{"dp_type": "Project", "free_text": "Weathering"}
[{"awards": "1841228 Lyons, W. Berry", "bounds_geometry": "POLYGON((163.37428 -77.558627,163.3922735 -77.558627,163.410267 -77.558627,163.4282605 -77.558627,163.446254 -77.558627,163.4642475 -77.558627,163.482241 -77.558627,163.5002345 -77.558627,163.518228 -77.558627,163.5362215 -77.558627,163.554215 -77.558627,163.554215 -77.56397510000001,163.554215 -77.5693232,163.554215 -77.5746713,163.554215 -77.5800194,163.554215 -77.5853675,163.554215 -77.59071560000001,163.554215 -77.5960637,163.554215 -77.60141180000001,163.554215 -77.6067599,163.554215 -77.612108,163.5362215 -77.612108,163.518228 -77.612108,163.5002345 -77.612108,163.482241 -77.612108,163.4642475 -77.612108,163.446254 -77.612108,163.4282605 -77.612108,163.410267 -77.612108,163.3922735 -77.612108,163.37428 -77.612108,163.37428 -77.6067599,163.37428 -77.60141180000001,163.37428 -77.5960637,163.37428 -77.59071560000001,163.37428 -77.5853675,163.37428 -77.5800194,163.37428 -77.5746713,163.37428 -77.5693232,163.37428 -77.56397510000001,163.37428 -77.558627))", "dataset_titles": "Commonwealth Stream Diel Water Chemistry; Hyporheic zone geochemistry of Wales Stream, Taylor Valley, Antarctica; isotopic signature of massive buried ice, eastern Taylor Valley, Antarctica", "datasets": [{"dataset_uid": "601844", "doi": "10.15784/601844", "keywords": "Antarctica; Commonwealth Stream; Cryosphere; Diel; Inlandwaters; McMurdo Dry Valleys; Stream Chemistry; Water Chemisty", "people": "Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "Commonwealth Stream Diel Water Chemistry", "url": "https://www.usap-dc.org/view/dataset/601844"}, {"dataset_uid": "601847", "doi": "10.15784/601847", "keywords": "Antarctica; Cryosphere; Nutrients; Stable Isotopes; Taylor Valley; Trace Elements", "people": "Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "Hyporheic zone geochemistry of Wales Stream, Taylor Valley, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601847"}, {"dataset_uid": "601848", "doi": "10.15784/601848", "keywords": "Antarctica; Buried Ice; Cryosphere; Stable Isotopes; Stable Water Isotopes; Taylor Valley", "people": "Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "isotopic signature of massive buried ice, eastern Taylor Valley, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601848"}], "date_created": "Wed, 16 Oct 2024 00:00:00 GMT", "description": "Phytoplankton, or microscopic marine algae, are an important part of the carbon cycle and can lower the rates of atmospheric carbon dioxide by transferring the atmospheric carbon into the oceans. The concentration of phytoplankton in the Southern Ocean is regularly limited by the availability of marine iron. This in turn influences the rate of carbon transfer from the atmosphere to the ocean. The primary source of iron in the Southern Ocean is eroded continental rock. Understanding the current and future sources of iron to the Southern Ocean as a result of increased melting of terrestrial glaciers is necessary for predicting future concentrations of Southern Ocean phytoplankton and the subsequent influence on the carbon cycle. A poorly understood source of iron to the Southern Ocean is stream input from ice-free regions such as the McMurdo Dry Valleys in Antarctica. This source of iron is likely to become larger if glaciers retreat. This study investigates the sources and amount of iron transported by McMurdo Dry Valley streams directly into the Southern Ocean. Because not all forms of iron can be used by phytoplankton, experiments will be performed to determine how available iron is to phytoplankton and how iron mixes with seawater. Immersive 360-degree video, infographics, and educational videos of findings from this project will be shared on social media, at schools and science events, and in an urban science center. In the Southern Ocean (SO) there is an excess of macronutrients but regional primary production is limited or co-limited due to iron. An addition of iron to the ocean will affect biochemical cycles, increase primary production, and affect the structure and composition of phytoplankton communities in the SO. Iron flux to the SO is globally significant, as increased Fe fertilization leads to increased carbon sequestration which acts as a negative feedback to increased atmospheric pCO2. One source of potentially bioavailable iron to the coastal regions of the SO is from direct sub-aerial stream discharge in ice-free areas of Antarctica, a source that may become more important if terrestrial glaciers retreat. It is imperative to understand the source, nature, potential fate, and flux of iron to the SO if better predictive models for the carbon cycle and atmospheric chemistry are to be developed. This project will investigate in-stream processes and characteristics controlling dissolved iron draining into the Ross Sea including photoreduction, temperature, and complexation with organic matter. The novel study will quantify bioavailability of particulate iron and bioavailability of dissolved iron in Antarctic in streams draining into the SO. On-site speciation measurements will be performed on dissolved iron species, particulate iron speciation will be determined using high-resolution spectroscopy, mixing experiments will be performed with coastal marine water, and the bioavailability of Fe will be determined through marine bioassays. This project will provide two students with valuable Antarctic field experience and reach thousands of individuals through existing partnerships with K-12 schools, public STEM events, an urban science center, and a strong social media presence. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 163.554215, "geometry": "POINT(163.4642475 -77.5853675)", "instruments": null, "is_usap_dc": true, "keywords": "SURFACE WATER CHEMISTRY; Iron Fertilization; McMurdo Dry Valleys; Weathering", "locations": "McMurdo Dry Valleys", "north": -77.558627, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Lyons, W. Berry; Gardner, Christopher B.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.612108, "title": "Fe Behavior and Bioavailability in Sub-aerial Runoff into the Ross Sea", "uid": "p0010483", "west": 163.37428}, {"awards": "2020728 Huber, Brian; 2026648 Tobin, Thomas; 2025724 Harwood, David", "bounds_geometry": "POLYGON((-56.93 -64.2,-56.894 -64.2,-56.858 -64.2,-56.822 -64.2,-56.786 -64.2,-56.75 -64.2,-56.714 -64.2,-56.678 -64.2,-56.642 -64.2,-56.606 -64.2,-56.57 -64.2,-56.57 -64.214,-56.57 -64.22800000000001,-56.57 -64.242,-56.57 -64.256,-56.57 -64.27000000000001,-56.57 -64.284,-56.57 -64.298,-56.57 -64.312,-56.57 -64.32600000000001,-56.57 -64.34,-56.606 -64.34,-56.642 -64.34,-56.678 -64.34,-56.714 -64.34,-56.75 -64.34,-56.786 -64.34,-56.822 -64.34,-56.858 -64.34,-56.894 -64.34,-56.93 -64.34,-56.93 -64.32600000000001,-56.93 -64.312,-56.93 -64.298,-56.93 -64.284,-56.93 -64.27000000000001,-56.93 -64.256,-56.93 -64.242,-56.93 -64.22800000000001,-56.93 -64.214,-56.93 -64.2))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 15 Sep 2022 00:00:00 GMT", "description": "Non-technical description: This 4-year project is evaluating evidence of extinction patterns and depositional conditions from a high southern latitude Cretaceous-Paleogene (K-Pg) outcrop section found on Seymore Island, in the Western Antarctic Peninsula. The team is using sediment samples collected below the weathering horizon to evaluate detailed sedimentary structures, geochemistry, and microfossils in targeted stratigraphic intervals. The study will help determine if the K-Pg mass extinction was a single or double phased event and whether Seymour Island region in the geological past was a restricted, suboxic marine environment or an open well-mixed shelf. The award includes an integrated plan for student training at all levels, enhanced by a highlighted partnership with a high school earth sciences teacher working in a school serving underrepresented students. Technical description: The proposed research is applying multiple techniques to address an overarching research question for which recent studies are in disagreement: Is the fossil evidence from a unique outcropping on Seymour Island, Antarctica consistent with a single or double phased extinction? In a two-phased model, the first extinction would affect primarily benthic organisms and would have occurred ~150 kiloyears prior to a separate extinction at the K-Pg boundary. However, this early extinction could plausibly be explained by an unrecognized facies control that is obscured by surficial weathering. This team is using microfossil evidence with detailed sedimentary petrology and geochemistry data to evaluate if the fossil evidence from Seymour Island is consistent with a single or double phased extinction process. The team is using detailed sedimentary petrology and geochemistry methods to test for facies changes across the K-PG interval that would explain the apparent early extinction. Samples of core sedimentary foraminifera, siliceous microfossils, and calcareous nannofossils are being evaluated to provide a high-resolution stratigraphic resolution and to evaluate whether evidence for an early extinction is present. Additionally, the team is using multiple geochemical methods to evaluate whether there is evidence for intermittent anoxia or euxinia and/or physical restriction of the Seymore region basin. Data from this analysis will indicate if this region was a restricted, suboxic marine environment or an open well-mixed shelf. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -56.57, "geometry": "POINT(-56.75 -64.27000000000001)", "instruments": null, "is_usap_dc": true, "keywords": "Seymour Island; PALEOCLIMATE RECONSTRUCTIONS; SEDIMENTARY ROCKS; MICROFOSSILS; FIELD INVESTIGATION", "locations": "Seymour Island", "north": -64.2, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Earth Sciences", "paleo_time": null, "persons": "Tobin, Thomas; Totten, Rebecca", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": -64.34, "title": "Collaborative Research: Coring Seymour Island (CSI) Antarctica: Evaluating Causes and Effects of the End Cretaceous Mass Extinction", "uid": "p0010377", "west": -56.93}, {"awards": "1947558 Leckie, Robert; 1947657 Dodd, Justin; 1947646 Shevenell, Amelia", "bounds_geometry": "POLYGON((-180 -72.5,-177.6 -72.5,-175.2 -72.5,-172.8 -72.5,-170.4 -72.5,-168 -72.5,-165.6 -72.5,-163.2 -72.5,-160.8 -72.5,-158.4 -72.5,-156 -72.5,-156 -73.15,-156 -73.8,-156 -74.45,-156 -75.1,-156 -75.75,-156 -76.4,-156 -77.05,-156 -77.7,-156 -78.35,-156 -79,-158.4 -79,-160.8 -79,-163.2 -79,-165.6 -79,-168 -79,-170.4 -79,-172.8 -79,-175.2 -79,-177.6 -79,180 -79,178.4 -79,176.8 -79,175.2 -79,173.6 -79,172 -79,170.4 -79,168.8 -79,167.2 -79,165.6 -79,164 -79,164 -78.35,164 -77.7,164 -77.05,164 -76.4,164 -75.75,164 -75.1,164 -74.45,164 -73.8,164 -73.15,164 -72.5,165.6 -72.5,167.2 -72.5,168.8 -72.5,170.4 -72.5,172 -72.5,173.6 -72.5,175.2 -72.5,176.8 -72.5,178.4 -72.5,-180 -72.5))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 08 Jun 2022 00:00:00 GMT", "description": "Nontechnical abstract Presently, Antarctica\u2019s glaciers are melting as Earth\u2019s atmosphere and the Southern Ocean warm. Not much is known about how Antarctica\u2019s ice sheets might respond to ongoing and future warming, but such knowledge is important because Antarctica\u2019s ice sheets might raise global sea levels significantly with continued melting. Over time, mud accumulates on the sea floor around Antarctica that is composed of the skeletons and debris of microscopic marine organisms and sediment from the adjacent continent. As this mud is deposited, it creates a record of past environmental and ecological changes, including ocean depth, glacier advance and retreat, ocean temperature, ocean circulation, marine ecosystems, ocean chemistry, and continental weathering. Scientists interested in understanding how Antarctica\u2019s glaciers and ice sheets might respond to ongoing warming can use a variety of physical, biological, and chemical analyses of these mud archives to determine how long ago the mud was deposited and how the ice sheets, oceans, and marine ecosystems responded during intervals in the past when Earth\u2019s climate was warmer. In this project, researchers from the University of South Florida, University of Massachusetts, and Northern Illinois University will reconstruct the depth, ocean temperature, weathering and nutrient input, and marine ecosystems in the central Ross Sea from ~17 to 13 million years ago, when the warm Miocene Climate Optimum transitioned to a cooler interval with more extensive ice sheets. Record will be generated from new sediments recovered during the International Ocean Discovery Program (IODP) Expedition 374 and legacy sequences recovered in the 1970\u2019s during the Deep Sea Drilling Program. Results will be integrated into ice sheet and climate models to improve the accuracy of predictions. The research provides experience for three graduate students and seven undergraduate students via a multi-institutional REU program focused on increasing diversity in Antarctic Earth Sciences. Technical Abstract Deep-sea sediments reveal that the Miocene Climatic Optimum (MCO) was the warmest climate interval of the last ~20 Ma, was associated with global carbon cycle changes and ice growth, and immediately preceded the Middle Miocene Climate Transition (MMCT; ~14 Ma), one of three major intervals of Antarctic ice expansion and global cooling. Ice-proximal studies are required to assess: where and when ice grew, ice sheet extent, continental shelf geometry, high-latitude heat and moisture supply, oceanic and/or atmospheric temperature influence on ice dynamics, regional sea ice extent, meltwater input, and regions of bottom water formation. Existing studies indicate that ice expanded beyond the Transantarctic Mountains and onto the prograding Ross Sea continental shelf multiple times between ~17 and 13.5 Ma. However, these records are either too ice-proximal/terrestrial to adequately assess ocean-ice interactions or under-studied. To address this data gap, this work will: 1) generate micropaleontologic and geochemical records of oceanic and atmospheric temperature, water depth, ocean circulation, and paleoproductivity from existing Ross Sea marine sedimentary sequences, and 2) use these proxy records to test the hypothesis that dynamic glacial expansion in the Ross Sea sector during the MCO was driven by heat and moisture transport to the high latitudes during an interval of enhanced climate sensitivity. Downcore geochemical and micropaleontologic studies will focus on an expanded (120 m/my) early to middle Miocene (~17-16 Ma) diatom-bearing/rich mudstone/diatomite unit from IODP Site U1521, drilled on the Ross Sea continental shelf. A hiatus (~16-14.6 Ma) suggests ice expansion during the MCO, followed by diamictite to mudstone unit indicative of slight retreat (14.6 -14 Ma) immediately preceding the MMCT. Data from Site U1521 will be integrated with foraminiferal geochemical and micropaleontologic data from DSDP Leg 28 (1972/73) and RISP J-9 (1978-79) to develop a MCO to late Miocene regional view of ocean-ice sheet interactions using legacy core material previously processed for foraminifera. This integrated record will: 1) document the timing and extent of glacial advances and retreats across the prograding Ross Sea shelf during the middle and late Miocene, 2) provide orbital-scale paleotemperature reconstructions (TEX86, Mg/Ca, \u03b418O, MBT/CBT) to establish atmosphere-ocean-ice interactions during an extreme high-latitude warm interval, and 3) provide orbital-scale nutrient/paleoproductivity, ocean circulation, and paleoenvironmental data required to assess climate feedbacks associated with Miocene Antarctic ice sheet and global climate system development. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -156.0, "geometry": "POINT(-176 -75.75)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; LABORATORY; AMD; PALEOCLIMATE RECONSTRUCTIONS; Ross Sea; USAP-DC; USA/NSF", "locations": "Ross Sea", "north": -72.5, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Shevenell, Amelia", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -79.0, "title": "Collaborative Proposal: Miocene Climate Extremes: A Ross Sea Perspective from IODP Expedition 374 and DSDP Leg 28 Marine Sediments", "uid": "p0010335", "west": 164.0}, {"awards": "1847067 Levy, Joseph", "bounds_geometry": "POLYGON((161 -76,161.35 -76,161.7 -76,162.05 -76,162.4 -76,162.75 -76,163.1 -76,163.45 -76,163.8 -76,164.15 -76,164.5 -76,164.5 -76.2,164.5 -76.4,164.5 -76.6,164.5 -76.8,164.5 -77,164.5 -77.2,164.5 -77.4,164.5 -77.6,164.5 -77.8,164.5 -78,164.15 -78,163.8 -78,163.45 -78,163.1 -78,162.75 -78,162.4 -78,162.05 -78,161.7 -78,161.35 -78,161 -78,161 -77.8,161 -77.6,161 -77.4,161 -77.2,161 -77,161 -76.8,161 -76.6,161 -76.4,161 -76.2,161 -76))", "dataset_titles": "Biogeochemical measurements of water tracks and adjacent dry soils from the McMurdo Dry Valleys; Surface Water Geochemistry from the McMurdo Dry Valleys", "datasets": [{"dataset_uid": "601684", "doi": "10.15784/601684", "keywords": "Antarctica; Cation Exchange; Chemistry:soil; Chemistry:Soil; Dry Valleys; Organic Matter; Salt; Soil", "people": "Levy, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Biogeochemical measurements of water tracks and adjacent dry soils from the McMurdo Dry Valleys", "url": "https://www.usap-dc.org/view/dataset/601684"}, {"dataset_uid": "601703", "doi": "10.15784/601703", "keywords": "Antarctica; Dry Valleys", "people": "Levy, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Surface Water Geochemistry from the McMurdo Dry Valleys", "url": "https://www.usap-dc.org/view/dataset/601703"}], "date_created": "Fri, 24 Dec 2021 00:00:00 GMT", "description": "Antarctic groundwater drives the regional carbon cycle and can accelerate permafrost thaw shaping Antarctic surface features. However, groundwater extent, flow, and processes on a continent virtually locked in ice are poorly understood. The proposed work investigates the interplay between groundwater, sediment, and ice in Antarctica\u0027s cold desert landscape to determine when, where, and why Antarctic groundwater is flowing, and how it may evolve Antarctic frozen deserts from dry and stable to wet and dynamic. Mapping the changing extent of Antarctic near-surface groundwater requires the ability to measure soil moisture rapidly and repeatedly over large areas. The research will capture changes in near-surface groundwater distribution through an unmanned aerial vehicle (UAV) mapping approach. The project integrates a diverse range of sensors with new UAV technologies to provide a higher-resolution and more frequent assessment of Antarctic groundwater extent and composition than can be accomplished using satellite observations alone. To complement the research objectives, the PI will develop a new UAV summer field school, the Geosciences UAV Academy, focused on training undergraduate-level UAV pilots in conducting novel earth sciences research using cutting edge imaging tools. The integration of research and technology will prepare students for careers in UAV-related industries and research. The project will deliver new UAV tools and workflows for soil moisture mapping relevant to arid regions including Antarctica as well as temperate desert and dryland systems and will train student research pilots to tackle next generation airborne challenges. Water tracks are the basic hydrological unit that currently feeds the rapidly-changing permafrost and wetlands in the Antarctic McMurdo Dry Valleys (MDV). Despite the importance of water tracks in the MDV hydrologic cycle and their influence on biogeochemistry, little is known about how these water tracks control the unique brine processes operating in Antarctic ice-free areas. Both groundwater availability and geochemistry shape Antarctic microbial communities, connecting soil geology and hydrology to carbon cycling and ecosystem functioning. The objectives of this CAREER proposal are to 1) map water tracks to determine the spatial distribution and seasonal magnitude of groundwater impacts on the MDV near-surface environment to determine how near-surface groundwater drives permafrost thaw and enhances chemical weathering and biogeochemical cycling; 2) establish a UAV academy training earth sciences students to answer geoscience questions using drone-based platforms and remote sensing techniques; and 3) provide a formative step in the development of the PI as a teacher-scholar. UAV-borne hyperspectral imaging complemented with field soil sampling will determine the aerial extent and timing of inundation, water level, and water budget of representative water tracks in the MDV. Soil moisture will be measured via near-infrared reflectance spectroscopy while bulk chemistry of soils and groundwater will be analyzed via ion chromatography and soil x-ray fluorescence. Sedimentological and hydrological properties will be determined via analysis of intact core samples. These data will be used to test competing hypotheses regarding the origin of water track solutions and water movement through seasonal wetlands. The work will provide a regional understanding of groundwater sources, shallow groundwater flux, and the influence of regional hydrogeology on solute export to the Southern Ocean and on soil/atmosphere linkages in earth\u0027s carbon budget. The UAV school will 1) provide comprehensive instruction at the undergraduate level in both how and why UAVs can advance geoscience research and learning; and 2) provide educational infrastructure for an eventual self-sustaining summer program for undergraduate UAV education. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 164.5, "geometry": "POINT(162.75 -77)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; Amd/Us; USA/NSF; AMD; USAP-DC; FROZEN GROUND; Taylor Valley", "locations": "Taylor Valley", "north": -76.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Levy, Joseph", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Linking Antarctic Cold Desert Groundwater to Thermokarst \u0026 Chemical Weathering in Partnership with the Geoscience UAV Academy", "uid": "p0010286", "west": 161.0}, {"awards": "1543344 Soreghan, Gerilyn", "bounds_geometry": null, "dataset_titles": "Data and metadata for \"Quantifying surface area in muds from the Antarctic Dry Valleys: Implications for weathering in glacial systems\"", "datasets": [{"dataset_uid": "601599", "doi": "10.15784/601599", "keywords": "Antarctica; Anza Borrego; Iceland; McMurdo Dry Valleys; Norway; Peru; Puerto Rico; Taylor Valley; Washington; Wright Valley", "people": "Demirel-Floyd, Cansu", "repository": "USAP-DC", "science_program": null, "title": "Data and metadata for \"Quantifying surface area in muds from the Antarctic Dry Valleys: Implications for weathering in glacial systems\"", "url": "https://www.usap-dc.org/view/dataset/601599"}], "date_created": "Tue, 18 May 2021 00:00:00 GMT", "description": "As glaciers creep across the landscape, they can act as earthmovers, plucking up rocks and grinding them into fine sediments. Glaciers have moved across the Antarctic landscape over thousands to millions of years, leaving these ground-up sediments in their wake. This study builds on pilot discoveries by the investigators that revealed remarkably large and variable measurements of surface area in glacially-derived fine-grained sediments found in the McMurdo Dry Valleys (MDV), one of the few landscapes on the Antarctic continent not currently covered by ice. Surface area is key to chemical weathering, the process by which rock is converted to soils as ions are carried away in streams and groundwater. These chemical weathering processes are also one of the primary means by which the Earth system naturally removes carbon dioxide from the atmosphere. Hence, high surface areas observed in sediments implies high \"weatherability\" which in turn translates to more potential carbon dioxide removed from the atmosphere. Therefore, chemical weathering in high surface area glacial sediments may have significant impacts on Earth\u0027s carbon cycle. The researchers will measure the chemical and physical properties of sediments previously collected from the Dry Valleys to understand what factors lead to production of sediment with high-surface area and potential \"weather ability\" and investigate how sediment produced in these glacial systems could ultimately impact Earth\u0027s carbon budget. Results from this research will help scientists (including modelers) refine predictions of the effects of melting glaciers- and attendant exposure of glacial sediment? on atmospheric carbon levels. These results may also contribute to applied research efforts on development of carbon-dioxide removal technologies utilizing principles of rock weathering. In addition to the scientific benefits, this research will involve several students at the undergraduate, graduate, and post-doctoral levels, including science education undergraduates, thus contributing to training of the next-generation STEM workforce. Physical weathering produces fresh surfaces, greatly enhancing specific surface area (SSA) and reactive surface area (RSA) of primary minerals. Quantifying SSA and RSA of sediments is key to determining dissolution and leaching rates during natural weathering, but few data exist on distribution of sediment SA, particularly in glacial and fluvial systems. Pilot data from glacial stream systems in Taylor Valley and Wright Valley (located in the MDV) exhibit remarkably high and variable values in both SSA and RSA, values that in some cases greatly exceed values from muds in temperate glacial systems. This discovery motivates the current research, which aims to investigate the hypothesis that high and variable SAs of muds within Wright and Taylor Valleys reflect textural and/or compositional inheritance from the differing depositional settings within the MDV, biologic controls, dust additions, and/or pedogenic processes. These hypotheses will be tested by sedimentologically, mineralogically, and geochemically characterizing muds from glacially derived sediment deposited in various environments (cold vs. wet based glaciation; fluvial, lacustrine, dust, and drift deposits) and of varying age (Miocene to Modern) from the MDV and quantifying variation of SA and reactivity. Comparisons with analyzed muds from temperate glacial systems will enable polar-temperate comparisons. Analyses will focus on muds of previously collected sediment from the MDVs. Grain size and SSA will be measured by Laser Analysis and N2 adsorption BET, respectively. After carbonate removal, samples will be re-analyzed for SSA, and muds characterized geochemically. Mineralogy and bulk chemistry will also be assessed on co-occurring sand fractions, and textural attributes documented. SSA-normalized dissolution experiments will be used to compare solutes released from sediments to determine RSAs. Results will be integrated with the various sedimentologic and geochemical analyses to test the posed hypotheses. Ultimately, this research should shed light on how weathering in Antarctic systems contributes to global carbon cycling.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; AMD; FIELD INVESTIGATION; USA/NSF; Dry Valleys; SEDIMENT CHEMISTRY; Amd/Us; Antarctica; Weathering", "locations": "Antarctica; Dry Valleys", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Soreghan, Gerilyn; Elwood Madden, Megan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Quantifying surface area in muds from the Antarctic Dry Valleys: Implications for weathering in glacial systems", "uid": "p0010181", "west": null}, {"awards": "1908399 Bizimis, Michael; 1908548 Feakins, Sarah", "bounds_geometry": "POLYGON((74.787 -67.27617,74.816483 -67.27617,74.845966 -67.27617,74.875449 -67.27617,74.904932 -67.27617,74.934415 -67.27617,74.963898 -67.27617,74.993381 -67.27617,75.022864 -67.27617,75.052347 -67.27617,75.08183 -67.27617,75.08183 -67.31817,75.08183 -67.36017,75.08183 -67.40217,75.08183 -67.44417,75.08183 -67.48617,75.08183 -67.52817,75.08183 -67.57017,75.08183 -67.61217,75.08183 -67.65417,75.08183 -67.69617,75.052347 -67.69617,75.022864 -67.69617,74.993381 -67.69617,74.963898 -67.69617,74.934415 -67.69617,74.904932 -67.69617,74.875449 -67.69617,74.845966 -67.69617,74.816483 -67.69617,74.787 -67.69617,74.787 -67.65417,74.787 -67.61217,74.787 -67.57017,74.787 -67.52817,74.787 -67.48617,74.787 -67.44417,74.787 -67.40217,74.787 -67.36017,74.787 -67.31817,74.787 -67.27617))", "dataset_titles": "Ejtibbett/EOTproxymodel: Proxy Model Comparison for the Eocene-Oligocene Transition [Computational Notebook]; Paleoceanography and biomarker data from the Antarctic Peninsula over the past 37-3 million years; Prydz Bay East Antarctica, biomarkers and pollen, 36-33 million years; Sabrina Coast East Antarctica, Pollen and Biomarker Data from 59-38 million years ago; Southern High Latitude Temperature Proxies from the Late Eocene and Early Oligocene [Dataset]", "datasets": [{"dataset_uid": "200317", "doi": "10.25921/n9kg-yw91", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Paleoceanography and biomarker data from the Antarctic Peninsula over the past 37-3 million years", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/35613"}, {"dataset_uid": "200335", "doi": "10.5281/zenodo.7254536", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Southern High Latitude Temperature Proxies from the Late Eocene and Early Oligocene [Dataset]", "url": "https://zenodo.org/record/7254536#.Y2BLgOTMI2w"}, {"dataset_uid": "200334", "doi": "10.5281/zenodo.7254786", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Ejtibbett/EOTproxymodel: Proxy Model Comparison for the Eocene-Oligocene Transition [Computational Notebook]", "url": "https://zenodo.org/record/7254786#.Y2BLAeTMI2w"}, {"dataset_uid": "200206", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Prydz Bay East Antarctica, biomarkers and pollen, 36-33 million years", "url": "https://www.ncdc.noaa.gov/paleo-search/study/32052"}, {"dataset_uid": "200259", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Sabrina Coast East Antarctica, Pollen and Biomarker Data from 59-38 million years ago", "url": "https://www.ncdc.noaa.gov/paleo/study/34772"}], "date_created": "Sat, 05 Dec 2020 00:00:00 GMT", "description": "The East Antarctic Ice Sheet holds the largest volume of freshwater on the planet, in total enough to raise sea level by almost two hundred feet. Even minor adjustments in the volume of ice stored have major implications for coastlines and climates around the world. The question motivating this project is how did the ice grow to cover the continent over thirty million years ago when Antarctica changed from a warmer environment to an ice-covered southern continent? The seafloor of Prydz Bay, a major drainage basin of the East Antarctic Ice Sheet (EAIS), has been drilled previously to recover sediments dating from millions of years prior to and across the time when inception of continental ice sheets occurred in Antarctica. The last remnants of plant material found as \u0027biomarkers\u0027 in the ocean sediments record the chemical signatures of rain and snowfall that fed the plants and later the expanding glaciers. Sediment carried by glaciers was also deposited on the seafloor and can be analyzed to discover how glaciers flowed across the landscape. Here, the researchers will identify precipitation changes that result from, and drive, ice sheet growth. This study will gather data and further analyze samples from the seafloor sediment archives of the International Ocean Discovery Program\u0027s (IODP) core repositories. Ultimately these findings can help inform temperature-precipitation-ice linkages within climate and ice sheet models. The project will support the training of three female, early career scientists (PhD \u0026 MS students, and research technician) and both PIs and the PhD student will continue their engagement with broadening participation efforts (e.g., Women in Science and Engineering Program; local chapters of Society for the advancement of Native Americans and Chicanos in Science and other access programs) to recruit undergraduate student participants from underrepresented minorities at both campuses and from local community colleges. Antarctic earth science education materials will be assisted by professional illustrations to be open access and used in public education and communication efforts to engage local communities in Los Angeles CA and Columbia SC. The researchers at the University of Southern California and the University of South Carolina will together study the penultimate moment of the early Cenozoic greenhouse climate state: the ~4 million years of global cooling that culminated in the Eocene/Oligocene transition (~34 Ma). Significant gaps remain in the understanding of the conditions that preceded ice expansion on Antarctica. In particular, the supply of raw material for ice sheets (i.e., moisture) and the timing, frequency, and duration of precursor glaciations is poorly constrained. This collaborative proposal combines organic and inorganic proxies to examine how Antarctic hydroclimate changed during the greenhouse to icehouse transition. The central hypothesis is that the hydrological cycle weakened as cooling proceeded. Plant-wax hydrogen and carbon isotopes (hydroclimate proxies) and Hf-Nd isotopes of lithogenous and hydrogenous sediments (mechanical weathering proxies) respond strongly and rapidly to precipitation and glacial advance. This detailed and sensitive combined approach will test whether there were hidden glaciations (and/or warm events) that punctuated the pre-icehouse interval. Studies will be conducted on Prydz Bay marine sediment cores in a depositional area for products of weathering and erosion that were (and are) transported through Lambert Graben from the center of Antarctica. The project will yield proxy information about the presence of plants and the hydroclimate of Antarctica and the timing of glacial advance, and is expected to show drying associated with cooling and ice-sheet growth. The dual approach will untangle climate signals from changes in fluvial versus glacial erosion of plant biomarkers. This proposal is potentially transformative because the combination of organic and inorganic proxies can reveal rapid transitions in aridity and glacial expansion, that may have been missed in slower-response proxies and more distal archives. The research is significant as hydroclimate seems to be a key player in the temperature-cryosphere hysteresis. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 75.08183, "geometry": "POINT(74.934415 -67.48617)", "instruments": null, "is_usap_dc": true, "keywords": "MICROFOSSILS; Prydz Bay; PALEOCLIMATE RECONSTRUCTIONS; Sabrina Coast; DROUGHT/PRECIPITATION RECONSTRUCTION; ISOTOPES; AIR TEMPERATURE RECONSTRUCTION", "locations": "Prydz Bay; Sabrina Coast", "north": -67.27617, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Feakins, Sarah; Scher, Howard", "platforms": null, "repo": "NCEI", "repositories": "NCEI; Zenodo", "science_programs": null, "south": -67.69617, "title": "Collaborative Research: Organic and Inorganic Geochemical Investigation of Hydrologic Change in East Antarctica in the 4 Million Years Before Full Glaciation", "uid": "p0010143", "west": 74.787}, {"awards": "1743643 Passchier, Sandra", "bounds_geometry": null, "dataset_titles": "Major and trace element analyses of Eocene-Oligocene marine sediments from ODP Site 696, South Orkney Microcontinent; Particle-size distributions of Eocene-Oligocene sediment from ODP Site 696, South Orkney Microcontinent", "datasets": [{"dataset_uid": "601581", "doi": "10.15784/601581", "keywords": "Antarctica; Glaciation; IODP 696; Marine Geoscience; Marine Sediments; Paleoceanography; Sediment Core Data; Weddell Sea", "people": "Light, Jennifer; Horowitz Castaldo, Josie; Lepp, Allison; Passchier, Sandra", "repository": "USAP-DC", "science_program": null, "title": "Particle-size distributions of Eocene-Oligocene sediment from ODP Site 696, South Orkney Microcontinent", "url": "https://www.usap-dc.org/view/dataset/601581"}, {"dataset_uid": "601582", "doi": "10.15784/601582", "keywords": "Antarctica; Glaciation; IODP 650; IODP 696; Paleoceanography; Provenance; Sediment Core Data; Weathering; Weddell Sea", "people": "Lepp, Allison; Li, Xiaona; Hojnacki, Victoria; Passchier, Sandra; States, Abbey", "repository": "USAP-DC", "science_program": null, "title": "Major and trace element analyses of Eocene-Oligocene marine sediments from ODP Site 696, South Orkney Microcontinent", "url": "https://www.usap-dc.org/view/dataset/601582"}], "date_created": "Tue, 26 May 2020 00:00:00 GMT", "description": "Abstract (non-technical) Sea level rise is a problem of global importance and it is increasingly affecting the tens of millions of Americans living along coastlines. The melting of glaciers in mountain areas worldwide in response to global warming is a major cause of sea level rise and increases in nuisance coastal flooding. However, the world\u0027s largest land-based ice sheets are situated in the Polar Regions and their response under continued warming is very difficult to predict. One reason for this uncertainty is a lack of observations of ice behavior and melt under conditions of warming, as it is a relatively new global climate state lasting only a few generations so far. Researchers will investigate ice growth on Antarctica under past warm conditions using geological archives embedded in the layers of sand and mud under the sea floor near Antarctica. By peeling back at the layers beneath the seafloor investigators can read the history book of past events affecting the ice sheet. The Antarctic continent on the South Pole, carries the largest ice mass in the world. The investigator\u0027s findings will substantially improve scientists understanding of the response of ice sheets to global warming and its effect on sea level rise. Abstract (technical) The melt of land based ice is raising global sea levels with at present only minor contributions from polar ice sheets. However, the future role of polar ice sheets in climate change is one of the most critical uncertainties in predictions of sea level rise around the globe. The respective roles of oceanic and atmospheric greenhouse forcing on ice sheets are poorly addressed with recent measurements of polar climatology, because of the extreme rise in greenhouse forcing the earth is experiencing at this time. Data on the evolution of the West Antarctic ice sheet is particularly sparse. To address the data gap, researchers will reconstruct the timing and spatial distribution of Antarctic ice growth through the last greenhouse to icehouse climate transition around 37 to 33 Ma. They will collect sedimentological and geochemical data on core samples from a high-latitude paleoarchive to trace the shutdown of the chemical weathering system, the onset of glacial erosion, ice rafting, and sea ice development, as East and West Antarctic ice sheets coalesced in the Weddell Sea sector. Their findings will lead to profound increases in the understanding of the role of greenhouse forcing in ice sheet development and its effect on the global climate system. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; AMD; SEDIMENTS; LABORATORY; USA/NSF; USAP-DC; Weddell Sea", "locations": "Weddell Sea", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Passchier, Sandra", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Timing and Spatial Distribution of Antarctic Ice Sheet Growth and Sea-ice Formation across the Eocene-Oligocene Transition", "uid": "p0010101", "west": null}, {"awards": "1341712 Hallet, Bernard", "bounds_geometry": "POLYGON((160.9 -76.7,161.08 -76.7,161.26 -76.7,161.44 -76.7,161.62 -76.7,161.8 -76.7,161.98 -76.7,162.16 -76.7,162.34 -76.7,162.52 -76.7,162.7 -76.7,162.7 -76.79,162.7 -76.88,162.7 -76.97,162.7 -77.06,162.7 -77.15,162.7 -77.24,162.7 -77.33,162.7 -77.42,162.7 -77.51,162.7 -77.6,162.52 -77.6,162.34 -77.6,162.16 -77.6,161.98 -77.6,161.8 -77.6,161.62 -77.6,161.44 -77.6,161.26 -77.6,161.08 -77.6,160.9 -77.6,160.9 -77.51,160.9 -77.42,160.9 -77.33,160.9 -77.24,160.9 -77.15,160.9 -77.06,160.9 -76.97,160.9 -76.88,160.9 -76.79,160.9 -76.7))", "dataset_titles": "Long-term rock abrasion study in the Dry Valleys", "datasets": [{"dataset_uid": "601060", "doi": "10.15784/601060", "keywords": "Antarctica; Dry Valleys; Geology/Geophysics - Other; Rocks", "people": "Sletten, Ronald S.; Hallet, Bernard; Malin, Michael", "repository": "USAP-DC", "science_program": null, "title": "Long-term rock abrasion study in the Dry Valleys", "url": "https://www.usap-dc.org/view/dataset/601060"}], "date_created": "Fri, 13 Oct 2017 00:00:00 GMT", "description": "Paragraph for Public Audiences: Many of the natural processes that modify the landscape inhabited by humans occur over very long timescales, making them difficult to observe. Exceptions include rare catastrophic events such as earthquakes, volcanic eruptions, and floods that occur on short timescales. Many significant processes that affect the land and landscape that we inhabit operate on time scales imperceptible to humans. One of these processes is wind transport of sand, with related impacts to exposed rock surfaces and man-made objects, including buildings, windshields, solar panels and wind-farm turbine blades. The goal of this project is to gain an understanding of wind erosion processes over long timescales, in the Antarctic Dry Valleys, a cold desert environment where there were no competing processes (such as rain and vegetation) that might mask the effects. The main objective is recovery of rock samples that were deployed in 1983/1984 at 11 locations in the Antarctic Dry Valleys, along with measurements on the rock samples and characterization of the sites. In the late 1980\u0027s and early 1990\u0027s some of these samples were returned and indicated more time was needed to accumulate information about the timescales and impacts of the wind erosion processes. This project will allow collection of the remaining samples from this experiment after 30 to 31 years of exposure. The field work will be carried out during the 2014/15 Austral summer. The results will allow direct measurement of the abrasion rate and hence the volumes and timescales of sand transport; this will conclude the longest direct examination of such processes ever conducted. Appropriate scaling of the results may be applied to buildings, vegetation (crops), and other aspects of human presence in sandy and windy locations, in order to better determine the impact of these processes and possible mitigation of the impacts. The project is a collaborative effort between a small business, Malin Space Science Systems (MSSS), and the University of Washington (UW). MSSS will highlight this Antarctic research on its web site, by developing thematic presentations describing our research and providing a broad range of visual materials. The public will be engaged through daily updates on a website and through links to material prepared for viewing in Google Earth. UW students will be involved in the laboratory work and in the interpretation of the results. Technical Description of Project: The goal of this project is to study the role of wind abrasion by entrained particles in the evolution of the McMurdo Dry Valleys in the Transantarctic Mountains. During the 1983 to 1984 field seasons, over 5000 rock targets were installed at five heights facing the 4 cardinal directions at 10 locations (with an additional site containing fewer targets) to study rates of physical weathering due primarily to eolian abrasion. In addition, rock cubes and cylinders were deployed at each site to examine effects of chemical weathering. The initial examination of samples returned after 1, 5, and 10 years of exposure, showed average contemporary abrasion rates consistent with those determined by cosmogenic isotope studies, but further stress that \"average\" should not be interpreted as meaning \"uniform.\" The samples will be characterized using mass measurements wtih 0.01 mg precision balances, digital microphotography to compare the evolution of their surface features and textures, SEM imaging to examine the micro textures of abraded rock surfaces, and optical microscopy of thin sections of a few samples to examine the consequences of particle impacts extending below the abraded surfaces. As much as 60-80% of the abrasion measured in samples from 1984-1994 appears to have occurred during a few brief hours in 1984. This is consistent with theoretical models that suggest abrasion scales as the 5th power of wind velocity. The field work will allow return of multiple samples after three decades of exposure, which will provide a statistical sampling (beyond what is acquired by studying a single sample), and will yield the mass loss data in light of complementary environmental and sand kinetic energy flux data from other sources (e.g. LTER meteorology stations). This study promises to improve insights into one of the principal active geomorphic process in the Dry Valleys, an important cold desert environment, and the solid empirical database will provide general constraints on eolian abrasion under natural conditions.", "east": 162.7, "geometry": "POINT(161.8 -77.15)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -76.7, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Hallet, Bernard; Sletten, Ronald S.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.6, "title": "Collaborative Proposal: Decades-long Experiment on Wind-Driven Rock Abrasion in the Ice-Free Valleys, Antarctica", "uid": "p0000074", "west": 160.9}, {"awards": "1245283 Passchier, Sandra", "bounds_geometry": "POLYGON((66 -68,67.3 -68,68.6 -68,69.9 -68,71.2 -68,72.5 -68,73.8 -68,75.1 -68,76.4 -68,77.7 -68,79 -68,79 -68.2,79 -68.4,79 -68.6,79 -68.8,79 -69,79 -69.2,79 -69.4,79 -69.6,79 -69.8,79 -70,77.7 -70,76.4 -70,75.1 -70,73.8 -70,72.5 -70,71.2 -70,69.9 -70,68.6 -70,67.3 -70,66 -70,66 -69.8,66 -69.6,66 -69.4,66 -69.2,66 -69,66 -68.8,66 -68.6,66 -68.4,66 -68.2,66 -68))", "dataset_titles": "Antarctic Geochemistry Data and Mean Annual Temperature Reconstruction through the Eocene-Oligocene Transition; GSA Data Repository Item 2016298 - Passchier, S., Ciarletta, D.J., Miriagos, T.E., Bijl, P.K., and Bohaty, S.M., 2016, An Antarctic stratigraphic record of step-wise ice growth through the Eocene-Oligocene transition: GSA Bulletin, doi:10.1130/B31482.1.; Particle-size distributions of Eocene-Oligocene sediment from ODP Site 739, Prydz Bay; Particle-size distributions of Eocene-Oligocene sediment from ODP Site 742, Prydz Bay; Particle-size distributions of Eocene sediment from ODP Site 1166, Prydz Bay", "datasets": [{"dataset_uid": "601454", "doi": "10.15784/601454", "keywords": "Antarctica; Eocene; Marine Geoscience; ODP742; Oligocene; Particle Size; Prydz Bay; Sediment Core Data", "people": "Ciarletta, Daniel; Passchier, Sandra", "repository": "USAP-DC", "science_program": null, "title": "Particle-size distributions of Eocene-Oligocene sediment from ODP Site 742, Prydz Bay", "url": "https://www.usap-dc.org/view/dataset/601454"}, {"dataset_uid": "000192", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Antarctic Geochemistry Data and Mean Annual Temperature Reconstruction through the Eocene-Oligocene Transition", "url": "https://www.ncdc.noaa.gov/paleo-search/study/21770"}, {"dataset_uid": "200200", "doi": "10.1130/2016298", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": " GSA Data Repository Item 2016298 - Passchier, S., Ciarletta, D.J., Miriagos, T.E., Bijl, P.K., and Bohaty, S.M., 2016, An Antarctic stratigraphic record of step-wise ice growth through the Eocene-Oligocene transition: GSA Bulletin, doi:10.1130/B31482.1.", "url": "https://gsapubs.figshare.com/articles/journal_contribution/Supplemental_material_An_Antarctic_stratigraphic_record_of_step-wise_ice_growth_through_the_Eocene-Oligocene_transition/12534185"}, {"dataset_uid": "601455", "doi": "10.15784/601455", "keywords": "Antarctica; Eocene; Marine Geoscience; ODP1166; Particle Size; Prydz Bay; Sediment Core Data", "people": "Passchier, Sandra; Ciarletta, Daniel", "repository": "USAP-DC", "science_program": null, "title": "Particle-size distributions of Eocene sediment from ODP Site 1166, Prydz Bay", "url": "https://www.usap-dc.org/view/dataset/601455"}, {"dataset_uid": "601453", "doi": "10.15784/601453", "keywords": "Antarctica; Eocene; Marine Geoscience; ODP739; Oligocene; Particle Size; Prydz Bay; Sediment Core Data", "people": "Ciarletta, Daniel; Passchier, Sandra", "repository": "USAP-DC", "science_program": null, "title": "Particle-size distributions of Eocene-Oligocene sediment from ODP Site 739, Prydz Bay", "url": "https://www.usap-dc.org/view/dataset/601453"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "Intellectual Merit: This project will investigate glacial advance and retreat of the East Antarctic Ice Sheet through the Eocene-Oligocene transition, a major episode of ice growth. In Prydz Bay, East Antarctica, a 130-170 m thick Eocene-Oligocene transition interval of glaciomarine sediments was cored in drillholes of the Ocean Drilling Program at Sites 739, 742 and 1166. Correlations between the Prydz Bay drillholes have recently been made through well-log and multichannel seismic interpretations. Recent drilling on the Wilkes Land margin of East Antarctica recovered earliest Oligocene sediments overlying a major regional unconformity in two drillholes. The PI will study the lithostratigraphy and weathering history of cores in the five drillholes, to establish a unique Eocene-Oligocene transition record within Antarctic continental margin sediments of glacial advance and retreat cycles, the onset of physical weathering, and glacio-isostasy and self-gravitation processes with implications for the margin architecture, sediment routing, and off-shore sediment dispersal. Cores from the five drillholes will be re-examined through detailed core description using an updated classification scheme, so that lithofacies can be compared between drillholes. Samples will be collected for detailed laser particle size and bulk major element geochemistry via ICP-AES to determine the degree of chemical alteration of the sediments. Phases of major ice growth will be recognized as marker beds of physically eroded sediment and will be correlated to isotopic records documenting Antarctic ice growth offshore in the Southern Ocean. Broader impacts: This project will benefit a large minority undergraduate student population through the availability of up to two paid laboratory internships, a classroom exercise, and the availability of research equipment supported by this award. The project also allows support and training of a graduate student.", "east": 79.0, "geometry": "POINT(72.5 -69)", "instruments": null, "is_usap_dc": true, "keywords": "ICE SHEETS; Not provided; Prydz Bay; SEDIMENTS", "locations": "Prydz Bay", "north": -68.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Passchier, Sandra", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "NCEI; Publication; USAP-DC", "science_programs": null, "south": -70.0, "title": "The Stratigraphic Expression of the Onset of Glaciation in Eocene-Oligocene Successions on the Antarctic Continental Margin", "uid": "p0000309", "west": 66.0}, {"awards": "1043706 Marchant, David", "bounds_geometry": "POLYGON((160 -76.5,160.45 -76.5,160.9 -76.5,161.35 -76.5,161.8 -76.5,162.25 -76.5,162.7 -76.5,163.15 -76.5,163.6 -76.5,164.05 -76.5,164.5 -76.5,164.5 -76.7,164.5 -76.9,164.5 -77.1,164.5 -77.3,164.5 -77.5,164.5 -77.7,164.5 -77.9,164.5 -78.1,164.5 -78.3,164.5 -78.5,164.05 -78.5,163.6 -78.5,163.15 -78.5,162.7 -78.5,162.25 -78.5,161.8 -78.5,161.35 -78.5,160.9 -78.5,160.45 -78.5,160 -78.5,160 -78.3,160 -78.1,160 -77.9,160 -77.7,160 -77.5,160 -77.3,160 -77.1,160 -76.9,160 -76.7,160 -76.5))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 23 Oct 2015 00:00:00 GMT", "description": "Intellectual Merit: The PIs propose to investigate the impact of earth surface processes on the application of cosmogenic exposure dating in Antarctica by combining multi-nuclide techniques, detailed field experiments, rock-mechanic studies, and climate modeling. They will analyze cosmogenic-nuclide inventories for a suite of six alpine-moraine systems in inland regions of the McMurdo Dry Valleys. This area is ideally suited for this study because 1) the targeted alpine moraine sequences are critically important in helping to reconstruct past temperature and precipitation values over the last several million years, 2) the production rates for cosmogenic nuclides are typically high and well-known, and 3) the complexity of surface processes is relatively low. Their work has two specific goals: to evaluate the effects of episodic geomorphic events in modulating cosmogenic inventories in surface rocks in polar deserts and to generate an alpine glacier chronology that will serve as a robust record of regional climate variation over the last several million years. A key objective is to produce a unique sampling strategy that yields consistent exposure-age results by minimizing the effects of episodic geomorphic events that obfuscate cosmogenic-nuclide chronologies. They will link their moraine chronology with regional-scale atmospheric models developed by collaborators at University of Massachusetts Amherst. Broader impacts: This research is interdisciplinary and includes two early career scientists. Results of this work will be used to enhance undergraduate education by engaging two female students in Antarctic field and summer research projects. Extended outreach includes development of virtual Antarctic field trips for Colgate University?s Ho Tung Visualization Laboratory and Boston University?s Antarctic Digital Image Analyses Laboratory. The PIs will continue to work with the Los Angeles Valley Community College, which serves students of mostly Hispanic origin as part of the PolarTREC program. This project will contribute to the collaboration between LDEO and several New York City public high schools within the Lamont-Doherty Secondary School Field Program.", "east": 164.5, "geometry": "POINT(162.25 -77.5)", "instruments": null, "is_usap_dc": false, "keywords": "McMurdo Dry Valleys; Rock Weathering; Not provided", "locations": "McMurdo Dry Valleys", "north": -76.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Marchant, David", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -78.5, "title": "Collaborative Research: Multi-nuclide approach to systematically evaluate the scatter in surface exposure ages in Antarctica and to develop consistent alpine glacier chronologies", "uid": "p0000269", "west": 160.0}, {"awards": "1142156 Marschall, Horst", "bounds_geometry": "POLYGON((-6.44 -71.93,-5.378 -71.93,-4.316 -71.93,-3.254 -71.93,-2.192 -71.93,-1.13 -71.93,-0.068 -71.93,0.994 -71.93,2.056 -71.93,3.118 -71.93,4.18 -71.93,4.18 -71.998,4.18 -72.066,4.18 -72.134,4.18 -72.202,4.18 -72.27,4.18 -72.338,4.18 -72.406,4.18 -72.474,4.18 -72.542,4.18 -72.61,3.118 -72.61,2.056 -72.61,0.994 -72.61,-0.068 -72.61,-1.13 -72.61,-2.192 -72.61,-3.254 -72.61,-4.316 -72.61,-5.378 -72.61,-6.44 -72.61,-6.44 -72.542,-6.44 -72.474,-6.44 -72.406,-6.44 -72.338,-6.44 -72.27,-6.44 -72.202,-6.44 -72.134,-6.44 -72.066,-6.44 -71.998,-6.44 -71.93))", "dataset_titles": "Zircon Hf Isotopes and the Continental Evolution of Dronning Maud Land, East Antarctica", "datasets": [{"dataset_uid": "600135", "doi": "10.15784/600135", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Dronning Maud Land; Geochemistry; Geochronology; Solid Earth", "people": "Marschall, Horst", "repository": "USAP-DC", "science_program": null, "title": "Zircon Hf Isotopes and the Continental Evolution of Dronning Maud Land, East Antarctica", "url": "https://www.usap-dc.org/view/dataset/600135"}], "date_created": "Fri, 23 Oct 2015 00:00:00 GMT", "description": "Geochemical studies of single mineral grains in rocks can be probed to reconstruct the history of our planet. The mineral zircon (ZrSiO4) is of unique importance in that respect because of its reliability as a geologic clock due to its strong persistence against weathering, transport and changes in temperature and pressure. Uranium-Lead (U-Pb) dating of zircon grains is, perhaps, the most frequently employed method of extracting time information on geologic processes that shaped the continental crust, and has been used to constrain the evolution of continents and mountain belts through time. In addition, the isotopic composition of the element Hafnium (Hf) in zircon is used to date when the continental crust was generated by extraction of magma from the underlying mantle. Melting of rocks in the mantle and deep in the continental crust are key processes in the evolution of the continents, and they are recorded in the Hf isotopic signatures of zircon. Although the analytical procedures for U-Pb dating and Hf isotope analyses of zircon are robust now, our understanding of zircon growth and its exchange of elements and isotopes with its surrounding rock or magma are still underdeveloped. The focus of the proposed study, therefore, is to unravel the evolution of zircon Hf isotopes in rocks that were formed deep in the Earth?s crust, and more specifically, to apply these isotopic methods to rocks collected in Dronning Maud Land (DML), East Antarctica. Dronning Maud Land (DML) occupied a central location during the formation of supercontinents ? large landmasses made up of all the continents that exist today - more than 500 million years ago. It is currently thought that supercontinents were formed and dismembered five or six times throughout Earth?s history. The area of DML is key for understanding the formation history of the last two supercontinents. The boundaries of continents that were merged to form those supercontinents are most likely hidden in DML. In this study, the isotopic composition of zircon grains recovered from DML rocks will be employed to identify these boundaries across an extensive section through the area. The rock samples were collected by the investigator during a two-month expedition to Antarctica in the austral summer of 2007?2008. The results of dating and isotope analyses of zircon of the different DML crustal domains will deliver significant insight into the regional geology of East Antarctica and its previous northern extension into Africa. This has significance for the reconstruction of the supercontinents and defining the continental boundaries in DML.", "east": 4.18, "geometry": "POINT(-1.13 -72.27)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -71.93, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Marschall, Horst", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -72.61, "title": "Zircon Hf Isotopes and the Continental Evolution of Dronning Maud Land, East Antacrtica", "uid": "p0000448", "west": -6.44}, {"awards": "1343649 Levy, Joseph", "bounds_geometry": "POLYGON((162.852 -77.6111,162.9893 -77.6111,163.1266 -77.6111,163.2639 -77.6111,163.4012 -77.6111,163.5385 -77.6111,163.6758 -77.6111,163.8131 -77.6111,163.9504 -77.6111,164.0877 -77.6111,164.225 -77.6111,164.225 -77.65331,164.225 -77.69552,164.225 -77.73773,164.225 -77.77994,164.225 -77.82215,164.225 -77.86436,164.225 -77.90657,164.225 -77.94878,164.225 -77.99099,164.225 -78.0332,164.0877 -78.0332,163.9504 -78.0332,163.8131 -78.0332,163.6758 -78.0332,163.5385 -78.0332,163.4012 -78.0332,163.2639 -78.0332,163.1266 -78.0332,162.9893 -78.0332,162.852 -78.0332,162.852 -77.99099,162.852 -77.94878,162.852 -77.90657,162.852 -77.86436,162.852 -77.82215,162.852 -77.77994,162.852 -77.73773,162.852 -77.69552,162.852 -77.65331,162.852 -77.6111))", "dataset_titles": "Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica", "datasets": [{"dataset_uid": "600139", "doi": "10.15784/600139", "keywords": "Antarctica; Chemistry:soil; Chemistry:Soil; Critical Zone; Dry Valleys; Permafrost; Sample/collection Description; Sample/Collection Description; Well Measurements", "people": "Levy, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica", "url": "https://www.usap-dc.org/view/dataset/600139"}], "date_created": "Mon, 05 Oct 2015 00:00:00 GMT", "description": "Intellectual Merit: The PIs propose to quantify the hillslope water, solute, and carbon budgets for Taylor Valley in the McMurdo Dry Valleys, using water tracks to investigate near-surface geological processes and challenge the paradigm that shallow groundwater is minimal or non-exixtant. Water tracks are linear zones of high soil moisture that route shallow groundwater downslope in permafrost dominated soils. Four hypotheses will be tested: 1) water tracks are important pathways for water and solute transport; 2) water tracks transport more dissolved silica than streams in Taylor Valley indicating they are the primary site of chemical weathering for cold desert soils and bedrock; 3) water tracks that drain highland terrains are dominated by humidity-separated brines while water tracks that drain lowland terrains are dominated by marine aerosols; 4) water tracks are the sites of the highest terrestrial soil carbon concentrations and the strongest CO2 fluxes in Taylor Valley and their carbon content increases with soil age, while carbon flux decreases with age. To test these hypotheses the PIs will carry out a suite of field measurements supported by modeling and remote sensing. They will install shallow permafrost wells in water tracks that span the range of geological, climatological, and topographic conditions in Taylor Valley. Multifrequency electromagnetic induction sounding of the upper ~1 m of the permafrost will create the first comprehensive map of soil moisture in Taylor Valley, and will permit direct quantification of water track discharge across the valley. The carbon contents of water track soils will be measured and linked to global carbon dynamics. Broader impacts: Non-science majors at Oregon State University will be integrated into the proposed research through a new Global Environmental Change course focusing on the scientific method in Antarctica. Three undergraduate students, members of underrepresented minorities, will be entrained in the research, will contribute to all aspects of field and laboratory science, and will present results at national meetings.", "east": 164.225, "geometry": "POINT(163.5385 -77.82215)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.6111, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Levy, Joseph", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0332, "title": "Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica", "uid": "p0000407", "west": 162.852}, {"awards": "1241574 Hemming, Sidney; 1241460 Barbeau, David", "bounds_geometry": "POLYGON((-67 -63.2,-65.97 -63.2,-64.94 -63.2,-63.91 -63.2,-62.88 -63.2,-61.85 -63.2,-60.82 -63.2,-59.79 -63.2,-58.76 -63.2,-57.73 -63.2,-56.7 -63.2,-56.7 -63.54,-56.7 -63.88,-56.7 -64.22,-56.7 -64.56,-56.7 -64.9,-56.7 -65.24,-56.7 -65.58,-56.7 -65.92,-56.7 -66.26,-56.7 -66.6,-57.73 -66.6,-58.76 -66.6,-59.79 -66.6,-60.82 -66.6,-61.85 -66.6,-62.88 -66.6,-63.91 -66.6,-64.94 -66.6,-65.97 -66.6,-67 -66.6,-67 -66.26,-67 -65.92,-67 -65.58,-67 -65.24,-67 -64.9,-67 -64.56,-67 -64.22,-67 -63.88,-67 -63.54,-67 -63.2))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 03 Dec 2014 00:00:00 GMT", "description": "Intellectual Merit: Recent geochemical, sequence stratigraphic, and integrated investigations of marine strata from several continental margins and ocean basins suggest that ephemeral ice sheets may have existed on Antarctica during parts of the Cretaceous and early Paleogene. However, atmospheric carbon dioxide estimates for this time are as much as four times modern levels. With such greenhouse conditions, the presence of Antarctic ice sheets would imply that our current understanding of Earth?s climate system, and specifically the interpreted thresholds of Antarctic glaciation and deglaciation should be reconsidered. The proposed research will compare the quantity and provenance of Cretaceous sediments in the Larsen basin of the eastern Antarctic Peninsula with the exhumation chronology and composition of potential sediment source terranes on the peninsula and in adjacent regions. New outcrop stratigraphic analyses with improvements in the age models from radioisotopic approaches will be integrated to determine the amount of detrital sediment fluxed to the Larsen basin between key chronostratigraphic surfaces. Microtextural analysis of quartz sand and silt grains will help determine whether the Larsen basin detrital sediment originated from glacial weathering. These preliminary results will test the viability of the proposed approach to assess the controversial Cretaceous Antarctic glaciation hypothesis. Broader impacts: The proposed work will partially support a PhD, a MSc, and three undergraduate students at the University of South Carolina. The PIs will publicize this work through volunteer speaking engagements and the development of videos and podcasts. They also commit to prompt publication of the results and timely submission of data to archives. The development/improvement of the Larsen basin age model will benefit ongoing research in paleobiology, paleoclimate and biogeography. Development of the glauconite K-Ar and Rb-Sr chronometers could be an important outcome beyond the direct scope of the proposed research.", "east": -56.7, "geometry": "POINT(-61.85 -64.9)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e LA-ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MC-ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e IRMS", "is_usap_dc": true, "keywords": "Not provided; Noble-Gas Mass Spectrometer; Antarctic Peninsula", "locations": "Antarctic Peninsula", "north": -63.2, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": "PROTEROZOIC; PHANEROZOIC \u003e PALEOZOIC; PHANEROZOIC \u003e MESOZOIC; PHANEROZOIC \u003e CENOZOIC; PHANEROZOIC \u003e MESOZOIC \u003e CRETACEOUS; PHANEROZOIC \u003e CENOZOIC \u003e PALEOGENE", "persons": "Barbeau, David; Hemming, Sidney R.; Barbeau, David Jr", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -66.6, "title": "Collaborative Research: EAGER: Evaluating the Larsen basin\u0027s suitability for testing the Cretaceous Glaciation Hypothesis", "uid": "p0000369", "west": -67.0}, {"awards": "0842639 Soreghan, Gerilyn", "bounds_geometry": "POLYGON((162.44835 -77.41693,162.51638 -77.41693,162.58441 -77.41693,162.65244 -77.41693,162.72047 -77.41693,162.7885 -77.41693,162.85653 -77.41693,162.92455999999999 -77.41693,162.99259 -77.41693,163.06062 -77.41693,163.12865 -77.41693,163.12865 -77.445495,163.12865 -77.47406,163.12865 -77.502625,163.12865 -77.53119,163.12865 -77.559755,163.12865 -77.58832,163.12865 -77.616885,163.12865 -77.64545,163.12865 -77.674015,163.12865 -77.70258,163.06062 -77.70258,162.99259 -77.70258,162.92455999999999 -77.70258,162.85653 -77.70258,162.7885 -77.70258,162.72047 -77.70258,162.65244 -77.70258,162.58441 -77.70258,162.51638 -77.70258,162.44835 -77.70258,162.44835 -77.674015,162.44835 -77.64545,162.44835 -77.616885,162.44835 -77.58832,162.44835 -77.559755,162.44835 -77.53119,162.44835 -77.502625,162.44835 -77.47406,162.44835 -77.445495,162.44835 -77.41693))", "dataset_titles": "Development of Quantitative Weathering Indicators in Proximal Alluvial Sediments to Assess Glacial Activity in the Rock Record", "datasets": [{"dataset_uid": "600110", "doi": "10.15784/600110", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Chemistry:rock; Chemistry:Rock; Chemistry:sediment; Chemistry:Sediment; Critical Zone; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet", "people": "Elwood Madden, Megan; Soreghan, Gerilyn", "repository": "USAP-DC", "science_program": null, "title": "Development of Quantitative Weathering Indicators in Proximal Alluvial Sediments to Assess Glacial Activity in the Rock Record", "url": "https://www.usap-dc.org/view/dataset/600110"}], "date_created": "Fri, 12 Aug 2011 00:00:00 GMT", "description": "The proposed research seeks to test the hypothesis that chemical and physical weathering in proximal alluvial systems will show systematic and measurable variations between glacial and nonglacial systems. To accomplish this, the investigation will attempt to quantify the natural variation of chemical and physical weathering in granitoid-sourced proximal alluvial sediments in end-member glacial and nonglacial systems, when other, \"non-climatic\" factors (e.g. provenance, drainage basin area and relief, sample grain size, sediment facies) are controlled. If chemical weathering in the proposed hot-humid, hot-arid, hot semi-arid nonglacial systems and the cool-wet, cold semi-arid, and cold-arid glacial systems show systematic variations, then chemical indices may be used to help differentiate paleoclimatic conditions. Continued reliance on students provides a broader impact of this proposed research and firmly grounds this effort in its educational mission.", "east": 163.12865, "geometry": "POINT(162.7885 -77.559755)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.41693, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Soreghan, Gerilyn; Elwood Madden, Megan", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.70258, "title": "Development of Quantitative Weathering Indicators in Proximal Alluvial Sediments to Assess Glacial Activity in the Rock Record", "uid": "p0000518", "west": 162.44835}, {"awards": "0538580 Hemming, Sidney", "bounds_geometry": "POLYGON((60 -60,72 -60,84 -60,96 -60,108 -60,120 -60,132 -60,144 -60,156 -60,168 -60,180 -60,180 -61,180 -62,180 -63,180 -64,180 -65,180 -66,180 -67,180 -68,180 -69,180 -70,168 -70,156 -70,144 -70,132 -70,120 -70,108 -70,96 -70,84 -70,72 -70,60 -70,60 -69,60 -68,60 -67,60 -66,60 -65,60 -64,60 -63,60 -62,60 -61,60 -60))", "dataset_titles": "Antarctica\u0027s Geological History Reflected in Sedimentary Radiogenic Isotopes", "datasets": [{"dataset_uid": "600056", "doi": "10.15784/600056", "keywords": "Antarctica; Chemistry:sediment; Chemistry:Sediment; Geochemistry; Geochronology; Isotope Data; Marine Sediments; Oceans; Prydz Bay; Solid Earth; Southern Ocean; Weddell Sea; Wilkes Land", "people": "Goldstein, Steven L.; Hemming, Sidney R.; van de Flierdt, Tina", "repository": "USAP-DC", "science_program": null, "title": "Antarctica\u0027s Geological History Reflected in Sedimentary Radiogenic Isotopes", "url": "https://www.usap-dc.org/view/dataset/600056"}], "date_created": "Sat, 20 Nov 2010 00:00:00 GMT", "description": "This project studies sediment from the ocean floor to understand Antarctica\u0027s geologic history. Glacially eroded from the Antarctic continent, these sediments may offer insight into the 99% Antarctica covered by ice. The work\u0027s central focus is determining crust formation ages and thermal histories for three key areas of East Antarctica--Prydz Bay, eastern Weddell Sea, and Wilkes Land--through a combination of petrography, bulk sediment geochemistry and radiogenic isotopes, as well as isotope chronology of individual mineral grains. One specific objective is characterizing the composition of the Gamburtsev Mountains through studies of Eocene fluvial sediments from Prydz Bay. In addition to furthering our understanding of the hidden terrains of Antarctica, these terrigenous sediments will also serve as a natural laboratory to evaluate the effects of continental weathering on the Hf/Nd isotope systematics of seawater. An important broader impact of the project is providing exciting research projects for graduate and postdoctoral students using state of the art techniques in geochemistry.", "east": 180.0, "geometry": "POINT(120 -65)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Van De Flierdt, Christina-Maria; Goldstein, Steven L.; Hemming, Sidney R.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "Antarctica\u0027s Geological History Reflected in Sedimentary Radiogenic Isotopes", "uid": "p0000524", "west": 60.0}, {"awards": "0636629 Kurz, Mark", "bounds_geometry": "POLYGON((160.7 -77.8,161.06 -77.8,161.42 -77.8,161.78 -77.8,162.14 -77.8,162.5 -77.8,162.86 -77.8,163.22 -77.8,163.58 -77.8,163.94 -77.8,164.3 -77.8,164.3 -77.86,164.3 -77.92,164.3 -77.98,164.3 -78.04,164.3 -78.1,164.3 -78.16,164.3 -78.22,164.3 -78.28,164.3 -78.34,164.3 -78.4,163.94 -78.4,163.58 -78.4,163.22 -78.4,162.86 -78.4,162.5 -78.4,162.14 -78.4,161.78 -78.4,161.42 -78.4,161.06 -78.4,160.7 -78.4,160.7 -78.34,160.7 -78.28,160.7 -78.22,160.7 -78.16,160.7 -78.1,160.7 -78.04,160.7 -77.98,160.7 -77.92,160.7 -77.86,160.7 -77.8))", "dataset_titles": "Periglacial Landscape Evolution in Antarctic Lava Flows and Glacial Tills", "datasets": [{"dataset_uid": "600066", "doi": "10.15784/600066", "keywords": "Antarctica; Cosmogenic Radionuclides; Dry Valleys; Geology/Geophysics - Other; Glaciology; LIDAR; Navigation; Sample/collection Description; Sample/Collection Description", "people": "Soule, S. Adam; Kurz, Mark D.", "repository": "USAP-DC", "science_program": null, "title": "Periglacial Landscape Evolution in Antarctic Lava Flows and Glacial Tills", "url": "https://www.usap-dc.org/view/dataset/600066"}], "date_created": "Sun, 01 Feb 2009 00:00:00 GMT", "description": "This project uses cosmogenic nuclide dating and LIDAR studies of surface roughness to understand weathering and landscape evolution in the Dry Valleys of Antarctica. The work focuses on two processes: cryoturbation of frozen soils and the development of patterned, frozen ground on ancient lava flows. The approach includes innovative uses of He3 profiling. Results will also be applied to understanding the glacial history of the Dry Valleys. There are potential applications to understanding the history of the East Antarctic Ice Sheet and the formation of Martian landscapes. The broader impacts include graduate student education. As well, the work may contribute to our understanding of the history of the Antarctic ice sheets, which is important to modeling their behavior during global climate change.", "east": 164.3, "geometry": "POINT(162.5 -78.1)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION", "locations": null, "north": -77.8, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Soule, Samuel; Kurz, Mark D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.4, "title": "Periglacial Landscape Evolution in Antarctic Lava Flows and Glacial Tills", "uid": "p0000559", "west": 160.7}, {"awards": "0548918 van de Flierdt, Christina-Maria", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Thu, 07 Jun 2007 00:00:00 GMT", "description": "This Small Grant for Exploratory Research supports development of a geochemical technique to time the onset of glacial erosion from Antarctica\u0027s continental ice sheets. The technique pairs neodymium (Nd) and hafnium (Hf) isotope proxies from the authigenic (seawater-derived) ferromanganese phase precipitated in marine sediments. This technique promises to be a sensitive indicator of glacial erosion. Non-radiogenic Hf is contained in the mineral zircon, which can only be released by the abrasive grinding that accompanies glacial erosion. Previous attempts to develop this technique encountered difficulty due to the minute amounts of Hf involved and the difficulty in its extraction. The PIs have developed a new chemical protocol that should allow them to selectively extract authigenic Hf from bulk sediments. If successful, studies of the Eocene-Oligocene boundary from two drill cores the Weddell Sea and Kerguelen Plateau will be carried out. This boundary is considered the initiation point for formation of Antarctica\u0027s current ice sheets. If successful, this method will benefit scientists with interests as diverse as continental weathering, ocean circulation, Cenozoic paleoceanography and paleoclimate, and Antarctic geology. \u003cbr/\u003e\u003cbr/\u003eThe broader impacts of this work are development of a new analytical technique that may improve society\u0027s understanding of the potential for global climate change from the perspective of the deep time record.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Van De Flierdt, Christina-Maria", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "SGER: Development of the Paired Authigenic Neodymium-Hafnium Isotope Weathering Tracer From Marine Sediments in the Circum Antarctic Realm", "uid": "p0000130", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fe Behavior and Bioavailability in Sub-aerial Runoff into the Ross Sea
|
1841228 |
2024-10-16 | Lyons, W. Berry; Gardner, Christopher B. | Phytoplankton, or microscopic marine algae, are an important part of the carbon cycle and can lower the rates of atmospheric carbon dioxide by transferring the atmospheric carbon into the oceans. The concentration of phytoplankton in the Southern Ocean is regularly limited by the availability of marine iron. This in turn influences the rate of carbon transfer from the atmosphere to the ocean. The primary source of iron in the Southern Ocean is eroded continental rock. Understanding the current and future sources of iron to the Southern Ocean as a result of increased melting of terrestrial glaciers is necessary for predicting future concentrations of Southern Ocean phytoplankton and the subsequent influence on the carbon cycle. A poorly understood source of iron to the Southern Ocean is stream input from ice-free regions such as the McMurdo Dry Valleys in Antarctica. This source of iron is likely to become larger if glaciers retreat. This study investigates the sources and amount of iron transported by McMurdo Dry Valley streams directly into the Southern Ocean. Because not all forms of iron can be used by phytoplankton, experiments will be performed to determine how available iron is to phytoplankton and how iron mixes with seawater. Immersive 360-degree video, infographics, and educational videos of findings from this project will be shared on social media, at schools and science events, and in an urban science center. In the Southern Ocean (SO) there is an excess of macronutrients but regional primary production is limited or co-limited due to iron. An addition of iron to the ocean will affect biochemical cycles, increase primary production, and affect the structure and composition of phytoplankton communities in the SO. Iron flux to the SO is globally significant, as increased Fe fertilization leads to increased carbon sequestration which acts as a negative feedback to increased atmospheric pCO2. One source of potentially bioavailable iron to the coastal regions of the SO is from direct sub-aerial stream discharge in ice-free areas of Antarctica, a source that may become more important if terrestrial glaciers retreat. It is imperative to understand the source, nature, potential fate, and flux of iron to the SO if better predictive models for the carbon cycle and atmospheric chemistry are to be developed. This project will investigate in-stream processes and characteristics controlling dissolved iron draining into the Ross Sea including photoreduction, temperature, and complexation with organic matter. The novel study will quantify bioavailability of particulate iron and bioavailability of dissolved iron in Antarctic in streams draining into the SO. On-site speciation measurements will be performed on dissolved iron species, particulate iron speciation will be determined using high-resolution spectroscopy, mixing experiments will be performed with coastal marine water, and the bioavailability of Fe will be determined through marine bioassays. This project will provide two students with valuable Antarctic field experience and reach thousands of individuals through existing partnerships with K-12 schools, public STEM events, an urban science center, and a strong social media presence. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((163.37428 -77.558627,163.3922735 -77.558627,163.410267 -77.558627,163.4282605 -77.558627,163.446254 -77.558627,163.4642475 -77.558627,163.482241 -77.558627,163.5002345 -77.558627,163.518228 -77.558627,163.5362215 -77.558627,163.554215 -77.558627,163.554215 -77.56397510000001,163.554215 -77.5693232,163.554215 -77.5746713,163.554215 -77.5800194,163.554215 -77.5853675,163.554215 -77.59071560000001,163.554215 -77.5960637,163.554215 -77.60141180000001,163.554215 -77.6067599,163.554215 -77.612108,163.5362215 -77.612108,163.518228 -77.612108,163.5002345 -77.612108,163.482241 -77.612108,163.4642475 -77.612108,163.446254 -77.612108,163.4282605 -77.612108,163.410267 -77.612108,163.3922735 -77.612108,163.37428 -77.612108,163.37428 -77.6067599,163.37428 -77.60141180000001,163.37428 -77.5960637,163.37428 -77.59071560000001,163.37428 -77.5853675,163.37428 -77.5800194,163.37428 -77.5746713,163.37428 -77.5693232,163.37428 -77.56397510000001,163.37428 -77.558627)) | POINT(163.4642475 -77.5853675) | false | false | ||||||
Collaborative Research: Coring Seymour Island (CSI) Antarctica: Evaluating Causes and Effects of the End Cretaceous Mass Extinction
|
2020728 2026648 2025724 |
2022-09-15 | Tobin, Thomas; Totten, Rebecca | No dataset link provided | Non-technical description: This 4-year project is evaluating evidence of extinction patterns and depositional conditions from a high southern latitude Cretaceous-Paleogene (K-Pg) outcrop section found on Seymore Island, in the Western Antarctic Peninsula. The team is using sediment samples collected below the weathering horizon to evaluate detailed sedimentary structures, geochemistry, and microfossils in targeted stratigraphic intervals. The study will help determine if the K-Pg mass extinction was a single or double phased event and whether Seymour Island region in the geological past was a restricted, suboxic marine environment or an open well-mixed shelf. The award includes an integrated plan for student training at all levels, enhanced by a highlighted partnership with a high school earth sciences teacher working in a school serving underrepresented students. Technical description: The proposed research is applying multiple techniques to address an overarching research question for which recent studies are in disagreement: Is the fossil evidence from a unique outcropping on Seymour Island, Antarctica consistent with a single or double phased extinction? In a two-phased model, the first extinction would affect primarily benthic organisms and would have occurred ~150 kiloyears prior to a separate extinction at the K-Pg boundary. However, this early extinction could plausibly be explained by an unrecognized facies control that is obscured by surficial weathering. This team is using microfossil evidence with detailed sedimentary petrology and geochemistry data to evaluate if the fossil evidence from Seymour Island is consistent with a single or double phased extinction process. The team is using detailed sedimentary petrology and geochemistry methods to test for facies changes across the K-PG interval that would explain the apparent early extinction. Samples of core sedimentary foraminifera, siliceous microfossils, and calcareous nannofossils are being evaluated to provide a high-resolution stratigraphic resolution and to evaluate whether evidence for an early extinction is present. Additionally, the team is using multiple geochemical methods to evaluate whether there is evidence for intermittent anoxia or euxinia and/or physical restriction of the Seymore region basin. Data from this analysis will indicate if this region was a restricted, suboxic marine environment or an open well-mixed shelf. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-56.93 -64.2,-56.894 -64.2,-56.858 -64.2,-56.822 -64.2,-56.786 -64.2,-56.75 -64.2,-56.714 -64.2,-56.678 -64.2,-56.642 -64.2,-56.606 -64.2,-56.57 -64.2,-56.57 -64.214,-56.57 -64.22800000000001,-56.57 -64.242,-56.57 -64.256,-56.57 -64.27000000000001,-56.57 -64.284,-56.57 -64.298,-56.57 -64.312,-56.57 -64.32600000000001,-56.57 -64.34,-56.606 -64.34,-56.642 -64.34,-56.678 -64.34,-56.714 -64.34,-56.75 -64.34,-56.786 -64.34,-56.822 -64.34,-56.858 -64.34,-56.894 -64.34,-56.93 -64.34,-56.93 -64.32600000000001,-56.93 -64.312,-56.93 -64.298,-56.93 -64.284,-56.93 -64.27000000000001,-56.93 -64.256,-56.93 -64.242,-56.93 -64.22800000000001,-56.93 -64.214,-56.93 -64.2)) | POINT(-56.75 -64.27000000000001) | false | false | |||||
Collaborative Proposal: Miocene Climate Extremes: A Ross Sea Perspective from IODP Expedition 374 and DSDP Leg 28 Marine Sediments
|
1947558 1947657 1947646 |
2022-06-08 | Shevenell, Amelia | No dataset link provided | Nontechnical abstract Presently, Antarctica’s glaciers are melting as Earth’s atmosphere and the Southern Ocean warm. Not much is known about how Antarctica’s ice sheets might respond to ongoing and future warming, but such knowledge is important because Antarctica’s ice sheets might raise global sea levels significantly with continued melting. Over time, mud accumulates on the sea floor around Antarctica that is composed of the skeletons and debris of microscopic marine organisms and sediment from the adjacent continent. As this mud is deposited, it creates a record of past environmental and ecological changes, including ocean depth, glacier advance and retreat, ocean temperature, ocean circulation, marine ecosystems, ocean chemistry, and continental weathering. Scientists interested in understanding how Antarctica’s glaciers and ice sheets might respond to ongoing warming can use a variety of physical, biological, and chemical analyses of these mud archives to determine how long ago the mud was deposited and how the ice sheets, oceans, and marine ecosystems responded during intervals in the past when Earth’s climate was warmer. In this project, researchers from the University of South Florida, University of Massachusetts, and Northern Illinois University will reconstruct the depth, ocean temperature, weathering and nutrient input, and marine ecosystems in the central Ross Sea from ~17 to 13 million years ago, when the warm Miocene Climate Optimum transitioned to a cooler interval with more extensive ice sheets. Record will be generated from new sediments recovered during the International Ocean Discovery Program (IODP) Expedition 374 and legacy sequences recovered in the 1970’s during the Deep Sea Drilling Program. Results will be integrated into ice sheet and climate models to improve the accuracy of predictions. The research provides experience for three graduate students and seven undergraduate students via a multi-institutional REU program focused on increasing diversity in Antarctic Earth Sciences. Technical Abstract Deep-sea sediments reveal that the Miocene Climatic Optimum (MCO) was the warmest climate interval of the last ~20 Ma, was associated with global carbon cycle changes and ice growth, and immediately preceded the Middle Miocene Climate Transition (MMCT; ~14 Ma), one of three major intervals of Antarctic ice expansion and global cooling. Ice-proximal studies are required to assess: where and when ice grew, ice sheet extent, continental shelf geometry, high-latitude heat and moisture supply, oceanic and/or atmospheric temperature influence on ice dynamics, regional sea ice extent, meltwater input, and regions of bottom water formation. Existing studies indicate that ice expanded beyond the Transantarctic Mountains and onto the prograding Ross Sea continental shelf multiple times between ~17 and 13.5 Ma. However, these records are either too ice-proximal/terrestrial to adequately assess ocean-ice interactions or under-studied. To address this data gap, this work will: 1) generate micropaleontologic and geochemical records of oceanic and atmospheric temperature, water depth, ocean circulation, and paleoproductivity from existing Ross Sea marine sedimentary sequences, and 2) use these proxy records to test the hypothesis that dynamic glacial expansion in the Ross Sea sector during the MCO was driven by heat and moisture transport to the high latitudes during an interval of enhanced climate sensitivity. Downcore geochemical and micropaleontologic studies will focus on an expanded (120 m/my) early to middle Miocene (~17-16 Ma) diatom-bearing/rich mudstone/diatomite unit from IODP Site U1521, drilled on the Ross Sea continental shelf. A hiatus (~16-14.6 Ma) suggests ice expansion during the MCO, followed by diamictite to mudstone unit indicative of slight retreat (14.6 -14 Ma) immediately preceding the MMCT. Data from Site U1521 will be integrated with foraminiferal geochemical and micropaleontologic data from DSDP Leg 28 (1972/73) and RISP J-9 (1978-79) to develop a MCO to late Miocene regional view of ocean-ice sheet interactions using legacy core material previously processed for foraminifera. This integrated record will: 1) document the timing and extent of glacial advances and retreats across the prograding Ross Sea shelf during the middle and late Miocene, 2) provide orbital-scale paleotemperature reconstructions (TEX86, Mg/Ca, δ18O, MBT/CBT) to establish atmosphere-ocean-ice interactions during an extreme high-latitude warm interval, and 3) provide orbital-scale nutrient/paleoproductivity, ocean circulation, and paleoenvironmental data required to assess climate feedbacks associated with Miocene Antarctic ice sheet and global climate system development. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -72.5,-177.6 -72.5,-175.2 -72.5,-172.8 -72.5,-170.4 -72.5,-168 -72.5,-165.6 -72.5,-163.2 -72.5,-160.8 -72.5,-158.4 -72.5,-156 -72.5,-156 -73.15,-156 -73.8,-156 -74.45,-156 -75.1,-156 -75.75,-156 -76.4,-156 -77.05,-156 -77.7,-156 -78.35,-156 -79,-158.4 -79,-160.8 -79,-163.2 -79,-165.6 -79,-168 -79,-170.4 -79,-172.8 -79,-175.2 -79,-177.6 -79,180 -79,178.4 -79,176.8 -79,175.2 -79,173.6 -79,172 -79,170.4 -79,168.8 -79,167.2 -79,165.6 -79,164 -79,164 -78.35,164 -77.7,164 -77.05,164 -76.4,164 -75.75,164 -75.1,164 -74.45,164 -73.8,164 -73.15,164 -72.5,165.6 -72.5,167.2 -72.5,168.8 -72.5,170.4 -72.5,172 -72.5,173.6 -72.5,175.2 -72.5,176.8 -72.5,178.4 -72.5,-180 -72.5)) | POINT(-176 -75.75) | false | false | |||||
Linking Antarctic Cold Desert Groundwater to Thermokarst & Chemical Weathering in Partnership with the Geoscience UAV Academy
|
1847067 |
2021-12-24 | Levy, Joseph |
|
Antarctic groundwater drives the regional carbon cycle and can accelerate permafrost thaw shaping Antarctic surface features. However, groundwater extent, flow, and processes on a continent virtually locked in ice are poorly understood. The proposed work investigates the interplay between groundwater, sediment, and ice in Antarctica's cold desert landscape to determine when, where, and why Antarctic groundwater is flowing, and how it may evolve Antarctic frozen deserts from dry and stable to wet and dynamic. Mapping the changing extent of Antarctic near-surface groundwater requires the ability to measure soil moisture rapidly and repeatedly over large areas. The research will capture changes in near-surface groundwater distribution through an unmanned aerial vehicle (UAV) mapping approach. The project integrates a diverse range of sensors with new UAV technologies to provide a higher-resolution and more frequent assessment of Antarctic groundwater extent and composition than can be accomplished using satellite observations alone. To complement the research objectives, the PI will develop a new UAV summer field school, the Geosciences UAV Academy, focused on training undergraduate-level UAV pilots in conducting novel earth sciences research using cutting edge imaging tools. The integration of research and technology will prepare students for careers in UAV-related industries and research. The project will deliver new UAV tools and workflows for soil moisture mapping relevant to arid regions including Antarctica as well as temperate desert and dryland systems and will train student research pilots to tackle next generation airborne challenges. Water tracks are the basic hydrological unit that currently feeds the rapidly-changing permafrost and wetlands in the Antarctic McMurdo Dry Valleys (MDV). Despite the importance of water tracks in the MDV hydrologic cycle and their influence on biogeochemistry, little is known about how these water tracks control the unique brine processes operating in Antarctic ice-free areas. Both groundwater availability and geochemistry shape Antarctic microbial communities, connecting soil geology and hydrology to carbon cycling and ecosystem functioning. The objectives of this CAREER proposal are to 1) map water tracks to determine the spatial distribution and seasonal magnitude of groundwater impacts on the MDV near-surface environment to determine how near-surface groundwater drives permafrost thaw and enhances chemical weathering and biogeochemical cycling; 2) establish a UAV academy training earth sciences students to answer geoscience questions using drone-based platforms and remote sensing techniques; and 3) provide a formative step in the development of the PI as a teacher-scholar. UAV-borne hyperspectral imaging complemented with field soil sampling will determine the aerial extent and timing of inundation, water level, and water budget of representative water tracks in the MDV. Soil moisture will be measured via near-infrared reflectance spectroscopy while bulk chemistry of soils and groundwater will be analyzed via ion chromatography and soil x-ray fluorescence. Sedimentological and hydrological properties will be determined via analysis of intact core samples. These data will be used to test competing hypotheses regarding the origin of water track solutions and water movement through seasonal wetlands. The work will provide a regional understanding of groundwater sources, shallow groundwater flux, and the influence of regional hydrogeology on solute export to the Southern Ocean and on soil/atmosphere linkages in earth's carbon budget. The UAV school will 1) provide comprehensive instruction at the undergraduate level in both how and why UAVs can advance geoscience research and learning; and 2) provide educational infrastructure for an eventual self-sustaining summer program for undergraduate UAV education. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((161 -76,161.35 -76,161.7 -76,162.05 -76,162.4 -76,162.75 -76,163.1 -76,163.45 -76,163.8 -76,164.15 -76,164.5 -76,164.5 -76.2,164.5 -76.4,164.5 -76.6,164.5 -76.8,164.5 -77,164.5 -77.2,164.5 -77.4,164.5 -77.6,164.5 -77.8,164.5 -78,164.15 -78,163.8 -78,163.45 -78,163.1 -78,162.75 -78,162.4 -78,162.05 -78,161.7 -78,161.35 -78,161 -78,161 -77.8,161 -77.6,161 -77.4,161 -77.2,161 -77,161 -76.8,161 -76.6,161 -76.4,161 -76.2,161 -76)) | POINT(162.75 -77) | false | false | |||||
Quantifying surface area in muds from the Antarctic Dry Valleys: Implications for weathering in glacial systems
|
1543344 |
2021-05-18 | Soreghan, Gerilyn; Elwood Madden, Megan |
|
As glaciers creep across the landscape, they can act as earthmovers, plucking up rocks and grinding them into fine sediments. Glaciers have moved across the Antarctic landscape over thousands to millions of years, leaving these ground-up sediments in their wake. This study builds on pilot discoveries by the investigators that revealed remarkably large and variable measurements of surface area in glacially-derived fine-grained sediments found in the McMurdo Dry Valleys (MDV), one of the few landscapes on the Antarctic continent not currently covered by ice. Surface area is key to chemical weathering, the process by which rock is converted to soils as ions are carried away in streams and groundwater. These chemical weathering processes are also one of the primary means by which the Earth system naturally removes carbon dioxide from the atmosphere. Hence, high surface areas observed in sediments implies high "weatherability" which in turn translates to more potential carbon dioxide removed from the atmosphere. Therefore, chemical weathering in high surface area glacial sediments may have significant impacts on Earth's carbon cycle. The researchers will measure the chemical and physical properties of sediments previously collected from the Dry Valleys to understand what factors lead to production of sediment with high-surface area and potential "weather ability" and investigate how sediment produced in these glacial systems could ultimately impact Earth's carbon budget. Results from this research will help scientists (including modelers) refine predictions of the effects of melting glaciers- and attendant exposure of glacial sediment? on atmospheric carbon levels. These results may also contribute to applied research efforts on development of carbon-dioxide removal technologies utilizing principles of rock weathering. In addition to the scientific benefits, this research will involve several students at the undergraduate, graduate, and post-doctoral levels, including science education undergraduates, thus contributing to training of the next-generation STEM workforce. Physical weathering produces fresh surfaces, greatly enhancing specific surface area (SSA) and reactive surface area (RSA) of primary minerals. Quantifying SSA and RSA of sediments is key to determining dissolution and leaching rates during natural weathering, but few data exist on distribution of sediment SA, particularly in glacial and fluvial systems. Pilot data from glacial stream systems in Taylor Valley and Wright Valley (located in the MDV) exhibit remarkably high and variable values in both SSA and RSA, values that in some cases greatly exceed values from muds in temperate glacial systems. This discovery motivates the current research, which aims to investigate the hypothesis that high and variable SAs of muds within Wright and Taylor Valleys reflect textural and/or compositional inheritance from the differing depositional settings within the MDV, biologic controls, dust additions, and/or pedogenic processes. These hypotheses will be tested by sedimentologically, mineralogically, and geochemically characterizing muds from glacially derived sediment deposited in various environments (cold vs. wet based glaciation; fluvial, lacustrine, dust, and drift deposits) and of varying age (Miocene to Modern) from the MDV and quantifying variation of SA and reactivity. Comparisons with analyzed muds from temperate glacial systems will enable polar-temperate comparisons. Analyses will focus on muds of previously collected sediment from the MDVs. Grain size and SSA will be measured by Laser Analysis and N2 adsorption BET, respectively. After carbonate removal, samples will be re-analyzed for SSA, and muds characterized geochemically. Mineralogy and bulk chemistry will also be assessed on co-occurring sand fractions, and textural attributes documented. SSA-normalized dissolution experiments will be used to compare solutes released from sediments to determine RSAs. Results will be integrated with the various sedimentologic and geochemical analyses to test the posed hypotheses. Ultimately, this research should shed light on how weathering in Antarctic systems contributes to global carbon cycling. | None | None | false | false | |||||
Collaborative Research: Organic and Inorganic Geochemical Investigation of Hydrologic Change in East Antarctica in the 4 Million Years Before Full Glaciation
|
1908399 1908548 |
2020-12-05 | Feakins, Sarah; Scher, Howard | The East Antarctic Ice Sheet holds the largest volume of freshwater on the planet, in total enough to raise sea level by almost two hundred feet. Even minor adjustments in the volume of ice stored have major implications for coastlines and climates around the world. The question motivating this project is how did the ice grow to cover the continent over thirty million years ago when Antarctica changed from a warmer environment to an ice-covered southern continent? The seafloor of Prydz Bay, a major drainage basin of the East Antarctic Ice Sheet (EAIS), has been drilled previously to recover sediments dating from millions of years prior to and across the time when inception of continental ice sheets occurred in Antarctica. The last remnants of plant material found as 'biomarkers' in the ocean sediments record the chemical signatures of rain and snowfall that fed the plants and later the expanding glaciers. Sediment carried by glaciers was also deposited on the seafloor and can be analyzed to discover how glaciers flowed across the landscape. Here, the researchers will identify precipitation changes that result from, and drive, ice sheet growth. This study will gather data and further analyze samples from the seafloor sediment archives of the International Ocean Discovery Program's (IODP) core repositories. Ultimately these findings can help inform temperature-precipitation-ice linkages within climate and ice sheet models. The project will support the training of three female, early career scientists (PhD & MS students, and research technician) and both PIs and the PhD student will continue their engagement with broadening participation efforts (e.g., Women in Science and Engineering Program; local chapters of Society for the advancement of Native Americans and Chicanos in Science and other access programs) to recruit undergraduate student participants from underrepresented minorities at both campuses and from local community colleges. Antarctic earth science education materials will be assisted by professional illustrations to be open access and used in public education and communication efforts to engage local communities in Los Angeles CA and Columbia SC. The researchers at the University of Southern California and the University of South Carolina will together study the penultimate moment of the early Cenozoic greenhouse climate state: the ~4 million years of global cooling that culminated in the Eocene/Oligocene transition (~34 Ma). Significant gaps remain in the understanding of the conditions that preceded ice expansion on Antarctica. In particular, the supply of raw material for ice sheets (i.e., moisture) and the timing, frequency, and duration of precursor glaciations is poorly constrained. This collaborative proposal combines organic and inorganic proxies to examine how Antarctic hydroclimate changed during the greenhouse to icehouse transition. The central hypothesis is that the hydrological cycle weakened as cooling proceeded. Plant-wax hydrogen and carbon isotopes (hydroclimate proxies) and Hf-Nd isotopes of lithogenous and hydrogenous sediments (mechanical weathering proxies) respond strongly and rapidly to precipitation and glacial advance. This detailed and sensitive combined approach will test whether there were hidden glaciations (and/or warm events) that punctuated the pre-icehouse interval. Studies will be conducted on Prydz Bay marine sediment cores in a depositional area for products of weathering and erosion that were (and are) transported through Lambert Graben from the center of Antarctica. The project will yield proxy information about the presence of plants and the hydroclimate of Antarctica and the timing of glacial advance, and is expected to show drying associated with cooling and ice-sheet growth. The dual approach will untangle climate signals from changes in fluvial versus glacial erosion of plant biomarkers. This proposal is potentially transformative because the combination of organic and inorganic proxies can reveal rapid transitions in aridity and glacial expansion, that may have been missed in slower-response proxies and more distal archives. The research is significant as hydroclimate seems to be a key player in the temperature-cryosphere hysteresis. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((74.787 -67.27617,74.816483 -67.27617,74.845966 -67.27617,74.875449 -67.27617,74.904932 -67.27617,74.934415 -67.27617,74.963898 -67.27617,74.993381 -67.27617,75.022864 -67.27617,75.052347 -67.27617,75.08183 -67.27617,75.08183 -67.31817,75.08183 -67.36017,75.08183 -67.40217,75.08183 -67.44417,75.08183 -67.48617,75.08183 -67.52817,75.08183 -67.57017,75.08183 -67.61217,75.08183 -67.65417,75.08183 -67.69617,75.052347 -67.69617,75.022864 -67.69617,74.993381 -67.69617,74.963898 -67.69617,74.934415 -67.69617,74.904932 -67.69617,74.875449 -67.69617,74.845966 -67.69617,74.816483 -67.69617,74.787 -67.69617,74.787 -67.65417,74.787 -67.61217,74.787 -67.57017,74.787 -67.52817,74.787 -67.48617,74.787 -67.44417,74.787 -67.40217,74.787 -67.36017,74.787 -67.31817,74.787 -67.27617)) | POINT(74.934415 -67.48617) | false | false | ||||||
Timing and Spatial Distribution of Antarctic Ice Sheet Growth and Sea-ice Formation across the Eocene-Oligocene Transition
|
1743643 |
2020-05-26 | Passchier, Sandra | Abstract (non-technical) Sea level rise is a problem of global importance and it is increasingly affecting the tens of millions of Americans living along coastlines. The melting of glaciers in mountain areas worldwide in response to global warming is a major cause of sea level rise and increases in nuisance coastal flooding. However, the world's largest land-based ice sheets are situated in the Polar Regions and their response under continued warming is very difficult to predict. One reason for this uncertainty is a lack of observations of ice behavior and melt under conditions of warming, as it is a relatively new global climate state lasting only a few generations so far. Researchers will investigate ice growth on Antarctica under past warm conditions using geological archives embedded in the layers of sand and mud under the sea floor near Antarctica. By peeling back at the layers beneath the seafloor investigators can read the history book of past events affecting the ice sheet. The Antarctic continent on the South Pole, carries the largest ice mass in the world. The investigator's findings will substantially improve scientists understanding of the response of ice sheets to global warming and its effect on sea level rise. Abstract (technical) The melt of land based ice is raising global sea levels with at present only minor contributions from polar ice sheets. However, the future role of polar ice sheets in climate change is one of the most critical uncertainties in predictions of sea level rise around the globe. The respective roles of oceanic and atmospheric greenhouse forcing on ice sheets are poorly addressed with recent measurements of polar climatology, because of the extreme rise in greenhouse forcing the earth is experiencing at this time. Data on the evolution of the West Antarctic ice sheet is particularly sparse. To address the data gap, researchers will reconstruct the timing and spatial distribution of Antarctic ice growth through the last greenhouse to icehouse climate transition around 37 to 33 Ma. They will collect sedimentological and geochemical data on core samples from a high-latitude paleoarchive to trace the shutdown of the chemical weathering system, the onset of glacial erosion, ice rafting, and sea ice development, as East and West Antarctic ice sheets coalesced in the Weddell Sea sector. Their findings will lead to profound increases in the understanding of the role of greenhouse forcing in ice sheet development and its effect on the global climate system. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | ||||||
Collaborative Proposal: Decades-long Experiment on Wind-Driven Rock Abrasion in the Ice-Free Valleys, Antarctica
|
1341712 |
2017-10-13 | Hallet, Bernard; Sletten, Ronald S. |
|
Paragraph for Public Audiences: Many of the natural processes that modify the landscape inhabited by humans occur over very long timescales, making them difficult to observe. Exceptions include rare catastrophic events such as earthquakes, volcanic eruptions, and floods that occur on short timescales. Many significant processes that affect the land and landscape that we inhabit operate on time scales imperceptible to humans. One of these processes is wind transport of sand, with related impacts to exposed rock surfaces and man-made objects, including buildings, windshields, solar panels and wind-farm turbine blades. The goal of this project is to gain an understanding of wind erosion processes over long timescales, in the Antarctic Dry Valleys, a cold desert environment where there were no competing processes (such as rain and vegetation) that might mask the effects. The main objective is recovery of rock samples that were deployed in 1983/1984 at 11 locations in the Antarctic Dry Valleys, along with measurements on the rock samples and characterization of the sites. In the late 1980's and early 1990's some of these samples were returned and indicated more time was needed to accumulate information about the timescales and impacts of the wind erosion processes. This project will allow collection of the remaining samples from this experiment after 30 to 31 years of exposure. The field work will be carried out during the 2014/15 Austral summer. The results will allow direct measurement of the abrasion rate and hence the volumes and timescales of sand transport; this will conclude the longest direct examination of such processes ever conducted. Appropriate scaling of the results may be applied to buildings, vegetation (crops), and other aspects of human presence in sandy and windy locations, in order to better determine the impact of these processes and possible mitigation of the impacts. The project is a collaborative effort between a small business, Malin Space Science Systems (MSSS), and the University of Washington (UW). MSSS will highlight this Antarctic research on its web site, by developing thematic presentations describing our research and providing a broad range of visual materials. The public will be engaged through daily updates on a website and through links to material prepared for viewing in Google Earth. UW students will be involved in the laboratory work and in the interpretation of the results. Technical Description of Project: The goal of this project is to study the role of wind abrasion by entrained particles in the evolution of the McMurdo Dry Valleys in the Transantarctic Mountains. During the 1983 to 1984 field seasons, over 5000 rock targets were installed at five heights facing the 4 cardinal directions at 10 locations (with an additional site containing fewer targets) to study rates of physical weathering due primarily to eolian abrasion. In addition, rock cubes and cylinders were deployed at each site to examine effects of chemical weathering. The initial examination of samples returned after 1, 5, and 10 years of exposure, showed average contemporary abrasion rates consistent with those determined by cosmogenic isotope studies, but further stress that "average" should not be interpreted as meaning "uniform." The samples will be characterized using mass measurements wtih 0.01 mg precision balances, digital microphotography to compare the evolution of their surface features and textures, SEM imaging to examine the micro textures of abraded rock surfaces, and optical microscopy of thin sections of a few samples to examine the consequences of particle impacts extending below the abraded surfaces. As much as 60-80% of the abrasion measured in samples from 1984-1994 appears to have occurred during a few brief hours in 1984. This is consistent with theoretical models that suggest abrasion scales as the 5th power of wind velocity. The field work will allow return of multiple samples after three decades of exposure, which will provide a statistical sampling (beyond what is acquired by studying a single sample), and will yield the mass loss data in light of complementary environmental and sand kinetic energy flux data from other sources (e.g. LTER meteorology stations). This study promises to improve insights into one of the principal active geomorphic process in the Dry Valleys, an important cold desert environment, and the solid empirical database will provide general constraints on eolian abrasion under natural conditions. | POLYGON((160.9 -76.7,161.08 -76.7,161.26 -76.7,161.44 -76.7,161.62 -76.7,161.8 -76.7,161.98 -76.7,162.16 -76.7,162.34 -76.7,162.52 -76.7,162.7 -76.7,162.7 -76.79,162.7 -76.88,162.7 -76.97,162.7 -77.06,162.7 -77.15,162.7 -77.24,162.7 -77.33,162.7 -77.42,162.7 -77.51,162.7 -77.6,162.52 -77.6,162.34 -77.6,162.16 -77.6,161.98 -77.6,161.8 -77.6,161.62 -77.6,161.44 -77.6,161.26 -77.6,161.08 -77.6,160.9 -77.6,160.9 -77.51,160.9 -77.42,160.9 -77.33,160.9 -77.24,160.9 -77.15,160.9 -77.06,160.9 -76.97,160.9 -76.88,160.9 -76.79,160.9 -76.7)) | POINT(161.8 -77.15) | false | false | |||||
The Stratigraphic Expression of the Onset of Glaciation in Eocene-Oligocene Successions on the Antarctic Continental Margin
|
1245283 |
2017-04-25 | Passchier, Sandra | Intellectual Merit: This project will investigate glacial advance and retreat of the East Antarctic Ice Sheet through the Eocene-Oligocene transition, a major episode of ice growth. In Prydz Bay, East Antarctica, a 130-170 m thick Eocene-Oligocene transition interval of glaciomarine sediments was cored in drillholes of the Ocean Drilling Program at Sites 739, 742 and 1166. Correlations between the Prydz Bay drillholes have recently been made through well-log and multichannel seismic interpretations. Recent drilling on the Wilkes Land margin of East Antarctica recovered earliest Oligocene sediments overlying a major regional unconformity in two drillholes. The PI will study the lithostratigraphy and weathering history of cores in the five drillholes, to establish a unique Eocene-Oligocene transition record within Antarctic continental margin sediments of glacial advance and retreat cycles, the onset of physical weathering, and glacio-isostasy and self-gravitation processes with implications for the margin architecture, sediment routing, and off-shore sediment dispersal. Cores from the five drillholes will be re-examined through detailed core description using an updated classification scheme, so that lithofacies can be compared between drillholes. Samples will be collected for detailed laser particle size and bulk major element geochemistry via ICP-AES to determine the degree of chemical alteration of the sediments. Phases of major ice growth will be recognized as marker beds of physically eroded sediment and will be correlated to isotopic records documenting Antarctic ice growth offshore in the Southern Ocean. Broader impacts: This project will benefit a large minority undergraduate student population through the availability of up to two paid laboratory internships, a classroom exercise, and the availability of research equipment supported by this award. The project also allows support and training of a graduate student. | POLYGON((66 -68,67.3 -68,68.6 -68,69.9 -68,71.2 -68,72.5 -68,73.8 -68,75.1 -68,76.4 -68,77.7 -68,79 -68,79 -68.2,79 -68.4,79 -68.6,79 -68.8,79 -69,79 -69.2,79 -69.4,79 -69.6,79 -69.8,79 -70,77.7 -70,76.4 -70,75.1 -70,73.8 -70,72.5 -70,71.2 -70,69.9 -70,68.6 -70,67.3 -70,66 -70,66 -69.8,66 -69.6,66 -69.4,66 -69.2,66 -69,66 -68.8,66 -68.6,66 -68.4,66 -68.2,66 -68)) | POINT(72.5 -69) | false | false | ||||||
Collaborative Research: Multi-nuclide approach to systematically evaluate the scatter in surface exposure ages in Antarctica and to develop consistent alpine glacier chronologies
|
1043706 |
2015-10-23 | Marchant, David | No dataset link provided | Intellectual Merit: The PIs propose to investigate the impact of earth surface processes on the application of cosmogenic exposure dating in Antarctica by combining multi-nuclide techniques, detailed field experiments, rock-mechanic studies, and climate modeling. They will analyze cosmogenic-nuclide inventories for a suite of six alpine-moraine systems in inland regions of the McMurdo Dry Valleys. This area is ideally suited for this study because 1) the targeted alpine moraine sequences are critically important in helping to reconstruct past temperature and precipitation values over the last several million years, 2) the production rates for cosmogenic nuclides are typically high and well-known, and 3) the complexity of surface processes is relatively low. Their work has two specific goals: to evaluate the effects of episodic geomorphic events in modulating cosmogenic inventories in surface rocks in polar deserts and to generate an alpine glacier chronology that will serve as a robust record of regional climate variation over the last several million years. A key objective is to produce a unique sampling strategy that yields consistent exposure-age results by minimizing the effects of episodic geomorphic events that obfuscate cosmogenic-nuclide chronologies. They will link their moraine chronology with regional-scale atmospheric models developed by collaborators at University of Massachusetts Amherst. Broader impacts: This research is interdisciplinary and includes two early career scientists. Results of this work will be used to enhance undergraduate education by engaging two female students in Antarctic field and summer research projects. Extended outreach includes development of virtual Antarctic field trips for Colgate University?s Ho Tung Visualization Laboratory and Boston University?s Antarctic Digital Image Analyses Laboratory. The PIs will continue to work with the Los Angeles Valley Community College, which serves students of mostly Hispanic origin as part of the PolarTREC program. This project will contribute to the collaboration between LDEO and several New York City public high schools within the Lamont-Doherty Secondary School Field Program. | POLYGON((160 -76.5,160.45 -76.5,160.9 -76.5,161.35 -76.5,161.8 -76.5,162.25 -76.5,162.7 -76.5,163.15 -76.5,163.6 -76.5,164.05 -76.5,164.5 -76.5,164.5 -76.7,164.5 -76.9,164.5 -77.1,164.5 -77.3,164.5 -77.5,164.5 -77.7,164.5 -77.9,164.5 -78.1,164.5 -78.3,164.5 -78.5,164.05 -78.5,163.6 -78.5,163.15 -78.5,162.7 -78.5,162.25 -78.5,161.8 -78.5,161.35 -78.5,160.9 -78.5,160.45 -78.5,160 -78.5,160 -78.3,160 -78.1,160 -77.9,160 -77.7,160 -77.5,160 -77.3,160 -77.1,160 -76.9,160 -76.7,160 -76.5)) | POINT(162.25 -77.5) | false | false | |||||
Zircon Hf Isotopes and the Continental Evolution of Dronning Maud Land, East Antacrtica
|
1142156 |
2015-10-23 | Marschall, Horst |
|
Geochemical studies of single mineral grains in rocks can be probed to reconstruct the history of our planet. The mineral zircon (ZrSiO4) is of unique importance in that respect because of its reliability as a geologic clock due to its strong persistence against weathering, transport and changes in temperature and pressure. Uranium-Lead (U-Pb) dating of zircon grains is, perhaps, the most frequently employed method of extracting time information on geologic processes that shaped the continental crust, and has been used to constrain the evolution of continents and mountain belts through time. In addition, the isotopic composition of the element Hafnium (Hf) in zircon is used to date when the continental crust was generated by extraction of magma from the underlying mantle. Melting of rocks in the mantle and deep in the continental crust are key processes in the evolution of the continents, and they are recorded in the Hf isotopic signatures of zircon. Although the analytical procedures for U-Pb dating and Hf isotope analyses of zircon are robust now, our understanding of zircon growth and its exchange of elements and isotopes with its surrounding rock or magma are still underdeveloped. The focus of the proposed study, therefore, is to unravel the evolution of zircon Hf isotopes in rocks that were formed deep in the Earth?s crust, and more specifically, to apply these isotopic methods to rocks collected in Dronning Maud Land (DML), East Antarctica. Dronning Maud Land (DML) occupied a central location during the formation of supercontinents ? large landmasses made up of all the continents that exist today - more than 500 million years ago. It is currently thought that supercontinents were formed and dismembered five or six times throughout Earth?s history. The area of DML is key for understanding the formation history of the last two supercontinents. The boundaries of continents that were merged to form those supercontinents are most likely hidden in DML. In this study, the isotopic composition of zircon grains recovered from DML rocks will be employed to identify these boundaries across an extensive section through the area. The rock samples were collected by the investigator during a two-month expedition to Antarctica in the austral summer of 2007?2008. The results of dating and isotope analyses of zircon of the different DML crustal domains will deliver significant insight into the regional geology of East Antarctica and its previous northern extension into Africa. This has significance for the reconstruction of the supercontinents and defining the continental boundaries in DML. | POLYGON((-6.44 -71.93,-5.378 -71.93,-4.316 -71.93,-3.254 -71.93,-2.192 -71.93,-1.13 -71.93,-0.068 -71.93,0.994 -71.93,2.056 -71.93,3.118 -71.93,4.18 -71.93,4.18 -71.998,4.18 -72.066,4.18 -72.134,4.18 -72.202,4.18 -72.27,4.18 -72.338,4.18 -72.406,4.18 -72.474,4.18 -72.542,4.18 -72.61,3.118 -72.61,2.056 -72.61,0.994 -72.61,-0.068 -72.61,-1.13 -72.61,-2.192 -72.61,-3.254 -72.61,-4.316 -72.61,-5.378 -72.61,-6.44 -72.61,-6.44 -72.542,-6.44 -72.474,-6.44 -72.406,-6.44 -72.338,-6.44 -72.27,-6.44 -72.202,-6.44 -72.134,-6.44 -72.066,-6.44 -71.998,-6.44 -71.93)) | POINT(-1.13 -72.27) | false | false | |||||
Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica
|
1343649 |
2015-10-05 | Levy, Joseph |
|
Intellectual Merit: The PIs propose to quantify the hillslope water, solute, and carbon budgets for Taylor Valley in the McMurdo Dry Valleys, using water tracks to investigate near-surface geological processes and challenge the paradigm that shallow groundwater is minimal or non-exixtant. Water tracks are linear zones of high soil moisture that route shallow groundwater downslope in permafrost dominated soils. Four hypotheses will be tested: 1) water tracks are important pathways for water and solute transport; 2) water tracks transport more dissolved silica than streams in Taylor Valley indicating they are the primary site of chemical weathering for cold desert soils and bedrock; 3) water tracks that drain highland terrains are dominated by humidity-separated brines while water tracks that drain lowland terrains are dominated by marine aerosols; 4) water tracks are the sites of the highest terrestrial soil carbon concentrations and the strongest CO2 fluxes in Taylor Valley and their carbon content increases with soil age, while carbon flux decreases with age. To test these hypotheses the PIs will carry out a suite of field measurements supported by modeling and remote sensing. They will install shallow permafrost wells in water tracks that span the range of geological, climatological, and topographic conditions in Taylor Valley. Multifrequency electromagnetic induction sounding of the upper ~1 m of the permafrost will create the first comprehensive map of soil moisture in Taylor Valley, and will permit direct quantification of water track discharge across the valley. The carbon contents of water track soils will be measured and linked to global carbon dynamics. Broader impacts: Non-science majors at Oregon State University will be integrated into the proposed research through a new Global Environmental Change course focusing on the scientific method in Antarctica. Three undergraduate students, members of underrepresented minorities, will be entrained in the research, will contribute to all aspects of field and laboratory science, and will present results at national meetings. | POLYGON((162.852 -77.6111,162.9893 -77.6111,163.1266 -77.6111,163.2639 -77.6111,163.4012 -77.6111,163.5385 -77.6111,163.6758 -77.6111,163.8131 -77.6111,163.9504 -77.6111,164.0877 -77.6111,164.225 -77.6111,164.225 -77.65331,164.225 -77.69552,164.225 -77.73773,164.225 -77.77994,164.225 -77.82215,164.225 -77.86436,164.225 -77.90657,164.225 -77.94878,164.225 -77.99099,164.225 -78.0332,164.0877 -78.0332,163.9504 -78.0332,163.8131 -78.0332,163.6758 -78.0332,163.5385 -78.0332,163.4012 -78.0332,163.2639 -78.0332,163.1266 -78.0332,162.9893 -78.0332,162.852 -78.0332,162.852 -77.99099,162.852 -77.94878,162.852 -77.90657,162.852 -77.86436,162.852 -77.82215,162.852 -77.77994,162.852 -77.73773,162.852 -77.69552,162.852 -77.65331,162.852 -77.6111)) | POINT(163.5385 -77.82215) | false | false | |||||
Collaborative Research: EAGER: Evaluating the Larsen basin's suitability for testing the Cretaceous Glaciation Hypothesis
|
1241574 1241460 |
2014-12-03 | Barbeau, David; Hemming, Sidney R.; Barbeau, David Jr | No dataset link provided | Intellectual Merit: Recent geochemical, sequence stratigraphic, and integrated investigations of marine strata from several continental margins and ocean basins suggest that ephemeral ice sheets may have existed on Antarctica during parts of the Cretaceous and early Paleogene. However, atmospheric carbon dioxide estimates for this time are as much as four times modern levels. With such greenhouse conditions, the presence of Antarctic ice sheets would imply that our current understanding of Earth?s climate system, and specifically the interpreted thresholds of Antarctic glaciation and deglaciation should be reconsidered. The proposed research will compare the quantity and provenance of Cretaceous sediments in the Larsen basin of the eastern Antarctic Peninsula with the exhumation chronology and composition of potential sediment source terranes on the peninsula and in adjacent regions. New outcrop stratigraphic analyses with improvements in the age models from radioisotopic approaches will be integrated to determine the amount of detrital sediment fluxed to the Larsen basin between key chronostratigraphic surfaces. Microtextural analysis of quartz sand and silt grains will help determine whether the Larsen basin detrital sediment originated from glacial weathering. These preliminary results will test the viability of the proposed approach to assess the controversial Cretaceous Antarctic glaciation hypothesis. Broader impacts: The proposed work will partially support a PhD, a MSc, and three undergraduate students at the University of South Carolina. The PIs will publicize this work through volunteer speaking engagements and the development of videos and podcasts. They also commit to prompt publication of the results and timely submission of data to archives. The development/improvement of the Larsen basin age model will benefit ongoing research in paleobiology, paleoclimate and biogeography. Development of the glauconite K-Ar and Rb-Sr chronometers could be an important outcome beyond the direct scope of the proposed research. | POLYGON((-67 -63.2,-65.97 -63.2,-64.94 -63.2,-63.91 -63.2,-62.88 -63.2,-61.85 -63.2,-60.82 -63.2,-59.79 -63.2,-58.76 -63.2,-57.73 -63.2,-56.7 -63.2,-56.7 -63.54,-56.7 -63.88,-56.7 -64.22,-56.7 -64.56,-56.7 -64.9,-56.7 -65.24,-56.7 -65.58,-56.7 -65.92,-56.7 -66.26,-56.7 -66.6,-57.73 -66.6,-58.76 -66.6,-59.79 -66.6,-60.82 -66.6,-61.85 -66.6,-62.88 -66.6,-63.91 -66.6,-64.94 -66.6,-65.97 -66.6,-67 -66.6,-67 -66.26,-67 -65.92,-67 -65.58,-67 -65.24,-67 -64.9,-67 -64.56,-67 -64.22,-67 -63.88,-67 -63.54,-67 -63.2)) | POINT(-61.85 -64.9) | false | false | |||||
Development of Quantitative Weathering Indicators in Proximal Alluvial Sediments to Assess Glacial Activity in the Rock Record
|
0842639 |
2011-08-12 | Soreghan, Gerilyn; Elwood Madden, Megan |
|
The proposed research seeks to test the hypothesis that chemical and physical weathering in proximal alluvial systems will show systematic and measurable variations between glacial and nonglacial systems. To accomplish this, the investigation will attempt to quantify the natural variation of chemical and physical weathering in granitoid-sourced proximal alluvial sediments in end-member glacial and nonglacial systems, when other, "non-climatic" factors (e.g. provenance, drainage basin area and relief, sample grain size, sediment facies) are controlled. If chemical weathering in the proposed hot-humid, hot-arid, hot semi-arid nonglacial systems and the cool-wet, cold semi-arid, and cold-arid glacial systems show systematic variations, then chemical indices may be used to help differentiate paleoclimatic conditions. Continued reliance on students provides a broader impact of this proposed research and firmly grounds this effort in its educational mission. | POLYGON((162.44835 -77.41693,162.51638 -77.41693,162.58441 -77.41693,162.65244 -77.41693,162.72047 -77.41693,162.7885 -77.41693,162.85653 -77.41693,162.92455999999999 -77.41693,162.99259 -77.41693,163.06062 -77.41693,163.12865 -77.41693,163.12865 -77.445495,163.12865 -77.47406,163.12865 -77.502625,163.12865 -77.53119,163.12865 -77.559755,163.12865 -77.58832,163.12865 -77.616885,163.12865 -77.64545,163.12865 -77.674015,163.12865 -77.70258,163.06062 -77.70258,162.99259 -77.70258,162.92455999999999 -77.70258,162.85653 -77.70258,162.7885 -77.70258,162.72047 -77.70258,162.65244 -77.70258,162.58441 -77.70258,162.51638 -77.70258,162.44835 -77.70258,162.44835 -77.674015,162.44835 -77.64545,162.44835 -77.616885,162.44835 -77.58832,162.44835 -77.559755,162.44835 -77.53119,162.44835 -77.502625,162.44835 -77.47406,162.44835 -77.445495,162.44835 -77.41693)) | POINT(162.7885 -77.559755) | false | false | |||||
Antarctica's Geological History Reflected in Sedimentary Radiogenic Isotopes
|
0538580 |
2010-11-20 | Van De Flierdt, Christina-Maria; Goldstein, Steven L.; Hemming, Sidney R. |
|
This project studies sediment from the ocean floor to understand Antarctica's geologic history. Glacially eroded from the Antarctic continent, these sediments may offer insight into the 99% Antarctica covered by ice. The work's central focus is determining crust formation ages and thermal histories for three key areas of East Antarctica--Prydz Bay, eastern Weddell Sea, and Wilkes Land--through a combination of petrography, bulk sediment geochemistry and radiogenic isotopes, as well as isotope chronology of individual mineral grains. One specific objective is characterizing the composition of the Gamburtsev Mountains through studies of Eocene fluvial sediments from Prydz Bay. In addition to furthering our understanding of the hidden terrains of Antarctica, these terrigenous sediments will also serve as a natural laboratory to evaluate the effects of continental weathering on the Hf/Nd isotope systematics of seawater. An important broader impact of the project is providing exciting research projects for graduate and postdoctoral students using state of the art techniques in geochemistry. | POLYGON((60 -60,72 -60,84 -60,96 -60,108 -60,120 -60,132 -60,144 -60,156 -60,168 -60,180 -60,180 -61,180 -62,180 -63,180 -64,180 -65,180 -66,180 -67,180 -68,180 -69,180 -70,168 -70,156 -70,144 -70,132 -70,120 -70,108 -70,96 -70,84 -70,72 -70,60 -70,60 -69,60 -68,60 -67,60 -66,60 -65,60 -64,60 -63,60 -62,60 -61,60 -60)) | POINT(120 -65) | false | false | |||||
Periglacial Landscape Evolution in Antarctic Lava Flows and Glacial Tills
|
0636629 |
2009-02-01 | Soule, Samuel; Kurz, Mark D. |
|
This project uses cosmogenic nuclide dating and LIDAR studies of surface roughness to understand weathering and landscape evolution in the Dry Valleys of Antarctica. The work focuses on two processes: cryoturbation of frozen soils and the development of patterned, frozen ground on ancient lava flows. The approach includes innovative uses of He3 profiling. Results will also be applied to understanding the glacial history of the Dry Valleys. There are potential applications to understanding the history of the East Antarctic Ice Sheet and the formation of Martian landscapes. The broader impacts include graduate student education. As well, the work may contribute to our understanding of the history of the Antarctic ice sheets, which is important to modeling their behavior during global climate change. | POLYGON((160.7 -77.8,161.06 -77.8,161.42 -77.8,161.78 -77.8,162.14 -77.8,162.5 -77.8,162.86 -77.8,163.22 -77.8,163.58 -77.8,163.94 -77.8,164.3 -77.8,164.3 -77.86,164.3 -77.92,164.3 -77.98,164.3 -78.04,164.3 -78.1,164.3 -78.16,164.3 -78.22,164.3 -78.28,164.3 -78.34,164.3 -78.4,163.94 -78.4,163.58 -78.4,163.22 -78.4,162.86 -78.4,162.5 -78.4,162.14 -78.4,161.78 -78.4,161.42 -78.4,161.06 -78.4,160.7 -78.4,160.7 -78.34,160.7 -78.28,160.7 -78.22,160.7 -78.16,160.7 -78.1,160.7 -78.04,160.7 -77.98,160.7 -77.92,160.7 -77.86,160.7 -77.8)) | POINT(162.5 -78.1) | false | false | |||||
SGER: Development of the Paired Authigenic Neodymium-Hafnium Isotope Weathering Tracer From Marine Sediments in the Circum Antarctic Realm
|
0548918 |
2007-06-07 | Van De Flierdt, Christina-Maria | No dataset link provided | This Small Grant for Exploratory Research supports development of a geochemical technique to time the onset of glacial erosion from Antarctica's continental ice sheets. The technique pairs neodymium (Nd) and hafnium (Hf) isotope proxies from the authigenic (seawater-derived) ferromanganese phase precipitated in marine sediments. This technique promises to be a sensitive indicator of glacial erosion. Non-radiogenic Hf is contained in the mineral zircon, which can only be released by the abrasive grinding that accompanies glacial erosion. Previous attempts to develop this technique encountered difficulty due to the minute amounts of Hf involved and the difficulty in its extraction. The PIs have developed a new chemical protocol that should allow them to selectively extract authigenic Hf from bulk sediments. If successful, studies of the Eocene-Oligocene boundary from two drill cores the Weddell Sea and Kerguelen Plateau will be carried out. This boundary is considered the initiation point for formation of Antarctica's current ice sheets. If successful, this method will benefit scientists with interests as diverse as continental weathering, ocean circulation, Cenozoic paleoceanography and paleoclimate, and Antarctic geology. <br/><br/>The broader impacts of this work are development of a new analytical technique that may improve society's understanding of the potential for global climate change from the perspective of the deep time record. | None | None | false | false |