{"dp_type": "Project", "free_text": "MOORED"}
[{"awards": "2224760 Gooseff, Michael", "bounds_geometry": "POINT(162.87 -77)", "dataset_titles": "EDI Data Portal: McMurdo Dry Valleys LTER", "datasets": [{"dataset_uid": "200379", "doi": "", "keywords": null, "people": null, "repository": "Environmental Data Initiative (EDI)", "science_program": null, "title": "EDI Data Portal: McMurdo Dry Valleys LTER", "url": "https://portal.edirepository.org/nis/browseServlet?searchValue=MCM"}], "date_created": "Tue, 14 Nov 2023 00:00:00 GMT", "description": "In this iteration of the McMurdo LTER project (MCM6), the project team will test ecological connectivity and stability theory in a system subject to strong physical drivers (geological legacies, extreme seasonality, and contemporary climate change) and driven by microbial organisms. Since microorganisms regulate most of the world\u0027s critical biogeochemical functions, these insights will be relevant far beyond polar ecosystems and will inform understanding and expectations of how natural and managed ecosystems respond to ongoing anthropogenic global change. MCM6 builds on previous foundational research, both in Antarctica and within the LTER network, to consider the temporal aspects of connectivity and how it relates to ecosystem stability. The project will examine how changes in the temporal variability of ecological connectivity interact with the legacies of the existing landscape that have defined habitats and biogeochemical cycling for millennia. The project team hypothesizes that the structure and functioning of the MDV ecosystem is dependent upon legacies and the contemporary frequency, duration, and magnitude of ecological connectivity. This hypothesis will be tested with new and continuing monitoring, experiments, and analyses of long-term datasets to examine: 1) the stability of these ecosystems as reflected by sentinel taxa, 2) the relationship between ecological legacies and ecosystem resilience, 3) the importance of material carryover during periods of low connectivity to maintaining biological activity and community stability, and 4) how changes in disturbance dynamics disrupt ecological cycles through the polar night. Tests of these hypotheses will occur in field and modeling activities using new and long-term datasets already collected. New datasets resulting from field activities will be made freely available via widely-known online databases (MCM LTER and EDI). The project team has also developed six Antarctic Core Ideas that encompass themes from data literacy to polar food webs and form a consistent thread across the education and outreach activities. Building on past success, collaborations will be established with teachers and artists embedded within the science teams, who will work to develop educational modules with science content informed by direct experience and artistic expression. Undergraduate mentoring efforts will incorporate computational methods through a new data-intensive scientific training program for MCM REU students. The project will also establish an Antarctic Research Experience for Community College Students at CU Boulder, to provide an immersive educational and research experience for students from diverse backgrounds in community colleges. MCM LTER will continue its mission of training and mentoring students, postdocs, and early career scientists as the next generation of leaders in polar ecosystem science and stewardship. Historically underrepresented participation will be expanded at each level of the project. To aid in these efforts, the project has established Education \u0026 Outreach and Diversity, Equity, and Inclusion committees to lead, coordinate, support, and integrate these activities through all aspects of MCM6.", "east": 162.87, "geometry": "POINT(162.87 -77)", "instruments": null, "is_usap_dc": true, "keywords": "COMMUNITY DYNAMICS; ABLATION ZONES/ACCUMULATION ZONES; SOIL TEMPERATURE; DIATOMS; FIELD INVESTIGATION; PERMANENT LAND SITES; BUOYS; GROUND-BASED OBSERVATIONS; SEDIMENTS; SNOW WATER EQUIVALENT; SPECIES/POPULATION INTERACTIONS; WATER-BASED PLATFORMS; FIXED OBSERVATION STATIONS; VIRUSES; PHYTOPLANKTON; ACTIVE LAYER; FIELD SURVEYS; RADIO TRANSMITTERS; DATA COLLECTIONS; ECOLOGICAL DYNAMICS; LANDSCAPE; GROUND WATER; SNOW/ICE CHEMISTRY; LAND-BASED PLATFORMS; ANIMALS/INVERTEBRATES; ECOSYSTEM FUNCTIONS; HUMIDITY; GEOCHEMISTRY; SURFACE WINDS; RIVERS/STREAM; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE; SNOW; LAND RECORDS; ATMOSPHERIC PRESSURE; SURFACE TEMPERATURE; ATMOSPHERIC RADIATION; BACTERIA/ARCHAEA; AIR TEMPERATURE; GLACIERS; SNOW/ICE TEMPERATURE; SOIL CHEMISTRY; METEOROLOGICAL STATIONS; WATER QUALITY/WATER CHEMISTRY; TERRESTRIAL ECOSYSTEMS; MOORED; PROTISTS; STREAMFLOW STATION; Dry Valleys; LAKE/POND; LAKE ICE; SNOW DEPTH; AQUATIC ECOSYSTEMS; SNOW DENSITY; FIELD SITES", "locations": "Dry Valleys", "north": -77.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Gooseff, Michael N.; Adams, Byron; Barrett, John; Diaz, Melisa A.; Doran, Peter; Dugan, Hilary A.; Mackey, Tyler; Morgan-Kiss, Rachael; Salvatore, Mark; Takacs-Vesbach, Cristina; Zeglin, Lydia H.", "platforms": "LAND-BASED PLATFORMS; LAND-BASED PLATFORMS \u003e FIELD SITES; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e DATA COLLECTIONS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e RADIO TRANSMITTERS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e METEOROLOGICAL STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e STREAMFLOW STATION; WATER-BASED PLATFORMS; WATER-BASED PLATFORMS \u003e BUOYS; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED \u003e BUOYS", "repo": "Environmental Data Initiative (EDI)", "repositories": "Environmental Data Initiative (EDI)", "science_programs": "LTER", "south": -77.0, "title": "LTER: MCM6 - The Roles of Legacy and Ecological Connectivity in a Polar Desert Ecosystem", "uid": "p0010440", "west": 162.87}, {"awards": "1745018 Fraser, William; 1744884 Oliver, Matthew; 1745011 Klinck, John; 1745023 Hennon, Tyler; 1745081 Bernard, Kim; 1745009 Kohut, Josh", "bounds_geometry": "POLYGON((-75 -60,-73 -60,-71 -60,-69 -60,-67 -60,-65 -60,-63 -60,-61 -60,-59 -60,-57 -60,-55 -60,-55 -61,-55 -62,-55 -63,-55 -64,-55 -65,-55 -66,-55 -67,-55 -68,-55 -69,-55 -70,-57 -70,-59 -70,-61 -70,-63 -70,-65 -70,-67 -70,-69 -70,-71 -70,-73 -70,-75 -70,-75 -69,-75 -68,-75 -67,-75 -66,-75 -65,-75 -64,-75 -63,-75 -62,-75 -61,-75 -60))", "dataset_titles": "Antarctic ACROBAT data; CTD Data from IFCB Sampling; Finite Time Lyapunov Exponent Results, Calculated from High Frequency Radar Observed Surface Currents; High Frequency Radar, Palmer Deep; IFCB Image Data; Relative Particle Density; SWARM AMLR moorings - acoustic data; SWARM Glider Data near Palmer Deep; WAP model float data; Winds from Joubin and Wauwerman Islands", "datasets": [{"dataset_uid": "200393", "doi": "10.26008/1912/bco-dmo.865002.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "IFCB Image Data", "url": "https://www.bco-dmo.org/dataset/865002"}, {"dataset_uid": "200398", "doi": "", "keywords": null, "people": null, "repository": "IOOS Glider DAAC", "science_program": null, "title": "SWARM Glider Data near Palmer Deep", "url": "https://gliders.ioos.us/erddap/search/index.html?page=1\u0026itemsPerPage=1000\u0026searchFor=swarm"}, {"dataset_uid": "200397", "doi": "10.26008/1912/bco-dmo.865098.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Winds from Joubin and Wauwerman Islands", "url": "https://www.bco-dmo.org/dataset/865098"}, {"dataset_uid": "200396", "doi": "10.26008/1912/bco-dmo.867442.2", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "WAP model float data", "url": "https://www.bco-dmo.org/dataset/867442"}, {"dataset_uid": "200395", "doi": "10.26008/1912/bco-dmo.872729.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "SWARM AMLR moorings - acoustic data", "url": "https://www.bco-dmo.org/dataset/872729"}, {"dataset_uid": "200394", "doi": "10.26008/1912/bco-dmo.917926.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Relative Particle Density", "url": "https://www.bco-dmo.org/dataset/917926"}, {"dataset_uid": "200392", "doi": "10.26008/1912/bco-dmo.917884.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "High Frequency Radar, Palmer Deep", "url": "https://www.bco-dmo.org/dataset/917884"}, {"dataset_uid": "200391", "doi": "10.26008/1912/bco-dmo.917914.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Finite Time Lyapunov Exponent Results, Calculated from High Frequency Radar Observed Surface Currents", "url": "https://www.bco-dmo.org/dataset/917914"}, {"dataset_uid": "200390", "doi": "10.26008/1912/bco-dmo.865030.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "CTD Data from IFCB Sampling", "url": "https://www.bco-dmo.org/dataset/865030"}, {"dataset_uid": "200389", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Antarctic ACROBAT data", "url": "https://www.bco-dmo.org/dataset/916046"}], "date_created": "Tue, 05 Jul 2022 00:00:00 GMT", "description": "Undersea canyons play disproportionately important roles as oceanic biological hotspots and are critical for our understanding of many coastal ecosystems. Canyon-associated biological hotspots have persisted for thousands of years Along the Western Antarctic Peninsula, despite significant climate variability. Observations of currents over Palmer Deep canyon, a representative hotspot along the Western Antarctic Peninsula, indicate that surface phytoplankton blooms enter and exit the local hotspot on scales of ~1-2 days. This time of residence is in conflict with the prevailing idea that canyon associated hotspots are primarily maintained by phytoplankton that are locally grown in association with these features by the upwelling of deep waters rich with nutrients that fuel the phytoplankton growth. Instead, the implication is that horizontal ocean circulation is likely more important to maintaining these biological hotspots than local upwelling through its physical concentrating effects. This project seeks to better resolve the factors that create and maintain focused areas of biological activity at canyons along the Western Antarctic Peninsula and create local foraging areas for marine mammals and birds. The project focus is in the analysis of the ocean transport and concentration mechanisms that sustain these biological hotspots, connecting oceanography to phytoplankton and krill, up through the food web to one of the resident predators, penguins. In addition, the research will engage with teachers from school districts serving underrepresented and underserved students by integrating the instructors and their students completely with the science team. Students will conduct their own research with the same data over the same time as researchers on the project. Revealing the fundamental mechanisms that sustain these known hotspots will significantly advance our understanding of the observed connection between submarine canyons and persistent penguin population hotspots over ecological time, and provide a new model for how Antarctic hotspots function.\u003cbr/\u003e \u003cbr/\u003e \u003cbr/\u003eTo understand the physical mechanisms that support persistent hotspots along the Western Antarctic Peninsula (WAP), this project will integrate a modeling and field program that will target the processes responsible for transporting and concentrating phytoplankton and krill biomass to known penguin foraging locations. Within the Palmer Deep canyon, a representative hotspot, the team will deploy a High Frequency Radar (HFR) coastal surface current mapping network, uniquely equipped to identify the eddies and frontal regions that concentrate phytoplankton and krill. The field program, centered on surface features identified by the HFR, will include (i) a coordinated fleet of gliders to survey hydrography, chlorophyll fluorescence, optical backscatter, and active acoustics at the scale of the targeted convergent features; (ii) precise penguin tracking with GPS-linked satellite telemetry and time-depth recorders (TDRs); (iii) and weekly small boat surveys that adaptively target and track convergent features to measure phytoplankton, krill, and hydrography. A high resolution physical model will generalize our field measurements to other known hotspots along the WAP through simulation and determine which physical mechanisms lead to the maintenance of these hotspots. The project will also engage educators, students, and members of the general public in Antarctic research and data analysis with an education program that will advance teaching and learning as well as broadening participation of under-represented groups. This engagement includes professional development workshops, live connections to the public and classrooms, student research symposia, and program evaluation. Together the integrated research and engagement will advance our understanding of the role regional transport pathways and local depth dependent concentrating physical mechanisms play in sustaining these biological hotspots.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -55.0, "geometry": "POINT(-65 -65)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CONDUCTIVITY SENSORS \u003e CONDUCTIVITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e RADIATION SENSORS", "is_usap_dc": true, "keywords": "MOORED; WATER TEMPERATURE; CONDUCTIVITY; FLUORESCENCE; UNCREWED VEHICLES; Palmer Station; PHOTOSYNTHETICALLY ACTIVE RADIATION; PELAGIC; OCEAN MIXED LAYER; SURFACE; SALINITY; WATER PRESSURE; LIVING ORGANISM; MODELS; ACOUSTIC SCATTERING", "locations": "Palmer Station", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Instrumentation and Support; Antarctic Organisms and Ecosystems", "paleo_time": "NOT APPLICABLE", "persons": "Bernard, Kim; Oliver, Matthew; Kohut, Josh; Fraser, William; Klinck, John M.; Statcewich, Hank", "platforms": "LIVING ORGANISM-BASED PLATFORMS \u003e LIVING ORGANISM; OTHER \u003e MODELS; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED; WATER-BASED PLATFORMS \u003e UNCREWED VEHICLES; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE", "repo": "BCO-DMO", "repositories": "BCO-DMO; IOOS Glider DAAC", "science_programs": null, "south": -70.0, "title": "Collaborative Research: Physical Mechanisms Driving Food Web Focusing in Antarctic Biological Hotspots", "uid": "p0010346", "west": -75.0}, {"awards": "2148517 Hancock, Cathrine", "bounds_geometry": "POLYGON((-60 -55,-51 -55,-42 -55,-33 -55,-24 -55,-15 -55,-6 -55,3 -55,12 -55,21 -55,30 -55,30 -57,30 -59,30 -61,30 -63,30 -65,30 -67,30 -69,30 -71,30 -73,30 -75,21 -75,12 -75,3 -75,-6 -75,-15 -75,-24 -75,-33 -75,-42 -75,-51 -75,-60 -75,-60 -73,-60 -71,-60 -69,-60 -67,-60 -65,-60 -63,-60 -61,-60 -59,-60 -57,-60 -55))", "dataset_titles": "Under ice trajectories for RAFOS enabled profiling floats in the Weddell Gyre", "datasets": [{"dataset_uid": "601652", "doi": "10.15784/601652", "keywords": "Antarctica; ANTXXIV/3; Argo Float; Artoa4argo; GPS Data; RAFOS; US Argo Program; Weddell Sea", "people": "Hancock, Cathrine", "repository": "USAP-DC", "science_program": null, "title": "Under ice trajectories for RAFOS enabled profiling floats in the Weddell Gyre", "url": "https://www.usap-dc.org/view/dataset/601652"}], "date_created": "Fri, 25 Mar 2022 00:00:00 GMT", "description": "The Weddell Gyre is one of the major components of the Southern Ocean circulation system, linking heat and carbon fluxes in the Antarctic Circumpolar Current to the continental margins. Water masses entering the Weddell Gyre are modified as they move in a great circular route around the gyre margin and change through processes involving air-sea-cryosphere interactions as well as through ocean eddies that mix properties across the gyre boundaries. Some of the denser water masses exit the gyre through pathways along the northern boundary, and ultimately ventilate the global deep ocean as Antarctic Bottom Water. While in-situ and satellite observations, as well as computer modeling efforts, provide estimates of the large-scale average flow within the gyre, details of the smaller-scale, or \"mesoscale\" eddy flow remain elusive. The proposed research will quantify mixing due to mesoscale eddies within the Weddell Gyre, as well as the transport of incoming deep water from the northeast, thought to be a result of transient eddies. Since the Weddell Gyre produces source water for about 40% of Antarctic Bottom Water formation, understanding the dynamics in this region helps to identify causes of documented changes in global bottom waters. This in turn, will give insight into how climate change is affecting global oceans, through modification of dense polar waters and Antarctic Bottom Water characteristics.\r\n\r\nThis project aims to track 153 RAFOS-enabled Argo floats in the ice-covered regions of the Weddell Gyre. The resultant tracks along with all available Argo and earlier float data will be used to calculate Eulerian and Lagrangian means and eddy statistics for the Weddell Gyre. The study will link RAFOS tracks with Argo profiles under ice, allowing one to characterize the importance of eddies in water column modification at critical ice-edge boundaries and leads. With RAFOS tracks near the northeastern limit of the gyre, the project will investigate the eddy-driven processes of incoming Circumpolar Deep Water, to understand better the mechanisms and volume fluxes involved. Previous work shows that a large fraction of the mean circulation in the southern and western limits of the gyre, where it contacts the Antarctic continent, occurs in a narrow boundary layer above the slope. The research here will integrate this flow structure into a complete interior and boundary layer mean circulation synthesis. The findings and products from the proposed work will improve the positioning of Argo profiles in the polar regions, which would allow for more accurate climatological maps and derived quantities. Estimates of meso-scale mixing may serve as a foundation for the development of new parameterization schemes employed in climate models, as well as local and global ocean circulation models in polar regions.", "east": 30.0, "geometry": "POINT(-15 -65)", "instruments": null, "is_usap_dc": true, "keywords": "OCEAN CURRENTS; WATER MASSES; BUOYS; USA/NSF; Weddell Sea; AMD; USAP-DC; Amd/Us", "locations": "Weddell Sea", "north": -55.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Hancock, Cathrine; Speer, Kevin", "platforms": "WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED \u003e BUOYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.0, "title": "Weddell Gyre Mean Circulation and Eddy Statistics from Floats", "uid": "p0010310", "west": -60.0}, {"awards": "1746148 Sirovic, Ana", "bounds_geometry": "POLYGON((140 -65.5,140.8 -65.5,141.6 -65.5,142.4 -65.5,143.2 -65.5,144 -65.5,144.8 -65.5,145.6 -65.5,146.4 -65.5,147.2 -65.5,148 -65.5,148 -65.57,148 -65.64,148 -65.71,148 -65.78,148 -65.85,148 -65.92,148 -65.99,148 -66.06,148 -66.13,148 -66.2,147.2 -66.2,146.4 -66.2,145.6 -66.2,144.8 -66.2,144 -66.2,143.2 -66.2,142.4 -66.2,141.6 -66.2,140.8 -66.2,140 -66.2,140 -66.13,140 -66.06,140 -65.99,140 -65.92,140 -65.85,140 -65.78,140 -65.71,140 -65.64,140 -65.57,140 -65.5))", "dataset_titles": "Passive acoustic recording metadata from East Antarctica, Feb 2019", "datasets": [{"dataset_uid": "601465", "doi": "10.15784/601465", "keywords": "Antarctica; East Antarctica", "people": "Sirovic, Ana", "repository": "USAP-DC", "science_program": null, "title": "Passive acoustic recording metadata from East Antarctica, Feb 2019", "url": "https://www.usap-dc.org/view/dataset/601465"}], "date_created": "Tue, 13 Jul 2021 00:00:00 GMT", "description": "In austral summer 2019, a 48 day, multi-country, interdisciplinary research voyage mapped Antarctic krill (Euphausia superba) and baleen whale, blue whale (Balaenoptera musculus) and fin whale (B. physalus) distributions in particular off East Antarctica. We detected, tracked and localized blue whales and mapped prey fields in the vicinity of a fixed acoustic mooring that combined passive and active acoustics for collection of concurrent predator and prey data. By coupling moored data collection with the ship-based survey focusing on Antarctic blue whale behaviour and krill dynamics, we investigated the dynamics of blue whales and their prey. We found that the production of social calls, D calls of blue whales and 40 Hz calls of fin whales, was correlated with the krill biomass over a week-long period. ", "east": 148.0, "geometry": "POINT(144 -65.85)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; AMD; USAP-DC; SPECIES/POPULATION INTERACTIONS; MAMMALS; PELAGIC; East Antarctica; USA/NSF; ACOUSTIC SCATTERING; FIELD SURVEYS; ARTHROPODS", "locations": "East Antarctica", "north": -65.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Sirovic, Ana; Stafford, Kathleen", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -66.2, "title": "EAGER: Collaborative Research: Acoustic Ecology of Foraging Antarctic Blue Whales in the Vicinity of Antarctic Krill", "uid": "p0010228", "west": 140.0}, {"awards": "1738992 Pettit, Erin C; 1929991 Pettit, Erin C", "bounds_geometry": "POLYGON((-114 -74,-113 -74,-112 -74,-111 -74,-110 -74,-109 -74,-108 -74,-107 -74,-106 -74,-105 -74,-104 -74,-104 -74.2,-104 -74.4,-104 -74.6,-104 -74.8,-104 -75,-104 -75.2,-104 -75.4,-104 -75.6,-104 -75.8,-104 -76,-105 -76,-106 -76,-107 -76,-108 -76,-109 -76,-110 -76,-111 -76,-112 -76,-113 -76,-114 -76,-114 -75.8,-114 -75.6,-114 -75.4,-114 -75.2,-114 -75,-114 -74.8,-114 -74.6,-114 -74.4,-114 -74.2,-114 -74))", "dataset_titles": "AMIGOS-IIIa \"Cavity\" Aquadopp current data Jan 2020 - Mar 2021; AMIGOS-IIIa \"Cavity\" Seabird CTD data Jan 2020 - Dec 2021; AMIGOS-III Cavity and Channel Snow Height and Thermistor Snow Temperature Data; AMIGOS-IIIc \"Channel\" Aquadopp current data Jan 2020 - Mar 2021; AMIGOS-IIIc \"Channel\" Seabird CTD data Jan 2020 - Dec 2021; CTD data from the NBP 19/02 cruise as part of the TARSAN project in the Amundsen Sea during austral summer 2018/2019; Dotson-Crosson Ice Shelf data from a tale of two ice shelves paper; SIIOS Temporary Deployment; Sub-ice-shelf seafloor elevation derived from point-source active-seismic data on Thwaites Eastern Ice Shelf and Dotson Ice Shelf, December 2019 and January 2020; Thwaites Glacier grounding lines for 2014 and 2019/20 from height above flotation; Two-year velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2001-2020; Visala WXT520 weather station data at the Cavity and Channel AMIGOS-III sites", "datasets": [{"dataset_uid": "200321", "doi": "10.5285/e338af5d-8622-05de-e053-6c86abc06489", "keywords": null, "people": null, "repository": "British Oceanographic Data Centre", "science_program": null, "title": "CTD data from the NBP 19/02 cruise as part of the TARSAN project in the Amundsen Sea during austral summer 2018/2019", "url": "https://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/e338af5d-8622-05de-e053-6c86abc06489/"}, {"dataset_uid": "601578", "doi": "10.15784/601578", "keywords": "Antarctica; Dotson Ice Shelf; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology", "people": "Segabinazzi-Dotto, Tiago; Wild, Christian", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Dotson-Crosson Ice Shelf data from a tale of two ice shelves paper", "url": "https://www.usap-dc.org/view/dataset/601578"}, {"dataset_uid": "601552", "doi": "10.15784/601552", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Pine Island Bay; Snow Accumulation; Snow Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-III Cavity and Channel Snow Height and Thermistor Snow Temperature Data", "url": "https://www.usap-dc.org/view/dataset/601552"}, {"dataset_uid": "601827", "doi": "10.15784/601827", "keywords": "Antarctica; Cryosphere; Dotson Ice Shelf; Thwaites Glacier", "people": "Muto, Atsuhiro", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Sub-ice-shelf seafloor elevation derived from point-source active-seismic data on Thwaites Eastern Ice Shelf and Dotson Ice Shelf, December 2019 and January 2020", "url": "https://www.usap-dc.org/view/dataset/601827"}, {"dataset_uid": "601478", "doi": "10.15784/601478", "keywords": "Antarctica; Glaciology; Ice Shelf; Ice Velocity; Strain Rate; Thwaites Glacier", "people": "Muto, Atsu; Alley, Karen; Truffer, Martin; Wild, Christian; Scambos, Ted; Klinger, Marin; Pettit, Erin; Wallin, Bruce", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Two-year velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2001-2020", "url": "https://www.usap-dc.org/view/dataset/601478"}, {"dataset_uid": "601549", "doi": "10.15784/601549", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Pine Island Bay; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Visala WXT520 weather station data at the Cavity and Channel AMIGOS-III sites", "url": "https://www.usap-dc.org/view/dataset/601549"}, {"dataset_uid": "601548", "doi": "10.15784/601548", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIc \"Channel\" Aquadopp current data Jan 2020 - Mar 2021", "url": "https://www.usap-dc.org/view/dataset/601548"}, {"dataset_uid": "200204", "doi": "https://doi.org/10.7914/SN/1L_2019", "keywords": null, "people": null, "repository": "International Federation of Digital Seismograph Networks", "science_program": null, "title": "SIIOS Temporary Deployment", "url": "http://www.fdsn.org/networks/detail/1L_2019/"}, {"dataset_uid": "601547", "doi": "10.15784/601547", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIa \"Cavity\" Aquadopp current data Jan 2020 - Mar 2021", "url": "https://www.usap-dc.org/view/dataset/601547"}, {"dataset_uid": "601545", "doi": "10.15784/601545", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Salinity; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIc \"Channel\" Seabird CTD data Jan 2020 - Dec 2021", "url": "https://www.usap-dc.org/view/dataset/601545"}, {"dataset_uid": "601544", "doi": "10.15784/601544", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Salinity; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIa \"Cavity\" Seabird CTD data Jan 2020 - Dec 2021", "url": "https://www.usap-dc.org/view/dataset/601544"}, {"dataset_uid": "601499", "doi": "10.15784/601499", "keywords": "Amundsen Sea; Antarctica; Glaciology; Grounding Line; Ice Shelf; Thwaites Glacier", "people": "Wild, Christian; Truffer, Martin; Alley, Karen; Muto, Atsu; Pettit, Erin; Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Thwaites Glacier grounding lines for 2014 and 2019/20 from height above flotation", "url": "https://www.usap-dc.org/view/dataset/601499"}], "date_created": "Mon, 22 Feb 2021 00:00:00 GMT", "description": "This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Thwaites and neighboring glaciers in the Amundsen Sea Embayment are rapidly losing mass in response to recent climate warming and related changes in ocean circulation. Mass loss from the Amundsen Sea Embayment could lead to the eventual collapse of the West Antarctic Ice Sheet, raising the global sea level by up to 2.5 meters (8 feet) in as short as 500 years. The processes driving the loss appear to be warmer ocean circulation and changes in the width and flow speed of the glacier, but a better understanding of these changes is needed to refine predictions of how the glacier will evolve. One highly sensitive process is the transitional flow of glacier ice from land onto the ocean to become a floating ice shelf. This flow of ice from grounded to floating is affected by changes in air temperature and snowfall at the surface; the speed and thickness of ice feeding it from upstream; and the ocean temperature, salinity, bathymetry, and currents that the ice flows into. The project team will gather new measurements of each of these local environmental conditions so that it can better predict how future changes in air, ocean, or the ice will affect the loss of ice to the ocean in this region. \u003cbr/\u003e \u003cbr/\u003eCurrent and anticipated near-future mass loss from Thwaites Glacier and nearby Amundsen Sea Embayment region is mainly attributed to reduction in ice-shelf buttressing due to sub-ice-shelf melting by intrusion of relatively warm Circumpolar Deep Water into sub-ice-shelf cavities. Such predictions for mass loss, however, still lack understanding of the dominant processes at and near grounding zones, especially their spatial and temporal variability, as well as atmospheric and oceanic drivers of these processes. This project aims to constrain and compare these processes for the Thwaites and the Dotson Ice Shelves, which are connected through upstream ice dynamics, but influenced by different submarine troughs. The team\u0027s specific objectives are to: 1) install atmosphere-ice-ocean multi-sensor remote autonomous stations on the ice shelves for two years to provide sub-daily continuous observations of concurrent oceanic, glaciologic, and atmospheric conditions; 2) measure ocean properties on the continental shelf adjacent to ice-shelf fronts (using seal tagging, glider-based and ship-based surveys, and existing moored and conductivity-temperature-depth-cast data), 3) measure ocean properties into sub-ice-shelf cavities (using autonomous underwater vehicles) to detail ocean transports and heat fluxes; and 4) constrain current ice-shelf and sub-ice-shelf cavity geometry, ice flow, and firn properties for the ice-shelves (using radar, active-source seismic, and gravimetric methods) to better understand the impact of ocean and atmosphere on the ice-sheet change. The team will also engage the public and bring awareness to this rapidly changing component of the cryosphere through a \"Live from the Ice\" social media campaign in which the public can follow the action and data collection from the perspective of tagged seals and autonomous stations.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -104.0, "geometry": "POINT(-109 -75)", "instruments": null, "is_usap_dc": true, "keywords": "Thwaites Glacier; FIELD SURVEYS; GLACIERS/ICE SHEETS", "locations": "Thwaites Glacier", "north": -74.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences; Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Glaciology", "paleo_time": null, "persons": "Truffer, Martin; Scambos, Ted; Muto, Atsu; Heywood, Karen; Boehme, Lars; Hall, Robert; Wahlin, Anna; Lenaerts, Jan; Pettit, Erin", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "British Oceanographic Data Centre", "repositories": "British Oceanographic Data Centre; International Federation of Digital Seismograph Networks; USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -76.0, "title": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment", "uid": "p0010162", "west": -114.0}, {"awards": "0732917 McCormick, Michael; 0732450 Van Dover, Cindy; 0732711 Smith, Craig; 0732983 Vernet, Maria", "bounds_geometry": "POLYGON((-60.5 -63.1,-59.99 -63.1,-59.48 -63.1,-58.97 -63.1,-58.46 -63.1,-57.95 -63.1,-57.44 -63.1,-56.93 -63.1,-56.42 -63.1,-55.91 -63.1,-55.4 -63.1,-55.4 -63.29,-55.4 -63.48,-55.4 -63.67,-55.4 -63.86,-55.4 -64.05,-55.4 -64.24,-55.4 -64.43,-55.4 -64.62,-55.4 -64.81,-55.4 -65,-55.91 -65,-56.42 -65,-56.93 -65,-57.44 -65,-57.95 -65,-58.46 -65,-58.97 -65,-59.48 -65,-59.99 -65,-60.5 -65,-60.5 -64.81,-60.5 -64.62,-60.5 -64.43,-60.5 -64.24,-60.5 -64.05,-60.5 -63.86,-60.5 -63.67,-60.5 -63.48,-60.5 -63.29,-60.5 -63.1))", "dataset_titles": "LARISSA: Impact of ice-shelf loss on geochemical profiles and microbial community composition in marine sediments of the Larsen A embayment, Antarctic Peninsula; NBP1001 cruise data; NBP1203 cruise data; Species Abundance Data from the Larsen Ice Shelf Ice acquired during R/V Nathaniel B. Palmer expedition NBP1203", "datasets": [{"dataset_uid": "000143", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1203 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP1203"}, {"dataset_uid": "000142", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1001 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP1001"}, {"dataset_uid": "601304", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; LARISSA; Larsen Ice Shelf; Macrofauna; Megafauna; NBP1203; Oceans; R/v Nathaniel B. Palmer; Seafloor Sampling; Species Abundance", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Species Abundance Data from the Larsen Ice Shelf Ice acquired during R/V Nathaniel B. Palmer expedition NBP1203", "url": "https://www.usap-dc.org/view/dataset/601304"}, {"dataset_uid": "601073", "doi": "10.15784/601073", "keywords": "Antarctica; Antarctic Peninsula; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; LARISSA; Microbiology", "people": "McCormick, Michael", "repository": "USAP-DC", "science_program": null, "title": "LARISSA: Impact of ice-shelf loss on geochemical profiles and microbial community composition in marine sediments of the Larsen A embayment, Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601073"}], "date_created": "Fri, 09 Oct 2020 00:00:00 GMT", "description": "A profound transformation in ecosystem structure and function is occurring in coastal waters of the western Weddell Sea, with the collapse of the Larsen B ice shelf. This transformation appears to be yielding a redistribution of energy flow between chemoautotrophic and photosynthetic production, and to be causing the rapid demise of the extraordinary seep ecosystem discovered beneath the ice shelf. This event provides an ideal opportunity to examine fundamental aspects of ecosystem transition associated with climate change. We propose to test the following hypotheses to elucidate the transformations occurring in marine ecosystems as a consequence of the Larsen B collapse: (1) The biogeographic isolation and sub-ice shelf setting of the Larsen B seep has led to novel habitat characteristics, chemoautotrophically dependent taxa and functional adaptations. (2) Benthic communities beneath the former Larsen B ice shelf are fundamentally different from assemblages at similar depths in the Weddell sea-ice zone, and resemble oligotrophic deep-sea communities. Larsen B assemblages are undergoing rapid change. (3) The previously dark, oligotrophic waters of the Larsen B embayment now support a thriving phototrophic community, with production rates and phytoplankton composition similar to other productive areas of the Weddell Sea. To document rapid changes occurring in the Larsen B ecosystem, we will use a remotely operated vehicle, shipboard samplers, and moored sediment traps. We will characterize microbial, macrofaunal and megafaunal components of the seep community; evaluate patterns of surface productivity, export flux, and benthic faunal composition in areas previously covered by the ice shelf, and compare these areas to the open sea-ice zone. These changes will be placed within the geological, glaciological and climatological context that led to ice-shelf retreat, through companion research projects funded in concert with this effort. Together these projects will help predict the likely consequences of ice-shelf collapse to marine ecosystems in other regions of Antarctica vulnerable to climate change. The research features international collaborators from Argentina, Belgium, Canada, Germany, Spain and the United Kingdom. The broader impacts include participation of a science writer; broadcast of science segments by members of the Jim Lehrer News Hour (Public Broadcasting System); material for summer courses in environmental change; mentoring of graduate students and postdoctoral fellows; and showcasing scientific activities and findings to students and public through podcasts.", "east": -55.4, "geometry": "POINT(-57.95 -64.05)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NBP1203; USAP-DC; Amd/Us; LARISSA; Larsen Ice Shelf; Species Abundance Data; R/V NBP; Antarctic Peninsula; NBP1001; USA/NSF; AMD; Antarctica; MARINE ECOSYSTEMS", "locations": "Antarctica; Antarctic Peninsula; Larsen Ice Shelf", "north": -63.1, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "McCormick, Michael; Vernet, Maria; Van Dover, Cindy; Smith, Craig", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": "LARISSA", "south": -65.0, "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems.", "uid": "p0010135", "west": -60.5}, {"awards": "1543380 Shadwick, Elizabeth", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG1704", "datasets": [{"dataset_uid": "002732", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1704", "url": "https://www.rvdata.us/search/cruise/LMG1704"}, {"dataset_uid": "001364", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1704"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "Interest in the reduced alkalinity of high latitude waters under conditions of enhanced CO2 uptake from the atmosphere have been the impetus of numerous recent studies of bio-stressors in the polar marine environment. The project seeks to improve our understanding of the variance of coastal Southern Ocean carbonate species (CO2 system), its diurnal and inter-annual variability, by acquiring autonomous, high frequency observations from an Antarctic coastal mooring(s). \u003cbr/\u003e\u003cbr/\u003eA moored observing system co-located within the existing Palmer LTER array will measure pH, CO2 partial pressure, temperature, salinity and dissolved oxygen with 3-hour frequency in this region of the West Antarctic Peninsula continental shelf. Such observations will help estimate the dominant physical and biological controls on the seasonal variations in the CO2 system in coastal Antarctic waters, including the sign, seasonality and the flux of the net annual air-sea exchange of carbon dioxide. The Palmer LTER site is experiencing rapid ecological change in the West Antarctic Peninsula, a region that is warming at rates faster than any other region of coastal Antarctica.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V LMG; LMG1704", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Shadwick, Elizabeth; Shadwick, Elizabeth", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Resolving CO2 System Seasonality in the West Antarctic Peninsula with Autonomous Observations", "uid": "p0000875", "west": null}, {"awards": "1043217 Zagorodnov, Victor", "bounds_geometry": null, "dataset_titles": "Fiber-Optic Distributed Temperature Sensing at Windless Bight", "datasets": [{"dataset_uid": "609604", "doi": "10.7265/N5V122QS", "keywords": "Antarctica; Ice Shelf; McMurdo Sound; Mooring; Oceans; Physical Oceanography; Ross Ice Shelf; Southern Ocean", "people": "Zagorodnov, Victor; Tyler, Scott W.; Holland, David", "repository": "USAP-DC", "science_program": null, "title": "Fiber-Optic Distributed Temperature Sensing at Windless Bight", "url": "https://www.usap-dc.org/view/dataset/609604"}], "date_created": "Tue, 05 May 2015 00:00:00 GMT", "description": "Abstract\u003cbr/\u003e\u003cbr/\u003eResearchers will explore the use of a distributed temperature sensing monitoring system (DTS), using fiber-optical (FO) technology, as the basis of a sustainable, sub-ice cavity sensing array. FO cable systems, such as may be deployed through a hot-water drilled hole through an ice shelf, passing through the underlying cavity to the sea floor, are capable of measuring temperatures down fiber at 1 meter intervals, and at time frequencies as high as 15 seconds. DTS FO systems operate via optical time domain reflectometry along the fiber waveguide using inelastic backscatter of coherent laser light as a probe beam in the FO environment.\u003cbr/\u003e\u003cbr/\u003eThe introduction of new technologies to the harsh environmental conditions of the Antarctic are often associated with high risk. However, the potential rewards of this approach (e.g. multiyear capability, minimal submerged mechanical or electrical components that may fail, relative simplicity of deployment and measurement principle, yet yielding distributed real time and spatial observation) are attractive enough to conduct a pilot project at a field-ready location (McMurdo). \u003cbr/\u003e\u003cbr/\u003eCurrent indications are that the instability of some of the world\u0027s largest ice sheets located around the Antarctic and Greenland may be caused by the presence of warming, deep ocean waters, shoaling over continental shelves, and melting the underside of floating ice shelves. Additional knowledge of the temporal and spatial variability of the temperature fields underneath terminal ice shelves, such as those draining the West Antarctic Ice Sheet, are needed to accurately project future global climate effects on ice-shelf ocean interactions, and in order to inform societal and technological aspects of adaption to changing sea-level.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e TEMPERATURE LOGGERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS", "is_usap_dc": true, "keywords": "GROUND STATIONS; Not provided; Conservative Temperature; MOORINGS; Ice Shelf Temperature; Ocean Temperature", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Zagorodnov, Victor; Holland, David; Tyler, Scott W.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED \u003e MOORINGS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Application of Distributed Temperature Sensors (DTS) for Antarctic Ice Shelves and Cavities", "uid": "p0000183", "west": null}, {"awards": "0944201 Hofmann, Gretchen", "bounds_geometry": "POLYGON((-180 -68,-177 -68,-174 -68,-171 -68,-168 -68,-165 -68,-162 -68,-159 -68,-156 -68,-153 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -77,160 -76,160 -75,160 -74,160 -73,160 -72,160 -71,160 -70,160 -69,160 -68,162 -68,164 -68,166 -68,168 -68,170 -68,172 -68,174 -68,176 -68,178 -68,-180 -68))", "dataset_titles": "Effect of Ocean Acidification on Early Life History Stages of the Antarctic Sea Urchins Sterechinus Neumayeri", "datasets": [{"dataset_uid": "600112", "doi": "10.15784/600112", "keywords": "Antarctica; Biota; Oceans; Southern Ocean", "people": "Hofmann, Gretchen", "repository": "USAP-DC", "science_program": null, "title": "Effect of Ocean Acidification on Early Life History Stages of the Antarctic Sea Urchins Sterechinus Neumayeri", "url": "https://www.usap-dc.org/view/dataset/600112"}], "date_created": "Tue, 23 Dec 2014 00:00:00 GMT", "description": "Abstract\u003cbr/\u003e\u003cbr/\u003eThe research examine the effects of ocean acidification on embryos and larvae of a contemporary calcifier in the coastal waters of Antarctica, the sea urchin Sterechinus neumayeri. The effect of future ocean acidification is projected to be particularly threatening to calcifying marine organisms in coldwater, high latitude seas, making tolerance data on these organisms a critical research need in Antarctic marine ecosystems. Due to a high magnesium (Mg) content of their calcitic hard parts, echinoderms are especially vulnerable to dissolution stress from ocean acidification because they currently inhabit seawater that is barely at the saturation level to support biogenic calcification. Thus, cold-water, high latitude species with a high Mg-content in their hard parts are considered to be the \u0027first responders\u0027 to chemical changes in the surface oceans. Studies in this proposal will use several metrics to examine the physiological plasticity of contemporary urchin embryos and larvae to CO2-acidified seawater, to mimic the scenarios defined by IPCC models and by analyses of future acidification predicted for the Southern Ocean. The research also will investigats the biological consequences of synergistic interactions of two converging climate change-related stressors - CO2- driven ocean acidification and ocean warming. Specifically the research will (1) assess the effect of CO2-acidified seawater on the development of early embryos and larvae, (2) using morphometrics, examine changes in the larval endoskeleton in response to development under the high-CO2 conditions of ocean acidification, (3) using a DNA microarray, profile changes in gene expression for genes involved in biomineralization and other important physiological processes, and (4) measure costs and physiological consequences of development under conditions of ocean acidification. The proposal will support the training of undergraduates, graduate students and a postdoctoral fellow. The PI also will collaborate with the UC Santa Barbara Gevirtz Graduate School of Education to link the biological effects of ocean acidification to the chemical changes expected for the Southern Ocean using the \u0027Science on a Sphere\u0027 technology. This display will be housed in an education and public outreach center, the Outreach Center for Teaching Ocean Science (OCTOS), a new state-of-the-art facility under construction at UC Santa Barbara.", "east": -150.0, "geometry": "POINT(-175 -73)", "instruments": null, "is_usap_dc": true, "keywords": "MOORINGS", "locations": null, "north": -68.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Hofmann, Gretchen", "platforms": "WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED \u003e MOORINGS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Effect of Ocean Acidification on Early Life History Stages of the Antarctic Sea Urchins Sterechinus Neumayeri", "uid": "p0000352", "west": 160.0}, {"awards": "0823101 Ducklow, Hugh", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG1301", "datasets": [{"dataset_uid": "002731", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1301", "url": "https://www.rvdata.us/search/cruise/LMG1301"}, {"dataset_uid": "001425", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1301"}], "date_created": "Mon, 24 Jun 2013 00:00:00 GMT", "description": "Since 1990, Palmer LTER (PAL) research has been guided by the hypothesis that variability in the polar marine ecosystem is mechanistically coupled to changes in the annual advance, retreat and spatial extent of sea ice. Since that time, the hypothesis has been modified to incorporate climate migration, i.e. the displacement of a cold, dry polar climate by a warm, moist climate regime in the northern component of the PAL region, producing fundamental changes in food web structure and elemental cycling. The observed northern changes are affecting all trophic levels and elemental cycling, and the primary mechanism of change involves match-mismatch dynamics. The proposed research builds on previous findings, with a new emphasis on process studies and modeling to elucidate the mechanistic links between teleconnections, climate change, physical oceanographic forcing and ecosystem dynamics. The proposed research will examine the hypothesis that regional warming and sea ice decline associated with historical and on-going climate migration in the northern part of the study area have altered key phenological relationships, leading to changes in species distributions, increasing trophic mismatches and changes in habitat, food availability, ecosystem dynamics and biogeochemical cycling. Through targeted process studies linked to numerical model simulations, the research also will test the hypothesis that deep cross-shelf canyons characterizing the core study region are focal areas for ecosystem processes that result in predictable, elevated food resources for top-predators. The effort includes the addition of 3 new PIs: a zooplankton ecologist with expertise in biogeochemical fluxes, a phytoplankton ecologist focusing on bio-optics and autonomous observations using gliders, and a numerical simulation modeler specializing in coupled global models of ocean circulation, plankton ecology and biogeochemical cycles. The program will add trace metal sampling and analysis, moored physical oceanographic sensors, a moored sediment trap in the south, drifting sediment traps and stable carbon (del 13C) and nitrogen (del 15N) isotope analyses. Missions lasting up to 45 days using gliders deployed before, during and after summer cruises will, along with moorings and satellite remote sensing of sea ice, ocean color, sea surface temperatures and wind fields, greatly extend the observational program in space and time. \u003cbr/\u003e\u003cbr/\u003eSince its inception, PAL has been a leader in Information Management to enable knowledge-building within and beyond the Antarctic, oceanographic and LTER communities. PAL has designed and deployed a new information infrastructure with a relational database architecture to facilitate data distribution and sharing. The Education and Outreach program capitalizes on the public\u0027s fascination with Antarctica to promote scientific literacy from kindergarten students to adult citizens concerned with climate change and environmental sustainability. Through communicating results to the public and working with scientific assessment bodies (e.g., IPCC) and Antarctic Treaty parties to protect Earth\u0027s last frontier, PAL researchers contribute to the national scientific agenda and the greater public benefit.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e PROFILERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Ducklow, Hugh", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": "LTER", "south": null, "title": "Palmer, Antarctica Long Term Ecological Research Project", "uid": "p0000874", "west": null}, {"awards": "9726186 Pilskaln, Cynthia", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0101", "datasets": [{"dataset_uid": "002580", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0101", "url": "https://www.rvdata.us/search/cruise/NBP0101"}, {"dataset_uid": "002641", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0101", "url": "https://www.rvdata.us/search/cruise/NBP0101"}], "date_created": "Thu, 03 Mar 2011 00:00:00 GMT", "description": "This proposed work is a study of the biological production and export flux of biogenic matter in response to ventilation of intermediate and deep water masses within the Polar Front zone. It is a collaborative work between the University of Maine and the Chinese Antarctic Research Expedition (CHINARE). The shipboard work is proposed for the Chinese antarctic resupply vessel off Prydz Bay in the Indian Ocean sector. In the austral Spring, this region experiences phytoplankton blooms that are thought to be the result of nutrient transport by the ventilation of intermediate and deep water masses. On an annual basis, it is believed that such blooms are the primary source of particulate organic carbon and biogenic silica flux to the ocean bottom. At this time however no data exists on the amount of particulate organic matter that sinks through the water column, leaving the quantitative relationships between production and export largely undefined in this region. The initial phase of the work consists of setting out a time-series sediment trap mooring at approximately 64 deg S latitude and 73 deg E longitude to take advantage of the historical data set that CHINARE has obtained in this area over the past decade. The biweekly to monthly trap samples will be analyzed for their organic constituents, and in conjunction with primary productivity observations will provide the basic data from which export values can be derived. This work will be carried out in collaboration with the State Oceanic Administration of the People\u0027s Republic of China, and the Chinese Antarctic Research Expedition. In addition to providing time on the antarctic resupply vessel, the SOA will sponsor the shipboard primary productivity experiments and the supporting hydrographic measurements. The collaborating American scientists will provide guidance in making these observations to standards developed for the Joint Global Ocean Flux Study, and provide the hardware for the moored sediment trap. There will be a mutual sharing between the U.S. and Chinese investigators of all samples and data sets, and the data analysis will be carried out jointly. ***", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Leventer, Amy", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "POC Production and Export in the Indian Ocean Sector of the Southern Ocean: A US-China Collaborative Research Program", "uid": "p0000800", "west": null}, {"awards": "0087401 Smith, Walker", "bounds_geometry": null, "dataset_titles": "Current Meter Data from the Ross Sea acquired with a Mooring deployed in December 2005 and recovered during the Nathaniel B. Palmer expedition NBP0601A (2006); Expedition data of NBP0301B; Expedition data of NBP0305A; Expedition data of NBP0501; Expedition data of NBP0601A; Fluorometer Data acquired on Moorings deployed the Ross Sea and recovered during the Nathaniel B. Palmer expedition NBP0601A (2006); Processed Fluid Chemistry Data from the Ross Sea acquired during the Nathaniel B. Palmer expedition NBP0601A", "datasets": [{"dataset_uid": "601341", "doi": null, "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Fluid Chemistry Data; Mooring; NBP0601A; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Seawater Measurements; Southern Ocean", "people": "Asper, Vernon; Smith, Walker", "repository": "USAP-DC", "science_program": null, "title": "Processed Fluid Chemistry Data from the Ross Sea acquired during the Nathaniel B. Palmer expedition NBP0601A", "url": "https://www.usap-dc.org/view/dataset/601341"}, {"dataset_uid": "002627", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "002623", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0601A", "url": "https://www.rvdata.us/search/cruise/NBP0601A"}, {"dataset_uid": "002622", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "002621", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0305A", "url": "https://www.rvdata.us/search/cruise/NBP0305A"}, {"dataset_uid": "601333", "doi": null, "keywords": "Antarctica; Flourometer; Mooring; NBP0601A; Ross Sea; Southern Ocean", "people": "Smith, Walker; Asper, Vernon", "repository": "USAP-DC", "science_program": null, "title": "Fluorometer Data acquired on Moorings deployed the Ross Sea and recovered during the Nathaniel B. Palmer expedition NBP0601A (2006)", "url": "https://www.usap-dc.org/view/dataset/601333"}, {"dataset_uid": "601339", "doi": null, "keywords": "Antarctica; Current Meter; Mooring; NBP0601A; Oceans; Physical Oceanography; Ross Sea; Southern Ocean", "people": "Asper, Vernon; Smith, Walker", "repository": "USAP-DC", "science_program": null, "title": "Current Meter Data from the Ross Sea acquired with a Mooring deployed in December 2005 and recovered during the Nathaniel B. Palmer expedition NBP0601A (2006)", "url": "https://www.usap-dc.org/view/dataset/601339"}, {"dataset_uid": "002583", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0301B", "url": "https://www.rvdata.us/search/cruise/NBP0301B"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "During the past few decades of oceanographic research, it has been recognized that significant variations in biogeochemical processes occur among years. Interannual variations in the Southern Ocean are known to occur in ice extent and concentration, in the composition of herbivore communities, and in bird and marine mammal distributions and reproductive success. However, little is known about the interannual variations in production of phytoplankton or the role that these variations play in the food web. This project will collect time series data on the seasonal production of phytoplankton in the southern Ross Sea, Antarctica. Furthermore, it will assess the interannual variations of the production of the two major functional groups of the system, diatoms and Phaeocystis Antarctica, a colonial haptophyte. The Ross Sea provides a unique setting for this type of investigation for a number of reasons. For example, a de facto time-series has already been initiated in the Ross Sea through the concentration of a number of programs in the past ten years. It also is well known that the species diversity is reduced relative to other systems and its seasonal production is as great as anywhere in the Antarctic. Most importantly, seasonal production of both the total phytoplankton community (as well as its two functional groups) can be estimated from late summer nutrient profiles. The project will involve short cruises on the US Coast Guard ice breakers in the southern Ross Sea that will allow the collection of water column nutrient and particulate after data at specific locations in the late summer of each of five years. Additionally, two moorings with in situ nitrate analyzers moored at fifteen will be deployed, thus collecting for the first time in the in the Antarctic a time-series of euphotic zone nutrient concentrations over the entire growing season. All nutrient data will be used to calculate seasonal production for each year in the southern Ross Sea and compared to previously collected information, thereby providing an assessment of interannual variations in net community production. Particulate matter data will allow us to estimate the amount of export from the surface layer by late summer, and therefore calculate the interannual variability of this ecosystem process. Interannual variations of seasonal production (and of the major taxa of producers) are a potentially significant feature in the growth and survival of higher trophic levels within the food web of the Ross Sea. They are also important in order to understand the natural variability in biogeochemical processes of the region. Because polar regions such as the Ross Sea are predicted to be impacted by future climate change, biological changes are also anticipated. Placing these changes in the context of natural variability is an essential element of understanding and predicting such alterations. This research thus seeks to quantify the natural variability of an Antarctic coastal system, and ultimately understand its causes and impacts on food webs and biogeochemical cycles of the Ross Sea.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "Ross Sea; AMD; USAP-DC; Amd/Us; USA/NSF; R/V NBP", "locations": "Ross Sea", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Walker; Gordon, Arnold", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": null, "title": "Interannual Variability in the Antarctic-Ross Sea (IVARS): Nutrients and Seasonal Production", "uid": "p0000803", "west": null}, {"awards": "9727077 Smith, Kenneth", "bounds_geometry": "POLYGON((-70.907166 -52.348,-69.6496994 -52.348,-68.3922328 -52.348,-67.1347662 -52.348,-65.8772996 -52.348,-64.619833 -52.348,-63.3623664 -52.348,-62.1048998 -52.348,-60.8474332 -52.348,-59.5899666 -52.348,-58.3325 -52.348,-58.3325 -53.600917,-58.3325 -54.853834,-58.3325 -56.106751,-58.3325 -57.359668,-58.3325 -58.612585,-58.3325 -59.865502,-58.3325 -61.118419,-58.3325 -62.371336,-58.3325 -63.624253,-58.3325 -64.87717,-59.5899666 -64.87717,-60.8474332 -64.87717,-62.1048998 -64.87717,-63.3623664 -64.87717,-64.619833 -64.87717,-65.8772996 -64.87717,-67.1347662 -64.87717,-68.3922328 -64.87717,-69.6496994 -64.87717,-70.907166 -64.87717,-70.907166 -63.624253,-70.907166 -62.371336,-70.907166 -61.118419,-70.907166 -59.865502,-70.907166 -58.612585,-70.907166 -57.359668,-70.907166 -56.106751,-70.907166 -54.853834,-70.907166 -53.600917,-70.907166 -52.348))", "dataset_titles": "Expedition Data; Expedition data of LMG0002; Expedition data of LMG0005", "datasets": [{"dataset_uid": "002670", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0002", "url": "https://www.rvdata.us/search/cruise/LMG0002"}, {"dataset_uid": "002667", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0005", "url": "https://www.rvdata.us/search/cruise/LMG0005"}, {"dataset_uid": "001964", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0010"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9727077 SMITH The annual expansion and contraction of ice cover in the Southern Ocean is the largest seasonal process in the World Ocean. This seasonal variability in ice cover creates extensive fluctuations in primary production, which heavily impacts pelagic and benthic communities. This research will initiate a long time-series study of the water column and sea floor using long-term, autonomous monitoring and sampling systems developed for use in the Antarctic. The study will be located in Post Foster, Deception Island, which supports a pelagic and benthic fauna representative of the Antarctic coastal zone and experiences seasonal ice cover. A bottom-moored, upward-looking acoustic instrument will be deployed on the sea floor for a period of one year to monitor the vertical distribution, abundance and biomass of acoustically-detectable macrozooplankton and micronekton in the water column. Collections will be made over this period using a newly-developed vertically-profiling pump sampling. Simultaneously, a time-lapse camera system will be moored on the sea floor to monitor the spatial distribution, sizes and movements of the epibenthic megafauna component of the benthic community. The instrumentation development will allow the research project to focus on the effect of the seasonal sea ice cycle on the distribution, abundance and biomass of the macrozooplankton and micronekton in the water column. Similar questions on the distribution, abundance, size and movements of the epibenthic megafauna will be addressed. Results from this study will provide a valuable data base for the evaluation of the pelagic and benthic community responses to seasonal variability in the Southern Ocean.", "east": -58.3325, "geometry": "POINT(-64.619833 -58.612585)", "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -52.348, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Kenneth", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -64.87717, "title": "Influence of Seasonal Ice Cover on Pelagic and Benthic Communities: Long Time-Series Studies", "uid": "p0000608", "west": -70.907166}, {"awards": "0230284 Yuan, Xiaojun", "bounds_geometry": "POLYGON((-40 -35,-24 -35,-8 -35,8 -35,24 -35,40 -35,56 -35,72 -35,88 -35,104 -35,120 -35,120 -38.5,120 -42,120 -45.5,120 -49,120 -52.5,120 -56,120 -59.5,120 -63,120 -66.5,120 -70,104 -70,88 -70,72 -70,56 -70,40 -70,24 -70,8 -70,-8 -70,-24 -70,-40 -70,-40 -66.5,-40 -63,-40 -59.5,-40 -56,-40 -52.5,-40 -49,-40 -45.5,-40 -42,-40 -38.5,-40 -35))", "dataset_titles": "CTD station data WOD Accession# 0053045.", "datasets": [{"dataset_uid": "000200", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "CTD station data WOD Accession# 0053045.", "url": "http://www.nodc.noaa.gov/"}], "date_created": "Sat, 20 Feb 2010 00:00:00 GMT", "description": "This work is the continuation of a joint project with the Polar Research Institute of China to make measurements of the structure of the upper ocean in the northern Weddell Sea along the route taken by the PRI\u0027s antarctic supply vessel, R/V Xue Long. The observations, obtained from expendable instruments, complement existing hydrographic observations along various transects through the northwestern Weddell Sea region and data from moored current meter arrays in the Weddell-Scotia confluence zone. This effort builds upon a successful series of expendable bathythermographs and conductivity-temperature-depth probes obtained by the science party on board the R/V Xue Long for the past four years.\u003cbr/\u003eThe west-to-east transit of the Weddell Sea by the ship makes it possible to obtain a series of ocean soundings that are otherwise unobtainable. The information is particularly important because strong correlative links between the upper ocean temperature and salinity, the sea ice edge, and extra-polar climate features have been established. It has been shown that the Indian Ocean sector is an anomalous region with respect to connections between antarctic and lower latitude climatic features and indices. Here the Antarctic Circumpolar Current makes its closest approach to the continent and the Antarctic Circumpolar Wave is least well expressed in the existing data. The necessary instrumentation, both software and hardware, has been installed in the ship and an excellent working relationship with Chinese antarctic scientists has been developed.", "east": 120.0, "geometry": "POINT(40 -52.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -35.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Yuan, Xiaojun; Martinson, Douglas", "platforms": "Not provided", "repo": "NCEI", "repositories": "NCEI", "science_programs": null, "south": -70.0, "title": "U.S./Chinese Ship of Opportunity Sampling Program Phase II", "uid": "p0000558", "west": -40.0}, {"awards": "0838834 Lazzara, Matthew", "bounds_geometry": "POLYGON((-180 -62.83,-144 -62.83,-108 -62.83,-72 -62.83,-36 -62.83,0 -62.83,36 -62.83,72 -62.83,108 -62.83,144 -62.83,180 -62.83,180 -65.547,180 -68.264,180 -70.981,180 -73.698,180 -76.415,180 -79.132,180 -81.849,180 -84.566,180 -87.283,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.283,-180 -84.566,-180 -81.849,-180 -79.132,-180 -76.415,-180 -73.698,-180 -70.981,-180 -68.264,-180 -65.547,-180 -62.83))", "dataset_titles": "Access all real-time datasets; Access Antarctic Composite Images.; Access Antarctic Synoptic and METAR Observations.; Access McMurdo Radiosonde Observations; Access South Pole Radiosonde Observations; Archived METAR observational data; We have observations from three ships near Antarctica, the R/V Polar Duke the R/V Nathaniel B. Palmer and the R/V Laurence M. Gould. Data from 23 August 1993 are available via ftp and the files are updated with the most recent observations every 7-10 days as we receive the information. The AMRC has been archiving general ship and buoy observational data for the Antarctic and surrounding regions since 2 December 1998.", "datasets": [{"dataset_uid": "001300", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access all real-time datasets", "url": "http://amrc.ssec.wisc.edu/"}, {"dataset_uid": "001288", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access South Pole Radiosonde Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/southpole/radiosonde/"}, {"dataset_uid": "001382", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Antarctic Synoptic and METAR Observations.", "url": "ftp://amrc.ssec.wisc.edu"}, {"dataset_uid": "001386", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Archived METAR observational data", "url": "ftp://amrc.ssec.wisc.edu/archive/"}, {"dataset_uid": "001290", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "We have observations from three ships near Antarctica, the R/V Polar Duke the R/V Nathaniel B. Palmer and the R/V Laurence M. Gould. Data from 23 August 1993 are available via ftp and the files are updated with the most recent observations every 7-10 days as we receive the information. The AMRC has been archiving general ship and buoy observational data for the Antarctic and surrounding regions since 2 December 1998.", "url": "ftp://amrc.ssec.wisc.edu/pub/shipobs/"}, {"dataset_uid": "001299", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Antarctic Synoptic and METAR Observations.", "url": "ftp://amrc.ssec.wisc.edu/"}, {"dataset_uid": "001285", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Antarctic Composite Images.", "url": "http://amrc.ssec.wisc.edu/data/view-data.php?action=list\u0026amp;amp;product=satellite/composite"}, {"dataset_uid": "001289", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access McMurdo Radiosonde Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/mcmurdo/radiosonde/"}], "date_created": "Thu, 01 Jan 1970 00:00:00 GMT", "description": "Abstract\u003cbr/\u003e\u003cbr/\u003eThe Antarctic Meteorological Research Center (AMRC), located at the University of Wisconsin, Madison, serves several communities by maintaining and extending the stewardship of meteorological data pertinent to the Antarctic continent, its surrounding islands, ice sheets and ice margins and the adjacent Southern Ocean. This data will continue to be made freely available to interested researchers and the general public. Activities of particular interest for the current award include the development of an enhanced data portal to provide improved data and analysis tools to the research community, and to continue to add to the evolution of the Antarctic-Internet Data Distribution system, which is meant to overcome the costly and generally low bandwidth internet connectivity to and from the Antarctic continent. Operational forecasting for logistical activities in the Antarctic, as well as active Antarctic meteorological research programs, are clearly in need of a dependable, steady flow of meteorological observations, model output, and related data in what must be a collaborative environment in order to overcome the otherwise distributed nature of Antarctic meteorological and climatological observations.\u003cbr/\u003e\u003cbr/\u003eAMRC interaction with the public through answering e-mail questions, giving informal public lectures and presentations to K-12 education institutions through visits to schools will help to raise science literacy with regards to meteorology and of the Antarctic and polar regions. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\"This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\"", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e AVHRR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e GOES I-M IMAGER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e OLS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e VISSR; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e BAROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e WET BULB THERMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADIOSONDES; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e AMSU-A; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e AVHRR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e HIRS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e HIRS/2; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e MSU; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e TOVS", "is_usap_dc": false, "keywords": "Shortwave Composite Satellite Images; Radiosonde Data; Antarctic; Noaa Hrpt Raw Data; Synoptic Data; Water Vapor Composite Satellite Images; SATELLITES; Satellite Imagery; Infrared Imagery; NOAA POES; Visible Composite Satellite Images; BUOYS; Antarctica; Ship/buoy Data; FIXED OBSERVATION STATIONS; Longwave Composite Satellite Images; Not provided; COASTAL STATIONS; Metar Weather Observations", "locations": "Antarctic; Antarctica", "north": -62.83, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew; Costanza, Carol", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e COASTAL STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e POLAR ORBITING ENVIRONMENTAL SATELLITES (POES) \u003e NOAA POES; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED \u003e BUOYS", "repo": "AMRDC", "repositories": "AMRDC", "science_programs": null, "south": -90.0, "title": "Antarctic Meteorological Research Center (2009-2011)", "uid": "p0000264", "west": -180.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LTER: MCM6 - The Roles of Legacy and Ecological Connectivity in a Polar Desert Ecosystem
|
2224760 |
2023-11-14 | Gooseff, Michael N.; Adams, Byron; Barrett, John; Diaz, Melisa A.; Doran, Peter; Dugan, Hilary A.; Mackey, Tyler; Morgan-Kiss, Rachael; Salvatore, Mark; Takacs-Vesbach, Cristina; Zeglin, Lydia H. |
|
In this iteration of the McMurdo LTER project (MCM6), the project team will test ecological connectivity and stability theory in a system subject to strong physical drivers (geological legacies, extreme seasonality, and contemporary climate change) and driven by microbial organisms. Since microorganisms regulate most of the world's critical biogeochemical functions, these insights will be relevant far beyond polar ecosystems and will inform understanding and expectations of how natural and managed ecosystems respond to ongoing anthropogenic global change. MCM6 builds on previous foundational research, both in Antarctica and within the LTER network, to consider the temporal aspects of connectivity and how it relates to ecosystem stability. The project will examine how changes in the temporal variability of ecological connectivity interact with the legacies of the existing landscape that have defined habitats and biogeochemical cycling for millennia. The project team hypothesizes that the structure and functioning of the MDV ecosystem is dependent upon legacies and the contemporary frequency, duration, and magnitude of ecological connectivity. This hypothesis will be tested with new and continuing monitoring, experiments, and analyses of long-term datasets to examine: 1) the stability of these ecosystems as reflected by sentinel taxa, 2) the relationship between ecological legacies and ecosystem resilience, 3) the importance of material carryover during periods of low connectivity to maintaining biological activity and community stability, and 4) how changes in disturbance dynamics disrupt ecological cycles through the polar night. Tests of these hypotheses will occur in field and modeling activities using new and long-term datasets already collected. New datasets resulting from field activities will be made freely available via widely-known online databases (MCM LTER and EDI). The project team has also developed six Antarctic Core Ideas that encompass themes from data literacy to polar food webs and form a consistent thread across the education and outreach activities. Building on past success, collaborations will be established with teachers and artists embedded within the science teams, who will work to develop educational modules with science content informed by direct experience and artistic expression. Undergraduate mentoring efforts will incorporate computational methods through a new data-intensive scientific training program for MCM REU students. The project will also establish an Antarctic Research Experience for Community College Students at CU Boulder, to provide an immersive educational and research experience for students from diverse backgrounds in community colleges. MCM LTER will continue its mission of training and mentoring students, postdocs, and early career scientists as the next generation of leaders in polar ecosystem science and stewardship. Historically underrepresented participation will be expanded at each level of the project. To aid in these efforts, the project has established Education & Outreach and Diversity, Equity, and Inclusion committees to lead, coordinate, support, and integrate these activities through all aspects of MCM6. | POINT(162.87 -77) | POINT(162.87 -77) | false | false | |||||||||||||||||||||
Collaborative Research: Physical Mechanisms Driving Food Web Focusing in Antarctic Biological Hotspots
|
1745018 1744884 1745011 1745023 1745081 1745009 |
2022-07-05 | Bernard, Kim; Oliver, Matthew; Kohut, Josh; Fraser, William; Klinck, John M.; Statcewich, Hank |
|
Undersea canyons play disproportionately important roles as oceanic biological hotspots and are critical for our understanding of many coastal ecosystems. Canyon-associated biological hotspots have persisted for thousands of years Along the Western Antarctic Peninsula, despite significant climate variability. Observations of currents over Palmer Deep canyon, a representative hotspot along the Western Antarctic Peninsula, indicate that surface phytoplankton blooms enter and exit the local hotspot on scales of ~1-2 days. This time of residence is in conflict with the prevailing idea that canyon associated hotspots are primarily maintained by phytoplankton that are locally grown in association with these features by the upwelling of deep waters rich with nutrients that fuel the phytoplankton growth. Instead, the implication is that horizontal ocean circulation is likely more important to maintaining these biological hotspots than local upwelling through its physical concentrating effects. This project seeks to better resolve the factors that create and maintain focused areas of biological activity at canyons along the Western Antarctic Peninsula and create local foraging areas for marine mammals and birds. The project focus is in the analysis of the ocean transport and concentration mechanisms that sustain these biological hotspots, connecting oceanography to phytoplankton and krill, up through the food web to one of the resident predators, penguins. In addition, the research will engage with teachers from school districts serving underrepresented and underserved students by integrating the instructors and their students completely with the science team. Students will conduct their own research with the same data over the same time as researchers on the project. Revealing the fundamental mechanisms that sustain these known hotspots will significantly advance our understanding of the observed connection between submarine canyons and persistent penguin population hotspots over ecological time, and provide a new model for how Antarctic hotspots function.<br/> <br/> <br/>To understand the physical mechanisms that support persistent hotspots along the Western Antarctic Peninsula (WAP), this project will integrate a modeling and field program that will target the processes responsible for transporting and concentrating phytoplankton and krill biomass to known penguin foraging locations. Within the Palmer Deep canyon, a representative hotspot, the team will deploy a High Frequency Radar (HFR) coastal surface current mapping network, uniquely equipped to identify the eddies and frontal regions that concentrate phytoplankton and krill. The field program, centered on surface features identified by the HFR, will include (i) a coordinated fleet of gliders to survey hydrography, chlorophyll fluorescence, optical backscatter, and active acoustics at the scale of the targeted convergent features; (ii) precise penguin tracking with GPS-linked satellite telemetry and time-depth recorders (TDRs); (iii) and weekly small boat surveys that adaptively target and track convergent features to measure phytoplankton, krill, and hydrography. A high resolution physical model will generalize our field measurements to other known hotspots along the WAP through simulation and determine which physical mechanisms lead to the maintenance of these hotspots. The project will also engage educators, students, and members of the general public in Antarctic research and data analysis with an education program that will advance teaching and learning as well as broadening participation of under-represented groups. This engagement includes professional development workshops, live connections to the public and classrooms, student research symposia, and program evaluation. Together the integrated research and engagement will advance our understanding of the role regional transport pathways and local depth dependent concentrating physical mechanisms play in sustaining these biological hotspots.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-75 -60,-73 -60,-71 -60,-69 -60,-67 -60,-65 -60,-63 -60,-61 -60,-59 -60,-57 -60,-55 -60,-55 -61,-55 -62,-55 -63,-55 -64,-55 -65,-55 -66,-55 -67,-55 -68,-55 -69,-55 -70,-57 -70,-59 -70,-61 -70,-63 -70,-65 -70,-67 -70,-69 -70,-71 -70,-73 -70,-75 -70,-75 -69,-75 -68,-75 -67,-75 -66,-75 -65,-75 -64,-75 -63,-75 -62,-75 -61,-75 -60)) | POINT(-65 -65) | false | false | |||||||||||||||||||||
Weddell Gyre Mean Circulation and Eddy Statistics from Floats
|
2148517 |
2022-03-25 | Hancock, Cathrine; Speer, Kevin |
|
The Weddell Gyre is one of the major components of the Southern Ocean circulation system, linking heat and carbon fluxes in the Antarctic Circumpolar Current to the continental margins. Water masses entering the Weddell Gyre are modified as they move in a great circular route around the gyre margin and change through processes involving air-sea-cryosphere interactions as well as through ocean eddies that mix properties across the gyre boundaries. Some of the denser water masses exit the gyre through pathways along the northern boundary, and ultimately ventilate the global deep ocean as Antarctic Bottom Water. While in-situ and satellite observations, as well as computer modeling efforts, provide estimates of the large-scale average flow within the gyre, details of the smaller-scale, or "mesoscale" eddy flow remain elusive. The proposed research will quantify mixing due to mesoscale eddies within the Weddell Gyre, as well as the transport of incoming deep water from the northeast, thought to be a result of transient eddies. Since the Weddell Gyre produces source water for about 40% of Antarctic Bottom Water formation, understanding the dynamics in this region helps to identify causes of documented changes in global bottom waters. This in turn, will give insight into how climate change is affecting global oceans, through modification of dense polar waters and Antarctic Bottom Water characteristics. This project aims to track 153 RAFOS-enabled Argo floats in the ice-covered regions of the Weddell Gyre. The resultant tracks along with all available Argo and earlier float data will be used to calculate Eulerian and Lagrangian means and eddy statistics for the Weddell Gyre. The study will link RAFOS tracks with Argo profiles under ice, allowing one to characterize the importance of eddies in water column modification at critical ice-edge boundaries and leads. With RAFOS tracks near the northeastern limit of the gyre, the project will investigate the eddy-driven processes of incoming Circumpolar Deep Water, to understand better the mechanisms and volume fluxes involved. Previous work shows that a large fraction of the mean circulation in the southern and western limits of the gyre, where it contacts the Antarctic continent, occurs in a narrow boundary layer above the slope. The research here will integrate this flow structure into a complete interior and boundary layer mean circulation synthesis. The findings and products from the proposed work will improve the positioning of Argo profiles in the polar regions, which would allow for more accurate climatological maps and derived quantities. Estimates of meso-scale mixing may serve as a foundation for the development of new parameterization schemes employed in climate models, as well as local and global ocean circulation models in polar regions. | POLYGON((-60 -55,-51 -55,-42 -55,-33 -55,-24 -55,-15 -55,-6 -55,3 -55,12 -55,21 -55,30 -55,30 -57,30 -59,30 -61,30 -63,30 -65,30 -67,30 -69,30 -71,30 -73,30 -75,21 -75,12 -75,3 -75,-6 -75,-15 -75,-24 -75,-33 -75,-42 -75,-51 -75,-60 -75,-60 -73,-60 -71,-60 -69,-60 -67,-60 -65,-60 -63,-60 -61,-60 -59,-60 -57,-60 -55)) | POINT(-15 -65) | false | false | |||||||||||||||||||||
EAGER: Collaborative Research: Acoustic Ecology of Foraging Antarctic Blue Whales in the Vicinity of Antarctic Krill
|
1746148 |
2021-07-13 | Sirovic, Ana; Stafford, Kathleen |
|
In austral summer 2019, a 48 day, multi-country, interdisciplinary research voyage mapped Antarctic krill (Euphausia superba) and baleen whale, blue whale (Balaenoptera musculus) and fin whale (B. physalus) distributions in particular off East Antarctica. We detected, tracked and localized blue whales and mapped prey fields in the vicinity of a fixed acoustic mooring that combined passive and active acoustics for collection of concurrent predator and prey data. By coupling moored data collection with the ship-based survey focusing on Antarctic blue whale behaviour and krill dynamics, we investigated the dynamics of blue whales and their prey. We found that the production of social calls, D calls of blue whales and 40 Hz calls of fin whales, was correlated with the krill biomass over a week-long period. | POLYGON((140 -65.5,140.8 -65.5,141.6 -65.5,142.4 -65.5,143.2 -65.5,144 -65.5,144.8 -65.5,145.6 -65.5,146.4 -65.5,147.2 -65.5,148 -65.5,148 -65.57,148 -65.64,148 -65.71,148 -65.78,148 -65.85,148 -65.92,148 -65.99,148 -66.06,148 -66.13,148 -66.2,147.2 -66.2,146.4 -66.2,145.6 -66.2,144.8 -66.2,144 -66.2,143.2 -66.2,142.4 -66.2,141.6 -66.2,140.8 -66.2,140 -66.2,140 -66.13,140 -66.06,140 -65.99,140 -65.92,140 -65.85,140 -65.78,140 -65.71,140 -65.64,140 -65.57,140 -65.5)) | POINT(144 -65.85) | false | false | |||||||||||||||||||||
NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment
|
1738992 1929991 |
2021-02-22 | Truffer, Martin; Scambos, Ted; Muto, Atsu; Heywood, Karen; Boehme, Lars; Hall, Robert; Wahlin, Anna; Lenaerts, Jan; Pettit, Erin | This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Thwaites and neighboring glaciers in the Amundsen Sea Embayment are rapidly losing mass in response to recent climate warming and related changes in ocean circulation. Mass loss from the Amundsen Sea Embayment could lead to the eventual collapse of the West Antarctic Ice Sheet, raising the global sea level by up to 2.5 meters (8 feet) in as short as 500 years. The processes driving the loss appear to be warmer ocean circulation and changes in the width and flow speed of the glacier, but a better understanding of these changes is needed to refine predictions of how the glacier will evolve. One highly sensitive process is the transitional flow of glacier ice from land onto the ocean to become a floating ice shelf. This flow of ice from grounded to floating is affected by changes in air temperature and snowfall at the surface; the speed and thickness of ice feeding it from upstream; and the ocean temperature, salinity, bathymetry, and currents that the ice flows into. The project team will gather new measurements of each of these local environmental conditions so that it can better predict how future changes in air, ocean, or the ice will affect the loss of ice to the ocean in this region. <br/> <br/>Current and anticipated near-future mass loss from Thwaites Glacier and nearby Amundsen Sea Embayment region is mainly attributed to reduction in ice-shelf buttressing due to sub-ice-shelf melting by intrusion of relatively warm Circumpolar Deep Water into sub-ice-shelf cavities. Such predictions for mass loss, however, still lack understanding of the dominant processes at and near grounding zones, especially their spatial and temporal variability, as well as atmospheric and oceanic drivers of these processes. This project aims to constrain and compare these processes for the Thwaites and the Dotson Ice Shelves, which are connected through upstream ice dynamics, but influenced by different submarine troughs. The team's specific objectives are to: 1) install atmosphere-ice-ocean multi-sensor remote autonomous stations on the ice shelves for two years to provide sub-daily continuous observations of concurrent oceanic, glaciologic, and atmospheric conditions; 2) measure ocean properties on the continental shelf adjacent to ice-shelf fronts (using seal tagging, glider-based and ship-based surveys, and existing moored and conductivity-temperature-depth-cast data), 3) measure ocean properties into sub-ice-shelf cavities (using autonomous underwater vehicles) to detail ocean transports and heat fluxes; and 4) constrain current ice-shelf and sub-ice-shelf cavity geometry, ice flow, and firn properties for the ice-shelves (using radar, active-source seismic, and gravimetric methods) to better understand the impact of ocean and atmosphere on the ice-sheet change. The team will also engage the public and bring awareness to this rapidly changing component of the cryosphere through a "Live from the Ice" social media campaign in which the public can follow the action and data collection from the perspective of tagged seals and autonomous stations.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-114 -74,-113 -74,-112 -74,-111 -74,-110 -74,-109 -74,-108 -74,-107 -74,-106 -74,-105 -74,-104 -74,-104 -74.2,-104 -74.4,-104 -74.6,-104 -74.8,-104 -75,-104 -75.2,-104 -75.4,-104 -75.6,-104 -75.8,-104 -76,-105 -76,-106 -76,-107 -76,-108 -76,-109 -76,-110 -76,-111 -76,-112 -76,-113 -76,-114 -76,-114 -75.8,-114 -75.6,-114 -75.4,-114 -75.2,-114 -75,-114 -74.8,-114 -74.6,-114 -74.4,-114 -74.2,-114 -74)) | POINT(-109 -75) | false | false | ||||||||||||||||||||||
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems.
|
0732917 0732450 0732711 0732983 |
2020-10-09 | McCormick, Michael; Vernet, Maria; Van Dover, Cindy; Smith, Craig | A profound transformation in ecosystem structure and function is occurring in coastal waters of the western Weddell Sea, with the collapse of the Larsen B ice shelf. This transformation appears to be yielding a redistribution of energy flow between chemoautotrophic and photosynthetic production, and to be causing the rapid demise of the extraordinary seep ecosystem discovered beneath the ice shelf. This event provides an ideal opportunity to examine fundamental aspects of ecosystem transition associated with climate change. We propose to test the following hypotheses to elucidate the transformations occurring in marine ecosystems as a consequence of the Larsen B collapse: (1) The biogeographic isolation and sub-ice shelf setting of the Larsen B seep has led to novel habitat characteristics, chemoautotrophically dependent taxa and functional adaptations. (2) Benthic communities beneath the former Larsen B ice shelf are fundamentally different from assemblages at similar depths in the Weddell sea-ice zone, and resemble oligotrophic deep-sea communities. Larsen B assemblages are undergoing rapid change. (3) The previously dark, oligotrophic waters of the Larsen B embayment now support a thriving phototrophic community, with production rates and phytoplankton composition similar to other productive areas of the Weddell Sea. To document rapid changes occurring in the Larsen B ecosystem, we will use a remotely operated vehicle, shipboard samplers, and moored sediment traps. We will characterize microbial, macrofaunal and megafaunal components of the seep community; evaluate patterns of surface productivity, export flux, and benthic faunal composition in areas previously covered by the ice shelf, and compare these areas to the open sea-ice zone. These changes will be placed within the geological, glaciological and climatological context that led to ice-shelf retreat, through companion research projects funded in concert with this effort. Together these projects will help predict the likely consequences of ice-shelf collapse to marine ecosystems in other regions of Antarctica vulnerable to climate change. The research features international collaborators from Argentina, Belgium, Canada, Germany, Spain and the United Kingdom. The broader impacts include participation of a science writer; broadcast of science segments by members of the Jim Lehrer News Hour (Public Broadcasting System); material for summer courses in environmental change; mentoring of graduate students and postdoctoral fellows; and showcasing scientific activities and findings to students and public through podcasts. | POLYGON((-60.5 -63.1,-59.99 -63.1,-59.48 -63.1,-58.97 -63.1,-58.46 -63.1,-57.95 -63.1,-57.44 -63.1,-56.93 -63.1,-56.42 -63.1,-55.91 -63.1,-55.4 -63.1,-55.4 -63.29,-55.4 -63.48,-55.4 -63.67,-55.4 -63.86,-55.4 -64.05,-55.4 -64.24,-55.4 -64.43,-55.4 -64.62,-55.4 -64.81,-55.4 -65,-55.91 -65,-56.42 -65,-56.93 -65,-57.44 -65,-57.95 -65,-58.46 -65,-58.97 -65,-59.48 -65,-59.99 -65,-60.5 -65,-60.5 -64.81,-60.5 -64.62,-60.5 -64.43,-60.5 -64.24,-60.5 -64.05,-60.5 -63.86,-60.5 -63.67,-60.5 -63.48,-60.5 -63.29,-60.5 -63.1)) | POINT(-57.95 -64.05) | false | false | ||||||||||||||||||||||
Resolving CO2 System Seasonality in the West Antarctic Peninsula with Autonomous Observations
|
1543380 |
2017-12-29 | Shadwick, Elizabeth; Shadwick, Elizabeth |
|
Interest in the reduced alkalinity of high latitude waters under conditions of enhanced CO2 uptake from the atmosphere have been the impetus of numerous recent studies of bio-stressors in the polar marine environment. The project seeks to improve our understanding of the variance of coastal Southern Ocean carbonate species (CO2 system), its diurnal and inter-annual variability, by acquiring autonomous, high frequency observations from an Antarctic coastal mooring(s). <br/><br/>A moored observing system co-located within the existing Palmer LTER array will measure pH, CO2 partial pressure, temperature, salinity and dissolved oxygen with 3-hour frequency in this region of the West Antarctic Peninsula continental shelf. Such observations will help estimate the dominant physical and biological controls on the seasonal variations in the CO2 system in coastal Antarctic waters, including the sign, seasonality and the flux of the net annual air-sea exchange of carbon dioxide. The Palmer LTER site is experiencing rapid ecological change in the West Antarctic Peninsula, a region that is warming at rates faster than any other region of coastal Antarctica. | None | None | false | false | |||||||||||||||||||||
Collaborative Research: Application of Distributed Temperature Sensors (DTS) for Antarctic Ice Shelves and Cavities
|
1043217 |
2015-05-05 | Zagorodnov, Victor; Holland, David; Tyler, Scott W. |
|
Abstract<br/><br/>Researchers will explore the use of a distributed temperature sensing monitoring system (DTS), using fiber-optical (FO) technology, as the basis of a sustainable, sub-ice cavity sensing array. FO cable systems, such as may be deployed through a hot-water drilled hole through an ice shelf, passing through the underlying cavity to the sea floor, are capable of measuring temperatures down fiber at 1 meter intervals, and at time frequencies as high as 15 seconds. DTS FO systems operate via optical time domain reflectometry along the fiber waveguide using inelastic backscatter of coherent laser light as a probe beam in the FO environment.<br/><br/>The introduction of new technologies to the harsh environmental conditions of the Antarctic are often associated with high risk. However, the potential rewards of this approach (e.g. multiyear capability, minimal submerged mechanical or electrical components that may fail, relative simplicity of deployment and measurement principle, yet yielding distributed real time and spatial observation) are attractive enough to conduct a pilot project at a field-ready location (McMurdo). <br/><br/>Current indications are that the instability of some of the world's largest ice sheets located around the Antarctic and Greenland may be caused by the presence of warming, deep ocean waters, shoaling over continental shelves, and melting the underside of floating ice shelves. Additional knowledge of the temporal and spatial variability of the temperature fields underneath terminal ice shelves, such as those draining the West Antarctic Ice Sheet, are needed to accurately project future global climate effects on ice-shelf ocean interactions, and in order to inform societal and technological aspects of adaption to changing sea-level. | None | None | false | false | |||||||||||||||||||||
Effect of Ocean Acidification on Early Life History Stages of the Antarctic Sea Urchins Sterechinus Neumayeri
|
0944201 |
2014-12-23 | Hofmann, Gretchen |
|
Abstract<br/><br/>The research examine the effects of ocean acidification on embryos and larvae of a contemporary calcifier in the coastal waters of Antarctica, the sea urchin Sterechinus neumayeri. The effect of future ocean acidification is projected to be particularly threatening to calcifying marine organisms in coldwater, high latitude seas, making tolerance data on these organisms a critical research need in Antarctic marine ecosystems. Due to a high magnesium (Mg) content of their calcitic hard parts, echinoderms are especially vulnerable to dissolution stress from ocean acidification because they currently inhabit seawater that is barely at the saturation level to support biogenic calcification. Thus, cold-water, high latitude species with a high Mg-content in their hard parts are considered to be the 'first responders' to chemical changes in the surface oceans. Studies in this proposal will use several metrics to examine the physiological plasticity of contemporary urchin embryos and larvae to CO2-acidified seawater, to mimic the scenarios defined by IPCC models and by analyses of future acidification predicted for the Southern Ocean. The research also will investigats the biological consequences of synergistic interactions of two converging climate change-related stressors - CO2- driven ocean acidification and ocean warming. Specifically the research will (1) assess the effect of CO2-acidified seawater on the development of early embryos and larvae, (2) using morphometrics, examine changes in the larval endoskeleton in response to development under the high-CO2 conditions of ocean acidification, (3) using a DNA microarray, profile changes in gene expression for genes involved in biomineralization and other important physiological processes, and (4) measure costs and physiological consequences of development under conditions of ocean acidification. The proposal will support the training of undergraduates, graduate students and a postdoctoral fellow. The PI also will collaborate with the UC Santa Barbara Gevirtz Graduate School of Education to link the biological effects of ocean acidification to the chemical changes expected for the Southern Ocean using the 'Science on a Sphere' technology. This display will be housed in an education and public outreach center, the Outreach Center for Teaching Ocean Science (OCTOS), a new state-of-the-art facility under construction at UC Santa Barbara. | POLYGON((-180 -68,-177 -68,-174 -68,-171 -68,-168 -68,-165 -68,-162 -68,-159 -68,-156 -68,-153 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -77,160 -76,160 -75,160 -74,160 -73,160 -72,160 -71,160 -70,160 -69,160 -68,162 -68,164 -68,166 -68,168 -68,170 -68,172 -68,174 -68,176 -68,178 -68,-180 -68)) | POINT(-175 -73) | false | false | |||||||||||||||||||||
Palmer, Antarctica Long Term Ecological Research Project
|
0823101 |
2013-06-24 | Ducklow, Hugh |
|
Since 1990, Palmer LTER (PAL) research has been guided by the hypothesis that variability in the polar marine ecosystem is mechanistically coupled to changes in the annual advance, retreat and spatial extent of sea ice. Since that time, the hypothesis has been modified to incorporate climate migration, i.e. the displacement of a cold, dry polar climate by a warm, moist climate regime in the northern component of the PAL region, producing fundamental changes in food web structure and elemental cycling. The observed northern changes are affecting all trophic levels and elemental cycling, and the primary mechanism of change involves match-mismatch dynamics. The proposed research builds on previous findings, with a new emphasis on process studies and modeling to elucidate the mechanistic links between teleconnections, climate change, physical oceanographic forcing and ecosystem dynamics. The proposed research will examine the hypothesis that regional warming and sea ice decline associated with historical and on-going climate migration in the northern part of the study area have altered key phenological relationships, leading to changes in species distributions, increasing trophic mismatches and changes in habitat, food availability, ecosystem dynamics and biogeochemical cycling. Through targeted process studies linked to numerical model simulations, the research also will test the hypothesis that deep cross-shelf canyons characterizing the core study region are focal areas for ecosystem processes that result in predictable, elevated food resources for top-predators. The effort includes the addition of 3 new PIs: a zooplankton ecologist with expertise in biogeochemical fluxes, a phytoplankton ecologist focusing on bio-optics and autonomous observations using gliders, and a numerical simulation modeler specializing in coupled global models of ocean circulation, plankton ecology and biogeochemical cycles. The program will add trace metal sampling and analysis, moored physical oceanographic sensors, a moored sediment trap in the south, drifting sediment traps and stable carbon (del 13C) and nitrogen (del 15N) isotope analyses. Missions lasting up to 45 days using gliders deployed before, during and after summer cruises will, along with moorings and satellite remote sensing of sea ice, ocean color, sea surface temperatures and wind fields, greatly extend the observational program in space and time. <br/><br/>Since its inception, PAL has been a leader in Information Management to enable knowledge-building within and beyond the Antarctic, oceanographic and LTER communities. PAL has designed and deployed a new information infrastructure with a relational database architecture to facilitate data distribution and sharing. The Education and Outreach program capitalizes on the public's fascination with Antarctica to promote scientific literacy from kindergarten students to adult citizens concerned with climate change and environmental sustainability. Through communicating results to the public and working with scientific assessment bodies (e.g., IPCC) and Antarctic Treaty parties to protect Earth's last frontier, PAL researchers contribute to the national scientific agenda and the greater public benefit. | None | None | false | false | |||||||||||||||||||||
POC Production and Export in the Indian Ocean Sector of the Southern Ocean: A US-China Collaborative Research Program
|
9726186 |
2011-03-03 | Leventer, Amy |
|
This proposed work is a study of the biological production and export flux of biogenic matter in response to ventilation of intermediate and deep water masses within the Polar Front zone. It is a collaborative work between the University of Maine and the Chinese Antarctic Research Expedition (CHINARE). The shipboard work is proposed for the Chinese antarctic resupply vessel off Prydz Bay in the Indian Ocean sector. In the austral Spring, this region experiences phytoplankton blooms that are thought to be the result of nutrient transport by the ventilation of intermediate and deep water masses. On an annual basis, it is believed that such blooms are the primary source of particulate organic carbon and biogenic silica flux to the ocean bottom. At this time however no data exists on the amount of particulate organic matter that sinks through the water column, leaving the quantitative relationships between production and export largely undefined in this region. The initial phase of the work consists of setting out a time-series sediment trap mooring at approximately 64 deg S latitude and 73 deg E longitude to take advantage of the historical data set that CHINARE has obtained in this area over the past decade. The biweekly to monthly trap samples will be analyzed for their organic constituents, and in conjunction with primary productivity observations will provide the basic data from which export values can be derived. This work will be carried out in collaboration with the State Oceanic Administration of the People's Republic of China, and the Chinese Antarctic Research Expedition. In addition to providing time on the antarctic resupply vessel, the SOA will sponsor the shipboard primary productivity experiments and the supporting hydrographic measurements. The collaborating American scientists will provide guidance in making these observations to standards developed for the Joint Global Ocean Flux Study, and provide the hardware for the moored sediment trap. There will be a mutual sharing between the U.S. and Chinese investigators of all samples and data sets, and the data analysis will be carried out jointly. *** | None | None | false | false | |||||||||||||||||||||
Interannual Variability in the Antarctic-Ross Sea (IVARS): Nutrients and Seasonal Production
|
0087401 |
2010-05-04 | Smith, Walker; Gordon, Arnold | During the past few decades of oceanographic research, it has been recognized that significant variations in biogeochemical processes occur among years. Interannual variations in the Southern Ocean are known to occur in ice extent and concentration, in the composition of herbivore communities, and in bird and marine mammal distributions and reproductive success. However, little is known about the interannual variations in production of phytoplankton or the role that these variations play in the food web. This project will collect time series data on the seasonal production of phytoplankton in the southern Ross Sea, Antarctica. Furthermore, it will assess the interannual variations of the production of the two major functional groups of the system, diatoms and Phaeocystis Antarctica, a colonial haptophyte. The Ross Sea provides a unique setting for this type of investigation for a number of reasons. For example, a de facto time-series has already been initiated in the Ross Sea through the concentration of a number of programs in the past ten years. It also is well known that the species diversity is reduced relative to other systems and its seasonal production is as great as anywhere in the Antarctic. Most importantly, seasonal production of both the total phytoplankton community (as well as its two functional groups) can be estimated from late summer nutrient profiles. The project will involve short cruises on the US Coast Guard ice breakers in the southern Ross Sea that will allow the collection of water column nutrient and particulate after data at specific locations in the late summer of each of five years. Additionally, two moorings with in situ nitrate analyzers moored at fifteen will be deployed, thus collecting for the first time in the in the Antarctic a time-series of euphotic zone nutrient concentrations over the entire growing season. All nutrient data will be used to calculate seasonal production for each year in the southern Ross Sea and compared to previously collected information, thereby providing an assessment of interannual variations in net community production. Particulate matter data will allow us to estimate the amount of export from the surface layer by late summer, and therefore calculate the interannual variability of this ecosystem process. Interannual variations of seasonal production (and of the major taxa of producers) are a potentially significant feature in the growth and survival of higher trophic levels within the food web of the Ross Sea. They are also important in order to understand the natural variability in biogeochemical processes of the region. Because polar regions such as the Ross Sea are predicted to be impacted by future climate change, biological changes are also anticipated. Placing these changes in the context of natural variability is an essential element of understanding and predicting such alterations. This research thus seeks to quantify the natural variability of an Antarctic coastal system, and ultimately understand its causes and impacts on food webs and biogeochemical cycles of the Ross Sea. | None | None | false | false | ||||||||||||||||||||||
Influence of Seasonal Ice Cover on Pelagic and Benthic Communities: Long Time-Series Studies
|
9727077 |
2010-05-04 | Smith, Kenneth |
|
9727077 SMITH The annual expansion and contraction of ice cover in the Southern Ocean is the largest seasonal process in the World Ocean. This seasonal variability in ice cover creates extensive fluctuations in primary production, which heavily impacts pelagic and benthic communities. This research will initiate a long time-series study of the water column and sea floor using long-term, autonomous monitoring and sampling systems developed for use in the Antarctic. The study will be located in Post Foster, Deception Island, which supports a pelagic and benthic fauna representative of the Antarctic coastal zone and experiences seasonal ice cover. A bottom-moored, upward-looking acoustic instrument will be deployed on the sea floor for a period of one year to monitor the vertical distribution, abundance and biomass of acoustically-detectable macrozooplankton and micronekton in the water column. Collections will be made over this period using a newly-developed vertically-profiling pump sampling. Simultaneously, a time-lapse camera system will be moored on the sea floor to monitor the spatial distribution, sizes and movements of the epibenthic megafauna component of the benthic community. The instrumentation development will allow the research project to focus on the effect of the seasonal sea ice cycle on the distribution, abundance and biomass of the macrozooplankton and micronekton in the water column. Similar questions on the distribution, abundance, size and movements of the epibenthic megafauna will be addressed. Results from this study will provide a valuable data base for the evaluation of the pelagic and benthic community responses to seasonal variability in the Southern Ocean. | POLYGON((-70.907166 -52.348,-69.6496994 -52.348,-68.3922328 -52.348,-67.1347662 -52.348,-65.8772996 -52.348,-64.619833 -52.348,-63.3623664 -52.348,-62.1048998 -52.348,-60.8474332 -52.348,-59.5899666 -52.348,-58.3325 -52.348,-58.3325 -53.600917,-58.3325 -54.853834,-58.3325 -56.106751,-58.3325 -57.359668,-58.3325 -58.612585,-58.3325 -59.865502,-58.3325 -61.118419,-58.3325 -62.371336,-58.3325 -63.624253,-58.3325 -64.87717,-59.5899666 -64.87717,-60.8474332 -64.87717,-62.1048998 -64.87717,-63.3623664 -64.87717,-64.619833 -64.87717,-65.8772996 -64.87717,-67.1347662 -64.87717,-68.3922328 -64.87717,-69.6496994 -64.87717,-70.907166 -64.87717,-70.907166 -63.624253,-70.907166 -62.371336,-70.907166 -61.118419,-70.907166 -59.865502,-70.907166 -58.612585,-70.907166 -57.359668,-70.907166 -56.106751,-70.907166 -54.853834,-70.907166 -53.600917,-70.907166 -52.348)) | POINT(-64.619833 -58.612585) | false | false | |||||||||||||||||||||
U.S./Chinese Ship of Opportunity Sampling Program Phase II
|
0230284 |
2010-02-20 | Yuan, Xiaojun; Martinson, Douglas |
|
This work is the continuation of a joint project with the Polar Research Institute of China to make measurements of the structure of the upper ocean in the northern Weddell Sea along the route taken by the PRI's antarctic supply vessel, R/V Xue Long. The observations, obtained from expendable instruments, complement existing hydrographic observations along various transects through the northwestern Weddell Sea region and data from moored current meter arrays in the Weddell-Scotia confluence zone. This effort builds upon a successful series of expendable bathythermographs and conductivity-temperature-depth probes obtained by the science party on board the R/V Xue Long for the past four years.<br/>The west-to-east transit of the Weddell Sea by the ship makes it possible to obtain a series of ocean soundings that are otherwise unobtainable. The information is particularly important because strong correlative links between the upper ocean temperature and salinity, the sea ice edge, and extra-polar climate features have been established. It has been shown that the Indian Ocean sector is an anomalous region with respect to connections between antarctic and lower latitude climatic features and indices. Here the Antarctic Circumpolar Current makes its closest approach to the continent and the Antarctic Circumpolar Wave is least well expressed in the existing data. The necessary instrumentation, both software and hardware, has been installed in the ship and an excellent working relationship with Chinese antarctic scientists has been developed. | POLYGON((-40 -35,-24 -35,-8 -35,8 -35,24 -35,40 -35,56 -35,72 -35,88 -35,104 -35,120 -35,120 -38.5,120 -42,120 -45.5,120 -49,120 -52.5,120 -56,120 -59.5,120 -63,120 -66.5,120 -70,104 -70,88 -70,72 -70,56 -70,40 -70,24 -70,8 -70,-8 -70,-24 -70,-40 -70,-40 -66.5,-40 -63,-40 -59.5,-40 -56,-40 -52.5,-40 -49,-40 -45.5,-40 -42,-40 -38.5,-40 -35)) | POINT(40 -52.5) | false | false | |||||||||||||||||||||
Antarctic Meteorological Research Center (2009-2011)
|
0838834 |
1970-01-01 | Lazzara, Matthew; Costanza, Carol | Abstract<br/><br/>The Antarctic Meteorological Research Center (AMRC), located at the University of Wisconsin, Madison, serves several communities by maintaining and extending the stewardship of meteorological data pertinent to the Antarctic continent, its surrounding islands, ice sheets and ice margins and the adjacent Southern Ocean. This data will continue to be made freely available to interested researchers and the general public. Activities of particular interest for the current award include the development of an enhanced data portal to provide improved data and analysis tools to the research community, and to continue to add to the evolution of the Antarctic-Internet Data Distribution system, which is meant to overcome the costly and generally low bandwidth internet connectivity to and from the Antarctic continent. Operational forecasting for logistical activities in the Antarctic, as well as active Antarctic meteorological research programs, are clearly in need of a dependable, steady flow of meteorological observations, model output, and related data in what must be a collaborative environment in order to overcome the otherwise distributed nature of Antarctic meteorological and climatological observations.<br/><br/>AMRC interaction with the public through answering e-mail questions, giving informal public lectures and presentations to K-12 education institutions through visits to schools will help to raise science literacy with regards to meteorology and of the Antarctic and polar regions. <br/><br/><br/><br/>"This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5)." | POLYGON((-180 -62.83,-144 -62.83,-108 -62.83,-72 -62.83,-36 -62.83,0 -62.83,36 -62.83,72 -62.83,108 -62.83,144 -62.83,180 -62.83,180 -65.547,180 -68.264,180 -70.981,180 -73.698,180 -76.415,180 -79.132,180 -81.849,180 -84.566,180 -87.283,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.283,-180 -84.566,-180 -81.849,-180 -79.132,-180 -76.415,-180 -73.698,-180 -70.981,-180 -68.264,-180 -65.547,-180 -62.83)) | POINT(0 -89.999) | false | false |