected for gas loss using published methods (i.e. Baggenstos et al. 2017), but not for recently recognized (and unpublished) effects of declining contemporary atmospheric O2/N2 due to fossil fuel burning. These changes unfortunately affect the La Jolla Air standard gas O2/N2 ratio that is used in our lab to make the measurements. Users of this data are encouraged to contact Jeff Severinghaus for help in making these novel corrections to the standard gas. | ["POINT(159.3562 -76.73243)"] | ["POINT(159.3562 -76.73243)"] | false | false |
Subglacial Precipitates Record Antarctic Ice Sheet Response to Pleistocene Millennial Climate Cycles
|
2042495 |
2022-08-10 | Piccione, Gavin; Blackburn, Terrence | No project link provided | [] | [] | false | false | |
Particle-size measurements for diamictites AND-2A sediment core, McMurdo Sound
|
0838842 |
2021-06-14 | Passchier, Sandra; Hansen, Melissa A. |
Determining Middle Miocene through Pliocene Changes in Paleo Ice-flow and Basal Ice Conditions in East Antarctica through Sedimentological Analyses of Core Samples |
This dataset contains measurements of particle-size distributions on four intervals of diamicitites from ANDRILL Site AND-2A. Carbonate, and organic matter were removed through addition of 10mL aliquots of 30% H2O2 and 2mL aliquots of 10% HCl to ~50-100mL suspension on a hot plate. Dispersion was through heating with sodium pyrophosphate. Samples were measured on a Malvern Mastersizer 2000 with a Hydro 2000MU (A) accessory, using a Refractive index of 1.544 (Quartz) and an absorption coefficient of 0.9. Results are in (vol. %) per size class, with diameter range equivalent to the diameter of spheres with the same volume as measured particles. | ["POINT(167.0833 -77.8889)"] | ["POINT(167.0833 -77.8889)"] | false | false |
Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau
|
0424589 1443690 0733025 0941678 |
2020-12-18 | Cavitte, Marie G. P; Young, Duncan A.; Mulvaney, Robert; Ritz, Catherine; Greenbaum, Jamin; Ng, Gregory; Kempf, Scott D.; Quartini, Enrica; Muldoon, Gail R.; Paden, John; Frezzotti, Massimo; Roberts, Jason; Tozer, Carly; Schroeder, Dustin; Blankenship, Donald D. |
Center for Remote Sensing of Ice Sheets (CReSIS) Collaborative Research: Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP) IPY Research: Investigating the Cryospheric Evolution of the Central Antarctic Plate (ICECAP) |
The data set published here consists of 26 ice-penetrating radar IRHs (internal reflecting horizons) which were traced across multiple ice-penetrating radar surveys that deployed several generations of modern ice-penetrating radar sounders over a decade, between 2008 and 2018, over the Dome C region of the East Antarctic Plateau. The data set is associated to publication: Cavitte, M. G. P, Young, D. A, Mulvaney, R., Ritz, C., Greenbaum, J. S., Ng, G., Kempf, S. D., Quartini, E., Muldoon, G. R., Paden, J., Frezzotti, M., Roberts, J. L. , Tozer, C. R. , Schroeder, D. M. and Blankenship, D. D. A detailed radiostratigraphic data set for the central East Antarctic Plateau spanning from the Holocene to the mid-Pleistocene, Earth Syst. Sci. Data, 13, 4759–4777, 2021, https://doi.org/10.5194/essd-13-4759-2021. We can subdivide the radar sounders used into three sets. The primary set was collected by the University of Texas at Austin Institute for Geophysics (UTIG) and the Australian Antarctic Division (AAD) as part of the ICECAP project) between 2008 and 2015. This includes the Oldest Ice candidate A (OIA) survey flown by ICECAP in January 2016. Data were collected with the High Capacity Airborne Radar Sounder (HiCARS) 1 & 2 and its Multifrequency Airborne Radar-sounder for Full-phase Assessment (MARFA) descendant. The data was collected from a DC-3T Basler which operated from Concordia Station. The second set consists of the Vostok-Dome C airborne radar transect was flown by the Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas using the Multi-Channel Coherent Radar Depth Sounder (MCoRDS) in a single flight line in 2013. A P-3 Orion operating from McMurdo Station collected these data as part of NASA Operation Ice Bridge. The third set consists of a subset of the LDC ground-based radar survey, towed behind a PistenBully PB300 tractor, collected by the Beyond EPICA - Oldest Ice (BE-OI) European Consortium using the British Antarctic Survey’s (BAS) Deep Looking Radio Echo Sounder (DELORES) radar system. Each IRH has been traced in all three radar sets and is published here as a single csv and netcdf file. Formats are self-documented in these csv/netcdf files. Where HiCARS and MCoRDS radar transects are used, the IRH is provided at a 1 km spatial resolution, where DELORES radar transects are used, the IRH is provided at a 250 m spatial resolution. The 26 IRHs published here were traced semi-automatically by first author Marie Cavitte, using Landmark's Decision Space Desktop software and its built-in picker. The IRHs are dated at the EDC ice core using the AICC2012 timescale (Veres et al., 2013; Bazin et al., 2013). Ice core ages are transferred onto the IRHs on radar transect MCM/JKB1a/EDMC01a at distance_m (column in the data sets) = 110.153 m along the transect. That radar point of closest approach is 94 m away from the ice core site. Depth and age uncertainties associated to each IRH are quantified n the associated publication: Cavitte, M. G. P, Young, D. A, Mulvaney, R., Ritz, C., Greenbaum, J. S., Ng, G., Kempf, S. D., Quartini, E., Muldoon, G. R., Paden, J., Frezzotti, M., Roberts, J. L. , Tozer, C. R. , Schroeder, D. M. and Blankenship, D. D. A detailed radiostratigraphic data set for the central East Antarctic Plateau spanning from the Holocene to the mid-Pleistocene, Earth Syst. Sci. Data, 13, 4759–4777, 2021, https://doi.org/10.5194/essd-13-4759-2021. Besides NSF this dataset is the result of additional support from NERC grant - NE/D003733/1, NASA grants - NX08AN68G, NNX09AR52G, NNX11AD33G, NNX13AD53A, and funding from the G. Unger Vetlesen Foundation. \nNote that the dataset was archived before the accompanying paper was officially published. The abstract and dataset description has been updated to cite the correct reference to the ESSD paper (Cavitte et al., 2021) after the paper was published. The headers of the actual data files contain only a placeholder to this reference. | ["POLYGON((114 -74,115.2 -74,116.4 -74,117.6 -74,118.8 -74,120 -74,121.2 -74,122.4 -74,123.6 -74,124.8 -74,126 -74,126 -74.3,126 -74.6,126 -74.9,126 -75.2,126 -75.5,126 -75.8,126 -76.1,126 -76.4,126 -76.7,126 -77,124.8 -77,123.6 -77,122.4 -77,121.2 -77,120 -77,118.8 -77,117.6 -77,116.4 -77,115.2 -77,114 -77,114 -76.7,114 -76.4,114 -76.1,114 -75.8,114 -75.5,114 -75.2,114 -74.9,114 -74.6,114 -74.3,114 -74))"] | ["POINT(120 -75.5)"] | false | false |
N2O Concentration and Isotope Data for 74-59 ka from Taylor Glacier, Antarctica
|
1245821 1245659 1246148 |
2020-11-02 | Menking, James; Brook, Edward J.; Schilt, Adrian; Shackleton, Sarah; Dyonisius, Michael; Severinghaus, Jeffrey P.; Petrenko, Vasilii |
Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive |
Ice core measurements of the concentration and stable isotopic composition of atmospheric nitrous oxide (N2O) 74,000-59,000 years ago constrain marine and terrestrial emissions. The data include two major Dansgaard-Oeschger (D-O) events and the N2O decrease during global cooling at the Marine Isotope Stage (MIS) 5a-4 transition. The N2O increase associated with D-O 19 (~73-71.5 ka) was driven by equal contributions from marine and terrestrial emissions. The N2O decrease during the transition into MIS 4 (~71.5-67.5 ka) was caused by gradual reductions of similar magnitude in both marine and terrestrial sources. A 50 ppb increase in N2O concentration at the end of MIS 4 was caused by gradual increases in marine and terrestrial emissions between ~64-61 ka, followed by an abrupt increase in marine emissions at the onset of D-O 16/17 (59.5 ka). This suggests that the importance of marine versus terrestrial emissions in controlling millennial-scale N2O fluctuations varied in time. | [] | [] | false | false |
Ohio Range Subglacial rock core cosmogenic nuclide data
|
1341658 |
2020-06-28 | Mukhopadhyay, Sujoy |
Constraining Plio-Pleistocene West Antarctic Ice Sheet Behavior from the Ohio Range and Scott Glacier |
The data set consists of cosmogenic berrylium-10 and aluminum-26, along with neon-21, in a set of 4 rock-cores obtained from the Ohio Range, West Antarctica. The rock cores were obtained using the WInkie drill. The depth to the cores varies from 12 meters to 28 meters. The recovered rock cores analyzed for the cosmogenic isotopes varies from 22 cm long to 50 cm long. The data include the following formation: sample details, cosmogenic berrylium-10, aluminum-26 and upper bounds for cosmogenic 21 (since samples have nucleogenic 21) and the step heating data for neon. The data are in Mircrosoft excel format. | ["POLYGON((-116.46 -84.78,-116.452 -84.78,-116.444 -84.78,-116.436 -84.78,-116.428 -84.78,-116.42 -84.78,-116.412 -84.78,-116.404 -84.78,-116.396 -84.78,-116.388 -84.78,-116.38 -84.78,-116.38 -84.781,-116.38 -84.782,-116.38 -84.783,-116.38 -84.784,-116.38 -84.785,-116.38 -84.786,-116.38 -84.787,-116.38 -84.788,-116.38 -84.789,-116.38 -84.79,-116.388 -84.79,-116.396 -84.79,-116.404 -84.79,-116.412 -84.79,-116.42 -84.79,-116.428 -84.79,-116.436 -84.79,-116.444 -84.79,-116.452 -84.79,-116.46 -84.79,-116.46 -84.789,-116.46 -84.788,-116.46 -84.787,-116.46 -84.786,-116.46 -84.785,-116.46 -84.784,-116.46 -84.783,-116.46 -84.782,-116.46 -84.781,-116.46 -84.78))"] | ["POINT(-116.42 -84.785)"] | false | false |
Last Interglacial Mean Ocean Temperature
|
1245821 1245659 1246148 |
2019-10-18 | Shackleton, Sarah |
Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive |
Noble gas data from Taylor Glacier and EPICA Dome C (EDC) for mean ocean temperature reconstruction during the Last Interglacial. Also includes trace gas measurements of d18Oatm, CO2, and CH4 from Taylor Glacier from chronology construction. | ["POLYGON((123.3 -75.1,127.138 -75.1,130.976 -75.1,134.814 -75.1,138.652 -75.1,142.49 -75.1,146.328 -75.1,150.166 -75.1,154.004 -75.1,157.842 -75.1,161.68 -75.1,161.68 -75.367,161.68 -75.634,161.68 -75.901,161.68 -76.168,161.68 -76.435,161.68 -76.702,161.68 -76.969,161.68 -77.236,161.68 -77.503,161.68 -77.77,157.842 -77.77,154.004 -77.77,150.166 -77.77,146.328 -77.77,142.49 -77.77,138.652 -77.77,134.814 -77.77,130.976 -77.77,127.138 -77.77,123.3 -77.77,123.3 -77.503,123.3 -77.236,123.3 -76.969,123.3 -76.702,123.3 -76.435,123.3 -76.168,123.3 -75.901,123.3 -75.634,123.3 -75.367,123.3 -75.1))"] | ["POINT(142.49 -76.435)"] | false | false |
The South Pole Ice Core (SPICEcore) chronology and supporting data
|
1443336 |
2019-08-29 | Winski, Dominic A.; Fudge, T. J.; Dunbar, Nelia; Buizert, Christo; Bay, Ryan; Souney, Joseph Jr.; Sigl, Michael; McConnell, Joseph; Fegyveresi, John; Cole-Dai, Jihong; Thundercloud, Zayta; Cox, Thomas S.; Kreutz, Karl; Epifanio, Jenna; Ortman, Nikolas; Brook, Edward J.; Beaudette, Ross; Sowers, Todd A.; Steig, Eric J.; Morris, Valerie; Kahle, Emma; Ferris, David G.; Aydin, Murat; Nicewonger, Melinda R.; Casey, Kimberly A.; Alley, Richard; Waddington, Edwin D.; Osterberg, Erich; Severinghaus, Jeffrey P.; Jones, Tyler R.; Iverson, Nels |
Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements |
The South Pole Ice Core (SPICEcore) was drilled in 2014-2016 to provide a detailed multi-proxy archive of paleoclimate conditions in East Antarctica during the Holocene and late Pleistocene. Interpretation of these records requires an accurate depth-age relationship. Here, we present the SP19 timescale for the age of the ice of SPICEcore. SP19 is synchronized to the WD2014 chronology from the West Antarctic Ice Sheet Divide (WAIS Divide) ice core using stratigraphic matching of 251 volcanic events. These events indicate an age of 54,302 +/- 519 years BP (before the year 1950) at the bottom of SPICEcore. Annual layers identified in sodium and magnesium ions to 11,341 BP were used to interpolate between stratigraphic volcanic tie points, yielding an annually-resolved chronology through the Holocene. Estimated timescale uncertainty during the Holocene is less than 18 years relative to WD2014, with the exception of the interval between 1800 to 3100 BP when uncertainty estimates reach +/- 25 years due to widely spaced volcanic tie points. Prior to the Holocene, uncertainties remain within 124 years relative to WD2014. Results show an average Holocene accumulation rate of 7.4 cm/yr (water equivalent). The time variability of accumulation rate is consistent with expectations for steady-state ice flow through the modern spatial pattern of accumulation rate. Time variations in nitrate concentration, nitrate seasonal amplitude, and δ15N of N2 in turn are as expected for the accumulation-rate variations. The highly variable yet well-constrained Holocene accumulation history at the site can help improve scientific understanding of deposition-sensitive climate proxies such as δ15N of N2 and photolyzed chemical compounds. | ["POINT(-180 -90)"] | ["POINT(-180 -90)"] | false | false |
Region Climate Model Output Plio-Pleistocene
|
1245899 |
2018-01-16 | Kowalewski, Douglas |
Collaborative Research: West Antarctic Ice Sheet stability, Alpine Glaciation, and Climate Variability: a Terrestrial Perspective from Cosmogenic-nuclide Dating in McMurdo Sound |
Data here is output from regional climate modeling to shed light on the range of possible environmental conditions in the McMurdo region during periods of grounded ice expansion and recession during the Plio-Pleistocene. | ["POLYGON((160 -70,168 -70,176 -70,184 -70,192 -70,200 -70,208 -70,216 -70,224 -70,232 -70,240 -70,240 -71.5,240 -73,240 -74.5,240 -76,240 -77.5,240 -79,240 -80.5,240 -82,240 -83.5,240 -85,232 -85,224 -85,216 -85,208 -85,200 -85,192 -85,184 -85,176 -85,168 -85,160 -85,160 -83.5,160 -82,160 -80.5,160 -79,160 -77.5,160 -76,160 -74.5,160 -73,160 -71.5,160 -70))"] | ["POINT(-160 -77.5)"] | false | false |
WAIS Divide Ice-Core Aerosol Records from 1300 to 3404 m
|
1142166 |
2017-03-22 | McConnell, Joseph |
Collaborative Research: Investigating Upper Pleistocene Rapid Climate Change using Continuous, Ultra-High-Resolution Aerosol and Gas Measurements in the WAIS Divide Ice Core |
A state-of-the-art continuous ice core analytical system was used to analyze ~3 cm by ~3 cm longitudinal samples from ~1300 to ~3404 m depth in the recently collected WAIS Divide deep ice core from West Antarctica. Interpretation of these records and publication of findings is ongoing. | ["POINT(-112.1115 -79.481)"] | ["POINT(-112.1115 -79.481)"] | false | false |
Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins
|
1043554 |
2016-11-09 | Willenbring, Jane |
Collaborative Research: Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins |
The PIs propose to address the question of whether ice surface melting zones developed at high elevations during warm climatic phases in the Transantarctic Mountains. Evidence from sediment cores drilled by the ANDRILL program indicates that open water in the Ross Sea could have been a source of warmth during Pliocene and Pleistocene. The question is whether marine warmth penetrated inland to the ice sheet margins. The glacial record may be ill suited to answer this question, as cold-based glaciers may respond too slowly to register brief warmth. Questions also surround possible orbital controls on regional climate and ice sheet margins. Northern Hemisphere insolation at obliquity and precession timescales is thought to control Antarctic climate through oceanic or atmospheric connections, but new thinking suggests that the duration of Southern Hemisphere summer may be more important. The PIs propose to use high elevation alluvial deposits in the Transantarctic Mountains as a proxy for inland warmth. These relatively young fans, channels, and debris flow levees stand out as visible evidence for the presence of melt water in an otherwise ancient, frozen landscape. Based on initial analyses of an alluvial fan in the Olympus Range, these deposits are sensitive recorders of rare melt events that occur at orbital timescales. For their study they will 1) map alluvial deposits using aerial photography, satellite imagery and GPS assisted field surveys to establish water sources and to quantify parameters effecting melt water production, 2) date stratigraphic sequences within these deposits using OSL, cosmogenic nuclide, and interbedded volcanic ash chronologies, 3) use paired nuclide analyses to estimate exposure and burial times, and rates of deposition and erosion, and 4) use micro and regional scale climate modeling to estimate paleoenvironmental conditions associated with melt events. This study will produce a record of inland melting from sites adjacent to ice sheet margins to help determine controls on regional climate along margins of the East Antarctic Ice Sheet to aid ice sheet and sea level modeling studies. The proposal will support several graduate and undergraduates. A PhD student will be supported on existing funding. The PIs will work with multiple K-12 schools to conduct interviews and webcasts from Antarctica and they will make follow up visits to classrooms after the field season is complete. | ["POINT(161.5 -77.5)"] | ["POINT(161.5 -77.5)"] | false | false |
Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica
|
0739575 |
2015-01-01 | Emslie, Steven; Patterson, William; Polito, Michael |
Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica |
The research combines interdisciplinary study in geology, paleontology, and biology, using stable isotope and radiocarbon analyses, to examine how climate change and resource utilization have influenced population distribution, movement, and diet in penguins during the mid-to-late Holocene. Previous investigations have demonstrated that abandoned colonies contain well-preserved remains that can be used to examine differential responses of penguins to climate change in various sectors of Antarctica. As such, the research team will investigate abandoned and active pygoscelid penguin (Adelie, Chinstrap, and Gentoo) colonies in the Antarctic Peninsula and Ross Sea regions, and possibly Prydz Bay, in collaboration with Chinese scientists during four field seasons. Stable isotope analyses will be conducted on recovered penguin tissues and prey remains in guano to address hypotheses on penguin occupation history, population movement, and diet in relation to climate change since the late Pleistocene. The study will include one Ph.D., two Masters and 16 undergraduate students in advanced research over the project period. Students will be exposed to a variety of fields, the scientific method, and international scientific research. They will complete field and lab research for individual projects or Honor's theses for academic credit. The project also will include web-based outreach, lectures to middle school students, and the development of interactive exercises that highlight hypothesis-driven research and the ecology of Antarctica. Two undergraduate students in French and Spanish languages at UNCW will be hired to assist in translating the Web page postings for broader access to this information. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)
|
0838849 |
2014-01-01 | Bender, Michael |
Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA) |
This award supports a project to generate an absolute timescale for the Allan Hills Blue Ice Area (BIA), and then to reconstruct details of past climate changes and greenhouse gas concentrations for certain time periods back to 2.5 Ma. Ice ages will be determined by applying emerging methods for absolute and relative dating of trapped air bubbles (based on Argon-40/Argon-38, delta-18O of O2, and the O2/N2 ratio). To demonstrate the potential of the Allan Hills BIAs as a paleoclimate archive trenches and ice cores will be collected for age intervals corresponding to 110-140 ka, 1 Ma, and 2.5 Ma. During the proposed two field seasons a total of 6x100 m and additional 15 m cores will be combined with trenching. The intellectual merit of the proposed activity is that the results of this work will extend the landmark work of EPICA and other deep ice coring efforts, which give records dating back to 0.8 Ma, and will complement work planned by IPICS to drill a continuous Antarctic ice core extending to 1.5 Ma. The results will help to advance understanding of major climate regimes and transitions that took place between 0-2.5 Ma, including the 40 kyr world and the mid-Pleistocene climate transition. A major long-term scientific goal is to provide a transformative approach to the collection of paleoclimate records by establishing an 'International Climate Park' in the Allan Hills BIA that would enable sampling of large quantities of known age ice as old as 2.5 Ma, by any interested American or foreign investigator. The broader impacts resulting from the proposed activity include training students who are well versed in advanced field, laboratory and numerical modeling methods combining geochemistry, glaciology, and paleoclimatology. We will include material relevant to our proposed research in our ongoing efforts in local education and in our outreach efforts for media. The University of Maine already has cyberinfrastructure, using state of the art web-based technology, which can provide a wide community of scientists with fast access to the results of our research. The work will contribute to the broad array of climate change studies that is informing worldwide understanding of natural and anthropogenic forced climate change, and the options for responding. This award has field work in Antarctica. | ["POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667))"] | ["POINT(159.29167 -76.7)"] | false | false |
Southern Ocean Diatom Taphonomy and Paleoproductivity: A Laboratory Study of Silica Degradation and Export
|
1043690 |
2014-01-01 | Haji-Sheikh, Michael; Scherer, Reed Paul |
Southern Ocean Diatom Taphonomy and Paleoproductivity: A Laboratory Study of Silica Degradation and Export |
Intellectual Merit: Diatom abundance in sediment cores is typically used as a proxy for paleo primary productivity. This record is complicated by variable preservation, with most loss occurring in the water column via dissolution and zooplankton grazing. This study will investigate preservational biases via a series of controlled experiments to create proxies of original productivity based on morphological changes associated with diatom dissolution and fracture. The PIs will utilize fresh diatoms from culture. Specific objectives include: (1) Linking changes in diatom morphology to availability of dissolved silica and other physical and chemical parameters; (2) Documenting the dissolution process under controlled conditions; (3) Assessment of changes in morphology and diatom surface roughness with increased dissolution; (4) Documenting the physical effects of grazing and fecal pellet formation on diatom fragmentation and dissolution; and (5) Analyzing the impact of diatom dissolution on silica and carbon export. These objectives will be achieved by growing Southern Ocean diatom species in the laboratory under differing physical and chemical conditions; controlled serial dissolution experiments on cultured diatoms; analysis of the dissolution process by imaging frustules under scanning electron microscopy (SEM) and with micro-analysis of surface texture by atomic force microscopy (AFM); making the cultures available to krill and other live zooplankton crustaceans in order to analyze the specific effects of grazing and pelletization on diatom morphology; and comparing experimental results with natural plankton, sediment trap material, and selected Holocene, Pleistocene and Pliocene sediment core material. Broader impacts: This work will contribute to understanding of the use of diatom abundance as an indicator of paleoproductivity. The proposed experiments are multi-disciplinary in nature. Importantly, the project was designed, and the proposal largely written, by a Ph.D. candidate. The research proposed here will lead to peer-reviewed publications and provide a base for future studies over the course of an extremely promising scientific career. The project will also support an undergraduate research student at NIU. The PI is heavily involved in science outreach, including classroom visits, museum events and webinars related to evolution and climate change, and is active with NSF-funded outreach activities linked to the ANDRILL and WISSARD programs. He will continue these efforts with this project. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines
|
0944475 |
2014-01-01 | Kaplan, Michael |
Collaborative Research: Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines |
Intellectual Merit: The proposed work will investigate changes in the compositional variation of glacial tills over time across two concentric sequences of Pleistocene moraines located adjacent to the heads of East Antarctic outlet glaciers in the Transantarctic Mountains (TAM). The chronologic framework for this work will be generated from cosmogenic exposure ages of boulders on prominent morainal ridges. The PIs hypothesize that variations in till composition may indicate a change in ice flow direction or a change in the composition of the original source area, while ages of the moraines provide a long-term terrestrial perspective on ice sheet dynamics. Both results are vital for modeling experiments that aim to reconstruct the East Antarctic Ice Sheet and assess its role in the global climate system and its potential impact on global sea level rise. The variation of till compositions through time also allows for a more accurate interpretation of sediment cores from the Ross Sea and the Southern Ocean. Additionally, till exposures at the head of some East Antarctic outlet glaciers have been shown to contain subglacial material derived from East Antarctic bedrock, providing a window through the ice to view East Antarctica's inaccessible bedrock. Till samples will be collected from two well-preserved sequences of moraine crests at Mt. Howe (head of Scott Glacier) and Mt. Achernar (between Beardmore and Nimrod Glaciers). Each size fraction in glacial till provides potentially valuable information, and the PIs will measure the petrography of the clast and sand fractions, quantitative X-ray diffraction on the crushed <2mm fraction, elemental abundance of the silt/clay fraction, and U/Pb of detrital zircons in the sand fraction. Data collection will rely on established methods previously used in this region and the PIs will also explore new methods to assess their efficacy. On the same moraines crests sampled for provenance studies, the PIs will sample for cosmogenic surface exposure analyses to provide a chronologic framework at the sites for provenance changes through time. Broader Impact: The proposed research involves graduate and undergraduate training in a diverse array of laboratory methods. Students and PIs will be make presentations to community and campus groups, as well as conduct interviews with local news outlets. The proposed work also establishes a new, potentially long-term, collaboration between scientists at IUPUI and LDEO and brings a new PI (Kaplan) into the field of Antarctic Earth Sciences. | ["POLYGON((-180 -84.1,-176.97 -84.1,-173.94 -84.1,-170.91 -84.1,-167.88 -84.1,-164.85 -84.1,-161.82 -84.1,-158.79 -84.1,-155.76 -84.1,-152.73 -84.1,-149.7 -84.1,-149.7 -84.43,-149.7 -84.76,-149.7 -85.09,-149.7 -85.42,-149.7 -85.75,-149.7 -86.08,-149.7 -86.41,-149.7 -86.74,-149.7 -87.07,-149.7 -87.4,-152.73 -87.4,-155.76 -87.4,-158.79 -87.4,-161.82 -87.4,-164.85 -87.4,-167.88 -87.4,-170.91 -87.4,-173.94 -87.4,-176.97 -87.4,180 -87.4,178.12 -87.4,176.24 -87.4,174.36 -87.4,172.48 -87.4,170.6 -87.4,168.72 -87.4,166.84 -87.4,164.96 -87.4,163.08 -87.4,161.2 -87.4,161.2 -87.07,161.2 -86.74,161.2 -86.41,161.2 -86.08,161.2 -85.75,161.2 -85.42,161.2 -85.09,161.2 -84.76,161.2 -84.43,161.2 -84.1,163.08 -84.1,164.96 -84.1,166.84 -84.1,168.72 -84.1,170.6 -84.1,172.48 -84.1,174.36 -84.1,176.24 -84.1,178.12 -84.1,-180 -84.1))"] | ["POINT(-174.25 -85.75)"] | false | false |
Allan Hills Stable Water Isotopes
|
0838843 |
2013-10-24 | Kurbatov, Andrei V.; Spaulding, Nicole; Mayewski, Paul A.; Introne, Douglas |
Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA) |
This data set includes stable water isotope values at 10 m resolution along an approximately 5 km transect through the main icefield of the Allan Hills Blue Ice Area, and at 15 cm within a 225 m core drilled at the midpoint of the transect. | ["POLYGON((159 -75.67,159.025 -75.67,159.05 -75.67,159.075 -75.67,159.1 -75.67,159.125 -75.67,159.15 -75.67,159.175 -75.67,159.2 -75.67,159.225 -75.67,159.25 -75.67,159.25 -75.786,159.25 -75.902,159.25 -76.018,159.25 -76.134,159.25 -76.25,159.25 -76.366,159.25 -76.482,159.25 -76.598,159.25 -76.714,159.25 -76.83,159.225 -76.83,159.2 -76.83,159.175 -76.83,159.15 -76.83,159.125 -76.83,159.1 -76.83,159.075 -76.83,159.05 -76.83,159.025 -76.83,159 -76.83,159 -76.714,159 -76.598,159 -76.482,159 -76.366,159 -76.25,159 -76.134,159 -76.018,159 -75.902,159 -75.786,159 -75.67))"] | ["POINT(159.125 -76.25)"] | false | false |