{"dp_type": "Dataset", "free_text": "Accumulation"}
[{"awards": "2019719 Brook, Edward", "bounds_geometry": null, "date_created": "Mon, 19 Aug 2024 00:00:00 GMT", "description": "Field report for I-188, the purpose of which was to find a suitable site to extract a continuous \u003e1 Ma ice core in the Allan Hills accumulation zone.", "east": null, "geometry": null, "keywords": "Allan Hills; Antarctica; Cryosphere", "locations": "Allan Hills; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Conway, Howard; Shaya, Margot; Manos, John-Morgan; Horlings, Annika; Epifanio, Jenna", "project_titles": "Center for Oldest Ice Exploration", "projects": [{"proj_uid": "p0010321", "repository": "USAP-DC", "title": "Center for Oldest Ice Exploration"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "COLDEX", "south": null, "title": "Allan Hills I-188 Field Season Report 2022-2023", "uid": "601826", "west": null}, {"awards": "2035580 Aarons, Sarah", "bounds_geometry": ["POINT(159.31 -76.7)"], "date_created": "Thu, 15 Aug 2024 00:00:00 GMT", "description": "This dataset contains dust mass concentrations, coarse particle fraction, interpolated accumulation rate, and dust flux from ALHIC1903 spanning the transition from MIS 6 through 5e.", "east": 159.31, "geometry": ["POINT(159.31 -76.7)"], "keywords": "Accumulation Rate; ALHIC1903; Allan Hills; Antarctica; Blue Ice; Concentration; Cryosphere; Dust; Flux", "locations": "Allan Hills; Antarctica", "north": -76.7, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Carter, Austin", "project_titles": "Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial", "projects": [{"proj_uid": "p0010270", "repository": "USAP-DC", "title": "Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.7, "title": "Concentration and flux of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "uid": "601825", "west": 159.31}, {"awards": "0538657 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(-112.05 -79.28)"], "date_created": "Fri, 20 Oct 2023 00:00:00 GMT", "description": "Major gas components of air data set, containing d15N, d18O of O2, dO2/N2, and dAr/N2 from the WAIS Divide ice core at high resolution. These data are used to constrain surface temperature, biosphere oxygen cycling, and firn thickness through the past \u003e60 kyr.", "east": -112.05, "geometry": ["POINT(-112.05 -79.28)"], "keywords": "Antarctica; Delta 15N; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Gas Records; Ice Core Records; Isotope; Nitrogen; Nitrogen Isotopes; Oxygen; Oxygen Isotope; Snow/ice; Snow/Ice; WAIS; WAIS Divide", "locations": "WAIS Divide; Antarctica; WAIS", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.", "project_titles": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate", "projects": [{"proj_uid": "p0000036", "repository": "USAP-DC", "title": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.28, "title": "d15N and d18O of air in the WAIS Divide ice core", "uid": "601747", "west": -112.05}, {"awards": "1739003 Holland, David", "bounds_geometry": ["POLYGON((-114.2703 -66.8445,-109.54270000000001 -66.8445,-104.8151 -66.8445,-100.0875 -66.8445,-95.35990000000001 -66.8445,-90.6323 -66.8445,-85.9047 -66.8445,-81.1771 -66.8445,-76.4495 -66.8445,-71.7219 -66.8445,-66.9943 -66.8445,-66.9943 -67.98911,-66.9943 -69.13372,-66.9943 -70.27833,-66.9943 -71.42294,-66.9943 -72.56755,-66.9943 -73.71216,-66.9943 -74.85677,-66.9943 -76.00138,-66.9943 -77.14599,-66.9943 -78.2906,-71.72189999999999 -78.2906,-76.4495 -78.2906,-81.1771 -78.2906,-85.90469999999999 -78.2906,-90.6323 -78.2906,-95.3599 -78.2906,-100.0875 -78.2906,-104.8151 -78.2906,-109.5427 -78.2906,-114.2703 -78.2906,-114.2703 -77.14599,-114.2703 -76.00138,-114.2703 -74.85677,-114.2703 -73.71216,-114.2703 -72.56755,-114.2703 -71.42294,-114.2703 -70.27833,-114.2703 -69.13372,-114.2703 -67.98911,-114.2703 -66.8445))"], "date_created": "Tue, 28 Mar 2023 00:00:00 GMT", "description": "Data products (radar echogram images and ice surface and ice bottom tracking) from the two ITGC MELT Accumulation Radar campaigns at Thwaites Glacier.", "east": -66.9943, "geometry": ["POINT(-90.6323 -72.56755)"], "keywords": "Antarctica; Ice Base; Ice Penetrating Radar; Ice Surface; Radar Echo Sounder; Thwaites Glacier", "locations": "Thwaites Glacier; Antarctica", "north": -66.8445, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Paden, John", "project_titles": null, "projects": null, "repositories": null, "science_programs": "Thwaites (ITGC)", "south": -78.2906, "title": "MELT 2018-2020 Accumulation Radar at Thwaites", "uid": "601678", "west": -114.2703}, {"awards": "1043761 Young, Duncan; 0230197 Holt, John; 0636724 Blankenship, Donald; 2127606 Young, Duncan A.", "bounds_geometry": ["POLYGON((-136 -74,-131.9 -74,-127.8 -74,-123.7 -74,-119.6 -74,-115.5 -74,-111.4 -74,-107.30000000000001 -74,-103.2 -74,-99.1 -74,-95 -74,-95 -74.7,-95 -75.4,-95 -76.1,-95 -76.8,-95 -77.5,-95 -78.2,-95 -78.9,-95 -79.6,-95 -80.3,-95 -81,-99.1 -81,-103.2 -81,-107.3 -81,-111.4 -81,-115.5 -81,-119.6 -81,-123.69999999999999 -81,-127.8 -81,-131.9 -81,-136 -81,-136 -80.3,-136 -79.6,-136 -78.9,-136 -78.2,-136 -77.5,-136 -76.8,-136 -76.1,-136 -75.4,-136 -74.7,-136 -74))"], "date_created": "Wed, 15 Mar 2023 00:00:00 GMT", "description": "This file contains internal radar horizon 1 (lm-MERGE-lay9-grg) for West Antarctica, collected during the SOAR/CASERTZ (1991-1996), SOAR/DVD (1999), ATRS (2001), AGASEA (2004-05) and GIMBLE (2013-2014) expeditions. Only data collected in AGASEA is contained in this specific product.\r\nThis data set is linked to PH.D thesis Muldoon, G. 2018 \"West Antarctic Ice Sheet Retreat during the Last Interglacial\"Spatial and temporal distributions of accumulation rates on the catchment of Thwaites Glacier, West Antarctica\", University of Texas at Austin\r\n https://doi.org/10.15781/T23B5WS0D\r\nThe internal radar horizon (IRH) was traced semi-automatically by Gail R. Muldoon using Haliburtons\u0027s Landmark software and picker, in a combination of 2D focused and unfocused data.\r\nDepths were calculated using a 2 way velocity in ice of 84.5 m/microsecond, and no firn correction. \r\n\r\nIsochron age is 4711 (+/- 246 ) years. \r\n\r\nFunding for this dataset as provided by NSF grants and The G. Unger Vetlesen Foundation.", "east": -95.0, "geometry": ["POINT(-115.5 -77.5)"], "keywords": "Antarchitecture; Antarctica; Ice Penetrating Radar; Isochron; Layers; Radar; Radioglaciology; Thwaites Glacier", "locations": "Thwaites Glacier; Antarctica", "north": -74.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences", "persons": "Muldoon, Gail R.; Young, Duncan A.; Jackson, Charles; Blankenship, Donald D.", "project_titles": "Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA); Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System; Geophysical Investigations of Marie Byrd Land Lithospheric Evolution (GIMBLE)", "projects": [{"proj_uid": "p0000174", "repository": "USAP-DC", "title": "Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System"}, {"proj_uid": "p0000435", "repository": "USAP-DC", "title": "Geophysical Investigations of Marie Byrd Land Lithospheric Evolution (GIMBLE)"}, {"proj_uid": "p0000243", "repository": "USAP-DC", "title": "Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -81.0, "title": "AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment", "uid": "601673", "west": -136.0}, {"awards": "2019719 Brook, Edward; 1841844 Steig, Eric", "bounds_geometry": null, "date_created": "Wed, 25 Jan 2023 00:00:00 GMT", "description": "This data set contains replicate measurements of D17O from a 92-m deep section of core at Summit, Greenland and other operational data necessary to reconstruct figures presented in Davidge et al., 2022. Details of the entire dataset and a description of the relevant methods can be found in Davidge et al., 2022. The names of each sheet indicate the corresponding figure numbers. The D17O record spans about two years of accumulation. Discrete measurements by laser spectroscopy are provided at 1.4-cm resolution. For the purpose of method development, continuous-flow measurements are provided with nine replicates and are averaged to multiple depth resolutions as described in Davidge et al., 2022.", "east": null, "geometry": null, "keywords": "Antarctica; Continuous Flow; Glaciology; Greenland; Ice Core Data; Laser Spectroscopy; Oxygen Isotope; Triple Oxygen Isotopes", "locations": "Greenland; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "persons": "Davidge, Lindsey", "project_titles": "Center for Oldest Ice Exploration", "projects": [{"proj_uid": "p0010321", "repository": "USAP-DC", "title": "Center for Oldest Ice Exploration"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Hercules Dome Ice Core", "south": null, "title": "Replicate O-17-excess by continuous flow laser spectroscopy for an ice core section at Summit, Greenland", "uid": "601659", "west": null}, {"awards": "1643664 Severinghaus, Jeffrey", "bounds_geometry": null, "date_created": "Tue, 16 Aug 2022 00:00:00 GMT", "description": "This data set comprises measurements of noble and inert gases in the firn at the DE08-OH site sampled in 2018-2019 near the summit of Law Dome, Antarctica. The data show the expected gravitational enrichment of heavy isotopes with depth, somewhat attenuated by the high accumulation rate and a near-surface well-mixed zone (convective zone), and the \"lock-in\" horizon at 68 m depth. As seen at many other sites, the heavy isotope of oxygen 18O is depleted progressively with depth within the lock-in zone due to faster gas permeation of 16O16O relative to 18O16O from compressed air bubbles.", "east": null, "geometry": null, "keywords": "Antarctica; Firn; Firn Density; Gravitational Settling; Inert Gases; Law Dome", "locations": "Law Dome; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.", "project_titles": "Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability", "projects": [{"proj_uid": "p0010341", "repository": "USAP-DC", "title": "Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Law Dome DE08-OH firn air 15N, O2/N2, Ar/N2, 18O of O2", "uid": "601598", "west": null}, {"awards": "1654922 de la Pena, Santiago", "bounds_geometry": ["POLYGON((-180 -89.99,-144 -89.99,-108 -89.99,-72 -89.99,-36 -89.99,0 -89.99,36 -89.99,72 -89.99,108 -89.99,144 -89.99,180 -89.99,180 -89.991,180 -89.99199999999999,180 -89.993,180 -89.994,180 -89.995,180 -89.996,180 -89.997,180 -89.998,180 -89.999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -89.999,-180 -89.998,-180 -89.997,-180 -89.996,-180 -89.995,-180 -89.994,-180 -89.993,-180 -89.99199999999999,-180 -89.991,-180 -89.99))"], "date_created": "Thu, 28 Jul 2022 00:00:00 GMT", "description": "An instrument suite composed of weather sensors and a set of \u0027SnowFox\u0027 Gamma Ray neutron counters used to estimate the water equivalence of snow accumulation, measured continuously between December 2017 and January 2020. ", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Accumulation; Antarctica; Snow; South Pole; Surface Mass Balance", "locations": "South Pole; Antarctica; Antarctica", "north": -89.99, "nsf_funding_programs": "Antarctic Astrophysics and Geospace Sciences", "persons": "de la Pe\u00f1a, Santiago", "project_titles": "EAGER: An Operational System to Measure Surface Mass Balance Deep in the Interior of the Antarctic Ice Sheet", "projects": [{"proj_uid": "p0010360", "repository": "USAP-DC", "title": "EAGER: An Operational System to Measure Surface Mass Balance Deep in the Interior of the Antarctic Ice Sheet"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": " South Pole Weather and Accumulation Measurements 2017-2020", "uid": "601591", "west": -180.0}, {"awards": "1738992 Pettit, Erin C", "bounds_geometry": ["POLYGON((-105.55 -75.03,-105.53 -75.03,-105.51 -75.03,-105.49 -75.03,-105.47 -75.03,-105.45 -75.03,-105.43 -75.03,-105.41 -75.03,-105.39 -75.03,-105.37 -75.03,-105.35 -75.03,-105.35 -75.033,-105.35 -75.036,-105.35 -75.039,-105.35 -75.042,-105.35 -75.045,-105.35 -75.048,-105.35 -75.051,-105.35 -75.054,-105.35 -75.057,-105.35 -75.06,-105.37 -75.06,-105.39 -75.06,-105.41 -75.06,-105.43 -75.06,-105.45 -75.06,-105.47 -75.06,-105.49 -75.06,-105.51 -75.06,-105.53 -75.06,-105.55 -75.06,-105.55 -75.057,-105.55 -75.054,-105.55 -75.051,-105.55 -75.048,-105.55 -75.045,-105.55 -75.042,-105.55 -75.039,-105.55 -75.036,-105.55 -75.033,-105.55 -75.03))"], "date_created": "Tue, 29 Mar 2022 00:00:00 GMT", "description": "Campbell Scientific data loggers with eight platinum resistance thermometers (PRTs) and an acoustic snow height detector were installed as part of the AMIGOS-III instrumentation (AMIGOS: Automated Meteorology Ice Geophysics Observing System) The data are hourly reports of snow and near-surface air temperatures at different depths. At Cavity AMIGOS site, snow temperatures at ~1.2 meters depth (four PRTs) were used to provide reference temperatures for a coil of Distributed Thermal Sensing (DTS) fiber optic cable. At both sites, PRTs were attached to the tower (wrapped in reflective metal foil tape) as a means of investigating inversion strength and snow burial. At both sites, hourly snow height data using an acoustic sensor placed (initially) at 6.75 meters above the snow on a sensor cross-arm were acquired. A correction based on separately-measured air temperature was applied as per Campbell Scientifics correction algorithm. Both snow height sensors failed after just over one year (Cavity) or 10 months (Channel). Thermistor data continued to be acquired for 13 months (Cavity) or 19 months (Channel) \r\n\r\nThe two sites latest positions (01 Oct, 2021) are:\r\nCavity AMIGOS: 75.037\u00b0S, 105.58\u00b0W\r\nChannel AMIGOS: 75.049\u00b0S, 105.44\u00b0W\r\nboth stations are moving NNE at roughly 850 m.yr, having accelerated from about 650 m/yr in early 2020.", "east": -105.35, "geometry": ["POINT(-105.45 -75.045)"], "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Pine Island Bay; Snow Accumulation; Snow Temperature; Thwaites Glacier", "locations": "Thwaites Glacier; Amundsen Sea; Pine Island Bay; Thwaites Glacier; Antarctica", "north": -75.03, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Scambos, Ted", "project_titles": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment", "projects": [{"proj_uid": "p0010162", "repository": "USAP-DC", "title": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -75.06, "title": "AMIGOS-III Cavity and Channel Snow Height and Thermistor Snow Temperature Data", "uid": "601552", "west": -105.55}, {"awards": "1738992 Pettit, Erin C", "bounds_geometry": ["POLYGON((-105.55 -75.03,-105.53 -75.03,-105.51 -75.03,-105.49 -75.03,-105.47 -75.03,-105.45 -75.03,-105.43 -75.03,-105.41 -75.03,-105.39 -75.03,-105.37 -75.03,-105.35 -75.03,-105.35 -75.033,-105.35 -75.036,-105.35 -75.039,-105.35 -75.042,-105.35 -75.045,-105.35 -75.048,-105.35 -75.051,-105.35 -75.054,-105.35 -75.057,-105.35 -75.06,-105.37 -75.06,-105.39 -75.06,-105.41 -75.06,-105.43 -75.06,-105.45 -75.06,-105.47 -75.06,-105.49 -75.06,-105.51 -75.06,-105.53 -75.06,-105.55 -75.06,-105.55 -75.057,-105.55 -75.054,-105.55 -75.051,-105.55 -75.048,-105.55 -75.045,-105.55 -75.042,-105.55 -75.039,-105.55 -75.036,-105.55 -75.033,-105.55 -75.03))"], "date_created": "Mon, 28 Mar 2022 00:00:00 GMT", "description": "Visalia WXT520 weather station hourly data spanning 20 months (with data gaps) at the Cavity and Channel AMIGOS-III sites (Automated Meteorology-Ice-Geophysics Observing System) on the Thwaites Eastern Ice Shelf, Antarctica. Data are reported as the values from the sensors delivered through the Iridium modem via SBD from the AMIGOS. The units were installed at ~6.5m above the surface initially, with snow accumulation gradually reducing that to an estimated 3.5 m after 20 months. The stations report wind direction and speed, air temperature, humidity, pressure, and station power.\r\n\r\nThe two sites latest positions (01 Oct, 2021) are:\r\nCavity AMIGOS: 75.037\u00b0S, 105.58\u00b0W\r\nChannel AMIGOS: 75.049\u00b0S, 105.44\u00b0W\r\nboth stations are moving NNE at roughly 850 m.yr, having accelerated from about 650 m/yr in early 2020.", "east": -105.35, "geometry": ["POINT(-105.45 -75.045)"], "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Pine Island Bay; Thwaites Glacier", "locations": "Thwaites Glacier; Amundsen Sea; Pine Island Bay; Thwaites Glacier; Antarctica", "north": -75.03, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Scambos, Ted", "project_titles": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment", "projects": [{"proj_uid": "p0010162", "repository": "USAP-DC", "title": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -75.06, "title": "Visala WXT520 weather station data at the Cavity and Channel AMIGOS-III sites", "uid": "601549", "west": -105.55}, {"awards": "1643355 Steig, Eric", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Tue, 01 Jun 2021 00:00:00 GMT", "description": "This data set contains the accumulation rates based on layer thicknesses and thinning in the supplement of Buizert et al., 2021.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Snow/ice; Snow/Ice", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Fudge, T. J.", "project_titles": "Collaborative Research: The Timing and Spatial Expression of the Bipolar Seesaw", "projects": [{"proj_uid": "p0010183", "repository": "USAP-DC", "title": "Collaborative Research: The Timing and Spatial Expression of the Bipolar Seesaw"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Layer and Thinning based Accumulation Rate Reconstructions", "uid": "601448", "west": -180.0}, {"awards": "1543325 Landolt, Scott; 1543377 Seefeldt, Mark", "bounds_geometry": ["POLYGON((166.918 -77.877,167.2997 -77.877,167.6814 -77.877,168.0631 -77.877,168.4448 -77.877,168.8265 -77.877,169.2082 -77.877,169.5899 -77.877,169.9716 -77.877,170.3533 -77.877,170.735 -77.877,170.735 -77.99,170.735 -78.103,170.735 -78.216,170.735 -78.329,170.735 -78.442,170.735 -78.555,170.735 -78.668,170.735 -78.781,170.735 -78.894,170.735 -79.007,170.3533 -79.007,169.9716 -79.007,169.5899 -79.007,169.2082 -79.007,168.8265 -79.007,168.4448 -79.007,168.0631 -79.007,167.6814 -79.007,167.2997 -79.007,166.918 -79.007,166.918 -78.894,166.918 -78.781,166.918 -78.668,166.918 -78.555,166.918 -78.442,166.918 -78.329,166.918 -78.216,166.918 -78.103,166.918 -77.99,166.918 -77.877))"], "date_created": "Tue, 04 May 2021 00:00:00 GMT", "description": "The dataset includes precipitation and associated observations at four sites across the northwest Ross Ice Shelf from December 2017 to November 2019. The general instruments at each site include precipitation gauge - installed inside a wind shield, anemometer, thermometer, sonic ranging sensor, optical particle detector, laser disdrometer, shortwave and longwave radiation sensors, and a field camera. The observations from each site include: precipitation (liquid water equivalent), temperature, wind speed, snow surface height, particle count, particle size and speed, upward/downward longwave radiation, upward/downward shortwave radiation, still image photos, and 5-second movies. The data are in comma-delimited text files, jpg photos, and mp4 movies. png plots of the quality-controlled observations are included for quick views of the data.", "east": 170.735, "geometry": ["POINT(168.8265 -78.442)"], "keywords": "Accumulation; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Meteorology; Precipitation; Ross Ice Shelf; Snow; Snow/ice; Snow/Ice; Weatherstation; Weather Station Data", "locations": "Ross Ice Shelf; Antarctica", "north": -77.877, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "persons": "Seefeldt, Mark", "project_titles": "Collaborative Research: Implementing Low-power, Autonomous Observing Systems to Improve the Measurement and Understanding of Antarctic Precipitation", "projects": [{"proj_uid": "p0010173", "repository": "USAP-DC", "title": "Collaborative Research: Implementing Low-power, Autonomous Observing Systems to Improve the Measurement and Understanding of Antarctic Precipitation"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.007, "title": "Precipitation Observations for the Northwest Ross Ice Shelf - 2017-12 to 2019-11", "uid": "601441", "west": 166.918}, {"awards": "1443105 Steig, Eric", "bounds_geometry": ["POINT(180 -90)"], "date_created": "Wed, 28 Oct 2020 00:00:00 GMT", "description": "This data set provides the input and output data used in Kahle et al. 2020 to reconstruct climate variables at the South Pole. The files below include high resolution water isotopes, water isotope diffusion length, and various reconstructions of temperature, accumulation rate, and thinning function for the SPC14 ice core. An inverse approach was used to combine information from water isotope diffusion length, Dage, and annual-layer thickness to solve for temperature, accumulation rate, and thinning function. Corrections were applied to account for the advection of ice from upstream to yield estimates for the South Pole site. Updated data for Hires_Water_Isotopes_halfcm.txt is available at www.usap-dc.org/view/dataset/601429.", "east": 180.0, "geometry": ["POINT(180 -90)"], "keywords": "Accumulation; Antarctica; Diffusion Length; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Dynamic; Layer Thinning; Oxygen Isotope; South Pole; SPICEcore; Temperature", "locations": "South Pole; Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Kahle, Emma; Steig, Eric J.; Jones, Tyler R.; Fudge, T. J.; Koutnik, Michelle; Morris, Valerie; Vaughn, Bruce; Schauer, Andrew; Stevens, Max; Conway, Howard; Waddington, Edwin D.; Buizert, Christo; Epifanio, Jenna; White, James", "project_titles": "Collaborative Research: A 1500m Ice Core from South Pole; Collaborative Research: Record of the Triple-oxygen Isotope and Hydrogen Isotope Composition of Ice from an Ice Core at South Pole", "projects": [{"proj_uid": "p0010060", "repository": "USAP-DC", "title": "Collaborative Research: A 1500m Ice Core from South Pole"}, {"proj_uid": "p0010065", "repository": "USAP-DC", "title": "Collaborative Research: Record of the Triple-oxygen Isotope and Hydrogen Isotope Composition of Ice from an Ice Core at South Pole"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Temperature, accumulation rate, and layer thinning from the South Pole ice core (SPC14)", "uid": "601396", "west": 180.0}, {"awards": "1443471 Koutnik, Michelle", "bounds_geometry": ["POINT(-98.16 -89.99)"], "date_created": "Wed, 25 Mar 2020 00:00:00 GMT", "description": "The South Pole Ice Core (SPICEcore), which spans the past 54,300 years, was drilled far from an ice divide such that ice recovered at depth originated upstream of the core site. If the climate is different upstream, the climate history recovered from the core will be a combination of the upstream conditions advected to the core site and temporal changes. Here, we evaluate the impact of ice advection on two fundamental records from SPICEcore: accumulation rate and water isotopes. We determined past locations of ice deposition based on GPS measurements of the modern velocity field spanning 100 km upstream, where ice of ~20 ka age would likely have originated. Beyond 100 km, there are no velocity measurements, but ice likely originates from Titan Dome, an additional 90 km distant. Shallow radar measurements extending 100 km upstream from the core site reveal large (~20%) variations in accumulation but no significant trend. Water isotope ratios, measured at 12.5 km intervals for the first 100 km of the flowline, show a decrease with elevation of -0.008\u2030 m-1 for \u03b418O. Advection adds approximately 1\u2030 for \u03b418O to the LGM-to-modern change. We also use an existing ensemble of continental ice-sheet model runs to assess the ice sheet elevation change through time. The magnitude of elevation change is likely small and the sign uncertain. Assuming a lapse rate of 10\u00b0C per km of elevation, the inference of LGM-to-modern temperature change is ~1.4\u00b0C smaller than if the flow from upstream is not considered. ", "east": -98.16, "geometry": ["POINT(-98.16 -89.99)"], "keywords": "Antarctica; Ice Core Data; South Pole; SPICEcore", "locations": "South Pole; Antarctica", "north": -89.99, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Fudge, T. J.", "project_titles": "Collaborative Research: Characterization of Upstream Ice and Firn Dynamics affecting the South Pole Ice Core", "projects": [{"proj_uid": "p0000200", "repository": "USAP-DC", "title": "Collaborative Research: Characterization of Upstream Ice and Firn Dynamics affecting the South Pole Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -89.99, "title": "SPICEcore Advection", "uid": "601266", "west": -98.16}, {"awards": "1443464 Sowers, Todd", "bounds_geometry": ["POINT(0 -90)"], "date_created": "Wed, 11 Dec 2019 00:00:00 GMT", "description": "The total air content in ice core samples are a fundamental indication of the multitude of processes that impact densification of snow in polar regions. In addition, variations in the elevation of the ice sheet directly control the pressure in the bubble close off region and thereby the total gas content. Attempts to remove the physical factors (temperature, accumulation rate, dust content, seasonality) impacting the total air content could provide a means of assessing variations in the elevation of the South Pole over the last 50,000 years.", "east": 0.0, "geometry": ["POINT(0 -90)"], "keywords": "Air Content; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Snow/ice; Snow/Ice; South Pole; SPICEcore", "locations": "South Pole; Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Sowers, Todd A.", "project_titles": "Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core", "projects": [{"proj_uid": "p0010005", "repository": "USAP-DC", "title": "Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "South Pole ice core total air content", "uid": "601231", "west": 0.0}, {"awards": "1443336 Osterberg, Erich", "bounds_geometry": ["POINT(-180 -90)"], "date_created": "Thu, 29 Aug 2019 00:00:00 GMT", "description": "The South Pole Ice Core (SPICEcore) was drilled in 2014-2016 to provide a detailed multi-proxy archive of paleoclimate conditions in East Antarctica during the Holocene and late Pleistocene. Interpretation of these records requires an accurate depth-age relationship. Here, we present the SP19 timescale for the age of the ice of SPICEcore. SP19 is synchronized to the WD2014 chronology from the West Antarctic Ice Sheet Divide (WAIS Divide) ice core using stratigraphic matching of 251 volcanic events. These events indicate an age of 54,302 +/- 519 years BP (before the year 1950) at the bottom of SPICEcore. Annual layers identified in sodium and magnesium ions to 11,341 BP were used to interpolate between stratigraphic volcanic tie points, yielding an annually-resolved chronology through the Holocene. Estimated timescale uncertainty during the Holocene is less than 18 years relative to WD2014, with the exception of the interval between 1800 to 3100 BP when uncertainty estimates reach +/- 25 years due to widely spaced volcanic tie points. Prior to the Holocene, uncertainties remain within 124 years relative to WD2014. Results show an average Holocene accumulation rate of 7.4 cm/yr (water equivalent). The time variability of accumulation rate is consistent with expectations for steady-state ice flow through the modern spatial pattern of accumulation rate. Time variations in nitrate concentration, nitrate seasonal amplitude, and \u03b415N of N2 in turn are as expected for the accumulation-rate variations. The highly variable yet well-constrained Holocene accumulation history at the site can help improve scientific understanding of deposition-sensitive climate proxies such as \u03b415N of N2 and photolyzed chemical compounds.", "east": -180.0, "geometry": ["POINT(-180 -90)"], "keywords": "Antarctica; Calcium (ca); Chemistry:ice; Chemistry:Ice; Depth; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciochemistry; Glaciology; Ice; Ice Core; Ice Core Chemistry; Ice Core Data; Ice Core Records; Ice Core Stratigraphy; Nitrate; Nitrogen Isotopes; Paleoclimate; Snow/ice; Snow/Ice; South Pole; SPICEcore", "locations": "South Pole; Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Winski, Dominic A.; Fudge, T. J.; Dunbar, Nelia; Buizert, Christo; Bay, Ryan; Souney, Joseph Jr.; Sigl, Michael; McConnell, Joseph; Fegyveresi, John; Cole-Dai, Jihong; Thundercloud, Zayta; Cox, Thomas S.; Kreutz, Karl; Epifanio, Jenna; Ortman, Nikolas; Brook, Edward J.; Beaudette, Ross; Sowers, Todd A.; Steig, Eric J.; Morris, Valerie; Kahle, Emma; Ferris, David G.; Aydin, Murat; Nicewonger, Melinda R.; Casey, Kimberly A.; Alley, Richard; Waddington, Edwin D.; Osterberg, Erich; Severinghaus, Jeffrey P.; Jones, Tyler R.; Iverson, Nels", "project_titles": "Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements", "projects": [{"proj_uid": "p0010051", "repository": "USAP-DC", "title": "Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "The South Pole Ice Core (SPICEcore) chronology and supporting data", "uid": "601206", "west": -180.0}, {"awards": "1246148 Severinghaus, Jeffrey; 1245821 Brook, Edward J.; 1245659 Petrenko, Vasilii", "bounds_geometry": ["POINT(162.167 -77.733)"], "date_created": "Mon, 12 Aug 2019 00:00:00 GMT", "description": "New ice cores retrieved from the Taylor Glacier (Antarctica) blue ice area contain ice and air spanning the Marine Isotope Stage (MIS) 5-4 transition, a period of global cooling and ice sheet expansion. We determine chronologies for the ice and air bubbles in the new ice cores by visually matching variations in gas- and ice- phase tracers to preexisting ice core records. The chronologies reveal an ice age-gas age difference (\u0394age) approaching 10 ka during MIS 4, implying very low snow accumulation in the Taylor Glacier accumulation zone. A revised chronology for the analagous section of the Taylor Dome ice core (84 to 55 ka), located to the south of the Taylor Glacier accumulation zone, shows that \u0394age did not exceed 3 ka. The difference in \u0394age between the two records during MIS 4 is similar in magnitude but opposite in direction to what is observed at the Last Glacial Maximum. This relationship implies that a spatial gradient in snow accumulation existed across the Taylor Dome region during MIS 4 that was oriented in the opposite direction of the accumulation gradient during the Last Glacial Maximum.", "east": 162.167, "geometry": ["POINT(162.167 -77.733)"], "keywords": "Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; CO2; Dust; Gas; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Mass Spectrometer; Methane; Nitrogen Isotopes; Oxygen Isotope; Paleoclimate; Snow/ice; Snow/Ice; Taylor Dome; Taylor Dome Ice Core", "locations": "Taylor Dome; Antarctica", "north": -77.733, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "persons": "Menking, James; Brook, Edward J.; Marcott, Shaun; Barker, Stephen; Shackleton, Sarah; Dyonisius, Michael; Petrenko, Vasilii; McConnell, Joseph; Rhodes, Rachel; Bauska, Thomas; Baggenstos, Daniel; Severinghaus, Jeffrey P.", "project_titles": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "projects": [{"proj_uid": "p0000283", "repository": "USAP-DC", "title": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.733, "title": "Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores", "uid": "601198", "west": 162.167}, {"awards": "0944191 Taylor, Kendrick; 0944197 Waddington, Edwin", "bounds_geometry": ["POLYGON((-115 -80,-114.5 -80,-114 -80,-113.5 -80,-113 -80,-112.5 -80,-112 -80,-111.5 -80,-111 -80,-110.5 -80,-110 -80,-110 -79.9,-110 -79.8,-110 -79.7,-110 -79.6,-110 -79.5,-110 -79.4,-110 -79.3,-110 -79.2,-110 -79.1,-110 -79,-110.5 -79,-111 -79,-111.5 -79,-112 -79,-112.5 -79,-113 -79,-113.5 -79,-114 -79,-114.5 -79,-115 -79,-115 -79.1,-115 -79.2,-115 -79.3,-115 -79.4,-115 -79.5,-115 -79.6,-115 -79.7,-115 -79.8,-115 -79.9,-115 -80))"], "date_created": "Fri, 12 Apr 2019 00:00:00 GMT", "description": "Images of the multi-track electrical data for depths below 1956 m are given in mt_compiled_1958_3406.pdf. Images are approximately to scale. Data for individual sections can be obtained by contacting T.J. Fudge at tjfudge@uw.edu.\r\n\r\nWarm colors are high electrical conductivity. Cool colors are low electrical conductivity. Each track is normalized by subtracting the mean and dividing by the standard deviation. Plotted values are a 3-measurement (3mm) running average. Measurements affected by breaks in the core have been masked out.\r\n\r\nX-axis is approximate horizontal position on the ice core, as measured from left from looking from bottom to top of the core. Y-axis is depth in meters. Title is the tube number. \r\n", "east": -110.0, "geometry": ["POINT(-112.5 -79.5)"], "keywords": "Antarctic; Antarctica; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Records; Physical Properties; Snow/ice; Snow/Ice; WAIS Divide; WAIS Divide Ice Core; Wais Project; West Antarctic Ice Sheet", "locations": "Antarctic; WAIS Divide; West Antarctic Ice Sheet; Antarctica", "north": -79.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "persons": "Fudge, T. J.; Taylor, Kendrick C.", "project_titles": "Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core", "projects": [{"proj_uid": "p0000026", "repository": "USAP-DC", "title": "Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "WAIS Divide Multi Track Electrical Measurements", "uid": "601172", "west": -115.0}, {"awards": "1443471 Koutnik, Michelle", "bounds_geometry": ["POLYGON((110 -89,117 -89,124 -89,131 -89,138 -89,145 -89,152 -89,159 -89,166 -89,173 -89,180 -89,180 -89.1,180 -89.2,180 -89.3,180 -89.4,180 -89.5,180 -89.6,180 -89.7,180 -89.8,180 -89.9,180 -90,173 -90,166 -90,159 -90,152 -90,145 -90,138 -90,131 -90,124 -90,117 -90,110 -90,110 -89.9,110 -89.8,110 -89.7,110 -89.6,110 -89.5,110 -89.4,110 -89.3,110 -89.2,110 -89.1,110 -89))"], "date_created": "Fri, 25 May 2018 00:00:00 GMT", "description": "These are 200MHz radar data collected upstream of South Pole during the 2016/17 and 2017/18 field seasons. Data are the raw files produced by the GSSI radar controller, and a set of layer picks.", "east": 180.0, "geometry": ["POINT(145 -89.5)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Radar; Snow Accumulation; Snow/ice; Snow/Ice", "locations": "Antarctica", "north": -89.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Lilien, David; Fudge, T. J.; Koutnik, Michelle; Conway, Howard; Waddington, Edwin D.", "project_titles": "Collaborative Research: Characterization of Upstream Ice and Firn Dynamics affecting the South Pole Ice Core", "projects": [{"proj_uid": "p0000200", "repository": "USAP-DC", "title": "Collaborative Research: Characterization of Upstream Ice and Firn Dynamics affecting the South Pole Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Shallow radar near South Pole", "uid": "601099", "west": 110.0}, {"awards": "0538657 Severinghaus, Jeffrey", "bounds_geometry": ["POLYGON((-113 -79,-112.8 -79,-112.6 -79,-112.4 -79,-112.2 -79,-112 -79,-111.8 -79,-111.6 -79,-111.4 -79,-111.2 -79,-111 -79,-111 -79.1,-111 -79.2,-111 -79.3,-111 -79.4,-111 -79.5,-111 -79.6,-111 -79.7,-111 -79.8,-111 -79.9,-111 -80,-111.2 -80,-111.4 -80,-111.6 -80,-111.8 -80,-112 -80,-112.2 -80,-112.4 -80,-112.6 -80,-112.8 -80,-113 -80,-113 -79.9,-113 -79.8,-113 -79.7,-113 -79.6,-113 -79.5,-113 -79.4,-113 -79.3,-113 -79.2,-113 -79.1,-113 -79))"], "date_created": "Fri, 18 Aug 2017 00:00:00 GMT", "description": "This data set contains measurements of d18Oatm (d18O of O2), d15N, dAr/N2, and dO2/N2 in gas bubbles from the WAIS Divide ice core. The time resolution is variable throughout the record but is ~100 years on average (from 65 ka to present). All measurements were made in the Noble Gas Isotope Laboratory at Scripps Institution of Oceanography (La Jolla, CA). The data set includes all replicate measurements as well as replicate-mean values and a calculation of measurement precision (pooled standard deviation). The second sheet of this data set includes fitted d18Oatm curves for the past 50 ka from both the WAIS Divide and Siple Dome Antarctic ice cores, both on the WD2014 timescale (Buizert et al., 2015). The second sheet also includes calculations of the time derivative of d18Oatm and d e LAND in both ice cores individual as well as in a composite record. Details of the entire data set and all relevant methods are provided in Seltzer et al., 2017.", "east": -111.0, "geometry": ["POINT(-112 -79.5)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Gas; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; WAIS Divide Ice Core", "locations": "Antarctica", "north": -79.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Seltzer, Alan; Severinghaus, Jeffrey P.", "project_titles": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate", "projects": [{"proj_uid": "p0000036", "repository": "USAP-DC", "title": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -80.0, "title": "WAIS Divide d18Oatm and Siple Dome/WAIS Divide composite and individual delta epsilon LAND", "uid": "601041", "west": -113.0}, {"awards": "1246190 Yu, Zicheng", "bounds_geometry": ["POLYGON((-68.5 -64,-67.73 -64,-66.96 -64,-66.19 -64,-65.42 -64,-64.65 -64,-63.88 -64,-63.11 -64,-62.34 -64,-61.57 -64,-60.8 -64,-60.8 -64.36,-60.8 -64.72,-60.8 -65.08,-60.8 -65.44,-60.8 -65.8,-60.8 -66.16,-60.8 -66.52,-60.8 -66.88,-60.8 -67.24,-60.8 -67.6,-61.57 -67.6,-62.34 -67.6,-63.11 -67.6,-63.88 -67.6,-64.65 -67.6,-65.42 -67.6,-66.19 -67.6,-66.96 -67.6,-67.73 -67.6,-68.5 -67.6,-68.5 -67.24,-68.5 -66.88,-68.5 -66.52,-68.5 -66.16,-68.5 -65.8,-68.5 -65.44,-68.5 -65.08,-68.5 -64.72,-68.5 -64.36,-68.5 -64))"], "date_created": "Mon, 24 Jul 2017 00:00:00 GMT", "description": "We used subfossil mosses and peats to document changes in regional climate, cryosphere, and terrestrial ecosystems in the western Antarctic Peninsula at ~65S latitude. We find that most peat-forming ecosystems have initiated since 2800 cal BP, in response to warmer summers and increasing summer insolation. The period at 900-600 cal BP was coldest as indicated by ice advance, abundance of kill ages from ice-entombed mosses exposed recently from retreating glacial ice, and apparent gap in peatbank initiation. Furthermore, the discovery of a novel Antarctic hairgrass (Deschampsia antarctica) peatland at 2300-1200 cal BP from the mainland Antarctic Peninsula suggests a much warmer climate than the present. A warming and wetting climate in the 1980s caused very high carbon accumulation in a Polytrichum strictum moss peatbank. Our results document dramatic transformations of landscape and ecosystems in response to past warmer climate, providing a telltale sign for what may come in the future.", "east": -60.8, "geometry": ["POINT(-64.65 -65.8)"], "keywords": "Antarctica; Antarctic Peninsula; Biota; Moss; Paleoclimate; Sample/collection Description; Sample/Collection Description", "locations": "Antarctic Peninsula; Antarctica", "north": -64.0, "nsf_funding_programs": null, "persons": "Yu, Zicheng", "project_titles": "Collaborative Research: Response of Carbon Accumulation in Moss Peatbanks to Past Warm Climates in the Antarctic Peninsula", "projects": [{"proj_uid": "p0000341", "repository": "USAP-DC", "title": "Collaborative Research: Response of Carbon Accumulation in Moss Peatbanks to Past Warm Climates in the Antarctic Peninsula"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.6, "title": "Late Holocene paleoecological and paleoclimatic data from moss peatbanks in the western Antarctic Peninsula", "uid": "601037", "west": -68.5}, {"awards": "0944197 Waddington, Edwin", "bounds_geometry": ["POINT(-112.1115 -79.481)"], "date_created": "Tue, 28 Mar 2017 00:00:00 GMT", "description": "The West Antarctic Ice Sheet Divide (WAIS Divide, WD) ice core is a newly drilled, high-accumulation deep ice core that provides Antarctic climate records of the past ~68 ka at unprecedented temporal resolution. The upper 2850 m (back to 31.2 ka BP) have been dated using annual-layer counting. Here we present a chronology for the deep part of the core (67.8-31.2 ka BP), which is based on stratigraphic matching to annual-layer-counted Greenland ice cores using globally well-mixed atmospheric methane. We calculate the WD gas age-ice age difference (Delta age) using a combination of firn densification modeling, ice-flow modeling, and a data set of d15N-N2, a proxy for past firn column thickness. The largest Delta age at WD occurs during the Last Glacial Maximum, and is 525 +/- 120 years. Internally consistent solutions can be found only when assuming little to no influence of impurity content on densification rates, contrary to a recently proposed hypothesis. We synchronize the WD chronology to a linearly scaled version of the layer-counted Greenland Ice Core Chronology (GICC05), which brings the age of Dansgaard-Oeschger (DO) events into agreement with the U/Th absolutely dated Hulu Cave speleothem record. The small Delta age at WD provides valuable opportunities to investigate the timing of atmospheric greenhouse gas variations relative to Antarctic climate, as well as the interhemispheric phasing of the \\\"bipolar seesaw\\\".\n\nWe present the WD2014 chronology for the upper part (0-2850 m; 31.2 ka BP) of the West Antarctic Ice Sheet (WAIS) Divide (WD) ice core. The chronology is based on counting of annual layers observed in the chemical, dust and electrical conductivity records. These layers are caused by seasonal changes in the source, transport, and deposition of aerosols. The measurements were interpreted manually and with the aid of two automated methods. We validated the chronology by comparing to two high-accuracy, absolutely dated chronologies. For the Holocene, the cosmogenic isotope records of 10Be from WAIS Divide and 14C for IntCal13 demonstrated that WD2014 was consistently accurate to better than 0.5% of the age. For the glacial period, comparisons to the Hulu Cave chronology demonstrated that WD2014 had an accuracy of better than 1% of the age at three abrupt climate change events between 27 and 31ka. WD2014 has consistently younger ages than Greenland ice core chronologies during most of the Holocene. For the Younger Dryas-Preboreal transition (11.595 ka; 24 years younger) and the Bolling-Allerod Warming (14.621 ka; 7 years younger), WD2014 ages are within the combined uncertainties of the timescales. Given its high accuracy, WD2014 can become a reference chronology for the Southern Hemisphere, with synchronization to other chronologies feasible using high-quality proxies of volcanism, solar activity, atmospheric mineral dust, and atmospheric methane concentrations.", "east": -112.1115, "geometry": ["POINT(-112.1115 -79.481)"], "keywords": "Antarctica; Depth-Age-Model; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.481, "nsf_funding_programs": null, "persons": "Fudge, T. J.", "project_titles": "Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core", "projects": [{"proj_uid": "p0000026", "repository": "USAP-DC", "title": "Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "WD2014: Timescale for WAIS Divide Core 2006 A (WDC-06A)", "uid": "601015", "west": -112.1115}, {"awards": "0538427 McConnell, Joseph", "bounds_geometry": ["POINT(-112.1115 -79.481)"], "date_created": "Tue, 28 Mar 2017 00:00:00 GMT", "description": "A state-of-the-art continuous ice core analytical system was used to analyze samples from 0 to ~130 m depth of the recently collected intermediate core WDC05A from West Antarctica. Interpretation of these records and publication of findings is ongoing.", "east": -112.1115, "geometry": ["POINT(-112.1115 -79.481)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; Snow Accumulation; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.481, "nsf_funding_programs": null, "persons": "McConnell, Joseph", "project_titles": "Trace and Ultra-Trace Chemistry Measurements of the WAIS Divide Ice Core", "projects": [{"proj_uid": "p0000148", "repository": "USAP-DC", "title": "Trace and Ultra-Trace Chemistry Measurements of the WAIS Divide Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "WAIS Divide Ice-Core Chronology from Intermediate Core WDC05A", "uid": "601012", "west": -112.1115}, {"awards": "0944197 Waddington, Edwin", "bounds_geometry": ["POINT(-112.1115 -79.481)"], "date_created": "Tue, 21 Feb 2017 00:00:00 GMT", "description": "These data are the accumulation rate history for the WAIS Divide ice core in central West Antarctica. The data are in two parts: 1) the annual accumulation rates for the past ~31ka and 2) the firn gas-based accumulation rates from 31-67ka.", "east": -112.1115, "geometry": ["POINT(-112.1115 -79.481)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Snow Accumulation; WAIS Divide Ice Core", "locations": "Antarctica", "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "persons": "Fudge, T. J.; Waddington, Edwin D.; Conway, Howard; Buizert, Christo", "project_titles": "Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core", "projects": [{"proj_uid": "p0000026", "repository": "USAP-DC", "title": "Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Accumulation Rates from the WAIS Divide Ice Core", "uid": "601004", "west": -112.1115}, {"awards": "1043167 White, James", "bounds_geometry": ["POINT(-112.08 -79.47)"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public.", "east": -112.08, "geometry": ["POINT(-112.08 -79.47)"], "keywords": "Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; Snow Accumulation; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.47, "nsf_funding_programs": null, "persons": "White, James; Morris, Valerie; Vaughn, Bruce; Jones, Tyler R.", "project_titles": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "projects": [{"proj_uid": "p0000078", "repository": "USAP-DC", "title": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.47, "title": "Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "uid": "600169", "west": -112.08}, {"awards": "1245821 Brook, Edward J.", "bounds_geometry": ["POINT(162.167 -77.733)"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, and delta 18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, delta 13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of delta 13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica.", "east": 162.167, "geometry": ["POINT(162.167 -77.733)"], "keywords": "Antarctica; Atmosphere; Geochemistry; Ice Core Records; Isotope; Paleoclimate; Taylor Glacier; Transantarctic Mountains", "locations": "Taylor Glacier; Transantarctic Mountains; Antarctica", "north": -77.733, "nsf_funding_programs": null, "persons": "Brook, Edward J.", "project_titles": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "projects": [{"proj_uid": "p0000283", "repository": "USAP-DC", "title": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.733, "title": "The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "uid": "600163", "west": 162.167}, {"awards": "0538657 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(-38.5 -76.2)"], "date_created": "Tue, 27 Oct 2015 00:00:00 GMT", "description": "This data set contains the results of Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) performed on an archive of the GISP2 ice core containing the rapid climate warming of Dansgaard-Oeschger Event 21.", "east": -38.5, "geometry": ["POINT(-38.5 -76.2)"], "keywords": "Arctic; Geochemistry; GISP; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate", "locations": "Arctic", "north": -76.2, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Haines, Skylar; Mayewski, Paul A.; Kurbatov, Andrei V.", "project_titles": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate", "projects": [{"proj_uid": "p0000036", "repository": "USAP-DC", "title": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.2, "title": "Ultra-High Resolution LA-ICP-MS Results: DO-21 Rapid Warming Event", "uid": "609635", "west": -38.5}, {"awards": "0538657 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(-112.08 -79.47)"], "date_created": "Tue, 20 Oct 2015 00:00:00 GMT", "description": "This data set is a low-resolution set of measurements of d15N of N2 and d18O of O2, along with dO2/N and dAr/N2 supporting data, in the WAIS Divide 3405 m long ice core recovered in 2011. Data are distributed via FTP.", "east": -112.08, "geometry": ["POINT(-112.08 -79.47)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.", "project_titles": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate", "projects": [{"proj_uid": "p0000036", "repository": "USAP-DC", "title": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.47, "title": "Low-res d15N and d18O of O2 in the WAIS Divide 06A Deep Core", "uid": "609660", "west": -112.08}, {"awards": "0538657 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(-112.125 -79.463)"], "date_created": "Mon, 08 Jun 2015 00:00:00 GMT", "description": "This data set includes borehole temperature measurements performed in January 2008 and January 2009 at the West Antarctic Ice sheet divide from the 300 m hole WDC05A.", "east": -112.125, "geometry": ["POINT(-112.125 -79.463)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Temperature; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.463, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.; Orsi, Anais J.", "project_titles": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate", "projects": [{"proj_uid": "p0000036", "repository": "USAP-DC", "title": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.463, "title": "Borehole Temperature Measurement in WDC05A in January 2008 and January 2009", "uid": "609637", "west": -112.125}, {"awards": "0944653 Forster, Richard", "bounds_geometry": ["POLYGON((-119.4 -78.1,-118.46 -78.1,-117.52 -78.1,-116.58 -78.1,-115.64 -78.1,-114.7 -78.1,-113.76 -78.1,-112.82 -78.1,-111.88 -78.1,-110.94 -78.1,-110 -78.1,-110 -78.29,-110 -78.48,-110 -78.67,-110 -78.86,-110 -79.05,-110 -79.24,-110 -79.43,-110 -79.62,-110 -79.81,-110 -80,-110.94 -80,-111.88 -80,-112.82 -80,-113.76 -80,-114.7 -80,-115.64 -80,-116.58 -80,-117.52 -80,-118.46 -80,-119.4 -80,-119.4 -79.81,-119.4 -79.62,-119.4 -79.43,-119.4 -79.24,-119.4 -79.05,-119.4 -78.86,-119.4 -78.67,-119.4 -78.48,-119.4 -78.29,-119.4 -78.1))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "This award supports a project to broaden the knowledge of annual accumulation patterns over the West Antarctic Ice Sheet by processing existing near-surface radar data taken on the US ITASE traverse in 2000 and by gathering and validating new ultra/super-high-frequency (UHF) radar images of near surface layers (to depths of ~15 m), expanding abilities to monitor recent annual accumulation patterns from point source ice cores to radar lines. Shallow (15 m) ice cores will be collected in conjunction with UHF radar images to confirm that radar echoed returns correspond with annual layers, and/or sub-annual density changes in the near-surface snow, as determined from ice core stable isotopes. This project will additionally improve accumulation monitoring from space-borne instruments by comparing the spatial-radar-derived-annual accumulation time series to the passive microwave time series dating back over 3 decades and covering most of Antarctica. The intellectual merit of this project is that mapping the spatial and temporal variations in accumulation rates over the Antarctic ice sheet is essential for understanding ice sheet responses to climate forcing. Antarctic precipitation rate is projected to increase up to 20% in the coming century from the predicted warming. Accumulation is a key component for determining ice sheet mass balance and, hence, sea level rise, yet our ability to measure annual accumulation variability over the past 5 decades (satellite era) is mostly limited to point-source ice cores. Developing a radar and ice core derived annual accumulation dataset will provide validation data for space-born remote sensing algorithms, climate models and, additionally, establish accumulation trends. The broader impacts of the project are that it will advance discovery and understanding within the climatology, glaciology and remote sensing communities by verifying the use of UHF radars to monitor annual layers as determined by visual, chemical and isotopic analysis from corresponding shallow ice cores and will provide a dataset of annual to near-annual accumulation measurements over the past ~5 decades across WAIS divide from existing radar data and proposed radar data. By determining if temporal changes in the passive microwave signal are correlated with temporal changes in accumulation will help assess the utility of passive microwave remote sensing to monitor accumulation rates over ice sheets for future decades. The project will promote teaching, training and learning, and increase representation of underrepresented groups by becoming involved in the NASA History of Winter project and Thermochron Mission and by providing K-12 teachers with training to monitor snow accumulation and temperature here in the US, linking polar research to the student\u0027s backyard. The project will train both undergraduate and graduate students in polar research and will encouraging young investigators to become involved in careers in science. In particular, two REU students will participate in original research projects as part of this larger project, from development of a hypothesis to presentation and publication of the results. The support of a new, young woman scientist will help to increase gender diversity in polar research.\n", "east": -110.0, "geometry": ["POINT(-114.7 -79.05)"], "keywords": "Airborne Radar; Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Radar; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -78.1, "nsf_funding_programs": null, "persons": "Forster, Richard", "project_titles": "Collaborative Research: Annual satellite era accumulation patterns over WAIS Divide: A study using shallow ice cores, near-surface radars and satellites", "projects": [{"proj_uid": "p0000079", "repository": "USAP-DC", "title": "Collaborative Research: Annual satellite era accumulation patterns over WAIS Divide: A study using shallow ice cores, near-surface radars and satellites"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -80.0, "title": "Annual Satellite Era Accumulation Patterns Over WAIS Divide: A Study Using Shallow Ice Cores, Near-Surface Radars and Satellites", "uid": "600146", "west": -119.4}, {"awards": "0944348 Taylor, Kendrick; 0944191 Taylor, Kendrick; 0440817 Taylor, Kendrick; 0440819 Taylor, Kendrick; 0230396 Taylor, Kendrick", "bounds_geometry": ["POINT(-112.1115 -79.481)"], "date_created": "Mon, 18 Aug 2014 00:00:00 GMT", "description": "This data set contains electrical measurements that were used to develop the WDC06A-7 timescale.", "east": -112.1115, "geometry": ["POINT(-112.1115 -79.481)"], "keywords": "Antarctica; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Fudge, T. J.; Taylor, Kendrick C.", "project_titles": "Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core", "projects": [{"proj_uid": "p0000026", "repository": "USAP-DC", "title": "Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "WAIS Divide Ice Core Electrical Conductance Measurements, Antarctica", "uid": "609591", "west": -112.1115}, {"awards": "1045215 Gooseff, Michael", "bounds_geometry": ["POLYGON((160 -77.25,160.5 -77.25,161 -77.25,161.5 -77.25,162 -77.25,162.5 -77.25,163 -77.25,163.5 -77.25,164 -77.25,164.5 -77.25,165 -77.25,165 -77.375,165 -77.5,165 -77.625,165 -77.75,165 -77.875,165 -78,165 -78.125,165 -78.25,165 -78.375,165 -78.5,164.5 -78.5,164 -78.5,163.5 -78.5,163 -78.5,162.5 -78.5,162 -78.5,161.5 -78.5,161 -78.5,160.5 -78.5,160 -78.5,160 -78.375,160 -78.25,160 -78.125,160 -78,160 -77.875,160 -77.75,160 -77.625,160 -77.5,160 -77.375,160 -77.25))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: Until recently, wetted soils in the Dry Valleys were generally only found adjacent to streams and lakes. Since the warm austral summer of 2002, numerous \"wet spots\" have been observed far from shorelines on relatively flat valley floor locations and as downslope fingers of flow on valley walls. The source of the water to wet these soils is unclear, as is the spatial and temporal pattern of occurrence from year to year. Their significance is potentially great as enhanced soil moisture may change the thermodynamics, hydrology, and erosion rate of surface soils, and facilitate transport of materials that had previously been stable. These changes to the soil active layer could significantly modify permafrost and ground ice stability within the Dry Valleys. The PIs seek to investigate these changes to address two competing hypotheses: that the source of water to these ?wet spots? is ground ice melt and that the source of this water is snowmelt. The PIs will document the spatiotemporal dynamics of these wet areas using high frequency remote sensing data from QuickBird and WorldView satellites to document the occurrence, dimensions, and growth of wet spots during the 2010-\u00ad11 and 2011-\u00ad12 austral summers. They will test their hypotheses by determining whether wet spots recur in the same locations in each season, and they will compare present to past distribution using archived imagery. They will also determine whether spatial snow accumulation patterns and temporal ablation patterns are coincident with wet spot formation. Broader impacts: One graduate student will be trained on this project. Findings will be reported at scientific meetings and published in peer reviewed journals. They will also develop a teaching module on remote sensing applications to hydrology for the Modular Curriculum for Hydrologic Advancement and an innovative prototype project designed to leverage public participation in mapping wet spots and snow patches across the Dry Valleys through the use of social media and mobile computing applications.\n", "east": 165.0, "geometry": ["POINT(162.5 -77.875)"], "keywords": "Antarctica; Climate; Critical Zone; Dry Valleys; Radar; Soil Moisture", "locations": "Dry Valleys; Antarctica", "north": -77.25, "nsf_funding_programs": null, "persons": "Gooseff, Michael N.", "project_titles": "EAGER: Are the Dry Valleys Getting Wetter? A Preliminary Assessment of Wetness Across the McMurdo Dry Valleys Landscape", "projects": [{"proj_uid": "p0000471", "repository": "USAP-DC", "title": "EAGER: Are the Dry Valleys Getting Wetter? A Preliminary Assessment of Wetness Across the McMurdo Dry Valleys Landscape"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.5, "title": "Are the Dry Valleys Getting Wetter? A Preliminary Assessment of Wetness Across the McMurdo Dry Valleys Landscape", "uid": "600131", "west": 160.0}, {"awards": "0838970 Foreman, Christine", "bounds_geometry": ["POINT(161.667 -77.117)"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Dissolved organic matter (DOM) comprises a significant pool of Earth\u0027s organic carbon that dwarfs the amount present in living aquatic organisms. The properties and reactivity of DOM are not well defined, and the evolution of autochthonous DOM from its precursor materials in freshwater has not been observed. Recent sampling of a supraglacial stream formed on the Cotton Glacier in the Transantarctic Mountains revealed DOM that more closely resembles an assemblage of recognizable precursor organic compounds, based upon its UV-VIS and fluorescence spectra. It is suggested that the DOM from this water evolved over time to resemble materials present in marine and many inland surface waters. The transient nature of the system i.e., it reforms seasonally, also prevents any accumulation of the refractory DOM present in most surface waters. Thus, the Cotton Glacier provides us with a unique environment to study the formation of DOM from precursor materials. An interdisciplinary team will study the biogeochemistry of this progenitor DOM and how microbes modify it. By focusing on the chemical composition of the DOM as it shifts from precursor material to the more humified fractions, the investigators will relate this transition to bioavailability, enzymatic activity, community composition and microbial growth efficiency. This project will support education at all levels, K-12, high school, undergraduate, graduate and post-doc and will increase participation by under-represented groups in science. Towards these goals, the investigators have established relationships with girls\u0027 schools and Native American programs. Additional outreach will be carried out in coordination with PolarTREC, PolarPalooza, and if possible, an Antarctic Artist and Writer.\n", "east": 161.667, "geometry": ["POINT(161.667 -77.117)"], "keywords": "Antarctica; Biota; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Microbiology", "locations": "Antarctica", "north": -77.117, "nsf_funding_programs": null, "persons": "Foreman, Christine", "project_titles": "Collaborative Research: The Biogeochemical Evolution of Dissolved Organic Matter in a Fluvial System on the Cotton Glacier, Antarctica", "projects": [{"proj_uid": "p0000458", "repository": "USAP-DC", "title": "Collaborative Research: The Biogeochemical Evolution of Dissolved Organic Matter in a Fluvial System on the Cotton Glacier, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.117, "title": "The Biogeochemical Evolution of Dissolved Organic Matter in a Fluvial System on the Cotton Glacier, Antarctica", "uid": "600104", "west": 161.667}, {"awards": "0732655 Mosley-Thompson, Ellen", "bounds_geometry": ["POLYGON((-63 -60,-62.6 -60,-62.2 -60,-61.8 -60,-61.4 -60,-61 -60,-60.6 -60,-60.2 -60,-59.8 -60,-59.4 -60,-59 -60,-59 -60.5,-59 -61,-59 -61.5,-59 -62,-59 -62.5,-59 -63,-59 -63.5,-59 -64,-59 -64.5,-59 -65,-59.4 -65,-59.8 -65,-60.2 -65,-60.6 -65,-61 -65,-61.4 -65,-61.8 -65,-62.2 -65,-62.6 -65,-63 -65,-63 -64.5,-63 -64,-63 -63.5,-63 -63,-63 -62.5,-63 -62,-63 -61.5,-63 -61,-63 -60.5,-63 -60))"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "Like no other region on Earth, the northern Antarctic Peninsula represents a spectacular natural laboratory of climate change and provides the opportunity to study the record of past climate and ecological shifts alongside the present-day changes in one of the most rapidly warming regions on Earth. This award supported the cryospheric and oceanographic components of an integrated multi-disciplinary program to address these rapid and fundamental changes now taking place in Antarctic Peninsula (AP). By making use of a marine research platform (the RV NB Palmer and on-board helicopters) and additional logistical support from the Argentine Antarctic program, the project brought together glaciologists, oceanographers, marine geologists and biologists who have worked collaboratively to address fundamental interdisciplinary questions regarding climate change.", "east": -59.0, "geometry": ["POINT(-61 -62.5)"], "keywords": "Antarctica; Antarctic Peninsula; Bruce Plateau; Glaciology; Ice Core Records; Isotope; LARISSA; Paleoclimate; Sample/collection Description; Sample/Collection Description; Snow Accumulation", "locations": "Antarctic Peninsula; Bruce Plateau; Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Thompson, Lonnie G.; Mosley-Thompson, Ellen", "project_titles": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans", "projects": [{"proj_uid": "p0000101", "repository": "USAP-DC", "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LARISSA", "south": -65.0, "title": "Abrupt Environmental Change in the Larsen Ice Shelf System (LARISSA) - Cryosphere and Oceans", "uid": "600167", "west": -63.0}, {"awards": "0229245 Hamilton, Gordon; 9527571 Whillans, Ian; 0838843 Kurbatov, Andrei", "bounds_geometry": ["POLYGON((158.25 -76.66667,158.325 -76.66667,158.4 -76.66667,158.475 -76.66667,158.55 -76.66667,158.625 -76.66667,158.7 -76.66667,158.775 -76.66667,158.85 -76.66667,158.925 -76.66667,159 -76.66667,159 -76.683336,159 -76.700002,159 -76.716668,159 -76.733334,159 -76.75,159 -76.766666,159 -76.783332,159 -76.799998,159 -76.816664,159 -76.83333,158.925 -76.83333,158.85 -76.83333,158.775 -76.83333,158.7 -76.83333,158.625 -76.83333,158.55 -76.83333,158.475 -76.83333,158.4 -76.83333,158.325 -76.83333,158.25 -76.83333,158.25 -76.816664,158.25 -76.799998,158.25 -76.783332,158.25 -76.766666,158.25 -76.75,158.25 -76.733334,158.25 -76.716668,158.25 -76.700002,158.25 -76.683336,158.25 -76.66667))"], "date_created": "Tue, 20 Dec 2011 00:00:00 GMT", "description": "This data set includes includes high-precision GPS measurements of steel poles within the Allan Hills Main Ice Field, Near Western Ice Field, and extending to the eastern edge of the Middle Western Ice Field, in Antarctica. These data were collected between December 1997 and December 2010. The extended survey period allowed for vertical and horizontal velocities to be calculated with low associated error. Parameters include locations of poles in latitude and longitude, as well as elevation, ice velocity, and accumulation rates.\n\nData are available via FTP as ASCII text files in comma separated value (.csv) format. Raw data are also provided as Trimble raw data, compressed in .zip format, and supplementary information is provided in .csv format and portable document format (.pdf).", "east": 159.0, "geometry": ["POINT(158.625 -76.75)"], "keywords": "Allan Hills; Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ice Flow Velocity", "locations": "Allan Hills; Antarctica", "north": -76.66667, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Kurbatov, Andrei V.; Spikes, Vandy Blue; Hamilton, Gordon S.; Spaulding, Nicole", "project_titles": "GPS Measurements of Rock and Ice Motions in South Victoria Land", "projects": [{"proj_uid": "p0000523", "repository": "USAP-DC", "title": "GPS Measurements of Rock and Ice Motions in South Victoria Land"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.83333, "title": "GPS Ice Flow Measurements, Allan Hills, Antarctica", "uid": "609507", "west": 158.25}, {"awards": "0538674 Winebrenner, Dale", "bounds_geometry": ["POLYGON((68.4 -75.7,69.61 -75.7,70.82 -75.7,72.03 -75.7,73.24 -75.7,74.45 -75.7,75.66 -75.7,76.87 -75.7,78.08 -75.7,79.29 -75.7,80.5 -75.7,80.5 -76.04,80.5 -76.38,80.5 -76.72,80.5 -77.06,80.5 -77.4,80.5 -77.74,80.5 -78.08,80.5 -78.42,80.5 -78.76,80.5 -79.1,79.29 -79.1,78.08 -79.1,76.87 -79.1,75.66 -79.1,74.45 -79.1,73.24 -79.1,72.03 -79.1,70.82 -79.1,69.61 -79.1,68.4 -79.1,68.4 -78.76,68.4 -78.42,68.4 -78.08,68.4 -77.74,68.4 -77.4,68.4 -77.06,68.4 -76.72,68.4 -76.38,68.4 -76.04,68.4 -75.7))"], "date_created": "Mon, 01 Aug 2011 00:00:00 GMT", "description": "This data set consists of inferred accumulation rates from three radar layers (26, 35 and 41 thousand years old) in the Vostok Subglacial Lake region. Accumulation rates were inferred using Local-Layer Approximation (LLA), which assumes that the strain-rate history of a particle traveling through the ice sheet can be approximated by the vertical strain-rate profile at the current position of the particle, which the researchers assume to be uniform. Parameters include location, in latitude and longitude, polar stereographic coordinates, and local grid X and Y coordinates, along with layer age, in thousands of years (ka), and inferred accumulation rate (cm/a). The data cover a 150 by 350 km area.\n\nData are available via FTP, as a text file (.txt) with columns in comma separated value format.", "east": 80.5, "geometry": ["POINT(74.45 -77.4)"], "keywords": "Accumulation Rate; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Lake Vostok", "locations": "Lake Vostok; Antarctica", "north": -75.7, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Macgregor, Joseph A.; Matsuoka, Kenichi; Studinger, Michael S.; Waddington, Edwin D.; Winebrenner, Dale", "project_titles": "Collaborative Research: Deciphering the Deep Ice and the Ice-water Interface over Lake Vostok Using Existing Radar Data", "projects": [{"proj_uid": "p0000090", "repository": "USAP-DC", "title": "Collaborative Research: Deciphering the Deep Ice and the Ice-water Interface over Lake Vostok Using Existing Radar Data"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.1, "title": "Millennially Averaged Accumulation Rates for Lake Vostok", "uid": "609500", "west": 68.4}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -62,180 -64,180 -66,180 -68,180 -70,180 -72,180 -74,180 -76,180 -78,180 -80,144 -80,108 -80,72 -80,36 -80,0 -80,-36 -80,-72 -80,-108 -80,-144 -80,-180 -80,-180 -78,-180 -76,-180 -74,-180 -72,-180 -70,-180 -68,-180 -66,-180 -64,-180 -62,-180 -60))"], "date_created": "Sun, 20 Feb 2011 00:00:00 GMT", "description": "This data set provides grounding line and hydrostatic line locations for the Antarctic coastline and islands around Antarctica. The data are derived using customized software to combine data from Landsat-7 imagery and Ice, Cloud, and land Elevation Satellite (ICESat) laser altimetry, which were primarily collected between 1999 to 2003. The data set also includes elevations along each line, selected from six candidate digital elevation models. The data were developed as part of the Antarctic Surface Accumulation and Ice Discharge (ASAID) project. \r\n\r\nFunding trough NASA grant 509496.02.08.01.81\r\nData are provided in both ASCII text (.txt) and shapefile (.shp, .dbf, .shx) formats.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; ASAID; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Grounding Line Hydrostatic Line; Oceans", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Bindschadler, Robert; Choi, Hyeungu", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -80.0, "title": "High-resolution Image-derived Grounding and Hydrostatic Lines for the Antarctic Ice Sheet", "uid": "609489", "west": -180.0}, {"awards": "0528728 Vernet, Maria", "bounds_geometry": ["POLYGON((-69.08 -64.8,-68.632 -64.8,-68.184 -64.8,-67.736 -64.8,-67.288 -64.8,-66.84 -64.8,-66.392 -64.8,-65.944 -64.8,-65.496 -64.8,-65.048 -64.8,-64.6 -64.8,-64.6 -65.121,-64.6 -65.442,-64.6 -65.763,-64.6 -66.084,-64.6 -66.405,-64.6 -66.726,-64.6 -67.047,-64.6 -67.368,-64.6 -67.689,-64.6 -68.01,-65.048 -68.01,-65.496 -68.01,-65.944 -68.01,-66.392 -68.01,-66.84 -68.01,-67.288 -68.01,-67.736 -68.01,-68.184 -68.01,-68.632 -68.01,-69.08 -68.01,-69.08 -67.689,-69.08 -67.368,-69.08 -67.047,-69.08 -66.726,-69.08 -66.405,-69.08 -66.084,-69.08 -65.763,-69.08 -65.442,-69.08 -65.121,-69.08 -64.8))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat. SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. This collaborative project is concerned with the synthesis and modeling of lower trophic levels.", "east": -64.6, "geometry": ["POINT(-66.84 -66.405)"], "keywords": "Bellingshausen Sea; Biota; Oceans; Phytoplankton; Southern Ocean", "locations": "Bellingshausen Sea; Southern Ocean", "north": -64.8, "nsf_funding_programs": null, "persons": "Vernet, Maria", "project_titles": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "projects": [{"proj_uid": "p0000522", "repository": "USAP-DC", "title": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -68.01, "title": "The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "uid": "600048", "west": -69.08}, {"awards": "0529087 Ross, Robin", "bounds_geometry": ["POLYGON((-71 -61,-70 -61,-69 -61,-68 -61,-67 -61,-66 -61,-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-61 -61.9,-61 -62.8,-61 -63.7,-61 -64.6,-61 -65.5,-61 -66.4,-61 -67.3,-61 -68.2,-61 -69.1,-61 -70,-62 -70,-63 -70,-64 -70,-65 -70,-66 -70,-67 -70,-68 -70,-69 -70,-70 -70,-71 -70,-71 -69.1,-71 -68.2,-71 -67.3,-71 -66.4,-71 -65.5,-71 -64.6,-71 -63.7,-71 -62.8,-71 -61.9,-71 -61))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat. SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. This collaborative project is concerned with the synthesis and modeling of lower trophic levels.", "east": -61.0, "geometry": ["POINT(-66 -65.5)"], "keywords": "Bellingshausen Sea; Biota; Oceans; Southern Ocean", "locations": "Bellingshausen Sea; Southern Ocean", "north": -61.0, "nsf_funding_programs": null, "persons": "Quetin, Langdon B.; Ross, Robin Macurda", "project_titles": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "projects": [{"proj_uid": "p0000522", "repository": "USAP-DC", "title": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "uid": "600049", "west": -71.0}, {"awards": "0529666 Fritsen, Christian", "bounds_geometry": ["POLYGON((-180 -39.23,-144 -39.23,-108 -39.23,-72 -39.23,-36 -39.23,0 -39.23,36 -39.23,72 -39.23,108 -39.23,144 -39.23,180 -39.23,180 -44.307,180 -49.384,180 -54.461,180 -59.538,180 -64.615,180 -69.692,180 -74.769,180 -79.846,180 -84.923,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.923,-180 -79.846,-180 -74.769,-180 -69.692,-180 -64.615,-180 -59.538,-180 -54.461,-180 -49.384,-180 -44.307,-180 -39.23))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat. SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. It is currently in a synthesis and modeling phase. This collaborative project is concerned with the lower trophic levels, and will be integrated with other synthesis and modeling studies that deal with grazers, predators, and other higher trophic levels.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Bellingshausen Sea; Cryosphere; Oceans; Photosynthetically Active Radiation (par); Sea Ice; Sea Surface; Southern Ocean; Total Integrated Exposure To PAR", "locations": "Bellingshausen Sea; Sea Surface; Southern Ocean", "north": -39.23, "nsf_funding_programs": null, "persons": "Fritsen, Christian", "project_titles": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "projects": [{"proj_uid": "p0000522", "repository": "USAP-DC", "title": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "uid": "600050", "west": -180.0}, {"awards": "0440666 Waddington, Edwin", "bounds_geometry": ["POINT(158.716667 -77.783333)", "POINT(-111.816667 -79.416667)"], "date_created": "Sun, 20 Jun 2010 00:00:00 GMT", "description": "This data set contains radar internal layer and ice sheet topography data for two sites in Antarctica, along with associated model results from two studies. This project used geophysical inverse theory and a 2.5 D flowband ice-flow forward model to extract robust transient accumulation patterns from multiple deeper layers. Histories of divide migration, or the movement of the ice sheet and ice-surface evolution are also provided. The data used to solve the inverse problem, and the model solutions are provided. Internal layers, modern ice-surface velocities, and modern ice-sheet geometry at Taylor Mouth are available, as well as the pattern of accumulation inferred by Waddington et al. (2007).\n\nData are available via FTP in Matlab (.mat) format. Supporting information is available as text files (.rtf and .txt).", "east": 158.716667, "geometry": ["POINT(158.716667 -77.783333)", "POINT(-111.816667 -79.416667)"], "keywords": "Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -77.783333, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Waddington, Edwin D.; Koutnik, Michelle", "project_titles": "Histories of accumulation, thickness and WAIS Divide location from radar layers using a new inverse approach", "projects": [{"proj_uid": "p0000018", "repository": "USAP-DC", "title": "Histories of accumulation, thickness and WAIS Divide location from radar layers using a new inverse approach"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.416667, "title": "Histories of Accumulation, Thickness, and WAIS Divide Location, Antarctica", "uid": "609473", "west": -111.816667}, {"awards": "0338008 Wemple, Beverley", "bounds_geometry": ["POLYGON((-71.77 43.96,-71.766 43.96,-71.762 43.96,-71.758 43.96,-71.754 43.96,-71.75 43.96,-71.746 43.96,-71.742 43.96,-71.738 43.96,-71.734 43.96,-71.73 43.96,-71.73 43.955,-71.73 43.95,-71.73 43.945,-71.73 43.94,-71.73 43.935,-71.73 43.93,-71.73 43.925,-71.73 43.92,-71.73 43.915,-71.73 43.91,-71.734 43.91,-71.738 43.91,-71.742 43.91,-71.746 43.91,-71.75 43.91,-71.754 43.91,-71.758 43.91,-71.762 43.91,-71.766 43.91,-71.77 43.91,-71.77 43.915,-71.77 43.92,-71.77 43.925,-71.77 43.93,-71.77 43.935,-71.77 43.94,-71.77 43.945,-71.77 43.95,-71.77 43.955,-71.77 43.96))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "This data set contains snow depth, Snow Water Equivalent (SWE), and forest cover characteristics for sites at the Hubbard Brook Experimental Forest in northern New Hampshire. Measurements were made at 26 sampling sites on 4 March and 1 April 2009.The data were collected as part of a collaborative research project on isotopic exchange in snow. The project aims to develop a quantitative understanding of the processes active in isotopic exchange between snow/firn and water vapor, which is important to Antarctic ice core interpretation. Data are in Microsoft Excel (.xls) format. The data set also includes maps showing site locations in Joint Photography Experts Group (.jpg) format.", "east": -71.73, "geometry": ["POINT(-71.75 43.935)"], "keywords": "Snow/ice; Snow/Ice", "locations": null, "north": 43.96, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Wemple, Beverley C.", "project_titles": "Collaborative Research: Laboratory Studies of Isotopic Exchange in Snow and Firn", "projects": [{"proj_uid": "p0000132", "repository": "USAP-DC", "title": "Collaborative Research: Laboratory Studies of Isotopic Exchange in Snow and Firn"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": 43.91, "title": "Snow Accumulation and Snow Melt in a Mixed Northern Hardwood-Conifer Forest", "uid": "609441", "west": -71.77}, {"awards": "9814810 Bales, Roger", "bounds_geometry": ["POLYGON((-124 -76,-120 -76,-116 -76,-112 -76,-108 -76,-104 -76,-100 -76,-96 -76,-92 -76,-88 -76,-84 -76,-84 -77.4,-84 -78.8,-84 -80.2,-84 -81.6,-84 -83,-84 -84.4,-84 -85.8,-84 -87.2,-84 -88.6,-84 -90,-88 -90,-92 -90,-96 -90,-100 -90,-104 -90,-108 -90,-112 -90,-116 -90,-120 -90,-124 -90,-124 -88.6,-124 -87.2,-124 -85.8,-124 -84.4,-124 -83,-124 -81.6,-124 -80.2,-124 -78.8,-124 -77.4,-124 -76))"], "date_created": "Tue, 16 Jun 2009 00:00:00 GMT", "description": "This data set contains atmospheric mixing ratios of hydrogen peroxide and methylhydroperoxide at 21 sites on the West Antarctic Ice Sheet (WAIS) were obtained from 2000 to 2003 during the US International Trans-Antarctic Scientific Expedition (US ITASE) deployments. Sample location from the WAIS region (76-90\u00baS / 84-124\u00baW) were approximately 100-300 km apart and correspond to US ITASE ice core sites. At each site, ambient air from 1 m above the snow surface was sampled between two to five days. Atmospheric hydroperoxides (ROOH) were continuously scrubbed from the sample air with a glass coil scrubber and subsequently quantified using a fluorescence detection method.\n\nData are available via FTP as ASCII text files (.txt).", "east": -84.0, "geometry": ["POINT(-104 -83)"], "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; ITASE; WAIS", "locations": "WAIS; Antarctica", "north": -76.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "McConnell, Joseph; Bales, Roger; Frey, Markus", "project_titles": "Hydrogen Peroxide, Formaldehyde, and Sub-Annual Snow Accumulation in West Antarctica: Participation in West Antarctic Traverse", "projects": [{"proj_uid": "p0000253", "repository": "USAP-DC", "title": "Hydrogen Peroxide, Formaldehyde, and Sub-Annual Snow Accumulation in West Antarctica: Participation in West Antarctic Traverse"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Atmospheric Mixing Ratios of Hydroperoxides above the West Antarctic Ice Sheet", "uid": "609394", "west": -124.0}, {"awards": "9814810 Bales, Roger", "bounds_geometry": ["POLYGON((-124 -76,-120 -76,-116 -76,-112 -76,-108 -76,-104 -76,-100 -76,-96 -76,-92 -76,-88 -76,-84 -76,-84 -77.4,-84 -78.8,-84 -80.2,-84 -81.6,-84 -83,-84 -84.4,-84 -85.8,-84 -87.2,-84 -88.6,-84 -90,-88 -90,-92 -90,-96 -90,-100 -90,-104 -90,-108 -90,-112 -90,-116 -90,-120 -90,-124 -90,-124 -88.6,-124 -87.2,-124 -85.8,-124 -84.4,-124 -83,-124 -81.6,-124 -80.2,-124 -78.8,-124 -77.4,-124 -76))"], "date_created": "Mon, 01 Jun 2009 00:00:00 GMT", "description": "This data set contains sub-annually resolved concentrations of hydrogen peroxide (H2O2), snow, firn and ice from 23 sites on the West Antarctic Ice Sheet (WAIS).", "east": -84.0, "geometry": ["POINT(-104 -83)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; WAIS", "locations": "WAIS; Antarctica", "north": -76.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "McConnell, Joseph; Bales, Roger; Frey, Markus", "project_titles": "Hydrogen Peroxide, Formaldehyde, and Sub-Annual Snow Accumulation in West Antarctica: Participation in West Antarctic Traverse", "projects": [{"proj_uid": "p0000253", "repository": "USAP-DC", "title": "Hydrogen Peroxide, Formaldehyde, and Sub-Annual Snow Accumulation in West Antarctica: Participation in West Antarctic Traverse"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Twenty-Three Century-scale Ice Core Records of Hydrogen Peroxide (H2O2) from West Antarctica", "uid": "609392", "west": -124.0}, {"awards": "0538594 Ponganis, Paul", "bounds_geometry": ["POLYGON((165.983 -77.683,166.0164 -77.683,166.0498 -77.683,166.0832 -77.683,166.1166 -77.683,166.15 -77.683,166.1834 -77.683,166.2168 -77.683,166.2502 -77.683,166.2836 -77.683,166.317 -77.683,166.317 -77.6897,166.317 -77.6964,166.317 -77.7031,166.317 -77.7098,166.317 -77.7165,166.317 -77.7232,166.317 -77.7299,166.317 -77.7366,166.317 -77.7433,166.317 -77.75,166.2836 -77.75,166.2502 -77.75,166.2168 -77.75,166.1834 -77.75,166.15 -77.75,166.1166 -77.75,166.0832 -77.75,166.0498 -77.75,166.0164 -77.75,165.983 -77.75,165.983 -77.7433,165.983 -77.7366,165.983 -77.7299,165.983 -77.7232,165.983 -77.7165,165.983 -77.7098,165.983 -77.7031,165.983 -77.6964,165.983 -77.6897,165.983 -77.683))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "The research will examine blood and muscle oxygen store depletion in relation to the documented aerobic dive limit (ADL, onset of post-dive blood lactate accumulation) in diving of emperor penguins. The intellectual merits of this proposal involve its evaluation of the physiological basis of the ADL concept. The ADL is probably the most commonly-used, but rarely measured, factor to interpret and model the behavior and foraging ecology of diving animals. Based on prior studies, and on recent investigations of respiratory and blood oxygen depletion during dives of emperor penguins, it is hypothesized that the ADL is a result of the depletion of myoglobin (Mb)-bound oxygen and increased glycolysis in the primary locomotory muscles. This project will accurately define the physiological mechanisms underlying the ADL through 1) evaluation of the rate and magnitude of muscle oxygen depletion during dives in relation to the previously measured ADL, 2) characterization of the hemoglobin-oxygen dissociation curve in blood of emperor penguins and comparison of that curve to those of other diving and non-diving species, 3) application of the emperor hemoglogin-oxygen dissociation curve to previously collected oxygen and hemoglobin data in order to estimate the rate and magnitude of blood oxygen depletion during dives, and 4) measurement of muscle phosphoocreatine and glycogen concentrations in order to estimate their potential contributions to muscle energy metabolism during diving. The project also continues the census and monitoring of the emperor colonies in the Ross Sea, which is especially important in light of both fisheries activity and the movement of iceberg B15-A. Broader impacts of the project include: 1) technological development of microprocessor-based, \u0027backpack\u0027 near-infrared spectrophotometer, which will be applicable not only to other species, but also to other fields (i.e., exercise physiology), 2) collaboration with the Department of Anesthesia at the U.S. Naval Hospital in San Diego in the training of anesthesia residents in research techniques, 3) the training and thesis research of two graduate students in these techniques and in Antarctic field research, and 4) a better understanding of the ADL concept and its use in the fields of diving behavior and physiology. In addition the annual census of emperor penguin colonies in the Ross Sea, in conjunction with the continued evaluation of previously developed remote cameras to monitor colony status, will form the basis of a new educational web site, and allow development of an educational outreach program to school children through SeaWorld of San Diego.", "east": 166.317, "geometry": ["POINT(166.15 -77.7165)"], "keywords": "Antarctica; Biota; Oceans; Penguin; Southern Ocean", "locations": "Southern Ocean; Antarctica", "north": -77.683, "nsf_funding_programs": null, "persons": "Ponganis, Paul", "project_titles": "The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins", "projects": [{"proj_uid": "p0000535", "repository": "USAP-DC", "title": "The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.75, "title": "The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins", "uid": "600057", "west": 165.983}, {"awards": "0229638 Ponganis, Paul", "bounds_geometry": ["POLYGON((163 -77,163.4 -77,163.8 -77,164.2 -77,164.6 -77,165 -77,165.4 -77,165.8 -77,166.2 -77,166.6 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.6 -78,166.2 -78,165.8 -78,165.4 -78,165 -78,164.6 -78,164.2 -78,163.8 -78,163.4 -78,163 -78,163 -77.9,163 -77.8,163 -77.7,163 -77.6,163 -77.5,163 -77.4,163 -77.3,163 -77.2,163 -77.1,163 -77))"], "date_created": "Tue, 01 Jan 2008 00:00:00 GMT", "description": "The emperor penguin, Aptenodytes forsteri, is the premier avian diver and a top predator in the Antarctic ecosystem. The routine occurrence of 500-m diver during foraging trips to sea is both a physiological and behavior enigma. The objectives of this project address how and why emperors dive as deep and long as they do. The project examines four major topics in the diving biology of emperor penguins: pressure tolerance, oxygen store management, end-organ tolerance of diving hypoxemia/ischemia, and deep-dive foraging behavior. These subjects are relevant to the role of the emperor as a top predator in the Antarctic ecosystem, and to critical concepts in diving physiology, including decompression sickness, nitrogen narcosis, shallow water blackout, hypoxemic tolerance, and extension of aerobic dive time. The following hypotheses will be tested: 1) Prevention of nitrogen narcosis and decompression sickness in emperor penguins is achieved by inhibition of pulmonary gas exchange at depth. 2) Shallow water black out does not occur because of greater cerebral hypoxemic tolerance, and, in deep dives, because of resumption of pulmonary gas exchange during final ascent. 3) The rate of depletion of the blood oxygen store is a function of depth of dive and heart rate. 4) The aerobic dive limit (ADL) reflects the onset of lactate accumulation in locomotory muscle, not total depletion of all oxygen stores. 5) Elevation of tissue antioxidant capacity and free-radical scavenging enzyme activities protect against the routine ischemia/reperfusion which occur during diving. 6) During deep dives, the Antarctic silverfish, Pleuorogramma antarcticum, is the primary prey item for emperors. In addition to evaluation of the hypotheses below, the project has broader impacts in several areas such as partnership with foreign and national institutes and organizations (e.g., the National Institute of Polar Research of Japan, Centro de Investigacioines del Noroeste of Mexico, National Geographic, the University of Texas Southwestern Medical Center, and Sea World). Participation in National Geographic television documentaries will provide unique educational opportunities for the general public; development of state-of-the-art technology (e.g., blood oxygen electrode recorders, blood samplers, and miniaturized digital cameras) will lay the groundwork for future research by this group and others; and the effects of the B15 iceberg on breeding success of emperor penguins will continue to be evaluated with population censuses during planned fieldwork at several Ross Sea emperor penguin colonies.", "east": 167.0, "geometry": ["POINT(165 -77.5)"], "keywords": "Antarctica; Biota; Oceans; Penguin; Southern Ocean", "locations": "Antarctica; Southern Ocean", "north": -77.0, "nsf_funding_programs": null, "persons": "Ponganis, Paul", "project_titles": "Diving Physiology and Behavior of Emperor Penguins", "projects": [{"proj_uid": "p0000239", "repository": "USAP-DC", "title": "Diving Physiology and Behavior of Emperor Penguins"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Diving Physiology and Behavior of Emperor Penguins", "uid": "600031", "west": 163.0}, {"awards": "0125579 Cuffey, Kurt", "bounds_geometry": ["POLYGON((160.1 -77.6,160.31 -77.6,160.52 -77.6,160.73 -77.6,160.94 -77.6,161.15 -77.6,161.36 -77.6,161.57 -77.6,161.78 -77.6,161.99 -77.6,162.2 -77.6,162.2 -77.63,162.2 -77.66,162.2 -77.69,162.2 -77.72,162.2 -77.75,162.2 -77.78,162.2 -77.81,162.2 -77.84,162.2 -77.87,162.2 -77.9,161.99 -77.9,161.78 -77.9,161.57 -77.9,161.36 -77.9,161.15 -77.9,160.94 -77.9,160.73 -77.9,160.52 -77.9,160.31 -77.9,160.1 -77.9,160.1 -77.87,160.1 -77.84,160.1 -77.81,160.1 -77.78,160.1 -77.75,160.1 -77.72,160.1 -77.69,160.1 -77.66,160.1 -77.63,160.1 -77.6))"], "date_created": "Sat, 01 Dec 2007 00:00:00 GMT", "description": "This data set provides glacier surface ablation rates for a network of approximately 250 sites on Taylor Glacier, spanning a period from 2003 to 2011. Here sublimation is the dominant ablation mechanism, though a few sites have accumulation. Ablation data are provided in meters water equivalent per year. \n\nData are available via FTP in space-delimited ASCII format.", "east": 162.2, "geometry": ["POINT(161.15 -77.75)"], "keywords": "Ablation Poles; Ablation Rates; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Taylor Glacier", "locations": "Taylor Glacier; Antarctica", "north": -77.6, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Cuffey, Kurt M.; Bliss, Andrew; Kavanaugh, Jeffrey", "project_titles": "Collaborative Research: Dynamics and Climatic Response of the Taylor Glacier System", "projects": [{"proj_uid": "p0000084", "repository": "USAP-DC", "title": "Collaborative Research: Dynamics and Climatic Response of the Taylor Glacier System"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Ablation Rates of Taylor Glacier, Antarctica", "uid": "609326", "west": 160.1}, {"awards": "0225992 Fahnestock, Mark; 0125570 Scambos, Ted", "bounds_geometry": ["POLYGON((124.4345 -80.77546,124.443718 -80.77546,124.452936 -80.77546,124.462154 -80.77546,124.471372 -80.77546,124.48059 -80.77546,124.489808 -80.77546,124.499026 -80.77546,124.508244 -80.77546,124.517462 -80.77546,124.52668 -80.77546,124.52668 -80.776922,124.52668 -80.778384,124.52668 -80.779846,124.52668 -80.781308,124.52668 -80.78277,124.52668 -80.784232,124.52668 -80.785694,124.52668 -80.787156,124.52668 -80.788618,124.52668 -80.79008,124.517462 -80.79008,124.508244 -80.79008,124.499026 -80.79008,124.489808 -80.79008,124.48059 -80.79008,124.471372 -80.79008,124.462154 -80.79008,124.452936 -80.79008,124.443718 -80.79008,124.4345 -80.79008,124.4345 -80.788618,124.4345 -80.787156,124.4345 -80.785694,124.4345 -80.784232,124.4345 -80.78277,124.4345 -80.781308,124.4345 -80.779846,124.4345 -80.778384,124.4345 -80.776922,124.4345 -80.77546))"], "date_created": "Thu, 05 Oct 2006 00:00:00 GMT", "description": "The Antarctic megadune research was conducted during two field seasons, one in November 2002 and the other during the period of December 2003 through January 2004. The megadune field site is located on the East Antarctic Plateau, southeast of Vostok station. The objectives of this multi-facetted research are 1) to determine the physical characteristics of the firn across the dunes including typical climate indicators such as stable isotopes and major chemical species and 2) to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. It is important to improve our current understanding of the megadunes because of their extreme nature, their broad extent, and their potential impact on the climate record. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on the past terrestrial climate or on processes active on other planets.\n\nSnow megadunes are undulating variations in accumulation and surface texture with wavelengths of 2 to 5 km and amplitudes up to 5 meters. The features cover 500,000 km\u003csup\u003e2\u003c/sup\u003e of the East Antarctic plateau, occurring in areas of moderate regional slope and low accumulation on the flanks of the ice sheet between 2500 and 3800 meters elevation. Landsat images and aerial photography indicate the dunes consist of alternating surfaces of glaze and rough sastrugi, with gradational boundaries. This pattern is oriented perpendicular to the mean wind direction, as modeled in katabatic wind studies. Glazed surfaces cover the leeward faces and troughs; rough sastrugi cover the windward faces and crests. The megadune pattern is crossed by smooth to eroded wind-parallel longitudinal dunes. Wind-eroded longitudinal dunes form spectacular 1-meter-high sastrugi in nearby areas.\n\nThis data set contains automated weather station (AWS) data from two sites. The Mac site was oriented on the rough sastrugi-covered windward face and the Zoe site was on the glazed leeward face. The AWSs collected data throughout the year from 16 January 2004 to 17 November 2004. Investigators received data from the two field sites via the ARGOS Satellite System (http://www.argosinc.com/). Data are provided in space-delimited ASCII text format and are available via FTP.", "east": 124.52668, "geometry": ["POINT(124.48059 -80.78277)"], "keywords": "Antarctica; Atmosphere; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Meteorology; Snow/ice; Snow/Ice", "locations": "East Antarctic Plateau; Antarctica", "north": -80.77546, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Fahnestock, Mark; Scambos, Ted; Haran, Terry; Bauer, Rob", "project_titles": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "projects": [{"proj_uid": "p0000587", "repository": "USAP-DC", "title": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.79008, "title": "AWS Data: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "uid": "609283", "west": 124.4345}, {"awards": "0125276 Albert, Mary", "bounds_geometry": ["POLYGON((124.0218 -80.5304,124.22264 -80.5304,124.42348 -80.5304,124.62432 -80.5304,124.82516 -80.5304,125.026 -80.5304,125.22684 -80.5304,125.42768 -80.5304,125.62852 -80.5304,125.82936 -80.5304,126.0302 -80.5304,126.0302 -80.55538,126.0302 -80.58036,126.0302 -80.60534,126.0302 -80.63032,126.0302 -80.6553,126.0302 -80.68028,126.0302 -80.70526,126.0302 -80.73024,126.0302 -80.75522,126.0302 -80.7802,125.82936 -80.7802,125.62852 -80.7802,125.42768 -80.7802,125.22684 -80.7802,125.026 -80.7802,124.82516 -80.7802,124.62432 -80.7802,124.42348 -80.7802,124.22264 -80.7802,124.0218 -80.7802,124.0218 -80.75522,124.0218 -80.73024,124.0218 -80.70526,124.0218 -80.68028,124.0218 -80.6553,124.0218 -80.63032,124.0218 -80.60534,124.0218 -80.58036,124.0218 -80.55538,124.0218 -80.5304))"], "date_created": "Sat, 10 Jun 2006 00:00:00 GMT", "description": "The Antarctic megadune research was conducted during two field seasons, one in November 2002 and the other in December 2003 through January 2004. The megadune field site is located on the East Antarctic Plateau, southeast of Vostok station. The objectives of this multi-facetted research are to determine the physical characteristics of the firn across the dunes including typical climate indicators such as stable isotopes and major chemical species and to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. It is important to improve our current understanding of the megadunes because of their extreme nature, their broad extent, and their potential impact on the climate record. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on past terrestrial climate or on processes active on other planets.\n\nSnow megadunes are undulating variations in accumulation and surface texture with wavelengths of 2 to 5 km and amplitudes up to 5 meters. The features cover 500,000 km\u003csup\u003e2\u003c/sup\u003e of the East Antarctic plateau, occurring in areas of moderate regional slope and low accumulation on the flanks of the ice sheet between 2500 and 3800 meters elevation. Landsat images and aerial photography indicate the dunes consist of alternating surfaces of glaze and rough sastrugi, with gradational boundaries. This pattern is oriented perpendicular to the mean wind direction, as modeled in katabatic wind studies. Glaze surfaces cover the leeward faces and troughs; rough sastrugi cover the windward faces and crests. The megadune pattern is crossed by smooth to eroded wind-parallel longitudinal dunes. Wind-eroded longitudinal dunes form spectacular 1-meter-high sastrugi in nearby areas.\n\nThis data set contains ground penetrating radar (GPR) data showing surface morphology and internal layering structure along with global positioning system (GPS) data collected within an area of 60 km\u003csup\u003e2\u003c/sup\u003e. GPS data are provided in space-delimited ASCII text Microsoft Excel formats, while GPR data are in JPEG format. Data are available via FTP.", "east": 126.0302, "geometry": ["POINT(125.026 -80.6553)"], "keywords": "Antarctica; East Antarctic Plateau; Glaciology; GPR; GPS; Navigation; Paleoclimate; Snow/ice; Snow/Ice", "locations": "East Antarctic Plateau; Antarctica", "north": -80.5304, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Scambos, Ted; Bauer, Rob", "project_titles": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "projects": [{"proj_uid": "p0000587", "repository": "USAP-DC", "title": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.7802, "title": "GPR and GPS Data: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation", "uid": "609282", "west": 124.0218}, {"awards": "0088035 Arcone, Steven; 0196441 Hamilton, Gordon; 0096299 Mayewski, Paul; 0229573 Mayewski, Paul", "bounds_geometry": ["POLYGON((-123.993 -77.6832,-123.6019 -77.6832,-123.2108 -77.6832,-122.8197 -77.6832,-122.4286 -77.6832,-122.0375 -77.6832,-121.6464 -77.6832,-121.2553 -77.6832,-120.8642 -77.6832,-120.4731 -77.6832,-120.082 -77.6832,-120.082 -77.7232,-120.082 -77.7632,-120.082 -77.8032,-120.082 -77.8432,-120.082 -77.8832,-120.082 -77.9232,-120.082 -77.9632,-120.082 -78.0032,-120.082 -78.0432,-120.082 -78.0832,-120.4731 -78.0832,-120.8642 -78.0832,-121.2553 -78.0832,-121.6464 -78.0832,-122.0375 -78.0832,-122.4286 -78.0832,-122.8197 -78.0832,-123.2108 -78.0832,-123.6019 -78.0832,-123.993 -78.0832,-123.993 -78.0432,-123.993 -78.0032,-123.993 -77.9632,-123.993 -77.9232,-123.993 -77.8832,-123.993 -77.8432,-123.993 -77.8032,-123.993 -77.7632,-123.993 -77.7232,-123.993 -77.6832))"], "date_created": "Wed, 06 Apr 2005 00:00:00 GMT", "description": "Snow accumulation rates typically show high variability over short distances. This data set contains accumulation rates derived from ground-penetrating radar (GPR) used to detect isochronal layers in the firn in West Antarctica. These layers were then dated using results from ice core analyses. These data show that accumulation rates along this profile have decreased in recent decades. The radar profile extends between two ice core sites taken along one of the US-ITASE traverse routes.", "east": -120.082, "geometry": ["POINT(-122.0375 -77.8832)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; ITASE; WAIS", "locations": "WAIS; Antarctica", "north": -77.6832, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Spikes, Vandy Blue; Hamilton, Gordon S.; Mayewski, Paul A.; Arcone, Steven; Kaspari, Susan", "project_titles": "High Resolution Radar Profiling of the Snow and Ice Stratigraphy beneath the ITASE Traverses, West Antarctic Ice Sheet", "projects": [{"proj_uid": "p0000146", "repository": "USAP-DC", "title": "High Resolution Radar Profiling of the Snow and Ice Stratigraphy beneath the ITASE Traverses, West Antarctic Ice Sheet"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -78.0832, "title": "US International Trans-Antarctic Scientific Expedition (US ITASE): GPR Profiles and Accumulation Mapping", "uid": "609269", "west": -123.993}, {"awards": "8613786 Mayewski, Paul; 8411018 Frisic, David", "bounds_geometry": null, "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "This data set includes beta profiles, chemistry, and density data obtained from Dominion Range ice cores. The Dominion Range is on the East Antarctic Ice Sheet. The chemistry data consists of the composition of oxygen-isotopes and trapped gasses. Other information includes ice thickness, mean annual net accumulation, and crystal size. The core samples were collected in the austral summer of 1984-85. \n", "east": null, "geometry": null, "keywords": "Antarctica; Beta Profiles; Chemistry:ice; Chemistry:Ice; Density; Dominion Range; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Physical Properties", "locations": "Dominion Range; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Sowers, Todd A.; Saltzman, Eric; Watson, M. Scott; Grootes, Pieter; Mayewski, Paul A.; Meese, Deb; Gow, Tony", "project_titles": "Characterization of Climatic Events for the Last 2 x 103y through the Retrieval of Ice Cores from the Transantarctic Mountains, Antarctica", "projects": [{"proj_uid": "p0000169", "repository": "USAP-DC", "title": "Characterization of Climatic Events for the Last 2 x 103y through the Retrieval of Ice Cores from the Transantarctic Mountains, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Dominion Range Ice Core Beta Profiles, Chemistry, and Density Data", "uid": "609248", "west": null}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POLYGON((-120 -80,-118.5 -80,-117 -80,-115.5 -80,-114 -80,-112.5 -80,-111 -80,-109.5 -80,-108 -80,-106.5 -80,-105 -80,-105 -80.5,-105 -81,-105 -81.5,-105 -82,-105 -82.5,-105 -83,-105 -83.5,-105 -84,-105 -84.5,-105 -85,-106.5 -85,-108 -85,-109.5 -85,-111 -85,-112.5 -85,-114 -85,-115.5 -85,-117 -85,-118.5 -85,-120 -85,-120 -84.5,-120 -84,-120 -83.5,-120 -83,-120 -82.5,-120 -82,-120 -81.5,-120 -81,-120 -80.5,-120 -80))"], "date_created": "Thu, 16 Oct 2003 00:00:00 GMT", "description": "Glaciochemical and accumulation rate records developed from four ice cores in central West Antarctica are used to reconstruct former atmospheric circulation patterns in this region for the last 40 years with extended records (150-250 years) at two sites. The sites lie on a 200 km traverse from 82 degrees 22 minutes south, 119 degrees 17 minutes west to 81 degrees 22 minutes south, 107 degrees 17 minutes west, gaining elevation from 950 to 1930 m. The glaciochemical records represent the major ionic species present in Antarctic snow: sodium, potassium, magnesium, calcium, chloride, nitrate, and sulfate.", "east": -105.0, "geometry": ["POINT(-112.5 -82.5)"], "keywords": "Accumulation Rate; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; West Antarctica", "locations": "West Antarctica; Antarctica", "north": -80.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Reusch, David", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -85.0, "title": "Central West Antarctic Glaciochemistry from Ice Cores", "uid": "609093", "west": -120.0}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POINT(158 -77)"], "date_created": "Mon, 18 Aug 2003 00:00:00 GMT", "description": "The collection site is Taylor Dome, an ice-accumulation area on the East Antarctic ice sheet. The dome is a ridge about 20 x 80 km, which lies inland of the Transantarctic Mountains. Deep drilling by the Polar Ice Coring Office (PICO) at Taylor Dome reached bedrock at a depth of 554 meters during the 1993-1994 austral summer season.\n\n\u003cp\u003eThis data set includes mesurements of:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eberyllium-10 (betd.txt)\u003c/li\u003e\n\u003cli\u003eoxygen isotopes (hi18o_td.txt and lo18o_td.txt)\u003c/li\u003e\n\u003cli\u003edeuterium isotopes (deld_20cm.txt and deld_td.txt).\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThese data were produced at the University of Washington from samples obtained in the field and via the University of New Hampshire automatic melting system. For beryllium, deuterium, and 20-cm oxygen isotope data, the st9810 ice age (kyB1950) timescale is used. For 0.5- to 1-m oxygen isotope data, the st9507 is used.\u003c/p\u003e", "east": 158.0, "geometry": ["POINT(158 -77)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; Taylor Dome; Taylor Dome Ice Core", "locations": "Taylor Dome; Antarctica", "north": -77.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Steig, Eric J.; White, James", "project_titles": null, "projects": null, "repositories": null, "science_programs": "Taylor Dome Ice Core", "south": -77.0, "title": "Taylor Dome Ice Core Data", "uid": "609132", "west": 158.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Allan Hills I-188 Field Season Report 2022-2023
|
2019719 |
2024-08-19 | Conway, Howard; Shaya, Margot; Manos, John-Morgan; Horlings, Annika; Epifanio, Jenna |
Center for Oldest Ice Exploration |
Field report for I-188, the purpose of which was to find a suitable site to extract a continuous >1 Ma ice core in the Allan Hills accumulation zone. | [] | [] | false | false |
Concentration and flux of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area
|
2035580 |
2024-08-15 | Carter, Austin |
Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial |
This dataset contains dust mass concentrations, coarse particle fraction, interpolated accumulation rate, and dust flux from ALHIC1903 spanning the transition from MIS 6 through 5e. | ["POINT(159.31 -76.7)"] | ["POINT(159.31 -76.7)"] | false | false |
d15N and d18O of air in the WAIS Divide ice core
|
0538657 |
2023-10-20 | Severinghaus, Jeffrey P. |
Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate |
Major gas components of air data set, containing d15N, d18O of O2, dO2/N2, and dAr/N2 from the WAIS Divide ice core at high resolution. These data are used to constrain surface temperature, biosphere oxygen cycling, and firn thickness through the past >60 kyr. | ["POINT(-112.05 -79.28)"] | ["POINT(-112.05 -79.28)"] | false | false |
MELT 2018-2020 Accumulation Radar at Thwaites
|
1739003 |
2023-03-28 | Paden, John | No project link provided | Data products (radar echogram images and ice surface and ice bottom tracking) from the two ITGC MELT Accumulation Radar campaigns at Thwaites Glacier. | ["POLYGON((-114.2703 -66.8445,-109.54270000000001 -66.8445,-104.8151 -66.8445,-100.0875 -66.8445,-95.35990000000001 -66.8445,-90.6323 -66.8445,-85.9047 -66.8445,-81.1771 -66.8445,-76.4495 -66.8445,-71.7219 -66.8445,-66.9943 -66.8445,-66.9943 -67.98911,-66.9943 -69.13372,-66.9943 -70.27833,-66.9943 -71.42294,-66.9943 -72.56755,-66.9943 -73.71216,-66.9943 -74.85677,-66.9943 -76.00138,-66.9943 -77.14599,-66.9943 -78.2906,-71.72189999999999 -78.2906,-76.4495 -78.2906,-81.1771 -78.2906,-85.90469999999999 -78.2906,-90.6323 -78.2906,-95.3599 -78.2906,-100.0875 -78.2906,-104.8151 -78.2906,-109.5427 -78.2906,-114.2703 -78.2906,-114.2703 -77.14599,-114.2703 -76.00138,-114.2703 -74.85677,-114.2703 -73.71216,-114.2703 -72.56755,-114.2703 -71.42294,-114.2703 -70.27833,-114.2703 -69.13372,-114.2703 -67.98911,-114.2703 -66.8445))"] | ["POINT(-90.6323 -72.56755)"] | false | false |
AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment
|
1043761 0230197 0636724 2127606 |
2023-03-15 | Muldoon, Gail R.; Young, Duncan A.; Jackson, Charles; Blankenship, Donald D. |
Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System Geophysical Investigations of Marie Byrd Land Lithospheric Evolution (GIMBLE) Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA) |
This file contains internal radar horizon 1 (lm-MERGE-lay9-grg) for West Antarctica, collected during the SOAR/CASERTZ (1991-1996), SOAR/DVD (1999), ATRS (2001), AGASEA (2004-05) and GIMBLE (2013-2014) expeditions. Only data collected in AGASEA is contained in this specific product. This data set is linked to PH.D thesis Muldoon, G. 2018 "West Antarctic Ice Sheet Retreat during the Last Interglacial"Spatial and temporal distributions of accumulation rates on the catchment of Thwaites Glacier, West Antarctica", University of Texas at Austin https://doi.org/10.15781/T23B5WS0D The internal radar horizon (IRH) was traced semi-automatically by Gail R. Muldoon using Haliburtons's Landmark software and picker, in a combination of 2D focused and unfocused data. Depths were calculated using a 2 way velocity in ice of 84.5 m/microsecond, and no firn correction. Isochron age is 4711 (+/- 246 ) years. Funding for this dataset as provided by NSF grants and The G. Unger Vetlesen Foundation. | ["POLYGON((-136 -74,-131.9 -74,-127.8 -74,-123.7 -74,-119.6 -74,-115.5 -74,-111.4 -74,-107.30000000000001 -74,-103.2 -74,-99.1 -74,-95 -74,-95 -74.7,-95 -75.4,-95 -76.1,-95 -76.8,-95 -77.5,-95 -78.2,-95 -78.9,-95 -79.6,-95 -80.3,-95 -81,-99.1 -81,-103.2 -81,-107.3 -81,-111.4 -81,-115.5 -81,-119.6 -81,-123.69999999999999 -81,-127.8 -81,-131.9 -81,-136 -81,-136 -80.3,-136 -79.6,-136 -78.9,-136 -78.2,-136 -77.5,-136 -76.8,-136 -76.1,-136 -75.4,-136 -74.7,-136 -74))"] | ["POINT(-115.5 -77.5)"] | false | false |
Replicate O-17-excess by continuous flow laser spectroscopy for an ice core section at Summit, Greenland
|
2019719 1841844 |
2023-01-25 | Davidge, Lindsey |
Center for Oldest Ice Exploration |
This data set contains replicate measurements of D17O from a 92-m deep section of core at Summit, Greenland and other operational data necessary to reconstruct figures presented in Davidge et al., 2022. Details of the entire dataset and a description of the relevant methods can be found in Davidge et al., 2022. The names of each sheet indicate the corresponding figure numbers. The D17O record spans about two years of accumulation. Discrete measurements by laser spectroscopy are provided at 1.4-cm resolution. For the purpose of method development, continuous-flow measurements are provided with nine replicates and are averaged to multiple depth resolutions as described in Davidge et al., 2022. | [] | [] | false | false |
Law Dome DE08-OH firn air 15N, O2/N2, Ar/N2, 18O of O2
|
1643664 |
2022-08-16 | Severinghaus, Jeffrey P. |
Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability |
This data set comprises measurements of noble and inert gases in the firn at the DE08-OH site sampled in 2018-2019 near the summit of Law Dome, Antarctica. The data show the expected gravitational enrichment of heavy isotopes with depth, somewhat attenuated by the high accumulation rate and a near-surface well-mixed zone (convective zone), and the "lock-in" horizon at 68 m depth. As seen at many other sites, the heavy isotope of oxygen 18O is depleted progressively with depth within the lock-in zone due to faster gas permeation of 16O16O relative to 18O16O from compressed air bubbles. | [] | [] | false | false |
South Pole Weather and Accumulation Measurements 2017-2020
|
1654922 |
2022-07-28 | de la Peña, Santiago |
EAGER: An Operational System to Measure Surface Mass Balance Deep in the Interior of the Antarctic Ice Sheet |
An instrument suite composed of weather sensors and a set of 'SnowFox' Gamma Ray neutron counters used to estimate the water equivalence of snow accumulation, measured continuously between December 2017 and January 2020. | ["POLYGON((-180 -89.99,-144 -89.99,-108 -89.99,-72 -89.99,-36 -89.99,0 -89.99,36 -89.99,72 -89.99,108 -89.99,144 -89.99,180 -89.99,180 -89.991,180 -89.99199999999999,180 -89.993,180 -89.994,180 -89.995,180 -89.996,180 -89.997,180 -89.998,180 -89.999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -89.999,-180 -89.998,-180 -89.997,-180 -89.996,-180 -89.995,-180 -89.994,-180 -89.993,-180 -89.99199999999999,-180 -89.991,-180 -89.99))"] | ["POINT(0 -89.999)"] | false | false |
AMIGOS-III Cavity and Channel Snow Height and Thermistor Snow Temperature Data
|
1738992 |
2022-03-29 | Scambos, Ted |
NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment |
Campbell Scientific data loggers with eight platinum resistance thermometers (PRTs) and an acoustic snow height detector were installed as part of the AMIGOS-III instrumentation (AMIGOS: Automated Meteorology Ice Geophysics Observing System) The data are hourly reports of snow and near-surface air temperatures at different depths. At Cavity AMIGOS site, snow temperatures at ~1.2 meters depth (four PRTs) were used to provide reference temperatures for a coil of Distributed Thermal Sensing (DTS) fiber optic cable. At both sites, PRTs were attached to the tower (wrapped in reflective metal foil tape) as a means of investigating inversion strength and snow burial. At both sites, hourly snow height data using an acoustic sensor placed (initially) at 6.75 meters above the snow on a sensor cross-arm were acquired. A correction based on separately-measured air temperature was applied as per Campbell Scientifics correction algorithm. Both snow height sensors failed after just over one year (Cavity) or 10 months (Channel). Thermistor data continued to be acquired for 13 months (Cavity) or 19 months (Channel) The two sites latest positions (01 Oct, 2021) are: Cavity AMIGOS: 75.037°S, 105.58°W Channel AMIGOS: 75.049°S, 105.44°W both stations are moving NNE at roughly 850 m.yr, having accelerated from about 650 m/yr in early 2020. | ["POLYGON((-105.55 -75.03,-105.53 -75.03,-105.51 -75.03,-105.49 -75.03,-105.47 -75.03,-105.45 -75.03,-105.43 -75.03,-105.41 -75.03,-105.39 -75.03,-105.37 -75.03,-105.35 -75.03,-105.35 -75.033,-105.35 -75.036,-105.35 -75.039,-105.35 -75.042,-105.35 -75.045,-105.35 -75.048,-105.35 -75.051,-105.35 -75.054,-105.35 -75.057,-105.35 -75.06,-105.37 -75.06,-105.39 -75.06,-105.41 -75.06,-105.43 -75.06,-105.45 -75.06,-105.47 -75.06,-105.49 -75.06,-105.51 -75.06,-105.53 -75.06,-105.55 -75.06,-105.55 -75.057,-105.55 -75.054,-105.55 -75.051,-105.55 -75.048,-105.55 -75.045,-105.55 -75.042,-105.55 -75.039,-105.55 -75.036,-105.55 -75.033,-105.55 -75.03))"] | ["POINT(-105.45 -75.045)"] | false | false |
Visala WXT520 weather station data at the Cavity and Channel AMIGOS-III sites
|
1738992 |
2022-03-28 | Scambos, Ted |
NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment |
Visalia WXT520 weather station hourly data spanning 20 months (with data gaps) at the Cavity and Channel AMIGOS-III sites (Automated Meteorology-Ice-Geophysics Observing System) on the Thwaites Eastern Ice Shelf, Antarctica. Data are reported as the values from the sensors delivered through the Iridium modem via SBD from the AMIGOS. The units were installed at ~6.5m above the surface initially, with snow accumulation gradually reducing that to an estimated 3.5 m after 20 months. The stations report wind direction and speed, air temperature, humidity, pressure, and station power. The two sites latest positions (01 Oct, 2021) are: Cavity AMIGOS: 75.037°S, 105.58°W Channel AMIGOS: 75.049°S, 105.44°W both stations are moving NNE at roughly 850 m.yr, having accelerated from about 650 m/yr in early 2020. | ["POLYGON((-105.55 -75.03,-105.53 -75.03,-105.51 -75.03,-105.49 -75.03,-105.47 -75.03,-105.45 -75.03,-105.43 -75.03,-105.41 -75.03,-105.39 -75.03,-105.37 -75.03,-105.35 -75.03,-105.35 -75.033,-105.35 -75.036,-105.35 -75.039,-105.35 -75.042,-105.35 -75.045,-105.35 -75.048,-105.35 -75.051,-105.35 -75.054,-105.35 -75.057,-105.35 -75.06,-105.37 -75.06,-105.39 -75.06,-105.41 -75.06,-105.43 -75.06,-105.45 -75.06,-105.47 -75.06,-105.49 -75.06,-105.51 -75.06,-105.53 -75.06,-105.55 -75.06,-105.55 -75.057,-105.55 -75.054,-105.55 -75.051,-105.55 -75.048,-105.55 -75.045,-105.55 -75.042,-105.55 -75.039,-105.55 -75.036,-105.55 -75.033,-105.55 -75.03))"] | ["POINT(-105.45 -75.045)"] | false | false |
Layer and Thinning based Accumulation Rate Reconstructions
|
1643355 |
2021-06-01 | Fudge, T. J. |
Collaborative Research: The Timing and Spatial Expression of the Bipolar Seesaw |
This data set contains the accumulation rates based on layer thicknesses and thinning in the supplement of Buizert et al., 2021. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Precipitation Observations for the Northwest Ross Ice Shelf - 2017-12 to 2019-11
|
1543325 1543377 |
2021-05-04 | Seefeldt, Mark |
Collaborative Research: Implementing Low-power, Autonomous Observing Systems to Improve the Measurement and Understanding of Antarctic Precipitation |
The dataset includes precipitation and associated observations at four sites across the northwest Ross Ice Shelf from December 2017 to November 2019. The general instruments at each site include precipitation gauge - installed inside a wind shield, anemometer, thermometer, sonic ranging sensor, optical particle detector, laser disdrometer, shortwave and longwave radiation sensors, and a field camera. The observations from each site include: precipitation (liquid water equivalent), temperature, wind speed, snow surface height, particle count, particle size and speed, upward/downward longwave radiation, upward/downward shortwave radiation, still image photos, and 5-second movies. The data are in comma-delimited text files, jpg photos, and mp4 movies. png plots of the quality-controlled observations are included for quick views of the data. | ["POLYGON((166.918 -77.877,167.2997 -77.877,167.6814 -77.877,168.0631 -77.877,168.4448 -77.877,168.8265 -77.877,169.2082 -77.877,169.5899 -77.877,169.9716 -77.877,170.3533 -77.877,170.735 -77.877,170.735 -77.99,170.735 -78.103,170.735 -78.216,170.735 -78.329,170.735 -78.442,170.735 -78.555,170.735 -78.668,170.735 -78.781,170.735 -78.894,170.735 -79.007,170.3533 -79.007,169.9716 -79.007,169.5899 -79.007,169.2082 -79.007,168.8265 -79.007,168.4448 -79.007,168.0631 -79.007,167.6814 -79.007,167.2997 -79.007,166.918 -79.007,166.918 -78.894,166.918 -78.781,166.918 -78.668,166.918 -78.555,166.918 -78.442,166.918 -78.329,166.918 -78.216,166.918 -78.103,166.918 -77.99,166.918 -77.877))"] | ["POINT(168.8265 -78.442)"] | false | false |
Temperature, accumulation rate, and layer thinning from the South Pole ice core (SPC14)
|
1443105 |
2020-10-28 | Kahle, Emma; Steig, Eric J.; Jones, Tyler R.; Fudge, T. J.; Koutnik, Michelle; Morris, Valerie; Vaughn, Bruce; Schauer, Andrew; Stevens, Max; Conway, Howard; Waddington, Edwin D.; Buizert, Christo; Epifanio, Jenna; White, James |
Collaborative Research: A 1500m Ice Core from South Pole Collaborative Research: Record of the Triple-oxygen Isotope and Hydrogen Isotope Composition of Ice from an Ice Core at South Pole |
This data set provides the input and output data used in Kahle et al. 2020 to reconstruct climate variables at the South Pole. The files below include high resolution water isotopes, water isotope diffusion length, and various reconstructions of temperature, accumulation rate, and thinning function for the SPC14 ice core. An inverse approach was used to combine information from water isotope diffusion length, Dage, and annual-layer thickness to solve for temperature, accumulation rate, and thinning function. Corrections were applied to account for the advection of ice from upstream to yield estimates for the South Pole site. Updated data for Hires_Water_Isotopes_halfcm.txt is available at www.usap-dc.org/view/dataset/601429. | ["POINT(180 -90)"] | ["POINT(180 -90)"] | false | false |
SPICEcore Advection
|
1443471 |
2020-03-25 | Fudge, T. J. |
Collaborative Research: Characterization of Upstream Ice and Firn Dynamics affecting the South Pole Ice Core |
The South Pole Ice Core (SPICEcore), which spans the past 54,300 years, was drilled far from an ice divide such that ice recovered at depth originated upstream of the core site. If the climate is different upstream, the climate history recovered from the core will be a combination of the upstream conditions advected to the core site and temporal changes. Here, we evaluate the impact of ice advection on two fundamental records from SPICEcore: accumulation rate and water isotopes. We determined past locations of ice deposition based on GPS measurements of the modern velocity field spanning 100 km upstream, where ice of ~20 ka age would likely have originated. Beyond 100 km, there are no velocity measurements, but ice likely originates from Titan Dome, an additional 90 km distant. Shallow radar measurements extending 100 km upstream from the core site reveal large (~20%) variations in accumulation but no significant trend. Water isotope ratios, measured at 12.5 km intervals for the first 100 km of the flowline, show a decrease with elevation of -0.008‰ m-1 for δ18O. Advection adds approximately 1‰ for δ18O to the LGM-to-modern change. We also use an existing ensemble of continental ice-sheet model runs to assess the ice sheet elevation change through time. The magnitude of elevation change is likely small and the sign uncertain. Assuming a lapse rate of 10°C per km of elevation, the inference of LGM-to-modern temperature change is ~1.4°C smaller than if the flow from upstream is not considered. | ["POINT(-98.16 -89.99)"] | ["POINT(-98.16 -89.99)"] | false | false |
South Pole ice core total air content
|
1443464 |
2019-12-11 | Sowers, Todd A. |
Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core |
The total air content in ice core samples are a fundamental indication of the multitude of processes that impact densification of snow in polar regions. In addition, variations in the elevation of the ice sheet directly control the pressure in the bubble close off region and thereby the total gas content. Attempts to remove the physical factors (temperature, accumulation rate, dust content, seasonality) impacting the total air content could provide a means of assessing variations in the elevation of the South Pole over the last 50,000 years. | ["POINT(0 -90)"] | ["POINT(0 -90)"] | false | false |
The South Pole Ice Core (SPICEcore) chronology and supporting data
|
1443336 |
2019-08-29 | Winski, Dominic A.; Fudge, T. J.; Dunbar, Nelia; Buizert, Christo; Bay, Ryan; Souney, Joseph Jr.; Sigl, Michael; McConnell, Joseph; Fegyveresi, John; Cole-Dai, Jihong; Thundercloud, Zayta; Cox, Thomas S.; Kreutz, Karl; Epifanio, Jenna; Ortman, Nikolas; Brook, Edward J.; Beaudette, Ross; Sowers, Todd A.; Steig, Eric J.; Morris, Valerie; Kahle, Emma; Ferris, David G.; Aydin, Murat; Nicewonger, Melinda R.; Casey, Kimberly A.; Alley, Richard; Waddington, Edwin D.; Osterberg, Erich; Severinghaus, Jeffrey P.; Jones, Tyler R.; Iverson, Nels |
Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements |
The South Pole Ice Core (SPICEcore) was drilled in 2014-2016 to provide a detailed multi-proxy archive of paleoclimate conditions in East Antarctica during the Holocene and late Pleistocene. Interpretation of these records requires an accurate depth-age relationship. Here, we present the SP19 timescale for the age of the ice of SPICEcore. SP19 is synchronized to the WD2014 chronology from the West Antarctic Ice Sheet Divide (WAIS Divide) ice core using stratigraphic matching of 251 volcanic events. These events indicate an age of 54,302 +/- 519 years BP (before the year 1950) at the bottom of SPICEcore. Annual layers identified in sodium and magnesium ions to 11,341 BP were used to interpolate between stratigraphic volcanic tie points, yielding an annually-resolved chronology through the Holocene. Estimated timescale uncertainty during the Holocene is less than 18 years relative to WD2014, with the exception of the interval between 1800 to 3100 BP when uncertainty estimates reach +/- 25 years due to widely spaced volcanic tie points. Prior to the Holocene, uncertainties remain within 124 years relative to WD2014. Results show an average Holocene accumulation rate of 7.4 cm/yr (water equivalent). The time variability of accumulation rate is consistent with expectations for steady-state ice flow through the modern spatial pattern of accumulation rate. Time variations in nitrate concentration, nitrate seasonal amplitude, and δ15N of N2 in turn are as expected for the accumulation-rate variations. The highly variable yet well-constrained Holocene accumulation history at the site can help improve scientific understanding of deposition-sensitive climate proxies such as δ15N of N2 and photolyzed chemical compounds. | ["POINT(-180 -90)"] | ["POINT(-180 -90)"] | false | false |
Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores
|
1246148 1245821 1245659 |
2019-08-12 | Menking, James; Brook, Edward J.; Marcott, Shaun; Barker, Stephen; Shackleton, Sarah; Dyonisius, Michael; Petrenko, Vasilii; McConnell, Joseph; Rhodes, Rachel; Bauska, Thomas; Baggenstos, Daniel; Severinghaus, Jeffrey P. |
Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive |
New ice cores retrieved from the Taylor Glacier (Antarctica) blue ice area contain ice and air spanning the Marine Isotope Stage (MIS) 5-4 transition, a period of global cooling and ice sheet expansion. We determine chronologies for the ice and air bubbles in the new ice cores by visually matching variations in gas- and ice- phase tracers to preexisting ice core records. The chronologies reveal an ice age-gas age difference (Δage) approaching 10 ka during MIS 4, implying very low snow accumulation in the Taylor Glacier accumulation zone. A revised chronology for the analagous section of the Taylor Dome ice core (84 to 55 ka), located to the south of the Taylor Glacier accumulation zone, shows that Δage did not exceed 3 ka. The difference in Δage between the two records during MIS 4 is similar in magnitude but opposite in direction to what is observed at the Last Glacial Maximum. This relationship implies that a spatial gradient in snow accumulation existed across the Taylor Dome region during MIS 4 that was oriented in the opposite direction of the accumulation gradient during the Last Glacial Maximum. | ["POINT(162.167 -77.733)"] | ["POINT(162.167 -77.733)"] | false | false |
WAIS Divide Multi Track Electrical Measurements
|
0944191 0944197 |
2019-04-12 | Fudge, T. J.; Taylor, Kendrick C. |
Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core |
Images of the multi-track electrical data for depths below 1956 m are given in mt_compiled_1958_3406.pdf. Images are approximately to scale. Data for individual sections can be obtained by contacting T.J. Fudge at tjfudge@uw.edu. Warm colors are high electrical conductivity. Cool colors are low electrical conductivity. Each track is normalized by subtracting the mean and dividing by the standard deviation. Plotted values are a 3-measurement (3mm) running average. Measurements affected by breaks in the core have been masked out. X-axis is approximate horizontal position on the ice core, as measured from left from looking from bottom to top of the core. Y-axis is depth in meters. Title is the tube number. | ["POLYGON((-115 -80,-114.5 -80,-114 -80,-113.5 -80,-113 -80,-112.5 -80,-112 -80,-111.5 -80,-111 -80,-110.5 -80,-110 -80,-110 -79.9,-110 -79.8,-110 -79.7,-110 -79.6,-110 -79.5,-110 -79.4,-110 -79.3,-110 -79.2,-110 -79.1,-110 -79,-110.5 -79,-111 -79,-111.5 -79,-112 -79,-112.5 -79,-113 -79,-113.5 -79,-114 -79,-114.5 -79,-115 -79,-115 -79.1,-115 -79.2,-115 -79.3,-115 -79.4,-115 -79.5,-115 -79.6,-115 -79.7,-115 -79.8,-115 -79.9,-115 -80))"] | ["POINT(-112.5 -79.5)"] | false | false |
Shallow radar near South Pole
|
1443471 |
2018-05-25 | Lilien, David; Fudge, T. J.; Koutnik, Michelle; Conway, Howard; Waddington, Edwin D. |
Collaborative Research: Characterization of Upstream Ice and Firn Dynamics affecting the South Pole Ice Core |
These are 200MHz radar data collected upstream of South Pole during the 2016/17 and 2017/18 field seasons. Data are the raw files produced by the GSSI radar controller, and a set of layer picks. | ["POLYGON((110 -89,117 -89,124 -89,131 -89,138 -89,145 -89,152 -89,159 -89,166 -89,173 -89,180 -89,180 -89.1,180 -89.2,180 -89.3,180 -89.4,180 -89.5,180 -89.6,180 -89.7,180 -89.8,180 -89.9,180 -90,173 -90,166 -90,159 -90,152 -90,145 -90,138 -90,131 -90,124 -90,117 -90,110 -90,110 -89.9,110 -89.8,110 -89.7,110 -89.6,110 -89.5,110 -89.4,110 -89.3,110 -89.2,110 -89.1,110 -89))"] | ["POINT(145 -89.5)"] | false | false |
WAIS Divide d18Oatm and Siple Dome/WAIS Divide composite and individual delta epsilon LAND
|
0538657 |
2017-08-18 | Seltzer, Alan; Severinghaus, Jeffrey P. |
Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate |
This data set contains measurements of d18Oatm (d18O of O2), d15N, dAr/N2, and dO2/N2 in gas bubbles from the WAIS Divide ice core. The time resolution is variable throughout the record but is ~100 years on average (from 65 ka to present). All measurements were made in the Noble Gas Isotope Laboratory at Scripps Institution of Oceanography (La Jolla, CA). The data set includes all replicate measurements as well as replicate-mean values and a calculation of measurement precision (pooled standard deviation). The second sheet of this data set includes fitted d18Oatm curves for the past 50 ka from both the WAIS Divide and Siple Dome Antarctic ice cores, both on the WD2014 timescale (Buizert et al., 2015). The second sheet also includes calculations of the time derivative of d18Oatm and d e LAND in both ice cores individual as well as in a composite record. Details of the entire data set and all relevant methods are provided in Seltzer et al., 2017. | ["POLYGON((-113 -79,-112.8 -79,-112.6 -79,-112.4 -79,-112.2 -79,-112 -79,-111.8 -79,-111.6 -79,-111.4 -79,-111.2 -79,-111 -79,-111 -79.1,-111 -79.2,-111 -79.3,-111 -79.4,-111 -79.5,-111 -79.6,-111 -79.7,-111 -79.8,-111 -79.9,-111 -80,-111.2 -80,-111.4 -80,-111.6 -80,-111.8 -80,-112 -80,-112.2 -80,-112.4 -80,-112.6 -80,-112.8 -80,-113 -80,-113 -79.9,-113 -79.8,-113 -79.7,-113 -79.6,-113 -79.5,-113 -79.4,-113 -79.3,-113 -79.2,-113 -79.1,-113 -79))"] | ["POINT(-112 -79.5)"] | false | false |
Late Holocene paleoecological and paleoclimatic data from moss peatbanks in the western Antarctic Peninsula
|
1246190 |
2017-07-24 | Yu, Zicheng |
Collaborative Research: Response of Carbon Accumulation in Moss Peatbanks to Past Warm Climates in the Antarctic Peninsula |
We used subfossil mosses and peats to document changes in regional climate, cryosphere, and terrestrial ecosystems in the western Antarctic Peninsula at ~65S latitude. We find that most peat-forming ecosystems have initiated since 2800 cal BP, in response to warmer summers and increasing summer insolation. The period at 900-600 cal BP was coldest as indicated by ice advance, abundance of kill ages from ice-entombed mosses exposed recently from retreating glacial ice, and apparent gap in peatbank initiation. Furthermore, the discovery of a novel Antarctic hairgrass (Deschampsia antarctica) peatland at 2300-1200 cal BP from the mainland Antarctic Peninsula suggests a much warmer climate than the present. A warming and wetting climate in the 1980s caused very high carbon accumulation in a Polytrichum strictum moss peatbank. Our results document dramatic transformations of landscape and ecosystems in response to past warmer climate, providing a telltale sign for what may come in the future. | ["POLYGON((-68.5 -64,-67.73 -64,-66.96 -64,-66.19 -64,-65.42 -64,-64.65 -64,-63.88 -64,-63.11 -64,-62.34 -64,-61.57 -64,-60.8 -64,-60.8 -64.36,-60.8 -64.72,-60.8 -65.08,-60.8 -65.44,-60.8 -65.8,-60.8 -66.16,-60.8 -66.52,-60.8 -66.88,-60.8 -67.24,-60.8 -67.6,-61.57 -67.6,-62.34 -67.6,-63.11 -67.6,-63.88 -67.6,-64.65 -67.6,-65.42 -67.6,-66.19 -67.6,-66.96 -67.6,-67.73 -67.6,-68.5 -67.6,-68.5 -67.24,-68.5 -66.88,-68.5 -66.52,-68.5 -66.16,-68.5 -65.8,-68.5 -65.44,-68.5 -65.08,-68.5 -64.72,-68.5 -64.36,-68.5 -64))"] | ["POINT(-64.65 -65.8)"] | false | false |
WD2014: Timescale for WAIS Divide Core 2006 A (WDC-06A)
|
0944197 |
2017-03-28 | Fudge, T. J. |
Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core |
The West Antarctic Ice Sheet Divide (WAIS Divide, WD) ice core is a newly drilled, high-accumulation deep ice core that provides Antarctic climate records of the past ~68 ka at unprecedented temporal resolution. The upper 2850 m (back to 31.2 ka BP) have been dated using annual-layer counting. Here we present a chronology for the deep part of the core (67.8-31.2 ka BP), which is based on stratigraphic matching to annual-layer-counted Greenland ice cores using globally well-mixed atmospheric methane. We calculate the WD gas age-ice age difference (Delta age) using a combination of firn densification modeling, ice-flow modeling, and a data set of d15N-N2, a proxy for past firn column thickness. The largest Delta age at WD occurs during the Last Glacial Maximum, and is 525 +/- 120 years. Internally consistent solutions can be found only when assuming little to no influence of impurity content on densification rates, contrary to a recently proposed hypothesis. We synchronize the WD chronology to a linearly scaled version of the layer-counted Greenland Ice Core Chronology (GICC05), which brings the age of Dansgaard-Oeschger (DO) events into agreement with the U/Th absolutely dated Hulu Cave speleothem record. The small Delta age at WD provides valuable opportunities to investigate the timing of atmospheric greenhouse gas variations relative to Antarctic climate, as well as the interhemispheric phasing of the \"bipolar seesaw\". We present the WD2014 chronology for the upper part (0-2850 m; 31.2 ka BP) of the West Antarctic Ice Sheet (WAIS) Divide (WD) ice core. The chronology is based on counting of annual layers observed in the chemical, dust and electrical conductivity records. These layers are caused by seasonal changes in the source, transport, and deposition of aerosols. The measurements were interpreted manually and with the aid of two automated methods. We validated the chronology by comparing to two high-accuracy, absolutely dated chronologies. For the Holocene, the cosmogenic isotope records of 10Be from WAIS Divide and 14C for IntCal13 demonstrated that WD2014 was consistently accurate to better than 0.5% of the age. For the glacial period, comparisons to the Hulu Cave chronology demonstrated that WD2014 had an accuracy of better than 1% of the age at three abrupt climate change events between 27 and 31ka. WD2014 has consistently younger ages than Greenland ice core chronologies during most of the Holocene. For the Younger Dryas-Preboreal transition (11.595 ka; 24 years younger) and the Bolling-Allerod Warming (14.621 ka; 7 years younger), WD2014 ages are within the combined uncertainties of the timescales. Given its high accuracy, WD2014 can become a reference chronology for the Southern Hemisphere, with synchronization to other chronologies feasible using high-quality proxies of volcanism, solar activity, atmospheric mineral dust, and atmospheric methane concentrations. | ["POINT(-112.1115 -79.481)"] | ["POINT(-112.1115 -79.481)"] | false | false |
WAIS Divide Ice-Core Chronology from Intermediate Core WDC05A
|
0538427 |
2017-03-28 | McConnell, Joseph |
Trace and Ultra-Trace Chemistry Measurements of the WAIS Divide Ice Core |
A state-of-the-art continuous ice core analytical system was used to analyze samples from 0 to ~130 m depth of the recently collected intermediate core WDC05A from West Antarctica. Interpretation of these records and publication of findings is ongoing. | ["POINT(-112.1115 -79.481)"] | ["POINT(-112.1115 -79.481)"] | false | false |
Accumulation Rates from the WAIS Divide Ice Core
|
0944197 |
2017-02-21 | Fudge, T. J.; Waddington, Edwin D.; Conway, Howard; Buizert, Christo |
Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core |
These data are the accumulation rate history for the WAIS Divide ice core in central West Antarctica. The data are in two parts: 1) the annual accumulation rates for the past ~31ka and 2) the firn gas-based accumulation rates from 31-67ka. | ["POINT(-112.1115 -79.481)"] | ["POINT(-112.1115 -79.481)"] | false | false |
Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core
|
1043167 |
2016-01-01 | White, James; Morris, Valerie; Vaughn, Bruce; Jones, Tyler R. |
Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core |
This award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public. | ["POINT(-112.08 -79.47)"] | ["POINT(-112.08 -79.47)"] | false | false |
The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive
|
1245821 |
2016-01-01 | Brook, Edward J. |
Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive |
This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, and delta 18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, delta 13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of delta 13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica. | ["POINT(162.167 -77.733)"] | ["POINT(162.167 -77.733)"] | false | false |
Ultra-High Resolution LA-ICP-MS Results: DO-21 Rapid Warming Event
|
0538657 |
2015-10-27 | Haines, Skylar; Mayewski, Paul A.; Kurbatov, Andrei V. |
Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate |
This data set contains the results of Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) performed on an archive of the GISP2 ice core containing the rapid climate warming of Dansgaard-Oeschger Event 21. | ["POINT(-38.5 -76.2)"] | ["POINT(-38.5 -76.2)"] | false | false |
Low-res d15N and d18O of O2 in the WAIS Divide 06A Deep Core
|
0538657 |
2015-10-20 | Severinghaus, Jeffrey P. |
Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate |
This data set is a low-resolution set of measurements of d15N of N2 and d18O of O2, along with dO2/N and dAr/N2 supporting data, in the WAIS Divide 3405 m long ice core recovered in 2011. Data are distributed via FTP. | ["POINT(-112.08 -79.47)"] | ["POINT(-112.08 -79.47)"] | false | false |
Borehole Temperature Measurement in WDC05A in January 2008 and January 2009
|
0538657 |
2015-06-08 | Severinghaus, Jeffrey P.; Orsi, Anais J. |
Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate |
This data set includes borehole temperature measurements performed in January 2008 and January 2009 at the West Antarctic Ice sheet divide from the 300 m hole WDC05A. | ["POINT(-112.125 -79.463)"] | ["POINT(-112.125 -79.463)"] | false | false |
Annual Satellite Era Accumulation Patterns Over WAIS Divide: A Study Using Shallow Ice Cores, Near-Surface Radars and Satellites
|
0944653 |
2015-01-01 | Forster, Richard |
Collaborative Research: Annual satellite era accumulation patterns over WAIS Divide: A study using shallow ice cores, near-surface radars and satellites |
This award supports a project to broaden the knowledge of annual accumulation patterns over the West Antarctic Ice Sheet by processing existing near-surface radar data taken on the US ITASE traverse in 2000 and by gathering and validating new ultra/super-high-frequency (UHF) radar images of near surface layers (to depths of ~15 m), expanding abilities to monitor recent annual accumulation patterns from point source ice cores to radar lines. Shallow (15 m) ice cores will be collected in conjunction with UHF radar images to confirm that radar echoed returns correspond with annual layers, and/or sub-annual density changes in the near-surface snow, as determined from ice core stable isotopes. This project will additionally improve accumulation monitoring from space-borne instruments by comparing the spatial-radar-derived-annual accumulation time series to the passive microwave time series dating back over 3 decades and covering most of Antarctica. The intellectual merit of this project is that mapping the spatial and temporal variations in accumulation rates over the Antarctic ice sheet is essential for understanding ice sheet responses to climate forcing. Antarctic precipitation rate is projected to increase up to 20% in the coming century from the predicted warming. Accumulation is a key component for determining ice sheet mass balance and, hence, sea level rise, yet our ability to measure annual accumulation variability over the past 5 decades (satellite era) is mostly limited to point-source ice cores. Developing a radar and ice core derived annual accumulation dataset will provide validation data for space-born remote sensing algorithms, climate models and, additionally, establish accumulation trends. The broader impacts of the project are that it will advance discovery and understanding within the climatology, glaciology and remote sensing communities by verifying the use of UHF radars to monitor annual layers as determined by visual, chemical and isotopic analysis from corresponding shallow ice cores and will provide a dataset of annual to near-annual accumulation measurements over the past ~5 decades across WAIS divide from existing radar data and proposed radar data. By determining if temporal changes in the passive microwave signal are correlated with temporal changes in accumulation will help assess the utility of passive microwave remote sensing to monitor accumulation rates over ice sheets for future decades. The project will promote teaching, training and learning, and increase representation of underrepresented groups by becoming involved in the NASA History of Winter project and Thermochron Mission and by providing K-12 teachers with training to monitor snow accumulation and temperature here in the US, linking polar research to the student's backyard. The project will train both undergraduate and graduate students in polar research and will encouraging young investigators to become involved in careers in science. In particular, two REU students will participate in original research projects as part of this larger project, from development of a hypothesis to presentation and publication of the results. The support of a new, young woman scientist will help to increase gender diversity in polar research. | ["POLYGON((-119.4 -78.1,-118.46 -78.1,-117.52 -78.1,-116.58 -78.1,-115.64 -78.1,-114.7 -78.1,-113.76 -78.1,-112.82 -78.1,-111.88 -78.1,-110.94 -78.1,-110 -78.1,-110 -78.29,-110 -78.48,-110 -78.67,-110 -78.86,-110 -79.05,-110 -79.24,-110 -79.43,-110 -79.62,-110 -79.81,-110 -80,-110.94 -80,-111.88 -80,-112.82 -80,-113.76 -80,-114.7 -80,-115.64 -80,-116.58 -80,-117.52 -80,-118.46 -80,-119.4 -80,-119.4 -79.81,-119.4 -79.62,-119.4 -79.43,-119.4 -79.24,-119.4 -79.05,-119.4 -78.86,-119.4 -78.67,-119.4 -78.48,-119.4 -78.29,-119.4 -78.1))"] | ["POINT(-114.7 -79.05)"] | false | false |
WAIS Divide Ice Core Electrical Conductance Measurements, Antarctica
|
0944348 0944191 0440817 0440819 0230396 |
2014-08-18 | Fudge, T. J.; Taylor, Kendrick C. |
Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core |
This data set contains electrical measurements that were used to develop the WDC06A-7 timescale. | ["POINT(-112.1115 -79.481)"] | ["POINT(-112.1115 -79.481)"] | false | false |
Are the Dry Valleys Getting Wetter? A Preliminary Assessment of Wetness Across the McMurdo Dry Valleys Landscape
|
1045215 |
2014-01-01 | Gooseff, Michael N. |
EAGER: Are the Dry Valleys Getting Wetter? A Preliminary Assessment of Wetness Across the McMurdo Dry Valleys Landscape |
Intellectual Merit: Until recently, wetted soils in the Dry Valleys were generally only found adjacent to streams and lakes. Since the warm austral summer of 2002, numerous "wet spots" have been observed far from shorelines on relatively flat valley floor locations and as downslope fingers of flow on valley walls. The source of the water to wet these soils is unclear, as is the spatial and temporal pattern of occurrence from year to year. Their significance is potentially great as enhanced soil moisture may change the thermodynamics, hydrology, and erosion rate of surface soils, and facilitate transport of materials that had previously been stable. These changes to the soil active layer could significantly modify permafrost and ground ice stability within the Dry Valleys. The PIs seek to investigate these changes to address two competing hypotheses: that the source of water to these ?wet spots? is ground ice melt and that the source of this water is snowmelt. The PIs will document the spatiotemporal dynamics of these wet areas using high frequency remote sensing data from QuickBird and WorldView satellites to document the occurrence, dimensions, and growth of wet spots during the 2010-11 and 2011-12 austral summers. They will test their hypotheses by determining whether wet spots recur in the same locations in each season, and they will compare present to past distribution using archived imagery. They will also determine whether spatial snow accumulation patterns and temporal ablation patterns are coincident with wet spot formation. Broader impacts: One graduate student will be trained on this project. Findings will be reported at scientific meetings and published in peer reviewed journals. They will also develop a teaching module on remote sensing applications to hydrology for the Modular Curriculum for Hydrologic Advancement and an innovative prototype project designed to leverage public participation in mapping wet spots and snow patches across the Dry Valleys through the use of social media and mobile computing applications. | ["POLYGON((160 -77.25,160.5 -77.25,161 -77.25,161.5 -77.25,162 -77.25,162.5 -77.25,163 -77.25,163.5 -77.25,164 -77.25,164.5 -77.25,165 -77.25,165 -77.375,165 -77.5,165 -77.625,165 -77.75,165 -77.875,165 -78,165 -78.125,165 -78.25,165 -78.375,165 -78.5,164.5 -78.5,164 -78.5,163.5 -78.5,163 -78.5,162.5 -78.5,162 -78.5,161.5 -78.5,161 -78.5,160.5 -78.5,160 -78.5,160 -78.375,160 -78.25,160 -78.125,160 -78,160 -77.875,160 -77.75,160 -77.625,160 -77.5,160 -77.375,160 -77.25))"] | ["POINT(162.5 -77.875)"] | false | false |
The Biogeochemical Evolution of Dissolved Organic Matter in a Fluvial System on the Cotton Glacier, Antarctica
|
0838970 |
2014-01-01 | Foreman, Christine |
Collaborative Research: The Biogeochemical Evolution of Dissolved Organic Matter in a Fluvial System on the Cotton Glacier, Antarctica |
Dissolved organic matter (DOM) comprises a significant pool of Earth's organic carbon that dwarfs the amount present in living aquatic organisms. The properties and reactivity of DOM are not well defined, and the evolution of autochthonous DOM from its precursor materials in freshwater has not been observed. Recent sampling of a supraglacial stream formed on the Cotton Glacier in the Transantarctic Mountains revealed DOM that more closely resembles an assemblage of recognizable precursor organic compounds, based upon its UV-VIS and fluorescence spectra. It is suggested that the DOM from this water evolved over time to resemble materials present in marine and many inland surface waters. The transient nature of the system i.e., it reforms seasonally, also prevents any accumulation of the refractory DOM present in most surface waters. Thus, the Cotton Glacier provides us with a unique environment to study the formation of DOM from precursor materials. An interdisciplinary team will study the biogeochemistry of this progenitor DOM and how microbes modify it. By focusing on the chemical composition of the DOM as it shifts from precursor material to the more humified fractions, the investigators will relate this transition to bioavailability, enzymatic activity, community composition and microbial growth efficiency. This project will support education at all levels, K-12, high school, undergraduate, graduate and post-doc and will increase participation by under-represented groups in science. Towards these goals, the investigators have established relationships with girls' schools and Native American programs. Additional outreach will be carried out in coordination with PolarTREC, PolarPalooza, and if possible, an Antarctic Artist and Writer. | ["POINT(161.667 -77.117)"] | ["POINT(161.667 -77.117)"] | false | false |
Abrupt Environmental Change in the Larsen Ice Shelf System (LARISSA) - Cryosphere and Oceans
|
0732655 |
2013-01-01 | Thompson, Lonnie G.; Mosley-Thompson, Ellen |
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans |
Like no other region on Earth, the northern Antarctic Peninsula represents a spectacular natural laboratory of climate change and provides the opportunity to study the record of past climate and ecological shifts alongside the present-day changes in one of the most rapidly warming regions on Earth. This award supported the cryospheric and oceanographic components of an integrated multi-disciplinary program to address these rapid and fundamental changes now taking place in Antarctic Peninsula (AP). By making use of a marine research platform (the RV NB Palmer and on-board helicopters) and additional logistical support from the Argentine Antarctic program, the project brought together glaciologists, oceanographers, marine geologists and biologists who have worked collaboratively to address fundamental interdisciplinary questions regarding climate change. | ["POLYGON((-63 -60,-62.6 -60,-62.2 -60,-61.8 -60,-61.4 -60,-61 -60,-60.6 -60,-60.2 -60,-59.8 -60,-59.4 -60,-59 -60,-59 -60.5,-59 -61,-59 -61.5,-59 -62,-59 -62.5,-59 -63,-59 -63.5,-59 -64,-59 -64.5,-59 -65,-59.4 -65,-59.8 -65,-60.2 -65,-60.6 -65,-61 -65,-61.4 -65,-61.8 -65,-62.2 -65,-62.6 -65,-63 -65,-63 -64.5,-63 -64,-63 -63.5,-63 -63,-63 -62.5,-63 -62,-63 -61.5,-63 -61,-63 -60.5,-63 -60))"] | ["POINT(-61 -62.5)"] | false | false |
GPS Ice Flow Measurements, Allan Hills, Antarctica
|
0229245 9527571 0838843 |
2011-12-20 | Kurbatov, Andrei V.; Spikes, Vandy Blue; Hamilton, Gordon S.; Spaulding, Nicole |
GPS Measurements of Rock and Ice Motions in South Victoria Land |
This data set includes includes high-precision GPS measurements of steel poles within the Allan Hills Main Ice Field, Near Western Ice Field, and extending to the eastern edge of the Middle Western Ice Field, in Antarctica. These data were collected between December 1997 and December 2010. The extended survey period allowed for vertical and horizontal velocities to be calculated with low associated error. Parameters include locations of poles in latitude and longitude, as well as elevation, ice velocity, and accumulation rates. Data are available via FTP as ASCII text files in comma separated value (.csv) format. Raw data are also provided as Trimble raw data, compressed in .zip format, and supplementary information is provided in .csv format and portable document format (.pdf). | ["POLYGON((158.25 -76.66667,158.325 -76.66667,158.4 -76.66667,158.475 -76.66667,158.55 -76.66667,158.625 -76.66667,158.7 -76.66667,158.775 -76.66667,158.85 -76.66667,158.925 -76.66667,159 -76.66667,159 -76.683336,159 -76.700002,159 -76.716668,159 -76.733334,159 -76.75,159 -76.766666,159 -76.783332,159 -76.799998,159 -76.816664,159 -76.83333,158.925 -76.83333,158.85 -76.83333,158.775 -76.83333,158.7 -76.83333,158.625 -76.83333,158.55 -76.83333,158.475 -76.83333,158.4 -76.83333,158.325 -76.83333,158.25 -76.83333,158.25 -76.816664,158.25 -76.799998,158.25 -76.783332,158.25 -76.766666,158.25 -76.75,158.25 -76.733334,158.25 -76.716668,158.25 -76.700002,158.25 -76.683336,158.25 -76.66667))"] | ["POINT(158.625 -76.75)"] | false | false |
Millennially Averaged Accumulation Rates for Lake Vostok
|
0538674 |
2011-08-01 | Macgregor, Joseph A.; Matsuoka, Kenichi; Studinger, Michael S.; Waddington, Edwin D.; Winebrenner, Dale |
Collaborative Research: Deciphering the Deep Ice and the Ice-water Interface over Lake Vostok Using Existing Radar Data |
This data set consists of inferred accumulation rates from three radar layers (26, 35 and 41 thousand years old) in the Vostok Subglacial Lake region. Accumulation rates were inferred using Local-Layer Approximation (LLA), which assumes that the strain-rate history of a particle traveling through the ice sheet can be approximated by the vertical strain-rate profile at the current position of the particle, which the researchers assume to be uniform. Parameters include location, in latitude and longitude, polar stereographic coordinates, and local grid X and Y coordinates, along with layer age, in thousands of years (ka), and inferred accumulation rate (cm/a). The data cover a 150 by 350 km area. Data are available via FTP, as a text file (.txt) with columns in comma separated value format. | ["POLYGON((68.4 -75.7,69.61 -75.7,70.82 -75.7,72.03 -75.7,73.24 -75.7,74.45 -75.7,75.66 -75.7,76.87 -75.7,78.08 -75.7,79.29 -75.7,80.5 -75.7,80.5 -76.04,80.5 -76.38,80.5 -76.72,80.5 -77.06,80.5 -77.4,80.5 -77.74,80.5 -78.08,80.5 -78.42,80.5 -78.76,80.5 -79.1,79.29 -79.1,78.08 -79.1,76.87 -79.1,75.66 -79.1,74.45 -79.1,73.24 -79.1,72.03 -79.1,70.82 -79.1,69.61 -79.1,68.4 -79.1,68.4 -78.76,68.4 -78.42,68.4 -78.08,68.4 -77.74,68.4 -77.4,68.4 -77.06,68.4 -76.72,68.4 -76.38,68.4 -76.04,68.4 -75.7))"] | ["POINT(74.45 -77.4)"] | false | false |
High-resolution Image-derived Grounding and Hydrostatic Lines for the Antarctic Ice Sheet
|
None | 2011-02-20 | Bindschadler, Robert; Choi, Hyeungu | No project link provided | This data set provides grounding line and hydrostatic line locations for the Antarctic coastline and islands around Antarctica. The data are derived using customized software to combine data from Landsat-7 imagery and Ice, Cloud, and land Elevation Satellite (ICESat) laser altimetry, which were primarily collected between 1999 to 2003. The data set also includes elevations along each line, selected from six candidate digital elevation models. The data were developed as part of the Antarctic Surface Accumulation and Ice Discharge (ASAID) project. Funding trough NASA grant 509496.02.08.01.81 Data are provided in both ASCII text (.txt) and shapefile (.shp, .dbf, .shx) formats. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -62,180 -64,180 -66,180 -68,180 -70,180 -72,180 -74,180 -76,180 -78,180 -80,144 -80,108 -80,72 -80,36 -80,0 -80,-36 -80,-72 -80,-108 -80,-144 -80,-180 -80,-180 -78,-180 -76,-180 -74,-180 -72,-180 -70,-180 -68,-180 -66,-180 -64,-180 -62,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)
|
0528728 |
2011-01-01 | Vernet, Maria |
Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK) |
This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat. SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. This collaborative project is concerned with the synthesis and modeling of lower trophic levels. | ["POLYGON((-69.08 -64.8,-68.632 -64.8,-68.184 -64.8,-67.736 -64.8,-67.288 -64.8,-66.84 -64.8,-66.392 -64.8,-65.944 -64.8,-65.496 -64.8,-65.048 -64.8,-64.6 -64.8,-64.6 -65.121,-64.6 -65.442,-64.6 -65.763,-64.6 -66.084,-64.6 -66.405,-64.6 -66.726,-64.6 -67.047,-64.6 -67.368,-64.6 -67.689,-64.6 -68.01,-65.048 -68.01,-65.496 -68.01,-65.944 -68.01,-66.392 -68.01,-66.84 -68.01,-67.288 -68.01,-67.736 -68.01,-68.184 -68.01,-68.632 -68.01,-69.08 -68.01,-69.08 -67.689,-69.08 -67.368,-69.08 -67.047,-69.08 -66.726,-69.08 -66.405,-69.08 -66.084,-69.08 -65.763,-69.08 -65.442,-69.08 -65.121,-69.08 -64.8))"] | ["POINT(-66.84 -66.405)"] | false | false |
The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)
|
0529087 |
2011-01-01 | Quetin, Langdon B.; Ross, Robin Macurda |
Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK) |
This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat. SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. This collaborative project is concerned with the synthesis and modeling of lower trophic levels. | ["POLYGON((-71 -61,-70 -61,-69 -61,-68 -61,-67 -61,-66 -61,-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-61 -61.9,-61 -62.8,-61 -63.7,-61 -64.6,-61 -65.5,-61 -66.4,-61 -67.3,-61 -68.2,-61 -69.1,-61 -70,-62 -70,-63 -70,-64 -70,-65 -70,-66 -70,-67 -70,-68 -70,-69 -70,-70 -70,-71 -70,-71 -69.1,-71 -68.2,-71 -67.3,-71 -66.4,-71 -65.5,-71 -64.6,-71 -63.7,-71 -62.8,-71 -61.9,-71 -61))"] | ["POINT(-66 -65.5)"] | false | false |
The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)
|
0529666 |
2011-01-01 | Fritsen, Christian |
Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK) |
This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat. SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. It is currently in a synthesis and modeling phase. This collaborative project is concerned with the lower trophic levels, and will be integrated with other synthesis and modeling studies that deal with grazers, predators, and other higher trophic levels. | ["POLYGON((-180 -39.23,-144 -39.23,-108 -39.23,-72 -39.23,-36 -39.23,0 -39.23,36 -39.23,72 -39.23,108 -39.23,144 -39.23,180 -39.23,180 -44.307,180 -49.384,180 -54.461,180 -59.538,180 -64.615,180 -69.692,180 -74.769,180 -79.846,180 -84.923,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.923,-180 -79.846,-180 -74.769,-180 -69.692,-180 -64.615,-180 -59.538,-180 -54.461,-180 -49.384,-180 -44.307,-180 -39.23))"] | ["POINT(0 -89.999)"] | false | false |
Histories of Accumulation, Thickness, and WAIS Divide Location, Antarctica
|
0440666 |
2010-06-20 | Waddington, Edwin D.; Koutnik, Michelle |
Histories of accumulation, thickness and WAIS Divide location from radar layers using a new inverse approach |
This data set contains radar internal layer and ice sheet topography data for two sites in Antarctica, along with associated model results from two studies. This project used geophysical inverse theory and a 2.5 D flowband ice-flow forward model to extract robust transient accumulation patterns from multiple deeper layers. Histories of divide migration, or the movement of the ice sheet and ice-surface evolution are also provided. The data used to solve the inverse problem, and the model solutions are provided. Internal layers, modern ice-surface velocities, and modern ice-sheet geometry at Taylor Mouth are available, as well as the pattern of accumulation inferred by Waddington et al. (2007). Data are available via FTP in Matlab (.mat) format. Supporting information is available as text files (.rtf and .txt). | ["POINT(158.716667 -77.783333)", "POINT(-111.816667 -79.416667)"] | ["POINT(158.716667 -77.783333)", "POINT(-111.816667 -79.416667)"] | false | false |
Snow Accumulation and Snow Melt in a Mixed Northern Hardwood-Conifer Forest
|
0338008 |
2010-01-01 | Wemple, Beverley C. |
Collaborative Research: Laboratory Studies of Isotopic Exchange in Snow and Firn |
This data set contains snow depth, Snow Water Equivalent (SWE), and forest cover characteristics for sites at the Hubbard Brook Experimental Forest in northern New Hampshire. Measurements were made at 26 sampling sites on 4 March and 1 April 2009.The data were collected as part of a collaborative research project on isotopic exchange in snow. The project aims to develop a quantitative understanding of the processes active in isotopic exchange between snow/firn and water vapor, which is important to Antarctic ice core interpretation. Data are in Microsoft Excel (.xls) format. The data set also includes maps showing site locations in Joint Photography Experts Group (.jpg) format. | ["POLYGON((-71.77 43.96,-71.766 43.96,-71.762 43.96,-71.758 43.96,-71.754 43.96,-71.75 43.96,-71.746 43.96,-71.742 43.96,-71.738 43.96,-71.734 43.96,-71.73 43.96,-71.73 43.955,-71.73 43.95,-71.73 43.945,-71.73 43.94,-71.73 43.935,-71.73 43.93,-71.73 43.925,-71.73 43.92,-71.73 43.915,-71.73 43.91,-71.734 43.91,-71.738 43.91,-71.742 43.91,-71.746 43.91,-71.75 43.91,-71.754 43.91,-71.758 43.91,-71.762 43.91,-71.766 43.91,-71.77 43.91,-71.77 43.915,-71.77 43.92,-71.77 43.925,-71.77 43.93,-71.77 43.935,-71.77 43.94,-71.77 43.945,-71.77 43.95,-71.77 43.955,-71.77 43.96))"] | ["POINT(-71.75 43.935)"] | false | false |
Atmospheric Mixing Ratios of Hydroperoxides above the West Antarctic Ice Sheet
|
9814810 |
2009-06-16 | McConnell, Joseph; Bales, Roger; Frey, Markus |
Hydrogen Peroxide, Formaldehyde, and Sub-Annual Snow Accumulation in West Antarctica: Participation in West Antarctic Traverse |
This data set contains atmospheric mixing ratios of hydrogen peroxide and methylhydroperoxide at 21 sites on the West Antarctic Ice Sheet (WAIS) were obtained from 2000 to 2003 during the US International Trans-Antarctic Scientific Expedition (US ITASE) deployments. Sample location from the WAIS region (76-90ºS / 84-124ºW) were approximately 100-300 km apart and correspond to US ITASE ice core sites. At each site, ambient air from 1 m above the snow surface was sampled between two to five days. Atmospheric hydroperoxides (ROOH) were continuously scrubbed from the sample air with a glass coil scrubber and subsequently quantified using a fluorescence detection method. Data are available via FTP as ASCII text files (.txt). | ["POLYGON((-124 -76,-120 -76,-116 -76,-112 -76,-108 -76,-104 -76,-100 -76,-96 -76,-92 -76,-88 -76,-84 -76,-84 -77.4,-84 -78.8,-84 -80.2,-84 -81.6,-84 -83,-84 -84.4,-84 -85.8,-84 -87.2,-84 -88.6,-84 -90,-88 -90,-92 -90,-96 -90,-100 -90,-104 -90,-108 -90,-112 -90,-116 -90,-120 -90,-124 -90,-124 -88.6,-124 -87.2,-124 -85.8,-124 -84.4,-124 -83,-124 -81.6,-124 -80.2,-124 -78.8,-124 -77.4,-124 -76))"] | ["POINT(-104 -83)"] | false | false |
Twenty-Three Century-scale Ice Core Records of Hydrogen Peroxide (H2O2) from West Antarctica
|
9814810 |
2009-06-01 | McConnell, Joseph; Bales, Roger; Frey, Markus |
Hydrogen Peroxide, Formaldehyde, and Sub-Annual Snow Accumulation in West Antarctica: Participation in West Antarctic Traverse |
This data set contains sub-annually resolved concentrations of hydrogen peroxide (H2O2), snow, firn and ice from 23 sites on the West Antarctic Ice Sheet (WAIS). | ["POLYGON((-124 -76,-120 -76,-116 -76,-112 -76,-108 -76,-104 -76,-100 -76,-96 -76,-92 -76,-88 -76,-84 -76,-84 -77.4,-84 -78.8,-84 -80.2,-84 -81.6,-84 -83,-84 -84.4,-84 -85.8,-84 -87.2,-84 -88.6,-84 -90,-88 -90,-92 -90,-96 -90,-100 -90,-104 -90,-108 -90,-112 -90,-116 -90,-120 -90,-124 -90,-124 -88.6,-124 -87.2,-124 -85.8,-124 -84.4,-124 -83,-124 -81.6,-124 -80.2,-124 -78.8,-124 -77.4,-124 -76))"] | ["POINT(-104 -83)"] | false | false |
The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins
|
0538594 |
2009-01-01 | Ponganis, Paul |
The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins |
The research will examine blood and muscle oxygen store depletion in relation to the documented aerobic dive limit (ADL, onset of post-dive blood lactate accumulation) in diving of emperor penguins. The intellectual merits of this proposal involve its evaluation of the physiological basis of the ADL concept. The ADL is probably the most commonly-used, but rarely measured, factor to interpret and model the behavior and foraging ecology of diving animals. Based on prior studies, and on recent investigations of respiratory and blood oxygen depletion during dives of emperor penguins, it is hypothesized that the ADL is a result of the depletion of myoglobin (Mb)-bound oxygen and increased glycolysis in the primary locomotory muscles. This project will accurately define the physiological mechanisms underlying the ADL through 1) evaluation of the rate and magnitude of muscle oxygen depletion during dives in relation to the previously measured ADL, 2) characterization of the hemoglobin-oxygen dissociation curve in blood of emperor penguins and comparison of that curve to those of other diving and non-diving species, 3) application of the emperor hemoglogin-oxygen dissociation curve to previously collected oxygen and hemoglobin data in order to estimate the rate and magnitude of blood oxygen depletion during dives, and 4) measurement of muscle phosphoocreatine and glycogen concentrations in order to estimate their potential contributions to muscle energy metabolism during diving. The project also continues the census and monitoring of the emperor colonies in the Ross Sea, which is especially important in light of both fisheries activity and the movement of iceberg B15-A. Broader impacts of the project include: 1) technological development of microprocessor-based, 'backpack' near-infrared spectrophotometer, which will be applicable not only to other species, but also to other fields (i.e., exercise physiology), 2) collaboration with the Department of Anesthesia at the U.S. Naval Hospital in San Diego in the training of anesthesia residents in research techniques, 3) the training and thesis research of two graduate students in these techniques and in Antarctic field research, and 4) a better understanding of the ADL concept and its use in the fields of diving behavior and physiology. In addition the annual census of emperor penguin colonies in the Ross Sea, in conjunction with the continued evaluation of previously developed remote cameras to monitor colony status, will form the basis of a new educational web site, and allow development of an educational outreach program to school children through SeaWorld of San Diego. | ["POLYGON((165.983 -77.683,166.0164 -77.683,166.0498 -77.683,166.0832 -77.683,166.1166 -77.683,166.15 -77.683,166.1834 -77.683,166.2168 -77.683,166.2502 -77.683,166.2836 -77.683,166.317 -77.683,166.317 -77.6897,166.317 -77.6964,166.317 -77.7031,166.317 -77.7098,166.317 -77.7165,166.317 -77.7232,166.317 -77.7299,166.317 -77.7366,166.317 -77.7433,166.317 -77.75,166.2836 -77.75,166.2502 -77.75,166.2168 -77.75,166.1834 -77.75,166.15 -77.75,166.1166 -77.75,166.0832 -77.75,166.0498 -77.75,166.0164 -77.75,165.983 -77.75,165.983 -77.7433,165.983 -77.7366,165.983 -77.7299,165.983 -77.7232,165.983 -77.7165,165.983 -77.7098,165.983 -77.7031,165.983 -77.6964,165.983 -77.6897,165.983 -77.683))"] | ["POINT(166.15 -77.7165)"] | false | false |
Diving Physiology and Behavior of Emperor Penguins
|
0229638 |
2008-01-01 | Ponganis, Paul |
Diving Physiology and Behavior of Emperor Penguins |
The emperor penguin, Aptenodytes forsteri, is the premier avian diver and a top predator in the Antarctic ecosystem. The routine occurrence of 500-m diver during foraging trips to sea is both a physiological and behavior enigma. The objectives of this project address how and why emperors dive as deep and long as they do. The project examines four major topics in the diving biology of emperor penguins: pressure tolerance, oxygen store management, end-organ tolerance of diving hypoxemia/ischemia, and deep-dive foraging behavior. These subjects are relevant to the role of the emperor as a top predator in the Antarctic ecosystem, and to critical concepts in diving physiology, including decompression sickness, nitrogen narcosis, shallow water blackout, hypoxemic tolerance, and extension of aerobic dive time. The following hypotheses will be tested: 1) Prevention of nitrogen narcosis and decompression sickness in emperor penguins is achieved by inhibition of pulmonary gas exchange at depth. 2) Shallow water black out does not occur because of greater cerebral hypoxemic tolerance, and, in deep dives, because of resumption of pulmonary gas exchange during final ascent. 3) The rate of depletion of the blood oxygen store is a function of depth of dive and heart rate. 4) The aerobic dive limit (ADL) reflects the onset of lactate accumulation in locomotory muscle, not total depletion of all oxygen stores. 5) Elevation of tissue antioxidant capacity and free-radical scavenging enzyme activities protect against the routine ischemia/reperfusion which occur during diving. 6) During deep dives, the Antarctic silverfish, Pleuorogramma antarcticum, is the primary prey item for emperors. In addition to evaluation of the hypotheses below, the project has broader impacts in several areas such as partnership with foreign and national institutes and organizations (e.g., the National Institute of Polar Research of Japan, Centro de Investigacioines del Noroeste of Mexico, National Geographic, the University of Texas Southwestern Medical Center, and Sea World). Participation in National Geographic television documentaries will provide unique educational opportunities for the general public; development of state-of-the-art technology (e.g., blood oxygen electrode recorders, blood samplers, and miniaturized digital cameras) will lay the groundwork for future research by this group and others; and the effects of the B15 iceberg on breeding success of emperor penguins will continue to be evaluated with population censuses during planned fieldwork at several Ross Sea emperor penguin colonies. | ["POLYGON((163 -77,163.4 -77,163.8 -77,164.2 -77,164.6 -77,165 -77,165.4 -77,165.8 -77,166.2 -77,166.6 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.6 -78,166.2 -78,165.8 -78,165.4 -78,165 -78,164.6 -78,164.2 -78,163.8 -78,163.4 -78,163 -78,163 -77.9,163 -77.8,163 -77.7,163 -77.6,163 -77.5,163 -77.4,163 -77.3,163 -77.2,163 -77.1,163 -77))"] | ["POINT(165 -77.5)"] | false | false |
Ablation Rates of Taylor Glacier, Antarctica
|
0125579 |
2007-12-01 | Cuffey, Kurt M.; Bliss, Andrew; Kavanaugh, Jeffrey |
Collaborative Research: Dynamics and Climatic Response of the Taylor Glacier System |
This data set provides glacier surface ablation rates for a network of approximately 250 sites on Taylor Glacier, spanning a period from 2003 to 2011. Here sublimation is the dominant ablation mechanism, though a few sites have accumulation. Ablation data are provided in meters water equivalent per year. Data are available via FTP in space-delimited ASCII format. | ["POLYGON((160.1 -77.6,160.31 -77.6,160.52 -77.6,160.73 -77.6,160.94 -77.6,161.15 -77.6,161.36 -77.6,161.57 -77.6,161.78 -77.6,161.99 -77.6,162.2 -77.6,162.2 -77.63,162.2 -77.66,162.2 -77.69,162.2 -77.72,162.2 -77.75,162.2 -77.78,162.2 -77.81,162.2 -77.84,162.2 -77.87,162.2 -77.9,161.99 -77.9,161.78 -77.9,161.57 -77.9,161.36 -77.9,161.15 -77.9,160.94 -77.9,160.73 -77.9,160.52 -77.9,160.31 -77.9,160.1 -77.9,160.1 -77.87,160.1 -77.84,160.1 -77.81,160.1 -77.78,160.1 -77.75,160.1 -77.72,160.1 -77.69,160.1 -77.66,160.1 -77.63,160.1 -77.6))"] | ["POINT(161.15 -77.75)"] | false | false |
AWS Data: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation
|
0225992 0125570 |
2006-10-05 | Fahnestock, Mark; Scambos, Ted; Haran, Terry; Bauer, Rob |
Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation |
The Antarctic megadune research was conducted during two field seasons, one in November 2002 and the other during the period of December 2003 through January 2004. The megadune field site is located on the East Antarctic Plateau, southeast of Vostok station. The objectives of this multi-facetted research are 1) to determine the physical characteristics of the firn across the dunes including typical climate indicators such as stable isotopes and major chemical species and 2) to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. It is important to improve our current understanding of the megadunes because of their extreme nature, their broad extent, and their potential impact on the climate record. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on the past terrestrial climate or on processes active on other planets. Snow megadunes are undulating variations in accumulation and surface texture with wavelengths of 2 to 5 km and amplitudes up to 5 meters. The features cover 500,000 km<sup>2</sup> of the East Antarctic plateau, occurring in areas of moderate regional slope and low accumulation on the flanks of the ice sheet between 2500 and 3800 meters elevation. Landsat images and aerial photography indicate the dunes consist of alternating surfaces of glaze and rough sastrugi, with gradational boundaries. This pattern is oriented perpendicular to the mean wind direction, as modeled in katabatic wind studies. Glazed surfaces cover the leeward faces and troughs; rough sastrugi cover the windward faces and crests. The megadune pattern is crossed by smooth to eroded wind-parallel longitudinal dunes. Wind-eroded longitudinal dunes form spectacular 1-meter-high sastrugi in nearby areas. This data set contains automated weather station (AWS) data from two sites. The Mac site was oriented on the rough sastrugi-covered windward face and the Zoe site was on the glazed leeward face. The AWSs collected data throughout the year from 16 January 2004 to 17 November 2004. Investigators received data from the two field sites via the ARGOS Satellite System (http://www.argosinc.com/). Data are provided in space-delimited ASCII text format and are available via FTP. | ["POLYGON((124.4345 -80.77546,124.443718 -80.77546,124.452936 -80.77546,124.462154 -80.77546,124.471372 -80.77546,124.48059 -80.77546,124.489808 -80.77546,124.499026 -80.77546,124.508244 -80.77546,124.517462 -80.77546,124.52668 -80.77546,124.52668 -80.776922,124.52668 -80.778384,124.52668 -80.779846,124.52668 -80.781308,124.52668 -80.78277,124.52668 -80.784232,124.52668 -80.785694,124.52668 -80.787156,124.52668 -80.788618,124.52668 -80.79008,124.517462 -80.79008,124.508244 -80.79008,124.499026 -80.79008,124.489808 -80.79008,124.48059 -80.79008,124.471372 -80.79008,124.462154 -80.79008,124.452936 -80.79008,124.443718 -80.79008,124.4345 -80.79008,124.4345 -80.788618,124.4345 -80.787156,124.4345 -80.785694,124.4345 -80.784232,124.4345 -80.78277,124.4345 -80.781308,124.4345 -80.779846,124.4345 -80.778384,124.4345 -80.776922,124.4345 -80.77546))"] | ["POINT(124.48059 -80.78277)"] | false | false |
GPR and GPS Data: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation
|
0125276 |
2006-06-10 | Scambos, Ted; Bauer, Rob |
Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation |
The Antarctic megadune research was conducted during two field seasons, one in November 2002 and the other in December 2003 through January 2004. The megadune field site is located on the East Antarctic Plateau, southeast of Vostok station. The objectives of this multi-facetted research are to determine the physical characteristics of the firn across the dunes including typical climate indicators such as stable isotopes and major chemical species and to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. It is important to improve our current understanding of the megadunes because of their extreme nature, their broad extent, and their potential impact on the climate record. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on past terrestrial climate or on processes active on other planets. Snow megadunes are undulating variations in accumulation and surface texture with wavelengths of 2 to 5 km and amplitudes up to 5 meters. The features cover 500,000 km<sup>2</sup> of the East Antarctic plateau, occurring in areas of moderate regional slope and low accumulation on the flanks of the ice sheet between 2500 and 3800 meters elevation. Landsat images and aerial photography indicate the dunes consist of alternating surfaces of glaze and rough sastrugi, with gradational boundaries. This pattern is oriented perpendicular to the mean wind direction, as modeled in katabatic wind studies. Glaze surfaces cover the leeward faces and troughs; rough sastrugi cover the windward faces and crests. The megadune pattern is crossed by smooth to eroded wind-parallel longitudinal dunes. Wind-eroded longitudinal dunes form spectacular 1-meter-high sastrugi in nearby areas. This data set contains ground penetrating radar (GPR) data showing surface morphology and internal layering structure along with global positioning system (GPS) data collected within an area of 60 km<sup>2</sup>. GPS data are provided in space-delimited ASCII text Microsoft Excel formats, while GPR data are in JPEG format. Data are available via FTP. | ["POLYGON((124.0218 -80.5304,124.22264 -80.5304,124.42348 -80.5304,124.62432 -80.5304,124.82516 -80.5304,125.026 -80.5304,125.22684 -80.5304,125.42768 -80.5304,125.62852 -80.5304,125.82936 -80.5304,126.0302 -80.5304,126.0302 -80.55538,126.0302 -80.58036,126.0302 -80.60534,126.0302 -80.63032,126.0302 -80.6553,126.0302 -80.68028,126.0302 -80.70526,126.0302 -80.73024,126.0302 -80.75522,126.0302 -80.7802,125.82936 -80.7802,125.62852 -80.7802,125.42768 -80.7802,125.22684 -80.7802,125.026 -80.7802,124.82516 -80.7802,124.62432 -80.7802,124.42348 -80.7802,124.22264 -80.7802,124.0218 -80.7802,124.0218 -80.75522,124.0218 -80.73024,124.0218 -80.70526,124.0218 -80.68028,124.0218 -80.6553,124.0218 -80.63032,124.0218 -80.60534,124.0218 -80.58036,124.0218 -80.55538,124.0218 -80.5304))"] | ["POINT(125.026 -80.6553)"] | false | false |
US International Trans-Antarctic Scientific Expedition (US ITASE): GPR Profiles and Accumulation Mapping
|
0088035 0196441 0096299 0229573 |
2005-04-06 | Spikes, Vandy Blue; Hamilton, Gordon S.; Mayewski, Paul A.; Arcone, Steven; Kaspari, Susan |
High Resolution Radar Profiling of the Snow and Ice Stratigraphy beneath the ITASE Traverses, West Antarctic Ice Sheet |
Snow accumulation rates typically show high variability over short distances. This data set contains accumulation rates derived from ground-penetrating radar (GPR) used to detect isochronal layers in the firn in West Antarctica. These layers were then dated using results from ice core analyses. These data show that accumulation rates along this profile have decreased in recent decades. The radar profile extends between two ice core sites taken along one of the US-ITASE traverse routes. | ["POLYGON((-123.993 -77.6832,-123.6019 -77.6832,-123.2108 -77.6832,-122.8197 -77.6832,-122.4286 -77.6832,-122.0375 -77.6832,-121.6464 -77.6832,-121.2553 -77.6832,-120.8642 -77.6832,-120.4731 -77.6832,-120.082 -77.6832,-120.082 -77.7232,-120.082 -77.7632,-120.082 -77.8032,-120.082 -77.8432,-120.082 -77.8832,-120.082 -77.9232,-120.082 -77.9632,-120.082 -78.0032,-120.082 -78.0432,-120.082 -78.0832,-120.4731 -78.0832,-120.8642 -78.0832,-121.2553 -78.0832,-121.6464 -78.0832,-122.0375 -78.0832,-122.4286 -78.0832,-122.8197 -78.0832,-123.2108 -78.0832,-123.6019 -78.0832,-123.993 -78.0832,-123.993 -78.0432,-123.993 -78.0032,-123.993 -77.9632,-123.993 -77.9232,-123.993 -77.8832,-123.993 -77.8432,-123.993 -77.8032,-123.993 -77.7632,-123.993 -77.7232,-123.993 -77.6832))"] | ["POINT(-122.0375 -77.8832)"] | false | false |
Dominion Range Ice Core Beta Profiles, Chemistry, and Density Data
|
8613786 8411018 |
2004-08-26 | Sowers, Todd A.; Saltzman, Eric; Watson, M. Scott; Grootes, Pieter; Mayewski, Paul A.; Meese, Deb; Gow, Tony |
Characterization of Climatic Events for the Last 2 x 103y through the Retrieval of Ice Cores from the Transantarctic Mountains, Antarctica |
This data set includes beta profiles, chemistry, and density data obtained from Dominion Range ice cores. The Dominion Range is on the East Antarctic Ice Sheet. The chemistry data consists of the composition of oxygen-isotopes and trapped gasses. Other information includes ice thickness, mean annual net accumulation, and crystal size. The core samples were collected in the austral summer of 1984-85. | [] | [] | false | false |
Central West Antarctic Glaciochemistry from Ice Cores
|
None | 2003-10-16 | Reusch, David | No project link provided | Glaciochemical and accumulation rate records developed from four ice cores in central West Antarctica are used to reconstruct former atmospheric circulation patterns in this region for the last 40 years with extended records (150-250 years) at two sites. The sites lie on a 200 km traverse from 82 degrees 22 minutes south, 119 degrees 17 minutes west to 81 degrees 22 minutes south, 107 degrees 17 minutes west, gaining elevation from 950 to 1930 m. The glaciochemical records represent the major ionic species present in Antarctic snow: sodium, potassium, magnesium, calcium, chloride, nitrate, and sulfate. | ["POLYGON((-120 -80,-118.5 -80,-117 -80,-115.5 -80,-114 -80,-112.5 -80,-111 -80,-109.5 -80,-108 -80,-106.5 -80,-105 -80,-105 -80.5,-105 -81,-105 -81.5,-105 -82,-105 -82.5,-105 -83,-105 -83.5,-105 -84,-105 -84.5,-105 -85,-106.5 -85,-108 -85,-109.5 -85,-111 -85,-112.5 -85,-114 -85,-115.5 -85,-117 -85,-118.5 -85,-120 -85,-120 -84.5,-120 -84,-120 -83.5,-120 -83,-120 -82.5,-120 -82,-120 -81.5,-120 -81,-120 -80.5,-120 -80))"] | ["POINT(-112.5 -82.5)"] | false | false |
Taylor Dome Ice Core Data
|
None | 2003-08-18 | Steig, Eric J.; White, James | No project link provided | The collection site is Taylor Dome, an ice-accumulation area on the East Antarctic ice sheet. The dome is a ridge about 20 x 80 km, which lies inland of the Transantarctic Mountains. Deep drilling by the Polar Ice Coring Office (PICO) at Taylor Dome reached bedrock at a depth of 554 meters during the 1993-1994 austral summer season. <p>This data set includes mesurements of:</p> <ul> <li>beryllium-10 (betd.txt)</li> <li>oxygen isotopes (hi18o_td.txt and lo18o_td.txt)</li> <li>deuterium isotopes (deld_20cm.txt and deld_td.txt).</li> </ul> <p>These data were produced at the University of Washington from samples obtained in the field and via the University of New Hampshire automatic melting system. For beryllium, deuterium, and 20-cm oxygen isotope data, the st9810 ice age (kyB1950) timescale is used. For 0.5- to 1-m oxygen isotope data, the st9507 is used.</p> | ["POINT(158 -77)"] | ["POINT(158 -77)"] | false | false |