{"dp_type": "Project", "free_text": "TERRESTRIAL ECOSYSTEMS"}
[{"awards": "2325922 Couradeau, Estelle", "bounds_geometry": "POLYGON((-73.783 4.679,-73.7827 4.679,-73.7824 4.679,-73.7821 4.679,-73.7818 4.679,-73.7815 4.679,-73.7812 4.679,-73.7809 4.679,-73.7806 4.679,-73.7803 4.679,-73.78 4.679,-73.78 4.6789,-73.78 4.6788,-73.78 4.6787,-73.78 4.6786,-73.78 4.6785,-73.78 4.6784,-73.78 4.6783,-73.78 4.6782,-73.78 4.6781,-73.78 4.678,-73.7803 4.678,-73.7806 4.678,-73.7809 4.678,-73.7812 4.678,-73.7815 4.678,-73.7818 4.678,-73.7821 4.678,-73.7824 4.678,-73.7827 4.678,-73.783 4.678,-73.783 4.6781,-73.783 4.6782,-73.783 4.6783,-73.783 4.6784,-73.783 4.6785,-73.783 4.6786,-73.783 4.6787,-73.783 4.6788,-73.783 4.6789,-73.783 4.679))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 06 Feb 2024 00:00:00 GMT", "description": "As climate change progresses, it is activating both master switches of microbial activity simultaneously: moisture and temperature. In soils, microbes serve critical ecosystem services including nutrient cycling and carbon sequestration. The fact that we do not fully understand how microbes act on carbon pools in soils and how these will change with the rapidly changing climate is extremely worrisome. Here we propose to tackle this question by initiating an interdisciplinary action studying the soils of the Colombian P\u00e1ramos. The P\u00e1ramos are a unique high-altitude hotspot of biodiversity in the Andes that render critical ecosystem services, including water capture and carbon sequestration. If the hydrology of the system has gained a lot of attention over the past few years, the fate of the extensive pools of organic carbon in these vast peatlands has remained unexplored. The unique geographic situation of the cold and humid P\u00e1ramos being already on the edge of their geo-climatic range provides us with an unparalleled opportunity to study a soil microbial community from carbon-rich soils that are extremely vulnerable to both the raise in temperature and decrease of moisture that will impact soils around the globe as climate change progresses. Our project aims at starting to address the need to disentangle the effect of moisture and temperature on the activity and composition of the microbial communities controlling the fate of organic carbon in soils (Objective 1), while assembling an international team of experts capable of scaling up the understanding of these processes at the landscape and regional level by integrating the functioning of the belowground microbial community with the above-ground vegetation (Objective 2).", "east": -73.78, "geometry": "POINT(-73.7815 4.6785)", "instruments": null, "is_usap_dc": true, "keywords": "TERRESTRIAL ECOSYSTEMS; Chingaza Paramos Colombia; ORGANIC MATTER; SOIL MECHANICS", "locations": "Chingaza Paramos Colombia", "north": 4.679, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Couradeau, Estelle; Maximova, Siela; Machado, Jose Luis", "platforms": null, "repositories": null, "science_programs": null, "south": 4.678, "title": "Collaborative Research: BoCP-Design: Climate change alteration of soils functional biodiversity of the P\u00e1ramos, Colombia", "uid": "p0010445", "west": -73.783}, {"awards": "2224760 Gooseff, Michael", "bounds_geometry": "POINT(162.87 -77)", "dataset_titles": "EDI Data Portal: McMurdo Dry Valleys LTER", "datasets": [{"dataset_uid": "200379", "doi": "", "keywords": null, "people": null, "repository": "Environmental Data Initiative (EDI)", "science_program": null, "title": "EDI Data Portal: McMurdo Dry Valleys LTER", "url": "https://portal.edirepository.org/nis/browseServlet?searchValue=MCM"}], "date_created": "Tue, 14 Nov 2023 00:00:00 GMT", "description": "In this iteration of the McMurdo LTER project (MCM6), the project team will test ecological connectivity and stability theory in a system subject to strong physical drivers (geological legacies, extreme seasonality, and contemporary climate change) and driven by microbial organisms. Since microorganisms regulate most of the world\u0027s critical biogeochemical functions, these insights will be relevant far beyond polar ecosystems and will inform understanding and expectations of how natural and managed ecosystems respond to ongoing anthropogenic global change. MCM6 builds on previous foundational research, both in Antarctica and within the LTER network, to consider the temporal aspects of connectivity and how it relates to ecosystem stability. The project will examine how changes in the temporal variability of ecological connectivity interact with the legacies of the existing landscape that have defined habitats and biogeochemical cycling for millennia. The project team hypothesizes that the structure and functioning of the MDV ecosystem is dependent upon legacies and the contemporary frequency, duration, and magnitude of ecological connectivity. This hypothesis will be tested with new and continuing monitoring, experiments, and analyses of long-term datasets to examine: 1) the stability of these ecosystems as reflected by sentinel taxa, 2) the relationship between ecological legacies and ecosystem resilience, 3) the importance of material carryover during periods of low connectivity to maintaining biological activity and community stability, and 4) how changes in disturbance dynamics disrupt ecological cycles through the polar night. Tests of these hypotheses will occur in field and modeling activities using new and long-term datasets already collected. New datasets resulting from field activities will be made freely available via widely-known online databases (MCM LTER and EDI). The project team has also developed six Antarctic Core Ideas that encompass themes from data literacy to polar food webs and form a consistent thread across the education and outreach activities. Building on past success, collaborations will be established with teachers and artists embedded within the science teams, who will work to develop educational modules with science content informed by direct experience and artistic expression. Undergraduate mentoring efforts will incorporate computational methods through a new data-intensive scientific training program for MCM REU students. The project will also establish an Antarctic Research Experience for Community College Students at CU Boulder, to provide an immersive educational and research experience for students from diverse backgrounds in community colleges. MCM LTER will continue its mission of training and mentoring students, postdocs, and early career scientists as the next generation of leaders in polar ecosystem science and stewardship. Historically underrepresented participation will be expanded at each level of the project. To aid in these efforts, the project has established Education \u0026 Outreach and Diversity, Equity, and Inclusion committees to lead, coordinate, support, and integrate these activities through all aspects of MCM6.", "east": 162.87, "geometry": "POINT(162.87 -77)", "instruments": null, "is_usap_dc": true, "keywords": "COMMUNITY DYNAMICS; ABLATION ZONES/ACCUMULATION ZONES; SOIL TEMPERATURE; DIATOMS; FIELD INVESTIGATION; PERMANENT LAND SITES; BUOYS; GROUND-BASED OBSERVATIONS; SEDIMENTS; SNOW WATER EQUIVALENT; SPECIES/POPULATION INTERACTIONS; WATER-BASED PLATFORMS; FIXED OBSERVATION STATIONS; VIRUSES; PHYTOPLANKTON; ACTIVE LAYER; FIELD SURVEYS; RADIO TRANSMITTERS; DATA COLLECTIONS; ECOLOGICAL DYNAMICS; LANDSCAPE; GROUND WATER; SNOW/ICE CHEMISTRY; LAND-BASED PLATFORMS; ANIMALS/INVERTEBRATES; ECOSYSTEM FUNCTIONS; HUMIDITY; GEOCHEMISTRY; SURFACE WINDS; RIVERS/STREAM; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE; SNOW; LAND RECORDS; ATMOSPHERIC PRESSURE; SURFACE TEMPERATURE; ATMOSPHERIC RADIATION; BACTERIA/ARCHAEA; AIR TEMPERATURE; GLACIERS; SNOW/ICE TEMPERATURE; SOIL CHEMISTRY; METEOROLOGICAL STATIONS; WATER QUALITY/WATER CHEMISTRY; TERRESTRIAL ECOSYSTEMS; MOORED; PROTISTS; STREAMFLOW STATION; Dry Valleys; LAKE/POND; LAKE ICE; SNOW DEPTH; AQUATIC ECOSYSTEMS; SNOW DENSITY; FIELD SITES", "locations": "Dry Valleys", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Integrated System Science", "paleo_time": null, "persons": "Gooseff, Michael N.; Adams, Byron; Barrett, John; Diaz, Melisa A.; Doran, Peter; Dugan, Hilary A.; Mackey, Tyler; Morgan-Kiss, Rachael; Salvatore, Mark; Takacs-Vesbach, Cristina; Zeglin, Lydia H.", "platforms": "LAND-BASED PLATFORMS; LAND-BASED PLATFORMS \u003e FIELD SITES; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e DATA COLLECTIONS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e RADIO TRANSMITTERS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e METEOROLOGICAL STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e STREAMFLOW STATION; WATER-BASED PLATFORMS; WATER-BASED PLATFORMS \u003e BUOYS; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED \u003e BUOYS", "repo": "Environmental Data Initiative (EDI)", "repositories": "Environmental Data Initiative (EDI)", "science_programs": "LTER", "south": -77.0, "title": "LTER: MCM6 - The Roles of Legacy and Ecological Connectivity in a Polar Desert Ecosystem", "uid": "p0010440", "west": 162.87}, {"awards": "2228257 Michaud, Alexander", "bounds_geometry": "POINT(-112.05 -79.28)", "dataset_titles": null, "datasets": null, "date_created": "Wed, 31 May 2023 00:00:00 GMT", "description": "The goals of this work are to determine the taxonomic identity of viable and preserved microbial cells, and decode the genetic repertoire that confers survival of burial and long-term viability within glacial ice. We will achieve these goals by utilizing subsamples from the ~65 ka record of the West Antarctic Ice Sheet Divide (WD) Ice Core. WD samples will be melted using the Desert Research Institute\u2019s ice core melting system that is optimized for glaciobiological sampling. Microbial cells from the meltwater will be sorted using fluorescence-activated cell sorting, and individually sorted cells will have their genomes sequenced. The fluorescence-based methods will discern the viable (metabolically active) cells from those cells that are non-viable but preserved in the ice (DNA-containing). Our genomic analysis will identify the taxonomy of each cell, presence of known genes that confer survival in permanently frozen environments, and comparatively analyze genomes to determine the core set of genes required by viable cells to persist in an ice sheet. Accomplishing these goals contains significant risk because microbial cells within the ice sheet may have damaged membranes and DNA, rendering their genomes inadequate for sequencing. However, existing methods to study ice core biology cannot produce results with the low-biomass and small sample volumes from ice coring projects. While there are unknowns surrounding the suitability of the cells for flow cytometric sorting and single cell sequencing, making this project an exploratory endeavor; it will be a transformative step toward understanding the ecology of one of the most understudied environments on Earth.", "east": -112.05, "geometry": "POINT(-112.05 -79.28)", "instruments": null, "is_usap_dc": true, "keywords": "WAIS Divide; TERRESTRIAL ECOSYSTEMS; ICE SHEETS; BACTERIA/ARCHAEA; ICE CORE RECORDS", "locations": "WAIS Divide", "north": -79.28, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Michaud, Alexander; Winski, Dominic A.", "platforms": null, "repositories": null, "science_programs": null, "south": -79.28, "title": "EAGER: ANT LIA: Persist or Perish: Records of Microbial Survival and Long-term Persistence from the West Antarctic Ice Sheet", "uid": "p0010421", "west": -112.05}, {"awards": "2133684 Fierer, Noah", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 07 Apr 2023 00:00:00 GMT", "description": "Not all of Antarctica is covered in ice. In fact, soils are common to many parts of Antarctica, and these soils are often unlike any others found on Earth. Antarctic soils harbor unique microorganisms able to cope with the extremely cold and dry conditions common to much of the continent. For decades, microbiologists have been drawn to the unique soils in Antarctica, yet critical knowledge gaps remain. Most notably, it is unclear what properties allow certain microbes to thrive in Antarctic soils. By using a range of methods, this project is developing comprehensive model that discovers the unique genomic features of soils diversity, distributions, and adaptations that allow Antarctic soil microbes to thrive in extreme environments. The proposed work will be relevant to researchers in many fields, including engineers seeking to develop new biotechnologies, ecologists studying the contributions of these microbial communities to the functioning of Antarctic ecosystems, microbiologists studying novel microbial adaptations to extreme environmental conditions, and even astrobiologists studying the potential for life on Mars. More generally, the proposed research presents an opportunity to advance our current understanding of the microbial life found in one of the more distinctive microbial habitats on Earth, a habitat that is inaccessible to many scientists and a habitat that is increasingly under threat from climate change.\r\n\r\nThe research project explores the microbial diversity in Antarctic soils and links specific features to different soil types and environmental conditions. The overarching questions include: What microbial taxa are found in a variety of Antarctic environments? What are the environmental preferences of specific taxa or lineages? What are the genomic and phenotypic traits of microorganisms that allow them to persist in extreme environments and determine biogeographical differneces? This project will analyze archived soils collected from across Antarctica by a network of international collaborators, with samples selected to span broad gradients in soil and site conditions. The project uses cultivation-independent, high-throughput genomic analysis methods and cultivation-dependent approaches to analyze bacterial and fungal communities in soil samples. The results will be used to predict the distributions of specific taxa and lineages, obtain genomic information for the more ubiquitous and abundant taxa, and quantify growth responses in vitro across gradients in temperature, moisture, and salinity. This integration of ecological, environmental, genomic, and trait-based information will provide a comprehensive understanding of microbial life in Antarctic soils. This project will also help facilitate new collaborations between scientists across the globe while providing undergraduate students with \u0027\u0027hands-on\u0027\u0027 research experiences that introduce the next generation of scientists to the field of Antarctic biology.\r\n\r\nThis award reflects NSF\u0027\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "FUNGI; BACTERIA/ARCHAEA; TERRESTRIAL ECOSYSTEMS; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Fierer, Noah; Quandt, Alisha A; Lemonte, Joshua", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: ANT LIA Integrating Genomic and Phenotypic Analyses to understand Microbial Life in Antarctic Soils", "uid": "p0010414", "west": -180.0}, {"awards": "1745068 Booth, Robert; 1745082 Beilman, David", "bounds_geometry": "POLYGON((-64.4 -62.4,-63.910000000000004 -62.4,-63.42 -62.4,-62.93000000000001 -62.4,-62.440000000000005 -62.4,-61.95 -62.4,-61.46 -62.4,-60.97 -62.4,-60.480000000000004 -62.4,-59.99 -62.4,-59.5 -62.4,-59.5 -62.7,-59.5 -63,-59.5 -63.3,-59.5 -63.6,-59.5 -63.900000000000006,-59.5 -64.2,-59.5 -64.5,-59.5 -64.80000000000001,-59.5 -65.10000000000001,-59.5 -65.4,-59.99 -65.4,-60.480000000000004 -65.4,-60.97 -65.4,-61.46 -65.4,-61.95 -65.4,-62.440000000000005 -65.4,-62.93000000000001 -65.4,-63.42 -65.4,-63.910000000000004 -65.4,-64.4 -65.4,-64.4 -65.10000000000001,-64.4 -64.80000000000001,-64.4 -64.5,-64.4 -64.2,-64.4 -63.900000000000006,-64.4 -63.6,-64.4 -63.3,-64.4 -63,-64.4 -62.7,-64.4 -62.4))", "dataset_titles": "LMG2002 Expedtition Data", "datasets": [{"dataset_uid": "200222", "doi": "10.7284/908802", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "LMG2002 Expedtition Data", "url": "https://www.rvdata.us/search/cruise/LMG2002"}], "date_created": "Fri, 10 Jun 2022 00:00:00 GMT", "description": "Warming on the western Antarctic Peninsula in the later 20th century has caused widespread changes in the cryosphere (ice and snow) and terrestrial ecosystems. These recent changes along with longer-term climate and ecosystem histories will be deciphered using peat deposits. Peat accumulation can be used to assess the rate of glacial retreat and provide insight into ecological processes on newly deglaciated landscapes in the Antarctic Peninsula. This project builds on data suggesting recent ecosystem transformations that are linked to past climate of the western Antarctic Peninsula and provide a timeline to assess the extent and rate of recent glacial change. The study will produce a climate record for the coastal low-elevation terrestrial region, which will refine the major climate shifts of up to 6 degrees C in the recent past (last 12,000 years). A novel terrestrial record of the recent glacial history will provide insight into observed changes in climate and sea-ice dynamics in the western Antarctic Peninsula and allow for comparison with off-shore climate records captured in sediments. Observations and discoveries from this project will be disseminated to local schools and science centers. The project provides training and career development for a postdoctoral scientist as well as graduate and undergraduate students.\u003cbr/\u003e\u003cbr/\u003eThe research presents a new systematic survey to reconstruct ecosystem and climate change for the coastal low-elevation areas on the western Antarctic Peninsula (AP) using proxy records preserved in late Holocene peat deposits. Moss and peat samples will be collected and analyzed to generate a comprehensive data set of late-Holocene climate change and ecosystem dynamics. The goal is to document and understand the transformations of landscape and terrestrial ecosystems on the western AP during the late Holocene. The testable hypothesis is that coastal regions have experienced greater climate variability than evidenced in ice-core records and that past warmth has facilitated dramatic ecosystem and cryosphere response. A primary product of the project is a robust reconstruction of late Holocene climate changes for coastal low-elevation terrestrial areas using multiple lines of evidence from peat-based biological and geochemical proxies, which will be used to compare with climate records derived from marine sediments and ice cores from the AP region. These data will be used to test several ideas related to novel peat-forming ecosystems (such as Antarctic hairgrass bogs) in past warmer climates and climate controls over ecosystem establishment and migration to help assess the nature of the Little Ice Age cooling and cryosphere response. The chronology of peat cores will be established by radiocarbon dating of macrofossils and Bayesian modeling. The high-resolution time series of ecosystem and climate changes will help put the observed recent changes into a long-term context to bridge climate dynamics over different time scales.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -59.5, "geometry": "POINT(-61.95 -63.900000000000006)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS", "is_usap_dc": true, "keywords": "ECOSYSTEM FUNCTIONS; ISOTOPES; USAP-DC; PALEOCLIMATE RECONSTRUCTIONS; SEDIMENTS; Amd/Us; FIELD INVESTIGATION; Antarctic Peninsula; AMD; TERRESTRIAL ECOSYSTEMS; USA/NSF; RADIOCARBON", "locations": "Antarctic Peninsula", "north": -62.4, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Beilman, David; Booth, Robert", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.4, "title": "Collaborative Research: Reconstructing Late Holocene Ecosystem and Climate Shifts from Peat Records in the Western Antarctic Peninsula", "uid": "p0010337", "west": -64.4}, {"awards": "2045880 Sokol, Eric; 2046260 Salvatore, Mark", "bounds_geometry": "POLYGON((161.88 -77.47,162.075 -77.47,162.27 -77.47,162.465 -77.47,162.66 -77.47,162.855 -77.47,163.05 -77.47,163.245 -77.47,163.44 -77.47,163.635 -77.47,163.83 -77.47,163.83 -77.501,163.83 -77.532,163.83 -77.563,163.83 -77.594,163.83 -77.625,163.83 -77.656,163.83 -77.687,163.83 -77.718,163.83 -77.749,163.83 -77.78,163.635 -77.78,163.44 -77.78,163.245 -77.78,163.05 -77.78,162.855 -77.78,162.66 -77.78,162.465 -77.78,162.27 -77.78,162.075 -77.78,161.88 -77.78,161.88 -77.749,161.88 -77.718,161.88 -77.687,161.88 -77.656,161.88 -77.625,161.88 -77.594,161.88 -77.563,161.88 -77.532,161.88 -77.501,161.88 -77.47))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 21 Apr 2022 00:00:00 GMT", "description": "Part I: Non-technical description: \r\nWater is life and nowhere is it more notable than in deserts. Within the drylands on Earth, the Antarctic deserts, represented in this study by the McMurdo Dry Valleys, exemplify life in extreme environments with scarce water, low temperatures and long periods of darkness during the polar winter. There is a scarcity of methods to determine water availability, data necessary to predict which species are successful in the drylands, unless measurements are done manually or with field instruments. This project aims to develop a remote method of determining soil moisture and use the new data to identify locations suitable for life. Combining these habitats with known species distributions in the McMurdo Dry Valleys, results from this project will predict which species should be present, and also what is the expected species distribution in a changing environment. In this way the project takes advantage of a combination of methods, from recent remote sensing products, ecological models and 30 years of field collections to bring a prediction of how life might change in the McMurdo Dry Valleys in a warmer, and possibly, moister future climate. This project benefits the National Science Foundation goals of expanding fundamental knowledge of Antarctic biota and the processes that sustain life in extreme environments. The knowledge acquired in this project will be disseminated to other drylands through training in high-school curricular programming in Native American communities of the Southwest U.S. \r\nPart II: Technical description: \r\nTerrestrial environments in Antarctica are characterized by low liquid water supply, sub-zero temperatures and the polar night in winter months. During summer, melting of snow patches, seasonal steams from glacial melt and vicinity to lakes provide a variety of environments that maintain life, not yet studied at landscape-scale level for habitat suitability and the processes that drive them. This project proposes to integrate remote sensing, hydrological models and ecological models to establish habitat suitability for species in the McMurdo Dry Valleys based on water availability. The approach is at a landscape level in order to establish present-day and future scenarios of species distribution. There are four main objectives: remote sensing development of moisture levels in soils, combining biological and soil data, building and calibrating models of habitat suitability by combining species distribution and environmental variability and applying statistical species distribution model. The field data needed to develop habitat suitability and calibration of models will leverage a the 30-year dataset collected by the McMurdo Long-Term Ecological Research program. Mechanistic models developed will be essential to predict species distribution in future climate scenarios. Training of post-doctoral researchers and a graduate student will prepare for the next generation of Antarctic scientists. Results from this project will train high-school students from Native American communities in the Southwestern U.S., where similar desert conditions exist.\r\n\r\nThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 163.83, "geometry": "POINT(162.855 -77.625)", "instruments": null, "is_usap_dc": true, "keywords": "ACTIVE LAYER; Taylor Valley; USAP-DC; Amd/Us; AMD; MODELS; USA/NSF", "locations": "Taylor Valley", "north": -77.47, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Salvatore, Mark; Gooseff, Michael N.; Sokol, Eric; Barrett, John", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repositories": null, "science_programs": null, "south": -77.78, "title": "Collaborative Research: Moving Beyond the Margins: Modeling Water Availability and Habitable Terrestrial Ecosystems in the Polar Desert of the McMurdo Dry Valleys", "uid": "p0010316", "west": 161.88}, {"awards": "1932876 Ball, Becky", "bounds_geometry": "POLYGON((-59.666116 -62.15,-59.5128377 -62.15,-59.3595594 -62.15,-59.2062811 -62.15,-59.0530028 -62.15,-58.8997245 -62.15,-58.7464462 -62.15,-58.5931679 -62.15,-58.4398896 -62.15,-58.2866113 -62.15,-58.133333 -62.15,-58.133333 -62.1731502,-58.133333 -62.1963004,-58.133333 -62.2194506,-58.133333 -62.2426008,-58.133333 -62.265751,-58.133333 -62.2889012,-58.133333 -62.3120514,-58.133333 -62.3352016,-58.133333 -62.3583518,-58.133333 -62.381502,-58.2866113 -62.381502,-58.4398896 -62.381502,-58.5931679 -62.381502,-58.7464462 -62.381502,-58.8997245 -62.381502,-59.0530028 -62.381502,-59.2062811 -62.381502,-59.3595594 -62.381502,-59.5128377 -62.381502,-59.666116 -62.381502,-59.666116 -62.3583518,-59.666116 -62.3352016,-59.666116 -62.3120514,-59.666116 -62.2889012,-59.666116 -62.265751,-59.666116 -62.2426008,-59.666116 -62.2194506,-59.666116 -62.1963004,-59.666116 -62.1731502,-59.666116 -62.15))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 14 Apr 2022 00:00:00 GMT", "description": "Part I: Non-technical summary\u003cbr/\u003eThe Antarctic Peninsula warmed very rapidly in the late part of the 20th century, much faster than the global average, and this warming is predicted to resume and continue over the rest of the 21st century. One consequence of this rapid warming is the melting and subsequent retreat of glaciers, leading to an increase in newly-exposed land on the Peninsula that was previously covered with ice. Once new terrain is exposed, the process of ecological succession begins, with the arrival of early-colonizing plants, such as moss and lichens, and soil organisms - a process commonly referred to as the \u201cgreening\u201d of Antarctica. Early stages of succession will be an increasingly common feature on the Antarctic Peninsula, but the mechanisms by which they occur on the Antarctic continent is not well understood. Once the plants have established on the newly-exposed soil, they can change many important properties, such as water dynamics, nutrient recycling, soil development, and habitat for microscopic organisms, which will ultimately determine the structure and functioning of the future ecosystem as it develops. These relationships between vegetation, soil, and the associated microorganisms, referred to as \u201cplant-soil\u201d interactions, are something we know virtually nothing about. This project will be the first to make a comprehensive study of how the type of colonizing plant, and the expansion of those plants from climate change, will influence terrestrial ecosystems in Antarctica. Understanding these processes is critical to understanding how the greening Antarctica is occurring and how soil communities and processes are influenced by these expanding plant communities. Through this work the research team, will also be intensively training undergraduate and graduate students, including training of students from underrepresented groups and collaborative training of students from Chile and the US. Additionally, the research groups will continue their focus on scientific outreach with K-12 schools and the general public to expand awareness of the effects of climate change in Antarctica.\u003cbr/\u003e\u003cbr/\u003ePart II: Technical summary\u003cbr/\u003eIn this study, the researchers will use surveys across succession sites along the Antarctic Peninsula and Scotia Arc as well as a manipulative field experiment at glacier succession sites to test how species-specific plant functional traits impact soil properties and associated microbial and invertebrate communities in a greening Antarctica. In doing so, they will pursue three integrated aims to understand how Antarctic plant functional traits alter their soil environment and soil communities during succession after glacial retreat. AIM 1) Characterize six fundamental plant functional traits (thermal conductivity, water holding capacity, albedo, decomposability, tissue nutrient content, and secondary chemistry) among diverse Antarctica flora; AIM 2) Measure the relative effects of fundamental plant functional traits on soil physical properties and soil biogeochemistry across glacial succession gradients in Antarctica; and AIM 3) Measure the relative effects of fundamental plant functional traits on soil microbial and invertebrate communities across glacial succession gradients in Antarctica. They will explore how early-colonizing plants, especially mosses and lichens, alter soil physical, biogeochemical, and biological components, potentially impacting later patterns of succession. The researhcers will use intensive surveys of plant-soil interactions across succession sites and a manipulative transplant experiment in the South Shetland Islands, Antarctica to address their aims. The investigators will collect data on plant functional traits and their effects on soil physical properties, biogeochemistry, biotic abundance, and microbial metagenomics. The data collected will be the first comprehensive measures of the relative importance of plant functional types during glacial retreat and vegetative expansion from climate change in Antarctica, aiding our understanding of how plant functional group diversity and abundance are changing in a greening Antarctica.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -58.133333, "geometry": "POINT(-58.8997245 -62.265751)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; FIELD SURVEYS; ECOLOGICAL DYNAMICS; USA/NSF; SOIL CHEMISTRY; 25 De Mayo/King George Island; Antarctic Peninsula; PLANTS; Amd/Us; FUNGI; ANIMALS/INVERTEBRATES; USAP-DC; TERRESTRIAL ECOSYSTEMS; BACTERIA/ARCHAEA", "locations": "25 De Mayo/King George Island; Antarctic Peninsula", "north": -62.15, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ball, Becky", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -62.381502, "title": "Collaborative Research: Exploring the Functional Role of Antarctic Plants during Terrestrial Succession", "uid": "p0010315", "west": -59.666116}, {"awards": "1341429 Ball, Becky", "bounds_geometry": "POLYGON((-68.205783 -60.706633,-65.9444531 -60.706633,-63.6831232 -60.706633,-61.4217933 -60.706633,-59.1604634 -60.706633,-56.8991335 -60.706633,-54.6378036 -60.706633,-52.3764737 -60.706633,-50.1151438 -60.706633,-47.8538139 -60.706633,-45.592484 -60.706633,-45.592484 -62.1204014,-45.592484 -63.5341698,-45.592484 -64.9479382,-45.592484 -66.3617066,-45.592484 -67.775475,-45.592484 -69.1892434,-45.592484 -70.6030118,-45.592484 -72.0167802,-45.592484 -73.4305486,-45.592484 -74.844317,-47.8538139 -74.844317,-50.1151438 -74.844317,-52.3764737 -74.844317,-54.6378036 -74.844317,-56.8991335 -74.844317,-59.1604634 -74.844317,-61.4217933 -74.844317,-63.6831232 -74.844317,-65.9444531 -74.844317,-68.205783 -74.844317,-68.205783 -73.4305486,-68.205783 -72.0167802,-68.205783 -70.6030118,-68.205783 -69.1892434,-68.205783 -67.775475,-68.205783 -66.3617066,-68.205783 -64.9479382,-68.205783 -63.5341698,-68.205783 -62.1204014,-68.205783 -60.706633))", "dataset_titles": "Climatic and environmental constraints on aboveground-belowground linkages and diversity across a latitudinal gradient in Antarctica", "datasets": [{"dataset_uid": "200289", "doi": "", "keywords": null, "people": null, "repository": "OSF - Center for Open Science", "science_program": null, "title": "Climatic and environmental constraints on aboveground-belowground linkages and diversity across a latitudinal gradient in Antarctica", "url": "https://osf.io/8xfrc/"}], "date_created": "Thu, 14 Apr 2022 00:00:00 GMT", "description": "The Antarctic Peninsula is experiencing rapid environmental changes, which will influence the community of organisms that live there. However, we know very little about the microscopic organisms living in the soil in this region. Soil biology (including bacteria, fungi, and invertebrates) are responsible for many important processes that sustain ecosystems, such as nutrient recycling. Without understanding the environmental conditions that influence soil biodiversity along the Antarctic Peninsula, our ability to predict the consequences of global change is strongly limited. This project will identify the soil community at many sites along the Antarctic Peninsula to discover how the community changes with environmental conditions from north to south. The project will also identify how the soil community at each site differs under different types of plants. Understanding more about the ways in which plant cover and climate conditions influence soil biodiversity will allow predictions of how communities will respond to future changes such as climate warming and invasive plant species. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. The investigators will engage with outreach to K-12 students and the general public both directly and through a blog and will participate in workshops for K-12 teachers. Additionally, the project will provide the opportunity for many undergraduate and graduate students of diverse backgrounds to be trained in interdisciplinary research.\u003cbr/\u003e\u003cbr/\u003eThe investigators will determine the nature and strength of plant-soil linkages in influencing soil community composition and diversity over a latitudinal gradient of environmental and climatic conditions. The goals are to (1) increase our understanding of current biogeography and diversity by providing in-depth knowledge of soil community composition and complexity as it relates to environmental and climatic characteristics; and (2) determine the nature of aboveground-belowground community linkages over varying spatial scales. The team will identify the composition and diversity of soil communities under key habitat types (grass, moss, algae, etc.). Microbial communities (bacteria, fungi, archaea) will be investigated using pyrosequencing for community composition analysis and metagenomic sequencing to identify functional capabilities. Invertebrates (nematodes, tardigrades, rotifers, microarthropods) will be extracted and identified to the lowest possible taxonomic level. Soil chemistry (pH, nutrient content, soil moisture, etc.) and climate conditions will be measured to determine the relationship between soil communities and physical and chemical properties. Structural equation modeling will be used to identify aboveground-belowground linkage pathways and quantify link strengths under varying environmental conditions.", "east": -45.592484, "geometry": "POINT(-56.8991335 -67.775475)", "instruments": null, "is_usap_dc": true, "keywords": "FUNGI; FIELD INVESTIGATION; AMD; Amd/Us; TERRESTRIAL ECOSYSTEMS; USA/NSF; ANIMALS/INVERTEBRATES; SOIL CHEMISTRY; BACTERIA/ARCHAEA; Antarctic Peninsula; ECOSYSTEM FUNCTIONS; USAP-DC", "locations": "Antarctic Peninsula", "north": -60.706633, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ball, Becky; Van Horn, David", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "OSF - Center for Open Science", "repositories": "OSF - Center for Open Science", "science_programs": null, "south": -74.844317, "title": "Collaborative Research: Climatic and Environmental Constraints on Aboveground-Belowground Linkages and Diversity across a Latitudinal Gradient in Antarctica", "uid": "p0010314", "west": -68.205783}, {"awards": "1643871 van Gestel, Natasja; 1947562 van Gestel, Natasja", "bounds_geometry": "POLYGON((-65 -64.5,-64.8 -64.5,-64.6 -64.5,-64.4 -64.5,-64.2 -64.5,-64 -64.5,-63.8 -64.5,-63.6 -64.5,-63.4 -64.5,-63.2 -64.5,-63 -64.5,-63 -64.55,-63 -64.6,-63 -64.65,-63 -64.7,-63 -64.75,-63 -64.8,-63 -64.85,-63 -64.9,-63 -64.95,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.95,-65 -64.9,-65 -64.85,-65 -64.8,-65 -64.75,-65 -64.7,-65 -64.65,-65 -64.6,-65 -64.55,-65 -64.5))", "dataset_titles": "2022-2023 Palmer Station terrestrial carbon fluxes - field warming experiment; Soil moisture and soil temperature data (0-5 cm) near Palmer Station, Antarctica", "datasets": [{"dataset_uid": "601853", "doi": "10.15784/601853", "keywords": "Antarctica; CO2; Cryosphere; Field Investigations; Palmer Station", "people": "van Gestel, Natasja", "repository": "USAP-DC", "science_program": null, "title": "2022-2023 Palmer Station terrestrial carbon fluxes - field warming experiment", "url": "https://www.usap-dc.org/view/dataset/601853"}, {"dataset_uid": "601877", "doi": "10.15784/601877", "keywords": "Antarctica; Antarctic Peninsula; Conductivity; Cryosphere; Palmer Station; Soil; Temperature", "people": "van Gestel, Natasja", "repository": "USAP-DC", "science_program": null, "title": "Soil moisture and soil temperature data (0-5 cm) near Palmer Station, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601877"}], "date_created": "Sat, 21 Aug 2021 00:00:00 GMT", "description": "Responses of the carbon balance of terrestrial ecosystems to warming will feed back to the pace of climate change, but the size and direction of this feedback are poorly constrained. Least known are the effects of warming on carbon losses from soil, and clarifying the major microbial controls is an important research frontier. This study uses a series of experiments and observations to investigate microbial, including autotrophic taxa, and plant controls of net ecosystem productivity in response to warming in intact ecosystems. Field warming is achieved using open-top chambers paired with control plots, arrayed along a productivity gradient. Along this gradient incoming and outgoing carbon fluxes will be measured at the ecosystem-level. The goal is to tie warming-induced shifts in net ecosystem carbon balance to warming effects on soil microbes and plants. The field study will be supplemented with lab temperature incubations. Because soil microbes dominate biogeochemical cycles in Antarctica, a major focus of this study is to determine warming responses of bacteria, fungi and archaea. This is achieved using a cutting-edge stable isotope technique, quantitative stable isotope probing (qSIP) developed by the proposing research team, that can identify the taxa that are active and involved in processing new carbon. This technique can identify individual microbial taxa that are actively participating in biogeochemical cycling of nutrients (through combined use of 18O-water and 13C-bicarbonate) and thus can be distinguished from those that are simply present (cold-preserved). The study further assesses photosynthetic uptake of carbon by the vegetation and their sensitivity to warming. Results will advance research in climate change, plant and soil microbial ecology, and ecosystem modeling.", "east": -63.0, "geometry": "POINT(-64 -64.75)", "instruments": null, "is_usap_dc": true, "keywords": "Palmer Station; TERRESTRIAL ECOSYSTEMS; USA/NSF; AMD; Amd/Us; USAP-DC; FIELD SURVEYS", "locations": "Palmer Station", "north": -64.5, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Earth Sciences; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "van Gestel, Natasja", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Antarctica as a Model System for Responses of Terrestrial Carbon Balance to Warming", "uid": "p0010251", "west": -65.0}, {"awards": "2001033 Makovicky, Peter; 1341645 Makovicky, Peter; 1341304 Sidor, Christian; 1341475 Smith, Nathan; 1341376 Tabor, Neil", "bounds_geometry": "POLYGON((-180 -84,-178 -84,-176 -84,-174 -84,-172 -84,-170 -84,-168 -84,-166 -84,-164 -84,-162 -84,-160 -84,-160 -84.3,-160 -84.6,-160 -84.9,-160 -85.2,-160 -85.5,-160 -85.8,-160 -86.1,-160 -86.4,-160 -86.7,-160 -87,-162 -87,-164 -87,-166 -87,-168 -87,-170 -87,-172 -87,-174 -87,-176 -87,-178 -87,180 -87,178.5 -87,177 -87,175.5 -87,174 -87,172.5 -87,171 -87,169.5 -87,168 -87,166.5 -87,165 -87,165 -86.7,165 -86.4,165 -86.1,165 -85.8,165 -85.5,165 -85.2,165 -84.9,165 -84.6,165 -84.3,165 -84,166.5 -84,168 -84,169.5 -84,171 -84,172.5 -84,174 -84,175.5 -84,177 -84,178.5 -84,-180 -84))", "dataset_titles": "Lower Triassic Antarctic vertebrate fossils at Field Museum, Chicago, IL", "datasets": [{"dataset_uid": "601511", "doi": "10.15784/601511", "keywords": "Allan Hills; Antarctica; Fremouw Formation; Lystrosaurus; Permo-Triassic Extinction; Prolacerta; Sample Location; Thrinaxofon; Triassic", "people": "Makovicky, Peter", "repository": "USAP-DC", "science_program": null, "title": "Lower Triassic Antarctic vertebrate fossils at Field Museum, Chicago, IL", "url": "https://www.usap-dc.org/view/dataset/601511"}], "date_created": "Tue, 29 Jun 2021 00:00:00 GMT", "description": "This project will advance our understanding of Antarctic life during the Permian and Triassic. We will apply an interdisciplinary approach to address relationships between environmental change, faunal composition, and biogeographic patterns in the context of the high-latitude strata preserved in the Buckley and Fremouw formations in the Shackleton Glacier region. We will use multiple types of data to assess paleoenvironment, including: 1) paleosol morphology; 2) paleosol geochemistry; 3) pedogenic organic matter; and 4) fossil wood chronology and stable isotopes. The Fremouw Formation of Antarctica preserves the highest paleolatitude tetrapod fauna of the entire Triassic (~70\u00b0 S) and thus has the potential to shed important light on the evolution of polar life during the early Mesozoic. We will collect new fossils from known localities to understand the relationship between Antarctic and southern African tetrapod faunas. Furthermore, we will refine the stratigraphic, sedimentological, and geochronological framework for these Mesozoic faunas, which will include using U/Pb detrital zircon dating to provide the first dates for these vertebrate assemblages. In the lab, we will examine the biology of Triassic vertebrates from Antarctica by comparing their bone and tusk histology to conspecifics from lower paleolatitudes. In addition, we will test Bergmann\u2019s Rule with six species (viz. Lystrosaurus curvatus, L. maccaigi, L. murrayi, Prolacerta broomi, Procolophon trigoniceps, and Thrinaxodon liorhinus). The Early Triassic presents a unique opportunity to perform such investigations as there is no other geologic interval in which species occurring in Antarctica can be compared to conspecifics across a range of paleolatitudes.", "east": -160.0, "geometry": "POINT(-177.5 -85.5)", "instruments": null, "is_usap_dc": true, "keywords": "REPTILES; FIELD SURVEYS; USA/NSF; PALEOCLIMATE RECONSTRUCTIONS; Triassic; USAP-DC; TERRESTRIAL ECOSYSTEMS; MACROFOSSILS; Amd/Us; Fossils; Shackleton Glacier; LAND RECORDS; ANIMALS/VERTEBRATES; AMD", "locations": "Shackleton Glacier", "north": -84.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Sidor, Christian; Smith, Nathan; Makovicky, Peter; Tabor, Neil", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.0, "title": "Collaborative Research: Understanding the evolution of high-latitude Permo-Triassic paleoenvironments and their vertebrate communities", "uid": "p0010213", "west": 165.0}, {"awards": "1341736 Adams, Byron", "bounds_geometry": "POLYGON((-177.4099 -84.4661,-177.08229 -84.4661,-176.75468 -84.4661,-176.42707 -84.4661,-176.09946 -84.4661,-175.77185 -84.4661,-175.44424 -84.4661,-175.11663000000001 -84.4661,-174.78902 -84.4661,-174.46141 -84.4661,-174.1338 -84.4661,-174.1338 -84.56828,-174.1338 -84.67045999999999,-174.1338 -84.77264,-174.1338 -84.87482,-174.1338 -84.977,-174.1338 -85.07918,-174.1338 -85.18136,-174.1338 -85.28354,-174.1338 -85.38571999999999,-174.1338 -85.4879,-174.46141 -85.4879,-174.78902 -85.4879,-175.11663000000001 -85.4879,-175.44424 -85.4879,-175.77185 -85.4879,-176.09946 -85.4879,-176.42707 -85.4879,-176.75468 -85.4879,-177.08229 -85.4879,-177.4099 -85.4879,-177.4099 -85.38571999999999,-177.4099 -85.28354,-177.4099 -85.18136,-177.4099 -85.07918,-177.4099 -84.977,-177.4099 -84.87482,-177.4099 -84.77264,-177.4099 -84.67045999999999,-177.4099 -84.56828,-177.4099 -84.4661))", "dataset_titles": "Dataset DS-TAMS: Genetic diversity of Collembola from the Transantarctic Mountains; GenBank accession numbers MN619477 to MN619610; Meteoric 10Be data of soils from the Shackleton Glacier region; Shackleton Glacier region soil water-soluble geochemical data; Shackleton Glacier region water-soluble salt isotopes; Soil invertebrate surveys from the Shackleton Glacier region of Antarctica during the 2017-2018 austral summer", "datasets": [{"dataset_uid": "200175", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "GenBank accession numbers MN619477 to MN619610", "url": "https://www.ncbi.nlm.nih.gov/nuccore/MN619477"}, {"dataset_uid": "200174", "doi": "10.5883/DS-TAMS", "keywords": null, "people": null, "repository": "Barcode of Life Datasystems (BOLD)", "science_program": null, "title": "Dataset DS-TAMS: Genetic diversity of Collembola from the Transantarctic Mountains", "url": "http://dx.doi.org/10.5883/DS-TAMS"}, {"dataset_uid": "601419", "doi": "10.15784/601419", "keywords": "Antarctica; Geochemistry; Nitrate; Shackleton Glacier; Stable Isotopes; Sulfate; Transantarctic Mountains", "people": "Gardner, Christopher B.; Lyons, W. Berry; Diaz, Melisa A.", "repository": "USAP-DC", "science_program": null, "title": "Shackleton Glacier region water-soluble salt isotopes", "url": "https://www.usap-dc.org/view/dataset/601419"}, {"dataset_uid": "601421", "doi": "10.15784/601421", "keywords": "Antarctica; Be-10; Beryllium-10; Cosmogenic Radionuclides; Geochemistry; Geomorphology; Shackleton Glacier; Surface Exposure Dates", "people": "Diaz, Melisa A.", "repository": "USAP-DC", "science_program": null, "title": "Meteoric 10Be data of soils from the Shackleton Glacier region", "url": "https://www.usap-dc.org/view/dataset/601421"}, {"dataset_uid": "200258", "doi": "doi:10.6073/pasta/7959821e5f6f8d56d94bb6a26873b3ae", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "Soil invertebrate surveys from the Shackleton Glacier region of Antarctica during the 2017-2018 austral summer", "url": "https://doi.org/10.6073/pasta/7959821e5f6f8d56d94bb6a26873b3ae"}, {"dataset_uid": "601418", "doi": "10.15784/601418", "keywords": "Antarctica; Geochemistry; Shackleton Glacier", "people": "Gardner, Christopher B.; Lyons, W. Berry; Diaz, Melisa A.", "repository": "USAP-DC", "science_program": null, "title": "Shackleton Glacier region soil water-soluble geochemical data", "url": "https://www.usap-dc.org/view/dataset/601418"}], "date_created": "Mon, 02 Nov 2020 00:00:00 GMT", "description": "The project will characterize the functional, taxonomic, biotic and abiotic drivers of soil ecosystems in the Trans Antarctic Mountains (one of the most remote and harsh terrestrial landscapes on the planet). The work will utilize new high-throughput DNA and RNA sequencing technologies to identify members of the microbial communities and determine if the microbial community structures are independent of local environmental heterogeneities. In addition the project will determine if microbial diversity and function are correlated with time since the last glacial maximum (LGM). The expected results will greatly contribute to our knowledge regarding rates of microbial succession and help define the some of the limits to life and life-maintaining processes on Earth.\u003cbr/\u003e\u003cbr/\u003eThe project will analyze genomes and RNA derived from these genomes to describe the relationships between biodiversity and ecosystem functioning from soils above and below LGM elevations and to correlate these with the environmental drivers associated with their development during the last ~18,000 years. The team will identify the taxonomic diversity and the functional genetic composition within a broad suite of soil biota and examine their patterns of assembly and distribution within the framework of their geological legacies. The project will mentor participants from undergraduate students to postdoctoral researchers and prepare them to effectively engage in research to meet their career aspirations. The project will contribute to ongoing public education efforts through relationships with K-12 teachers and administrators- to include University-Public School partnerships. Less formal activities include public lecture series and weblogs aimed at providing information on Antarctic polar desert ecosystems to the general public. Targeted classrooms near each PI\u0027s institution will participate in online, real-time discussions about current topics in Antarctic ecosystems research.", "east": -174.1338, "geometry": "POINT(-175.77185 -84.977)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; LABORATORY; AMD; Amd/Us; USA/NSF; TERRESTRIAL ECOSYSTEMS; Transantarctic Mountains; USAP-DC", "locations": "Transantarctic Mountains", "north": -84.4661, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Adams, Byron; Fierer, Noah; Wall, Diana; Diaz, Melisa A.; Gardner, Christopher B.; Lyons, W. Berry", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "NCBI GenBank", "repositories": "Barcode of Life Datasystems (BOLD); EDI; NCBI GenBank; USAP-DC", "science_programs": null, "south": -85.4879, "title": "Collaborative Research: The Role of Glacial History on the Structure and Functioning of Ecological Communities in the Shackleton Glacier Region of the Transantarctic Mountains", "uid": "p0010140", "west": -177.4099}, {"awards": "1637708 Gooseff, Michael", "bounds_geometry": "POLYGON((160 -77.25,160.5 -77.25,161 -77.25,161.5 -77.25,162 -77.25,162.5 -77.25,163 -77.25,163.5 -77.25,164 -77.25,164.5 -77.25,165 -77.25,165 -77.375,165 -77.5,165 -77.625,165 -77.75,165 -77.875,165 -78,165 -78.125,165 -78.25,165 -78.375,165 -78.5,164.5 -78.5,164 -78.5,163.5 -78.5,163 -78.5,162.5 -78.5,162 -78.5,161.5 -78.5,161 -78.5,160.5 -78.5,160 -78.5,160 -78.375,160 -78.25,160 -78.125,160 -78,160 -77.875,160 -77.75,160 -77.625,160 -77.5,160 -77.375,160 -77.25))", "dataset_titles": "EDI Data Portal: McMurdo Dry Valleys LTER; McMurdo Dry Valleys LTER Data Repository", "datasets": [{"dataset_uid": "200036", "doi": "", "keywords": null, "people": null, "repository": "LTER", "science_program": null, "title": "McMurdo Dry Valleys LTER Data Repository", "url": "http://mcm.lternet.edu/power-search/data-set"}, {"dataset_uid": "200037", "doi": "", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "EDI Data Portal: McMurdo Dry Valleys LTER", "url": "https://portal.edirepository.org/nis/browseServlet?searchValue=MCM"}], "date_created": "Fri, 31 May 2019 00:00:00 GMT", "description": "The McMurdo Dry Valleys, Antarctica, are a mosaic of terrestrial and aquatic ecosystems in a cold desert. The McMurdo Long Term Ecological Research (LTER) project has been observing these ecosystems since 1993 and this award will support key long-term measurements, manipulation experiments, synthesis, and modeling to test current theories on ecosystem structure and function. Data collection is focused on meteorology and physical and biological dimensions of soils, streams, lakes, glaciers, and permafrost. The long-term measurements show that biological communities have adapted to the seasonally cold, dark, and arid conditions that prevail for all but a short period in the austral summer. Physical (climate and geological) drivers impart a dynamic connectivity among portions of the Dry Valley landscape over seasonal to millennial time scales. For instance, lakes and soils have been connected through cycles of lake-level rise and fall over the past 20,000 years while streams connect glaciers to lakes over seasonal time scales. Overlaid upon this physical system are biotic communities that are structured by the environment and by the movement of individual organisms within and between the glaciers, streams, lakes, and soils. The new work to be conducted at the McMurdo LTER site will explore how the layers of connectivity in the McMurdo Dry Valleys influence ecosystem structure and function. \r\n\r\nThis project will test the hypothesis that increased ecological connectivity following enhanced melt conditions within the McMurdo Dry Valleys ecosystem will amplify exchange of biota, energy, and matter, homogenizing ecosystem structure and functioning. This hypothesis will be tested with new and continuing experiments that examine: 1) how climate variation alters connectivity among landscape units, and 2) how biota are connected across a heterogeneous landscape using state-of-the-science tools and methods including automated sensor networks, analysis of seasonal satellite imagery, biogeochemical analyses, and next-generation sequencing. McMurdo LTER education programs and outreach activities will be continued, and expanded with new programs associated with the 200th anniversary of the first recorded sightings of Antarctica. These activities will advance societal understanding of how polar ecosystems respond to change. McMurdo LTER will continue its mission of training and mentoring students, postdocs, and early career scientists as the next generation of leaders in polar ecosystem science, and lead the development of international environmental stewardship protocols for human activities in the region.", "east": 165.0, "geometry": "POINT(162.5 -77.875)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "ECOSYSTEM FUNCTIONS; NOT APPLICABLE; Antarctica; RIVERS/STREAM; USAP-DC; TERRESTRIAL ECOSYSTEMS; LAKE/POND; Polar", "locations": "Antarctica; Polar", "north": -77.25, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Gooseff, Michael N.; Takacs-Vesbach, Cristina; Howkins, Adrian; McKnight, Diane; Doran, Peter; Adams, Byron; Barrett, John; Morgan-Kiss, Rachael; Priscu, John", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "LTER", "repositories": "EDI; LTER", "science_programs": "LTER", "south": -78.5, "title": "LTER: Ecosystem Response to Amplified Landscape Connectivity in the McMurdo Dry Valleys, Antarctica", "uid": "p0010031", "west": 160.0}, {"awards": "1544526 Omelon, Christopher", "bounds_geometry": "POLYGON((160 -76.5,160.37 -76.5,160.74 -76.5,161.11 -76.5,161.48 -76.5,161.85 -76.5,162.22 -76.5,162.59 -76.5,162.96 -76.5,163.33 -76.5,163.7 -76.5,163.7 -76.63,163.7 -76.76,163.7 -76.89,163.7 -77.02,163.7 -77.15,163.7 -77.28,163.7 -77.41,163.7 -77.54,163.7 -77.67,163.7 -77.8,163.33 -77.8,162.96 -77.8,162.59 -77.8,162.22 -77.8,161.85 -77.8,161.48 -77.8,161.11 -77.8,160.74 -77.8,160.37 -77.8,160 -77.8,160 -77.67,160 -77.54,160 -77.41,160 -77.28,160 -77.15,160 -77.02,160 -76.89,160 -76.76,160 -76.63,160 -76.5))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 09 May 2019 00:00:00 GMT", "description": "Cryptoendoliths are organisms that colonize microscopic cavities of rocks, which give them protection and allow them to inhabit extreme environments, such as the cold, arid desert of the Dry Valleys of Antarctica. Fossilized cryptoendoliths preserve the forms and features of organisms from the past and thus provide a unique opportunity to study the organisms\u0027 life histories and environments. To study this fossil record, there needs to be a better understanding of what environmental conditions allow these fossils to form. A climate gradient currently exists in the Dry Valleys that allows us to study living, dead, and fossilized cryptoendoliths from mild to increasingly harsh environments; providing insight to the limits of life and how these fossils are formed. This project will develop instruments to detect the biological activity of the live microorganisms and conduct laboratory experiments to determine the environmental limits of their survival. The project also will characterize the chemical and structural features of the living, dead, and fossilized cryptoendoliths to understand how they become fossilized. Knowing how microorganisms are preserved as fossils in cold and dry environments like Antarctica can help to refine methods that can be used to search for and identify evidence for extraterrestrial life in similar habitats on planets such as Mars. This project includes training of graduate and undergraduate students.\r\n\r\nLittle is known about cryptoendolithic microfossils and their formation processes in cold, arid terrestrial habitats of the Dry Valleys of Antarctica, where a legacy of activity is discernible in the form of biosignatures including inorganic materials and microbial fossils that preserve and indicate traces of past biological activity. The overarching goals of the proposed work are: (1) to determine how rates of microbial respiration and biodegradation of organic matter control microbial fossilization; and (2) to characterize microbial fossils and their living counterparts to elucidate mechanisms for fossilization. Using samples collected across an increasingly harsher (more cold and dry) climatic gradient that encompasses living, dead, and fossilized cryptoendolithic microorganisms, the proposed work will: (1) develop an instrument to be used in the field that can measure small concentrations of CO2 in cryptoendolithic habitats in situ; (2) use microscopy techniques to characterize endolithic microorganisms as well as the chemical and morphological characteristics of biosignatures and microbial fossils. A metagenomic survey of microbial communities in these samples will be used to characterize differences in diversity, identify if specific microorganisms (e.g. prokaryotes, eukaryotes) are more capable of surviving under these harsh climatic conditions, and to corroborate microscopic observations of the viability states of these microorganisms.", "east": 163.7, "geometry": "POINT(161.85 -77.15)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; Antarctica; NOT APPLICABLE; TERRESTRIAL ECOSYSTEMS", "locations": "Antarctica", "north": -76.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Omelon, Christopher; Breecker, Daniel; Bennett, Philip", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repositories": null, "science_programs": null, "south": -77.8, "title": "Activity, Preservation and Fossilization of Cryptoendolithic Microorganisms in Antarctica", "uid": "p0010028", "west": 160.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Collaborative Research: BoCP-Design: Climate change alteration of soils functional biodiversity of the Páramos, Colombia
|
2325922 |
2024-02-06 | Couradeau, Estelle; Maximova, Siela; Machado, Jose Luis | No dataset link provided | As climate change progresses, it is activating both master switches of microbial activity simultaneously: moisture and temperature. In soils, microbes serve critical ecosystem services including nutrient cycling and carbon sequestration. The fact that we do not fully understand how microbes act on carbon pools in soils and how these will change with the rapidly changing climate is extremely worrisome. Here we propose to tackle this question by initiating an interdisciplinary action studying the soils of the Colombian Páramos. The Páramos are a unique high-altitude hotspot of biodiversity in the Andes that render critical ecosystem services, including water capture and carbon sequestration. If the hydrology of the system has gained a lot of attention over the past few years, the fate of the extensive pools of organic carbon in these vast peatlands has remained unexplored. The unique geographic situation of the cold and humid Páramos being already on the edge of their geo-climatic range provides us with an unparalleled opportunity to study a soil microbial community from carbon-rich soils that are extremely vulnerable to both the raise in temperature and decrease of moisture that will impact soils around the globe as climate change progresses. Our project aims at starting to address the need to disentangle the effect of moisture and temperature on the activity and composition of the microbial communities controlling the fate of organic carbon in soils (Objective 1), while assembling an international team of experts capable of scaling up the understanding of these processes at the landscape and regional level by integrating the functioning of the belowground microbial community with the above-ground vegetation (Objective 2). | POLYGON((-73.783 4.679,-73.7827 4.679,-73.7824 4.679,-73.7821 4.679,-73.7818 4.679,-73.7815 4.679,-73.7812 4.679,-73.7809 4.679,-73.7806 4.679,-73.7803 4.679,-73.78 4.679,-73.78 4.6789,-73.78 4.6788,-73.78 4.6787,-73.78 4.6786,-73.78 4.6785,-73.78 4.6784,-73.78 4.6783,-73.78 4.6782,-73.78 4.6781,-73.78 4.678,-73.7803 4.678,-73.7806 4.678,-73.7809 4.678,-73.7812 4.678,-73.7815 4.678,-73.7818 4.678,-73.7821 4.678,-73.7824 4.678,-73.7827 4.678,-73.783 4.678,-73.783 4.6781,-73.783 4.6782,-73.783 4.6783,-73.783 4.6784,-73.783 4.6785,-73.783 4.6786,-73.783 4.6787,-73.783 4.6788,-73.783 4.6789,-73.783 4.679)) | POINT(-73.7815 4.6785) | false | false | |||||
LTER: MCM6 - The Roles of Legacy and Ecological Connectivity in a Polar Desert Ecosystem
|
2224760 |
2023-11-14 | Gooseff, Michael N.; Adams, Byron; Barrett, John; Diaz, Melisa A.; Doran, Peter; Dugan, Hilary A.; Mackey, Tyler; Morgan-Kiss, Rachael; Salvatore, Mark; Takacs-Vesbach, Cristina; Zeglin, Lydia H. |
|
In this iteration of the McMurdo LTER project (MCM6), the project team will test ecological connectivity and stability theory in a system subject to strong physical drivers (geological legacies, extreme seasonality, and contemporary climate change) and driven by microbial organisms. Since microorganisms regulate most of the world's critical biogeochemical functions, these insights will be relevant far beyond polar ecosystems and will inform understanding and expectations of how natural and managed ecosystems respond to ongoing anthropogenic global change. MCM6 builds on previous foundational research, both in Antarctica and within the LTER network, to consider the temporal aspects of connectivity and how it relates to ecosystem stability. The project will examine how changes in the temporal variability of ecological connectivity interact with the legacies of the existing landscape that have defined habitats and biogeochemical cycling for millennia. The project team hypothesizes that the structure and functioning of the MDV ecosystem is dependent upon legacies and the contemporary frequency, duration, and magnitude of ecological connectivity. This hypothesis will be tested with new and continuing monitoring, experiments, and analyses of long-term datasets to examine: 1) the stability of these ecosystems as reflected by sentinel taxa, 2) the relationship between ecological legacies and ecosystem resilience, 3) the importance of material carryover during periods of low connectivity to maintaining biological activity and community stability, and 4) how changes in disturbance dynamics disrupt ecological cycles through the polar night. Tests of these hypotheses will occur in field and modeling activities using new and long-term datasets already collected. New datasets resulting from field activities will be made freely available via widely-known online databases (MCM LTER and EDI). The project team has also developed six Antarctic Core Ideas that encompass themes from data literacy to polar food webs and form a consistent thread across the education and outreach activities. Building on past success, collaborations will be established with teachers and artists embedded within the science teams, who will work to develop educational modules with science content informed by direct experience and artistic expression. Undergraduate mentoring efforts will incorporate computational methods through a new data-intensive scientific training program for MCM REU students. The project will also establish an Antarctic Research Experience for Community College Students at CU Boulder, to provide an immersive educational and research experience for students from diverse backgrounds in community colleges. MCM LTER will continue its mission of training and mentoring students, postdocs, and early career scientists as the next generation of leaders in polar ecosystem science and stewardship. Historically underrepresented participation will be expanded at each level of the project. To aid in these efforts, the project has established Education & Outreach and Diversity, Equity, and Inclusion committees to lead, coordinate, support, and integrate these activities through all aspects of MCM6. | POINT(162.87 -77) | POINT(162.87 -77) | false | false | |||||
EAGER: ANT LIA: Persist or Perish: Records of Microbial Survival and Long-term Persistence from the West Antarctic Ice Sheet
|
2228257 |
2023-05-31 | Michaud, Alexander; Winski, Dominic A. | No dataset link provided | The goals of this work are to determine the taxonomic identity of viable and preserved microbial cells, and decode the genetic repertoire that confers survival of burial and long-term viability within glacial ice. We will achieve these goals by utilizing subsamples from the ~65 ka record of the West Antarctic Ice Sheet Divide (WD) Ice Core. WD samples will be melted using the Desert Research Institute’s ice core melting system that is optimized for glaciobiological sampling. Microbial cells from the meltwater will be sorted using fluorescence-activated cell sorting, and individually sorted cells will have their genomes sequenced. The fluorescence-based methods will discern the viable (metabolically active) cells from those cells that are non-viable but preserved in the ice (DNA-containing). Our genomic analysis will identify the taxonomy of each cell, presence of known genes that confer survival in permanently frozen environments, and comparatively analyze genomes to determine the core set of genes required by viable cells to persist in an ice sheet. Accomplishing these goals contains significant risk because microbial cells within the ice sheet may have damaged membranes and DNA, rendering their genomes inadequate for sequencing. However, existing methods to study ice core biology cannot produce results with the low-biomass and small sample volumes from ice coring projects. While there are unknowns surrounding the suitability of the cells for flow cytometric sorting and single cell sequencing, making this project an exploratory endeavor; it will be a transformative step toward understanding the ecology of one of the most understudied environments on Earth. | POINT(-112.05 -79.28) | POINT(-112.05 -79.28) | false | false | |||||
Collaborative Research: ANT LIA Integrating Genomic and Phenotypic Analyses to understand Microbial Life in Antarctic Soils
|
2133684 |
2023-04-07 | Fierer, Noah; Quandt, Alisha A; Lemonte, Joshua | No dataset link provided | Not all of Antarctica is covered in ice. In fact, soils are common to many parts of Antarctica, and these soils are often unlike any others found on Earth. Antarctic soils harbor unique microorganisms able to cope with the extremely cold and dry conditions common to much of the continent. For decades, microbiologists have been drawn to the unique soils in Antarctica, yet critical knowledge gaps remain. Most notably, it is unclear what properties allow certain microbes to thrive in Antarctic soils. By using a range of methods, this project is developing comprehensive model that discovers the unique genomic features of soils diversity, distributions, and adaptations that allow Antarctic soil microbes to thrive in extreme environments. The proposed work will be relevant to researchers in many fields, including engineers seeking to develop new biotechnologies, ecologists studying the contributions of these microbial communities to the functioning of Antarctic ecosystems, microbiologists studying novel microbial adaptations to extreme environmental conditions, and even astrobiologists studying the potential for life on Mars. More generally, the proposed research presents an opportunity to advance our current understanding of the microbial life found in one of the more distinctive microbial habitats on Earth, a habitat that is inaccessible to many scientists and a habitat that is increasingly under threat from climate change. The research project explores the microbial diversity in Antarctic soils and links specific features to different soil types and environmental conditions. The overarching questions include: What microbial taxa are found in a variety of Antarctic environments? What are the environmental preferences of specific taxa or lineages? What are the genomic and phenotypic traits of microorganisms that allow them to persist in extreme environments and determine biogeographical differneces? This project will analyze archived soils collected from across Antarctica by a network of international collaborators, with samples selected to span broad gradients in soil and site conditions. The project uses cultivation-independent, high-throughput genomic analysis methods and cultivation-dependent approaches to analyze bacterial and fungal communities in soil samples. The results will be used to predict the distributions of specific taxa and lineages, obtain genomic information for the more ubiquitous and abundant taxa, and quantify growth responses in vitro across gradients in temperature, moisture, and salinity. This integration of ecological, environmental, genomic, and trait-based information will provide a comprehensive understanding of microbial life in Antarctic soils. This project will also help facilitate new collaborations between scientists across the globe while providing undergraduate students with ''hands-on'' research experiences that introduce the next generation of scientists to the field of Antarctic biology. This award reflects NSF''s statutory mission and has been deemed worthy of support through evaluation using the Foundation''s intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||
Collaborative Research: Reconstructing Late Holocene Ecosystem and Climate Shifts from Peat Records in the Western Antarctic Peninsula
|
1745068 1745082 |
2022-06-10 | Beilman, David; Booth, Robert |
|
Warming on the western Antarctic Peninsula in the later 20th century has caused widespread changes in the cryosphere (ice and snow) and terrestrial ecosystems. These recent changes along with longer-term climate and ecosystem histories will be deciphered using peat deposits. Peat accumulation can be used to assess the rate of glacial retreat and provide insight into ecological processes on newly deglaciated landscapes in the Antarctic Peninsula. This project builds on data suggesting recent ecosystem transformations that are linked to past climate of the western Antarctic Peninsula and provide a timeline to assess the extent and rate of recent glacial change. The study will produce a climate record for the coastal low-elevation terrestrial region, which will refine the major climate shifts of up to 6 degrees C in the recent past (last 12,000 years). A novel terrestrial record of the recent glacial history will provide insight into observed changes in climate and sea-ice dynamics in the western Antarctic Peninsula and allow for comparison with off-shore climate records captured in sediments. Observations and discoveries from this project will be disseminated to local schools and science centers. The project provides training and career development for a postdoctoral scientist as well as graduate and undergraduate students.<br/><br/>The research presents a new systematic survey to reconstruct ecosystem and climate change for the coastal low-elevation areas on the western Antarctic Peninsula (AP) using proxy records preserved in late Holocene peat deposits. Moss and peat samples will be collected and analyzed to generate a comprehensive data set of late-Holocene climate change and ecosystem dynamics. The goal is to document and understand the transformations of landscape and terrestrial ecosystems on the western AP during the late Holocene. The testable hypothesis is that coastal regions have experienced greater climate variability than evidenced in ice-core records and that past warmth has facilitated dramatic ecosystem and cryosphere response. A primary product of the project is a robust reconstruction of late Holocene climate changes for coastal low-elevation terrestrial areas using multiple lines of evidence from peat-based biological and geochemical proxies, which will be used to compare with climate records derived from marine sediments and ice cores from the AP region. These data will be used to test several ideas related to novel peat-forming ecosystems (such as Antarctic hairgrass bogs) in past warmer climates and climate controls over ecosystem establishment and migration to help assess the nature of the Little Ice Age cooling and cryosphere response. The chronology of peat cores will be established by radiocarbon dating of macrofossils and Bayesian modeling. The high-resolution time series of ecosystem and climate changes will help put the observed recent changes into a long-term context to bridge climate dynamics over different time scales.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-64.4 -62.4,-63.910000000000004 -62.4,-63.42 -62.4,-62.93000000000001 -62.4,-62.440000000000005 -62.4,-61.95 -62.4,-61.46 -62.4,-60.97 -62.4,-60.480000000000004 -62.4,-59.99 -62.4,-59.5 -62.4,-59.5 -62.7,-59.5 -63,-59.5 -63.3,-59.5 -63.6,-59.5 -63.900000000000006,-59.5 -64.2,-59.5 -64.5,-59.5 -64.80000000000001,-59.5 -65.10000000000001,-59.5 -65.4,-59.99 -65.4,-60.480000000000004 -65.4,-60.97 -65.4,-61.46 -65.4,-61.95 -65.4,-62.440000000000005 -65.4,-62.93000000000001 -65.4,-63.42 -65.4,-63.910000000000004 -65.4,-64.4 -65.4,-64.4 -65.10000000000001,-64.4 -64.80000000000001,-64.4 -64.5,-64.4 -64.2,-64.4 -63.900000000000006,-64.4 -63.6,-64.4 -63.3,-64.4 -63,-64.4 -62.7,-64.4 -62.4)) | POINT(-61.95 -63.900000000000006) | false | false | |||||
Collaborative Research: Moving Beyond the Margins: Modeling Water Availability and Habitable Terrestrial Ecosystems in the Polar Desert of the McMurdo Dry Valleys
|
2045880 2046260 |
2022-04-21 | Salvatore, Mark; Gooseff, Michael N.; Sokol, Eric; Barrett, John | No dataset link provided | Part I: Non-technical description: Water is life and nowhere is it more notable than in deserts. Within the drylands on Earth, the Antarctic deserts, represented in this study by the McMurdo Dry Valleys, exemplify life in extreme environments with scarce water, low temperatures and long periods of darkness during the polar winter. There is a scarcity of methods to determine water availability, data necessary to predict which species are successful in the drylands, unless measurements are done manually or with field instruments. This project aims to develop a remote method of determining soil moisture and use the new data to identify locations suitable for life. Combining these habitats with known species distributions in the McMurdo Dry Valleys, results from this project will predict which species should be present, and also what is the expected species distribution in a changing environment. In this way the project takes advantage of a combination of methods, from recent remote sensing products, ecological models and 30 years of field collections to bring a prediction of how life might change in the McMurdo Dry Valleys in a warmer, and possibly, moister future climate. This project benefits the National Science Foundation goals of expanding fundamental knowledge of Antarctic biota and the processes that sustain life in extreme environments. The knowledge acquired in this project will be disseminated to other drylands through training in high-school curricular programming in Native American communities of the Southwest U.S. Part II: Technical description: Terrestrial environments in Antarctica are characterized by low liquid water supply, sub-zero temperatures and the polar night in winter months. During summer, melting of snow patches, seasonal steams from glacial melt and vicinity to lakes provide a variety of environments that maintain life, not yet studied at landscape-scale level for habitat suitability and the processes that drive them. This project proposes to integrate remote sensing, hydrological models and ecological models to establish habitat suitability for species in the McMurdo Dry Valleys based on water availability. The approach is at a landscape level in order to establish present-day and future scenarios of species distribution. There are four main objectives: remote sensing development of moisture levels in soils, combining biological and soil data, building and calibrating models of habitat suitability by combining species distribution and environmental variability and applying statistical species distribution model. The field data needed to develop habitat suitability and calibration of models will leverage a the 30-year dataset collected by the McMurdo Long-Term Ecological Research program. Mechanistic models developed will be essential to predict species distribution in future climate scenarios. Training of post-doctoral researchers and a graduate student will prepare for the next generation of Antarctic scientists. Results from this project will train high-school students from Native American communities in the Southwestern U.S., where similar desert conditions exist. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((161.88 -77.47,162.075 -77.47,162.27 -77.47,162.465 -77.47,162.66 -77.47,162.855 -77.47,163.05 -77.47,163.245 -77.47,163.44 -77.47,163.635 -77.47,163.83 -77.47,163.83 -77.501,163.83 -77.532,163.83 -77.563,163.83 -77.594,163.83 -77.625,163.83 -77.656,163.83 -77.687,163.83 -77.718,163.83 -77.749,163.83 -77.78,163.635 -77.78,163.44 -77.78,163.245 -77.78,163.05 -77.78,162.855 -77.78,162.66 -77.78,162.465 -77.78,162.27 -77.78,162.075 -77.78,161.88 -77.78,161.88 -77.749,161.88 -77.718,161.88 -77.687,161.88 -77.656,161.88 -77.625,161.88 -77.594,161.88 -77.563,161.88 -77.532,161.88 -77.501,161.88 -77.47)) | POINT(162.855 -77.625) | false | false | |||||
Collaborative Research: Exploring the Functional Role of Antarctic Plants during Terrestrial Succession
|
1932876 |
2022-04-14 | Ball, Becky | No dataset link provided | Part I: Non-technical summary<br/>The Antarctic Peninsula warmed very rapidly in the late part of the 20th century, much faster than the global average, and this warming is predicted to resume and continue over the rest of the 21st century. One consequence of this rapid warming is the melting and subsequent retreat of glaciers, leading to an increase in newly-exposed land on the Peninsula that was previously covered with ice. Once new terrain is exposed, the process of ecological succession begins, with the arrival of early-colonizing plants, such as moss and lichens, and soil organisms - a process commonly referred to as the “greening” of Antarctica. Early stages of succession will be an increasingly common feature on the Antarctic Peninsula, but the mechanisms by which they occur on the Antarctic continent is not well understood. Once the plants have established on the newly-exposed soil, they can change many important properties, such as water dynamics, nutrient recycling, soil development, and habitat for microscopic organisms, which will ultimately determine the structure and functioning of the future ecosystem as it develops. These relationships between vegetation, soil, and the associated microorganisms, referred to as “plant-soil” interactions, are something we know virtually nothing about. This project will be the first to make a comprehensive study of how the type of colonizing plant, and the expansion of those plants from climate change, will influence terrestrial ecosystems in Antarctica. Understanding these processes is critical to understanding how the greening Antarctica is occurring and how soil communities and processes are influenced by these expanding plant communities. Through this work the research team, will also be intensively training undergraduate and graduate students, including training of students from underrepresented groups and collaborative training of students from Chile and the US. Additionally, the research groups will continue their focus on scientific outreach with K-12 schools and the general public to expand awareness of the effects of climate change in Antarctica.<br/><br/>Part II: Technical summary<br/>In this study, the researchers will use surveys across succession sites along the Antarctic Peninsula and Scotia Arc as well as a manipulative field experiment at glacier succession sites to test how species-specific plant functional traits impact soil properties and associated microbial and invertebrate communities in a greening Antarctica. In doing so, they will pursue three integrated aims to understand how Antarctic plant functional traits alter their soil environment and soil communities during succession after glacial retreat. AIM 1) Characterize six fundamental plant functional traits (thermal conductivity, water holding capacity, albedo, decomposability, tissue nutrient content, and secondary chemistry) among diverse Antarctica flora; AIM 2) Measure the relative effects of fundamental plant functional traits on soil physical properties and soil biogeochemistry across glacial succession gradients in Antarctica; and AIM 3) Measure the relative effects of fundamental plant functional traits on soil microbial and invertebrate communities across glacial succession gradients in Antarctica. They will explore how early-colonizing plants, especially mosses and lichens, alter soil physical, biogeochemical, and biological components, potentially impacting later patterns of succession. The researhcers will use intensive surveys of plant-soil interactions across succession sites and a manipulative transplant experiment in the South Shetland Islands, Antarctica to address their aims. The investigators will collect data on plant functional traits and their effects on soil physical properties, biogeochemistry, biotic abundance, and microbial metagenomics. The data collected will be the first comprehensive measures of the relative importance of plant functional types during glacial retreat and vegetative expansion from climate change in Antarctica, aiding our understanding of how plant functional group diversity and abundance are changing in a greening Antarctica.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-59.666116 -62.15,-59.5128377 -62.15,-59.3595594 -62.15,-59.2062811 -62.15,-59.0530028 -62.15,-58.8997245 -62.15,-58.7464462 -62.15,-58.5931679 -62.15,-58.4398896 -62.15,-58.2866113 -62.15,-58.133333 -62.15,-58.133333 -62.1731502,-58.133333 -62.1963004,-58.133333 -62.2194506,-58.133333 -62.2426008,-58.133333 -62.265751,-58.133333 -62.2889012,-58.133333 -62.3120514,-58.133333 -62.3352016,-58.133333 -62.3583518,-58.133333 -62.381502,-58.2866113 -62.381502,-58.4398896 -62.381502,-58.5931679 -62.381502,-58.7464462 -62.381502,-58.8997245 -62.381502,-59.0530028 -62.381502,-59.2062811 -62.381502,-59.3595594 -62.381502,-59.5128377 -62.381502,-59.666116 -62.381502,-59.666116 -62.3583518,-59.666116 -62.3352016,-59.666116 -62.3120514,-59.666116 -62.2889012,-59.666116 -62.265751,-59.666116 -62.2426008,-59.666116 -62.2194506,-59.666116 -62.1963004,-59.666116 -62.1731502,-59.666116 -62.15)) | POINT(-58.8997245 -62.265751) | false | false | |||||
Collaborative Research: Climatic and Environmental Constraints on Aboveground-Belowground Linkages and Diversity across a Latitudinal Gradient in Antarctica
|
1341429 |
2022-04-14 | Ball, Becky; Van Horn, David |
|
The Antarctic Peninsula is experiencing rapid environmental changes, which will influence the community of organisms that live there. However, we know very little about the microscopic organisms living in the soil in this region. Soil biology (including bacteria, fungi, and invertebrates) are responsible for many important processes that sustain ecosystems, such as nutrient recycling. Without understanding the environmental conditions that influence soil biodiversity along the Antarctic Peninsula, our ability to predict the consequences of global change is strongly limited. This project will identify the soil community at many sites along the Antarctic Peninsula to discover how the community changes with environmental conditions from north to south. The project will also identify how the soil community at each site differs under different types of plants. Understanding more about the ways in which plant cover and climate conditions influence soil biodiversity will allow predictions of how communities will respond to future changes such as climate warming and invasive plant species. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. The investigators will engage with outreach to K-12 students and the general public both directly and through a blog and will participate in workshops for K-12 teachers. Additionally, the project will provide the opportunity for many undergraduate and graduate students of diverse backgrounds to be trained in interdisciplinary research.<br/><br/>The investigators will determine the nature and strength of plant-soil linkages in influencing soil community composition and diversity over a latitudinal gradient of environmental and climatic conditions. The goals are to (1) increase our understanding of current biogeography and diversity by providing in-depth knowledge of soil community composition and complexity as it relates to environmental and climatic characteristics; and (2) determine the nature of aboveground-belowground community linkages over varying spatial scales. The team will identify the composition and diversity of soil communities under key habitat types (grass, moss, algae, etc.). Microbial communities (bacteria, fungi, archaea) will be investigated using pyrosequencing for community composition analysis and metagenomic sequencing to identify functional capabilities. Invertebrates (nematodes, tardigrades, rotifers, microarthropods) will be extracted and identified to the lowest possible taxonomic level. Soil chemistry (pH, nutrient content, soil moisture, etc.) and climate conditions will be measured to determine the relationship between soil communities and physical and chemical properties. Structural equation modeling will be used to identify aboveground-belowground linkage pathways and quantify link strengths under varying environmental conditions. | POLYGON((-68.205783 -60.706633,-65.9444531 -60.706633,-63.6831232 -60.706633,-61.4217933 -60.706633,-59.1604634 -60.706633,-56.8991335 -60.706633,-54.6378036 -60.706633,-52.3764737 -60.706633,-50.1151438 -60.706633,-47.8538139 -60.706633,-45.592484 -60.706633,-45.592484 -62.1204014,-45.592484 -63.5341698,-45.592484 -64.9479382,-45.592484 -66.3617066,-45.592484 -67.775475,-45.592484 -69.1892434,-45.592484 -70.6030118,-45.592484 -72.0167802,-45.592484 -73.4305486,-45.592484 -74.844317,-47.8538139 -74.844317,-50.1151438 -74.844317,-52.3764737 -74.844317,-54.6378036 -74.844317,-56.8991335 -74.844317,-59.1604634 -74.844317,-61.4217933 -74.844317,-63.6831232 -74.844317,-65.9444531 -74.844317,-68.205783 -74.844317,-68.205783 -73.4305486,-68.205783 -72.0167802,-68.205783 -70.6030118,-68.205783 -69.1892434,-68.205783 -67.775475,-68.205783 -66.3617066,-68.205783 -64.9479382,-68.205783 -63.5341698,-68.205783 -62.1204014,-68.205783 -60.706633)) | POINT(-56.8991335 -67.775475) | false | false | |||||
Antarctica as a Model System for Responses of Terrestrial Carbon Balance to Warming
|
1643871 1947562 |
2021-08-21 | van Gestel, Natasja |
|
Responses of the carbon balance of terrestrial ecosystems to warming will feed back to the pace of climate change, but the size and direction of this feedback are poorly constrained. Least known are the effects of warming on carbon losses from soil, and clarifying the major microbial controls is an important research frontier. This study uses a series of experiments and observations to investigate microbial, including autotrophic taxa, and plant controls of net ecosystem productivity in response to warming in intact ecosystems. Field warming is achieved using open-top chambers paired with control plots, arrayed along a productivity gradient. Along this gradient incoming and outgoing carbon fluxes will be measured at the ecosystem-level. The goal is to tie warming-induced shifts in net ecosystem carbon balance to warming effects on soil microbes and plants. The field study will be supplemented with lab temperature incubations. Because soil microbes dominate biogeochemical cycles in Antarctica, a major focus of this study is to determine warming responses of bacteria, fungi and archaea. This is achieved using a cutting-edge stable isotope technique, quantitative stable isotope probing (qSIP) developed by the proposing research team, that can identify the taxa that are active and involved in processing new carbon. This technique can identify individual microbial taxa that are actively participating in biogeochemical cycling of nutrients (through combined use of 18O-water and 13C-bicarbonate) and thus can be distinguished from those that are simply present (cold-preserved). The study further assesses photosynthetic uptake of carbon by the vegetation and their sensitivity to warming. Results will advance research in climate change, plant and soil microbial ecology, and ecosystem modeling. | POLYGON((-65 -64.5,-64.8 -64.5,-64.6 -64.5,-64.4 -64.5,-64.2 -64.5,-64 -64.5,-63.8 -64.5,-63.6 -64.5,-63.4 -64.5,-63.2 -64.5,-63 -64.5,-63 -64.55,-63 -64.6,-63 -64.65,-63 -64.7,-63 -64.75,-63 -64.8,-63 -64.85,-63 -64.9,-63 -64.95,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.95,-65 -64.9,-65 -64.85,-65 -64.8,-65 -64.75,-65 -64.7,-65 -64.65,-65 -64.6,-65 -64.55,-65 -64.5)) | POINT(-64 -64.75) | false | false | |||||
Collaborative Research: Understanding the evolution of high-latitude Permo-Triassic paleoenvironments and their vertebrate communities
|
2001033 1341645 1341304 1341475 1341376 |
2021-06-29 | Sidor, Christian; Smith, Nathan; Makovicky, Peter; Tabor, Neil |
|
This project will advance our understanding of Antarctic life during the Permian and Triassic. We will apply an interdisciplinary approach to address relationships between environmental change, faunal composition, and biogeographic patterns in the context of the high-latitude strata preserved in the Buckley and Fremouw formations in the Shackleton Glacier region. We will use multiple types of data to assess paleoenvironment, including: 1) paleosol morphology; 2) paleosol geochemistry; 3) pedogenic organic matter; and 4) fossil wood chronology and stable isotopes. The Fremouw Formation of Antarctica preserves the highest paleolatitude tetrapod fauna of the entire Triassic (~70° S) and thus has the potential to shed important light on the evolution of polar life during the early Mesozoic. We will collect new fossils from known localities to understand the relationship between Antarctic and southern African tetrapod faunas. Furthermore, we will refine the stratigraphic, sedimentological, and geochronological framework for these Mesozoic faunas, which will include using U/Pb detrital zircon dating to provide the first dates for these vertebrate assemblages. In the lab, we will examine the biology of Triassic vertebrates from Antarctica by comparing their bone and tusk histology to conspecifics from lower paleolatitudes. In addition, we will test Bergmann’s Rule with six species (viz. Lystrosaurus curvatus, L. maccaigi, L. murrayi, Prolacerta broomi, Procolophon trigoniceps, and Thrinaxodon liorhinus). The Early Triassic presents a unique opportunity to perform such investigations as there is no other geologic interval in which species occurring in Antarctica can be compared to conspecifics across a range of paleolatitudes. | POLYGON((-180 -84,-178 -84,-176 -84,-174 -84,-172 -84,-170 -84,-168 -84,-166 -84,-164 -84,-162 -84,-160 -84,-160 -84.3,-160 -84.6,-160 -84.9,-160 -85.2,-160 -85.5,-160 -85.8,-160 -86.1,-160 -86.4,-160 -86.7,-160 -87,-162 -87,-164 -87,-166 -87,-168 -87,-170 -87,-172 -87,-174 -87,-176 -87,-178 -87,180 -87,178.5 -87,177 -87,175.5 -87,174 -87,172.5 -87,171 -87,169.5 -87,168 -87,166.5 -87,165 -87,165 -86.7,165 -86.4,165 -86.1,165 -85.8,165 -85.5,165 -85.2,165 -84.9,165 -84.6,165 -84.3,165 -84,166.5 -84,168 -84,169.5 -84,171 -84,172.5 -84,174 -84,175.5 -84,177 -84,178.5 -84,-180 -84)) | POINT(-177.5 -85.5) | false | false | |||||
Collaborative Research: The Role of Glacial History on the Structure and Functioning of Ecological Communities in the Shackleton Glacier Region of the Transantarctic Mountains
|
1341736 |
2020-11-02 | Adams, Byron; Fierer, Noah; Wall, Diana; Diaz, Melisa A.; Gardner, Christopher B.; Lyons, W. Berry | The project will characterize the functional, taxonomic, biotic and abiotic drivers of soil ecosystems in the Trans Antarctic Mountains (one of the most remote and harsh terrestrial landscapes on the planet). The work will utilize new high-throughput DNA and RNA sequencing technologies to identify members of the microbial communities and determine if the microbial community structures are independent of local environmental heterogeneities. In addition the project will determine if microbial diversity and function are correlated with time since the last glacial maximum (LGM). The expected results will greatly contribute to our knowledge regarding rates of microbial succession and help define the some of the limits to life and life-maintaining processes on Earth.<br/><br/>The project will analyze genomes and RNA derived from these genomes to describe the relationships between biodiversity and ecosystem functioning from soils above and below LGM elevations and to correlate these with the environmental drivers associated with their development during the last ~18,000 years. The team will identify the taxonomic diversity and the functional genetic composition within a broad suite of soil biota and examine their patterns of assembly and distribution within the framework of their geological legacies. The project will mentor participants from undergraduate students to postdoctoral researchers and prepare them to effectively engage in research to meet their career aspirations. The project will contribute to ongoing public education efforts through relationships with K-12 teachers and administrators- to include University-Public School partnerships. Less formal activities include public lecture series and weblogs aimed at providing information on Antarctic polar desert ecosystems to the general public. Targeted classrooms near each PI's institution will participate in online, real-time discussions about current topics in Antarctic ecosystems research. | POLYGON((-177.4099 -84.4661,-177.08229 -84.4661,-176.75468 -84.4661,-176.42707 -84.4661,-176.09946 -84.4661,-175.77185 -84.4661,-175.44424 -84.4661,-175.11663000000001 -84.4661,-174.78902 -84.4661,-174.46141 -84.4661,-174.1338 -84.4661,-174.1338 -84.56828,-174.1338 -84.67045999999999,-174.1338 -84.77264,-174.1338 -84.87482,-174.1338 -84.977,-174.1338 -85.07918,-174.1338 -85.18136,-174.1338 -85.28354,-174.1338 -85.38571999999999,-174.1338 -85.4879,-174.46141 -85.4879,-174.78902 -85.4879,-175.11663000000001 -85.4879,-175.44424 -85.4879,-175.77185 -85.4879,-176.09946 -85.4879,-176.42707 -85.4879,-176.75468 -85.4879,-177.08229 -85.4879,-177.4099 -85.4879,-177.4099 -85.38571999999999,-177.4099 -85.28354,-177.4099 -85.18136,-177.4099 -85.07918,-177.4099 -84.977,-177.4099 -84.87482,-177.4099 -84.77264,-177.4099 -84.67045999999999,-177.4099 -84.56828,-177.4099 -84.4661)) | POINT(-175.77185 -84.977) | false | false | ||||||
LTER: Ecosystem Response to Amplified Landscape Connectivity in the McMurdo Dry Valleys, Antarctica
|
1637708 |
2019-05-31 | Gooseff, Michael N.; Takacs-Vesbach, Cristina; Howkins, Adrian; McKnight, Diane; Doran, Peter; Adams, Byron; Barrett, John; Morgan-Kiss, Rachael; Priscu, John |
|
The McMurdo Dry Valleys, Antarctica, are a mosaic of terrestrial and aquatic ecosystems in a cold desert. The McMurdo Long Term Ecological Research (LTER) project has been observing these ecosystems since 1993 and this award will support key long-term measurements, manipulation experiments, synthesis, and modeling to test current theories on ecosystem structure and function. Data collection is focused on meteorology and physical and biological dimensions of soils, streams, lakes, glaciers, and permafrost. The long-term measurements show that biological communities have adapted to the seasonally cold, dark, and arid conditions that prevail for all but a short period in the austral summer. Physical (climate and geological) drivers impart a dynamic connectivity among portions of the Dry Valley landscape over seasonal to millennial time scales. For instance, lakes and soils have been connected through cycles of lake-level rise and fall over the past 20,000 years while streams connect glaciers to lakes over seasonal time scales. Overlaid upon this physical system are biotic communities that are structured by the environment and by the movement of individual organisms within and between the glaciers, streams, lakes, and soils. The new work to be conducted at the McMurdo LTER site will explore how the layers of connectivity in the McMurdo Dry Valleys influence ecosystem structure and function. This project will test the hypothesis that increased ecological connectivity following enhanced melt conditions within the McMurdo Dry Valleys ecosystem will amplify exchange of biota, energy, and matter, homogenizing ecosystem structure and functioning. This hypothesis will be tested with new and continuing experiments that examine: 1) how climate variation alters connectivity among landscape units, and 2) how biota are connected across a heterogeneous landscape using state-of-the-science tools and methods including automated sensor networks, analysis of seasonal satellite imagery, biogeochemical analyses, and next-generation sequencing. McMurdo LTER education programs and outreach activities will be continued, and expanded with new programs associated with the 200th anniversary of the first recorded sightings of Antarctica. These activities will advance societal understanding of how polar ecosystems respond to change. McMurdo LTER will continue its mission of training and mentoring students, postdocs, and early career scientists as the next generation of leaders in polar ecosystem science, and lead the development of international environmental stewardship protocols for human activities in the region. | POLYGON((160 -77.25,160.5 -77.25,161 -77.25,161.5 -77.25,162 -77.25,162.5 -77.25,163 -77.25,163.5 -77.25,164 -77.25,164.5 -77.25,165 -77.25,165 -77.375,165 -77.5,165 -77.625,165 -77.75,165 -77.875,165 -78,165 -78.125,165 -78.25,165 -78.375,165 -78.5,164.5 -78.5,164 -78.5,163.5 -78.5,163 -78.5,162.5 -78.5,162 -78.5,161.5 -78.5,161 -78.5,160.5 -78.5,160 -78.5,160 -78.375,160 -78.25,160 -78.125,160 -78,160 -77.875,160 -77.75,160 -77.625,160 -77.5,160 -77.375,160 -77.25)) | POINT(162.5 -77.875) | false | false | |||||
Activity, Preservation and Fossilization of Cryptoendolithic Microorganisms in Antarctica
|
1544526 |
2019-05-09 | Omelon, Christopher; Breecker, Daniel; Bennett, Philip | No dataset link provided | Cryptoendoliths are organisms that colonize microscopic cavities of rocks, which give them protection and allow them to inhabit extreme environments, such as the cold, arid desert of the Dry Valleys of Antarctica. Fossilized cryptoendoliths preserve the forms and features of organisms from the past and thus provide a unique opportunity to study the organisms' life histories and environments. To study this fossil record, there needs to be a better understanding of what environmental conditions allow these fossils to form. A climate gradient currently exists in the Dry Valleys that allows us to study living, dead, and fossilized cryptoendoliths from mild to increasingly harsh environments; providing insight to the limits of life and how these fossils are formed. This project will develop instruments to detect the biological activity of the live microorganisms and conduct laboratory experiments to determine the environmental limits of their survival. The project also will characterize the chemical and structural features of the living, dead, and fossilized cryptoendoliths to understand how they become fossilized. Knowing how microorganisms are preserved as fossils in cold and dry environments like Antarctica can help to refine methods that can be used to search for and identify evidence for extraterrestrial life in similar habitats on planets such as Mars. This project includes training of graduate and undergraduate students. Little is known about cryptoendolithic microfossils and their formation processes in cold, arid terrestrial habitats of the Dry Valleys of Antarctica, where a legacy of activity is discernible in the form of biosignatures including inorganic materials and microbial fossils that preserve and indicate traces of past biological activity. The overarching goals of the proposed work are: (1) to determine how rates of microbial respiration and biodegradation of organic matter control microbial fossilization; and (2) to characterize microbial fossils and their living counterparts to elucidate mechanisms for fossilization. Using samples collected across an increasingly harsher (more cold and dry) climatic gradient that encompasses living, dead, and fossilized cryptoendolithic microorganisms, the proposed work will: (1) develop an instrument to be used in the field that can measure small concentrations of CO2 in cryptoendolithic habitats in situ; (2) use microscopy techniques to characterize endolithic microorganisms as well as the chemical and morphological characteristics of biosignatures and microbial fossils. A metagenomic survey of microbial communities in these samples will be used to characterize differences in diversity, identify if specific microorganisms (e.g. prokaryotes, eukaryotes) are more capable of surviving under these harsh climatic conditions, and to corroborate microscopic observations of the viability states of these microorganisms. | POLYGON((160 -76.5,160.37 -76.5,160.74 -76.5,161.11 -76.5,161.48 -76.5,161.85 -76.5,162.22 -76.5,162.59 -76.5,162.96 -76.5,163.33 -76.5,163.7 -76.5,163.7 -76.63,163.7 -76.76,163.7 -76.89,163.7 -77.02,163.7 -77.15,163.7 -77.28,163.7 -77.41,163.7 -77.54,163.7 -77.67,163.7 -77.8,163.33 -77.8,162.96 -77.8,162.59 -77.8,162.22 -77.8,161.85 -77.8,161.48 -77.8,161.11 -77.8,160.74 -77.8,160.37 -77.8,160 -77.8,160 -77.67,160 -77.54,160 -77.41,160 -77.28,160 -77.15,160 -77.02,160 -76.89,160 -76.76,160 -76.63,160 -76.5)) | POINT(161.85 -77.15) | false | false |