{"dp_type": "Dataset", "free_text": "Flux"}
[{"awards": "1853291 Girton, James", "bounds_geometry": ["POLYGON((-70 -58,-68.8 -58,-67.6 -58,-66.4 -58,-65.2 -58,-64 -58,-62.8 -58,-61.6 -58,-60.4 -58,-59.2 -58,-58 -58,-58 -58.8,-58 -59.6,-58 -60.4,-58 -61.2,-58 -62,-58 -62.8,-58 -63.6,-58 -64.4,-58 -65.2,-58 -66,-59.2 -66,-60.4 -66,-61.6 -66,-62.8 -66,-64 -66,-65.2 -66,-66.4 -66,-67.6 -66,-68.8 -66,-70 -66,-70 -65.2,-70 -64.4,-70 -63.6,-70 -62.8,-70 -62,-70 -61.2,-70 -60.4,-70 -59.6,-70 -58.8,-70 -58))"], "date_created": "Mon, 17 Feb 2025 00:00:00 GMT", "description": "This data file collects the initial processed versions of all upper-ocean and lower-atmosphere data streams (along with subsampled satellite and reanalysis products along the survey track) from the 2019/20 deployment of the APL-UW Wave Glider autonomous surface vehicle (SV3-153) in Drake Passage.\r\n\u003cbr/\u003e", "east": -58.0, "geometry": ["POINT(-64 -62)"], "keywords": "Antarctica; Cryosphere; Drake Passage; LMG1909; LMG2002; R/v Laurence M. Gould; Temperature; Wave Glider; Wind Speed", "locations": "Antarctica; Drake Passage", "north": -58.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Girton, James", "project_titles": "Wave Glider Observations of Surface Fluxes and Mixed-layer Processes in the Southern Ocean", "projects": [{"proj_uid": "p0010493", "repository": "USAP-DC", "title": "Wave Glider Observations of Surface Fluxes and Mixed-layer Processes in the Southern Ocean"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -66.0, "title": "APL-UW Southern Ocean Wave Glider Data from 2019/20 Mission", "uid": "601902", "west": -70.0}, {"awards": "1947562 van Gestel, Natasja", "bounds_geometry": ["POLYGON((-64.0898264 -64.7704833,-64.08444765 -64.7704833,-64.07906890000001 -64.7704833,-64.07369015 -64.7704833,-64.0683114 -64.7704833,-64.06293265 -64.7704833,-64.0575539 -64.7704833,-64.05217515 -64.7704833,-64.04679639999999 -64.7704833,-64.04141765 -64.7704833,-64.0360389 -64.7704833,-64.0360389 -64.77082025,-64.0360389 -64.77115719999999,-64.0360389 -64.77149415,-64.0360389 -64.7718311,-64.0360389 -64.77216805,-64.0360389 -64.772505,-64.0360389 -64.77284195,-64.0360389 -64.7731789,-64.0360389 -64.77351585,-64.0360389 -64.7738528,-64.04141765 -64.7738528,-64.04679639999999 -64.7738528,-64.05217515 -64.7738528,-64.0575539 -64.7738528,-64.06293265 -64.7738528,-64.0683114 -64.7738528,-64.07369015 -64.7738528,-64.07906890000001 -64.7738528,-64.08444765 -64.7738528,-64.0898264 -64.7738528,-64.0898264 -64.77351585,-64.0898264 -64.7731789,-64.0898264 -64.77284195,-64.0898264 -64.772505,-64.0898264 -64.77216805,-64.0898264 -64.7718311,-64.0898264 -64.77149415,-64.0898264 -64.77115719999999,-64.0898264 -64.77082025,-64.0898264 -64.7704833))"], "date_created": "Mon, 18 Nov 2024 00:00:00 GMT", "description": "This data set contains the raw data for measurements of carbon fluxes at four field sites along a successional gradient near Palmer Station, Antarctica. At the beginning of the experiment, field site 1 (youngest site, closest to the glacier) was approximately 2 years since deglaciation, field site 2 about 30 years since deglaciation, field site 3 about 60 years since deglaciation, and Litchfield Island: hundreds of years since deglaciation. These sites have each: 5 control plots and 5 warmed plots (warmed via open-top chambers, OTC). Carbon flux measurements were taken weekly at most sites (40 plots total). A custom chamber connected to a LI-COR 6800 was placed on a stainless steel ring. Then measurements were taken over a 90 second or 120 second interval. Measurements were taken with a transparent chamber to obtain net ecosystem exchange (NEE; micromols CO2/m2/s), and then covered with dark cloth to obtain ecosystem respiration (ER) measurements. The incoming carbon fluxes was then obtained based on the NEE and ER.", "east": -64.0360389, "geometry": ["POINT(-64.06293265 -64.77216805)"], "keywords": "Antarctica; CO2; Cryosphere; Field Investigations; Palmer Station", "locations": "Antarctica; Palmer Station", "north": -64.7704833, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "van Gestel, Natasja", "project_titles": "Antarctica as a Model System for Responses of Terrestrial Carbon Balance to Warming", "projects": [{"proj_uid": "p0010251", "repository": "USAP-DC", "title": "Antarctica as a Model System for Responses of Terrestrial Carbon Balance to Warming"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.7738528, "title": "2022-2023 Palmer Station terrestrial carbon fluxes - field warming experiment", "uid": "601853", "west": -64.0898264}, {"awards": "2035580 Aarons, Sarah", "bounds_geometry": ["POINT(159.31 -76.7)"], "date_created": "Thu, 15 Aug 2024 00:00:00 GMT", "description": "This dataset contains dust mass concentrations, coarse particle fraction, interpolated accumulation rate, and dust flux from ALHIC1903 spanning the transition from MIS 6 through 5e.", "east": 159.31, "geometry": ["POINT(159.31 -76.7)"], "keywords": "Accumulation Rate; ALHIC1903; Allan Hills; Antarctica; Blue Ice; Concentration; Cryosphere; Dust; Flux", "locations": "Antarctica; Allan Hills", "north": -76.7, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Carter, Austin", "project_titles": "Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial", "projects": [{"proj_uid": "p0010270", "repository": "USAP-DC", "title": "Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.7, "title": "Concentration and flux of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "uid": "601825", "west": 159.31}, {"awards": "1543445 Zhang, Jing", "bounds_geometry": ["POLYGON((-70.9 -65,-69.51 -65,-68.12 -65,-66.73 -65,-65.34 -65,-63.95 -65,-62.56 -65,-61.17 -65,-59.78 -65,-58.39 -65,-57 -65,-57 -65.5,-57 -66,-57 -66.5,-57 -67,-57 -67.5,-57 -68,-57 -68.5,-57 -69,-57 -69.5,-57 -70,-58.39 -70,-59.78 -70,-61.17 -70,-62.56 -70,-63.95 -70,-65.34 -70,-66.73 -70,-68.12 -70,-69.51 -70,-70.9 -70,-70.9 -69.5,-70.9 -69,-70.9 -68.5,-70.9 -68,-70.9 -67.5,-70.9 -67,-70.9 -66.5,-70.9 -66,-70.9 -65.5,-70.9 -65))"], "date_created": "Wed, 03 May 2023 00:00:00 GMT", "description": "This dataset includes the 3-km resolution budget terms of surface mass balance (SMB) and surface energy budget (SEB) for the Larsen C Ice Shelf during the melting season of 2017-18. The variables include the SMB budget terms of net surface mass balance, precipitation, runoff, blowing snow erosion, surface sublimation, and blowing snow sublimation, and the SEB budget terms of net surface energy budget, downwelling and upwelling longwave radiation, surface absorbed shortwave radiation, ground heat flux, and sensible / latent heat flux.", "east": -57.0, "geometry": ["POINT(-63.95 -67.5)"], "keywords": "Antarctica; Glaciology; Larsen C Ice Shelf; Model Data; Surface Energy Budget; Surface Mass Balance; WRF Model", "locations": "Larsen C Ice Shelf; Antarctica", "north": -65.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Zhang, Jing; Luo, Liping", "project_titles": "Collaborative Research: Present and Projected Future Forcings on Antarctic Peninsula Glaciers and Ice Shelves using the Weather Forecasting and Research (WRF) Model", "projects": [{"proj_uid": "p0010408", "repository": "USAP-DC", "title": "Collaborative Research: Present and Projected Future Forcings on Antarctic Peninsula Glaciers and Ice Shelves using the Weather Forecasting and Research (WRF) Model"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "3-km Surface Mass and Energy Budget for the Larsen C Ice Shelf", "uid": "601685", "west": -70.9}, {"awards": "1643455 Enderlin, Ellyn; 1933764 Enderlin, Ellyn", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 06 Apr 2023 00:00:00 GMT", "description": "This dataset includes manually-extracted iceberg geometries and meltwater fluxes from 2011-2022 WorldView digital elevation model time series for 15 study sites around Antarctica. Each file contains the coordinates, median surface elevation, density, volume, surface area, draft, and submerged area estimated for an iceberg on two different observation dates (specified in the file name). The submarine meltwater flux for each iceberg, calculated as the volume change over time corrected for surface mass balance processes and creep thinning between observation dates, is provided for each iceberg. Dates listed in file names are in YYYYMMDDhhmmss format. Site abbreviations in file names are as follows: BG = Blanchard Glacier, CG = Cadman Glacier, FG = Ferrigno Glacier, FI = Filchner Ice Shelf, HG = Heim Glacier, LA = Edgeworth Glacier (Larsen A tributary), LB = Cadman Glacier (Larsen B tributary), LG = Leonardo Glacier, MI = Mertz Ice Tongue, PT = Polar Times, RI = Ronne Ice Shelf, SG = Seller Glacier, TG = Thwaites Glacier, TI = Totten Ice Shelf, and WG = Widdowson Glacier.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Elevation; Glaciology; Iceberg; Meltwater; Submarine Melt", "locations": "Antarctica; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Enderlin, Ellyn; Dickson, Adam; Miller, Emily; Dryak, Mariama; Oliver, Caitlin; Aberle, Rainey", "project_titles": "Antarctic Submarine Melt Variability from Remote Sensing of Icebergs", "projects": [{"proj_uid": "p0010210", "repository": "USAP-DC", "title": "Antarctic Submarine Melt Variability from Remote Sensing of Icebergs"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Remotely-sensed iceberg geometries and meltwater fluxes", "uid": "601679", "west": -180.0}, {"awards": "1443397 Kreutz, Karl", "bounds_geometry": ["POINT(0 -90)"], "date_created": "Fri, 01 Apr 2022 00:00:00 GMT", "description": "This dataset contains particle metrics for the South Pole Ice Core (SPICEcore) intermediate core (SPC14), from the surface to 1751 m depth (~54,000 years before present [BP]). Data were collected via Klotz Abakus laser particle counter via continuous-flow-analysis (CFA), Beckman Coulter Multisizer 3 using Coulter Counter (CC) principles, and dynamic particle imaging using a FlowCAM instrument. CFA measurements were made at Dartmouth College, CC measurements were made at Colby College, and FlowCAM measurements were made at the University of Maine.", "east": 0.0, "geometry": ["POINT(0 -90)"], "keywords": "Antarctica; Dust; Ice Core; South Pole", "locations": "Antarctica; South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Kreutz, Karl", "project_titles": "Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements", "projects": [{"proj_uid": "p0010051", "repository": "USAP-DC", "title": "Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "South Pole (SPC14) microparticle concentration, mass concentration, flux, particle-size-distribution mode, and aspect ratio measurements", "uid": "601553", "west": 0.0}, {"awards": "1744954 Lubin, Dan", "bounds_geometry": ["POINT(-148.81 -81.65)"], "date_created": "Fri, 18 Mar 2022 00:00:00 GMT", "description": "This data set comprises radiative and turbulent flux components of the surface energy balance at Siple Dome, West Antarctica, measured between 21 December 2019 and 19 January 2020. Radiative fluxes were measured by Kipp \u0026 Zonen pyranometers and pyrgeometers. A Campbell Scientific open path eddy covariance system measured sensible and latent heat fluxes. An Apogee infrared sensor measured surface skin temperature. Sky conditions were observed using an ALCOR System digital all-sky camera. A StellarNet shortwave spectroradiometer system measured downwelling spectral irradiance in the wavelength range 350-1700 nm.", "east": -148.81, "geometry": ["POINT(-148.81 -81.65)"], "keywords": "Antarctica; Siple Dome; Spectroscopy", "locations": "Antarctica; Siple Dome", "north": -81.65, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Lubin, Dan; Ghiz, Madison", "project_titles": "Surface Energy Balance on West Antarctica and the Ross Ice Shelf", "projects": [{"proj_uid": "p0010296", "repository": "USAP-DC", "title": "Surface Energy Balance on West Antarctica and the Ross Ice Shelf"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -81.65, "title": "Siple Dome Surface Energy Flux", "uid": "601540", "west": -148.81}, {"awards": null, "bounds_geometry": ["POLYGON((-57.7 -64.2,-46.44 -64.2,-35.18 -64.2,-23.92 -64.2,-12.66 -64.2,-1.4 -64.2,9.86 -64.2,21.12 -64.2,32.38 -64.2,43.64 -64.2,54.9 -64.2,54.9 -65.99,54.9 -67.78,54.9 -69.57,54.9 -71.36,54.9 -73.15,54.9 -74.94,54.9 -76.73,54.9 -78.52,54.9 -80.31,54.9 -82.1,43.64 -82.1,32.38 -82.1,21.12 -82.1,9.86 -82.1,-1.4 -82.1,-12.66 -82.1,-23.92 -82.1,-35.18 -82.1,-46.44 -82.1,-57.7 -82.1,-57.7 -80.31,-57.7 -78.52,-57.7 -76.73,-57.7 -74.94,-57.7 -73.15,-57.7 -71.36,-57.7 -69.57,-57.7 -67.78,-57.7 -65.99,-57.7 -64.2))"], "date_created": "Fri, 16 Jul 2021 00:00:00 GMT", "description": "This dataset includes:\r\n1) rBC concentration and flux for 6 Antarctic ice core sites (JRI_2008, JRI_D98, NUS08_7, NUS07_7, B53, and B40). \r\n2) FLEXPART backward-model emission sensitivities for 4 Antarctic ice core sites (JRI, B40, B53, NUS07_7). \r\n3) FLEXPART forward-model deposition for simulated biomass burning emissions from New Zealand.\r\n4) Tie points to constrain flow model used to develop JRI_2008 chronology.", "east": 54.9, "geometry": ["POINT(-1.4 -73.15)"], "keywords": "Antarctica; Antarctic Peninsula; Biomass Burning; Black Carbon; Dronning Maud Land; East Antarctic Plateau; Ice Core", "locations": "Dronning Maud Land; East Antarctic Plateau; Antarctic Peninsula; Antarctica", "north": -64.2, "nsf_funding_programs": null, "persons": "McConnell, Joseph; Chellman, Nathan", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -82.1, "title": "Common-era black carbon deposition and atmospheric modeling for 6 Antarctic ice cores", "uid": "601464", "west": -57.7}, {"awards": null, "bounds_geometry": ["POINT(-58 -62)"], "date_created": "Mon, 21 Dec 2020 00:00:00 GMT", "description": "Surface spectra of red and green snow algae were collected at two sites on King George Island (KGI), the largest of the South Shetland Islands, and one site on northern Nelson Island (NI), southwest of KGI in January 2018. Optically thick (\u003e 30cm) snow packs were prioritized for spectral albedo data acquisition and corresponding snow algae sampling in order to minimize the impact of the underlying ground on spectral albedo. Sites were also selected based on where it was possible to sample 1) a control site with relatively clean snow having no visible snow algae 2) green snow algae, 3) red snow algae and 4) mixed-phase green and red algae. At each site, duplicates of each snow type were measured with the spectrometer (except at Nelson Island where only one Mixed site was observed). All samples were collected around noon local Chilean time, when the seasonal snow pack was also receiving the most incoming solar radiation. Spectral reflectance measurements were collected with an Analytical Spectral Devices (ASD) FieldSpec\u00ae 4 hyperspectral spectroradiometer (Malvern Panalytical, USA) between 350 and 2500 nm. The sensor was equipped with a light-diffusing fore optic remote cosine receptor (RCR) to measure planar irradiance. We selected three different locations and collected spectral measurements for two samples each of green, red, and mixed snow algae patches, and two algae-free or \u201cclean\u201d snow areas, for a total of 24 measurement sites (2 of each of the 4 types across the 3 sites). Areas with snowmelt ponding were avoided. The RCR was placed upward to collect the downwelling planar irradiance incident upon the snow surface (Ed) and the upwelling planar irradiance reflected from the snow (Eu). Measurements were collected in triplicate. The operator was located in a direction 90 - 135\u00ba away from the sun to minimize solar glint and self-shadowing. Snow conditions did not allow for a tripod, so nadir orientation was determined by practice with a level and by visual assistance of an observer. Since the measurements were carried out under heavily overcast conditions where irradiance is dominated by the diffuse insolation with no solar azimuthal dependence, the influence of slight tilt when measuring the downwelling irradiance (i.e. the cosine error) is expected to be minor (\u003c0.5%). The reflectance measurements were taken prior to excavation of snow sample for laboratory analysis. Post-processing of the data involved computing spectral reflectance, as the ratio of the upwelling flux normalized to the downwelling flux for each wavelength. The mean of the three measurements was calculated for each site. Ambient light conditions were too low in the short-wave infrared wavelengths for getting adequate signal-to-noise for our measurements. In post-processing, reflectance values were truncated at 1350 nm for this analysis. This value represents the limit often used for RF calculations in other studies. In addition, empirical correction coefficients were used to correct for temperature related radiometric inter-channel steps using the procedure and MATLAB code from Hueni et al. (2017). This removed the step function near 1000 nm for most of the spectra, although not fully for all spectra. However, this discontinuity does not significantly impact results or albedo calculations. Albedo was calculated as the integrated R in two different intervals: visible (400-700 nm) and infrared (700-1300 nm). ", "east": -58.0, "geometry": ["POINT(-58 -62)"], "keywords": "Antarctica; South Shetland Islands", "locations": "Antarctica; South Shetland Islands", "north": -62.0, "nsf_funding_programs": null, "persons": "Khan, Alia", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -62.0, "title": "Red and Green Snow Algae Surface Spectra", "uid": "601412", "west": -58.0}, {"awards": "1341494 Gao, Yuan", "bounds_geometry": ["POINT(64 64)"], "date_created": "Mon, 24 Aug 2020 00:00:00 GMT", "description": "The dataset includes the concentrations and particle size distributions of aerosol trace elements (TEs) through the sampling of size-segregated aerosol particles made at Palmer Station, Antarctic Peninsula, which took place in the austral summer of 2016-2017. The estimated dry deposition fluxes of these elements were derived from these new results.", "east": 64.0, "geometry": ["POINT(64 64)"], "keywords": "Antarctica; Antarctic Peninsula; Palmer Station; Trace Elements", "locations": "Antarctic Peninsula; Palmer Station; Antarctica; Palmer Station", "north": 64.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Gao, Yuan", "project_titles": "Quantifying Atmospheric Iron Properties over West Antarctic Peninsula", "projects": [{"proj_uid": "p0010082", "repository": "USAP-DC", "title": "Quantifying Atmospheric Iron Properties over West Antarctic Peninsula"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": 64.0, "title": "Concentrations and Particle Size Distributions of Aerosol Trace Elements", "uid": "601370", "west": 64.0}, {"awards": "1745049 Tyler, Scott", "bounds_geometry": ["POLYGON((-180 43.0731,-153.05989 43.0731,-126.11978 43.0731,-99.17967 43.0731,-72.23956 43.0731,-45.29945 43.0731,-18.35934 43.0731,8.58077 43.0731,35.52088 43.0731,62.46099 43.0731,89.4011 43.0731,89.4011 43.07309,89.4011 43.07308,89.4011 43.07307,89.4011 43.07306,89.4011 43.07305,89.4011 43.07304,89.4011 43.07303,89.4011 43.07302,89.4011 43.07301,89.4011 43.073,62.46099 43.073,35.52088 43.073,8.58077 43.073,-18.35934 43.073,-45.29945 43.073,-72.23956 43.073,-99.17967 43.073,-126.11978 43.073,-153.05989 43.073,180 43.073,170.94012 43.073,161.88024 43.073,152.82036 43.073,143.76048 43.073,134.7006 43.073,125.64072 43.073,116.58084 43.073,107.52096 43.073,98.46108 43.073,89.4012 43.073,89.4012 43.07301,89.4012 43.07302,89.4012 43.07303,89.4012 43.07304,89.4012 43.07305,89.4012 43.07306,89.4012 43.07307,89.4012 43.07308,89.4012 43.07309,89.4012 43.0731,98.46108 43.0731,107.52096 43.0731,116.58084 43.0731,125.64072 43.0731,134.7006 43.0731,143.76048 43.0731,152.82036 43.0731,161.88024 43.0731,170.94012 43.0731,-180 43.0731))"], "date_created": "Mon, 03 Aug 2020 00:00:00 GMT", "description": "This dataset consists of individual Distributed Temperature Sensing (DTS) traces taken during the first melt test of the Ice Diver drill. The data consists of header information about the instrument, time of sampling and follows with distance down the fiber, Stokes return, anti-Stokes return and estimated temperature in C. Each file represents a 30 second integration of return signals, and the spatial sampling of the fiber was 12.5 cm. Two channels are included and represent data from two individual multimode fibers within a stainless steel tube cable.", "east": 89.4011, "geometry": ["POINT(-90.59885 43.07305)"], "keywords": "Antarctica; North America; Temperature", "locations": "Antarctica; North America", "north": 43.0731, "nsf_funding_programs": "Antarctic Instrumentation and Support", "persons": "Tyler, Scott W.", "project_titles": "Collaborative Research: Toward Dense Observation of Geothermal Fluxes in Antarctica Via Logistically Light Instrument Deployment", "projects": [{"proj_uid": "p0010121", "repository": "USAP-DC", "title": "Collaborative Research: Toward Dense Observation of Geothermal Fluxes in Antarctica Via Logistically Light Instrument Deployment"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": 43.073, "title": "Ice Diver Madison Run #1 March 1, 2020", "uid": "601368", "west": 89.4012}, {"awards": "1043623 Miller, Scott", "bounds_geometry": ["POLYGON((-180 -57,-169.5 -57,-159 -57,-148.5 -57,-138 -57,-127.5 -57,-117 -57,-106.5 -57,-96 -57,-85.5 -57,-75 -57,-75 -59.1,-75 -61.2,-75 -63.3,-75 -65.4,-75 -67.5,-75 -69.6,-75 -71.7,-75 -73.8,-75 -75.9,-75 -78,-85.5 -78,-96 -78,-106.5 -78,-117 -78,-127.5 -78,-138 -78,-148.5 -78,-159 -78,-169.5 -78,180 -78,178.3 -78,176.6 -78,174.9 -78,173.2 -78,171.5 -78,169.8 -78,168.1 -78,166.4 -78,164.7 -78,163 -78,163 -75.9,163 -73.8,163 -71.7,163 -69.6,163 -67.5,163 -65.4,163 -63.3,163 -61.2,163 -59.1,163 -57,164.7 -57,166.4 -57,168.1 -57,169.8 -57,171.5 -57,173.2 -57,174.9 -57,176.6 -57,178.3 -57,-180 -57))"], "date_created": "Fri, 01 May 2020 00:00:00 GMT", "description": "This dataset contains meteorological and air-sea flux data (momentum, heat, and CO2 fluxes; CO2 gas transfer velocity) collected during the the Nathaniel B. Palmer expedition NBP1210 conducted in 2013. The files are of XLS format", "east": -75.0, "geometry": ["POINT(-136 -67.5)"], "keywords": "Air-Sea Flux; Air Temperature; Amundsen Sea; Antarctica; Antarctic Peninsula; Atmosphere; CO2; Flux; Meteorology; NBP1210; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Southern Ocean; Water Temperature; Wind Direction; Wind Speed", "locations": "Antarctic Peninsula; Amundsen Sea; Southern Ocean; Ross Sea; Antarctica", "north": -57.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Miller, Scott; Butterworth, Brian", "project_titles": "Air-Sea Fluxes of Momentum, Heat, and Carbon Dioxide at High Wind Speeds in the Southern Ocean", "projects": [{"proj_uid": "p0010137", "repository": "USAP-DC", "title": "Air-Sea Fluxes of Momentum, Heat, and Carbon Dioxide at High Wind Speeds in the Southern Ocean"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Eddy covariance air-sea momentum, heat, and carbon dioxide fluxes in the Southern Ocean from the N.B. Palmer cruise NBP1210", "uid": "601309", "west": 163.0}, {"awards": "1043623 Miller, Scott", "bounds_geometry": ["POLYGON((117.5 -47,120.35 -47,123.2 -47,126.05 -47,128.9 -47,131.75 -47,134.6 -47,137.45 -47,140.3 -47,143.15 -47,146 -47,146 -49.04,146 -51.08,146 -53.12,146 -55.16,146 -57.2,146 -59.24,146 -61.28,146 -63.32,146 -65.36,146 -67.4,143.15 -67.4,140.3 -67.4,137.45 -67.4,134.6 -67.4,131.75 -67.4,128.9 -67.4,126.05 -67.4,123.2 -67.4,120.35 -67.4,117.5 -67.4,117.5 -65.36,117.5 -63.32,117.5 -61.28,117.5 -59.24,117.5 -57.2,117.5 -55.16,117.5 -53.12,117.5 -51.08,117.5 -49.04,117.5 -47))"], "date_created": "Fri, 01 May 2020 00:00:00 GMT", "description": "This dataset contains meteorological and air-sea flux data (momentum, heat, and CO2 fluxes; CO2 gas transfer velocity) collected during the the Nathaniel B. Palmer expedition NBP1402 conducted in 2014. The files are of XLS format.", "east": 146.0, "geometry": ["POINT(131.75 -57.2)"], "keywords": "Air-Sea Flux; Air Temperature; Antarctica; Atmosphere; CO2; CO2 Concentrations; East Antarctica; Flux; Meteorology; NBP1402; Oceans; Relative Humidity; Salinity; Totten Glacier; Water Measurements; Water Temperature; Weather Station Data; Wind Direction; Wind Speed", "locations": "Antarctica; East Antarctica; Totten Glacier", "north": -47.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Miller, Scott; Butterworth, Brian", "project_titles": "Air-Sea Fluxes of Momentum, Heat, and Carbon Dioxide at High Wind Speeds in the Southern Ocean", "projects": [{"proj_uid": "p0010137", "repository": "USAP-DC", "title": "Air-Sea Fluxes of Momentum, Heat, and Carbon Dioxide at High Wind Speeds in the Southern Ocean"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.4, "title": "Eddy covariance air-sea momentum, heat, and carbon dioxide fluxes in the Southern Ocean from the N.B. Palmer cruise NBP1402", "uid": "601308", "west": 117.5}, {"awards": "1443346 Stone, John", "bounds_geometry": ["POLYGON((-174 -84.5,-172.4 -84.5,-170.8 -84.5,-169.2 -84.5,-167.6 -84.5,-166 -84.5,-164.4 -84.5,-162.8 -84.5,-161.2 -84.5,-159.6 -84.5,-158 -84.5,-158 -84.63,-158 -84.76,-158 -84.89,-158 -85.02,-158 -85.15,-158 -85.28,-158 -85.41,-158 -85.54,-158 -85.67,-158 -85.8,-159.6 -85.8,-161.2 -85.8,-162.8 -85.8,-164.4 -85.8,-166 -85.8,-167.6 -85.8,-169.2 -85.8,-170.8 -85.8,-172.4 -85.8,-174 -85.8,-174 -85.67,-174 -85.54,-174 -85.41,-174 -85.28,-174 -85.15,-174 -85.02,-174 -84.89,-174 -84.76,-174 -84.63,-174 -84.5))"], "date_created": "Thu, 21 Nov 2019 00:00:00 GMT", "description": "This data set contains measurements of cosmic-ray-produced Be-10 in quartz from glacial erratics and bedrock at sites along and adjacent to Liv Glacier and Amundsen Glacier in the southern Transantarctic Mountains. Samples were collected during the 2016-17 and 2017-18 field seasons working from remote camps along the coast. Locations were determined by hand-held GPS. Elevations are based on barometric altimetry corrected for daily drift and referenced to precise (geodetic) GPS benchmarks established over a range of altitudes at each site. Horizon geometry and the resulting topographic shielding of the cosmic ray flux was determined from vertically-oriented full-sky (fisheye) photographs at each sample location. Samples were processed at the University of Washington Cosmogenic Nuclide Laboratory using established procedures for mineral separation, dissolution, beryllium extraction and purification, described at http://depts.washington.edu/cosmolab/chem.shtml. Beryllium isotope ratios were measured at the Lawrence Livermore Center for Accelerator Mass Spectrometry (LLNL-CAMS) relative to the KNSTD-Be-01-5-4 standard, assuming a standard Be-10/Be-9 ratio of 2.851E-12 (07KNSTD normalization). Data are reported as input for the online CRONUS cosmogenic nuclide calculator (V3, current at the time of submission in November 2019). Exposure ages can be obtained by entering the data into the CRONUS calculator, at: http://hess.ess.washington.edu/math/v3/v3_age_in.html .\r\nData for each sample consists of two lines of input parameters, as follows:\t\t\t\t\t\t\t\t\t\r\n{Sample_name, Latitude (DD), Longitude (DD), Altitude (m asl), Scaling_function, Thickness (cm), Density (g/cm^3), Horizon_correction, Erosion_rate (cm/yr), Year_sampled}\r\n{Sample_name, Nuclide (in this case Be-10), Target_mineral (quartz), Be-10_concentration (atom/g), Error_Be-10_concentration (atom/g), Normalization}\r\nFurther information about the V3 input format is given at:\r\nhttp://hess.ess.washington.edu/math/docs/v3/v3_input_explained.html", "east": -158.0, "geometry": ["POINT(-166 -85.15)"], "keywords": "Antarctica; Be-10; Beryllium-10; Cosmogenic; Cosmogenic Dating; Cosmogenic Radionuclides; Deglaciation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Liv Glacier; Rocks; Ross Ice Sheet; Surface Exposure Dates; Transantarctic Mountains", "locations": "Transantarctic Mountains; Ross Ice Sheet; Antarctica; Liv Glacier", "north": -84.5, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Stone, John", "project_titles": "Collaborative Research: High-resolution Reconstruction of Holocene Deglaciation in the Southern Ross Embayment", "projects": [{"proj_uid": "p0010053", "repository": "USAP-DC", "title": "Collaborative Research: High-resolution Reconstruction of Holocene Deglaciation in the Southern Ross Embayment"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.8, "title": "Cosmogenic nuclide data from glacial deposits along the Liv Glacier coast", "uid": "601226", "west": -174.0}, {"awards": "0732869 Holland, David; 1739003 Holland, David", "bounds_geometry": ["POLYGON((-100 -75,-99.9 -75,-99.8 -75,-99.7 -75,-99.6 -75,-99.5 -75,-99.4 -75,-99.3 -75,-99.2 -75,-99.1 -75,-99 -75,-99 -75.05,-99 -75.1,-99 -75.15,-99 -75.2,-99 -75.25,-99 -75.3,-99 -75.35,-99 -75.4,-99 -75.45,-99 -75.5,-99.1 -75.5,-99.2 -75.5,-99.3 -75.5,-99.4 -75.5,-99.5 -75.5,-99.6 -75.5,-99.7 -75.5,-99.8 -75.5,-99.9 -75.5,-100 -75.5,-100 -75.45,-100 -75.4,-100 -75.35,-100 -75.3,-100 -75.25,-100 -75.2,-100 -75.15,-100 -75.1,-100 -75.05,-100 -75))"], "date_created": "Tue, 15 Oct 2019 00:00:00 GMT", "description": "Automatic Weather Station, located on Pine Island Glacier. Data set from 2008-2015.", "east": -99.0, "geometry": ["POINT(-99.5 -75.25)"], "keywords": "Antarctica; Atmosphere; Automated Weather Station; Flux; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Meteorology; Pine Island Glacier; Weather Station Data", "locations": "Antarctica; Pine Island Glacier", "north": -75.0, "nsf_funding_programs": null, "persons": "Mojica Moncada, Jhon F.; Holland, David", "project_titles": "Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica", "projects": [{"proj_uid": "p0000043", "repository": "USAP-DC", "title": "Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -75.5, "title": "Automatic Weather Station Pine Island Glacier", "uid": "601216", "west": -100.0}, {"awards": "1341485 Woods, H. Arthur", "bounds_geometry": ["POLYGON((163.85 -77.6,164.134 -77.6,164.418 -77.6,164.702 -77.6,164.986 -77.6,165.27 -77.6,165.554 -77.6,165.838 -77.6,166.122 -77.6,166.406 -77.6,166.69 -77.6,166.69 -77.624,166.69 -77.648,166.69 -77.672,166.69 -77.696,166.69 -77.72,166.69 -77.744,166.69 -77.768,166.69 -77.792,166.69 -77.816,166.69 -77.84,166.406 -77.84,166.122 -77.84,165.838 -77.84,165.554 -77.84,165.27 -77.84,164.986 -77.84,164.702 -77.84,164.418 -77.84,164.134 -77.84,163.85 -77.84,163.85 -77.816,163.85 -77.792,163.85 -77.768,163.85 -77.744,163.85 -77.72,163.85 -77.696,163.85 -77.672,163.85 -77.648,163.85 -77.624,163.85 -77.6))"], "date_created": "Sat, 22 Dec 2018 00:00:00 GMT", "description": "Raw data from Lane, SJ, AL Moran, CM Shishido, BW Tobalske, HA Woods (2018) Cuticular gas exchange by Antarctic sea spiders. Journal of Experimental Biology. jeb.177568 doi: 10.1242/jeb.177568.\r\n\r\nThe file contains data on pore morphology, cuticle thickness, oxygen gradients across the cuticle, and estimated resistances of the cuticle to oxygen flux. Most of the sea spiders were collected near McMurdo Station, with a few extras collected at New Harbor, Antarctica.", "east": 166.69, "geometry": ["POINT(165.27 -77.72)"], "keywords": "Antarctica; Benthos; Biota; Body Size; Cuticle; McMurdo Sound; Microelectrodes; Microscope; Microscopy; Oxygen; Pore; Respiration; Sea Spider; Southern Ocean", "locations": "Antarctica; Southern Ocean; McMurdo Sound", "north": -77.6, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Woods, H. Arthur; Arthur Woods, H.", "project_titles": "Collaborative Research: Body Size, Oxygen, and Vulnerability to Climate Change in Antarctic Pycnogonida", "projects": [{"proj_uid": "p0000007", "repository": "USAP-DC", "title": "Collaborative Research: Body Size, Oxygen, and Vulnerability to Climate Change in Antarctic Pycnogonida"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.84, "title": "Cuticle morphology and oxygen gradients of Antarctic sea spiders", "uid": "601145", "west": 163.85}, {"awards": "1245821 Brook, Edward J.", "bounds_geometry": ["POINT(162.167 -77.733)"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, and delta 18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, delta 13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of delta 13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica.", "east": 162.167, "geometry": ["POINT(162.167 -77.733)"], "keywords": "Antarctica; Atmosphere; Geochemistry; Ice Core Records; Isotope; Paleoclimate; Taylor Glacier; Transantarctic Mountains", "locations": "Taylor Glacier; Antarctica; Transantarctic Mountains", "north": -77.733, "nsf_funding_programs": null, "persons": "Brook, Edward J.", "project_titles": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "projects": [{"proj_uid": "p0000283", "repository": "USAP-DC", "title": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.733, "title": "The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "uid": "600163", "west": 162.167}, {"awards": "0944659 Kiene, Ronald", "bounds_geometry": ["POLYGON((-160 -68,-159 -68,-158 -68,-157 -68,-156 -68,-155 -68,-154 -68,-153 -68,-152 -68,-151 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-151 -78,-152 -78,-153 -78,-154 -78,-155 -78,-156 -78,-157 -78,-158 -78,-159 -78,-160 -78,-160 -77,-160 -76,-160 -75,-160 -74,-160 -73,-160 -72,-160 -71,-160 -70,-160 -69,-160 -68))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "Spectacular blooms of Phaeocystis antarctica in the Ross Sea, Antarctica are the source of some of the world\u0027s highest concentrations of dimethylsulfoniopropionate (DMSP) and its volatile degradation product, dimethylsulfide (DMS). The flux of DMS from the oceans to the atmosphere in this region and its subsequent gas phase oxidation generates aerosols that have a strong influence on cloud properties and possibly climate. In the oceans, DMS and DMSP are quantitatively significant components of the carbon, sulfur, and energy flows in marine food webs, especially in the Ross Sea. Despite its central role in carbon and sulfur biogeochemistry in the Ross Sea, surprisingly little is known about the physiological functions of DMSP in P. Antarctica. The research will isolate and characterize DMSP lyases from P. antarctica, with the goal of obtaining amino acid and gene sequence information on these important enzymes. The physiological studies will focus on the effects of varying intensities of photosynthetically active radiation, with and without ultraviolet radiation as these are factors that we have found to be important controls on DMSP and DMS dynamics. The research also will examine the effects of prolonged darkness on the dynamics of DMSP and related compounds in P. antarctica, as survival of this species during the dark Antarctic winter and at sub-euphotic depths appears to be an important part of the Phaeocystis? ecology. A unique aspect of this work is the focus on measurements of intracellular MSA, which if detected, would provide strong evidence for in vivo radical scavenging functions for methyl sulfur compounds. The study will advance understanding of what controls DMSP cycling and ultimately DMS emissions from the Ross Sea and also provide information on what makes P. antarctica so successful in this extreme environment. The research will directly benefit and build on several interrelated ocean-atmosphere programs including the International Surface Ocean Lower Atmosphere Study (SOLAS) program. The PIs will participate in several activities involving K-12 education, High School teacher training, public education and podcasting through the auspices of the Dauphin Island Sea Lab Discovery Hall program and SUNY ESF. Two graduate students will be employed full time, and six undergraduates (2 each summer) will be trained as part of this project.\n", "east": -150.0, "geometry": ["POINT(-155 -73)"], "keywords": "Antarctica; Biota; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Oceans; Ross Sea", "locations": "Ross Sea; Antarctica", "north": -68.0, "nsf_funding_programs": null, "persons": "Kiene, Ronald", "project_titles": "Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "projects": [{"proj_uid": "p0000085", "repository": "USAP-DC", "title": "Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "uid": "600150", "west": -160.0}, {"awards": "1343649 Levy, Joseph", "bounds_geometry": ["POLYGON((162.852 -77.6111,162.9893 -77.6111,163.1266 -77.6111,163.2639 -77.6111,163.4012 -77.6111,163.5385 -77.6111,163.6758 -77.6111,163.8131 -77.6111,163.9504 -77.6111,164.0877 -77.6111,164.225 -77.6111,164.225 -77.65331,164.225 -77.69552,164.225 -77.73773,164.225 -77.77994,164.225 -77.82215,164.225 -77.86436,164.225 -77.90657,164.225 -77.94878,164.225 -77.99099,164.225 -78.0332,164.0877 -78.0332,163.9504 -78.0332,163.8131 -78.0332,163.6758 -78.0332,163.5385 -78.0332,163.4012 -78.0332,163.2639 -78.0332,163.1266 -78.0332,162.9893 -78.0332,162.852 -78.0332,162.852 -77.99099,162.852 -77.94878,162.852 -77.90657,162.852 -77.86436,162.852 -77.82215,162.852 -77.77994,162.852 -77.73773,162.852 -77.69552,162.852 -77.65331,162.852 -77.6111))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "The PIs propose to quantify the hillslope water, solute, and carbon budgets for Taylor Valley in the McMurdo Dry Valleys, using water tracks to investigate near-surface geological processes and challenge the paradigm that shallow groundwater is minimal or non-exixtant. Water tracks are linear zones of high soil moisture that route shallow groundwater downslope in permafrost dominated soils. Four hypotheses will be tested: 1) water tracks are important pathways for water and solute transport; 2) water tracks transport more dissolved silica than streams in Taylor Valley indicating they are the primary site of chemical weathering for cold desert soils and bedrock; 3) water tracks that drain highland terrains are dominated by humidity-separated brines while water tracks that drain lowland terrains are dominated by marine aerosols; 4) water tracks are the sites of the highest terrestrial soil carbon concentrations and the strongest CO2 fluxes in Taylor Valley and their carbon content increases with soil age, while carbon flux decreases with age. To test these hypotheses the PIs will carry out a suite of field measurements supported by modeling and remote sensing. They will install shallow permafrost wells in water tracks that span the range of geological, climatological, and topographic conditions in Taylor Valley. Multifrequency electromagnetic induction sounding of the upper ~1 m of the permafrost will create the first comprehensive map of soil moisture in Taylor Valley, and will permit direct quantification of water track discharge across the valley. The carbon contents of water track soils will be measured and linked to global carbon dynamics.\n\nNon-science majors at Oregon State University will be integrated into the proposed research through a new Global Environmental Change course focusing on the scientific method in Antarctica. Three undergraduate students, members of underrepresented minorities, will be entrained in the research, will contribute to all aspects of field and laboratory science, and will present results at national meetings.\n", "east": 164.225, "geometry": ["POINT(163.5385 -77.82215)"], "keywords": "Antarctica; Chemistry:soil; Chemistry:Soil; Critical Zone; Dry Valleys; Permafrost; Sample/collection Description; Sample/Collection Description; Well Measurements", "locations": "Antarctica; Dry Valleys", "north": -77.6111, "nsf_funding_programs": null, "persons": "Levy, Joseph", "project_titles": "Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica", "projects": [{"proj_uid": "p0000407", "repository": "USAP-DC", "title": "Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0332, "title": "Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica", "uid": "600139", "west": 162.852}, {"awards": "1043657 Cassano, John", "bounds_geometry": ["POLYGON((163 -74.5,163.9 -74.5,164.8 -74.5,165.7 -74.5,166.6 -74.5,167.5 -74.5,168.4 -74.5,169.3 -74.5,170.2 -74.5,171.1 -74.5,172 -74.5,172 -74.9,172 -75.3,172 -75.7,172 -76.1,172 -76.5,172 -76.9,172 -77.3,172 -77.7,172 -78.1,172 -78.5,171.1 -78.5,170.2 -78.5,169.3 -78.5,168.4 -78.5,167.5 -78.5,166.6 -78.5,165.7 -78.5,164.8 -78.5,163.9 -78.5,163 -78.5,163 -78.1,163 -77.7,163 -77.3,163 -76.9,163 -76.5,163 -76.1,163 -75.7,163 -75.3,163 -74.9,163 -74.5))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "Antarctic coastal polynas are, at the same time, sea-ice free sites and \u0027sea-ice factories\u0027. They are open water surface locations where water mass transformation and densification occurs, and where atmospheric exchanges with the deep ocean circulation are established. Various models of the formation and persistence of these productive and diverse ocean ecosystems are hampered by the relative lack of in situ meteorological and physical oceanographic observations, especially during the inhospitable conditions of their formation and activity during the polar night.\n\nCharacterization of the lower atmosphere properties, air-sea surface heat fluxes and corresponding ocean hydrographic profiles of Antarctic polynyas, especially during strong wind events, is sought for a more detailed understanding of the role of polynyas in the production of latent-heat type sea ice and the formation, through sea ice brine rejection, of dense ocean bottom waters.\n\nA key technological innovation in this work continues to be the use of instrumented unmanned aircraft systems (UAS), to enable the persistent and safe observation of the interaction of light and strong katabatic wind fields, and mesocale cyclones in the Terra Nova Bay (Victoria Land, Antarctica) polynya waters during late winter and early summer time frames.\n", "east": 172.0, "geometry": ["POINT(167.5 -76.5)"], "keywords": "Antarctica; Atmosphere; Meteorology; Navigation; Oceans; Southern Ocean; Unmanned Aircraft", "locations": "Southern Ocean; Antarctica", "north": -74.5, "nsf_funding_programs": null, "persons": "Cassano, John; Palo, Scott", "project_titles": "Collaborative Research: Ocean-Ice-Atmosphere Interactions in the Terra Nova Bay Polynya, Antarctica", "projects": [{"proj_uid": "p0000417", "repository": "USAP-DC", "title": "Collaborative Research: Ocean-Ice-Atmosphere Interactions in the Terra Nova Bay Polynya, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.5, "title": "Ocean-Ice-Atmosphere Interactions in the Terra Nova Bay Polynya, Antarctica", "uid": "600125", "west": 163.0}, {"awards": "0732983 Vernet, Maria", "bounds_geometry": ["POLYGON((-66 -62,-65.3 -62,-64.6 -62,-63.9 -62,-63.2 -62,-62.5 -62,-61.8 -62,-61.1 -62,-60.4 -62,-59.7 -62,-59 -62,-59 -62.8,-59 -63.6,-59 -64.4,-59 -65.2,-59 -66,-59 -66.8,-59 -67.6,-59 -68.4,-59 -69.2,-59 -70,-59.7 -70,-60.4 -70,-61.1 -70,-61.8 -70,-62.5 -70,-63.2 -70,-63.9 -70,-64.6 -70,-65.3 -70,-66 -70,-66 -69.2,-66 -68.4,-66 -67.6,-66 -66.8,-66 -66,-66 -65.2,-66 -64.4,-66 -63.6,-66 -62.8,-66 -62))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems. A profound transformation in ecosystem structure and function is occurring in coastal waters of the western Weddell Sea, with the collapse of the Larsen B ice shelf. This transformation appears to be yielding a redistribution of energy flow between chemoautotrophic and photosynthetic production, and to be causing the rapid demise of the extraordinary seep ecosystem discovered beneath the ice shelf. This event provides an ideal opportunity to examine fundamental aspects of ecosystem transition associated with climate change. We propose to test the following hypotheses to elucidate the transformations occurring in marine ecosystems as a consequence of the Larsen B collapse: (1) The biogeographic isolation and sub-ice shelf setting of the Larsen B seep has led to novel habitat characteristics, chemoautotrophically dependent taxa and functional adaptations. (2) Benthic communities beneath the former Larsen B ice shelf are fundamentally different from assemblages at similar depths in the Weddell sea-ice zone, and resemble oligotrophic deep-sea communities. Larsen B assemblages are undergoing rapid change. (3) The previously dark, oligotrophic waters of the Larsen B embayment now support a thriving phototrophic community, with production rates and phytoplankton composition similar to other productive areas of the Weddell Sea. To document rapid changes occurring in the Larsen B ecosystem, we will use a remotely operated vehicle, shipboard samplers, and moored sediment traps. We will characterize microbial, macrofaunal and megafaunal components of the seep community; evaluate patterns of surface productivity, export flux, and benthic faunal composition in areas previously covered by the ice shelf, and compare these areas to the open sea-ice zone. These changes will be placed within the geological, glaciological and climatological context that led to ice-shelf retreat, through companion research projects funded in concert with this effort. Together these projects will help predict the likely consequences of ice-shelf collapse to marine ecosystems in other regions of Antarctica vulnerable to climate change. The research features international collaborators from Argentina, Belgium, Canada, Germany, Spain and the United Kingdom. The broader impacts include participation of a science writer; broadcast of science segments by members of the Jim Lehrer News Hour (Public Broadcasting System); material for summer courses in environmental change; mentoring of graduate students and postdoctoral fellows; and showcasing scientific activities and findings to students and public through podcasts.\n", "east": -59.0, "geometry": ["POINT(-62.5 -66)"], "keywords": "Antarctica; Antarctic Peninsula; Araon1304; Biota; LARISSA; Larsen B Ice Shelf; NBP1001; NBP1203; Oceans; Physical Oceanography; Southern Ocean; Weddell Sea", "locations": "Larsen B Ice Shelf; Southern Ocean; Antarctic Peninsula; Antarctica; Weddell Sea", "north": -62.0, "nsf_funding_programs": null, "persons": "Vernet, Maria", "project_titles": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans", "projects": [{"proj_uid": "p0000101", "repository": "USAP-DC", "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LARISSA", "south": -70.0, "title": "Abrupt Environmental Change in the Larsen Ice Shelf System (LARISSA) - Marine Ecosystems", "uid": "600073", "west": -66.0}, {"awards": "0944686 Kieber, David", "bounds_geometry": ["POLYGON((-160 -68,-159 -68,-158 -68,-157 -68,-156 -68,-155 -68,-154 -68,-153 -68,-152 -68,-151 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-151 -78,-152 -78,-153 -78,-154 -78,-155 -78,-156 -78,-157 -78,-158 -78,-159 -78,-160 -78,-160 -77,-160 -76,-160 -75,-160 -74,-160 -73,-160 -72,-160 -71,-160 -70,-160 -69,-160 -68))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Spectacular blooms of Phaeocystis antarctica in the Ross Sea, Antarctica are the source of some of the world\u0027s highest concentrations of dimethylsulfoniopropionate (DMSP) and its volatile degradation product, dimethylsulfide (DMS). The flux of DMS from the oceans to the atmosphere in this region and its subsequent gas phase oxidation generates aerosols that have a strong influence on cloud properties and possibly climate. In the oceans, DMS and DMSP are quantitatively significant components of the carbon, sulfur, and energy flows in marine food webs, especially in the Ross Sea. Despite its central role in carbon and sulfur biogeochemistry in the Ross Sea, surprisingly little is known about the physiological functions of DMSP in P. antarctica. The research will isolate and characterize DMSP lyases from P. antarctica, with the goal of obtaining amino acid and gene sequence information on these important enzymes. The physiological studies will focus on the effects of varying intensities of photosynthetically active radiation, with and without ultraviolet radiation as these are factors that we have found to be important controls on DMSP and DMS dynamics. The research also will examine the effects of prolonged darkness on the dynamics of DMSP and related compounds in P. antarctica, as survival of this species during the dark Antarctic winter and at sub-euphotic depths appears to be an important part of the Phaeocystis\u0027 ecology. A unique aspect of this work is the focus on measurements of intracellular MSA, which if detected, would provide strong evidence for in vivo radical scavenging functions for methyl sulfur compounds. The study will advance understanding of what controls DMSP cycling and ultimately DMS emissions from the Ross Sea and also provide information on what makes P. antarctica so successful in this extreme environment. The research will directly benefit and build on several interrelated ocean-atmosphere programs including the International Surface Ocean Lower Atmosphere Study (SOLAS) program. The PIs will participate in several activities involving K-12 education, High School teacher training, public education and podcasting through the auspices of the Dauphin Island Sea Lab Discovery Hall program and SUNY ESF. Two graduate students will be employed full time, and six undergraduates (2 each summer) will be trained as part of this project.\n", "east": -150.0, "geometry": ["POINT(-155 -73)"], "keywords": "Biota; Ross Sea; Southern Ocean", "locations": "Ross Sea; Southern Ocean", "north": -68.0, "nsf_funding_programs": null, "persons": "Kieber, David John", "project_titles": "Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "projects": [{"proj_uid": "p0000085", "repository": "USAP-DC", "title": "Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "uid": "600117", "west": -160.0}, {"awards": "0839053 Ackley, Stephen", "bounds_geometry": ["POLYGON((-180 -67.05,-170.9866 -67.05,-161.9732 -67.05,-152.9598 -67.05,-143.9464 -67.05,-134.933 -67.05,-125.9196 -67.05,-116.9062 -67.05,-107.8928 -67.05,-98.8794 -67.05,-89.866 -67.05,-89.866 -68.1033,-89.866 -69.1566,-89.866 -70.2099,-89.866 -71.2632,-89.866 -72.3165,-89.866 -73.3698,-89.866 -74.4231,-89.866 -75.4764,-89.866 -76.5297,-89.866 -77.583,-98.8794 -77.583,-107.8928 -77.583,-116.9062 -77.583,-125.9196 -77.583,-134.933 -77.583,-143.9464 -77.583,-152.9598 -77.583,-161.9732 -77.583,-170.9866 -77.583,180 -77.583,178.57 -77.583,177.14 -77.583,175.71 -77.583,174.28 -77.583,172.85 -77.583,171.42 -77.583,169.99 -77.583,168.56 -77.583,167.13 -77.583,165.7 -77.583,165.7 -76.5297,165.7 -75.4764,165.7 -74.4231,165.7 -73.3698,165.7 -72.3165,165.7 -71.2632,165.7 -70.2099,165.7 -69.1566,165.7 -68.1033,165.7 -67.05,167.13 -67.05,168.56 -67.05,169.99 -67.05,171.42 -67.05,172.85 -67.05,174.28 -67.05,175.71 -67.05,177.14 -67.05,178.57 -67.05,-180 -67.05))"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "Several aspect of the seasonal melting and reformation cycle of Antarctic sea ice appear to be divergent from those occurring in the Arctic. This is most clearly demonstrated by the dramatic diminishing extent and thinning of the Arctic sea ice, to be contrasted to the changes in Antarctic sea-ice extent, which recently (decadaly) shows small increases. Current climate models do not resolve this discrepancy which likely results from both a lack of relevant observational sea-ice data in the Antarctic, along with inadequacies in the physical parameterization of sea-ice properties in climate models. Researchers will take advantage of the cruise track of the I/B Oden during transit through the Antarctic sea-ice zones in the region of the Bellingshausen, Amundsen and Ross (BAR) seas on a cruise to McMurdo Station. Because of its remoteness and inaccessibility, the BAR region is of considerable scientific interest as being one of the last under described and perhaps unexploited marine ecosystems left on the planet. A series of on station and underway observations of sea ice properties will be undertaken, thematically linked to broader questions of summer ice survival and baseline physical properties (e.g. estimates of heat and salt fluxes). In situ spatiotemporal variability of sea-ice cover extent, thickness and snow cover depths will be observed.\n", "east": 165.7, "geometry": ["POINT(-142.083 -72.3165)"], "keywords": "Ice Core Records; Oceans; Oden; OSO1011; Sea Ice; Sea Ice Salinity; Sea Ice Thickness; Southern Ocean", "locations": "Southern Ocean", "north": -67.05, "nsf_funding_programs": null, "persons": "Ackley, Stephen", "project_titles": "The Sea Ice System in Antarctic Summer, Oden Southern Ocean Expedition (OSO 2010-11)", "projects": [{"proj_uid": "p0000676", "repository": "USAP-DC", "title": "The Sea Ice System in Antarctic Summer, Oden Southern Ocean Expedition (OSO 2010-11)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.583, "title": "The Sea Ice System in Antarctic Summer, Oden Southern Ocean Expedition (OSO 2010-11)", "uid": "600106", "west": -89.866}, {"awards": "1043779 Mellish, Jo-Ann", "bounds_geometry": ["POLYGON((165.83333 -77.51528,165.923331 -77.51528,166.013332 -77.51528,166.103333 -77.51528,166.193334 -77.51528,166.283335 -77.51528,166.373336 -77.51528,166.463337 -77.51528,166.553338 -77.51528,166.643339 -77.51528,166.73334 -77.51528,166.73334 -77.55153,166.73334 -77.58778,166.73334 -77.62403,166.73334 -77.66028,166.73334 -77.69653,166.73334 -77.73278,166.73334 -77.76903,166.73334 -77.80528,166.73334 -77.84153,166.73334 -77.87778,166.643339 -77.87778,166.553338 -77.87778,166.463337 -77.87778,166.373336 -77.87778,166.283335 -77.87778,166.193334 -77.87778,166.103333 -77.87778,166.013332 -77.87778,165.923331 -77.87778,165.83333 -77.87778,165.83333 -77.84153,165.83333 -77.80528,165.83333 -77.76903,165.83333 -77.73278,165.83333 -77.69653,165.83333 -77.66028,165.83333 -77.62403,165.83333 -77.58778,165.83333 -77.55153,165.83333 -77.51528))"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "Despite being an essential physiological component of homeotherm life in polar regions, little is known about the energetic requirements for thermoregulation in either air or water for high- latitude seals. In a joint field and modeling study, the principal investigators will quantify these costs for the Weddell seal under both ambient air and water conditions. The field research will include innovative heat flux, digestive and locomotor cost telemetry on 40 free-ranging seals combined with assessments of animal health (morphometrics, hematology and clinical chemistry panels), quantity (ultrasound) and quality (tissue biopsy) of blubber insulation, and determination of surface skin temperature patterns (infrared thermography). Field-collected data will be combined with an established individual based computational energetics model to define cost-added thresholds in body condition for different body masses. This study will fill a major knowledge gap by providing data essential to modeling all aspects of pinniped life history, in particular for ice seals. Such parameterization of energetic cost components will be essential for the accurate modeling of responses by pinnipeds to environmental variance, including direct and indirect effects driven by climate change. The study also will provide extensive opportunities in polar field work, animal telemetry, biochemical analyses and computational modeling for up to three undergraduate students and one post-doctoral researcher. Integrated education and outreach efforts will educate the public (K-12 through adult) on the importance of quantifying energetic costs of thermoregulation for marine mammals and the need to understand responses of species to environmental variance. This effort will include a custom-built, interactive hands-on mobile exhibit, and development of content for an Ocean Today kiosk.\n", "east": 166.73334, "geometry": ["POINT(166.283335 -77.69653)"], "keywords": "Antarctica; Biota; Oceans; Ross Sea; Sea Ice; Seals; Sea Surface; Southern Ocean", "locations": "Southern Ocean; Ross Sea; Sea Surface; Antarctica", "north": -77.51528, "nsf_funding_programs": null, "persons": "Mellish, Jo-Ann", "project_titles": "Collaborative Research: THERMOREGULATION IN FREE-LIVING ANTARCTIC SEALS: THE MISSING LINK IN EFFECTIVE ECOLOGICAL MODELING", "projects": [{"proj_uid": "p0000343", "repository": "USAP-DC", "title": "Collaborative Research: THERMOREGULATION IN FREE-LIVING ANTARCTIC SEALS: THE MISSING LINK IN EFFECTIVE ECOLOGICAL MODELING"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.87778, "title": "Thermoregulation in Free-Living Antarctic Seals: The Missing Link in Effective Ecological Modeling", "uid": "600130", "west": 165.83333}, {"awards": "0838914 Wannamaker, Philip", "bounds_geometry": ["POLYGON((141.01732 -82.13,144.910279 -82.13,148.803238 -82.13,152.696197 -82.13,156.589156 -82.13,160.482115 -82.13,164.375074 -82.13,168.268033 -82.13,172.160992 -82.13,176.053951 -82.13,179.94691 -82.13,179.94691 -82.351835,179.94691 -82.57367,179.94691 -82.795505,179.94691 -83.01734,179.94691 -83.239175,179.94691 -83.46101,179.94691 -83.682845,179.94691 -83.90468,179.94691 -84.126515,179.94691 -84.34835,176.053951 -84.34835,172.160992 -84.34835,168.268033 -84.34835,164.375074 -84.34835,160.482115 -84.34835,156.589156 -84.34835,152.696197 -84.34835,148.803238 -84.34835,144.910279 -84.34835,141.01732 -84.34835,141.01732 -84.126515,141.01732 -83.90468,141.01732 -83.682845,141.01732 -83.46101,141.01732 -83.239175,141.01732 -83.01734,141.01732 -82.795505,141.01732 -82.57367,141.01732 -82.351835,141.01732 -82.13))"], "date_created": "Sun, 01 Jan 2012 00:00:00 GMT", "description": "The investigators will examine competing hypotheses for the mechanism of extension and creation of the Transantarctic Mountains, and evolution of the thermal regimes of rifted West Antarctica and stable East Antarctica using magnetotelluric (MT) profiles. Surrounded almost entirely by ocean ridges, Antarctica is a special tectonic situation because of the need to make accommodation space for rifting in the Transantarctic region. In the MT method, temporal variations in the Earth\u0027s natural electromagnetic field are used as source fields to probe the electrical resistivity structure in the depth range of 1 to 200 km, or more. Geophysical methods, such as MT, are appropriate in Antarctica because of the predominance of thick ice cover over most of the Continent and the difficult operating environment. The proposed effort will consist of approximately 50 sites over a distance approaching 500 km with a 10 km average spacing, oriented normal to the Transantarctic Mountains (TAM), in the Beardmore glacier area. High quality MT soundings will be collected over thick ice sheets using a custom electrode preamp design, updated from previous Antarctic projects. Data acquisition will take place over two field seasons. The primary goals are three-fold: to establish the location of the deeper tectonic transition between East and West Antarctica that may be offset from the physiographic transition at the surface, using deep resistivity structure distinguish between modes of extensional upwelling and magmatism that may be vertically non-uniform, depth and magnitude of quasi-layered deep crustal low resistivity, particularly below West Antarctica, will be used to estimate crustal heat flux into the ice sheet base.\n", "east": 179.94691, "geometry": ["POINT(160.482115 -83.239175)"], "keywords": "Antarctica; Magnetotelluric; Potential Field; Solid Earth; Transantarctic Mountains", "locations": "Antarctica; Transantarctic Mountains", "north": -82.13, "nsf_funding_programs": null, "persons": "Wannamaker, Philip", "project_titles": "Rift Mechanisms and Thermal Regime of the Lithosphere across Beardmore Glacier Region, Central Transantarctic Mountains, from Magnetotelluric Measurements", "projects": [{"proj_uid": "p0000247", "repository": "USAP-DC", "title": "Rift Mechanisms and Thermal Regime of the Lithosphere across Beardmore Glacier Region, Central Transantarctic Mountains, from Magnetotelluric Measurements"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.34835, "title": "Rift Mechanisms and Thermal Regime of the Lithosphere across Beardmore Glacier Region, Central Transantarctic Mountains, from Magnetotelluric Measurements", "uid": "600102", "west": 141.01732}, {"awards": "0739464 Cassano, John", "bounds_geometry": ["POLYGON((160 -74.5,161.5 -74.5,163 -74.5,164.5 -74.5,166 -74.5,167.5 -74.5,169 -74.5,170.5 -74.5,172 -74.5,173.5 -74.5,175 -74.5,175 -74.9,175 -75.3,175 -75.7,175 -76.1,175 -76.5,175 -76.9,175 -77.3,175 -77.7,175 -78.1,175 -78.5,173.5 -78.5,172 -78.5,170.5 -78.5,169 -78.5,167.5 -78.5,166 -78.5,164.5 -78.5,163 -78.5,161.5 -78.5,160 -78.5,160 -78.1,160 -77.7,160 -77.3,160 -76.9,160 -76.5,160 -76.1,160 -75.7,160 -75.3,160 -74.9,160 -74.5))"], "date_created": "Sun, 01 Jan 2012 00:00:00 GMT", "description": "Antarctic polynyas are the ice free zones often persisting in continental sea ice. Characterization of the lower atmosphere properties, air-sea surface heat fluxes and corresponding ocean depth profiles of Antarctic polynyas, especially during strong wind events, is needed for a more detailed understanding of the role of polynya in the production of latent-heat type sea ice and the formation, through brine rejection, of dense ocean bottom waters. Broader impacts: A key technological innovation, the use of instrumented uninhabited aircraft systems (UAS), will be employed to enable the persistent and safe observation of the interaction of light and strong katabatic wind fields with the Terra Nova Bay (Victoria Land, Antarctica) polynya waters during late winter and early summer time frames. The use of UAS observational platforms on the continent to date has to date been modest, but demonstration of their versatility and effectiveness in surveying and observing mode is a welcome development. The projects use of UAS platforms by University of Colorado and LDEO (Columbia) researchers is both high risk, and potentially transformative for the systematic data measurement tasks that many Antarctic science applications increasingly require.", "east": 175.0, "geometry": ["POINT(167.5 -76.5)"], "keywords": "Antarctica; Atmosphere; Meteorology; Navigation; Oceans; Ross Sea; Sea Ice; Southern Ocean; Terra Nova Bay; UAV", "locations": "Southern Ocean; Terra Nova Bay; Antarctica; Ross Sea", "north": -74.5, "nsf_funding_programs": null, "persons": "Cassano, John; Maslanik, Jim", "project_titles": "Collaborative Research: Atmosphere-Ocean-Ice Interaction in a Coastal Polynya", "projects": [{"proj_uid": "p0000678", "repository": "USAP-DC", "title": "Collaborative Research: Atmosphere-Ocean-Ice Interaction in a Coastal Polynya"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.5, "title": "Atmosphere-Ocean-Ice Interaction in a Coastal Polynya", "uid": "600075", "west": 160.0}, {"awards": "0839084 Ortland, David", "bounds_geometry": ["POLYGON((-63 -59,-62 -59,-61 -59,-60 -59,-59 -59,-58 -59,-57 -59,-56 -59,-55 -59,-54 -59,-53 -59,-53 -59.6,-53 -60.2,-53 -60.8,-53 -61.4,-53 -62,-53 -62.6,-53 -63.2,-53 -63.8,-53 -64.4,-53 -65,-54 -65,-55 -65,-56 -65,-57 -65,-58 -65,-59 -65,-60 -65,-61 -65,-62 -65,-63 -65,-63 -64.4,-63 -63.8,-63 -63.2,-63 -62.6,-63 -62,-63 -61.4,-63 -60.8,-63 -60.2,-63 -59.6,-63 -59))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "The project will employ a sophisticated meteor radar at the Brazilian Antarctic station Comandante Ferraz on King George Island for a number of synergetic research efforts of high interest to the international aeronomical community. The location of the radar will be at the tip of the Antarctic Peninsula - at a critical southern latitude of 62 degrees - to fill a current measurement gap from 54 to 68 degrees south. The radar will play a key role in Antarctic and inter-hemispheric studies of neutral atmosphere dynamics, defining global mesosphere and lower thermosphere structure and variability (from 80 to 105 km) and guiding advances of models accounting for the dynamics of this high-altitude region, including general circulation models, and climate and numerical weather prediction models. The unique radar measurement sensitivity will enable studies of: (1) the large-scale circulation and planetary waves, (2) the tidal structure and variability, (3) the momentum transport by small-scale gravity waves, (4) important, but unquantified, gravity wave - tidal interactions, (5) polar mesosphere summer echoes, and (6) meteor fluxes, head echoes, and non-specular trails, a number of which exhibit high latitudinal gradients at these latitudes. This radar will support extensive collaborations with U.S. and other scientists making measurements at other Antarctic and Arctic conjugate sites, including Brazilian scientists at C. Ferraz and U.S. and international colleagues having other instrumentation in the Antarctic, Arctic, and within South America. Links to the University of Colorado in the U.S., Instituto Nacional de Pesquisas Espaciais (INPE) in Brazil and Universidad Nacional de La Plata in Argentina will provide unique research opportunities for graduate and undergraduate students in the U.S. and South America.", "east": -53.0, "geometry": ["POINT(-58 -62)"], "keywords": "Antarctica; Atmosphere; Meteorology; Meteor Radar", "locations": "Antarctica", "north": -59.0, "nsf_funding_programs": null, "persons": "Fritts, David; Janches, Diego", "project_titles": "Large- and Small-scale Dynamics and Meteor Studies in the MLT with a New-generation Meteor Radar on King George Island", "projects": [{"proj_uid": "p0000670", "repository": "USAP-DC", "title": "Large- and Small-scale Dynamics and Meteor Studies in the MLT with a New-generation Meteor Radar on King George Island"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Large- and Small-scale Dynamics and Meteor Studies in the MLT with a New-generation Meteor Radar on King George Island", "uid": "600107", "west": -63.0}, {"awards": "0542164 Taylor, Michael", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "A focused plan is presented to investigate the role and importance of short period (\u003c1 hour) gravity waves on the dynamics of the Antarctic Mesosphere and Lower Thermosphere (MLT) region (~80-100 km). Excited primarily by deep convection, frontal activity, topography, and strong wind shears in the lower atmosphere, these waves transport energy and momentum upwards where they have a profound influence on the MLT dynamics. Most of the wave forcing is expected to occur at mid-and low-latitudes where such sources predominate. However, short-period waves (exhibiting similar characteristics to mid-latitude events) have now been detected in copious quantities from research sites on the Antarctic Peninsula and the coastal regions exhibiting strong anisotropy in their dominant horizontal motions (and hence their momentum fluxes). Radiosonde measurements have established the existence of ubiquitous gravity wave activity at South Pole but, to date, there have been no detailed measurements of the properties of short-period waves at MLT heights deep in the Antarctic interior. In particular, the South Pole Station is uniquely situated to investigate the filtering and penetration of these waves into the MLT region, a substantial fraction of which may be ducted waves traveling over vast geographic distances (several thousand km). Novel image measurements at South Pole Station combined with existing measurement programs will provide an unprecedented capability for quantifying the role of these gravity waves on the regional MLT dynamics over central Antarctica. This research also contributes to the training and education of both the graduate and undergraduate students.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Atmosphere; Meteorology; Radiosonde; South Pole", "locations": "Antarctica; South Pole", "north": -60.0, "nsf_funding_programs": null, "persons": "Taylor, Michael", "project_titles": "Quantifying the Role of Short-Period Gravity Waves on the Antarctic Mesospheric Dynamics Using an Advanced Mesospheric Temperature Mapper", "projects": [{"proj_uid": "p0000684", "repository": "USAP-DC", "title": "Quantifying the Role of Short-Period Gravity Waves on the Antarctic Mesospheric Dynamics Using an Advanced Mesospheric Temperature Mapper"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Quantifying the Role of Short-Period Gravity Waves on the Antarctic Mesospheric Dynamics Using an Advanced Mesospheric Temperature Mapper", "uid": "600060", "west": -180.0}, {"awards": "0636319 Shaw, Timothy", "bounds_geometry": ["POLYGON((-51.9201 -57.5061,-50.99447 -57.5061,-50.06884 -57.5061,-49.14321 -57.5061,-48.21758 -57.5061,-47.29195 -57.5061,-46.36632 -57.5061,-45.44069 -57.5061,-44.51506 -57.5061,-43.58943 -57.5061,-42.6638 -57.5061,-42.6638 -58.03449,-42.6638 -58.56288,-42.6638 -59.09127,-42.6638 -59.61966,-42.6638 -60.14805,-42.6638 -60.67644,-42.6638 -61.20483,-42.6638 -61.73322,-42.6638 -62.26161,-42.6638 -62.79,-43.58943 -62.79,-44.51506 -62.79,-45.44069 -62.79,-46.36632 -62.79,-47.29195 -62.79,-48.21758 -62.79,-49.14321 -62.79,-50.06884 -62.79,-50.99447 -62.79,-51.9201 -62.79,-51.9201 -62.26161,-51.9201 -61.73322,-51.9201 -61.20483,-51.9201 -60.67644,-51.9201 -60.14805,-51.9201 -59.61966,-51.9201 -59.09127,-51.9201 -58.56288,-51.9201 -58.03449,-51.9201 -57.5061))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions:1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children\u0027s books will participate in cruises to produce an account of the expedition and a daily interactive website.", "east": -42.6638, "geometry": ["POINT(-47.29195 -60.14805)"], "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Oceans; Sea Ice; Sea Surface; Southern Ocean; Weddell Sea", "locations": "Weddell Sea; Sea Surface; Southern Ocean", "north": -57.5061, "nsf_funding_programs": null, "persons": "Shaw, Tim; Twining, Benjamin", "project_titles": "Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "projects": [{"proj_uid": "p0000511", "repository": "USAP-DC", "title": "Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -62.79, "title": "Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "uid": "600064", "west": -51.9201}, {"awards": "0836061 Dennett, Mark", "bounds_geometry": ["POLYGON((-170 -69,-163 -69,-156 -69,-149 -69,-142 -69,-135 -69,-128 -69,-121 -69,-114 -69,-107 -69,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-100 -77,-100 -78,-100 -79,-107 -79,-114 -79,-121 -79,-128 -79,-135 -79,-142 -79,-149 -79,-156 -79,-163 -79,-170 -79,-170 -78,-170 -77,-170 -76,-170 -75,-170 -74,-170 -73,-170 -72,-170 -71,-170 -70,-170 -69))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "Convincing evidence now confirms that polar regions are changing rapidly in response to human activities. Changes in sea ice extent and thickness will have profound implications for productivity, food webs and carbon fluxes at high latitudes, since sea ice biota are a significant source of biogenic matter for the ecosystem. While sea ice is often thought to be a barrier to gas exchange between the ocean and the atmosphere, it more likely functions as a source or sink for climate-active gases such as carbon dioxide and ozone-depleting organohalogens, due in part to activities of microbes embedded in the sea ice matrix. This project brings together experienced US and Swedish investigators to examine the controls by sea-ice biota on the production and degradation of key climate-active gases in the Pacific sector of the Southern Ocean. We hypothesize that 1) the physical properties of the sea-ice environment will determine the community structure and activities of the sea ice biota; 2) the productivity, biomass, physiological state and species composition of ice algae will determine the production of specific classes of organic carbon, including organohalogens; 3) heterotrophic co-metabolism within the ice will break down these compounds to some extent, depending on the microbial community structure and productivity, and 4) the sea ice to atmosphere fluxes of CO2 and organohalogens will be inversely related. This project will build close scientific collaborations between US and Swedish researchers and also train young scientists, including members of underrepresented groups. Dissemination of results will include the scientific literature, and public outreach venues including interactions with a PolarTrec teacher.", "east": -100.0, "geometry": ["POINT(-135 -74)"], "keywords": "Amundsen Sea; Antarctica; Biota; Oceans; Oden; Oden2008; Plankton; Sea Ice; Southern Ocean", "locations": "Southern Ocean; Antarctica; Amundsen Sea", "north": -69.0, "nsf_funding_programs": null, "persons": "Dennett, Mark", "project_titles": "Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota", "projects": [{"proj_uid": "p0000137", "repository": "USAP-DC", "title": "Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "Controls on Climate-Active Gases by Amundsen Sea Ice Biota", "uid": "600091", "west": -170.0}, {"awards": "0636543 Murray, Alison", "bounds_geometry": ["POLYGON((-51.98403 -57.58068,-51.042765 -57.58068,-50.1015 -57.58068,-49.160235 -57.58068,-48.21897 -57.58068,-47.277705 -57.58068,-46.33644 -57.58068,-45.395175 -57.58068,-44.45391 -57.58068,-43.512645 -57.58068,-42.57138 -57.58068,-42.57138 -58.10845,-42.57138 -58.63622,-42.57138 -59.16399,-42.57138 -59.69176,-42.57138 -60.21953,-42.57138 -60.7473,-42.57138 -61.27507,-42.57138 -61.80284,-42.57138 -62.33061,-42.57138 -62.85838,-43.512645 -62.85838,-44.45391 -62.85838,-45.395175 -62.85838,-46.33644 -62.85838,-47.277705 -62.85838,-48.21897 -62.85838,-49.160235 -62.85838,-50.1015 -62.85838,-51.042765 -62.85838,-51.98403 -62.85838,-51.98403 -62.33061,-51.98403 -61.80284,-51.98403 -61.27507,-51.98403 -60.7473,-51.98403 -60.21953,-51.98403 -59.69176,-51.98403 -59.16399,-51.98403 -58.63622,-51.98403 -58.10845,-51.98403 -57.58068))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions: 1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children\u0027s books will participate in cruises to produce an account of the expedition and a daily interactive website.", "east": -42.57138, "geometry": ["POINT(-47.277705 -60.21953)"], "keywords": "Biota; Geochemistry; NBP0902; Oceans; Physical Oceanography; Sea Ice; Southern Ocean; Weddell Sea", "locations": "Southern Ocean; Weddell Sea", "north": -57.58068, "nsf_funding_programs": null, "persons": "Murray, Alison", "project_titles": "Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "projects": [{"proj_uid": "p0000511", "repository": "USAP-DC", "title": "Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -62.85838, "title": "Free-Drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "uid": "600065", "west": -51.98403}, {"awards": "0836112 Smith, Walker", "bounds_geometry": ["POLYGON((-170 -69,-163 -69,-156 -69,-149 -69,-142 -69,-135 -69,-128 -69,-121 -69,-114 -69,-107 -69,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-100 -77,-100 -78,-100 -79,-107 -79,-114 -79,-121 -79,-128 -79,-135 -79,-142 -79,-149 -79,-156 -79,-163 -79,-170 -79,-170 -78,-170 -77,-170 -76,-170 -75,-170 -74,-170 -73,-170 -72,-170 -71,-170 -70,-170 -69))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Convincing evidence now confirms that polar regions are changing rapidly in response to human activities. Changes in sea ice extent and thickness will have profound implications for productivity, food webs and carbon fluxes at high latitudes, since sea ice biota are a significant source of biogenic matter for the ecosystem. While sea ice is often thought to be a barrier to gas exchange between the ocean and the atmosphere, it more likely functions as a source or sink for climate-active gases such as carbon dioxide and ozone-depleting organohalogens, due in part to activities of microbes embedded in the sea ice matrix. This project brings together experienced US and Swedish investigators to examine the controls by sea-ice biota on the production and degradation of key climate-active gases in the Pacific sector of the Southern Ocean. We hypothesize that 1) the physical properties of the sea-ice environment will determine the community structure and activities of the sea ice biota; 2) the productivity, biomass, physiological state and species composition of ice algae will determine the production of specific classes of organic carbon, including organohalogens; 3) heterotrophic co-metabolism within the ice will break down these compounds to some extent, depending on the microbial community structure and productivity, and 4) the sea ice to atmosphere fluxes of CO2 and organohalogens will be inversely related. This project will build close scientific collaborations between US and Swedish researchers and also train young scientists, including members of underrepresented groups. Dissemination of results will include the scientific literature, and public outreach venues including interactions with a PolarTrec teacher.\n", "east": -100.0, "geometry": ["POINT(-135 -74)"], "keywords": "Amundsen Sea; Antarctica; Chemistry:fluid; Chemistry:Fluid; CTD Data; Oceans; Oden; Oden2008; Sea Ice; Sea Surface; Southern Ocean", "locations": "Antarctica; Sea Surface; Southern Ocean; Amundsen Sea", "north": -69.0, "nsf_funding_programs": null, "persons": "Smith, Walker", "project_titles": "Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota", "projects": [{"proj_uid": "p0000137", "repository": "USAP-DC", "title": "Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "Controls on Climate-Active Gases by Amundsen Sea Ice Biota", "uid": "600092", "west": -170.0}, {"awards": "9024544 Andreas, Edgar", "bounds_geometry": ["POLYGON((-53.8 -61.2,-52.74 -61.2,-51.68 -61.2,-50.62 -61.2,-49.56 -61.2,-48.5 -61.2,-47.44 -61.2,-46.38 -61.2,-45.32 -61.2,-44.26 -61.2,-43.2 -61.2,-43.2 -62.22,-43.2 -63.24,-43.2 -64.26,-43.2 -65.28,-43.2 -66.3,-43.2 -67.32,-43.2 -68.34,-43.2 -69.36,-43.2 -70.38,-43.2 -71.4,-44.26 -71.4,-45.32 -71.4,-46.38 -71.4,-47.44 -71.4,-48.5 -71.4,-49.56 -71.4,-50.62 -71.4,-51.68 -71.4,-52.74 -71.4,-53.8 -71.4,-53.8 -70.38,-53.8 -69.36,-53.8 -68.34,-53.8 -67.32,-53.8 -66.3,-53.8 -65.28,-53.8 -64.26,-53.8 -63.24,-53.8 -62.22,-53.8 -61.2))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Location: Ice camp on perennial sea ice in the southwestern corner of the Weddell Sea, Antarctic\n\nThe first direct radiative and turbulent surface flux measurements ever made over floating Antarctic sea ice. The data are from Ice Station Weddell as it drifted in the western Weddell Sea from February to late May 1992.\n\nData Types:\n\nHourly measurements of the turbulent surface fluxes of momentum and sensible and latent heat by eddy covariance at a height of 4.65 m above snow-covered sea ice. Instruments were a 3-axis sonic anemometer/thermometer and a Lyman-alpha hygrometer.\n\nHourly, surface-level measurements of the four radiation components: in-coming and out-going longwave and shortwave radiation. Instruments were hemispherical pyranometers and pyrgeometers.\n\nHourly mean values of standard meteorological variables: air temperature, dew point temperature, wind speed and direction, barometric pressure, surface temperature. Instruments were a propeller-vane for wind speed and direction and cooled-mirror dew-point hygrometers and platinum resistance thermometers for dew-points and temperatures. Surface temperature came from a Barnes PRT-5 infrared thermometer.\n\nFlux Data\nThe entire data kit is bundled as a zip file named ISW_Flux_Data.zip\nThe main data file is comma delimited.\nThe README file is ASCII.\nThe associated reprints of publications are in pdf.\n\nRadiosounding data: On Ice Station Weddell, typically twice a day from 21 February through 4 June 1992 made with both tethered (i.e., only boundary-layer profiles) and (more rarely) free-flying sondes that did not measure wind speed. (168 soundings).\n\nISW Radiosoundings\nThe entire data kit is bundled as a zip file named ISW_Radiosounding.zip.\nThe README file is in ASCII.\nTwo summary files that include the list of sounding and the declinations are in ASCII.\nThe 168 individual sounding files are in ASCII.\nTwo supporting publications that describe the data and some analyses are in pdf.\n\nRadiosounding data collected from the Russian ship Akademic Fedorov from 26 May through 5 June 1992 at 6-hourly intervals as it approached Ice Station Weddell from the north. These soundings include wind vector, temperature, humidity, and pressure. (40 soundings)\n\nAkademic Federov Radiosoundings\nThe entire data kit is bundled as a zip file named Akad_Federov_Radiosounding.zip.\nThe README file is in ASCII.\nA summary file that lists the soundings is in ASCII.\nThe 40 individual sounding files are in ASCII.\nTwo supporting publications that describe the data and some analyses are in pdf.\n\n\nDocumentation:\n\nAndreas, E. L, and K. J. Claffey, 1995: Air-ice drag coefficients in the western Weddell Sea: 1. Values deduced from profile measurements. Journal of Geophysical Research, 100, 4821\u20134831.\n\nAndreas, E. L, K. J. Claffey, and A. P. Makshtas, 2000: Low-level atmospheric jets and inversions over the western Weddell Sea. Boundary-Layer Meteorology, 97, 459\u2013486.\n\nAndreas, E. L, R. E. Jordan, and A. P. Makshtas, 2004: Simulations of snow, ice, and near-surface atmospheric processes on Ice Station Weddell. Journal of Hydrometeorology, 5, 611\u2013624.\n\nAndreas, E. L, R. E. Jordan, and A. P. Makshtas, 2005: Parameterizing turbulent exchange over sea ice: The Ice Station Weddell results. Boundary-Layer Meteorology, 114, 439\u2013460.\n\nAndreas, E. L, P. O. G. Persson, R. E. Jordan, T. W. Horst, P. S. Guest, A. A. Grachev, and C. W. Fairall, 2010: Parameterizing turbulent exchange over sea ice in winter. Journal of Hydrometeorology, 11, 87\u2013104.\n\nClaffey, K. J., E. L Andreas, and A. P. Makshtas, 1994: Upper-air data collected on Ice Station Weddell. Special Report 94-25, U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH, 62 pp.\n\nISW Group, 1993: Weddell Sea exploration from ice station. Eos, Transactions, American Geophysical Union, 74, 121\u2013126.\n\nMakshtas, A. P., E. L Andreas, P. N. Svyaschennikov, and V. F. Timachev, 1999: Accounting for clouds in sea ice models. Atmospheric Research, 52, 77\u2013113.", "east": -43.2, "geometry": ["POINT(-48.5 -66.3)"], "keywords": "Antarctica; Atmosphere; Critical Zone; Meteorology; Oceans; Radiosounding; Southern Ocean; Weddell Sea", "locations": "Antarctica; Weddell Sea; Southern Ocean", "north": -61.2, "nsf_funding_programs": null, "persons": "Andreas, Edgar", "project_titles": "Atmospheric Boundary Layer Measurements on the Weddell Sea Drifting Station", "projects": [{"proj_uid": "p0000655", "repository": "USAP-DC", "title": "Atmospheric Boundary Layer Measurements on the Weddell Sea Drifting Station"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -71.4, "title": "Atmospheric Boundary Layer Measurements on the Weddell Sea Drifting Station", "uid": "600141", "west": -53.8}, {"awards": "0636730 Vernet, Maria", "bounds_geometry": ["POLYGON((-55 -52,-53.5 -52,-52 -52,-50.5 -52,-49 -52,-47.5 -52,-46 -52,-44.5 -52,-43 -52,-41.5 -52,-40 -52,-40 -53.3,-40 -54.6,-40 -55.9,-40 -57.2,-40 -58.5,-40 -59.8,-40 -61.1,-40 -62.4,-40 -63.7,-40 -65,-41.5 -65,-43 -65,-44.5 -65,-46 -65,-47.5 -65,-49 -65,-50.5 -65,-52 -65,-53.5 -65,-55 -65,-55 -63.7,-55 -62.4,-55 -61.1,-55 -59.8,-55 -58.5,-55 -57.2,-55 -55.9,-55 -54.6,-55 -53.3,-55 -52))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions: 1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children\u0027s books will participate in cruises to produce an account of the expedition and a daily interactive website.\n", "east": -40.0, "geometry": ["POINT(-47.5 -58.5)"], "keywords": "Antarctica; Biota; Chemistry:fluid; Chemistry:Fluid; Geochemistry; NBP0902; Oceans; Physical Oceanography; Sea Surface; Southern Ocean; Weddell Sea", "locations": "Sea Surface; Antarctica; Southern Ocean; Weddell Sea", "north": -52.0, "nsf_funding_programs": null, "persons": "Vernet, Maria", "project_titles": "Collaborative Reseach: Free-drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean.", "projects": [{"proj_uid": "p0000532", "repository": "USAP-DC", "title": "Collaborative Reseach: Free-drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean."}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Free-drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "uid": "600068", "west": -55.0}, {"awards": "0636723 Helly, John", "bounds_geometry": ["POLYGON((-55 -52,-53.5 -52,-52 -52,-50.5 -52,-49 -52,-47.5 -52,-46 -52,-44.5 -52,-43 -52,-41.5 -52,-40 -52,-40 -53.3,-40 -54.6,-40 -55.9,-40 -57.2,-40 -58.5,-40 -59.8,-40 -61.1,-40 -62.4,-40 -63.7,-40 -65,-41.5 -65,-43 -65,-44.5 -65,-46 -65,-47.5 -65,-49 -65,-50.5 -65,-52 -65,-53.5 -65,-55 -65,-55 -63.7,-55 -62.4,-55 -61.1,-55 -59.8,-55 -58.5,-55 -57.2,-55 -55.9,-55 -54.6,-55 -53.3,-55 -52))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions: 1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children\u0027s books will participate in cruises to produce an account of the expedition and a daily interactive website.", "east": -40.0, "geometry": ["POINT(-47.5 -58.5)"], "keywords": "Antarctica; NBP0902; Oceans; Physical Oceanography; Southern Ocean; Weddell Sea", "locations": "Antarctica; Southern Ocean; Weddell Sea", "north": -52.0, "nsf_funding_programs": null, "persons": "Helly, John", "project_titles": "Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "projects": [{"proj_uid": "p0000511", "repository": "USAP-DC", "title": "Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Free-Drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "uid": "600067", "west": -55.0}, {"awards": "0632168 Hulbe, Christina", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Sat, 30 May 2009 00:00:00 GMT", "description": "This data set provides the results of predictive modeling experiments on the Amundsen Sea Embayment region of Antarctica. The models examine how interactions between basal processes and ice sheet dynamics can result in abrupt reconfigurations of ice-sheets, and how those reconfigurations impact other Earth systems. The models were developed by a collaborative effort called the Community Ice Sheet Model (CISM).\n\nThe data set contains a MATLAB (.mat) native format file with time evolution of basal temperature fields from a generic ice sheet model with uniform and non-uniform heat flux, a MATLAB script for performing singular value decomposition and analysis of the model fields, and a summary of experimental results in Portable Document Format (.pdf). Data are available via FTP.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Community Ice Sheet Model; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Hulbe, Christina; Daescu, Dacian N.", "project_titles": "Collaborative Research: IPY, The Next Generation: A Community Ice Sheet Model for Scientists and Educators With Demonstration Experiments in Amundsen Sea Embayment Region", "projects": [{"proj_uid": "p0000756", "repository": "USAP-DC", "title": "Collaborative Research: IPY, The Next Generation: A Community Ice Sheet Model for Scientists and Educators With Demonstration Experiments in Amundsen Sea Embayment Region"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Singular Value Decomposition Analysis of Ice Sheet Model Output Fields", "uid": "609396", "west": -180.0}, {"awards": null, "bounds_geometry": null, "date_created": "Thu, 26 Mar 2009 00:00:00 GMT", "description": "Radium and Thorium isotope data summaries from AMLR and NBP cruises to the Antarctic in 2006 Naturally occurring radium isotopes (224Ra, 226Ra, 228Ra) were used in determining lateral mixing processes which are reported in dpm/m3. Particulate organic Carbon (POC) flux was determined through measuring Thorium (234Th) reported in dpm/kg. \n\nCruises \n AMLR (Antarctic Marine Living Resources) R/V Yuzhmorgeologiya Jan/2006: \n The research program was focused in the southern Drake Passage along the Shackelton Shelf located near the Bransfield Strait. Samples were obtained from the R/V Yuzhmorgeologiya and inflatables that were taken to island locations. \n \n Lat/Lon Bounding Box \n -62.2538Lat, -62.9966Lon \n -63.2335Lat, -59.0332Lon \n -59.9964Lat, -55.7612Lon \n -61.4995Lat, -53.9996Lon \n \n NBP (Nathaniel B. Palmer) R/V Nathaniel B. Palmer July/2006: \n The research was conducted in the same region of the Drake Passage as the AMLR cruise. Samples were obtained aboard the R/V Nathaniel B. Palmer \n \n Lat/Lon bounding box \n -60.4991Lat, -58.5613Lon \n -62.3599Lat, -58.0392Lon \n -60.2783Lat, -57.4509Lon \n -61.2683Lat, -54.2852Lon ", "east": null, "geometry": null, "keywords": null, "locations": null, "north": null, "nsf_funding_programs": null, "persons": null, "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": null, "title": "Radium and Thorium isotope data summaries from AMLR and NBP cruises to the Antarctic in 2006", "uid": "600003", "west": null}, {"awards": "0440478 Tang, Kam", "bounds_geometry": ["POINT(166.66267 -77.85067)"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "Phaeocystis Antarctica is a widely distributed phytoplankton that forms dense blooms and aggregates in the Southern Ocean. This phytoplankton and plays important roles in polar ecology and biogeochemistry, in part because it is a dominant primary producer, a main component of organic matter vertical fluxes, and the principal producer of volatile organic sulfur in the region. Yet P. Antarctica is also one of the lesser known species in terms of its physiology, life history and trophic relationships with other organisms; furthermore, information collected on other Phaeocystis species and from different locations may not be applicable to P. Antarctica in the Ross Sea. P. Antarctica occurs mainly as two morphotypes: solitary cells and mucilaginous colonies, which differ significantly in size, architecture and chemical composition. Relative dominance between solitary cells and colonies determines not only the size spectrum of the population, but also its carbon dynamics, nutrient uptake and utilization. Conventional thinking of the planktonic trophic processes is also challenged by the fact that colony formation could effectively alter the predator-prey interactions and interspecific competition. However, the factors that regulate the differences between solitary and colonial forms of P. Antarctica are not well-understood. \n\nThe research objective of this proposal is therefore to address these over-arching questions: \n1. Do P. Antarctica solitary cells and colonies differ in growth, composition and photosynthetic rates? 2. How do nutrients and grazers affect colony development and size distribution of P. Antarctica? \n3. How do nutrients and grazers act synergistically to affect the long-term population dynamics of P. Antarctica? \n\nExperiments will be conducted in the McMurdo station with natural P. Antarctica assemblages and co-occurring grazers. Laboratory experiments will be conducted to study size-specific growth and photosynthetic rates of P. Antarctica, size-specific grazing mortality due to microzooplankton and mesozooplankton, the effects of macronutrients on the (nitrogen compounds) relative dominance of solitary cells and colonies, and the effects of micronutrient (Fe) and grazing related chemical signals on P. Antarctica colony development. Because this species is of critical importance in the Southern Ocean, and because this research will provide critical information on factors that regulate the role of P.Antarctica in food webs and biogeochemical cycles, a major gap in knowledge will be addressed. This project will train two marine science Ph.D. students. The investigators will also collaborate with the School of Education and a marine science museum to communicate polar science to a broader audience.", "east": 166.66267, "geometry": ["POINT(166.66267 -77.85067)"], "keywords": "Biota; McMurdo Sound; Oceans; Phytoplankton; Ross Sea; Southern Ocean; Zooplankton", "locations": "Southern Ocean; McMurdo Sound; Ross Sea", "north": -77.85067, "nsf_funding_programs": null, "persons": "Smith, Walker; Tang, Kam", "project_titles": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial forms of Phaeocystis antarctica", "projects": [{"proj_uid": "p0000214", "repository": "USAP-DC", "title": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial forms of Phaeocystis antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.85067, "title": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial Forms of Phaeocystis Antarctica", "uid": "600043", "west": 166.66267}, {"awards": "0538683 Lal, Devendra", "bounds_geometry": ["POINT(-180 -90)"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "The principal aim of this research is to determine the precise manner in which solar activity has varied in the past 1000 years. During this period, four periods of very low solar activity have been identified: Wolf (1305-1345 AD), Spoerer (1418-1540 AD), Maunder (1645-1715), and one period of high solar activity (1100-1250 A.D.) have been deduced based on available historical records of sunspot numbers and aurora. Our proposal aims to study the solar activity during the past 1000 years in detail using a new method, based on studies of polar ice, as developed earlier (Earth and Planetary Science Letters, 234, 335-349, 2005). The method is based on the fact that greater solar activity leads to production of greater magnetic fields in the heliosphere, which reduces the primary cosmic ray flux in the near Earth environment, and vice-versa. Consequently if one can measure the primary cosmic ray flux in the near Earth space, it becomes a direct measure of the solar activity. Lal et al. (Earth and Planetary Science Letters, 234, 335-349, 2005) concluded that the best way of measuring the primary cosmic ray flux would be to measure the concentration of cosmogenic in-situ produced 14C in polar ice sheets, which was discovered by Lal et al. (Nature 346, 350-352, 1990). Following this idea Lal et al. (op. cit.) measured cosmogenic in-situ produced in 19 samples from the GISP 2 core covering time range of 375-31,250 yrs B.P. Their studies showed that there were two periods of very low solar activity in this time bracket (during 8500-9500 B.P and 27,000-32,000 B.P.), and one high solar activity period during 12,000-16,000 yrs B.P. In order to provide an independent check on the veracity of the new method, we decided to apply it to the historical period, \u003c 1000 yrs B.P. The inferred Solar activities based on the study of cosmogenic in-situ produced 14C in South Pole ice samples clearly establish that there was a period of high Solar activity during 1100-1250 A.D., and a period of very low solar activity during 1416-1534 A.D, designated as the Spoerer Minimum. These results however do not confirm the proposed dates for the Dalton and the Maunder Minimum periods, predicted to be 1795-1825 A.D. and 1654-1714 A.D. respectively. Instead, our studies show that there was a long duration period of low solar activity during 1750-1860 A.D. These results make it quite clear that we should carry out more studies to fully establish the temporal behavior of the Solar activity in the past 1000 yrs.", "east": -180.0, "geometry": ["POINT(-180 -90)"], "keywords": "Antarctica; Carbon-14; Cosmos; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Solar Activity; South Pole", "locations": "Antarctica; South Pole", "north": -90.0, "nsf_funding_programs": null, "persons": "Lal, Devendra", "project_titles": "Solar Activity during the Last Millennium, Estimated from Cosmogenic in-situ 14C in South Pole and GISP2 Ice Cores", "projects": [{"proj_uid": "p0000555", "repository": "USAP-DC", "title": "Solar Activity during the Last Millennium, Estimated from Cosmogenic in-situ 14C in South Pole and GISP2 Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Solar activity during the last millennium, estimated from cosmogenic in-situ C14 in South Pole and GISP2 ice cores", "uid": "600058", "west": -180.0}, {"awards": "0741380 Smith, Walker", "bounds_geometry": ["POLYGON((-160 -65,-154 -65,-148 -65,-142 -65,-136 -65,-130 -65,-124 -65,-118 -65,-112 -65,-106 -65,-100 -65,-100 -66.1,-100 -67.2,-100 -68.3,-100 -69.4,-100 -70.5,-100 -71.6,-100 -72.7,-100 -73.8,-100 -74.9,-100 -76,-106 -76,-112 -76,-118 -76,-124 -76,-130 -76,-136 -76,-142 -76,-148 -76,-154 -76,-160 -76,-160 -74.9,-160 -73.8,-160 -72.7,-160 -71.6,-160 -70.5,-160 -69.4,-160 -68.3,-160 -67.2,-160 -66.1,-160 -65))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "The research will examine the relative importance of the physical and chemical controls on phytoplankton dynamics and carbon flux in continental margin regions of the Southern Ocean, and elucidate mechanisms by which plankton populations and carbon export might be altered by climate change. We specifically will address (1) how the phytoplankton on the continental margins of the southern Ocean respond to spatial and temporal changes in temperature, light, iron supply, and carbon dioxide levels, (2) how these factors initiate changes in phytoplankton assemblage structure, and (3) how carbon export and the efficiency of the biological pump are impacted by the biomass and composition of the phytoplankton. Two regions of study (the Amundsen and Ross Seas) will be investigated, one well studied (Ross Sea) and one poorly described (Amundsen Sea). It is hypothesized that each region will have markedly different physical forcing, giving rise to distinct chemical conditions and therefore biological responses. As such, the comparison of the two may give us insights into the mechanisms of how Antarctic continental margins will respond under changing environmental conditions. Broader impacts include participation by an international graduate student from Brazil, outreach via seminars to the general public, collaboration with the teachers-in-residence on the cruise, development of a cruise web site and interactive email exchanges with local middle school students while at sea.", "east": -100.0, "geometry": ["POINT(-130 -70.5)"], "keywords": "Amundsen Sea; Chemistry:fluid; Chemistry:Fluid; CTD Data; Geochemistry; Oceans; Oden; OSO2007; Sea Surface; Southern Ocean", "locations": "Sea Surface; Amundsen Sea; Southern Ocean", "north": -65.0, "nsf_funding_programs": null, "persons": "Smith, Walker", "project_titles": "Small Grants for Exploratory Research - Oceanographic Research in the Amundsen and Ross Seas:", "projects": [{"proj_uid": "p0000217", "repository": "USAP-DC", "title": "Small Grants for Exploratory Research - Oceanographic Research in the Amundsen and Ross Seas:"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.0, "title": "Small Grants for Exploratory Research - Oceanographic Research in the Amundsen and Ross Seas", "uid": "600085", "west": -160.0}, {"awards": "0742057 Gallager, Scott", "bounds_geometry": ["POLYGON((-168.291 -64.846,-165.018 -64.846,-161.745 -64.846,-158.472 -64.846,-155.199 -64.846,-151.926 -64.846,-148.653 -64.846,-145.38 -64.846,-142.107 -64.846,-138.834 -64.846,-135.561 -64.846,-135.561 -66.0269,-135.561 -67.2078,-135.561 -68.3887,-135.561 -69.5696,-135.561 -70.7505,-135.561 -71.9314,-135.561 -73.1123,-135.561 -74.2932,-135.561 -75.4741,-135.561 -76.655,-138.834 -76.655,-142.107 -76.655,-145.38 -76.655,-148.653 -76.655,-151.926 -76.655,-155.199 -76.655,-158.472 -76.655,-161.745 -76.655,-165.018 -76.655,-168.291 -76.655,-168.291 -75.4741,-168.291 -74.2932,-168.291 -73.1123,-168.291 -71.9314,-168.291 -70.7505,-168.291 -69.5696,-168.291 -68.3887,-168.291 -67.2078,-168.291 -66.0269,-168.291 -64.846))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "The research will continue and extend the study in the Southern Ocean that was initiated during the Oden Southern Ocean 2006 expedition in collaboration with Swedish scientist Mellissa Chierici. We will quantify carbon flux through the food web in the marginal ice zone (MIZ) by measuring size fractionated primary and secondary production, grazing and carbon flux through nanoplankton (2-20 um), microplankton (20-200um), and mesoplankton (200-2000 um). Community structure, species abundance and size specific grazing rates will be quantified using a variety of techniques both underway and at ice stations along the MIZ. The proposed cruise track extends across the Drake Passage to the Western Antarctic Peninsula (WAP) with three station transects along a gradient from the open ocean through the marginal ice zone (MIZ) in the Bellinghausen and Amundsen Seas and into the Ross Sea Polynya. Ice stations along each transect will provide material to characterize production associated with annual ice. Underway measurements of primary and secondary production (chlorophyll, CDOM, microplankton, and mesoplankton) and hydrography (temperature, salinity, pH, DO, turbidity) will establish a baseline for future cruises and as support for other projects such as biogeochemical studies on carbon dioxide drawdown and trace metal work on primary production. The outcome of these measurements will be a description of nano to mesoplankton standing stocks, community structure, and carbon flux along the MIZ in the Bellinghausen and Amundsen Seas and the Ross Sea Polynya.", "east": -135.561, "geometry": ["POINT(-151.926 -70.7505)"], "keywords": "Amundsen Sea; Biota; Microbiology; Navigation; Oceans; Oden; OSO2007; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Southern Ocean; Amundsen Sea", "north": -64.846, "nsf_funding_programs": null, "persons": "Dennett, Mark; Gallager, Scott", "project_titles": "SGER: Primary and Secondary Production and Carbon Flux Through the Microbial Community Along the Western Antarctic Marginal Ice Zone on the Oden Southern Ocean 2007 Expeditions", "projects": [{"proj_uid": "p0000563", "repository": "USAP-DC", "title": "SGER: Primary and Secondary Production and Carbon Flux Through the Microbial Community Along the Western Antarctic Marginal Ice Zone on the Oden Southern Ocean 2007 Expeditions"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.655, "title": "SGER: Primary and Secondary Production and Carbon Flux Through the Microbial Community Along the Western Antarctic Marginal Ice Zone on the Oden Southern Ocean 2007 Expeditions", "uid": "600086", "west": -168.291}, {"awards": "0126057 Brook, Edward J.", "bounds_geometry": null, "date_created": "Tue, 16 Dec 2008 00:00:00 GMT", "description": "Ice Core Interplanetary Dust Helium Isotope Data Helium isotope data from Ice Cores at GISP2 (Greenland) and Vostok (Antarctica) as a proxy for extraterrestrial dust flux.\n", "east": null, "geometry": null, "keywords": "Antarctica; Arctic; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Lake Vostok; Paleoclimate; Vostok Ice Core", "locations": "Antarctica; Arctic; Lake Vostok", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Brook, Edward J.; Kurz, Mark D.", "project_titles": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change", "projects": [{"proj_uid": "p0000034", "repository": "USAP-DC", "title": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "GISP2 (D Core) Helium Isotopes from Interplanetary Dust", "uid": "609361", "west": null}, {"awards": null, "bounds_geometry": null, "date_created": "Tue, 14 Dec 2004 00:00:00 GMT", "description": "This data set consists of AVHRR retrievals of surface and cloud properties as well as radiative fluxes for the period 1982 - 1999 over the Arctic and Antarctic at a 25 km resolution. The images times are 1400 and 0400 (Arctic) or 0200 (Antarctic) local solar times. Resulsts are calculated on a twice-daily basis, but only monthly mean images and area-averaged values are currently online.\n\nThe standard AVHRR Polar Pathfinder (APP) product includes gridded radiances, viewing and illumination geometry, clear sky surface temperature and albedo, and three cloud masks at a 5 km resolution. We have extended the standard APP product to include all-sky surface temperature, all-sky surface albedo, cloud properties (particle phase, effective radius, optical depth, temperature and pressure), and radiative fluxes as well as cloud radiative effect (\u201cforcing\u201d). We refer to this dataset as APP-x", "east": null, "geometry": null, "keywords": null, "locations": null, "north": null, "nsf_funding_programs": null, "persons": "Key, Jeffrey R.", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": null, "title": "Extended Advanced Very High Resolution Radiometer Polar Pathfinder Satellite Product", "uid": "600021", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
APL-UW Southern Ocean Wave Glider Data from 2019/20 Mission
|
1853291 |
2025-02-17 | Girton, James |
Wave Glider Observations of Surface Fluxes and Mixed-layer Processes in the Southern Ocean |
This data file collects the initial processed versions of all upper-ocean and lower-atmosphere data streams (along with subsampled satellite and reanalysis products along the survey track) from the 2019/20 deployment of the APL-UW Wave Glider autonomous surface vehicle (SV3-153) in Drake Passage. <br/> | ["POLYGON((-70 -58,-68.8 -58,-67.6 -58,-66.4 -58,-65.2 -58,-64 -58,-62.8 -58,-61.6 -58,-60.4 -58,-59.2 -58,-58 -58,-58 -58.8,-58 -59.6,-58 -60.4,-58 -61.2,-58 -62,-58 -62.8,-58 -63.6,-58 -64.4,-58 -65.2,-58 -66,-59.2 -66,-60.4 -66,-61.6 -66,-62.8 -66,-64 -66,-65.2 -66,-66.4 -66,-67.6 -66,-68.8 -66,-70 -66,-70 -65.2,-70 -64.4,-70 -63.6,-70 -62.8,-70 -62,-70 -61.2,-70 -60.4,-70 -59.6,-70 -58.8,-70 -58))"] | ["POINT(-64 -62)"] | false | false |
2022-2023 Palmer Station terrestrial carbon fluxes - field warming experiment
|
1947562 |
2024-11-18 | van Gestel, Natasja |
Antarctica as a Model System for Responses of Terrestrial Carbon Balance to Warming |
This data set contains the raw data for measurements of carbon fluxes at four field sites along a successional gradient near Palmer Station, Antarctica. At the beginning of the experiment, field site 1 (youngest site, closest to the glacier) was approximately 2 years since deglaciation, field site 2 about 30 years since deglaciation, field site 3 about 60 years since deglaciation, and Litchfield Island: hundreds of years since deglaciation. These sites have each: 5 control plots and 5 warmed plots (warmed via open-top chambers, OTC). Carbon flux measurements were taken weekly at most sites (40 plots total). A custom chamber connected to a LI-COR 6800 was placed on a stainless steel ring. Then measurements were taken over a 90 second or 120 second interval. Measurements were taken with a transparent chamber to obtain net ecosystem exchange (NEE; micromols CO2/m2/s), and then covered with dark cloth to obtain ecosystem respiration (ER) measurements. The incoming carbon fluxes was then obtained based on the NEE and ER. | ["POLYGON((-64.0898264 -64.7704833,-64.08444765 -64.7704833,-64.07906890000001 -64.7704833,-64.07369015 -64.7704833,-64.0683114 -64.7704833,-64.06293265 -64.7704833,-64.0575539 -64.7704833,-64.05217515 -64.7704833,-64.04679639999999 -64.7704833,-64.04141765 -64.7704833,-64.0360389 -64.7704833,-64.0360389 -64.77082025,-64.0360389 -64.77115719999999,-64.0360389 -64.77149415,-64.0360389 -64.7718311,-64.0360389 -64.77216805,-64.0360389 -64.772505,-64.0360389 -64.77284195,-64.0360389 -64.7731789,-64.0360389 -64.77351585,-64.0360389 -64.7738528,-64.04141765 -64.7738528,-64.04679639999999 -64.7738528,-64.05217515 -64.7738528,-64.0575539 -64.7738528,-64.06293265 -64.7738528,-64.0683114 -64.7738528,-64.07369015 -64.7738528,-64.07906890000001 -64.7738528,-64.08444765 -64.7738528,-64.0898264 -64.7738528,-64.0898264 -64.77351585,-64.0898264 -64.7731789,-64.0898264 -64.77284195,-64.0898264 -64.772505,-64.0898264 -64.77216805,-64.0898264 -64.7718311,-64.0898264 -64.77149415,-64.0898264 -64.77115719999999,-64.0898264 -64.77082025,-64.0898264 -64.7704833))"] | ["POINT(-64.06293265 -64.77216805)"] | false | false |
Concentration and flux of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area
|
2035580 |
2024-08-15 | Carter, Austin |
Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial |
This dataset contains dust mass concentrations, coarse particle fraction, interpolated accumulation rate, and dust flux from ALHIC1903 spanning the transition from MIS 6 through 5e. | ["POINT(159.31 -76.7)"] | ["POINT(159.31 -76.7)"] | false | false |
3-km Surface Mass and Energy Budget for the Larsen C Ice Shelf
|
1543445 |
2023-05-03 | Zhang, Jing; Luo, Liping |
Collaborative Research: Present and Projected Future Forcings on Antarctic Peninsula Glaciers and Ice Shelves using the Weather Forecasting and Research (WRF) Model |
This dataset includes the 3-km resolution budget terms of surface mass balance (SMB) and surface energy budget (SEB) for the Larsen C Ice Shelf during the melting season of 2017-18. The variables include the SMB budget terms of net surface mass balance, precipitation, runoff, blowing snow erosion, surface sublimation, and blowing snow sublimation, and the SEB budget terms of net surface energy budget, downwelling and upwelling longwave radiation, surface absorbed shortwave radiation, ground heat flux, and sensible / latent heat flux. | ["POLYGON((-70.9 -65,-69.51 -65,-68.12 -65,-66.73 -65,-65.34 -65,-63.95 -65,-62.56 -65,-61.17 -65,-59.78 -65,-58.39 -65,-57 -65,-57 -65.5,-57 -66,-57 -66.5,-57 -67,-57 -67.5,-57 -68,-57 -68.5,-57 -69,-57 -69.5,-57 -70,-58.39 -70,-59.78 -70,-61.17 -70,-62.56 -70,-63.95 -70,-65.34 -70,-66.73 -70,-68.12 -70,-69.51 -70,-70.9 -70,-70.9 -69.5,-70.9 -69,-70.9 -68.5,-70.9 -68,-70.9 -67.5,-70.9 -67,-70.9 -66.5,-70.9 -66,-70.9 -65.5,-70.9 -65))"] | ["POINT(-63.95 -67.5)"] | false | false |
Remotely-sensed iceberg geometries and meltwater fluxes
|
1643455 1933764 |
2023-04-06 | Enderlin, Ellyn; Dickson, Adam; Miller, Emily; Dryak, Mariama; Oliver, Caitlin; Aberle, Rainey |
Antarctic Submarine Melt Variability from Remote Sensing of Icebergs |
This dataset includes manually-extracted iceberg geometries and meltwater fluxes from 2011-2022 WorldView digital elevation model time series for 15 study sites around Antarctica. Each file contains the coordinates, median surface elevation, density, volume, surface area, draft, and submerged area estimated for an iceberg on two different observation dates (specified in the file name). The submarine meltwater flux for each iceberg, calculated as the volume change over time corrected for surface mass balance processes and creep thinning between observation dates, is provided for each iceberg. Dates listed in file names are in YYYYMMDDhhmmss format. Site abbreviations in file names are as follows: BG = Blanchard Glacier, CG = Cadman Glacier, FG = Ferrigno Glacier, FI = Filchner Ice Shelf, HG = Heim Glacier, LA = Edgeworth Glacier (Larsen A tributary), LB = Cadman Glacier (Larsen B tributary), LG = Leonardo Glacier, MI = Mertz Ice Tongue, PT = Polar Times, RI = Ronne Ice Shelf, SG = Seller Glacier, TG = Thwaites Glacier, TI = Totten Ice Shelf, and WG = Widdowson Glacier. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
South Pole (SPC14) microparticle concentration, mass concentration, flux, particle-size-distribution mode, and aspect ratio measurements
|
1443397 |
2022-04-01 | Kreutz, Karl |
Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements |
This dataset contains particle metrics for the South Pole Ice Core (SPICEcore) intermediate core (SPC14), from the surface to 1751 m depth (~54,000 years before present [BP]). Data were collected via Klotz Abakus laser particle counter via continuous-flow-analysis (CFA), Beckman Coulter Multisizer 3 using Coulter Counter (CC) principles, and dynamic particle imaging using a FlowCAM instrument. CFA measurements were made at Dartmouth College, CC measurements were made at Colby College, and FlowCAM measurements were made at the University of Maine. | ["POINT(0 -90)"] | ["POINT(0 -90)"] | false | false |
Siple Dome Surface Energy Flux
|
1744954 |
2022-03-18 | Lubin, Dan; Ghiz, Madison |
Surface Energy Balance on West Antarctica and the Ross Ice Shelf |
This data set comprises radiative and turbulent flux components of the surface energy balance at Siple Dome, West Antarctica, measured between 21 December 2019 and 19 January 2020. Radiative fluxes were measured by Kipp & Zonen pyranometers and pyrgeometers. A Campbell Scientific open path eddy covariance system measured sensible and latent heat fluxes. An Apogee infrared sensor measured surface skin temperature. Sky conditions were observed using an ALCOR System digital all-sky camera. A StellarNet shortwave spectroradiometer system measured downwelling spectral irradiance in the wavelength range 350-1700 nm. | ["POINT(-148.81 -81.65)"] | ["POINT(-148.81 -81.65)"] | false | false |
Common-era black carbon deposition and atmospheric modeling for 6 Antarctic ice cores
|
None | 2021-07-16 | McConnell, Joseph; Chellman, Nathan | No project link provided | This dataset includes: 1) rBC concentration and flux for 6 Antarctic ice core sites (JRI_2008, JRI_D98, NUS08_7, NUS07_7, B53, and B40). 2) FLEXPART backward-model emission sensitivities for 4 Antarctic ice core sites (JRI, B40, B53, NUS07_7). 3) FLEXPART forward-model deposition for simulated biomass burning emissions from New Zealand. 4) Tie points to constrain flow model used to develop JRI_2008 chronology. | ["POLYGON((-57.7 -64.2,-46.44 -64.2,-35.18 -64.2,-23.92 -64.2,-12.66 -64.2,-1.4 -64.2,9.86 -64.2,21.12 -64.2,32.38 -64.2,43.64 -64.2,54.9 -64.2,54.9 -65.99,54.9 -67.78,54.9 -69.57,54.9 -71.36,54.9 -73.15,54.9 -74.94,54.9 -76.73,54.9 -78.52,54.9 -80.31,54.9 -82.1,43.64 -82.1,32.38 -82.1,21.12 -82.1,9.86 -82.1,-1.4 -82.1,-12.66 -82.1,-23.92 -82.1,-35.18 -82.1,-46.44 -82.1,-57.7 -82.1,-57.7 -80.31,-57.7 -78.52,-57.7 -76.73,-57.7 -74.94,-57.7 -73.15,-57.7 -71.36,-57.7 -69.57,-57.7 -67.78,-57.7 -65.99,-57.7 -64.2))"] | ["POINT(-1.4 -73.15)"] | false | false |
Red and Green Snow Algae Surface Spectra
|
None | 2020-12-21 | Khan, Alia | No project link provided | Surface spectra of red and green snow algae were collected at two sites on King George Island (KGI), the largest of the South Shetland Islands, and one site on northern Nelson Island (NI), southwest of KGI in January 2018. Optically thick (> 30cm) snow packs were prioritized for spectral albedo data acquisition and corresponding snow algae sampling in order to minimize the impact of the underlying ground on spectral albedo. Sites were also selected based on where it was possible to sample 1) a control site with relatively clean snow having no visible snow algae 2) green snow algae, 3) red snow algae and 4) mixed-phase green and red algae. At each site, duplicates of each snow type were measured with the spectrometer (except at Nelson Island where only one Mixed site was observed). All samples were collected around noon local Chilean time, when the seasonal snow pack was also receiving the most incoming solar radiation. Spectral reflectance measurements were collected with an Analytical Spectral Devices (ASD) FieldSpec® 4 hyperspectral spectroradiometer (Malvern Panalytical, USA) between 350 and 2500 nm. The sensor was equipped with a light-diffusing fore optic remote cosine receptor (RCR) to measure planar irradiance. We selected three different locations and collected spectral measurements for two samples each of green, red, and mixed snow algae patches, and two algae-free or “clean” snow areas, for a total of 24 measurement sites (2 of each of the 4 types across the 3 sites). Areas with snowmelt ponding were avoided. The RCR was placed upward to collect the downwelling planar irradiance incident upon the snow surface (Ed) and the upwelling planar irradiance reflected from the snow (Eu). Measurements were collected in triplicate. The operator was located in a direction 90 - 135º away from the sun to minimize solar glint and self-shadowing. Snow conditions did not allow for a tripod, so nadir orientation was determined by practice with a level and by visual assistance of an observer. Since the measurements were carried out under heavily overcast conditions where irradiance is dominated by the diffuse insolation with no solar azimuthal dependence, the influence of slight tilt when measuring the downwelling irradiance (i.e. the cosine error) is expected to be minor (<0.5%). The reflectance measurements were taken prior to excavation of snow sample for laboratory analysis. Post-processing of the data involved computing spectral reflectance, as the ratio of the upwelling flux normalized to the downwelling flux for each wavelength. The mean of the three measurements was calculated for each site. Ambient light conditions were too low in the short-wave infrared wavelengths for getting adequate signal-to-noise for our measurements. In post-processing, reflectance values were truncated at 1350 nm for this analysis. This value represents the limit often used for RF calculations in other studies. In addition, empirical correction coefficients were used to correct for temperature related radiometric inter-channel steps using the procedure and MATLAB code from Hueni et al. (2017). This removed the step function near 1000 nm for most of the spectra, although not fully for all spectra. However, this discontinuity does not significantly impact results or albedo calculations. Albedo was calculated as the integrated R in two different intervals: visible (400-700 nm) and infrared (700-1300 nm). | ["POINT(-58 -62)"] | ["POINT(-58 -62)"] | false | false |
Concentrations and Particle Size Distributions of Aerosol Trace Elements
|
1341494 |
2020-08-24 | Gao, Yuan |
Quantifying Atmospheric Iron Properties over West Antarctic Peninsula |
The dataset includes the concentrations and particle size distributions of aerosol trace elements (TEs) through the sampling of size-segregated aerosol particles made at Palmer Station, Antarctic Peninsula, which took place in the austral summer of 2016-2017. The estimated dry deposition fluxes of these elements were derived from these new results. | ["POINT(64 64)"] | ["POINT(64 64)"] | false | false |
Ice Diver Madison Run #1 March 1, 2020
|
1745049 |
2020-08-03 | Tyler, Scott W. |
Collaborative Research: Toward Dense Observation of Geothermal Fluxes in Antarctica Via Logistically Light Instrument Deployment |
This dataset consists of individual Distributed Temperature Sensing (DTS) traces taken during the first melt test of the Ice Diver drill. The data consists of header information about the instrument, time of sampling and follows with distance down the fiber, Stokes return, anti-Stokes return and estimated temperature in C. Each file represents a 30 second integration of return signals, and the spatial sampling of the fiber was 12.5 cm. Two channels are included and represent data from two individual multimode fibers within a stainless steel tube cable. | ["POLYGON((-180 43.0731,-153.05989 43.0731,-126.11978 43.0731,-99.17967 43.0731,-72.23956 43.0731,-45.29945 43.0731,-18.35934 43.0731,8.58077 43.0731,35.52088 43.0731,62.46099 43.0731,89.4011 43.0731,89.4011 43.07309,89.4011 43.07308,89.4011 43.07307,89.4011 43.07306,89.4011 43.07305,89.4011 43.07304,89.4011 43.07303,89.4011 43.07302,89.4011 43.07301,89.4011 43.073,62.46099 43.073,35.52088 43.073,8.58077 43.073,-18.35934 43.073,-45.29945 43.073,-72.23956 43.073,-99.17967 43.073,-126.11978 43.073,-153.05989 43.073,180 43.073,170.94012 43.073,161.88024 43.073,152.82036 43.073,143.76048 43.073,134.7006 43.073,125.64072 43.073,116.58084 43.073,107.52096 43.073,98.46108 43.073,89.4012 43.073,89.4012 43.07301,89.4012 43.07302,89.4012 43.07303,89.4012 43.07304,89.4012 43.07305,89.4012 43.07306,89.4012 43.07307,89.4012 43.07308,89.4012 43.07309,89.4012 43.0731,98.46108 43.0731,107.52096 43.0731,116.58084 43.0731,125.64072 43.0731,134.7006 43.0731,143.76048 43.0731,152.82036 43.0731,161.88024 43.0731,170.94012 43.0731,-180 43.0731))"] | ["POINT(-90.59885 43.07305)"] | false | false |
Eddy covariance air-sea momentum, heat, and carbon dioxide fluxes in the Southern Ocean from the N.B. Palmer cruise NBP1210
|
1043623 |
2020-05-01 | Miller, Scott; Butterworth, Brian |
Air-Sea Fluxes of Momentum, Heat, and Carbon Dioxide at High Wind Speeds in the Southern Ocean |
This dataset contains meteorological and air-sea flux data (momentum, heat, and CO2 fluxes; CO2 gas transfer velocity) collected during the the Nathaniel B. Palmer expedition NBP1210 conducted in 2013. The files are of XLS format | ["POLYGON((-180 -57,-169.5 -57,-159 -57,-148.5 -57,-138 -57,-127.5 -57,-117 -57,-106.5 -57,-96 -57,-85.5 -57,-75 -57,-75 -59.1,-75 -61.2,-75 -63.3,-75 -65.4,-75 -67.5,-75 -69.6,-75 -71.7,-75 -73.8,-75 -75.9,-75 -78,-85.5 -78,-96 -78,-106.5 -78,-117 -78,-127.5 -78,-138 -78,-148.5 -78,-159 -78,-169.5 -78,180 -78,178.3 -78,176.6 -78,174.9 -78,173.2 -78,171.5 -78,169.8 -78,168.1 -78,166.4 -78,164.7 -78,163 -78,163 -75.9,163 -73.8,163 -71.7,163 -69.6,163 -67.5,163 -65.4,163 -63.3,163 -61.2,163 -59.1,163 -57,164.7 -57,166.4 -57,168.1 -57,169.8 -57,171.5 -57,173.2 -57,174.9 -57,176.6 -57,178.3 -57,-180 -57))"] | ["POINT(-136 -67.5)"] | false | false |
Eddy covariance air-sea momentum, heat, and carbon dioxide fluxes in the Southern Ocean from the N.B. Palmer cruise NBP1402
|
1043623 |
2020-05-01 | Miller, Scott; Butterworth, Brian |
Air-Sea Fluxes of Momentum, Heat, and Carbon Dioxide at High Wind Speeds in the Southern Ocean |
This dataset contains meteorological and air-sea flux data (momentum, heat, and CO2 fluxes; CO2 gas transfer velocity) collected during the the Nathaniel B. Palmer expedition NBP1402 conducted in 2014. The files are of XLS format. | ["POLYGON((117.5 -47,120.35 -47,123.2 -47,126.05 -47,128.9 -47,131.75 -47,134.6 -47,137.45 -47,140.3 -47,143.15 -47,146 -47,146 -49.04,146 -51.08,146 -53.12,146 -55.16,146 -57.2,146 -59.24,146 -61.28,146 -63.32,146 -65.36,146 -67.4,143.15 -67.4,140.3 -67.4,137.45 -67.4,134.6 -67.4,131.75 -67.4,128.9 -67.4,126.05 -67.4,123.2 -67.4,120.35 -67.4,117.5 -67.4,117.5 -65.36,117.5 -63.32,117.5 -61.28,117.5 -59.24,117.5 -57.2,117.5 -55.16,117.5 -53.12,117.5 -51.08,117.5 -49.04,117.5 -47))"] | ["POINT(131.75 -57.2)"] | false | false |
Cosmogenic nuclide data from glacial deposits along the Liv Glacier coast
|
1443346 |
2019-11-21 | Stone, John |
Collaborative Research: High-resolution Reconstruction of Holocene Deglaciation in the Southern Ross Embayment |
This data set contains measurements of cosmic-ray-produced Be-10 in quartz from glacial erratics and bedrock at sites along and adjacent to Liv Glacier and Amundsen Glacier in the southern Transantarctic Mountains. Samples were collected during the 2016-17 and 2017-18 field seasons working from remote camps along the coast. Locations were determined by hand-held GPS. Elevations are based on barometric altimetry corrected for daily drift and referenced to precise (geodetic) GPS benchmarks established over a range of altitudes at each site. Horizon geometry and the resulting topographic shielding of the cosmic ray flux was determined from vertically-oriented full-sky (fisheye) photographs at each sample location. Samples were processed at the University of Washington Cosmogenic Nuclide Laboratory using established procedures for mineral separation, dissolution, beryllium extraction and purification, described at http://depts.washington.edu/cosmolab/chem.shtml. Beryllium isotope ratios were measured at the Lawrence Livermore Center for Accelerator Mass Spectrometry (LLNL-CAMS) relative to the KNSTD-Be-01-5-4 standard, assuming a standard Be-10/Be-9 ratio of 2.851E-12 (07KNSTD normalization). Data are reported as input for the online CRONUS cosmogenic nuclide calculator (V3, current at the time of submission in November 2019). Exposure ages can be obtained by entering the data into the CRONUS calculator, at: http://hess.ess.washington.edu/math/v3/v3_age_in.html . Data for each sample consists of two lines of input parameters, as follows: {Sample_name, Latitude (DD), Longitude (DD), Altitude (m asl), Scaling_function, Thickness (cm), Density (g/cm^3), Horizon_correction, Erosion_rate (cm/yr), Year_sampled} {Sample_name, Nuclide (in this case Be-10), Target_mineral (quartz), Be-10_concentration (atom/g), Error_Be-10_concentration (atom/g), Normalization} Further information about the V3 input format is given at: http://hess.ess.washington.edu/math/docs/v3/v3_input_explained.html | ["POLYGON((-174 -84.5,-172.4 -84.5,-170.8 -84.5,-169.2 -84.5,-167.6 -84.5,-166 -84.5,-164.4 -84.5,-162.8 -84.5,-161.2 -84.5,-159.6 -84.5,-158 -84.5,-158 -84.63,-158 -84.76,-158 -84.89,-158 -85.02,-158 -85.15,-158 -85.28,-158 -85.41,-158 -85.54,-158 -85.67,-158 -85.8,-159.6 -85.8,-161.2 -85.8,-162.8 -85.8,-164.4 -85.8,-166 -85.8,-167.6 -85.8,-169.2 -85.8,-170.8 -85.8,-172.4 -85.8,-174 -85.8,-174 -85.67,-174 -85.54,-174 -85.41,-174 -85.28,-174 -85.15,-174 -85.02,-174 -84.89,-174 -84.76,-174 -84.63,-174 -84.5))"] | ["POINT(-166 -85.15)"] | false | false |
Automatic Weather Station Pine Island Glacier
|
0732869 1739003 |
2019-10-15 | Mojica Moncada, Jhon F.; Holland, David |
Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica |
Automatic Weather Station, located on Pine Island Glacier. Data set from 2008-2015. | ["POLYGON((-100 -75,-99.9 -75,-99.8 -75,-99.7 -75,-99.6 -75,-99.5 -75,-99.4 -75,-99.3 -75,-99.2 -75,-99.1 -75,-99 -75,-99 -75.05,-99 -75.1,-99 -75.15,-99 -75.2,-99 -75.25,-99 -75.3,-99 -75.35,-99 -75.4,-99 -75.45,-99 -75.5,-99.1 -75.5,-99.2 -75.5,-99.3 -75.5,-99.4 -75.5,-99.5 -75.5,-99.6 -75.5,-99.7 -75.5,-99.8 -75.5,-99.9 -75.5,-100 -75.5,-100 -75.45,-100 -75.4,-100 -75.35,-100 -75.3,-100 -75.25,-100 -75.2,-100 -75.15,-100 -75.1,-100 -75.05,-100 -75))"] | ["POINT(-99.5 -75.25)"] | false | false |
Cuticle morphology and oxygen gradients of Antarctic sea spiders
|
1341485 |
2018-12-22 | Woods, H. Arthur; Arthur Woods, H. |
Collaborative Research: Body Size, Oxygen, and Vulnerability to Climate Change in Antarctic Pycnogonida |
Raw data from Lane, SJ, AL Moran, CM Shishido, BW Tobalske, HA Woods (2018) Cuticular gas exchange by Antarctic sea spiders. Journal of Experimental Biology. jeb.177568 doi: 10.1242/jeb.177568. The file contains data on pore morphology, cuticle thickness, oxygen gradients across the cuticle, and estimated resistances of the cuticle to oxygen flux. Most of the sea spiders were collected near McMurdo Station, with a few extras collected at New Harbor, Antarctica. | ["POLYGON((163.85 -77.6,164.134 -77.6,164.418 -77.6,164.702 -77.6,164.986 -77.6,165.27 -77.6,165.554 -77.6,165.838 -77.6,166.122 -77.6,166.406 -77.6,166.69 -77.6,166.69 -77.624,166.69 -77.648,166.69 -77.672,166.69 -77.696,166.69 -77.72,166.69 -77.744,166.69 -77.768,166.69 -77.792,166.69 -77.816,166.69 -77.84,166.406 -77.84,166.122 -77.84,165.838 -77.84,165.554 -77.84,165.27 -77.84,164.986 -77.84,164.702 -77.84,164.418 -77.84,164.134 -77.84,163.85 -77.84,163.85 -77.816,163.85 -77.792,163.85 -77.768,163.85 -77.744,163.85 -77.72,163.85 -77.696,163.85 -77.672,163.85 -77.648,163.85 -77.624,163.85 -77.6))"] | ["POINT(165.27 -77.72)"] | false | false |
The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive
|
1245821 |
2016-01-01 | Brook, Edward J. |
Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive |
This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, and delta 18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, delta 13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of delta 13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica. | ["POINT(162.167 -77.733)"] | ["POINT(162.167 -77.733)"] | false | false |
Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica
|
0944659 |
2015-01-01 | Kiene, Ronald |
Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica |
Spectacular blooms of Phaeocystis antarctica in the Ross Sea, Antarctica are the source of some of the world's highest concentrations of dimethylsulfoniopropionate (DMSP) and its volatile degradation product, dimethylsulfide (DMS). The flux of DMS from the oceans to the atmosphere in this region and its subsequent gas phase oxidation generates aerosols that have a strong influence on cloud properties and possibly climate. In the oceans, DMS and DMSP are quantitatively significant components of the carbon, sulfur, and energy flows in marine food webs, especially in the Ross Sea. Despite its central role in carbon and sulfur biogeochemistry in the Ross Sea, surprisingly little is known about the physiological functions of DMSP in P. Antarctica. The research will isolate and characterize DMSP lyases from P. antarctica, with the goal of obtaining amino acid and gene sequence information on these important enzymes. The physiological studies will focus on the effects of varying intensities of photosynthetically active radiation, with and without ultraviolet radiation as these are factors that we have found to be important controls on DMSP and DMS dynamics. The research also will examine the effects of prolonged darkness on the dynamics of DMSP and related compounds in P. antarctica, as survival of this species during the dark Antarctic winter and at sub-euphotic depths appears to be an important part of the Phaeocystis? ecology. A unique aspect of this work is the focus on measurements of intracellular MSA, which if detected, would provide strong evidence for in vivo radical scavenging functions for methyl sulfur compounds. The study will advance understanding of what controls DMSP cycling and ultimately DMS emissions from the Ross Sea and also provide information on what makes P. antarctica so successful in this extreme environment. The research will directly benefit and build on several interrelated ocean-atmosphere programs including the International Surface Ocean Lower Atmosphere Study (SOLAS) program. The PIs will participate in several activities involving K-12 education, High School teacher training, public education and podcasting through the auspices of the Dauphin Island Sea Lab Discovery Hall program and SUNY ESF. Two graduate students will be employed full time, and six undergraduates (2 each summer) will be trained as part of this project. | ["POLYGON((-160 -68,-159 -68,-158 -68,-157 -68,-156 -68,-155 -68,-154 -68,-153 -68,-152 -68,-151 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-151 -78,-152 -78,-153 -78,-154 -78,-155 -78,-156 -78,-157 -78,-158 -78,-159 -78,-160 -78,-160 -77,-160 -76,-160 -75,-160 -74,-160 -73,-160 -72,-160 -71,-160 -70,-160 -69,-160 -68))"] | ["POINT(-155 -73)"] | false | false |
Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica
|
1343649 |
2015-01-01 | Levy, Joseph |
Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica |
The PIs propose to quantify the hillslope water, solute, and carbon budgets for Taylor Valley in the McMurdo Dry Valleys, using water tracks to investigate near-surface geological processes and challenge the paradigm that shallow groundwater is minimal or non-exixtant. Water tracks are linear zones of high soil moisture that route shallow groundwater downslope in permafrost dominated soils. Four hypotheses will be tested: 1) water tracks are important pathways for water and solute transport; 2) water tracks transport more dissolved silica than streams in Taylor Valley indicating they are the primary site of chemical weathering for cold desert soils and bedrock; 3) water tracks that drain highland terrains are dominated by humidity-separated brines while water tracks that drain lowland terrains are dominated by marine aerosols; 4) water tracks are the sites of the highest terrestrial soil carbon concentrations and the strongest CO2 fluxes in Taylor Valley and their carbon content increases with soil age, while carbon flux decreases with age. To test these hypotheses the PIs will carry out a suite of field measurements supported by modeling and remote sensing. They will install shallow permafrost wells in water tracks that span the range of geological, climatological, and topographic conditions in Taylor Valley. Multifrequency electromagnetic induction sounding of the upper ~1 m of the permafrost will create the first comprehensive map of soil moisture in Taylor Valley, and will permit direct quantification of water track discharge across the valley. The carbon contents of water track soils will be measured and linked to global carbon dynamics. Non-science majors at Oregon State University will be integrated into the proposed research through a new Global Environmental Change course focusing on the scientific method in Antarctica. Three undergraduate students, members of underrepresented minorities, will be entrained in the research, will contribute to all aspects of field and laboratory science, and will present results at national meetings. | ["POLYGON((162.852 -77.6111,162.9893 -77.6111,163.1266 -77.6111,163.2639 -77.6111,163.4012 -77.6111,163.5385 -77.6111,163.6758 -77.6111,163.8131 -77.6111,163.9504 -77.6111,164.0877 -77.6111,164.225 -77.6111,164.225 -77.65331,164.225 -77.69552,164.225 -77.73773,164.225 -77.77994,164.225 -77.82215,164.225 -77.86436,164.225 -77.90657,164.225 -77.94878,164.225 -77.99099,164.225 -78.0332,164.0877 -78.0332,163.9504 -78.0332,163.8131 -78.0332,163.6758 -78.0332,163.5385 -78.0332,163.4012 -78.0332,163.2639 -78.0332,163.1266 -78.0332,162.9893 -78.0332,162.852 -78.0332,162.852 -77.99099,162.852 -77.94878,162.852 -77.90657,162.852 -77.86436,162.852 -77.82215,162.852 -77.77994,162.852 -77.73773,162.852 -77.69552,162.852 -77.65331,162.852 -77.6111))"] | ["POINT(163.5385 -77.82215)"] | false | false |
Ocean-Ice-Atmosphere Interactions in the Terra Nova Bay Polynya, Antarctica
|
1043657 |
2015-01-01 | Cassano, John; Palo, Scott |
Collaborative Research: Ocean-Ice-Atmosphere Interactions in the Terra Nova Bay Polynya, Antarctica |
Antarctic coastal polynas are, at the same time, sea-ice free sites and 'sea-ice factories'. They are open water surface locations where water mass transformation and densification occurs, and where atmospheric exchanges with the deep ocean circulation are established. Various models of the formation and persistence of these productive and diverse ocean ecosystems are hampered by the relative lack of in situ meteorological and physical oceanographic observations, especially during the inhospitable conditions of their formation and activity during the polar night. Characterization of the lower atmosphere properties, air-sea surface heat fluxes and corresponding ocean hydrographic profiles of Antarctic polynyas, especially during strong wind events, is sought for a more detailed understanding of the role of polynyas in the production of latent-heat type sea ice and the formation, through sea ice brine rejection, of dense ocean bottom waters. A key technological innovation in this work continues to be the use of instrumented unmanned aircraft systems (UAS), to enable the persistent and safe observation of the interaction of light and strong katabatic wind fields, and mesocale cyclones in the Terra Nova Bay (Victoria Land, Antarctica) polynya waters during late winter and early summer time frames. | ["POLYGON((163 -74.5,163.9 -74.5,164.8 -74.5,165.7 -74.5,166.6 -74.5,167.5 -74.5,168.4 -74.5,169.3 -74.5,170.2 -74.5,171.1 -74.5,172 -74.5,172 -74.9,172 -75.3,172 -75.7,172 -76.1,172 -76.5,172 -76.9,172 -77.3,172 -77.7,172 -78.1,172 -78.5,171.1 -78.5,170.2 -78.5,169.3 -78.5,168.4 -78.5,167.5 -78.5,166.6 -78.5,165.7 -78.5,164.8 -78.5,163.9 -78.5,163 -78.5,163 -78.1,163 -77.7,163 -77.3,163 -76.9,163 -76.5,163 -76.1,163 -75.7,163 -75.3,163 -74.9,163 -74.5))"] | ["POINT(167.5 -76.5)"] | false | false |
Abrupt Environmental Change in the Larsen Ice Shelf System (LARISSA) - Marine Ecosystems
|
0732983 |
2014-01-01 | Vernet, Maria |
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans |
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems. A profound transformation in ecosystem structure and function is occurring in coastal waters of the western Weddell Sea, with the collapse of the Larsen B ice shelf. This transformation appears to be yielding a redistribution of energy flow between chemoautotrophic and photosynthetic production, and to be causing the rapid demise of the extraordinary seep ecosystem discovered beneath the ice shelf. This event provides an ideal opportunity to examine fundamental aspects of ecosystem transition associated with climate change. We propose to test the following hypotheses to elucidate the transformations occurring in marine ecosystems as a consequence of the Larsen B collapse: (1) The biogeographic isolation and sub-ice shelf setting of the Larsen B seep has led to novel habitat characteristics, chemoautotrophically dependent taxa and functional adaptations. (2) Benthic communities beneath the former Larsen B ice shelf are fundamentally different from assemblages at similar depths in the Weddell sea-ice zone, and resemble oligotrophic deep-sea communities. Larsen B assemblages are undergoing rapid change. (3) The previously dark, oligotrophic waters of the Larsen B embayment now support a thriving phototrophic community, with production rates and phytoplankton composition similar to other productive areas of the Weddell Sea. To document rapid changes occurring in the Larsen B ecosystem, we will use a remotely operated vehicle, shipboard samplers, and moored sediment traps. We will characterize microbial, macrofaunal and megafaunal components of the seep community; evaluate patterns of surface productivity, export flux, and benthic faunal composition in areas previously covered by the ice shelf, and compare these areas to the open sea-ice zone. These changes will be placed within the geological, glaciological and climatological context that led to ice-shelf retreat, through companion research projects funded in concert with this effort. Together these projects will help predict the likely consequences of ice-shelf collapse to marine ecosystems in other regions of Antarctica vulnerable to climate change. The research features international collaborators from Argentina, Belgium, Canada, Germany, Spain and the United Kingdom. The broader impacts include participation of a science writer; broadcast of science segments by members of the Jim Lehrer News Hour (Public Broadcasting System); material for summer courses in environmental change; mentoring of graduate students and postdoctoral fellows; and showcasing scientific activities and findings to students and public through podcasts. | ["POLYGON((-66 -62,-65.3 -62,-64.6 -62,-63.9 -62,-63.2 -62,-62.5 -62,-61.8 -62,-61.1 -62,-60.4 -62,-59.7 -62,-59 -62,-59 -62.8,-59 -63.6,-59 -64.4,-59 -65.2,-59 -66,-59 -66.8,-59 -67.6,-59 -68.4,-59 -69.2,-59 -70,-59.7 -70,-60.4 -70,-61.1 -70,-61.8 -70,-62.5 -70,-63.2 -70,-63.9 -70,-64.6 -70,-65.3 -70,-66 -70,-66 -69.2,-66 -68.4,-66 -67.6,-66 -66.8,-66 -66,-66 -65.2,-66 -64.4,-66 -63.6,-66 -62.8,-66 -62))"] | ["POINT(-62.5 -66)"] | false | false |
Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica
|
0944686 |
2014-01-01 | Kieber, David John |
Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica |
Spectacular blooms of Phaeocystis antarctica in the Ross Sea, Antarctica are the source of some of the world's highest concentrations of dimethylsulfoniopropionate (DMSP) and its volatile degradation product, dimethylsulfide (DMS). The flux of DMS from the oceans to the atmosphere in this region and its subsequent gas phase oxidation generates aerosols that have a strong influence on cloud properties and possibly climate. In the oceans, DMS and DMSP are quantitatively significant components of the carbon, sulfur, and energy flows in marine food webs, especially in the Ross Sea. Despite its central role in carbon and sulfur biogeochemistry in the Ross Sea, surprisingly little is known about the physiological functions of DMSP in P. antarctica. The research will isolate and characterize DMSP lyases from P. antarctica, with the goal of obtaining amino acid and gene sequence information on these important enzymes. The physiological studies will focus on the effects of varying intensities of photosynthetically active radiation, with and without ultraviolet radiation as these are factors that we have found to be important controls on DMSP and DMS dynamics. The research also will examine the effects of prolonged darkness on the dynamics of DMSP and related compounds in P. antarctica, as survival of this species during the dark Antarctic winter and at sub-euphotic depths appears to be an important part of the Phaeocystis' ecology. A unique aspect of this work is the focus on measurements of intracellular MSA, which if detected, would provide strong evidence for in vivo radical scavenging functions for methyl sulfur compounds. The study will advance understanding of what controls DMSP cycling and ultimately DMS emissions from the Ross Sea and also provide information on what makes P. antarctica so successful in this extreme environment. The research will directly benefit and build on several interrelated ocean-atmosphere programs including the International Surface Ocean Lower Atmosphere Study (SOLAS) program. The PIs will participate in several activities involving K-12 education, High School teacher training, public education and podcasting through the auspices of the Dauphin Island Sea Lab Discovery Hall program and SUNY ESF. Two graduate students will be employed full time, and six undergraduates (2 each summer) will be trained as part of this project. | ["POLYGON((-160 -68,-159 -68,-158 -68,-157 -68,-156 -68,-155 -68,-154 -68,-153 -68,-152 -68,-151 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-151 -78,-152 -78,-153 -78,-154 -78,-155 -78,-156 -78,-157 -78,-158 -78,-159 -78,-160 -78,-160 -77,-160 -76,-160 -75,-160 -74,-160 -73,-160 -72,-160 -71,-160 -70,-160 -69,-160 -68))"] | ["POINT(-155 -73)"] | false | false |
The Sea Ice System in Antarctic Summer, Oden Southern Ocean Expedition (OSO 2010-11)
|
0839053 |
2013-01-01 | Ackley, Stephen |
The Sea Ice System in Antarctic Summer, Oden Southern Ocean Expedition (OSO 2010-11) |
Several aspect of the seasonal melting and reformation cycle of Antarctic sea ice appear to be divergent from those occurring in the Arctic. This is most clearly demonstrated by the dramatic diminishing extent and thinning of the Arctic sea ice, to be contrasted to the changes in Antarctic sea-ice extent, which recently (decadaly) shows small increases. Current climate models do not resolve this discrepancy which likely results from both a lack of relevant observational sea-ice data in the Antarctic, along with inadequacies in the physical parameterization of sea-ice properties in climate models. Researchers will take advantage of the cruise track of the I/B Oden during transit through the Antarctic sea-ice zones in the region of the Bellingshausen, Amundsen and Ross (BAR) seas on a cruise to McMurdo Station. Because of its remoteness and inaccessibility, the BAR region is of considerable scientific interest as being one of the last under described and perhaps unexploited marine ecosystems left on the planet. A series of on station and underway observations of sea ice properties will be undertaken, thematically linked to broader questions of summer ice survival and baseline physical properties (e.g. estimates of heat and salt fluxes). In situ spatiotemporal variability of sea-ice cover extent, thickness and snow cover depths will be observed. | ["POLYGON((-180 -67.05,-170.9866 -67.05,-161.9732 -67.05,-152.9598 -67.05,-143.9464 -67.05,-134.933 -67.05,-125.9196 -67.05,-116.9062 -67.05,-107.8928 -67.05,-98.8794 -67.05,-89.866 -67.05,-89.866 -68.1033,-89.866 -69.1566,-89.866 -70.2099,-89.866 -71.2632,-89.866 -72.3165,-89.866 -73.3698,-89.866 -74.4231,-89.866 -75.4764,-89.866 -76.5297,-89.866 -77.583,-98.8794 -77.583,-107.8928 -77.583,-116.9062 -77.583,-125.9196 -77.583,-134.933 -77.583,-143.9464 -77.583,-152.9598 -77.583,-161.9732 -77.583,-170.9866 -77.583,180 -77.583,178.57 -77.583,177.14 -77.583,175.71 -77.583,174.28 -77.583,172.85 -77.583,171.42 -77.583,169.99 -77.583,168.56 -77.583,167.13 -77.583,165.7 -77.583,165.7 -76.5297,165.7 -75.4764,165.7 -74.4231,165.7 -73.3698,165.7 -72.3165,165.7 -71.2632,165.7 -70.2099,165.7 -69.1566,165.7 -68.1033,165.7 -67.05,167.13 -67.05,168.56 -67.05,169.99 -67.05,171.42 -67.05,172.85 -67.05,174.28 -67.05,175.71 -67.05,177.14 -67.05,178.57 -67.05,-180 -67.05))"] | ["POINT(-142.083 -72.3165)"] | false | false |
Thermoregulation in Free-Living Antarctic Seals: The Missing Link in Effective Ecological Modeling
|
1043779 |
2013-01-01 | Mellish, Jo-Ann |
Collaborative Research: THERMOREGULATION IN FREE-LIVING ANTARCTIC SEALS: THE MISSING LINK IN EFFECTIVE ECOLOGICAL MODELING |
Despite being an essential physiological component of homeotherm life in polar regions, little is known about the energetic requirements for thermoregulation in either air or water for high- latitude seals. In a joint field and modeling study, the principal investigators will quantify these costs for the Weddell seal under both ambient air and water conditions. The field research will include innovative heat flux, digestive and locomotor cost telemetry on 40 free-ranging seals combined with assessments of animal health (morphometrics, hematology and clinical chemistry panels), quantity (ultrasound) and quality (tissue biopsy) of blubber insulation, and determination of surface skin temperature patterns (infrared thermography). Field-collected data will be combined with an established individual based computational energetics model to define cost-added thresholds in body condition for different body masses. This study will fill a major knowledge gap by providing data essential to modeling all aspects of pinniped life history, in particular for ice seals. Such parameterization of energetic cost components will be essential for the accurate modeling of responses by pinnipeds to environmental variance, including direct and indirect effects driven by climate change. The study also will provide extensive opportunities in polar field work, animal telemetry, biochemical analyses and computational modeling for up to three undergraduate students and one post-doctoral researcher. Integrated education and outreach efforts will educate the public (K-12 through adult) on the importance of quantifying energetic costs of thermoregulation for marine mammals and the need to understand responses of species to environmental variance. This effort will include a custom-built, interactive hands-on mobile exhibit, and development of content for an Ocean Today kiosk. | ["POLYGON((165.83333 -77.51528,165.923331 -77.51528,166.013332 -77.51528,166.103333 -77.51528,166.193334 -77.51528,166.283335 -77.51528,166.373336 -77.51528,166.463337 -77.51528,166.553338 -77.51528,166.643339 -77.51528,166.73334 -77.51528,166.73334 -77.55153,166.73334 -77.58778,166.73334 -77.62403,166.73334 -77.66028,166.73334 -77.69653,166.73334 -77.73278,166.73334 -77.76903,166.73334 -77.80528,166.73334 -77.84153,166.73334 -77.87778,166.643339 -77.87778,166.553338 -77.87778,166.463337 -77.87778,166.373336 -77.87778,166.283335 -77.87778,166.193334 -77.87778,166.103333 -77.87778,166.013332 -77.87778,165.923331 -77.87778,165.83333 -77.87778,165.83333 -77.84153,165.83333 -77.80528,165.83333 -77.76903,165.83333 -77.73278,165.83333 -77.69653,165.83333 -77.66028,165.83333 -77.62403,165.83333 -77.58778,165.83333 -77.55153,165.83333 -77.51528))"] | ["POINT(166.283335 -77.69653)"] | false | false |
Rift Mechanisms and Thermal Regime of the Lithosphere across Beardmore Glacier Region, Central Transantarctic Mountains, from Magnetotelluric Measurements
|
0838914 |
2012-01-01 | Wannamaker, Philip |
Rift Mechanisms and Thermal Regime of the Lithosphere across Beardmore Glacier Region, Central Transantarctic Mountains, from Magnetotelluric Measurements |
The investigators will examine competing hypotheses for the mechanism of extension and creation of the Transantarctic Mountains, and evolution of the thermal regimes of rifted West Antarctica and stable East Antarctica using magnetotelluric (MT) profiles. Surrounded almost entirely by ocean ridges, Antarctica is a special tectonic situation because of the need to make accommodation space for rifting in the Transantarctic region. In the MT method, temporal variations in the Earth's natural electromagnetic field are used as source fields to probe the electrical resistivity structure in the depth range of 1 to 200 km, or more. Geophysical methods, such as MT, are appropriate in Antarctica because of the predominance of thick ice cover over most of the Continent and the difficult operating environment. The proposed effort will consist of approximately 50 sites over a distance approaching 500 km with a 10 km average spacing, oriented normal to the Transantarctic Mountains (TAM), in the Beardmore glacier area. High quality MT soundings will be collected over thick ice sheets using a custom electrode preamp design, updated from previous Antarctic projects. Data acquisition will take place over two field seasons. The primary goals are three-fold: to establish the location of the deeper tectonic transition between East and West Antarctica that may be offset from the physiographic transition at the surface, using deep resistivity structure distinguish between modes of extensional upwelling and magmatism that may be vertically non-uniform, depth and magnitude of quasi-layered deep crustal low resistivity, particularly below West Antarctica, will be used to estimate crustal heat flux into the ice sheet base. | ["POLYGON((141.01732 -82.13,144.910279 -82.13,148.803238 -82.13,152.696197 -82.13,156.589156 -82.13,160.482115 -82.13,164.375074 -82.13,168.268033 -82.13,172.160992 -82.13,176.053951 -82.13,179.94691 -82.13,179.94691 -82.351835,179.94691 -82.57367,179.94691 -82.795505,179.94691 -83.01734,179.94691 -83.239175,179.94691 -83.46101,179.94691 -83.682845,179.94691 -83.90468,179.94691 -84.126515,179.94691 -84.34835,176.053951 -84.34835,172.160992 -84.34835,168.268033 -84.34835,164.375074 -84.34835,160.482115 -84.34835,156.589156 -84.34835,152.696197 -84.34835,148.803238 -84.34835,144.910279 -84.34835,141.01732 -84.34835,141.01732 -84.126515,141.01732 -83.90468,141.01732 -83.682845,141.01732 -83.46101,141.01732 -83.239175,141.01732 -83.01734,141.01732 -82.795505,141.01732 -82.57367,141.01732 -82.351835,141.01732 -82.13))"] | ["POINT(160.482115 -83.239175)"] | false | false |
Atmosphere-Ocean-Ice Interaction in a Coastal Polynya
|
0739464 |
2012-01-01 | Cassano, John; Maslanik, Jim |
Collaborative Research: Atmosphere-Ocean-Ice Interaction in a Coastal Polynya |
Antarctic polynyas are the ice free zones often persisting in continental sea ice. Characterization of the lower atmosphere properties, air-sea surface heat fluxes and corresponding ocean depth profiles of Antarctic polynyas, especially during strong wind events, is needed for a more detailed understanding of the role of polynya in the production of latent-heat type sea ice and the formation, through brine rejection, of dense ocean bottom waters. Broader impacts: A key technological innovation, the use of instrumented uninhabited aircraft systems (UAS), will be employed to enable the persistent and safe observation of the interaction of light and strong katabatic wind fields with the Terra Nova Bay (Victoria Land, Antarctica) polynya waters during late winter and early summer time frames. The use of UAS observational platforms on the continent to date has to date been modest, but demonstration of their versatility and effectiveness in surveying and observing mode is a welcome development. The projects use of UAS platforms by University of Colorado and LDEO (Columbia) researchers is both high risk, and potentially transformative for the systematic data measurement tasks that many Antarctic science applications increasingly require. | ["POLYGON((160 -74.5,161.5 -74.5,163 -74.5,164.5 -74.5,166 -74.5,167.5 -74.5,169 -74.5,170.5 -74.5,172 -74.5,173.5 -74.5,175 -74.5,175 -74.9,175 -75.3,175 -75.7,175 -76.1,175 -76.5,175 -76.9,175 -77.3,175 -77.7,175 -78.1,175 -78.5,173.5 -78.5,172 -78.5,170.5 -78.5,169 -78.5,167.5 -78.5,166 -78.5,164.5 -78.5,163 -78.5,161.5 -78.5,160 -78.5,160 -78.1,160 -77.7,160 -77.3,160 -76.9,160 -76.5,160 -76.1,160 -75.7,160 -75.3,160 -74.9,160 -74.5))"] | ["POINT(167.5 -76.5)"] | false | false |
Large- and Small-scale Dynamics and Meteor Studies in the MLT with a New-generation Meteor Radar on King George Island
|
0839084 |
2011-01-01 | Fritts, David; Janches, Diego |
Large- and Small-scale Dynamics and Meteor Studies in the MLT with a New-generation Meteor Radar on King George Island |
The project will employ a sophisticated meteor radar at the Brazilian Antarctic station Comandante Ferraz on King George Island for a number of synergetic research efforts of high interest to the international aeronomical community. The location of the radar will be at the tip of the Antarctic Peninsula - at a critical southern latitude of 62 degrees - to fill a current measurement gap from 54 to 68 degrees south. The radar will play a key role in Antarctic and inter-hemispheric studies of neutral atmosphere dynamics, defining global mesosphere and lower thermosphere structure and variability (from 80 to 105 km) and guiding advances of models accounting for the dynamics of this high-altitude region, including general circulation models, and climate and numerical weather prediction models. The unique radar measurement sensitivity will enable studies of: (1) the large-scale circulation and planetary waves, (2) the tidal structure and variability, (3) the momentum transport by small-scale gravity waves, (4) important, but unquantified, gravity wave - tidal interactions, (5) polar mesosphere summer echoes, and (6) meteor fluxes, head echoes, and non-specular trails, a number of which exhibit high latitudinal gradients at these latitudes. This radar will support extensive collaborations with U.S. and other scientists making measurements at other Antarctic and Arctic conjugate sites, including Brazilian scientists at C. Ferraz and U.S. and international colleagues having other instrumentation in the Antarctic, Arctic, and within South America. Links to the University of Colorado in the U.S., Instituto Nacional de Pesquisas Espaciais (INPE) in Brazil and Universidad Nacional de La Plata in Argentina will provide unique research opportunities for graduate and undergraduate students in the U.S. and South America. | ["POLYGON((-63 -59,-62 -59,-61 -59,-60 -59,-59 -59,-58 -59,-57 -59,-56 -59,-55 -59,-54 -59,-53 -59,-53 -59.6,-53 -60.2,-53 -60.8,-53 -61.4,-53 -62,-53 -62.6,-53 -63.2,-53 -63.8,-53 -64.4,-53 -65,-54 -65,-55 -65,-56 -65,-57 -65,-58 -65,-59 -65,-60 -65,-61 -65,-62 -65,-63 -65,-63 -64.4,-63 -63.8,-63 -63.2,-63 -62.6,-63 -62,-63 -61.4,-63 -60.8,-63 -60.2,-63 -59.6,-63 -59))"] | ["POINT(-58 -62)"] | false | false |
Quantifying the Role of Short-Period Gravity Waves on the Antarctic Mesospheric Dynamics Using an Advanced Mesospheric Temperature Mapper
|
0542164 |
2011-01-01 | Taylor, Michael |
Quantifying the Role of Short-Period Gravity Waves on the Antarctic Mesospheric Dynamics Using an Advanced Mesospheric Temperature Mapper |
A focused plan is presented to investigate the role and importance of short period (<1 hour) gravity waves on the dynamics of the Antarctic Mesosphere and Lower Thermosphere (MLT) region (~80-100 km). Excited primarily by deep convection, frontal activity, topography, and strong wind shears in the lower atmosphere, these waves transport energy and momentum upwards where they have a profound influence on the MLT dynamics. Most of the wave forcing is expected to occur at mid-and low-latitudes where such sources predominate. However, short-period waves (exhibiting similar characteristics to mid-latitude events) have now been detected in copious quantities from research sites on the Antarctic Peninsula and the coastal regions exhibiting strong anisotropy in their dominant horizontal motions (and hence their momentum fluxes). Radiosonde measurements have established the existence of ubiquitous gravity wave activity at South Pole but, to date, there have been no detailed measurements of the properties of short-period waves at MLT heights deep in the Antarctic interior. In particular, the South Pole Station is uniquely situated to investigate the filtering and penetration of these waves into the MLT region, a substantial fraction of which may be ducted waves traveling over vast geographic distances (several thousand km). Novel image measurements at South Pole Station combined with existing measurement programs will provide an unprecedented capability for quantifying the role of these gravity waves on the regional MLT dynamics over central Antarctica. This research also contributes to the training and education of both the graduate and undergraduate students. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean
|
0636319 |
2011-01-01 | Shaw, Tim; Twining, Benjamin |
Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean |
Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions:1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children's books will participate in cruises to produce an account of the expedition and a daily interactive website. | ["POLYGON((-51.9201 -57.5061,-50.99447 -57.5061,-50.06884 -57.5061,-49.14321 -57.5061,-48.21758 -57.5061,-47.29195 -57.5061,-46.36632 -57.5061,-45.44069 -57.5061,-44.51506 -57.5061,-43.58943 -57.5061,-42.6638 -57.5061,-42.6638 -58.03449,-42.6638 -58.56288,-42.6638 -59.09127,-42.6638 -59.61966,-42.6638 -60.14805,-42.6638 -60.67644,-42.6638 -61.20483,-42.6638 -61.73322,-42.6638 -62.26161,-42.6638 -62.79,-43.58943 -62.79,-44.51506 -62.79,-45.44069 -62.79,-46.36632 -62.79,-47.29195 -62.79,-48.21758 -62.79,-49.14321 -62.79,-50.06884 -62.79,-50.99447 -62.79,-51.9201 -62.79,-51.9201 -62.26161,-51.9201 -61.73322,-51.9201 -61.20483,-51.9201 -60.67644,-51.9201 -60.14805,-51.9201 -59.61966,-51.9201 -59.09127,-51.9201 -58.56288,-51.9201 -58.03449,-51.9201 -57.5061))"] | ["POINT(-47.29195 -60.14805)"] | false | false |
Controls on Climate-Active Gases by Amundsen Sea Ice Biota
|
0836061 |
2011-01-01 | Dennett, Mark |
Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota |
Convincing evidence now confirms that polar regions are changing rapidly in response to human activities. Changes in sea ice extent and thickness will have profound implications for productivity, food webs and carbon fluxes at high latitudes, since sea ice biota are a significant source of biogenic matter for the ecosystem. While sea ice is often thought to be a barrier to gas exchange between the ocean and the atmosphere, it more likely functions as a source or sink for climate-active gases such as carbon dioxide and ozone-depleting organohalogens, due in part to activities of microbes embedded in the sea ice matrix. This project brings together experienced US and Swedish investigators to examine the controls by sea-ice biota on the production and degradation of key climate-active gases in the Pacific sector of the Southern Ocean. We hypothesize that 1) the physical properties of the sea-ice environment will determine the community structure and activities of the sea ice biota; 2) the productivity, biomass, physiological state and species composition of ice algae will determine the production of specific classes of organic carbon, including organohalogens; 3) heterotrophic co-metabolism within the ice will break down these compounds to some extent, depending on the microbial community structure and productivity, and 4) the sea ice to atmosphere fluxes of CO2 and organohalogens will be inversely related. This project will build close scientific collaborations between US and Swedish researchers and also train young scientists, including members of underrepresented groups. Dissemination of results will include the scientific literature, and public outreach venues including interactions with a PolarTrec teacher. | ["POLYGON((-170 -69,-163 -69,-156 -69,-149 -69,-142 -69,-135 -69,-128 -69,-121 -69,-114 -69,-107 -69,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-100 -77,-100 -78,-100 -79,-107 -79,-114 -79,-121 -79,-128 -79,-135 -79,-142 -79,-149 -79,-156 -79,-163 -79,-170 -79,-170 -78,-170 -77,-170 -76,-170 -75,-170 -74,-170 -73,-170 -72,-170 -71,-170 -70,-170 -69))"] | ["POINT(-135 -74)"] | false | false |
Free-Drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean
|
0636543 |
2010-01-01 | Murray, Alison |
Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean |
Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions: 1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children's books will participate in cruises to produce an account of the expedition and a daily interactive website. | ["POLYGON((-51.98403 -57.58068,-51.042765 -57.58068,-50.1015 -57.58068,-49.160235 -57.58068,-48.21897 -57.58068,-47.277705 -57.58068,-46.33644 -57.58068,-45.395175 -57.58068,-44.45391 -57.58068,-43.512645 -57.58068,-42.57138 -57.58068,-42.57138 -58.10845,-42.57138 -58.63622,-42.57138 -59.16399,-42.57138 -59.69176,-42.57138 -60.21953,-42.57138 -60.7473,-42.57138 -61.27507,-42.57138 -61.80284,-42.57138 -62.33061,-42.57138 -62.85838,-43.512645 -62.85838,-44.45391 -62.85838,-45.395175 -62.85838,-46.33644 -62.85838,-47.277705 -62.85838,-48.21897 -62.85838,-49.160235 -62.85838,-50.1015 -62.85838,-51.042765 -62.85838,-51.98403 -62.85838,-51.98403 -62.33061,-51.98403 -61.80284,-51.98403 -61.27507,-51.98403 -60.7473,-51.98403 -60.21953,-51.98403 -59.69176,-51.98403 -59.16399,-51.98403 -58.63622,-51.98403 -58.10845,-51.98403 -57.58068))"] | ["POINT(-47.277705 -60.21953)"] | false | false |
Controls on Climate-Active Gases by Amundsen Sea Ice Biota
|
0836112 |
2010-01-01 | Smith, Walker |
Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota |
Convincing evidence now confirms that polar regions are changing rapidly in response to human activities. Changes in sea ice extent and thickness will have profound implications for productivity, food webs and carbon fluxes at high latitudes, since sea ice biota are a significant source of biogenic matter for the ecosystem. While sea ice is often thought to be a barrier to gas exchange between the ocean and the atmosphere, it more likely functions as a source or sink for climate-active gases such as carbon dioxide and ozone-depleting organohalogens, due in part to activities of microbes embedded in the sea ice matrix. This project brings together experienced US and Swedish investigators to examine the controls by sea-ice biota on the production and degradation of key climate-active gases in the Pacific sector of the Southern Ocean. We hypothesize that 1) the physical properties of the sea-ice environment will determine the community structure and activities of the sea ice biota; 2) the productivity, biomass, physiological state and species composition of ice algae will determine the production of specific classes of organic carbon, including organohalogens; 3) heterotrophic co-metabolism within the ice will break down these compounds to some extent, depending on the microbial community structure and productivity, and 4) the sea ice to atmosphere fluxes of CO2 and organohalogens will be inversely related. This project will build close scientific collaborations between US and Swedish researchers and also train young scientists, including members of underrepresented groups. Dissemination of results will include the scientific literature, and public outreach venues including interactions with a PolarTrec teacher. | ["POLYGON((-170 -69,-163 -69,-156 -69,-149 -69,-142 -69,-135 -69,-128 -69,-121 -69,-114 -69,-107 -69,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-100 -77,-100 -78,-100 -79,-107 -79,-114 -79,-121 -79,-128 -79,-135 -79,-142 -79,-149 -79,-156 -79,-163 -79,-170 -79,-170 -78,-170 -77,-170 -76,-170 -75,-170 -74,-170 -73,-170 -72,-170 -71,-170 -70,-170 -69))"] | ["POINT(-135 -74)"] | false | false |
Atmospheric Boundary Layer Measurements on the Weddell Sea Drifting Station
|
9024544 |
2010-01-01 | Andreas, Edgar |
Atmospheric Boundary Layer Measurements on the Weddell Sea Drifting Station |
Location: Ice camp on perennial sea ice in the southwestern corner of the Weddell Sea, Antarctic The first direct radiative and turbulent surface flux measurements ever made over floating Antarctic sea ice. The data are from Ice Station Weddell as it drifted in the western Weddell Sea from February to late May 1992. Data Types: Hourly measurements of the turbulent surface fluxes of momentum and sensible and latent heat by eddy covariance at a height of 4.65 m above snow-covered sea ice. Instruments were a 3-axis sonic anemometer/thermometer and a Lyman-alpha hygrometer. Hourly, surface-level measurements of the four radiation components: in-coming and out-going longwave and shortwave radiation. Instruments were hemispherical pyranometers and pyrgeometers. Hourly mean values of standard meteorological variables: air temperature, dew point temperature, wind speed and direction, barometric pressure, surface temperature. Instruments were a propeller-vane for wind speed and direction and cooled-mirror dew-point hygrometers and platinum resistance thermometers for dew-points and temperatures. Surface temperature came from a Barnes PRT-5 infrared thermometer. Flux Data The entire data kit is bundled as a zip file named ISW_Flux_Data.zip The main data file is comma delimited. The README file is ASCII. The associated reprints of publications are in pdf. Radiosounding data: On Ice Station Weddell, typically twice a day from 21 February through 4 June 1992 made with both tethered (i.e., only boundary-layer profiles) and (more rarely) free-flying sondes that did not measure wind speed. (168 soundings). ISW Radiosoundings The entire data kit is bundled as a zip file named ISW_Radiosounding.zip. The README file is in ASCII. Two summary files that include the list of sounding and the declinations are in ASCII. The 168 individual sounding files are in ASCII. Two supporting publications that describe the data and some analyses are in pdf. Radiosounding data collected from the Russian ship Akademic Fedorov from 26 May through 5 June 1992 at 6-hourly intervals as it approached Ice Station Weddell from the north. These soundings include wind vector, temperature, humidity, and pressure. (40 soundings) Akademic Federov Radiosoundings The entire data kit is bundled as a zip file named Akad_Federov_Radiosounding.zip. The README file is in ASCII. A summary file that lists the soundings is in ASCII. The 40 individual sounding files are in ASCII. Two supporting publications that describe the data and some analyses are in pdf. Documentation: Andreas, E. L, and K. J. Claffey, 1995: Air-ice drag coefficients in the western Weddell Sea: 1. Values deduced from profile measurements. Journal of Geophysical Research, 100, 4821–4831. Andreas, E. L, K. J. Claffey, and A. P. Makshtas, 2000: Low-level atmospheric jets and inversions over the western Weddell Sea. Boundary-Layer Meteorology, 97, 459–486. Andreas, E. L, R. E. Jordan, and A. P. Makshtas, 2004: Simulations of snow, ice, and near-surface atmospheric processes on Ice Station Weddell. Journal of Hydrometeorology, 5, 611–624. Andreas, E. L, R. E. Jordan, and A. P. Makshtas, 2005: Parameterizing turbulent exchange over sea ice: The Ice Station Weddell results. Boundary-Layer Meteorology, 114, 439–460. Andreas, E. L, P. O. G. Persson, R. E. Jordan, T. W. Horst, P. S. Guest, A. A. Grachev, and C. W. Fairall, 2010: Parameterizing turbulent exchange over sea ice in winter. Journal of Hydrometeorology, 11, 87–104. Claffey, K. J., E. L Andreas, and A. P. Makshtas, 1994: Upper-air data collected on Ice Station Weddell. Special Report 94-25, U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH, 62 pp. ISW Group, 1993: Weddell Sea exploration from ice station. Eos, Transactions, American Geophysical Union, 74, 121–126. Makshtas, A. P., E. L Andreas, P. N. Svyaschennikov, and V. F. Timachev, 1999: Accounting for clouds in sea ice models. Atmospheric Research, 52, 77–113. | ["POLYGON((-53.8 -61.2,-52.74 -61.2,-51.68 -61.2,-50.62 -61.2,-49.56 -61.2,-48.5 -61.2,-47.44 -61.2,-46.38 -61.2,-45.32 -61.2,-44.26 -61.2,-43.2 -61.2,-43.2 -62.22,-43.2 -63.24,-43.2 -64.26,-43.2 -65.28,-43.2 -66.3,-43.2 -67.32,-43.2 -68.34,-43.2 -69.36,-43.2 -70.38,-43.2 -71.4,-44.26 -71.4,-45.32 -71.4,-46.38 -71.4,-47.44 -71.4,-48.5 -71.4,-49.56 -71.4,-50.62 -71.4,-51.68 -71.4,-52.74 -71.4,-53.8 -71.4,-53.8 -70.38,-53.8 -69.36,-53.8 -68.34,-53.8 -67.32,-53.8 -66.3,-53.8 -65.28,-53.8 -64.26,-53.8 -63.24,-53.8 -62.22,-53.8 -61.2))"] | ["POINT(-48.5 -66.3)"] | false | false |
Free-drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean
|
0636730 |
2010-01-01 | Vernet, Maria |
Collaborative Reseach: Free-drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean. |
Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions: 1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children's books will participate in cruises to produce an account of the expedition and a daily interactive website. | ["POLYGON((-55 -52,-53.5 -52,-52 -52,-50.5 -52,-49 -52,-47.5 -52,-46 -52,-44.5 -52,-43 -52,-41.5 -52,-40 -52,-40 -53.3,-40 -54.6,-40 -55.9,-40 -57.2,-40 -58.5,-40 -59.8,-40 -61.1,-40 -62.4,-40 -63.7,-40 -65,-41.5 -65,-43 -65,-44.5 -65,-46 -65,-47.5 -65,-49 -65,-50.5 -65,-52 -65,-53.5 -65,-55 -65,-55 -63.7,-55 -62.4,-55 -61.1,-55 -59.8,-55 -58.5,-55 -57.2,-55 -55.9,-55 -54.6,-55 -53.3,-55 -52))"] | ["POINT(-47.5 -58.5)"] | false | false |
Free-Drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean
|
0636723 |
2010-01-01 | Helly, John |
Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean |
Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions: 1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children's books will participate in cruises to produce an account of the expedition and a daily interactive website. | ["POLYGON((-55 -52,-53.5 -52,-52 -52,-50.5 -52,-49 -52,-47.5 -52,-46 -52,-44.5 -52,-43 -52,-41.5 -52,-40 -52,-40 -53.3,-40 -54.6,-40 -55.9,-40 -57.2,-40 -58.5,-40 -59.8,-40 -61.1,-40 -62.4,-40 -63.7,-40 -65,-41.5 -65,-43 -65,-44.5 -65,-46 -65,-47.5 -65,-49 -65,-50.5 -65,-52 -65,-53.5 -65,-55 -65,-55 -63.7,-55 -62.4,-55 -61.1,-55 -59.8,-55 -58.5,-55 -57.2,-55 -55.9,-55 -54.6,-55 -53.3,-55 -52))"] | ["POINT(-47.5 -58.5)"] | false | false |
Singular Value Decomposition Analysis of Ice Sheet Model Output Fields
|
0632168 |
2009-05-30 | Hulbe, Christina; Daescu, Dacian N. |
Collaborative Research: IPY, The Next Generation: A Community Ice Sheet Model for Scientists and Educators With Demonstration Experiments in Amundsen Sea Embayment Region |
This data set provides the results of predictive modeling experiments on the Amundsen Sea Embayment region of Antarctica. The models examine how interactions between basal processes and ice sheet dynamics can result in abrupt reconfigurations of ice-sheets, and how those reconfigurations impact other Earth systems. The models were developed by a collaborative effort called the Community Ice Sheet Model (CISM). The data set contains a MATLAB (.mat) native format file with time evolution of basal temperature fields from a generic ice sheet model with uniform and non-uniform heat flux, a MATLAB script for performing singular value decomposition and analysis of the model fields, and a summary of experimental results in Portable Document Format (.pdf). Data are available via FTP. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Radium and Thorium isotope data summaries from AMLR and NBP cruises to the Antarctic in 2006
|
None | 2009-03-26 | None | No project link provided | Radium and Thorium isotope data summaries from AMLR and NBP cruises to the Antarctic in 2006 Naturally occurring radium isotopes (224Ra, 226Ra, 228Ra) were used in determining lateral mixing processes which are reported in dpm/m3. Particulate organic Carbon (POC) flux was determined through measuring Thorium (234Th) reported in dpm/kg. Cruises AMLR (Antarctic Marine Living Resources) R/V Yuzhmorgeologiya Jan/2006: The research program was focused in the southern Drake Passage along the Shackelton Shelf located near the Bransfield Strait. Samples were obtained from the R/V Yuzhmorgeologiya and inflatables that were taken to island locations. Lat/Lon Bounding Box -62.2538Lat, -62.9966Lon -63.2335Lat, -59.0332Lon -59.9964Lat, -55.7612Lon -61.4995Lat, -53.9996Lon NBP (Nathaniel B. Palmer) R/V Nathaniel B. Palmer July/2006: The research was conducted in the same region of the Drake Passage as the AMLR cruise. Samples were obtained aboard the R/V Nathaniel B. Palmer Lat/Lon bounding box -60.4991Lat, -58.5613Lon -62.3599Lat, -58.0392Lon -60.2783Lat, -57.4509Lon -61.2683Lat, -54.2852Lon | [] | [] | false | false |
Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial Forms of Phaeocystis Antarctica
|
0440478 |
2009-01-01 | Smith, Walker; Tang, Kam |
Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial forms of Phaeocystis antarctica |
Phaeocystis Antarctica is a widely distributed phytoplankton that forms dense blooms and aggregates in the Southern Ocean. This phytoplankton and plays important roles in polar ecology and biogeochemistry, in part because it is a dominant primary producer, a main component of organic matter vertical fluxes, and the principal producer of volatile organic sulfur in the region. Yet P. Antarctica is also one of the lesser known species in terms of its physiology, life history and trophic relationships with other organisms; furthermore, information collected on other Phaeocystis species and from different locations may not be applicable to P. Antarctica in the Ross Sea. P. Antarctica occurs mainly as two morphotypes: solitary cells and mucilaginous colonies, which differ significantly in size, architecture and chemical composition. Relative dominance between solitary cells and colonies determines not only the size spectrum of the population, but also its carbon dynamics, nutrient uptake and utilization. Conventional thinking of the planktonic trophic processes is also challenged by the fact that colony formation could effectively alter the predator-prey interactions and interspecific competition. However, the factors that regulate the differences between solitary and colonial forms of P. Antarctica are not well-understood. The research objective of this proposal is therefore to address these over-arching questions: 1. Do P. Antarctica solitary cells and colonies differ in growth, composition and photosynthetic rates? 2. How do nutrients and grazers affect colony development and size distribution of P. Antarctica? 3. How do nutrients and grazers act synergistically to affect the long-term population dynamics of P. Antarctica? Experiments will be conducted in the McMurdo station with natural P. Antarctica assemblages and co-occurring grazers. Laboratory experiments will be conducted to study size-specific growth and photosynthetic rates of P. Antarctica, size-specific grazing mortality due to microzooplankton and mesozooplankton, the effects of macronutrients on the (nitrogen compounds) relative dominance of solitary cells and colonies, and the effects of micronutrient (Fe) and grazing related chemical signals on P. Antarctica colony development. Because this species is of critical importance in the Southern Ocean, and because this research will provide critical information on factors that regulate the role of P.Antarctica in food webs and biogeochemical cycles, a major gap in knowledge will be addressed. This project will train two marine science Ph.D. students. The investigators will also collaborate with the School of Education and a marine science museum to communicate polar science to a broader audience. | ["POINT(166.66267 -77.85067)"] | ["POINT(166.66267 -77.85067)"] | false | false |
Solar activity during the last millennium, estimated from cosmogenic in-situ C14 in South Pole and GISP2 ice cores
|
0538683 |
2009-01-01 | Lal, Devendra |
Solar Activity during the Last Millennium, Estimated from Cosmogenic in-situ 14C in South Pole and GISP2 Ice Cores |
The principal aim of this research is to determine the precise manner in which solar activity has varied in the past 1000 years. During this period, four periods of very low solar activity have been identified: Wolf (1305-1345 AD), Spoerer (1418-1540 AD), Maunder (1645-1715), and one period of high solar activity (1100-1250 A.D.) have been deduced based on available historical records of sunspot numbers and aurora. Our proposal aims to study the solar activity during the past 1000 years in detail using a new method, based on studies of polar ice, as developed earlier (Earth and Planetary Science Letters, 234, 335-349, 2005). The method is based on the fact that greater solar activity leads to production of greater magnetic fields in the heliosphere, which reduces the primary cosmic ray flux in the near Earth environment, and vice-versa. Consequently if one can measure the primary cosmic ray flux in the near Earth space, it becomes a direct measure of the solar activity. Lal et al. (Earth and Planetary Science Letters, 234, 335-349, 2005) concluded that the best way of measuring the primary cosmic ray flux would be to measure the concentration of cosmogenic in-situ produced 14C in polar ice sheets, which was discovered by Lal et al. (Nature 346, 350-352, 1990). Following this idea Lal et al. (op. cit.) measured cosmogenic in-situ produced in 19 samples from the GISP 2 core covering time range of 375-31,250 yrs B.P. Their studies showed that there were two periods of very low solar activity in this time bracket (during 8500-9500 B.P and 27,000-32,000 B.P.), and one high solar activity period during 12,000-16,000 yrs B.P. In order to provide an independent check on the veracity of the new method, we decided to apply it to the historical period, < 1000 yrs B.P. The inferred Solar activities based on the study of cosmogenic in-situ produced 14C in South Pole ice samples clearly establish that there was a period of high Solar activity during 1100-1250 A.D., and a period of very low solar activity during 1416-1534 A.D, designated as the Spoerer Minimum. These results however do not confirm the proposed dates for the Dalton and the Maunder Minimum periods, predicted to be 1795-1825 A.D. and 1654-1714 A.D. respectively. Instead, our studies show that there was a long duration period of low solar activity during 1750-1860 A.D. These results make it quite clear that we should carry out more studies to fully establish the temporal behavior of the Solar activity in the past 1000 yrs. | ["POINT(-180 -90)"] | ["POINT(-180 -90)"] | false | false |
Small Grants for Exploratory Research - Oceanographic Research in the Amundsen and Ross Seas
|
0741380 |
2009-01-01 | Smith, Walker |
Small Grants for Exploratory Research - Oceanographic Research in the Amundsen and Ross Seas: |
The research will examine the relative importance of the physical and chemical controls on phytoplankton dynamics and carbon flux in continental margin regions of the Southern Ocean, and elucidate mechanisms by which plankton populations and carbon export might be altered by climate change. We specifically will address (1) how the phytoplankton on the continental margins of the southern Ocean respond to spatial and temporal changes in temperature, light, iron supply, and carbon dioxide levels, (2) how these factors initiate changes in phytoplankton assemblage structure, and (3) how carbon export and the efficiency of the biological pump are impacted by the biomass and composition of the phytoplankton. Two regions of study (the Amundsen and Ross Seas) will be investigated, one well studied (Ross Sea) and one poorly described (Amundsen Sea). It is hypothesized that each region will have markedly different physical forcing, giving rise to distinct chemical conditions and therefore biological responses. As such, the comparison of the two may give us insights into the mechanisms of how Antarctic continental margins will respond under changing environmental conditions. Broader impacts include participation by an international graduate student from Brazil, outreach via seminars to the general public, collaboration with the teachers-in-residence on the cruise, development of a cruise web site and interactive email exchanges with local middle school students while at sea. | ["POLYGON((-160 -65,-154 -65,-148 -65,-142 -65,-136 -65,-130 -65,-124 -65,-118 -65,-112 -65,-106 -65,-100 -65,-100 -66.1,-100 -67.2,-100 -68.3,-100 -69.4,-100 -70.5,-100 -71.6,-100 -72.7,-100 -73.8,-100 -74.9,-100 -76,-106 -76,-112 -76,-118 -76,-124 -76,-130 -76,-136 -76,-142 -76,-148 -76,-154 -76,-160 -76,-160 -74.9,-160 -73.8,-160 -72.7,-160 -71.6,-160 -70.5,-160 -69.4,-160 -68.3,-160 -67.2,-160 -66.1,-160 -65))"] | ["POINT(-130 -70.5)"] | false | false |
SGER: Primary and Secondary Production and Carbon Flux Through the Microbial Community Along the Western Antarctic Marginal Ice Zone on the Oden Southern Ocean 2007 Expeditions
|
0742057 |
2009-01-01 | Dennett, Mark; Gallager, Scott |
SGER: Primary and Secondary Production and Carbon Flux Through the Microbial Community Along the Western Antarctic Marginal Ice Zone on the Oden Southern Ocean 2007 Expeditions |
The research will continue and extend the study in the Southern Ocean that was initiated during the Oden Southern Ocean 2006 expedition in collaboration with Swedish scientist Mellissa Chierici. We will quantify carbon flux through the food web in the marginal ice zone (MIZ) by measuring size fractionated primary and secondary production, grazing and carbon flux through nanoplankton (2-20 um), microplankton (20-200um), and mesoplankton (200-2000 um). Community structure, species abundance and size specific grazing rates will be quantified using a variety of techniques both underway and at ice stations along the MIZ. The proposed cruise track extends across the Drake Passage to the Western Antarctic Peninsula (WAP) with three station transects along a gradient from the open ocean through the marginal ice zone (MIZ) in the Bellinghausen and Amundsen Seas and into the Ross Sea Polynya. Ice stations along each transect will provide material to characterize production associated with annual ice. Underway measurements of primary and secondary production (chlorophyll, CDOM, microplankton, and mesoplankton) and hydrography (temperature, salinity, pH, DO, turbidity) will establish a baseline for future cruises and as support for other projects such as biogeochemical studies on carbon dioxide drawdown and trace metal work on primary production. The outcome of these measurements will be a description of nano to mesoplankton standing stocks, community structure, and carbon flux along the MIZ in the Bellinghausen and Amundsen Seas and the Ross Sea Polynya. | ["POLYGON((-168.291 -64.846,-165.018 -64.846,-161.745 -64.846,-158.472 -64.846,-155.199 -64.846,-151.926 -64.846,-148.653 -64.846,-145.38 -64.846,-142.107 -64.846,-138.834 -64.846,-135.561 -64.846,-135.561 -66.0269,-135.561 -67.2078,-135.561 -68.3887,-135.561 -69.5696,-135.561 -70.7505,-135.561 -71.9314,-135.561 -73.1123,-135.561 -74.2932,-135.561 -75.4741,-135.561 -76.655,-138.834 -76.655,-142.107 -76.655,-145.38 -76.655,-148.653 -76.655,-151.926 -76.655,-155.199 -76.655,-158.472 -76.655,-161.745 -76.655,-165.018 -76.655,-168.291 -76.655,-168.291 -75.4741,-168.291 -74.2932,-168.291 -73.1123,-168.291 -71.9314,-168.291 -70.7505,-168.291 -69.5696,-168.291 -68.3887,-168.291 -67.2078,-168.291 -66.0269,-168.291 -64.846))"] | ["POINT(-151.926 -70.7505)"] | false | false |
GISP2 (D Core) Helium Isotopes from Interplanetary Dust
|
0126057 |
2008-12-16 | Brook, Edward J.; Kurz, Mark D. |
High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change |
Ice Core Interplanetary Dust Helium Isotope Data Helium isotope data from Ice Cores at GISP2 (Greenland) and Vostok (Antarctica) as a proxy for extraterrestrial dust flux. | [] | [] | false | false |
Extended Advanced Very High Resolution Radiometer Polar Pathfinder Satellite Product
|
None | 2004-12-14 | Key, Jeffrey R. | No project link provided | This data set consists of AVHRR retrievals of surface and cloud properties as well as radiative fluxes for the period 1982 - 1999 over the Arctic and Antarctic at a 25 km resolution. The images times are 1400 and 0400 (Arctic) or 0200 (Antarctic) local solar times. Resulsts are calculated on a twice-daily basis, but only monthly mean images and area-averaged values are currently online. The standard AVHRR Polar Pathfinder (APP) product includes gridded radiances, viewing and illumination geometry, clear sky surface temperature and albedo, and three cloud masks at a 5 km resolution. We have extended the standard APP product to include all-sky surface temperature, all-sky surface albedo, cloud properties (particle phase, effective radius, optical depth, temperature and pressure), and radiative fluxes as well as cloud radiative effect (“forcing”). We refer to this dataset as APP-x | [] | [] | false | false |