{"dp_type": "Project", "free_text": "Bubble"}
[{"awards": "2336354 Juarez Rivera, Marisol", "bounds_geometry": "POLYGON((160 -76.5,160.45 -76.5,160.9 -76.5,161.35 -76.5,161.8 -76.5,162.25 -76.5,162.7 -76.5,163.15 -76.5,163.6 -76.5,164.05 -76.5,164.5 -76.5,164.5 -76.7,164.5 -76.9,164.5 -77.1,164.5 -77.3,164.5 -77.5,164.5 -77.7,164.5 -77.9,164.5 -78.1,164.5 -78.3,164.5 -78.5,164.05 -78.5,163.6 -78.5,163.15 -78.5,162.7 -78.5,162.25 -78.5,161.8 -78.5,161.35 -78.5,160.9 -78.5,160.45 -78.5,160 -78.5,160 -78.3,160 -78.1,160 -77.9,160 -77.7,160 -77.5,160 -77.3,160 -77.1,160 -76.9,160 -76.7,160 -76.5))", "dataset_titles": "Lake Fryxell 2022-2023 benthic microbial mat thickness and number of laminae", "datasets": [{"dataset_uid": "601839", "doi": "10.15784/601839", "keywords": "Antarctica; Cryosphere; Dry Valleys; Lake Fryxell; Laminae; Microbial Mat; Thickness", "people": "Juarez Rivera, Marisol; Mackey, Tyler; Paul, Ann; Hawes, Ian; Sumner, Dawn", "repository": "USAP-DC", "science_program": null, "title": "Lake Fryxell 2022-2023 benthic microbial mat thickness and number of laminae", "url": "https://www.usap-dc.org/view/dataset/601839"}], "date_created": "Fri, 05 Jul 2024 00:00:00 GMT", "description": "Perennially ice-covered lakes in the McMurdo Dry Valleys of Antarctica contain abundant microbial mats, and the export of this mat material can fertilize the surrounding polar desert ecosystems. These desert soils are one of the most organic-poor on earth yet host a community of microorganisms. Microbial mat material is exported from the shallow, gas-supersaturated regions of the lakes when gas bubbles form in the mats, lifting them to the ice cover; the perennial ice cover maintains gas supersaturation. These mats freeze in and are exported to the surrounding soils through ice ablation. The largest seasonal decrease and thinnest ice cover in the history of Lake Fryxell was recorded during the 2022-2023 Austral summer. In this thin ice year, the water column dissolved oxygen increased over prior observations, and the lake bottom surface area with bubble-disrupted mat was more than double that observed in 1980-1981 and 2006-2007. This work will constrain mat mobilization within and out of Lake Fryxell in the McMurdo Dry Valleys during a period of unprecedented ice thinning to understand how future changing regional climate and predicted seasonal loss of lake ice cover will affect nutrient transport in the McMurdo Dry Valleys. Exceptional years of mat export are hypothesized to have the most significant impact on nutrient export to soil communities; variability in mat liftoff may thus play a role in the McMurdo Dry Valleys ecosystem response to changing climate. The perennial ice cover of lakes in the McMurdo Dry Valleys of Antarctica modulates the transfer of gasses, organic and inorganic material, between the lakes and surrounding soils. The export of biomass in these lakes is driven by the supersaturation of atmospheric gasses in the shallow regions under perennial ice cover. Gas bubbles nucleate in the mats, producing buoyancy that lifts them to the bottom of the ice, where they freeze in and are exported to the surrounding soils through ice ablation. These mats represent a significant source of biomass and nutrients to the McMurdo Dry Valleys soils, which are among the most organic-poor on earth. Nevertheless, this biomass remains unaccounted for in organic carbon cycling models for the McMurdo Dry Valleys. Ice cover data from the McMurdo Dry Valleys Long Term Ecological Research Project shows that the ice thickness has undergone cyclical variation over the last 40 years, reaching the largest seasonal decrease and thinnest ice-cover in the recorded history of Lake Fryxell during the 2022-2023 austral summer. Preliminary work shows that the surface area with mat liftoff at Lake Fryxell is more than double that observed in 1980-1981 and 2006-2007, coinciding with this unprecedented thinning of the ice-cover and an increase in the water column dissolved O2. This research will constrain biomass mobilization within and out of Lake Fryxell in the McMurdo Dry Valleys during a period of unprecedented ice thinning. The researchers hypothesize that a thinner ice cover promotes more biomass mobilization by 1) stimulating additional production of gas bubbles from the existing gas-supersaturated waters during summertime photosynthesis to create microbial mat liftoff and 2) promoting mat liftoff in deeper, thicker microbial mats, and 3) that this biomass can be traced into the soils by characterizing its chemistry and modeling the most likely depositional settings. This work will use microbial mat samples, lake dissolved oxygen and photosynthetically active radiation data and underwater drone footage documenting the depth distribution of liftoff mats in January 2023, and long-term ice cover thickness, photosynthetically active radiation, and lake level change data collected by the McMurdo Dry Valleys Long Term Ecological Research Project to test hypotheses 1-3. The dispersal of the liftoff mat exposed at Lake Fryxell surface will be modeled using a Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Exceptional liftoff years like the present are hypothesized to have the most significant impact on the soil communities as the rates of soil respiration increase with the addition of carbon. However, continued warming in the next 10 - 40 years may result in seasonal loss of the ice cover and cessation of liftoff mat export. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 164.5, "geometry": "POINT(162.25 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Stable Isotopes; MINERALS; LAKE/POND; ISOTOPES; Organic Matter; McMurdo Dry Valleys; SEDIMENTARY ROCKS", "locations": "McMurdo Dry Valleys", "north": -76.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Earth Sciences", "paleo_time": null, "persons": "Juarez Rivera, Marisol", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.5, "title": "RAPID: Is Biomass Mobilization at Ice-covered Lake Fryxell, Antarctica reaching a Critical Threshold?", "uid": "p0010467", "west": 160.0}, {"awards": "2218402 Fegyveresi, John", "bounds_geometry": "POLYGON((-115 -85.5,-113.5 -85.5,-112 -85.5,-110.5 -85.5,-109 -85.5,-107.5 -85.5,-106 -85.5,-104.5 -85.5,-103 -85.5,-101.5 -85.5,-100 -85.5,-100 -85.65,-100 -85.8,-100 -85.95,-100 -86.1,-100 -86.25,-100 -86.4,-100 -86.55,-100 -86.7,-100 -86.85,-100 -87,-101.5 -87,-103 -87,-104.5 -87,-106 -87,-107.5 -87,-109 -87,-110.5 -87,-112 -87,-113.5 -87,-115 -87,-115 -86.85,-115 -86.7,-115 -86.55,-115 -86.4,-115 -86.25,-115 -86.1,-115 -85.95,-115 -85.8,-115 -85.65,-115 -85.5))", "dataset_titles": "Multi-Site Brittle Ice Data and Measurements", "datasets": [{"dataset_uid": "601786", "doi": "10.15784/601786", "keywords": "Antarctica; Brittle Ice; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Glaciology; Ice Core; Ice Core Records; Ice Core Records; Physical Properties; Simple Dome; Siple Dome; South Pole; SPICEcore; Subgrain Boundaries; WAIS Divide", "people": "Fegyveresi, John; Barnett, Samantha", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Multi-Site Brittle Ice Data and Measurements", "url": "https://www.usap-dc.org/view/dataset/601786"}], "date_created": "Mon, 19 Sep 2022 00:00:00 GMT", "description": "Ice cores are a vital source of information about past climate. Research that utilizes ice cores benefits from an undamaged ice-core record. There is often a zone within ice sheets where the ice is brittle upon extraction in a core. Brittle-ice behavior occurs when the rapid decompression of the core as it is being extracted from the ice-sheet results in extensive fracturing. Ice from this zone can compromise the undamaged record. This project seeks to improve our understanding of the mechanisms involved in brittle-ice behavior and onset, with the goal of helping to guide field-site operations, core handling preparation, and planned laboratory measurement techniques for future ice-coring projects, including the upcoming work at Hercules Dome. This project requires no field work, as it will use existing observations and existing ice cores to gain an understanding of brittle ice. This is a high-risk and timely proposal that is early-concept and exploratory in nature, making it appropriate for the EAGER solicitation. The project will support an early-career researcher and provide training for a master\u2019s student who is a woman. And, finally, the project will develop educational and outreach materials for graduate and undergraduate courses and elementary schools. This project will examine and catalog brittle ice from several existing ice-core samples to specifically assess various ice physical properties affecting brittleness potential, including bubble size and number-density, ice fabric, grain statistics, fracture characteristics, and the location and properties of grain and subgrain boundaries. End members of this sample assessment have been identified and include Siple Dome, which exhibited major brittle behavior and damage, and South Pole ice core, which exhibited very-minor brittle behavior and almost no damage. Output datasets will include calibrated relationships for bubble number-density, mean grain and bubble sizes, subgrain prevalence and orientation, and a usable indicator for estimating brittle-ice onset and magnitude. There is an immediate applicability of results from this effort for the Hercules Dome drilling project. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -100.0, "geometry": "POINT(-107.5 -86.25)", "instruments": null, "is_usap_dc": true, "keywords": "Hercules Dome Ice Core; West Antarctica; Grain Statistics; LABORATORY; Ice Core; ICE SHEETS; Physical Properties; Brittle Ice; C-Axis Fabric; Bubble; ICE CORE RECORDS", "locations": "West Antarctica", "north": -85.5, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Fegyveresi, John", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Hercules Dome Ice Core", "south": -87.0, "title": "EAGER: Constraining the Expected Brittle-ice Behavior for the Hercules Dome Ice-core Site.", "uid": "p0010378", "west": -115.0}, {"awards": "1643669 Petrenko, Vasilii; 1643664 Severinghaus, Jeffrey; 1643716 Buizert, Christo", "bounds_geometry": "POLYGON((112 -66,112.2 -66,112.4 -66,112.6 -66,112.8 -66,113 -66,113.2 -66,113.4 -66,113.6 -66,113.8 -66,114 -66,114 -66.1,114 -66.2,114 -66.3,114 -66.4,114 -66.5,114 -66.6,114 -66.7,114 -66.8,114 -66.9,114 -67,113.8 -67,113.6 -67,113.4 -67,113.2 -67,113 -67,112.8 -67,112.6 -67,112.4 -67,112.2 -67,112 -67,112 -66.9,112 -66.8,112 -66.7,112 -66.6,112 -66.5,112 -66.4,112 -66.3,112 -66.2,112 -66.1,112 -66))", "dataset_titles": "Concentration and isotopic composition of atmospheric N2O over the last century; Law Dome DE08-OH firn air 15N, O2/N2, Ar/N2, 18O of O2; Law Dome DE08-OH site noble gases in ice: testing the 86Krexcess proxy; Law Dome firn air and ice core 14CO concentration", "datasets": [{"dataset_uid": "601597", "doi": "10.15784/601597", "keywords": "Antarctica; Ice Core; Law Dome; Noble Gas", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Law Dome DE08-OH site noble gases in ice: testing the 86Krexcess proxy", "url": "https://www.usap-dc.org/view/dataset/601597"}, {"dataset_uid": "601598", "doi": "10.15784/601598", "keywords": "Antarctica; Firn; Firn Density; Gravitational Settling; Inert Gases; Law Dome", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Law Dome DE08-OH firn air 15N, O2/N2, Ar/N2, 18O of O2", "url": "https://www.usap-dc.org/view/dataset/601598"}, {"dataset_uid": "601693", "doi": "10.15784/601693", "keywords": "Antarctic; Antarctica; Anthropogenic Emission; Atmosphere; Greenhouse Gas; Greenland; Ice Core Data; Nitrification And Denitrification Processes; Nitrous Oxide; Site-Specific 15N Isotopomer; Styx Glacier", "people": "Yoshida, Naohiro ; Etheridge, David; Ghosh, Sambit; Toyoda, Sakae ; Buizert, Christo ; Ahn, Jinho ; Joong Kim, Seong; Langenfelds, Ray L ", "repository": "USAP-DC", "science_program": null, "title": "Concentration and isotopic composition of atmospheric N2O over the last century", "url": "https://www.usap-dc.org/view/dataset/601693"}, {"dataset_uid": "601846", "doi": "10.15784/601846", "keywords": "Antarctica; Carbon-14; Cryosphere; Firn Air; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Law Dome; Snow/ice; Snow/Ice", "people": "Petrenko, Vasilii", "repository": "USAP-DC", "science_program": null, "title": "Law Dome firn air and ice core 14CO concentration", "url": "https://www.usap-dc.org/view/dataset/601846"}], "date_created": "Fri, 17 Jun 2022 00:00:00 GMT", "description": "Hydroxyl radicals are responsible for removal of most atmospheric trace gases, including pollutants and important greenhouse gases. They have been called the \"detergent of the atmosphere\". Changes in hydroxyl radical concentration in response to large changes in reactive trace gas emissions, which may happen in the future, are uncertain. This project aims to provide the first estimates of the variability of atmospheric hydroxyl radicals since about 1880 AD when anthropogenic emissions of reactive trace gases were minimal. This will improve understanding of their stability in response to large changes in emissions. The project will also investigate whether ice cores record past changes in Southern Hemisphere westerly winds. These winds are a key component of the global climate system, and have an important influence on ocean circulation and possibly on atmospheric carbon dioxide concentrations. The project team will include three early career scientists, a postdoctoral researcher, and graduate and undergraduate students, working in collaboration with senior scientists and Australian collaborators. Firn air and shallow ice to a depth of about 233 m will be sampled at the Law Dome high-accumulation coastal site in East Antarctica. Trapped air will be extracted from the ice cores on site immediately after drilling. Carbon-14 of carbon monoxide (14CO) will be analyzed in firn and ice-core air samples. Corrections will be made for the in situ cosmogenic 14CO component in the ice, allowing for the atmospheric 14CO history to be reconstructed. This 14CO history will be interpreted with the aid of a chemistry-transport model to place the first observational constraints on the variability of Southern Hemisphere hydroxyl radical concentration after about 1880 AD. An additional component of the project will analyze Krypton-86 in the firn-air and ice-core samples. These measurements will explore whether ice-core Krypton-86 acts as a proxy for barometric pressure variability, and whether this proxy can be used in Antarctic ice cores to infer past movement of the Southern Hemisphere westerly winds. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 114.0, "geometry": "POINT(113 -66.5)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; TRACE GASES/TRACE SPECIES; Law Dome; Amd/Us; USAP-DC; LABORATORY; ICE CORE AIR BUBBLES; USA/NSF", "locations": "Law Dome", "north": -66.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Petrenko, Vasilii; Murray, Lee T; Buizert, Christo; Petrenko, Vasilii; Murray, Lee T", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.0, "title": "Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability", "uid": "p0010341", "west": 112.0}, {"awards": "0838843 Kurbatov, Andrei; 1745006 Brook, Edward J.; 1744993 Higgins, John; 1744832 Severinghaus, Jeffrey; 1745007 Mayewski, Paul", "bounds_geometry": "POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667))", "dataset_titles": "Allan Hills 2022-23 Shallow Ice Core Field Report; Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 \u0026 2022; Allan Hills Stable Water Isotopes; CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903; Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903; I-165-M GPR Field Report 2019-2020; MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903; Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old", "datasets": [{"dataset_uid": "601696", "doi": "10.15784/601696", "keywords": "Allan Hills; Antarctica; Ice Core", "people": "Brook, Edward J.; Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills 2022-23 Shallow Ice Core Field Report", "url": "https://www.usap-dc.org/view/dataset/601696"}, {"dataset_uid": "601620", "doi": "10.15784/601620", "keywords": "18O; Allan Hills; Allan Hills Blue Ice; Antarctica; Blue Ice; Delta 15N; Delta 18O; Dole Effect; Firn Thickness; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Chronology; Ice Core Records", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 \u0026 2022", "url": "https://www.usap-dc.org/view/dataset/601620"}, {"dataset_uid": "601896", "doi": "10.15784/601896", "keywords": "Allan Hills; Antarctica; Ch4; CO2; Cryosphere; Glaciology; Glaciology; Ice Core Data; Ice Core Records", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601896"}, {"dataset_uid": "601895", "doi": "10.15784/601895", "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Noble Gas", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601895"}, {"dataset_uid": "601878", "doi": "10.15784/601878", "keywords": "Allan Hills; Antarctica; Blue Ice; Carbon Dioxide; Cryosphere; Methane", "people": "Shackleton, Sarah; Marks Peterson, Julia; Brook, Edward; Kalk, Michael; Severinghaus, Jeffrey P.; Hishamunda, Valens", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old", "url": "https://www.usap-dc.org/view/dataset/601878"}, {"dataset_uid": "609541", "doi": "10.7265/N5NP22DF", "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Isotope", "people": "Kurbatov, Andrei V.; Introne, Douglas; Mayewski, Paul A.; Spaulding, Nicole", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills Stable Water Isotopes", "url": "https://www.usap-dc.org/view/dataset/609541"}, {"dataset_uid": "601669", "doi": "10.15784/601669", "keywords": "Allan Hills; Antarctica; GPR; Ice Core; Report", "people": "Nesbitt, Ian; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "I-165-M GPR Field Report 2019-2020", "url": "https://www.usap-dc.org/view/dataset/601669"}, {"dataset_uid": "601897", "doi": "10.15784/601897", "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciology; Ice Core Data; MOT; Ocean Temperature; Paleoclimate; Xe/Kr", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601897"}], "date_created": "Fri, 27 Aug 2021 00:00:00 GMT", "description": "Bubbles of ancient air trapped in ice cores have been used to directly reconstruct atmospheric composition, and its links to Antarctic and global climate, over the last 800,000 years. Previous field expeditions to the Allan Hills Blue Ice Area, Antarctica, have recovered ice cores that extend as far back as 2.7 million years, by far the oldest polar ice samples yet recovered. These ice cores extend direct observations of atmospheric carbon dioxide and methane concentrations and indirect records of Antarctic climate into a period of Earth\u0027s climate history that represents a plausible geologic analogue to future anthropogenic climate change. The results demonstrate a smaller glacial-interglacial variability of climate and greenhouse gases, and a persistent linkage between Antarctic climate and atmospheric carbon dioxide, between 1 and 2 million years ago. Through this project, the team will return to the Allan Hills Blue Ice Area to recover additional ice cores that date to 2 million years or older. The climate records developed from these ice cores will provide new insights into the chemical composition of the atmosphere and Antarctic climate during times of comparable or even greater warmth than the present day. Project results will help answer questions about issues associated with anthropogenic change including the relationship between temperature change and the mass balance of Antarctic ice and the relationship between atmospheric greenhouse gases and global climate change. Earth has been cooling, and ice sheets expanding, over the past ~52 million years. Superimposed on this cooling are periodic changes in Earth\u0027s climate system driven by variations in the eccentricity, precession, and obliquity of Earth\u0027s orbit around the Sun. Climate reconstructions based on measurements of oxygen isotopes in foraminiferal calcite indicate that, from ~2.8 to 1.2 million years before present (Ma), Earth\u0027s climate system oscillated between glacial and interglacial states every ~40,000 years (the \"40k world\"). Between 1.2-0.8 Ma and continuing to the present, the period of glacial cycles increased in amplitude and lengthened to ~100,000 years (the \"100k world\"). Ice cores preserve ancient air that allows direct reconstructions of atmospheric carbon dioxide and methane. They also archive proxy records of regional climate, mean ocean temperature, global oxygen cycling, and the aridity of nearby continents. Studies of stratigraphically continuous ice cores, extending to 800,000 years before present, have demonstrated that atmospheric carbon dioxide is strongly linked to climate, and it is of great interest to extend the ice-core record into the 40k world. Recent discoveries of well-preserved ice dating from 1.0 to 2.7 Ma from ice cores drilled in the Allan Hills Blue Ice Area (BIA), Antarctica, demonstrate the potential to retrieve stratigraphically discontinuous old ice at shallow depths (\u003c200 meters). This project will continue this work by retrieving new large-volume ice cores and measuring paleoclimate properties in both new and existing ice from the Allan Hills BIA. The experimental objectives are to more fully characterize fundamental properties of the climate system and the carbon cycle during the 40k world. Project results will have implications for Pleistocene climate change, and will provide new constraints on the processes that regulate atmospheric carbon dioxide, methane, and oxygen on geologic timescales. Given a demonstrated age of the ice at the Allan Hills BIA of at least 2 million years, the team will drill additional cores to prospect for ice that predates the initiation of Northern Hemisphere glaciation at the Plio-Pleistocene transition (~2.8 Ma). This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 159.41667, "geometry": "POINT(159.29167 -76.7)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; USAP-DC; SNOW/ICE; Allan Hills; FIELD SURVEYS; USA/NSF; Amd/Us; LABORATORY", "locations": "Allan Hills", "north": -76.66667, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Mayewski, Paul A.; Kurbatov, Andrei V.; Brook, Edward J.; Severinghaus, Jeffrey P.; Higgins, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73333, "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "uid": "p0010253", "west": 159.16667}, {"awards": "1445205 Putkonen, Jaakko", "bounds_geometry": "POLYGON((157.6 -83.2,157.62 -83.2,157.64 -83.2,157.66 -83.2,157.68 -83.2,157.7 -83.2,157.72 -83.2,157.74 -83.2,157.76 -83.2,157.78 -83.2,157.8 -83.2,157.8 -83.21,157.8 -83.22,157.8 -83.23,157.8 -83.24,157.8 -83.25,157.8 -83.26,157.8 -83.27,157.8 -83.28,157.8 -83.29,157.8 -83.3,157.78 -83.3,157.76 -83.3,157.74 -83.3,157.72 -83.3,157.7 -83.3,157.68 -83.3,157.66 -83.3,157.64 -83.3,157.62 -83.3,157.6 -83.3,157.6 -83.29,157.6 -83.28,157.6 -83.27,157.6 -83.26,157.6 -83.25,157.6 -83.24,157.6 -83.23,157.6 -83.22,157.6 -83.21,157.6 -83.2))", "dataset_titles": "Cosmogenic-Nuclide data at ICE-D; Old Ice, Ong Valley, Transantarctic Mountains", "datasets": [{"dataset_uid": "601665", "doi": "10.15784/601665", "keywords": "Antarctica; Buried Ice; Cosmogenic Isotopes; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Old Ice; Ong Valley", "people": "Putkonen, Jaakko; Bergelin, Marie", "repository": "USAP-DC", "science_program": null, "title": "Old Ice, Ong Valley, Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/601665"}, {"dataset_uid": "200295", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic-Nuclide data at ICE-D", "url": "https://version2.ice-d.org/antarctica/nsf/"}], "date_created": "Fri, 16 Jul 2021 00:00:00 GMT", "description": "Putkonen/1445205 This award supports the study of a large body of ice that is buried beneath approximately a meter of debris in the Ong Valley of the Transantarctic Mountains of East Antarctica. Preliminary analyses of this material suggest that it could be over a million years old. Most glacial ice contains tiny air bubbles that have trapped the atmospheric gases and other atmospherically transported materials existing at the time that the ice was deposited such as plant pollen, microbes and mineral dust. Samples will be collected from this buried ice mass, down to a depth of 10 meters, and cosmogenic nuclide concentrations both in the overlying debris and in the till contained in the ice will be measured. This site could contain some of the oldest ice on Earth and studies of the material contained within it may help researchers to better understand the processes involved in its survival for such long periods of time. This work will also help inform scientists about the processes involved in the development of landforms here on earth as well as those on Mars where similar dirt covered glaciers are found today. Samples of the buried ice will be collected in Ong Valley and analyzed to determine the cosmogenic nuclide concentrations in both the overlying debris and in the mineral matter suspended in the ice. The combined analysis of the target cosmogenic nuclides (Beryllium-10, Aluminum-26, and Neon-21) will allow the age of the ice to be uniquely determined and will enable determination of the rate that the ice is sublimating. The intellectual merit of this research is to unequivocally determine the age of the ice and the sublimation rate of the ice in Ong Valley, Antarctica and to better understand if this an uniquely Antarctic process or whether it could exist elsewhere on earth or on other planets. The work may also lead to the recognition of the oldest buried ice ever found on Earth and would provide a source from which direct information about the atmospheric chemistry, ancient life forms, and geology of that time could be measured. The broader impacts of this work are that it will be relevant to researchers in a number of different fields including glaciology, paleoclimatology, planetary geology, and biology. Several students will also participate in the project, conducting Antarctic field work, making measurements in the lab, attending meetings, participating in outreach activities, and producing videos. A graduate student will also write a thesis on this research. The results will be published in scientific journals and presented at conferences. The project requires field work in Antarctica.", "east": 157.8, "geometry": "POINT(157.7 -83.25)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; USA/NSF; FIELD SURVEYS; Transantarctic Mountains; GLACIERS/ICE SHEETS; AMD; Amd/Us", "locations": "Transantarctic Mountains", "north": -83.2, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "putkonen, jaakko; Balco, Gregory; Morgan, Daniel", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "ICE-D; USAP-DC", "science_programs": null, "south": -83.3, "title": "Collaborative Research: Long Term Sublimation/Preservation of Two Separate, Buried Glacier Ice Masses, Ong Valley, Southern Transantarctic Mountains", "uid": "p0010231", "west": 157.6}, {"awards": "1935438 McCarthy, Christine", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Thu, 03 Jun 2021 00:00:00 GMT", "description": "The ice sheets of Antarctica and Greenland are losing mass and contributing to accelerating global sea-level rise. Satellite altimetry provides precise measurement of ice-sheet volume change, but computing ice-sheet mass change\u2014the quantity relevant for estimating the ice sheet\u2019s sea-level contribution\u2014requires knowing the density of the ice sheet. The density near the ice-sheet surface also affects age estimates of air bubbles recovered in ice cores, which are a key source of information on past climate changes. Ice-sheet density is primarily controlled by the rate at which firn (snow that has persisted for a year or more on ice sheets) compacts into ice, but there is currently no widely accepted theory of how this compaction occurs. The goal of this project is thus to advance understanding of how firn densifies. The team will conduct laboratory experiments and analyze ice-penetrating radar and ice-core data from Antarctica. A key desired outcome of the project is a new model of firn densification that can be used to improve satellite-based altimetry measurements of present-day ice-sheet change and reconstructions of past climate changes from ice cores. This project will combine laboratory experiments, numerical modeling, and geophysical techniques to determine the rheology of firn as it compacts to form ice. The team will use two methods to measure firn compaction: (1) lab-based experiments and (2) analysis of ice-core and radar data. For the lab-based work, the team will conduct a suite of compaction experiments on synthetic firn samples under uni-axial strain and constant temperature and axial stress. They will also measure the grain-size evolution. By running a large number of experiments (\u003e 25), the team will constrain key parameters that determine how firn compaction rate depends on density, temperature, grain size, and axial stress. The experiments will be conducted in a table-top apparatus at temperatures as low as -40 degrees C and axial stresses up to 4 MPa. For the field-data-based component, the team will analyze ice-core and ice-penetrating radar data to produce the first coincident set of radar-derived firn compaction rates, borehole temperatures, firn densities, and firn grain sizes. Results from lab and field data will be tied together using a numerical firn compaction model. This model is formulated using conservation of mass, momentum, and energy, along with an explicit description of firn rheology and grain-size evolution. Constraints on firn rheology will be incorporated into this model and the team will use it to examine fundamental questions about how changes in the climate affect firn density. This is a crucial unknown that contributes significant measurement uncertainty in estimates of past and present climate change. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "AMD; LABORATORY; USA/NSF; COMPUTERS; USAP-DC; FIRN; Antarctic Ice Sheet; Amd/Us", "locations": "Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Arctic Natural Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "McCarthy, Christine M.; Kingslake, Jonathan", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Understanding Firn Rheology Through Laboratory Compaction Experiments and Radar Data", "uid": "p0010185", "west": null}, {"awards": "1419979 Severinghaus, Jeffrey", "bounds_geometry": "POLYGON((166.65 -78.62,166.654 -78.62,166.658 -78.62,166.662 -78.62,166.666 -78.62,166.67 -78.62,166.674 -78.62,166.678 -78.62,166.682 -78.62,166.686 -78.62,166.69 -78.62,166.69 -78.6205,166.69 -78.621,166.69 -78.6215,166.69 -78.622,166.69 -78.6225,166.69 -78.623,166.69 -78.6235,166.69 -78.624,166.69 -78.6245,166.69 -78.625,166.686 -78.625,166.682 -78.625,166.678 -78.625,166.674 -78.625,166.67 -78.625,166.666 -78.625,166.662 -78.625,166.658 -78.625,166.654 -78.625,166.65 -78.625,166.65 -78.6245,166.65 -78.624,166.65 -78.6235,166.65 -78.623,166.65 -78.6225,166.65 -78.622,166.65 -78.6215,166.65 -78.621,166.65 -78.6205,166.65 -78.62))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 18 May 2020 00:00:00 GMT", "description": "The PIs will design and build a new rapid access ice drill (RAID) for use in Antarctica. This drill will have the ability to rapidly drill through ice up to 3300 m thick and then collect samples of the ice, ice-sheet bed interface, and bedrock substrate below. This drilling technology will provide a new way to obtain in situ measurements and samples for interdisciplinary studies in geology, glaciology, paleoclimatology, microbiology, and astrophysics. The RAID drilling platform will give the scientific community access to records of geologic and climatic change on a variety of timescales, from the billion-year rock record to thousand-year ice and climate histories. Successful development of the RAID system will provide a research tool that is currently unavailable. Development of this platform will enable scientists to address critical questions about the deep interface between the Antarctic ice sheets and the substrate below. Development of RAID will provide a way to address many of the unknowns associated with general stability of the Antarctic ice sheets in the face of changing climate and sea level rise. The scientific rationale for RAID was reviewed in a previous proposal (Goodge 1242027). The PIs were granted ?Phase I? funding to develop a more detailed conceptual design for the RAID drill that would provide a better understanding of construction costs as well as operation and maintenance costs for RAID once it is constructed. Phase I support also allowed the PIs to work with the research community to develop more detailed science requirements for the drill. This proposal requests continued funding (Phase II) to construct, assemble and test the RAID drilling platform, through to staging it in Antarctic for future scientific operations.", "east": 166.69, "geometry": "POINT(166.67 -78.6225)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "WAIS Divide Ice Core; ICE CORE AIR BUBBLES; FIELD INVESTIGATION; USAP-DC; Minna Bluff", "locations": "Minna Bluff", "north": -78.62, "nsf_funding_programs": "Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": -78.625, "title": "Collaborative Research: Phase 2 Development of A Rapid Access Ice Drilling (RAID) Platform for Research in Antarctica", "uid": "p0010099", "west": 166.65}, {"awards": "1644020 Sims, Kenneth W.; 1644027 Wallace, Paul; 1644013 Gaetani, Glenn", "bounds_geometry": "POLYGON((164.1 -77.1,164.65 -77.1,165.2 -77.1,165.75 -77.1,166.3 -77.1,166.85 -77.1,167.4 -77.1,167.95 -77.1,168.5 -77.1,169.05 -77.1,169.6 -77.1,169.6 -77.235,169.6 -77.37,169.6 -77.505,169.6 -77.64,169.6 -77.775,169.6 -77.91,169.6 -78.045,169.6 -78.18,169.6 -78.315,169.6 -78.45,169.05 -78.45,168.5 -78.45,167.95 -78.45,167.4 -78.45,166.85 -78.45,166.3 -78.45,165.75 -78.45,165.2 -78.45,164.65 -78.45,164.1 -78.45,164.1 -78.315,164.1 -78.18,164.1 -78.045,164.1 -77.91,164.1 -77.775,164.1 -77.64,164.1 -77.505,164.1 -77.37,164.1 -77.235,164.1 -77.1))", "dataset_titles": "G170 Electron Microprobe Analyses of Melt Inclusions and Host Olivines; G170 Raman Spectroscopy \u0026 Tomography Volumes of Melt Inclusions and Vapor Bubbles; G170 Sample Locations Ross Island \u0026 Discovery Province; G170 Secondary Ion Mass Spectrometry Analses of Melt Inclusion Volatiles; G170 Secondary Ion Mass Spectrometry Analyses of Melt Inclusion Hydrogen Isotopes; Location and Description of Tephra Samples from the Erebus and Discovery Sub-provinces", "datasets": [{"dataset_uid": "601505", "doi": "10.15784/601505", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Electron Microprobe Analyses; Olivine; Petrography; Ross Island", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Electron Microprobe Analyses of Melt Inclusions and Host Olivines", "url": "https://www.usap-dc.org/view/dataset/601505"}, {"dataset_uid": "601506", "doi": "10.15784/601506", "keywords": "Antarctica; Ion Mass Spectrometry; Ross Island; Volatiles", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Secondary Ion Mass Spectrometry Analses of Melt Inclusion Volatiles", "url": "https://www.usap-dc.org/view/dataset/601506"}, {"dataset_uid": "601507", "doi": "10.15784/601507", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Hydrogen; Ion Mass Spectrometry; Ross Island", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Secondary Ion Mass Spectrometry Analyses of Melt Inclusion Hydrogen Isotopes", "url": "https://www.usap-dc.org/view/dataset/601507"}, {"dataset_uid": "601250", "doi": "10.15784/601250", "keywords": "Antarctica; Hut Point Peninsula; Mt. Bird; Mt. Morning; Mt. Terror; Ross Island; Turks Head; Turtle Rock", "people": "Gaetani, Glenn; Pamukcu, Ayla", "repository": "USAP-DC", "science_program": null, "title": "Location and Description of Tephra Samples from the Erebus and Discovery Sub-provinces", "url": "https://www.usap-dc.org/view/dataset/601250"}, {"dataset_uid": "601508", "doi": "10.15784/601508", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Melt Inclusions; Raman Spectroscopy; Ross Island; Vapor Bubbles; Volcanic", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Raman Spectroscopy \u0026 Tomography Volumes of Melt Inclusions and Vapor Bubbles", "url": "https://www.usap-dc.org/view/dataset/601508"}, {"dataset_uid": "601504", "doi": "10.15784/601504", "keywords": "Antarctica; Ross Island; Sample/collection Description; Sample/Collection Description; Sample Location", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Sample Locations Ross Island \u0026 Discovery Province", "url": "https://www.usap-dc.org/view/dataset/601504"}], "date_created": "Sat, 08 Feb 2020 00:00:00 GMT", "description": "Nontechnical project description Globally, 500 million people live near and are threatened by active volcanoes. An important step in mitigating volcanic hazards is understanding the variables that influence the explosivity of eruptions. The rate at which a magma ascends from the reservoir within the Earth to the surface is one such variable. However, magma ascent rates are particularly difficult to determine because of the lack of reliable methods for investigating the process. This research applies a new approach to study magma storage depths and ascent rates at the Erebus volcanic province of Antarctica, one of Earth\u0027s largest alkaline volcanic centers. Small pockets of magma that become trapped within growing olivine crystals are called melt inclusions. The concentrations of water and carbon dioxide in these melt inclusions preserve information on the depth of magma reservoirs. Changes to the concentration and isotopic composition of water in the inclusions provide information on how long it took for the host magma to rise to the surface. In combination, these data from samples of olivine-rich volcanic deposits in the Erebus volcanic province will be used to determine the depths at which magmas are stored and their ascent rates. The project results will provide a framework for understanding volcanic hazards associated with alkaline volcanism worldwide. In addition, this project facilitates collaboration among three institutions, and provides an important educational opportunity for a postdoctoral researcher. Technical project description The depths at which magmas are stored, their pre-eruptive volatile contents, and the rates at which they ascend to the Earth\u0027s surface are important controls on the dynamics of volcanic eruptions. Basaltic magmas are likely to be vapor undersaturated as they begin their ascent from the mantle through the crust, but volatile solubility drops with decreasing pressure. Once vapor saturation is achieved and the magma begins to degas, its pre-eruptive volatile content is determined largely by the depth at which it resides within the crust. Magma stored in deeper reservoirs tend to experience less pre-eruptive degassing and to be richer in volatiles than magma shallower reservoirs. Eruptive style is influenced by the rate at which a magma ascends from the reservoir to the surface through its effect on the efficiency of vapor bubble nucleation, growth, and coalescence. The proposed work will advance our understanding of pre-eruptive storage conditions and syn-eruptive ascent rates through a combined field and analytical research program. Volatile measurements from olivine-hosted melt inclusions will be used to systematically investigate magma storage depths and ascent rates associated with alkaline volcanism in the Erebus volcanic province. A central goal of the project is to provide a spatial and temporal framework for interpreting results from studies of present-day volcanic processes at Mt Erebus volcano. The Erebus volcanic province of Antarctica is especially well suited to this type of investigation because: (1) there are many exposed mafic scoria cones, fissure vents, and hyaloclastites (exposed in sea cliffs) that produced rapidly quenched, olivine-rich tephra; (2) existing volatile data for Ross Island MIs show that magma storage was relatively deep compared to many mafic volcanic systems; (3) some of the eruptive centers ejected mantle xenoliths, allowing for comparison of ascent rates for xenolith-bearing and xenolith-free eruptions, and comparison of ascent rates for those bearing xenoliths with times estimated from settling velocities; and (4) the cold, dry conditions in Antarctica result in excellent tephra preservation compared to tropical and even many temperate localities. The project provides new tools for assessing volcanic hazards, facilitates collaboration involving researchers from three different institutions (WHOI, U Wyoming, and U Oregon), supports the researchers\u0027 involvement in teaching, advising, and outreach, and provides an educational opportunity for a promising young postdoctoral researcher. Understanding the interrelationships among magma volatile contents, reservoir depths, and ascent rates is vital for assessing volcanic hazards associated with alkaline volcanism across the globe.", "east": 169.6, "geometry": "POINT(166.85 -77.775)", "instruments": null, "is_usap_dc": true, "keywords": "Tephra; Turtle Rock; USA/NSF; Amd/Us; LABORATORY; AMD; Ross Island; Turks Head; Hut Point Peninsula; LAVA SPEED/FLOW; USAP-DC; Mt. Morning; Mt. Terror; ROCKS/MINERALS/CRYSTALS; Mt. Bird; FIELD INVESTIGATION", "locations": "Ross Island; Mt. Morning; Mt. Bird; Mt. Terror; Hut Point Peninsula; Turtle Rock; Turks Head", "north": -77.1, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Gaetani, Glenn; Le Roux, Veronique; Sims, Kenneth; Wallace, Paul", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.45, "title": "Collaborative Research: Determining Magma Storage Depths and Ascent Rates for the Erebus Volcanic Province, Antarctica Using Diffusive Water Loss from Olivine-hosted Melt Inclusion", "uid": "p0010081", "west": 164.1}, {"awards": "1443263 Higgins, John; 1443306 Mayewski, Paul", "bounds_geometry": null, "dataset_titles": "Allan Hills ice water stable isotope record for dD, d18O; Carbon dioxide concentration and its stable carbon isotope composition in Allan Hills ice cores; Elemental and isotopic composition of heavy noble gases in Allan Hills ice cores; Elemental and isotopic composition of nitrogen, oxygen, and argon in Allan Hills ice cores; Greenhouse gas composition in the Allan Hills S27 ice core; Methane concentration in Allan Hills ice cores; Stable isotope composition of the trapped air in the Allan Hills S27 ice core; Stable water isotope data for the AH-1502 ice core drilled at the Allan Hills Blue ice area; Stable water isotope data for the AH-1503 ice core drilled at the Allan Hills Blue ice area; Stable water isotope data for the surface samples collected at the Allan Hills Blue ice area", "datasets": [{"dataset_uid": "601203", "doi": "10.15784/601203", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Chemistry:ice; Chemistry:Ice; Gas Chromatography; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenhouse Gas; Ice; Ice Core Data; Ice Core Gas Records; Methane; Snow/ice; Snow/Ice", "people": "Bender, Michael; Brook, Edward J.; Yan, Yuzhen; Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Methane concentration in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601203"}, {"dataset_uid": "601201", "doi": "10.15784/601201", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Argon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Data; Ice Core Gas Records; Krypton; Mass Spectrometer; Noble Gas; Snow/ice; Snow/Ice; Xenon", "people": "Yan, Yuzhen; Ng, Jessica; Higgins, John; Severinghaus, Jeffrey P.; Bender, Michael", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Elemental and isotopic composition of heavy noble gases in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601201"}, {"dataset_uid": "601128", "doi": "10.15784/601128", "keywords": "Allan Hills; Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope Record; Mass Spectrometry; Stable Water Isotopes", "people": "Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas; Yan, Yuzhen", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable water isotope data for the AH-1503 ice core drilled at the Allan Hills Blue ice area", "url": "https://www.usap-dc.org/view/dataset/601128"}, {"dataset_uid": "601129", "doi": "10.15784/601129", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Blue Ice; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Isotope Data; Oxygen; Snow/ice; Snow/Ice; Stable Water Isotopes; Transantarctic Mountains", "people": "Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas; Yan, Yuzhen", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable water isotope data for the AH-1502 ice core drilled at the Allan Hills Blue ice area", "url": "https://www.usap-dc.org/view/dataset/601129"}, {"dataset_uid": "601130", "doi": "10.15784/601130", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; Delta 18O; Delta Deuterium; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Gas Records; Ice Core Records; Oxygen; Snow/ice; Snow/Ice; Stable Water Isotopes; Transantarctic Mountains", "people": "Introne, Douglas; Kurbatov, Andrei V.; Mayewski, Paul A.; Yan, Yuzhen", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable water isotope data for the surface samples collected at the Allan Hills Blue ice area", "url": "https://www.usap-dc.org/view/dataset/601130"}, {"dataset_uid": "601483", "doi": "10.15784/601483", "keywords": "Allan Hills; Antarctica; Argon; Ice; Ice Core Data; Ice Core Gas Records; Isotope; Mass Spectrometry; Nitrogen; Oxygen", "people": "Higgins, John; Bender, Michael; Yan, Yuzhen", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Elemental and isotopic composition of nitrogen, oxygen, and argon in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601483"}, {"dataset_uid": "601863", "doi": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Isotope Data", "people": "Higgins, John; Severinghaus, Jeffrey P.; Introne, Douglas; Mayewski, Paul A.; Brook, Edward; Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Allan Hills ice water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601863"}, {"dataset_uid": "601863", "doi": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Isotope Data", "people": "Kurbatov, Andrei V.; Mayewski, Paul A.; Brook, Edward; Introne, Douglas; Higgins, John; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills ice water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601863"}, {"dataset_uid": "601512", "doi": "10.15784/601512", "keywords": "Allan Hills; Antarctica; Blue Ice; Ice Core; Ice Core Gas Records; Isotope; Nitrogen; Oxygen", "people": "Yan, Yuzhen; Higgins, John; Bender, Michael", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable isotope composition of the trapped air in the Allan Hills S27 ice core", "url": "https://www.usap-dc.org/view/dataset/601512"}, {"dataset_uid": "601425", "doi": "10.15784/601425", "keywords": "Allan Hills; Antarctica; Blue Ice; Carbon Dioxide; Ice Core; Methane", "people": "Brook, Edward J.; Yan, Yuzhen", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Greenhouse gas composition in the Allan Hills S27 ice core", "url": "https://www.usap-dc.org/view/dataset/601425"}, {"dataset_uid": "601202", "doi": "10.15784/601202", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Carbon Dioxide; Carbon Isotopes; Chemistry:ice; Chemistry:Ice; CO2; Gas Chromatography; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Gas Records; Ice Core Records; Mass Spectrometer; Mass Spectrometry; Methane; Snow/ice; Snow/Ice", "people": "Brook, Edward J.; Bender, Michael; Yan, Yuzhen; Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Carbon dioxide concentration and its stable carbon isotope composition in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601202"}], "date_created": "Thu, 18 Oct 2018 00:00:00 GMT", "description": "Bubbles of ancient air trapped in ice cores permit the direct reconstruction of atmospheric composition and allow us to link greenhouse gases and global climate over the last 800,000 years. Previous field expeditions to the Allan Hills blue ice area, Antarctica, have recovered ice cores that date to one million years, the oldest ice cores yet recovered from Antarctica. These records have revealed that interglacial CO2 concentrations decreased by 800,000 years ago and that, in the warmer world 1 million years ago, CO2 and Antarctic temperature were linked as during the last 800,000 years. This project will return to the Allan Hills blue ice area to recover additional ice cores that date to 1 million years or older. The climate records developed from the drilled ice cores will provide new insights into the chemical composition of the atmosphere and Antarctic climate during times of comparable or even greater warmth than the present day. Our results will help answer questions about issues associated with anthropogenic change. These include the relationship between temperature change and the mass balance of Antarctic ice; precipitation and aridity variations associated with radiatively forced climate change; and the climate significance of sea ice extent. The project will entrain two graduate students and a postdoctoral scholar, and will conduct outreach including workshops to engage teachers in carbon science and ice cores. Between about 2.8-0.9 million years ago, Earth\u0027s climate was characterized by 40,000-year cycles, driven or paced by changes in the tilt of Earth\u0027s spin axis. Much is known about the \"40,000-year\" world from studies of deep-sea sediments, but our understanding of climate change during this period is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of ancient ice from the Main Ice Field, Allan Hills, Antarctica. During previous field seasons we recovered ice extending, discontinuously, from 0.1-1.0 million years old. Ice was dated by measuring the 40Ar/38Ar (Argon) ratio of the trapped gases. Our discovery of million year-old ice demonstrates that there is gas-record-quality ice from the 40,000-year world in the Allan Hills Main Ice Field. We have identified two different sites, each overlying bedrock at ~ 200 m depth, that are attractive targets for coring ice dating to 1 million years and older. This project aims to core the ice at these two sites, re-occupy a previous site with million year-old ice and drill it down to the bedrock, and generate 10-20 short (~10-meter) cores in areas where our previous work and terrestrial meteorite ages suggest ancient surface ice. We plan to date the ice using the 40Ar/38Ar ages of trapped Argon. We also plan to characterize the continuity of our cores by measuring the deuterium and oxygen isotope ratios in the ice, methane, ratios of Oxygen and Argon to Nitrogen in trapped gas, the Nitrogen-15 isotope (d15N) of Nitrogen, and the Oxygen-18 isotope (d18O) of Oxygen. As the ice may be stratigraphically disturbed, these measurements will provide diagnostic properties for assessing the continuity of the ice-core records. Successful retrieval of ice older than one million years will provide the opportunity for follow-up work to measure the CO2 concentration and other properties within the ice to inform on the temperature history of the Allan Hills region, dust sources and source-area aridity, moisture sources, densification conditions, global average ocean temperature, and greenhouse gas concentrations. We will analyze the data in the context of leading hypotheses of the 40,000-year world and the Mid-Pleistocene Transition to the 100,000-year world. We expect to advance understanding of climate dynamics during these periods.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Amd/Us; AMD; Allan Hills; USA/NSF; FIELD INVESTIGATION; USAP-DC; Ice Core; LABORATORY", "locations": "Allan Hills", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Mayewski, Paul A.; Kurbatov, Andrei V.; Higgins, John; Bender, Michael", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": null, "title": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area", "uid": "p0000760", "west": null}, {"awards": "1542778 Alley, Richard", "bounds_geometry": null, "dataset_titles": "c-Axis Fabric of the South Pole Ice Core, SPC14; South Pole Ice Core (SPC14) Bubble Number-Density Data; South Pole Ice Core (SPIcecore) Visual Observations", "datasets": [{"dataset_uid": "601088", "doi": "10.15784/601088", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Physical Properties; Snow/ice; Snow/Ice; South Pole; Visual Observations", "people": "Alley, Richard; Fegyveresi, John", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core (SPIcecore) Visual Observations", "url": "https://www.usap-dc.org/view/dataset/601088"}, {"dataset_uid": "601880", "doi": "10.15784/601880", "keywords": "Antarctic; Antarctica; Bubble Number Density; Cryosphere; Glaciers; Glaciology; Ice; Ice Core Data; Ice Core Records; NSF-ICF Microtome and Photography Stage; Paleoclimate; Physical Properties; Snow; South Pole", "people": "Fegyveresi, John", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core (SPC14) Bubble Number-Density Data", "url": "https://www.usap-dc.org/view/dataset/601880"}, {"dataset_uid": "601057", "doi": "10.15784/601057", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; South Pole; SPICEcore", "people": "Voigt, Donald E.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "c-Axis Fabric of the South Pole Ice Core, SPC14", "url": "https://www.usap-dc.org/view/dataset/601057"}], "date_created": "Fri, 29 Sep 2017 00:00:00 GMT", "description": "Alley/1542778 This award supports a three-year effort to study physical properties of the South Pole ice core to help provide a high-time-resolution history of trace gases and other paleoclimatic indicators from an especially cold site with high preservation potential for important signals. The physical-properties studies include visual inspection to identify any flow disturbances and for identifying annual layers and other features, and combined bubble, grain and ice crystal orientation studies to better understand the processes occurring in the ice that affect the climate record and the ice-sheet behavior. Success of these efforts will provide necessary support for dating and quality control to others studying the ice core, as well as determining the climate history of the site, flow state, and key physical processes in ice. The intellectual merits of the project include better understanding of physical processes, paleoclimatic reconstruction, dating of the ice, and quality assurance. Visual inspection of the core will help identify evidence of flow disturbances that would disrupt the integrity of the climate record and will reveal volcanic horizons and other features of interest. Annual layer counting will be conducted to help estimate accumulation rate over time as recorded in the ice core. Measurements of C-axis fabric, grain size and shapes, and bubble characteristics will provide information about processes occurring in the ice sheet as well as the history of ice flow, current flow state and how the ice is flowing and how easily it will flow in the future. Analysis of this data in conjunction with microCT data will help to reveal grain-scale processes. The broader impacts of the project include support for an early-career, post-doctoral researcher, and improved paleoclimatic data of societal relevance. The results will be incorporated into the active program of education and outreach which have educated many students, members of the public and policy makers through the sharing of information and educational materials about all aspects of ice core science and paleoclimate.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Alley, Richard; Fegyveresi, John; Voigt, Donald E.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": null, "title": "Climate History and Flow Processes from Physical Analyses of the SPICECORE South Pole Ice Core", "uid": "p0000141", "west": null}, {"awards": "1553824 Heine, John", "bounds_geometry": "POINT(166.667 -77.85)", "dataset_titles": "Rebreather Testing for the United States Antarctic Scientific Diving Program", "datasets": [{"dataset_uid": "601024", "doi": "10.15784/601024", "keywords": "Antarctica; Diving; Global; Physical Oceanography", "people": "Heine, John", "repository": "USAP-DC", "science_program": null, "title": "Rebreather Testing for the United States Antarctic Scientific Diving Program", "url": "https://www.usap-dc.org/view/dataset/601024"}], "date_created": "Fri, 26 May 2017 00:00:00 GMT", "description": "There are a number of areas of Antarctic research by scientists from the United States where rebreather technology (which unlike normal SCUBA diving releases few if any air bubbles) would be valuable tools. These include but are not limited to behavioral studies (because noise from bubbles released by standard SCUBA alters the behavior of many marine organisms), studies of communities on the underside of sea ice (because the bubbles disrupt the communities while or before they are sampled), and studies of highly stratified lake communities (because the bubbles cause mixing and because lighter line could be used to tether a diver to the surface which would probably also cause less water column disruption). The latter scientific advantage of less mixing in highly stratified (not naturally mixed) lakes is also a significant environmental advantage of rebreathers. However, for safety reasons, no US science projects will be approved for the use of rebreathers until they are tested by the US Antarctic Program (USAP). This award provides funds for the USAP Scientific Diving Officer to conduct such tests in conjunction with other diving professionals experienced in polar diving in general and specifically with rebreather technology in non-polar environments. A team of six scientific diving professionals will evaluate seven or more commercial rebreather models that are being most commonly used in non-polar scientific diving. This will be done through holes drilled or melted in sea ice at McMurdo Station, Antarctica. A limited number of test dives of the best performing models will subsequently be made in stratified lakes in the McMurdo Dry Valleys.", "east": 166.667, "geometry": "POINT(166.667 -77.85)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.85, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Heine, John", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.85, "title": "Rebreather Testing for the United States Antarctic Scientific Diving Program", "uid": "p0000377", "west": 166.667}, {"awards": "0539578 Alley, Richard; 0539232 Cuffey, Kurt", "bounds_geometry": "POINT(112.083 -79.467)", "dataset_titles": "Grain Size Full Population Dataset from WDC06A Core; Temperature Profile of the West Antarctic Ice Sheet Divide Deep Borehole; Temperature Reconstruction at the West Antarctic Ice Sheet Divide; Updated (2017) bubble number-density, size, shape, and modeled paleoclimate data; WAIS Divide Ice Core Vertical Thin Section Low-resolution Digital Imagery; WAIS Divide Surface and Snow-pit Data, 2009-2013; WDC 06A Mean Grain Size Data", "datasets": [{"dataset_uid": "601079", "doi": "10.15784/601079", "keywords": "Antarctica; Atmosphere; AWS; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Meteorology; Physical Properties; Snow Pit; Temperature; WAIS Divide; WAIS Divide Ice Core; Weatherstation", "people": "Alley, Richard; Fegyveresi, John", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Surface and Snow-pit Data, 2009-2013", "url": "https://www.usap-dc.org/view/dataset/601079"}, {"dataset_uid": "609656", "doi": "10.7265/N5MC8X08", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Grain Size; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Fitzpatrick, Joan; Cravens, Eric D.", "repository": "USAP-DC", "science_program": null, "title": "WDC 06A Mean Grain Size Data", "url": "https://www.usap-dc.org/view/dataset/609656"}, {"dataset_uid": "600377", "doi": "10.15784/600377", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Nitrogen; Paleoclimate; Temperature; WAIS Divide; WAIS Divide Ice Core", "people": "Cuffey, Kurt M.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Temperature Reconstruction at the West Antarctic Ice Sheet Divide", "url": "https://www.usap-dc.org/view/dataset/600377"}, {"dataset_uid": "609655", "doi": "10.7265/N5VX0DG0", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Grain Size; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Cravens, Eric D.; Fitzpatrick, Joan", "repository": "USAP-DC", "science_program": null, "title": "Grain Size Full Population Dataset from WDC06A Core", "url": "https://www.usap-dc.org/view/dataset/609655"}, {"dataset_uid": "609550", "doi": "10.7265/N5V69GJW", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Temperature; WAIS Divide; WAIS Divide Ice Core", "people": "Clow, Gary D.; Cuffey, Kurt M.", "repository": "USAP-DC", "science_program": null, "title": "Temperature Profile of the West Antarctic Ice Sheet Divide Deep Borehole", "url": "https://www.usap-dc.org/view/dataset/609550"}, {"dataset_uid": "609654", "doi": "10.7265/N5GM858X", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Photo/video; Photo/Video; Thin Sections; WAIS Divide; WAIS Divide Ice Core", "people": "Cravens, Eric D.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Vertical Thin Section Low-resolution Digital Imagery", "url": "https://www.usap-dc.org/view/dataset/609654"}, {"dataset_uid": "601224", "doi": "10.15784/601224", "keywords": "Antarctic; Antarctica; Bubble Number Density; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Records; NSF-ICF Microtome and Photography Stage; Paleoclimate; Physical Properties; Snow/ice; Snow/Ice; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Voigt, Donald E.; Fegyveresi, John; Fitzpatrick, Joan; Spencer, Matthew; Alley, Richard", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Updated (2017) bubble number-density, size, shape, and modeled paleoclimate data", "url": "https://www.usap-dc.org/view/dataset/601224"}], "date_created": "Thu, 12 Jan 2017 00:00:00 GMT", "description": "0539578\u003cbr/\u003eAlley \u003cbr/\u003eThis award supports a five-year collaborative project to study the physical-properties of the planned deep ice core and the temperature of the ice in the divide region of the West Antarctic Ice Sheet. The intellectual merit of the proposed research is to provide fundamental information on the state of the ice sheet, to validate the integrity of the climate record, to help reconstruct the climate record, and to understand the flow state and history of the ice sheet. This information will initially be supplied to other investigators and then to the public and to appropriate databases, and will be published in the refereed scientific literature. The objectives of the proposed research are to aid in dating of the core through counting of annual layers, to identify any exceptionally warm intervals in the past through counting of melt layers, to learn as much as possible about the flow state and history of the ice through measurement of size, shape and arrangements of bubbles, clathrate inclusions, grains and their c-axes, to identify any flow disturbances through these indicators, and to learn the history of snow accumulation and temperature from analyses of bubbles and borehole temperatures combined with flow modeling and use of data from other collaborators. These results will then be synthesized and communicated. Failure to examine cores can lead to erroneous identification of flow features as climate changes, so careful examination is required. Independent reconstruction of accumulation rate provides important data on climate change, and improves confidence in interpretation of other climate indicators. Borehole temperatures are useful recorders of temperature history. Flow state and history are important in understanding climate history and potential contribution of ice to sea-level change. By contributing to all of these and additional issues, the proposed research will be of considerable value. The broader impacts of the research include making available to the public improved knowledge on societally central questions involving abrupt climate change and sea-level rise. The project will also contribute to the education of advanced students, will utilize results in education of introductory students, and will make vigorous efforts in outreach, informal science education, and supplying information to policy-makers as requested, thus contributing to a more-informed society.", "east": 112.083, "geometry": "POINT(112.083 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERA; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": true, "keywords": "LABORATORY; WAIS Divide; Ice Core; Temperature Profiles; FIELD SURVEYS; Bubble Number Density; GROUND-BASED OBSERVATIONS; Wais Divide-project", "locations": "WAIS Divide", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Fitzpatrick, Joan; Alley, Richard; Fegyveresi, John; Clow, Gary D.; Cuffey, Kurt M.; Cravens, Eric D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Collaborative Research: Physical Properties of the WAIS Divide Deep Core", "uid": "p0000038", "west": 112.083}, {"awards": "1142173 Bay, Ryan; 1142010 Talghader, Joseph", "bounds_geometry": "POINT(112.085 -79.467)", "dataset_titles": "Optical Fabric and Fiber Logging of Glacial Ice (1142010)", "datasets": [{"dataset_uid": "600172", "doi": "10.15784/600172", "keywords": "Antarctica; Ash Layer; Borehole Camera; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Talghader, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Optical Fabric and Fiber Logging of Glacial Ice (1142010)", "url": "https://www.usap-dc.org/view/dataset/600172"}], "date_created": "Thu, 05 Nov 2015 00:00:00 GMT", "description": "1142010/Talghader This award supports a project to combine the expertise of both glaciologists and optical engineers to develop polarization- preserving optical scattering techniques for borehole tools to identify changes in high-resolution crystal structure (fabric) and dust content of glacial ice. The intellectual merit of this work is that the fabric and impurity content of the ice contain details on climate, volcanic activity and ice flow history. Such fabric measurements are currently taken by slicing an ice core into sections after it has started to depressurize which is an extremely time-intensive process that damages the core and does not always preserve the properties of ice in its in-situ state. In addition the ice core usually must be consumed in order to measure the components of the dust. The fabric measurements of this study utilize the concept that singly-scattered light in ice preserves most of its polarization when it is backscattered once from bubbles or dust; therefore, changes to the polarization of singly-backscattered light must originate with the birefringence. Measurements based on this concept will enable this program to obtain continuous records of fabric and correlate them to chronology and dust content. The project will also develop advanced borehole instruments to replace current logging tools, which require optical sources, detectors and power cables to be submerged in borehole fluid and lowered into the ice sheet at temperatures of -50oC. The use of telecommunications fiber will allow all sources and detectors to remain at the surface and enable low-noise signal processing techniques such as lock-in amplification that increase signal integrity and reduce needed power. Further, fiber logging systems would be much smaller and more flexible than current tools and capable of navigating most boreholes without a heavy winch. In order to assess fabric in situ and test fiber-optic borehole tools, field measurements will be made at WAIS Divide and a deep log will also be made at Siple Dome, both in West Antarctica. If successful, the broader impacts of the proposed research would include the development of new analytical methods and lightweight logging tools for ice drilling research that can operate in boreholes drilled in ice. Eventually the work could result in the development of better prehistoric records of glacier flow, atmospheric particulates, precipitation, and climate forcing. The project encompasses a broad base of theoretical, experimental, and design work, which makes it ideal for training graduate students and advanced undergraduates. Collaboration with schools and classroom teachers will help bring aspects of optics, climate, and polar science to an existing Middle School curriculum.", "east": 112.085, "geometry": "POINT(112.085 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS", "is_usap_dc": true, "keywords": "Fabric; Optical Scattering; Not provided; FIELD SURVEYS; Ice Core; Siple Dome; Antarctic; Dust; WAIS Divide; LABORATORY; Crystal Structure; Chronology; FIELD INVESTIGATION; Borehole", "locations": "Antarctic; WAIS Divide; Siple Dome", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Talghader, Joseph; Bay, Ryan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.467, "title": "Optical Fabric and Fiber Logging of Glacial Ice", "uid": "p0000339", "west": 112.085}, {"awards": "1143619 Severinghaus, Jeffrey", "bounds_geometry": "POINT(-112.09 -79.47)", "dataset_titles": null, "datasets": null, "date_created": "Mon, 13 Jul 2015 00:00:00 GMT", "description": "1143619/Severinghaus This award supports a project to extend the study of gases in ice cores to those gases whose small molecular diameters cause them to escape rapidly from ice samples (the so-called \"fugitive gases\"). The work will employ helium, neon, argon, and oxygen measurements in the WAIS Divide ice core to better understand the mechanism of the gas close-off fractionation that occurs while air bubbles are incorporated into ice. The intellectual merit of the proposed work is that corrections for this fractionation using neon (which is constant in the atmosphere) may ultimately enable the first ice core-based atmospheric oxygen and helium records. Neon may also illuminate the mechanistic link between local insolation and oxygen used for astronomical dating of ice cores. Helium measure-ments in the deepest ~100 m of the core will also shed light on the stratigraphic integrity of the basal ice, and serve as a probe of solid earth-ice interaction at the base of the West Antarctic ice sheet. Past atmospheric oxygen records, currently unavailable prior to 1989 CE, would reveal changes in the size of the terrestrial biosphere carbon pool that accompany climate variations and place constraints on the biogeochemical feedback response to future warming. An atmospheric helium-3/helium-4 record would test the hypothesis that the solar wind (which is highly enriched in helium-3) condensed directly into Earth?s atmosphere during the collapse of the geomagnetic field that occurred 41,000 years ago, known as the Laschamp Event. Fugitive-gas samples will be taken on-site immediately after recovery of the ice core by the PI and one postdoctoral scholar, under the umbrella of an existing project to support replicate coring and borehole deepening. This work will add value to the scientific return from field work activity with little additional cost to logistical resources. The broader impacts of the work on atmospheric oxygen are that it may increase understanding of how terrestrial carbon pools and atmospheric greenhouse gas sources will respond in a feedback sense to the coming warming. Long-term atmospheric oxygen trends are also of interest for understanding biogeochemical regulatory mechanisms and the impact of atmospheric evolution on life. Helium records have value in understanding the budget of this non-renewable gas and its implications for space weather and solar activity. The project will train one graduate student and one postdoctoral scholar. The fascination of linking solid earth, cryosphere, atmosphere, and space weather will help to entrain and excite young scientists and efforts to understand the Earth as a whole interlinked system will provide fuel to outreach efforts at all ages.", "east": -112.09, "geometry": "POINT(-112.09 -79.47)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": false, "keywords": "WAIS Divide; Not provided; Tracers; FIELD INVESTIGATION; Past Biospheric Carbon Storage; LABORATORY; Fugitive Gases; Basal Processes; Neon; Helium; FIELD SURVEYS; Antarctica", "locations": "WAIS Divide; Antarctica", "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -79.47, "title": "Fugitive Gases (Helium, Neon, and Oxygen) in the WAIS Divide Ice Core as Tracers of Basal Processes and Past Biospheric Carbon Storage", "uid": "p0000441", "west": -112.09}, {"awards": "0838849 Bender, Michael; 0838843 Kurbatov, Andrei", "bounds_geometry": "POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667))", "dataset_titles": "Allan Hills Stable Water Isotopes; Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "datasets": [{"dataset_uid": "609541", "doi": "10.7265/N5NP22DF", "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Isotope", "people": "Kurbatov, Andrei V.; Introne, Douglas; Mayewski, Paul A.; Spaulding, Nicole", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills Stable Water Isotopes", "url": "https://www.usap-dc.org/view/dataset/609541"}, {"dataset_uid": "600099", "doi": "10.15784/600099", "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Ice Core Records; Paleoclimate; Solid Earth", "people": "Bender, Michael", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "url": "https://www.usap-dc.org/view/dataset/600099"}], "date_created": "Wed, 10 Dec 2014 00:00:00 GMT", "description": "This award supports a project to generate an absolute timescale for the Allan Hills Blue Ice Area (BIA), and then to reconstruct details of past climate changes and greenhouse gas concentrations for certain time periods back to 2.5 Ma. Ice ages will be determined by applying emerging methods for absolute and relative dating of trapped air bubbles (based on Argon-40/Argon-38, delta-18O of O2, and the O2/N2 ratio). To demonstrate the potential of the Allan Hills BIAs as a paleoclimate archive trenches and ice cores will be collected for age intervals corresponding to 110-140 ka, 1 Ma, and 2.5 Ma. During the proposed two field seasons a total of 6x100 m and additional 15 m cores will be combined with trenching. The intellectual merit of the proposed activity is that the results of this work will extend the landmark work of EPICA and other deep ice coring efforts, which give records dating back to 0.8 Ma, and will complement work planned by IPICS to drill a continuous Antarctic ice core extending to 1.5 Ma. The results will help to advance understanding of major climate regimes and transitions that took place between 0-2.5 Ma, including the 40 kyr world and the mid-Pleistocene climate transition. A major long-term scientific goal is to provide a transformative approach to the collection of paleoclimate records by establishing an \"International Climate Park\" in the Allan Hills BIA that would enable sampling of large quantities of known age ice as old as 2.5 Ma, by any interested American or foreign investigator. The broader impacts resulting from the proposed activity include training students who are well versed in advanced field, laboratory and numerical modeling methods combining geochemistry, glaciology, and paleoclimatology. We will include material relevant to our proposed research in our ongoing efforts in local education and in our outreach efforts for media. The University of Maine already has cyberinfrastructure, using state of the art web-based technology, which can provide a wide community of scientists with fast access to the results of our research. The work will contribute to the broad array of climate change studies that is informing worldwide understanding of natural and anthropogenic forced climate change, and the options for responding. This award has field work in Antarctica.", "east": 159.41667, "geometry": "POINT(159.29167 -76.7)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "GROUND-BASED OBSERVATIONS; LABORATORY; Deuterium Isotopes; Not provided; Oxygen Isotope", "locations": null, "north": -76.66667, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Spaulding, Nicole; Introne, Douglas; Bender, Michael; Kurbatov, Andrei V.; Mayewski, Paul A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73333, "title": "Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "uid": "p0000046", "west": 159.16667}, {"awards": "0944078 Albert, Mary", "bounds_geometry": "POINT(112.05 79.28)", "dataset_titles": "Firn Permeability and Density at WAIS Divide", "datasets": [{"dataset_uid": "609602", "doi": "10.7265/N57942NT", "keywords": "Antarctica; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "people": "Albert, Mary R.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Firn Permeability and Density at WAIS Divide", "url": "https://www.usap-dc.org/view/dataset/609602"}], "date_created": "Fri, 15 Aug 2014 00:00:00 GMT", "description": "This award supports a project to investigate the transformations from snow to firn to ice and the underlying physics controlling firn\u0027s ability to store atmospheric samples from the past. Senior researchers, a graduate student, and several undergraduates will make high-resolution measurements of both the diffusivity and permeability profiles of firn cores from several sites in Antarctica and correlate the results with their microstructures quantified using advanced materials characterization techniques (scanning electron microscopy and x-ray computed tomography). The use of cores from different sites will enable us to examine the influence of different local climate conditions on the firn structure. We will use the results to help interpret existing measurements of firn air chemical composition at several sites where firn air measurements exist. There are three closely-linked goals of this project: to quantify the dependence of interstitial transport properties on firn microstructure from the surface down to the pore close-off depth, to determine at what depths bubbles form and entrap air, and investigate the extent to which these features exhibit site-to-site differences, and to use the measurements of firn air composition and firn structure to better quantify the differences between atmospheric composition (present and past), and the air trapped in both the firn and in air bubbles within ice by comparing the results of the proposed work with firn air measurements that have been made at the WAIS Divide and Megadunes sites. The broader impacts of this project are that the study will this study will enable us to elucidate the fundamental controls on the metamorphism of firn microstructure and its impact on processes of gas entrapment that are important to understanding ice core evidence of past atmospheric composition and climate change. The project will form the basis for the graduate research of a PhD student at Dartmouth, with numerous opportunities for undergraduate involvement in cold room measurements and outreach. The investigators have a track record of successfully mentoring women students, and will build on this experience. In conjunction with local earth science teachers, and graduate and undergraduate students will design a teacher-training module on the role of the Polar Regions in climate change. Once developed and tested, this module will be made available to the broader polar research community for their use with teachers in their communities.", "east": -112.05, "geometry": "POINT(-112.05 -79.28)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e MICROTOMOGRAPHY; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES", "is_usap_dc": true, "keywords": "Firn Air; FIELD SURVEYS; Physics; GROUND-BASED OBSERVATIONS; Antarctica; Megadunes; Tomography; Wais Divide-project; Firn Core; FIELD INVESTIGATION; Not provided; Firn Permeability; LABORATORY; Visual Observations; Ice; Firn; WAIS Divide; Microstructure; Density", "locations": "Antarctica; WAIS Divide", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Baker, Ian; Albert, Mary R.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.28, "title": "Firn Metamorphism: Microstructure and Physical Properties", "uid": "p0000049", "west": -112.05}, {"awards": "0539578 Alley, Richard", "bounds_geometry": null, "dataset_titles": "Bubble Number-density Data and Modeled Paleoclimates", "datasets": [{"dataset_uid": "609538", "doi": "10.7265/N5JW8BTJ", "repository": "USAP-DC", "science_program": null, "title": "Bubble Number-density Data and Modeled Paleoclimates", "url": "http://www.usap-dc.org/view/dataset/609538"}], "date_created": "Thu, 14 Aug 2014 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Air Bubbles; Antarctica; Camera; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Fegyveresi, John; Alley, Richard", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": "1043313 Spencer, Matthew; 1043528 Alley, Richard", "bounds_geometry": "POINT(112.1166 -79.4666)", "dataset_titles": "Average Annual Layer Thickness of the WAIS Divide Ice Core from Visual Stratigraphy; C-axis Fabric from Physical Properties Samples of the WAIS Divide Ice Core; Updated (2017) bubble number-density, size, shape, and modeled paleoclimate data; WAIS Divide 580m Bubble and Grain Hybrid Data; WAIS Divide Surface and Snow-pit Data, 2009-2013", "datasets": [{"dataset_uid": "601224", "doi": "10.15784/601224", "keywords": "Antarctic; Antarctica; Bubble Number Density; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Records; NSF-ICF Microtome and Photography Stage; Paleoclimate; Physical Properties; Snow/ice; Snow/Ice; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Voigt, Donald E.; Fegyveresi, John; Fitzpatrick, Joan; Spencer, Matthew; Alley, Richard", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Updated (2017) bubble number-density, size, shape, and modeled paleoclimate data", "url": "https://www.usap-dc.org/view/dataset/601224"}, {"dataset_uid": "609605", "doi": "10.7265/N5W093VM", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "people": "Voigt, Donald E.; Alley, Richard; Fitzpatrick, Joan", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "C-axis Fabric from Physical Properties Samples of the WAIS Divide Ice Core", "url": "https://www.usap-dc.org/view/dataset/609605"}, {"dataset_uid": "601079", "doi": "10.15784/601079", "keywords": "Antarctica; Atmosphere; AWS; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Meteorology; Physical Properties; Snow Pit; Temperature; WAIS Divide; WAIS Divide Ice Core; Weatherstation", "people": "Alley, Richard; Fegyveresi, John", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Surface and Snow-pit Data, 2009-2013", "url": "https://www.usap-dc.org/view/dataset/601079"}, {"dataset_uid": "601087", "doi": "10.15784/601087", "keywords": "Air Bubbles; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Strain; Physical Ice Properties; Snow/ice; Snow/Ice; Strain", "people": "Fegyveresi, John; Alley, Richard", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide 580m Bubble and Grain Hybrid Data", "url": "https://www.usap-dc.org/view/dataset/601087"}, {"dataset_uid": "609603", "doi": "10.7265/N53J39X3", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Spencer, Matthew", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Average Annual Layer Thickness of the WAIS Divide Ice Core from Visual Stratigraphy", "url": "https://www.usap-dc.org/view/dataset/609603"}], "date_created": "Tue, 19 Jun 2012 00:00:00 GMT", "description": "1043528/Alley This award supports a project to complete the physical-properties studies of the WAIS Divide deep ice core, now being collected in West Antarctica. Ongoing work funded by NSF, under a grant that is ending, has produced visible stratigraphy dating, inspection of the core for any melt layers, volcanic horizons, flow disturbances or other features, analysis of bubble number-densities allowing reconstruction of a two-millennial cooling trend in the latter Holocene at the site, characterization of other bubble characteristics (size, etc.), density studies, characterization of snow-surface changes at the site, preliminary c-axis studies, and more. The current proposal seeks to complete this work, once the rest of the core is recovered. The intellectual merit of the proposed activity starts with quality assurance for the core, by visual detection of any evidence of flow disturbances that would disrupt the integrity of the climate record. Inspection will also reveal any melt layers, volcanic horizons, etc. Annual-layer dating will be conducted; thus far, the visible strata have not been as useful as some other indicators, but the possibility (based on experience in Greenland) that visible examination will allow detection of thinner annual layers than other techniques motivates the effort. Bubble number-density will be used to reconstruct temperature changes through the rest of the bubbly part of the core, providing important paleoclimatic data for earlier parts of the Holocene. Coordinated interpretation of c-axis fabrics, grain sizes and shapes, and bubble characteristics will be used to learn about the history of ice flow, the processes of ice flow, and the softness of the ice for additional deformation. Analysis of surface data already collected will improve interpretation of the layering of the core. It is possible that the annual-layer dating will not be sufficiently successful, and that the core will be undisturbed with no melt layers; if so, then these efforts will not yield major publications. However, success of the other efforts should produce improved understanding of the history and stability of the ice sheet, and key processes controlling these, and the quality assurance provided by the visual examination is important for the project as a whole. The broader impacts of the proposed activity include education of a PhD student and multiple undergraduates, and research opportunities for a junior faculty member at an undergraduate institution. The proposed activity will help support an especially vigorous education and outreach effort providing undergraduate instruction for over 1000 students per year, reaching thousands more citizens and many policymakers, and preparing educational materials used at many levels.", "east": 112.1166, "geometry": "POINT(112.1166 -79.4666)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e VISUAL OBSERVATIONS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ACFA; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Antarctic; Antarctica; Annual Layer Thickness; Ice Core; Visual Observations; Bubble; LABORATORY; Bubble Density; FIELD INVESTIGATION; Physical Properties; Stratigraphy; Climate Record; Annual Layers; Ice Fabric; C-axis; Model; WAIS Divide; GROUND-BASED OBSERVATIONS; FIELD SURVEYS; Melt Layers; Wais Divide-project; Not provided", "locations": "WAIS Divide; Antarctica; Antarctic", "north": -79.4666, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Spencer, Matthew; Alley, Richard; Fitzpatrick, Joan; Voigt, Donald E.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.4666, "title": "Collaborative Research: Continued Study of Physical Properties of the WAIS Divide Deep Core", "uid": "p0000027", "west": 112.1166}, {"awards": "0636997 Waddington, Edwin", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 20 Mar 2012 00:00:00 GMT", "description": "Waddington/0636997\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to integrate three lines of glaciology research, previously treated independently. First, internal layers in ice sheets, detected by ice-penetrating radar, retain information about past spatial and temporal patterns of ice accumulation. Ice-flow modelers can recover this information, using geophysical inverse methods; however, the ages of the layers must be known, through interpolation where they intersect a well-dated ice core. \u003cbr/\u003eSecond, concentrations of methane and some other atmospheric constituents vary through time as climate changes. However, the atmosphere is always well mixed, and concentrations are similar world-wide at any one time, so gas variations from an undated core can be correlated with those in a well-dated core such as GISP2. Because air in near-surface firn mixes readily with the atmosphere above, the air that is trapped in bubbles deep in the firn is typically hundreds to thousands of years younger than that firn. Gas geochemists must calculate this age difference, called delta-age, with a firn-densification model before the ice enclosing the gas can be dated accurately. To calculate delta-age, they must know the temperature and the snow accumulation rate at the time and place where the snow fell. Third, gases can be correlated between cores only at times when the atmosphere changed, so ice-core dates must be interpolated at depths between the sparse dated points. Simplistic interpolation schemes can create undesirable artifacts in the depth-age profile. The intellectual merit of this project is that it will develop new interpolation methods that calculate layer thinning over time due to ice-flow mechanics. Accurate interpolation also requires a spatial and temporal accumulation history. These three issues are coupled through accumulation patterns and ice-core dates. This project will develop an integrated inversion procedure to solve all three problems simultaneously. The new method will incorporate ice-penetrating radar profile data and ice-core data, and will find self-consistent: spatial/temporal accumulation patterns; delta-age profiles for ice cores; and reliably interpolated depth-age profiles. The project will then: recalculate the depth-age profile at Byrd Station, Antarctica; provide a preliminary depth-age at the West Antarctic Ice Sheet (WAIS) in the initial stages of drilling, using radar layers with estimated ages traced from Byrd Station; and generate a self-consistent depth-age relationship for Taylor Dome, Antarctica over the past 20ka, where low accumulation has created uncertainty in dating, accumulation, and controversy over delta-age estimates. The broader impacts of the project are that it will support the PhD research of a female graduate student, and her continued outreach work with Making Connections, a non-profit program through the University of Washington Women\u0027s Center, which matches professional women mentors with minority high-school women interested in mathematics and science, disciplines where they are traditionally under-represented. The graduate student will also work with Girls on Ice, a ten-day glacier field program, taught by women scientist instructors, emphasizing scientific observation through immersion, leadership skills and safety awareness.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Internal Layers; LABORATORY; Ice Core; FIELD SURVEYS; Firn; FIELD INVESTIGATION; Accumulation; Glaciology; Climate Change; Ice Sheet", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Carns, Regina; Hay, Mike; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Self-consistent Ice Dynamics, Accumulation, Delta-age, and Interpolation of Sparse Age Data using an Inverse Approach", "uid": "p0000376", "west": null}, {"awards": "0538657 Severinghaus, Jeffrey", "bounds_geometry": null, "dataset_titles": "Borehole Temperature Measurement in WDC05A in January 2008 and January 2009; d15N and d18O of air in the WAIS Divide ice core; Low-res d15N and d18O of O2 in the WAIS Divide 06A Deep Core; Ultra-High Resolution LA-ICP-MS Results: DO-21 Rapid Warming Event; WAIS Divide d18Oatm and Siple Dome/WAIS Divide composite and individual delta epsilon LAND", "datasets": [{"dataset_uid": "609635", "doi": "10.7265/N51J97PS", "keywords": "Arctic; Geochemistry; GISP; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate", "people": "Haines, Skylar; Mayewski, Paul A.; Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": null, "title": "Ultra-High Resolution LA-ICP-MS Results: DO-21 Rapid Warming Event", "url": "https://www.usap-dc.org/view/dataset/609635"}, {"dataset_uid": "601747", "doi": "10.15784/601747", "keywords": "Antarctica; Delta 15N; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Gas Records; Ice Core Records; Isotope; Nitrogen; Nitrogen Isotopes; Oxygen; Oxygen Isotope; Snow/ice; Snow/Ice; WAIS; WAIS Divide", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "d15N and d18O of air in the WAIS Divide ice core", "url": "https://www.usap-dc.org/view/dataset/601747"}, {"dataset_uid": "609637", "doi": "10.7265/N5B27S7S", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Temperature; WAIS Divide; WAIS Divide Ice Core", "people": "Severinghaus, Jeffrey P.; Orsi, Anais J.", "repository": "USAP-DC", "science_program": null, "title": "Borehole Temperature Measurement in WDC05A in January 2008 and January 2009", "url": "https://www.usap-dc.org/view/dataset/609637"}, {"dataset_uid": "609660", "doi": "10.7265/N5S46PWD", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Low-res d15N and d18O of O2 in the WAIS Divide 06A Deep Core", "url": "https://www.usap-dc.org/view/dataset/609660"}, {"dataset_uid": "601041", "doi": "10.15784/601041", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Gas; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; WAIS Divide Ice Core", "people": "Severinghaus, Jeffrey P.; Seltzer, Alan", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide d18Oatm and Siple Dome/WAIS Divide composite and individual delta epsilon LAND", "url": "https://www.usap-dc.org/view/dataset/601041"}], "date_created": "Thu, 08 Jul 2010 00:00:00 GMT", "description": "0538657\u003cbr/\u003eSeveringhaus\u003cbr/\u003eThis award supports a project to develop high-resolution (20-yr) nitrogen and oxygen isotope records on trapped gases in the WAIS Divide ice core (Antarctica), with a comparison record for chronological purposes in the GISP2 (Greenland) ice core. The main scientific objective is to provide an independent temperature-change record for the past 100,000 years in West Antarctica that is not subject to the uncertainty inherent in ice isotopes (18O and deuterium), the classical paleothermometer. Nitrogen isotopes (Delta 15N) in air bubbles in glacial ice record rapid surface temperature change because of thermal fractionation of air in the porous firn layer, and this isotopic anomaly is recorded in bubbles as the firn becomes ice. Using this gas-based temperature-change record, in combination with methane data as interpolar stratigraphic markers, the proposed work will define the precise relative timing of abrupt warming in Greenland and abrupt cooling at the WAIS Divide site during the millennial-scale climatic oscillations of Marine Isotopic Stage 3 (30-70 kyr BP) and the last glacial termination. The nitrogen isotope record also provides constraints on past firn thickness, which inform temperature and accumulation rate histories from the ice core. A search for possible solar-related cycles will be conducted with the WAIS Divide Holocene (Delta 15N.) Oxygen isotopes of O2 (Delta 18Oatm) are obtained as a byproduct of the (Delta 15N) measurement. The gas-isotopic records will enhance the value of other atmospheric gas measurements in WAIS Divide, which are expected to be of unprecedented quality. The high-resolution (Delta 18Oatm) records will provide chronological control for use by the international ice coring community and for surface glacier ice dating. Education of a graduate student, and training of a staff member in the laboratory, will contribute to the nation\u0027s human resource base. Outreach activities in the context of the International Polar Year will be enhanced. International collaboration is planned with the laboratory of LSCE, University of Paris.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e LA-ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Borehole Temperature; LABORATORY; Depth; Not provided; GROUND-BASED OBSERVATIONS; Wais Divide-project; Ice Core; WAIS Divide", "locations": "WAIS Divide", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Haines, Skylar; Mayewski, Paul A.; Orsi, Anais J.; Kurbatov, Andrei V.; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate", "uid": "p0000036", "west": null}, {"awards": "0125794 Price, P. Buford", "bounds_geometry": null, "dataset_titles": "Optical Logging for Dust and Microbes in Boreholes in Glacial Ice", "datasets": [{"dataset_uid": "609403", "doi": "10.7265/N59P2ZKB", "keywords": "Antarctica; Dust; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Microbiology; Optical Backscatter", "people": "Bay, Ryan", "repository": "USAP-DC", "science_program": null, "title": "Optical Logging for Dust and Microbes in Boreholes in Glacial Ice", "url": "https://www.usap-dc.org/view/dataset/609403"}], "date_created": "Wed, 29 Jul 2009 00:00:00 GMT", "description": "0125794\u003cbr/\u003ePrice\u003cbr/\u003e\u003cbr/\u003eThis award supports research in climatology, geosciences, and life in extreme environments to be carried out with a newly developed optical borehole logger. The logger fits into a fluid-filled borehole in glacial ice. It emits light at 370 nm in a horizontal plane in order to probe optical properties of particles embedded in the ice out to several meters from the borehole. After leaving the borehole, the light is partially absorbed and scattered by dust, biomolecules, or microbes. A fraction of the light is scattered back into the borehole and is detected by a system of seven phototubes, each of which collects light with high efficiency in a separate wavelength band. One of them collects light that scatters off of dust and air bubbles without wavelength shift, and serves as a dust logger. The other six are covered with notch filters that measure six different wavelength bands and measure the shape of the fluorescence spectrum of microbes and biomolecules. Thus, the same instrument serves as both a dust logger and a microbe logger. Applications include: 1) Precise chronologies and long-period solar variability. With a resolution of 1 to 2 cm for both GISP2 and Siple Dome, the logger will record annual dust maxima and evaluate claims of modulations of dust concentration with periods ranging from 11 yrs (the solar cycle) to 2300 yrs; 2) Volcanism and age-depth markers. Dozens of volcanic ash bands will be detectable and will serve as primary age-depth markers for other boreholes; 3) Microorganisms and biomolecules. The vertical distribution of living, dormant, and dead microbes can be logged, and searches for archaea and aeolian polyaromatic hydrocarbons can be made. The logging experiments will be carried out at Siple Dome and Dome C in Antarctica and at GISP2 and GRIP in Greenland.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS", "is_usap_dc": true, "keywords": "Ice Core Data; Not provided; Climate Research; Climate; FIELD INVESTIGATION; Climate Change; FIELD SURVEYS; LABORATORY; Paleoclimate; Ice Core; Volcanic", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology; Arctic Natural Sciences", "paleo_time": null, "persons": "Bay, Ryan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Optical Logging for Dust and Microbes in Boreholes in Glacial Ice", "uid": "p0000156", "west": null}, {"awards": "0538630 Severinghaus, Jeffrey", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 01 Apr 2009 00:00:00 GMT", "description": "0538630\u003cbr/\u003eSeveringhaus\u003cbr/\u003eThis award supports a project to produce the first record of Kr/N2 in the paleo-atmosphere as measured in air bubbles trapped in ice cores. These measurements may be indicative of past variations in mean ocean temperature. Knowing the mean ocean temperature in the past will give insight into past variations in deep ocean temperature, which remain poorly understood. Deep ocean temperature variations are important for understanding the mechanisms of climate change. Krypton is highly soluble in water, and its solubility varies with temperature, with higher solubilities at colder water temperatures. A colder ocean during the last glacial period would therefore hold more krypton than today\u0027s ocean. Because the total amount of krypton in the ocean-atmosphere system is constant, the increase in the krypton inventory in the glacial ocean should cause a resultant decrease in the atmospheric inventory of krypton. The primary goal of this work is to develop the use of Kr/N2 as an indicator of paleo-oceanic mean temperature. This will involve improving the analytical technique for the Kr/N2 measurement itself, and measuring the Kr/N2 in air bubbles in ice from the last glacial maximum (LGM) and the late Holocene in the Vostok and GISP2 ice cores. This provides an estimate of LGM mean ocean temperature change, and allows for a comparison between previous estimates of deep ocean temperature during the LGM. The Vostok ice core is ideal for this purpose because of the absence of melt layers, which compromise the krypton and xenon signal. Another goal is to improve precision on the Xe/N2 measurement, which could serve as a second, independent proxy of ocean temperature change. A mean ocean temperature time series during this transition may help to explain these observations. Additionally, the proposed work will measure the Kr/N2 from marine isotope stage (MIS) 3 in the GISP2 ice core. Knowing the past ocean temperature during MIS 3 will help to constrain sea level estimates during this time period. The broader impacts of the proposed work: are that it will provide the first estimate of the extent and timing of mean ocean temperature change in the past. This will help to constrain previously proposed mechanisms of climate change involving large changes in deep ocean temperature. This project will also support the education of a graduate student. The PI gives interviews and talks to the media and public about climate change, and the work will enhance these outreach activities. Finally, the work will occur during the International Polar Year (IPY), and will underscore the unique importance of the polar regions for understanding the global atmosphere and ocean system.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Paleoatmospheric Krypton and Xenon Abundances from Trapped Air in Polar Ice as Indicators of Past Mean Ocean Temperature", "uid": "p0000553", "west": null}, {"awards": "0440609 Price, P. Buford", "bounds_geometry": "POINT(-112.06556 -79.469444)", "dataset_titles": null, "datasets": null, "date_created": "Tue, 03 Jun 2008 00:00:00 GMT", "description": "This award supports a project to use three downhole instruments - an optical logger; a\u003cbr/\u003eminiaturized biospectral logger at 420 nm (miniBSL-420); and an Acoustic TeleViewer (ATV) - to log a 350-m borehole at the WAIS Divide drill site. In addition, miniBSL-224 (at 224 nm) and miniBSL-420 will scan ice core sections at NICL to look for abrupt climate changes, volcanic ash, microbial concentrations, and correlations among them. Using the optical logger and ATV to log bubble number densities vs depth in a WAIS Divide borehole, we will detect annual layers, from which we can establish the age vs depth relation to the bottom of the borehole that will be available during the three-year grant period. With the same instruments we will search for long-period modulation of bubble and dust concentrations in order to provide definitive evidence for or against an effect of long-period variability of the sun or solar wind on climate. We will detect and accurately date ash layers in a WAIS Divide borehole. We will match them with ash layers that we previously detected in the Siple Dome borehole, and also match them with sulfate and ash layers found by others at Vostok, Dome Fuji, Dome C, and GISP2. The expected new data will allow us to extend our recent study which showed that the Antarctic record of volcanism correlates with abrupt climate change at a 95% to \u003e99.8% significance level and that the volcanic signatures at bipolar locations match at better than 3 sigma during the interval 2 to 45 kiloyears. The results to be obtained during this grant period will position us to extend an accurate age vs depth relation and volcano-climate correlations to earlier than 150 kiloyears ago in the future WAIS Divide borehole to be drilled to bedrock. Using the miniBSLs to identify biomolecules via their fluorescence, we will log a 350-m borehole at WAIS Divide, and we will scan selected lengths of ice core at NICL. Among the biomolecules the miniBSLs can identify will be chlorophyll, which will provide the first map of aerobic microbes in ice, and F420, which will provide the first map of methanogens in ice. We will collaborate with others in relating results from WAIS Divide and NICL ice cores to broader topics in climatology, volcanology, and microbial ecology. We will continue to give broad training to undergraduate and graduate students, to attract underrepresented minorities to science, engineering, and math, and to educate the press and college teachers. A deeper understanding of the causes of abrupt climate change, including a causal relationship with strong volcanic eruptions, can enable us to understand and mitigate adverse effects on climate.", "east": -112.06556, "geometry": "POINT(-112.06556 -79.469444)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUORESCENCE SPECTROSCOPY; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS", "is_usap_dc": false, "keywords": "Volcanic Ash; Dust Concentration; Antarctica; FIELD INVESTIGATION; Liquid Veins In Ice; Optical Logger; Borehole; Ash Layer; FIELD SURVEYS; Microbial Metabolism; Climate; Biospectral Logger; Not provided; Protein Fluorescence; Gas Artifacts; Aerosol Fluorescence; Volcanism; WAIS Divide; Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.469444, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bay, Ryan; Price, Buford", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repositories": null, "science_programs": null, "south": -79.469444, "title": "Climatology, Volcanism, and Microbial Life in Ice with Downhole Loggers", "uid": "p0000746", "west": -112.06556}, {"awards": "0440447 Spencer, Matthew; 0917509 Spencer, Matthew", "bounds_geometry": "POINT(-148.81 -81.65)", "dataset_titles": "Firn depth and bubble density for Siple Ice Core and other sites", "datasets": [{"dataset_uid": "601746", "doi": "10.15784/601746", "keywords": "Antarctica; Density; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Data; Ice Core Records; Siple Dome; Snow/ice; Snow/Ice", "people": "Spencer, Matthew", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Firn depth and bubble density for Siple Ice Core and other sites", "url": "https://www.usap-dc.org/view/dataset/601746"}], "date_created": "Mon, 19 May 2008 00:00:00 GMT", "description": "This award supports a two-year collaborative effort to more fully understand the climatic history and physical properties of the Siple Dome, Antarctica deep ice core, to develop a new paleoclimatic technique based on bubble number-density, and to improve the U.S. capability to analyze ice-core physical properties rapidly and accurately. The Siple Dome ice core from West Antarctica is yielding important paleoclimatic insights, but has proven more difficult than some cores to interpret owing to the large iceflow effects on the paleoclimatic record. Paleoclimatic indicators that do not rely on iceflow corrections thus would be of value. The bubble number-density offers one such indicator, because it preserves information on mean temperature and accumulation rate during the transformation of firn to ice. We will focus on thin-section characteristics that are important to ice flow and the interpretation of the ice-core history, such as c-axis fabrics, and will use indicators that we have been developing, such as the correlation between grain elongation and the c-axis orientation, to gain additional information. To achieve this quickly and accurately, and to prepare for future projects, we propose to upgrade the automatic caxis- fabric analyzer that Wilen has built and housed at the National Ice Core Laboratory. The intellectual merit of the proposed activity includes improved estimates of paleoclimatic conditions in an important region, improved understanding of a new paleoclimatic research tool, greater understanding of ice flow and of linkages to physical properties, and a better instrument for further U.S. research in ice-core physical properties at the National Ice Core Laboratory. The broader impacts resulting from the proposed activity include providing better understanding of abrupt climate change and of ice flow, which eventually should help policy-makers, as well as an improved U.S. capability to analyze ice cores. The proposed research will assist the studies of two promising young scientists. Results of the research will be incorporated into courses and public outreach reaching at least hundreds or thousands of people per year.", "east": -148.81, "geometry": "POINT(-148.81 -81.65)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided; Ice Core; Ice Flow; Bubble Number Density; LABORATORY; Thin Sections; Paleoclimate; FIELD INVESTIGATION; Fabric; Siple Dome; Climate; Antarctica; Antarctic; FIELD SURVEYS", "locations": "Siple Dome; Antarctica; Antarctic", "north": -81.65, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Spencer, Matthew; Wilen, Larry", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -81.65, "title": "Collaborative Research: Combined Physical Property Measurements at Siple Dome", "uid": "p0000658", "west": -148.81}, {"awards": "0230452 Severinghaus, Jeffrey", "bounds_geometry": "POINT(124.5 -80.78)", "dataset_titles": "Antarctic megadunes", "datasets": [{"dataset_uid": "000191", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Antarctic megadunes", "url": "http://nsidc.org/antarctica/megadunes/"}], "date_created": "Wed, 27 Sep 2006 00:00:00 GMT", "description": "This award supports a study of the chemical composition of air in the snow layer (firn) in a region of \"megadunes\" near Vostok station, Antarctica. It will test the hypothesis that a deep \"convective zone\" of vigorous wind-driven mixing can prevent gas fractionation in the upper one-third of the polar firn layer. In the megadunes, ultralow snow accumulation rates lead to structural changes (large grains, pipes, and cracks) that make the permeability of firn to air movement orders of magnitude higher than normal. The unknown thickness of the convective zone has hampered the interpretation of ice core 15N/14N and 40Ar/36Ar ratios as indicators of past firn thickness, which is a key constraint on the climatically important variables of temperature, accumulation rate, and gas age-ice age difference. Studying this \"extreme end-member\" example will better define the role of the convective zone in gas reconstructions. This study will pump air from a profile of ~20 depths in the firn, to definitively test for the presence of a convective zone based on the fit of observed 15 N/14N and 40Ar/36Ar to a molecular- and eddy-diffusion model. Permeability measurements on the core and 2-D air flow modeling (in collaboration with M. Albert) will permit a more physically realistic interpretation of the isotope data and will relate mixing vigor to air velocities. A new proxy indicator of convective zone thickness will be tested on firn and ice core bubble air, based on the principle that isotopes of slow-diffusing heavy noble gases (Kr, Xe) should be more affected by convection than isotopes of fast-diffusing N2 . These tools will be applied to a test of the hypothesis that the megadunes and a deep convective zone existed at the Vostok site during glacial periods, which would explain the anomalously low 15N/14N and 40Ar/36Ar in the Vostok ice core glacial periods. The broader impacts of this work include 1) clarification of phase relationships of greenhouse gases and temperature in ice core records, with implications for understanding of past and future climates, 2) education of one graduate student, and 3) building of collaborative relationships with five investigators.", "east": 124.5, "geometry": "POINT(124.5 -80.78)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e FLASKS", "is_usap_dc": false, "keywords": "Antarctica; Methane; Carbon-14; Permeability; CO2; Firn Core; FIELD SURVEYS; Deuterium Excess; GROUND-BASED OBSERVATIONS; LABORATORY; Isotope; Ice Core Density; Firn Air; Megadunes; Ice Core; Not provided; FIELD INVESTIGATION", "locations": "Antarctica", "north": -80.78, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bauer, Rob; Albert, Mary R.; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "NSIDC", "repositories": "NSIDC", "science_programs": null, "south": -80.78, "title": "How Thick Is the Convective Zone: A Study of Firn Air in the Megadunes Near Vostok, Antarctica", "uid": "p0000097", "west": 124.5}, {"awards": "0230448 Severinghaus, Jeffrey; 0230260 Bender, Michael", "bounds_geometry": "POLYGON((-75.34 86.6,-68.742 86.6,-62.144 86.6,-55.546 86.6,-48.948 86.6,-42.35 86.6,-35.752 86.6,-29.154 86.6,-22.556 86.6,-15.958 86.6,-9.36 86.6,-9.36 83.618,-9.36 80.636,-9.36 77.654,-9.36 74.672,-9.36 71.69,-9.36 68.708,-9.36 65.726,-9.36 62.744,-9.36 59.762,-9.36 56.78,-15.958 56.78,-22.556 56.78,-29.154 56.78,-35.752 56.78,-42.35 56.78,-48.948 56.78,-55.546 56.78,-62.144 56.78,-68.742 56.78,-75.34 56.78,-75.34 59.762,-75.34 62.744,-75.34 65.726,-75.34 68.708,-75.34 71.69,-75.34 74.672,-75.34 77.654,-75.34 80.636,-75.34 83.618,-75.34 86.6))", "dataset_titles": "Firn Air Inert Gas and Oxygen Observations from Siple Dome, 1996, and the South Pole, 2001; Trapped Gas Composition and Chronology of the Vostok Ice Core", "datasets": [{"dataset_uid": "609311", "doi": "10.7265/N5P26W12", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Lake Vostok; Paleoclimate; Vostok; Vostok Ice Core", "people": "Bender, Michael; Suwa, Makoto", "repository": "USAP-DC", "science_program": null, "title": "Trapped Gas Composition and Chronology of the Vostok Ice Core", "url": "https://www.usap-dc.org/view/dataset/609311"}, {"dataset_uid": "609290", "doi": "10.7265/N5FJ2DQC", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciology; Paleoclimate; Siple Dome; Snow/ice; Snow/Ice; South Pole", "people": "Bender, Michael; Battle, Mark; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Firn Air Inert Gas and Oxygen Observations from Siple Dome, 1996, and the South Pole, 2001", "url": "https://www.usap-dc.org/view/dataset/609290"}], "date_created": "Wed, 18 Jan 2006 00:00:00 GMT", "description": "High latitude deep ice cores contain fundamental records of polar temperatures, atmospheric dust loads (and continental aridity), greenhouse gas concentrations, the status of the biosphere, and other essential properties of past environments. An accurate chronology for these records is needed if their significance is to be fully realized. The dating challenge has stimulated efforts at orbital tuning. In this approach, one varies a timescale, within allowable limits, to optimize the match between a paleoenvironmental property and a curve of insolation through time. The ideal property would vary with time due to direct insolation forcing. It would be unaffected by complex climate feedbacks and teleconnections, and it would give a clean record with high signal/noise ratio. It is argued strongly that the O2/N2 ratio of ice core trapped gases is such a property, and evidence is presented that this property, whose atmospheric ratio is nearly constant, is tied to local summertime insolation. This award will support a project to analyze the O2/N2 ratios at 1 kyr intervals from ~ 115-400 ka in the Vostok ice core. Ancillary measurements will be made of Ar/N2, and Ne/N2 and heavy noble gas ratios, in order to understand bubble close-off fractionation and its manifestation in the Vostok trapped gas record. O2/N2 variations will be matched with summertime insolation at Vostok to achieve a high-accuracy chronology for the Vostok core. The Vostok and other correlatable climate records will then be reexamined to improve our understanding of the dynamics of Pleistocene climate change.", "east": 106.8, "geometry": "POINT(106.8 -72.4667)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e FLASKS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Paleoclimate; Siple Dome; Ice Age; Shallow Firn Air; Firn Air Isotope Measurements; Polar Firn Air; Ice Sample Gas Integrity; Oxygen Isotope; Noble Gas; Ice Core Gas Records; Atmospheric Gases; Trapped Gases; Not provided; LABORATORY; Vostok; Firn Air Isotopes; Thermal Fractionation; Ice Core Chemistry; Trapped Air Bubbles; Ice Core; Antarctica; South Pole; Ice Core Data; GROUND-BASED OBSERVATIONS; Gas Age; Firn Isotopes", "locations": "Antarctica; Vostok; Siple Dome; South Pole", "north": -72.4667, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Battle, Mark; Bender, Michael; Suwa, Makoto; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -72.4667, "title": "Collaborative Research: Trapped Gas Composition and the Chronology of the Vostok Ice Core", "uid": "p0000257", "west": 106.8}, {"awards": "0125468 Severinghaus, Jeffrey", "bounds_geometry": "POLYGON((-180 -62.83,-144 -62.83,-108 -62.83,-72 -62.83,-36 -62.83,0 -62.83,36 -62.83,72 -62.83,108 -62.83,144 -62.83,180 -62.83,180 -65.547,180 -68.264,180 -70.981,180 -73.698,180 -76.415,180 -79.132,180 -81.849,180 -84.566,180 -87.283,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.283,-180 -84.566,-180 -81.849,-180 -79.132,-180 -76.415,-180 -73.698,-180 -70.981,-180 -68.264,-180 -65.547,-180 -62.83))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 01 Feb 2005 00:00:00 GMT", "description": "This award supports the continued measurements of gas isotopes in the Vostok ice core, from Antarctica. One objective is to identify the phasing of carbon dioxide variations and temperature variations, which may place constraints on hypothesized cause and effect relationships. Identification of phasing has in the past been hampered by the large and uncertain age difference between the gases trapped in air bubbles and the surrounding ice. This work will circumvent this issue by employing an indicator of temperature in the gas phase. It is argued that 40Ar/39Ar behaves as a qualitative indicator of temperature, via an indirect relationship between temperature, accumulation rate, firn thickness, and gravitational fractionation of the gas isotopes. The proposed research will make nitrogen and argon isotope measurements on ~ 200 samples of ice covering Termination II (130,000 yr B.P.) and Termination IV (340,000 yr BP). The broader impacts may include a better understanding of the role of atmospheric carbon dioxide concentrations in climate change.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": false, "keywords": "Vostok; Isotope; Ice Core; Not provided", "locations": "Vostok", "north": -62.83, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -90.0, "title": "Argon and nitrogen isotope measurements in the Vostok ice core as aconstraint on phasing of CO2 and temperature changes", "uid": "p0000752", "west": -180.0}, {"awards": "9615554 Fitzpatrick, Joan", "bounds_geometry": null, "dataset_titles": "Digital Images of Thin Sections from Siple Dome; Digital Imaging for Siple Dome Ice Core Analysis, Antarctica", "datasets": [{"dataset_uid": "609127", "doi": "10.7265/N59Z92T4", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Photo/video; Photo/Video; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Fitzpatrick, Joan", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Digital Images of Thin Sections from Siple Dome", "url": "https://www.usap-dc.org/view/dataset/609127"}, {"dataset_uid": "609413", "doi": "10.7265/N5XG9P2G", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Photo/video; Photo/Video; Siple Dome; Siple Dome Ice Core", "people": "Alley, Richard; Spencer, Matthew; Fitzpatrick, Joan", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Digital Imaging for Siple Dome Ice Core Analysis, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609413"}], "date_created": "Wed, 14 May 2003 00:00:00 GMT", "description": "This award is for support for two years to develop the technology and methodology for digitizing the photographs and analyzing the thin sections from ice cores. In addition, the application of digital technology for whole-core stratigraphy, using digital photography, image enhancement and image processing will be investigated. The thin section analysis will be piloted with samples already in hand from the Taylor Dome ice core. If successful, these techniques will be applied to samples from the Siple Dome ice core, in cooperation with Principal Investigators already funded to retrieve and examine these sections. The original digital images with all original data annotation files will be distributed to Siple Dome principal investigators for their use in the interpretation of their own data. All software and hardware acquired for this project will become part of the permanent equipment inventory at the U.S. National Ice Core Laboratory and will be available for use by clients at the facility.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Antarctica; Glaciology; Ice Sheet; Siple; Ice Core; Stratigraphy; GROUND STATIONS; Siple Dome; WAISCORES; Trapped Air Bubbles; Photo; Snow; Density; Volcanic Deposits; Not provided; Ice Core Data; GROUND-BASED OBSERVATIONS; Siple Coast; Chemical Composition", "locations": "Siple Dome; Antarctica; Siple; Siple Coast", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Fitzpatrick, Joan; Alley, Richard; Spencer, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Digital Imaging for Ice Core Analysis", "uid": "p0000011", "west": null}, {"awards": "9725305 Severinghaus, Jeffrey", "bounds_geometry": null, "dataset_titles": "Firn Air Isotope and Temperature Measurements from Siple Dome and South Pole", "datasets": [{"dataset_uid": "609098", "doi": "10.7265/N51N7Z2P", "keywords": "Antarctica; Atmosphere; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciology; Isotope; Paleoclimate; Siple Dome; Snow/ice; Snow/Ice; South Pole; Temperature", "people": "Grachev, Alexi; Battle, Mark; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Firn Air Isotope and Temperature Measurements from Siple Dome and South Pole", "url": "https://www.usap-dc.org/view/dataset/609098"}], "date_created": "Mon, 01 Jan 2001 00:00:00 GMT", "description": "9725305 Severinghaus This award supports a project to develop and apply a new technique for quantifying temperature changes in the past based on the thermodynamic principle of thermal diffusion, in which gas mixtures in a temperature gradient become fractionated. Air in polar firn is fractionated by temperature gradients induced by abrupt climate change, and a record of this air is preserved in bubbles in the ice. The magnitude of the abrupt temperature change, the precise relative timing, and an estimate of the absolute temperature change can be determined. By providing a gas-phase stratigraphic marker of temperature change, the phasing of methane (with decadal precision) and hence widespread climate change (relative to local polar temperature changes) can be determined (across five abrupt warming events during the last glacial period).", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e FLASKS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": true, "keywords": "Isotopic History; GROUND STATIONS; Thermal Diffusion; Firn Temperature Measurements; Not provided; Oxygen Isotope; Trapped Air Bubbles; Shallow Firn Air; Firn Air Isotope Measurements; Seasonal Temperature Gradients; Mass Spectrometry; GROUND-BASED OBSERVATIONS; Thermal Fractionation; Polar Firn Air; Isotopic Anomalies; Xenon; Atmospheric Gases; Argon Isotopes; Siple Dome; Krypton; Nitrogen Isotopes; Seasonal Temperature Changes; Antarctica; Ice Core Gas Records; Firn Air Isotopes; Mass Spectrometer; South Pole; Firn Isotopes; Borehole", "locations": "Antarctica; Siple Dome; South Pole", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Battle, Mark; Grachev, Alexi; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Thermal Fractionation of Firn Air and the Ice Core Record of Abrupt Interstadial Climate Change", "uid": "p0000160", "west": null}, {"awards": "9526374 Alley, Richard", "bounds_geometry": null, "dataset_titles": "Visible Stratigraphic Dating, Siple Dome and Upstream C Cores", "datasets": [{"dataset_uid": "609121", "doi": "10.7265/N53F4MHS", "keywords": "Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Sample/collection Description; Sample/Collection Description; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Alley, Richard", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Visible Stratigraphic Dating, Siple Dome and Upstream C Cores", "url": "https://www.usap-dc.org/view/dataset/609121"}], "date_created": "Wed, 01 Jan 1997 00:00:00 GMT", "description": "This award is for support for a program of physical and visible studies on the shallow and deep ice cores to be retrieved from Siple Dome, West Antarctica. Visible examination of ice cores has proven to be a powerful technique for dating and paleoclimatic interpretation. Recent examination of a shallow core from Siple Dome indicates that annual-layer dating is possible and that visible examination will contribute significantly to the dating effort at Siple Dome. Once ages are obtained, distances between layers provide snow accumulation after correction for density variations and ice flow thinning. Thin- section examination of the core will contribute to understanding the visible stratigraphy, and will reveal c-axis fabrics which are related to past ice deformation. The results of this study should include a better understanding of rapid climate change in the Antarctic and should contribute to knowledge of the stability of the West Antarctic ice sheet.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Ice Core; GROUND-BASED OBSERVATIONS; Siple; Ice Sheet; Isotope; Stratigraphy; GROUND STATIONS; Accumulation; Siple Dome; WAISCORES; Densification; Antarctica; Siple Coast; Thermometry; Snow; Not provided; Bubble; Glaciology", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Alley, Richard", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Physical Properties of the Siple Dome Deep Ice Core", "uid": "p0000059", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RAPID: Is Biomass Mobilization at Ice-covered Lake Fryxell, Antarctica reaching a Critical Threshold?
|
2336354 |
2024-07-05 | Juarez Rivera, Marisol |
|
Perennially ice-covered lakes in the McMurdo Dry Valleys of Antarctica contain abundant microbial mats, and the export of this mat material can fertilize the surrounding polar desert ecosystems. These desert soils are one of the most organic-poor on earth yet host a community of microorganisms. Microbial mat material is exported from the shallow, gas-supersaturated regions of the lakes when gas bubbles form in the mats, lifting them to the ice cover; the perennial ice cover maintains gas supersaturation. These mats freeze in and are exported to the surrounding soils through ice ablation. The largest seasonal decrease and thinnest ice cover in the history of Lake Fryxell was recorded during the 2022-2023 Austral summer. In this thin ice year, the water column dissolved oxygen increased over prior observations, and the lake bottom surface area with bubble-disrupted mat was more than double that observed in 1980-1981 and 2006-2007. This work will constrain mat mobilization within and out of Lake Fryxell in the McMurdo Dry Valleys during a period of unprecedented ice thinning to understand how future changing regional climate and predicted seasonal loss of lake ice cover will affect nutrient transport in the McMurdo Dry Valleys. Exceptional years of mat export are hypothesized to have the most significant impact on nutrient export to soil communities; variability in mat liftoff may thus play a role in the McMurdo Dry Valleys ecosystem response to changing climate. The perennial ice cover of lakes in the McMurdo Dry Valleys of Antarctica modulates the transfer of gasses, organic and inorganic material, between the lakes and surrounding soils. The export of biomass in these lakes is driven by the supersaturation of atmospheric gasses in the shallow regions under perennial ice cover. Gas bubbles nucleate in the mats, producing buoyancy that lifts them to the bottom of the ice, where they freeze in and are exported to the surrounding soils through ice ablation. These mats represent a significant source of biomass and nutrients to the McMurdo Dry Valleys soils, which are among the most organic-poor on earth. Nevertheless, this biomass remains unaccounted for in organic carbon cycling models for the McMurdo Dry Valleys. Ice cover data from the McMurdo Dry Valleys Long Term Ecological Research Project shows that the ice thickness has undergone cyclical variation over the last 40 years, reaching the largest seasonal decrease and thinnest ice-cover in the recorded history of Lake Fryxell during the 2022-2023 austral summer. Preliminary work shows that the surface area with mat liftoff at Lake Fryxell is more than double that observed in 1980-1981 and 2006-2007, coinciding with this unprecedented thinning of the ice-cover and an increase in the water column dissolved O2. This research will constrain biomass mobilization within and out of Lake Fryxell in the McMurdo Dry Valleys during a period of unprecedented ice thinning. The researchers hypothesize that a thinner ice cover promotes more biomass mobilization by 1) stimulating additional production of gas bubbles from the existing gas-supersaturated waters during summertime photosynthesis to create microbial mat liftoff and 2) promoting mat liftoff in deeper, thicker microbial mats, and 3) that this biomass can be traced into the soils by characterizing its chemistry and modeling the most likely depositional settings. This work will use microbial mat samples, lake dissolved oxygen and photosynthetically active radiation data and underwater drone footage documenting the depth distribution of liftoff mats in January 2023, and long-term ice cover thickness, photosynthetically active radiation, and lake level change data collected by the McMurdo Dry Valleys Long Term Ecological Research Project to test hypotheses 1-3. The dispersal of the liftoff mat exposed at Lake Fryxell surface will be modeled using a Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Exceptional liftoff years like the present are hypothesized to have the most significant impact on the soil communities as the rates of soil respiration increase with the addition of carbon. However, continued warming in the next 10 - 40 years may result in seasonal loss of the ice cover and cessation of liftoff mat export. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((160 -76.5,160.45 -76.5,160.9 -76.5,161.35 -76.5,161.8 -76.5,162.25 -76.5,162.7 -76.5,163.15 -76.5,163.6 -76.5,164.05 -76.5,164.5 -76.5,164.5 -76.7,164.5 -76.9,164.5 -77.1,164.5 -77.3,164.5 -77.5,164.5 -77.7,164.5 -77.9,164.5 -78.1,164.5 -78.3,164.5 -78.5,164.05 -78.5,163.6 -78.5,163.15 -78.5,162.7 -78.5,162.25 -78.5,161.8 -78.5,161.35 -78.5,160.9 -78.5,160.45 -78.5,160 -78.5,160 -78.3,160 -78.1,160 -77.9,160 -77.7,160 -77.5,160 -77.3,160 -77.1,160 -76.9,160 -76.7,160 -76.5)) | POINT(162.25 -77.5) | false | false | |||||||
EAGER: Constraining the Expected Brittle-ice Behavior for the Hercules Dome Ice-core Site.
|
2218402 |
2022-09-19 | Fegyveresi, John |
|
Ice cores are a vital source of information about past climate. Research that utilizes ice cores benefits from an undamaged ice-core record. There is often a zone within ice sheets where the ice is brittle upon extraction in a core. Brittle-ice behavior occurs when the rapid decompression of the core as it is being extracted from the ice-sheet results in extensive fracturing. Ice from this zone can compromise the undamaged record. This project seeks to improve our understanding of the mechanisms involved in brittle-ice behavior and onset, with the goal of helping to guide field-site operations, core handling preparation, and planned laboratory measurement techniques for future ice-coring projects, including the upcoming work at Hercules Dome. This project requires no field work, as it will use existing observations and existing ice cores to gain an understanding of brittle ice. This is a high-risk and timely proposal that is early-concept and exploratory in nature, making it appropriate for the EAGER solicitation. The project will support an early-career researcher and provide training for a master’s student who is a woman. And, finally, the project will develop educational and outreach materials for graduate and undergraduate courses and elementary schools. This project will examine and catalog brittle ice from several existing ice-core samples to specifically assess various ice physical properties affecting brittleness potential, including bubble size and number-density, ice fabric, grain statistics, fracture characteristics, and the location and properties of grain and subgrain boundaries. End members of this sample assessment have been identified and include Siple Dome, which exhibited major brittle behavior and damage, and South Pole ice core, which exhibited very-minor brittle behavior and almost no damage. Output datasets will include calibrated relationships for bubble number-density, mean grain and bubble sizes, subgrain prevalence and orientation, and a usable indicator for estimating brittle-ice onset and magnitude. There is an immediate applicability of results from this effort for the Hercules Dome drilling project. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-115 -85.5,-113.5 -85.5,-112 -85.5,-110.5 -85.5,-109 -85.5,-107.5 -85.5,-106 -85.5,-104.5 -85.5,-103 -85.5,-101.5 -85.5,-100 -85.5,-100 -85.65,-100 -85.8,-100 -85.95,-100 -86.1,-100 -86.25,-100 -86.4,-100 -86.55,-100 -86.7,-100 -86.85,-100 -87,-101.5 -87,-103 -87,-104.5 -87,-106 -87,-107.5 -87,-109 -87,-110.5 -87,-112 -87,-113.5 -87,-115 -87,-115 -86.85,-115 -86.7,-115 -86.55,-115 -86.4,-115 -86.25,-115 -86.1,-115 -85.95,-115 -85.8,-115 -85.65,-115 -85.5)) | POINT(-107.5 -86.25) | false | false | |||||||
Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability
|
1643669 1643664 1643716 |
2022-06-17 | Petrenko, Vasilii; Murray, Lee T; Buizert, Christo; Petrenko, Vasilii; Murray, Lee T | Hydroxyl radicals are responsible for removal of most atmospheric trace gases, including pollutants and important greenhouse gases. They have been called the "detergent of the atmosphere". Changes in hydroxyl radical concentration in response to large changes in reactive trace gas emissions, which may happen in the future, are uncertain. This project aims to provide the first estimates of the variability of atmospheric hydroxyl radicals since about 1880 AD when anthropogenic emissions of reactive trace gases were minimal. This will improve understanding of their stability in response to large changes in emissions. The project will also investigate whether ice cores record past changes in Southern Hemisphere westerly winds. These winds are a key component of the global climate system, and have an important influence on ocean circulation and possibly on atmospheric carbon dioxide concentrations. The project team will include three early career scientists, a postdoctoral researcher, and graduate and undergraduate students, working in collaboration with senior scientists and Australian collaborators. Firn air and shallow ice to a depth of about 233 m will be sampled at the Law Dome high-accumulation coastal site in East Antarctica. Trapped air will be extracted from the ice cores on site immediately after drilling. Carbon-14 of carbon monoxide (14CO) will be analyzed in firn and ice-core air samples. Corrections will be made for the in situ cosmogenic 14CO component in the ice, allowing for the atmospheric 14CO history to be reconstructed. This 14CO history will be interpreted with the aid of a chemistry-transport model to place the first observational constraints on the variability of Southern Hemisphere hydroxyl radical concentration after about 1880 AD. An additional component of the project will analyze Krypton-86 in the firn-air and ice-core samples. These measurements will explore whether ice-core Krypton-86 acts as a proxy for barometric pressure variability, and whether this proxy can be used in Antarctic ice cores to infer past movement of the Southern Hemisphere westerly winds. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((112 -66,112.2 -66,112.4 -66,112.6 -66,112.8 -66,113 -66,113.2 -66,113.4 -66,113.6 -66,113.8 -66,114 -66,114 -66.1,114 -66.2,114 -66.3,114 -66.4,114 -66.5,114 -66.6,114 -66.7,114 -66.8,114 -66.9,114 -67,113.8 -67,113.6 -67,113.4 -67,113.2 -67,113 -67,112.8 -67,112.6 -67,112.4 -67,112.2 -67,112 -67,112 -66.9,112 -66.8,112 -66.7,112 -66.6,112 -66.5,112 -66.4,112 -66.3,112 -66.2,112 -66.1,112 -66)) | POINT(113 -66.5) | false | false | ||||||||
Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area
|
0838843 1745006 1744993 1744832 1745007 |
2021-08-27 | Mayewski, Paul A.; Kurbatov, Andrei V.; Brook, Edward J.; Severinghaus, Jeffrey P.; Higgins, John | Bubbles of ancient air trapped in ice cores have been used to directly reconstruct atmospheric composition, and its links to Antarctic and global climate, over the last 800,000 years. Previous field expeditions to the Allan Hills Blue Ice Area, Antarctica, have recovered ice cores that extend as far back as 2.7 million years, by far the oldest polar ice samples yet recovered. These ice cores extend direct observations of atmospheric carbon dioxide and methane concentrations and indirect records of Antarctic climate into a period of Earth's climate history that represents a plausible geologic analogue to future anthropogenic climate change. The results demonstrate a smaller glacial-interglacial variability of climate and greenhouse gases, and a persistent linkage between Antarctic climate and atmospheric carbon dioxide, between 1 and 2 million years ago. Through this project, the team will return to the Allan Hills Blue Ice Area to recover additional ice cores that date to 2 million years or older. The climate records developed from these ice cores will provide new insights into the chemical composition of the atmosphere and Antarctic climate during times of comparable or even greater warmth than the present day. Project results will help answer questions about issues associated with anthropogenic change including the relationship between temperature change and the mass balance of Antarctic ice and the relationship between atmospheric greenhouse gases and global climate change. Earth has been cooling, and ice sheets expanding, over the past ~52 million years. Superimposed on this cooling are periodic changes in Earth's climate system driven by variations in the eccentricity, precession, and obliquity of Earth's orbit around the Sun. Climate reconstructions based on measurements of oxygen isotopes in foraminiferal calcite indicate that, from ~2.8 to 1.2 million years before present (Ma), Earth's climate system oscillated between glacial and interglacial states every ~40,000 years (the "40k world"). Between 1.2-0.8 Ma and continuing to the present, the period of glacial cycles increased in amplitude and lengthened to ~100,000 years (the "100k world"). Ice cores preserve ancient air that allows direct reconstructions of atmospheric carbon dioxide and methane. They also archive proxy records of regional climate, mean ocean temperature, global oxygen cycling, and the aridity of nearby continents. Studies of stratigraphically continuous ice cores, extending to 800,000 years before present, have demonstrated that atmospheric carbon dioxide is strongly linked to climate, and it is of great interest to extend the ice-core record into the 40k world. Recent discoveries of well-preserved ice dating from 1.0 to 2.7 Ma from ice cores drilled in the Allan Hills Blue Ice Area (BIA), Antarctica, demonstrate the potential to retrieve stratigraphically discontinuous old ice at shallow depths (<200 meters). This project will continue this work by retrieving new large-volume ice cores and measuring paleoclimate properties in both new and existing ice from the Allan Hills BIA. The experimental objectives are to more fully characterize fundamental properties of the climate system and the carbon cycle during the 40k world. Project results will have implications for Pleistocene climate change, and will provide new constraints on the processes that regulate atmospheric carbon dioxide, methane, and oxygen on geologic timescales. Given a demonstrated age of the ice at the Allan Hills BIA of at least 2 million years, the team will drill additional cores to prospect for ice that predates the initiation of Northern Hemisphere glaciation at the Plio-Pleistocene transition (~2.8 Ma). This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667)) | POINT(159.29167 -76.7) | false | false | ||||||||
Collaborative Research: Long Term Sublimation/Preservation of Two Separate, Buried Glacier Ice Masses, Ong Valley, Southern Transantarctic Mountains
|
1445205 |
2021-07-16 | putkonen, jaakko; Balco, Gregory; Morgan, Daniel |
|
Putkonen/1445205 This award supports the study of a large body of ice that is buried beneath approximately a meter of debris in the Ong Valley of the Transantarctic Mountains of East Antarctica. Preliminary analyses of this material suggest that it could be over a million years old. Most glacial ice contains tiny air bubbles that have trapped the atmospheric gases and other atmospherically transported materials existing at the time that the ice was deposited such as plant pollen, microbes and mineral dust. Samples will be collected from this buried ice mass, down to a depth of 10 meters, and cosmogenic nuclide concentrations both in the overlying debris and in the till contained in the ice will be measured. This site could contain some of the oldest ice on Earth and studies of the material contained within it may help researchers to better understand the processes involved in its survival for such long periods of time. This work will also help inform scientists about the processes involved in the development of landforms here on earth as well as those on Mars where similar dirt covered glaciers are found today. Samples of the buried ice will be collected in Ong Valley and analyzed to determine the cosmogenic nuclide concentrations in both the overlying debris and in the mineral matter suspended in the ice. The combined analysis of the target cosmogenic nuclides (Beryllium-10, Aluminum-26, and Neon-21) will allow the age of the ice to be uniquely determined and will enable determination of the rate that the ice is sublimating. The intellectual merit of this research is to unequivocally determine the age of the ice and the sublimation rate of the ice in Ong Valley, Antarctica and to better understand if this an uniquely Antarctic process or whether it could exist elsewhere on earth or on other planets. The work may also lead to the recognition of the oldest buried ice ever found on Earth and would provide a source from which direct information about the atmospheric chemistry, ancient life forms, and geology of that time could be measured. The broader impacts of this work are that it will be relevant to researchers in a number of different fields including glaciology, paleoclimatology, planetary geology, and biology. Several students will also participate in the project, conducting Antarctic field work, making measurements in the lab, attending meetings, participating in outreach activities, and producing videos. A graduate student will also write a thesis on this research. The results will be published in scientific journals and presented at conferences. The project requires field work in Antarctica. | POLYGON((157.6 -83.2,157.62 -83.2,157.64 -83.2,157.66 -83.2,157.68 -83.2,157.7 -83.2,157.72 -83.2,157.74 -83.2,157.76 -83.2,157.78 -83.2,157.8 -83.2,157.8 -83.21,157.8 -83.22,157.8 -83.23,157.8 -83.24,157.8 -83.25,157.8 -83.26,157.8 -83.27,157.8 -83.28,157.8 -83.29,157.8 -83.3,157.78 -83.3,157.76 -83.3,157.74 -83.3,157.72 -83.3,157.7 -83.3,157.68 -83.3,157.66 -83.3,157.64 -83.3,157.62 -83.3,157.6 -83.3,157.6 -83.29,157.6 -83.28,157.6 -83.27,157.6 -83.26,157.6 -83.25,157.6 -83.24,157.6 -83.23,157.6 -83.22,157.6 -83.21,157.6 -83.2)) | POINT(157.7 -83.25) | false | false | |||||||
Understanding Firn Rheology Through Laboratory Compaction Experiments and Radar Data
|
1935438 |
2021-06-03 | McCarthy, Christine M.; Kingslake, Jonathan | No dataset link provided | The ice sheets of Antarctica and Greenland are losing mass and contributing to accelerating global sea-level rise. Satellite altimetry provides precise measurement of ice-sheet volume change, but computing ice-sheet mass change—the quantity relevant for estimating the ice sheet’s sea-level contribution—requires knowing the density of the ice sheet. The density near the ice-sheet surface also affects age estimates of air bubbles recovered in ice cores, which are a key source of information on past climate changes. Ice-sheet density is primarily controlled by the rate at which firn (snow that has persisted for a year or more on ice sheets) compacts into ice, but there is currently no widely accepted theory of how this compaction occurs. The goal of this project is thus to advance understanding of how firn densifies. The team will conduct laboratory experiments and analyze ice-penetrating radar and ice-core data from Antarctica. A key desired outcome of the project is a new model of firn densification that can be used to improve satellite-based altimetry measurements of present-day ice-sheet change and reconstructions of past climate changes from ice cores. This project will combine laboratory experiments, numerical modeling, and geophysical techniques to determine the rheology of firn as it compacts to form ice. The team will use two methods to measure firn compaction: (1) lab-based experiments and (2) analysis of ice-core and radar data. For the lab-based work, the team will conduct a suite of compaction experiments on synthetic firn samples under uni-axial strain and constant temperature and axial stress. They will also measure the grain-size evolution. By running a large number of experiments (> 25), the team will constrain key parameters that determine how firn compaction rate depends on density, temperature, grain size, and axial stress. The experiments will be conducted in a table-top apparatus at temperatures as low as -40 degrees C and axial stresses up to 4 MPa. For the field-data-based component, the team will analyze ice-core and ice-penetrating radar data to produce the first coincident set of radar-derived firn compaction rates, borehole temperatures, firn densities, and firn grain sizes. Results from lab and field data will be tied together using a numerical firn compaction model. This model is formulated using conservation of mass, momentum, and energy, along with an explicit description of firn rheology and grain-size evolution. Constraints on firn rheology will be incorporated into this model and the team will use it to examine fundamental questions about how changes in the climate affect firn density. This is a crucial unknown that contributes significant measurement uncertainty in estimates of past and present climate change. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | |||||||
Collaborative Research: Phase 2 Development of A Rapid Access Ice Drilling (RAID) Platform for Research in Antarctica
|
1419979 |
2020-05-18 | Severinghaus, Jeffrey P. | No dataset link provided | The PIs will design and build a new rapid access ice drill (RAID) for use in Antarctica. This drill will have the ability to rapidly drill through ice up to 3300 m thick and then collect samples of the ice, ice-sheet bed interface, and bedrock substrate below. This drilling technology will provide a new way to obtain in situ measurements and samples for interdisciplinary studies in geology, glaciology, paleoclimatology, microbiology, and astrophysics. The RAID drilling platform will give the scientific community access to records of geologic and climatic change on a variety of timescales, from the billion-year rock record to thousand-year ice and climate histories. Successful development of the RAID system will provide a research tool that is currently unavailable. Development of this platform will enable scientists to address critical questions about the deep interface between the Antarctic ice sheets and the substrate below. Development of RAID will provide a way to address many of the unknowns associated with general stability of the Antarctic ice sheets in the face of changing climate and sea level rise. The scientific rationale for RAID was reviewed in a previous proposal (Goodge 1242027). The PIs were granted ?Phase I? funding to develop a more detailed conceptual design for the RAID drill that would provide a better understanding of construction costs as well as operation and maintenance costs for RAID once it is constructed. Phase I support also allowed the PIs to work with the research community to develop more detailed science requirements for the drill. This proposal requests continued funding (Phase II) to construct, assemble and test the RAID drilling platform, through to staging it in Antarctic for future scientific operations. | POLYGON((166.65 -78.62,166.654 -78.62,166.658 -78.62,166.662 -78.62,166.666 -78.62,166.67 -78.62,166.674 -78.62,166.678 -78.62,166.682 -78.62,166.686 -78.62,166.69 -78.62,166.69 -78.6205,166.69 -78.621,166.69 -78.6215,166.69 -78.622,166.69 -78.6225,166.69 -78.623,166.69 -78.6235,166.69 -78.624,166.69 -78.6245,166.69 -78.625,166.686 -78.625,166.682 -78.625,166.678 -78.625,166.674 -78.625,166.67 -78.625,166.666 -78.625,166.662 -78.625,166.658 -78.625,166.654 -78.625,166.65 -78.625,166.65 -78.6245,166.65 -78.624,166.65 -78.6235,166.65 -78.623,166.65 -78.6225,166.65 -78.622,166.65 -78.6215,166.65 -78.621,166.65 -78.6205,166.65 -78.62)) | POINT(166.67 -78.6225) | false | false | |||||||
Collaborative Research: Determining Magma Storage Depths and Ascent Rates for the Erebus Volcanic Province, Antarctica Using Diffusive Water Loss from Olivine-hosted Melt Inclusion
|
1644020 1644027 1644013 |
2020-02-08 | Gaetani, Glenn; Le Roux, Veronique; Sims, Kenneth; Wallace, Paul | Nontechnical project description Globally, 500 million people live near and are threatened by active volcanoes. An important step in mitigating volcanic hazards is understanding the variables that influence the explosivity of eruptions. The rate at which a magma ascends from the reservoir within the Earth to the surface is one such variable. However, magma ascent rates are particularly difficult to determine because of the lack of reliable methods for investigating the process. This research applies a new approach to study magma storage depths and ascent rates at the Erebus volcanic province of Antarctica, one of Earth's largest alkaline volcanic centers. Small pockets of magma that become trapped within growing olivine crystals are called melt inclusions. The concentrations of water and carbon dioxide in these melt inclusions preserve information on the depth of magma reservoirs. Changes to the concentration and isotopic composition of water in the inclusions provide information on how long it took for the host magma to rise to the surface. In combination, these data from samples of olivine-rich volcanic deposits in the Erebus volcanic province will be used to determine the depths at which magmas are stored and their ascent rates. The project results will provide a framework for understanding volcanic hazards associated with alkaline volcanism worldwide. In addition, this project facilitates collaboration among three institutions, and provides an important educational opportunity for a postdoctoral researcher. Technical project description The depths at which magmas are stored, their pre-eruptive volatile contents, and the rates at which they ascend to the Earth's surface are important controls on the dynamics of volcanic eruptions. Basaltic magmas are likely to be vapor undersaturated as they begin their ascent from the mantle through the crust, but volatile solubility drops with decreasing pressure. Once vapor saturation is achieved and the magma begins to degas, its pre-eruptive volatile content is determined largely by the depth at which it resides within the crust. Magma stored in deeper reservoirs tend to experience less pre-eruptive degassing and to be richer in volatiles than magma shallower reservoirs. Eruptive style is influenced by the rate at which a magma ascends from the reservoir to the surface through its effect on the efficiency of vapor bubble nucleation, growth, and coalescence. The proposed work will advance our understanding of pre-eruptive storage conditions and syn-eruptive ascent rates through a combined field and analytical research program. Volatile measurements from olivine-hosted melt inclusions will be used to systematically investigate magma storage depths and ascent rates associated with alkaline volcanism in the Erebus volcanic province. A central goal of the project is to provide a spatial and temporal framework for interpreting results from studies of present-day volcanic processes at Mt Erebus volcano. The Erebus volcanic province of Antarctica is especially well suited to this type of investigation because: (1) there are many exposed mafic scoria cones, fissure vents, and hyaloclastites (exposed in sea cliffs) that produced rapidly quenched, olivine-rich tephra; (2) existing volatile data for Ross Island MIs show that magma storage was relatively deep compared to many mafic volcanic systems; (3) some of the eruptive centers ejected mantle xenoliths, allowing for comparison of ascent rates for xenolith-bearing and xenolith-free eruptions, and comparison of ascent rates for those bearing xenoliths with times estimated from settling velocities; and (4) the cold, dry conditions in Antarctica result in excellent tephra preservation compared to tropical and even many temperate localities. The project provides new tools for assessing volcanic hazards, facilitates collaboration involving researchers from three different institutions (WHOI, U Wyoming, and U Oregon), supports the researchers' involvement in teaching, advising, and outreach, and provides an educational opportunity for a promising young postdoctoral researcher. Understanding the interrelationships among magma volatile contents, reservoir depths, and ascent rates is vital for assessing volcanic hazards associated with alkaline volcanism across the globe. | POLYGON((164.1 -77.1,164.65 -77.1,165.2 -77.1,165.75 -77.1,166.3 -77.1,166.85 -77.1,167.4 -77.1,167.95 -77.1,168.5 -77.1,169.05 -77.1,169.6 -77.1,169.6 -77.235,169.6 -77.37,169.6 -77.505,169.6 -77.64,169.6 -77.775,169.6 -77.91,169.6 -78.045,169.6 -78.18,169.6 -78.315,169.6 -78.45,169.05 -78.45,168.5 -78.45,167.95 -78.45,167.4 -78.45,166.85 -78.45,166.3 -78.45,165.75 -78.45,165.2 -78.45,164.65 -78.45,164.1 -78.45,164.1 -78.315,164.1 -78.18,164.1 -78.045,164.1 -77.91,164.1 -77.775,164.1 -77.64,164.1 -77.505,164.1 -77.37,164.1 -77.235,164.1 -77.1)) | POINT(166.85 -77.775) | false | false | ||||||||
Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area
|
1443263 1443306 |
2018-10-18 | Mayewski, Paul A.; Kurbatov, Andrei V.; Higgins, John; Bender, Michael | Bubbles of ancient air trapped in ice cores permit the direct reconstruction of atmospheric composition and allow us to link greenhouse gases and global climate over the last 800,000 years. Previous field expeditions to the Allan Hills blue ice area, Antarctica, have recovered ice cores that date to one million years, the oldest ice cores yet recovered from Antarctica. These records have revealed that interglacial CO2 concentrations decreased by 800,000 years ago and that, in the warmer world 1 million years ago, CO2 and Antarctic temperature were linked as during the last 800,000 years. This project will return to the Allan Hills blue ice area to recover additional ice cores that date to 1 million years or older. The climate records developed from the drilled ice cores will provide new insights into the chemical composition of the atmosphere and Antarctic climate during times of comparable or even greater warmth than the present day. Our results will help answer questions about issues associated with anthropogenic change. These include the relationship between temperature change and the mass balance of Antarctic ice; precipitation and aridity variations associated with radiatively forced climate change; and the climate significance of sea ice extent. The project will entrain two graduate students and a postdoctoral scholar, and will conduct outreach including workshops to engage teachers in carbon science and ice cores. Between about 2.8-0.9 million years ago, Earth's climate was characterized by 40,000-year cycles, driven or paced by changes in the tilt of Earth's spin axis. Much is known about the "40,000-year" world from studies of deep-sea sediments, but our understanding of climate change during this period is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of ancient ice from the Main Ice Field, Allan Hills, Antarctica. During previous field seasons we recovered ice extending, discontinuously, from 0.1-1.0 million years old. Ice was dated by measuring the 40Ar/38Ar (Argon) ratio of the trapped gases. Our discovery of million year-old ice demonstrates that there is gas-record-quality ice from the 40,000-year world in the Allan Hills Main Ice Field. We have identified two different sites, each overlying bedrock at ~ 200 m depth, that are attractive targets for coring ice dating to 1 million years and older. This project aims to core the ice at these two sites, re-occupy a previous site with million year-old ice and drill it down to the bedrock, and generate 10-20 short (~10-meter) cores in areas where our previous work and terrestrial meteorite ages suggest ancient surface ice. We plan to date the ice using the 40Ar/38Ar ages of trapped Argon. We also plan to characterize the continuity of our cores by measuring the deuterium and oxygen isotope ratios in the ice, methane, ratios of Oxygen and Argon to Nitrogen in trapped gas, the Nitrogen-15 isotope (d15N) of Nitrogen, and the Oxygen-18 isotope (d18O) of Oxygen. As the ice may be stratigraphically disturbed, these measurements will provide diagnostic properties for assessing the continuity of the ice-core records. Successful retrieval of ice older than one million years will provide the opportunity for follow-up work to measure the CO2 concentration and other properties within the ice to inform on the temperature history of the Allan Hills region, dust sources and source-area aridity, moisture sources, densification conditions, global average ocean temperature, and greenhouse gas concentrations. We will analyze the data in the context of leading hypotheses of the 40,000-year world and the Mid-Pleistocene Transition to the 100,000-year world. We expect to advance understanding of climate dynamics during these periods. | None | None | false | false | ||||||||
Climate History and Flow Processes from Physical Analyses of the SPICECORE South Pole Ice Core
|
1542778 |
2017-09-29 | Alley, Richard; Fegyveresi, John; Voigt, Donald E. |
|
Alley/1542778 This award supports a three-year effort to study physical properties of the South Pole ice core to help provide a high-time-resolution history of trace gases and other paleoclimatic indicators from an especially cold site with high preservation potential for important signals. The physical-properties studies include visual inspection to identify any flow disturbances and for identifying annual layers and other features, and combined bubble, grain and ice crystal orientation studies to better understand the processes occurring in the ice that affect the climate record and the ice-sheet behavior. Success of these efforts will provide necessary support for dating and quality control to others studying the ice core, as well as determining the climate history of the site, flow state, and key physical processes in ice. The intellectual merits of the project include better understanding of physical processes, paleoclimatic reconstruction, dating of the ice, and quality assurance. Visual inspection of the core will help identify evidence of flow disturbances that would disrupt the integrity of the climate record and will reveal volcanic horizons and other features of interest. Annual layer counting will be conducted to help estimate accumulation rate over time as recorded in the ice core. Measurements of C-axis fabric, grain size and shapes, and bubble characteristics will provide information about processes occurring in the ice sheet as well as the history of ice flow, current flow state and how the ice is flowing and how easily it will flow in the future. Analysis of this data in conjunction with microCT data will help to reveal grain-scale processes. The broader impacts of the project include support for an early-career, post-doctoral researcher, and improved paleoclimatic data of societal relevance. The results will be incorporated into the active program of education and outreach which have educated many students, members of the public and policy makers through the sharing of information and educational materials about all aspects of ice core science and paleoclimate. | None | None | false | false | |||||||
Rebreather Testing for the United States Antarctic Scientific Diving Program
|
1553824 |
2017-05-26 | Heine, John |
|
There are a number of areas of Antarctic research by scientists from the United States where rebreather technology (which unlike normal SCUBA diving releases few if any air bubbles) would be valuable tools. These include but are not limited to behavioral studies (because noise from bubbles released by standard SCUBA alters the behavior of many marine organisms), studies of communities on the underside of sea ice (because the bubbles disrupt the communities while or before they are sampled), and studies of highly stratified lake communities (because the bubbles cause mixing and because lighter line could be used to tether a diver to the surface which would probably also cause less water column disruption). The latter scientific advantage of less mixing in highly stratified (not naturally mixed) lakes is also a significant environmental advantage of rebreathers. However, for safety reasons, no US science projects will be approved for the use of rebreathers until they are tested by the US Antarctic Program (USAP). This award provides funds for the USAP Scientific Diving Officer to conduct such tests in conjunction with other diving professionals experienced in polar diving in general and specifically with rebreather technology in non-polar environments. A team of six scientific diving professionals will evaluate seven or more commercial rebreather models that are being most commonly used in non-polar scientific diving. This will be done through holes drilled or melted in sea ice at McMurdo Station, Antarctica. A limited number of test dives of the best performing models will subsequently be made in stratified lakes in the McMurdo Dry Valleys. | POINT(166.667 -77.85) | POINT(166.667 -77.85) | false | false | |||||||
Collaborative Research: Physical Properties of the WAIS Divide Deep Core
|
0539578 0539232 |
2017-01-12 | Fitzpatrick, Joan; Alley, Richard; Fegyveresi, John; Clow, Gary D.; Cuffey, Kurt M.; Cravens, Eric D. | 0539578<br/>Alley <br/>This award supports a five-year collaborative project to study the physical-properties of the planned deep ice core and the temperature of the ice in the divide region of the West Antarctic Ice Sheet. The intellectual merit of the proposed research is to provide fundamental information on the state of the ice sheet, to validate the integrity of the climate record, to help reconstruct the climate record, and to understand the flow state and history of the ice sheet. This information will initially be supplied to other investigators and then to the public and to appropriate databases, and will be published in the refereed scientific literature. The objectives of the proposed research are to aid in dating of the core through counting of annual layers, to identify any exceptionally warm intervals in the past through counting of melt layers, to learn as much as possible about the flow state and history of the ice through measurement of size, shape and arrangements of bubbles, clathrate inclusions, grains and their c-axes, to identify any flow disturbances through these indicators, and to learn the history of snow accumulation and temperature from analyses of bubbles and borehole temperatures combined with flow modeling and use of data from other collaborators. These results will then be synthesized and communicated. Failure to examine cores can lead to erroneous identification of flow features as climate changes, so careful examination is required. Independent reconstruction of accumulation rate provides important data on climate change, and improves confidence in interpretation of other climate indicators. Borehole temperatures are useful recorders of temperature history. Flow state and history are important in understanding climate history and potential contribution of ice to sea-level change. By contributing to all of these and additional issues, the proposed research will be of considerable value. The broader impacts of the research include making available to the public improved knowledge on societally central questions involving abrupt climate change and sea-level rise. The project will also contribute to the education of advanced students, will utilize results in education of introductory students, and will make vigorous efforts in outreach, informal science education, and supplying information to policy-makers as requested, thus contributing to a more-informed society. | POINT(112.083 -79.467) | POINT(112.083 -79.467) | false | false | ||||||||
Optical Fabric and Fiber Logging of Glacial Ice
|
1142173 1142010 |
2015-11-05 | Talghader, Joseph; Bay, Ryan |
|
1142010/Talghader This award supports a project to combine the expertise of both glaciologists and optical engineers to develop polarization- preserving optical scattering techniques for borehole tools to identify changes in high-resolution crystal structure (fabric) and dust content of glacial ice. The intellectual merit of this work is that the fabric and impurity content of the ice contain details on climate, volcanic activity and ice flow history. Such fabric measurements are currently taken by slicing an ice core into sections after it has started to depressurize which is an extremely time-intensive process that damages the core and does not always preserve the properties of ice in its in-situ state. In addition the ice core usually must be consumed in order to measure the components of the dust. The fabric measurements of this study utilize the concept that singly-scattered light in ice preserves most of its polarization when it is backscattered once from bubbles or dust; therefore, changes to the polarization of singly-backscattered light must originate with the birefringence. Measurements based on this concept will enable this program to obtain continuous records of fabric and correlate them to chronology and dust content. The project will also develop advanced borehole instruments to replace current logging tools, which require optical sources, detectors and power cables to be submerged in borehole fluid and lowered into the ice sheet at temperatures of -50oC. The use of telecommunications fiber will allow all sources and detectors to remain at the surface and enable low-noise signal processing techniques such as lock-in amplification that increase signal integrity and reduce needed power. Further, fiber logging systems would be much smaller and more flexible than current tools and capable of navigating most boreholes without a heavy winch. In order to assess fabric in situ and test fiber-optic borehole tools, field measurements will be made at WAIS Divide and a deep log will also be made at Siple Dome, both in West Antarctica. If successful, the broader impacts of the proposed research would include the development of new analytical methods and lightweight logging tools for ice drilling research that can operate in boreholes drilled in ice. Eventually the work could result in the development of better prehistoric records of glacier flow, atmospheric particulates, precipitation, and climate forcing. The project encompasses a broad base of theoretical, experimental, and design work, which makes it ideal for training graduate students and advanced undergraduates. Collaboration with schools and classroom teachers will help bring aspects of optics, climate, and polar science to an existing Middle School curriculum. | POINT(112.085 -79.467) | POINT(112.085 -79.467) | false | false | |||||||
Fugitive Gases (Helium, Neon, and Oxygen) in the WAIS Divide Ice Core as Tracers of Basal Processes and Past Biospheric Carbon Storage
|
1143619 |
2015-07-13 | Severinghaus, Jeffrey P. | No dataset link provided | 1143619/Severinghaus This award supports a project to extend the study of gases in ice cores to those gases whose small molecular diameters cause them to escape rapidly from ice samples (the so-called "fugitive gases"). The work will employ helium, neon, argon, and oxygen measurements in the WAIS Divide ice core to better understand the mechanism of the gas close-off fractionation that occurs while air bubbles are incorporated into ice. The intellectual merit of the proposed work is that corrections for this fractionation using neon (which is constant in the atmosphere) may ultimately enable the first ice core-based atmospheric oxygen and helium records. Neon may also illuminate the mechanistic link between local insolation and oxygen used for astronomical dating of ice cores. Helium measure-ments in the deepest ~100 m of the core will also shed light on the stratigraphic integrity of the basal ice, and serve as a probe of solid earth-ice interaction at the base of the West Antarctic ice sheet. Past atmospheric oxygen records, currently unavailable prior to 1989 CE, would reveal changes in the size of the terrestrial biosphere carbon pool that accompany climate variations and place constraints on the biogeochemical feedback response to future warming. An atmospheric helium-3/helium-4 record would test the hypothesis that the solar wind (which is highly enriched in helium-3) condensed directly into Earth?s atmosphere during the collapse of the geomagnetic field that occurred 41,000 years ago, known as the Laschamp Event. Fugitive-gas samples will be taken on-site immediately after recovery of the ice core by the PI and one postdoctoral scholar, under the umbrella of an existing project to support replicate coring and borehole deepening. This work will add value to the scientific return from field work activity with little additional cost to logistical resources. The broader impacts of the work on atmospheric oxygen are that it may increase understanding of how terrestrial carbon pools and atmospheric greenhouse gas sources will respond in a feedback sense to the coming warming. Long-term atmospheric oxygen trends are also of interest for understanding biogeochemical regulatory mechanisms and the impact of atmospheric evolution on life. Helium records have value in understanding the budget of this non-renewable gas and its implications for space weather and solar activity. The project will train one graduate student and one postdoctoral scholar. The fascination of linking solid earth, cryosphere, atmosphere, and space weather will help to entrain and excite young scientists and efforts to understand the Earth as a whole interlinked system will provide fuel to outreach efforts at all ages. | POINT(-112.09 -79.47) | POINT(-112.09 -79.47) | false | false | |||||||
Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)
|
0838849 0838843 |
2014-12-10 | Spaulding, Nicole; Introne, Douglas; Bender, Michael; Kurbatov, Andrei V.; Mayewski, Paul A. |
|
This award supports a project to generate an absolute timescale for the Allan Hills Blue Ice Area (BIA), and then to reconstruct details of past climate changes and greenhouse gas concentrations for certain time periods back to 2.5 Ma. Ice ages will be determined by applying emerging methods for absolute and relative dating of trapped air bubbles (based on Argon-40/Argon-38, delta-18O of O2, and the O2/N2 ratio). To demonstrate the potential of the Allan Hills BIAs as a paleoclimate archive trenches and ice cores will be collected for age intervals corresponding to 110-140 ka, 1 Ma, and 2.5 Ma. During the proposed two field seasons a total of 6x100 m and additional 15 m cores will be combined with trenching. The intellectual merit of the proposed activity is that the results of this work will extend the landmark work of EPICA and other deep ice coring efforts, which give records dating back to 0.8 Ma, and will complement work planned by IPICS to drill a continuous Antarctic ice core extending to 1.5 Ma. The results will help to advance understanding of major climate regimes and transitions that took place between 0-2.5 Ma, including the 40 kyr world and the mid-Pleistocene climate transition. A major long-term scientific goal is to provide a transformative approach to the collection of paleoclimate records by establishing an "International Climate Park" in the Allan Hills BIA that would enable sampling of large quantities of known age ice as old as 2.5 Ma, by any interested American or foreign investigator. The broader impacts resulting from the proposed activity include training students who are well versed in advanced field, laboratory and numerical modeling methods combining geochemistry, glaciology, and paleoclimatology. We will include material relevant to our proposed research in our ongoing efforts in local education and in our outreach efforts for media. The University of Maine already has cyberinfrastructure, using state of the art web-based technology, which can provide a wide community of scientists with fast access to the results of our research. The work will contribute to the broad array of climate change studies that is informing worldwide understanding of natural and anthropogenic forced climate change, and the options for responding. This award has field work in Antarctica. | POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667)) | POINT(159.29167 -76.7) | false | false | |||||||
Firn Metamorphism: Microstructure and Physical Properties
|
0944078 |
2014-08-15 | Baker, Ian; Albert, Mary R. |
|
This award supports a project to investigate the transformations from snow to firn to ice and the underlying physics controlling firn's ability to store atmospheric samples from the past. Senior researchers, a graduate student, and several undergraduates will make high-resolution measurements of both the diffusivity and permeability profiles of firn cores from several sites in Antarctica and correlate the results with their microstructures quantified using advanced materials characterization techniques (scanning electron microscopy and x-ray computed tomography). The use of cores from different sites will enable us to examine the influence of different local climate conditions on the firn structure. We will use the results to help interpret existing measurements of firn air chemical composition at several sites where firn air measurements exist. There are three closely-linked goals of this project: to quantify the dependence of interstitial transport properties on firn microstructure from the surface down to the pore close-off depth, to determine at what depths bubbles form and entrap air, and investigate the extent to which these features exhibit site-to-site differences, and to use the measurements of firn air composition and firn structure to better quantify the differences between atmospheric composition (present and past), and the air trapped in both the firn and in air bubbles within ice by comparing the results of the proposed work with firn air measurements that have been made at the WAIS Divide and Megadunes sites. The broader impacts of this project are that the study will this study will enable us to elucidate the fundamental controls on the metamorphism of firn microstructure and its impact on processes of gas entrapment that are important to understanding ice core evidence of past atmospheric composition and climate change. The project will form the basis for the graduate research of a PhD student at Dartmouth, with numerous opportunities for undergraduate involvement in cold room measurements and outreach. The investigators have a track record of successfully mentoring women students, and will build on this experience. In conjunction with local earth science teachers, and graduate and undergraduate students will design a teacher-training module on the role of the Polar Regions in climate change. Once developed and tested, this module will be made available to the broader polar research community for their use with teachers in their communities. | POINT(112.05 79.28) | POINT(-112.05 -79.28) | false | false | |||||||
None
|
0539578 |
2014-08-14 | Fegyveresi, John; Alley, Richard |
|
None | None | None | false | false | |||||||
Collaborative Research: Continued Study of Physical Properties of the WAIS Divide Deep Core
|
1043313 1043528 |
2012-06-19 | Spencer, Matthew; Alley, Richard; Fitzpatrick, Joan; Voigt, Donald E. | 1043528/Alley This award supports a project to complete the physical-properties studies of the WAIS Divide deep ice core, now being collected in West Antarctica. Ongoing work funded by NSF, under a grant that is ending, has produced visible stratigraphy dating, inspection of the core for any melt layers, volcanic horizons, flow disturbances or other features, analysis of bubble number-densities allowing reconstruction of a two-millennial cooling trend in the latter Holocene at the site, characterization of other bubble characteristics (size, etc.), density studies, characterization of snow-surface changes at the site, preliminary c-axis studies, and more. The current proposal seeks to complete this work, once the rest of the core is recovered. The intellectual merit of the proposed activity starts with quality assurance for the core, by visual detection of any evidence of flow disturbances that would disrupt the integrity of the climate record. Inspection will also reveal any melt layers, volcanic horizons, etc. Annual-layer dating will be conducted; thus far, the visible strata have not been as useful as some other indicators, but the possibility (based on experience in Greenland) that visible examination will allow detection of thinner annual layers than other techniques motivates the effort. Bubble number-density will be used to reconstruct temperature changes through the rest of the bubbly part of the core, providing important paleoclimatic data for earlier parts of the Holocene. Coordinated interpretation of c-axis fabrics, grain sizes and shapes, and bubble characteristics will be used to learn about the history of ice flow, the processes of ice flow, and the softness of the ice for additional deformation. Analysis of surface data already collected will improve interpretation of the layering of the core. It is possible that the annual-layer dating will not be sufficiently successful, and that the core will be undisturbed with no melt layers; if so, then these efforts will not yield major publications. However, success of the other efforts should produce improved understanding of the history and stability of the ice sheet, and key processes controlling these, and the quality assurance provided by the visual examination is important for the project as a whole. The broader impacts of the proposed activity include education of a PhD student and multiple undergraduates, and research opportunities for a junior faculty member at an undergraduate institution. The proposed activity will help support an especially vigorous education and outreach effort providing undergraduate instruction for over 1000 students per year, reaching thousands more citizens and many policymakers, and preparing educational materials used at many levels. | POINT(112.1166 -79.4666) | POINT(112.1166 -79.4666) | false | false | ||||||||
Self-consistent Ice Dynamics, Accumulation, Delta-age, and Interpolation of Sparse Age Data using an Inverse Approach
|
0636997 |
2012-03-20 | Carns, Regina; Hay, Mike; Waddington, Edwin D. | No dataset link provided | Waddington/0636997<br/><br/>This award supports a project to integrate three lines of glaciology research, previously treated independently. First, internal layers in ice sheets, detected by ice-penetrating radar, retain information about past spatial and temporal patterns of ice accumulation. Ice-flow modelers can recover this information, using geophysical inverse methods; however, the ages of the layers must be known, through interpolation where they intersect a well-dated ice core. <br/>Second, concentrations of methane and some other atmospheric constituents vary through time as climate changes. However, the atmosphere is always well mixed, and concentrations are similar world-wide at any one time, so gas variations from an undated core can be correlated with those in a well-dated core such as GISP2. Because air in near-surface firn mixes readily with the atmosphere above, the air that is trapped in bubbles deep in the firn is typically hundreds to thousands of years younger than that firn. Gas geochemists must calculate this age difference, called delta-age, with a firn-densification model before the ice enclosing the gas can be dated accurately. To calculate delta-age, they must know the temperature and the snow accumulation rate at the time and place where the snow fell. Third, gases can be correlated between cores only at times when the atmosphere changed, so ice-core dates must be interpolated at depths between the sparse dated points. Simplistic interpolation schemes can create undesirable artifacts in the depth-age profile. The intellectual merit of this project is that it will develop new interpolation methods that calculate layer thinning over time due to ice-flow mechanics. Accurate interpolation also requires a spatial and temporal accumulation history. These three issues are coupled through accumulation patterns and ice-core dates. This project will develop an integrated inversion procedure to solve all three problems simultaneously. The new method will incorporate ice-penetrating radar profile data and ice-core data, and will find self-consistent: spatial/temporal accumulation patterns; delta-age profiles for ice cores; and reliably interpolated depth-age profiles. The project will then: recalculate the depth-age profile at Byrd Station, Antarctica; provide a preliminary depth-age at the West Antarctic Ice Sheet (WAIS) in the initial stages of drilling, using radar layers with estimated ages traced from Byrd Station; and generate a self-consistent depth-age relationship for Taylor Dome, Antarctica over the past 20ka, where low accumulation has created uncertainty in dating, accumulation, and controversy over delta-age estimates. The broader impacts of the project are that it will support the PhD research of a female graduate student, and her continued outreach work with Making Connections, a non-profit program through the University of Washington Women's Center, which matches professional women mentors with minority high-school women interested in mathematics and science, disciplines where they are traditionally under-represented. The graduate student will also work with Girls on Ice, a ten-day glacier field program, taught by women scientist instructors, emphasizing scientific observation through immersion, leadership skills and safety awareness. | None | None | false | false | |||||||
Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate
|
0538657 |
2010-07-08 | Haines, Skylar; Mayewski, Paul A.; Orsi, Anais J.; Kurbatov, Andrei V.; Severinghaus, Jeffrey P. | 0538657<br/>Severinghaus<br/>This award supports a project to develop high-resolution (20-yr) nitrogen and oxygen isotope records on trapped gases in the WAIS Divide ice core (Antarctica), with a comparison record for chronological purposes in the GISP2 (Greenland) ice core. The main scientific objective is to provide an independent temperature-change record for the past 100,000 years in West Antarctica that is not subject to the uncertainty inherent in ice isotopes (18O and deuterium), the classical paleothermometer. Nitrogen isotopes (Delta 15N) in air bubbles in glacial ice record rapid surface temperature change because of thermal fractionation of air in the porous firn layer, and this isotopic anomaly is recorded in bubbles as the firn becomes ice. Using this gas-based temperature-change record, in combination with methane data as interpolar stratigraphic markers, the proposed work will define the precise relative timing of abrupt warming in Greenland and abrupt cooling at the WAIS Divide site during the millennial-scale climatic oscillations of Marine Isotopic Stage 3 (30-70 kyr BP) and the last glacial termination. The nitrogen isotope record also provides constraints on past firn thickness, which inform temperature and accumulation rate histories from the ice core. A search for possible solar-related cycles will be conducted with the WAIS Divide Holocene (Delta 15N.) Oxygen isotopes of O2 (Delta 18Oatm) are obtained as a byproduct of the (Delta 15N) measurement. The gas-isotopic records will enhance the value of other atmospheric gas measurements in WAIS Divide, which are expected to be of unprecedented quality. The high-resolution (Delta 18Oatm) records will provide chronological control for use by the international ice coring community and for surface glacier ice dating. Education of a graduate student, and training of a staff member in the laboratory, will contribute to the nation's human resource base. Outreach activities in the context of the International Polar Year will be enhanced. International collaboration is planned with the laboratory of LSCE, University of Paris. | None | None | false | false | ||||||||
Optical Logging for Dust and Microbes in Boreholes in Glacial Ice
|
0125794 |
2009-07-29 | Bay, Ryan |
|
0125794<br/>Price<br/><br/>This award supports research in climatology, geosciences, and life in extreme environments to be carried out with a newly developed optical borehole logger. The logger fits into a fluid-filled borehole in glacial ice. It emits light at 370 nm in a horizontal plane in order to probe optical properties of particles embedded in the ice out to several meters from the borehole. After leaving the borehole, the light is partially absorbed and scattered by dust, biomolecules, or microbes. A fraction of the light is scattered back into the borehole and is detected by a system of seven phototubes, each of which collects light with high efficiency in a separate wavelength band. One of them collects light that scatters off of dust and air bubbles without wavelength shift, and serves as a dust logger. The other six are covered with notch filters that measure six different wavelength bands and measure the shape of the fluorescence spectrum of microbes and biomolecules. Thus, the same instrument serves as both a dust logger and a microbe logger. Applications include: 1) Precise chronologies and long-period solar variability. With a resolution of 1 to 2 cm for both GISP2 and Siple Dome, the logger will record annual dust maxima and evaluate claims of modulations of dust concentration with periods ranging from 11 yrs (the solar cycle) to 2300 yrs; 2) Volcanism and age-depth markers. Dozens of volcanic ash bands will be detectable and will serve as primary age-depth markers for other boreholes; 3) Microorganisms and biomolecules. The vertical distribution of living, dormant, and dead microbes can be logged, and searches for archaea and aeolian polyaromatic hydrocarbons can be made. The logging experiments will be carried out at Siple Dome and Dome C in Antarctica and at GISP2 and GRIP in Greenland. | None | None | false | false | |||||||
Paleoatmospheric Krypton and Xenon Abundances from Trapped Air in Polar Ice as Indicators of Past Mean Ocean Temperature
|
0538630 |
2009-04-01 | Severinghaus, Jeffrey P. | No dataset link provided | 0538630<br/>Severinghaus<br/>This award supports a project to produce the first record of Kr/N2 in the paleo-atmosphere as measured in air bubbles trapped in ice cores. These measurements may be indicative of past variations in mean ocean temperature. Knowing the mean ocean temperature in the past will give insight into past variations in deep ocean temperature, which remain poorly understood. Deep ocean temperature variations are important for understanding the mechanisms of climate change. Krypton is highly soluble in water, and its solubility varies with temperature, with higher solubilities at colder water temperatures. A colder ocean during the last glacial period would therefore hold more krypton than today's ocean. Because the total amount of krypton in the ocean-atmosphere system is constant, the increase in the krypton inventory in the glacial ocean should cause a resultant decrease in the atmospheric inventory of krypton. The primary goal of this work is to develop the use of Kr/N2 as an indicator of paleo-oceanic mean temperature. This will involve improving the analytical technique for the Kr/N2 measurement itself, and measuring the Kr/N2 in air bubbles in ice from the last glacial maximum (LGM) and the late Holocene in the Vostok and GISP2 ice cores. This provides an estimate of LGM mean ocean temperature change, and allows for a comparison between previous estimates of deep ocean temperature during the LGM. The Vostok ice core is ideal for this purpose because of the absence of melt layers, which compromise the krypton and xenon signal. Another goal is to improve precision on the Xe/N2 measurement, which could serve as a second, independent proxy of ocean temperature change. A mean ocean temperature time series during this transition may help to explain these observations. Additionally, the proposed work will measure the Kr/N2 from marine isotope stage (MIS) 3 in the GISP2 ice core. Knowing the past ocean temperature during MIS 3 will help to constrain sea level estimates during this time period. The broader impacts of the proposed work: are that it will provide the first estimate of the extent and timing of mean ocean temperature change in the past. This will help to constrain previously proposed mechanisms of climate change involving large changes in deep ocean temperature. This project will also support the education of a graduate student. The PI gives interviews and talks to the media and public about climate change, and the work will enhance these outreach activities. Finally, the work will occur during the International Polar Year (IPY), and will underscore the unique importance of the polar regions for understanding the global atmosphere and ocean system. | None | None | false | false | |||||||
Climatology, Volcanism, and Microbial Life in Ice with Downhole Loggers
|
0440609 |
2008-06-03 | Bay, Ryan; Price, Buford | No dataset link provided | This award supports a project to use three downhole instruments - an optical logger; a<br/>miniaturized biospectral logger at 420 nm (miniBSL-420); and an Acoustic TeleViewer (ATV) - to log a 350-m borehole at the WAIS Divide drill site. In addition, miniBSL-224 (at 224 nm) and miniBSL-420 will scan ice core sections at NICL to look for abrupt climate changes, volcanic ash, microbial concentrations, and correlations among them. Using the optical logger and ATV to log bubble number densities vs depth in a WAIS Divide borehole, we will detect annual layers, from which we can establish the age vs depth relation to the bottom of the borehole that will be available during the three-year grant period. With the same instruments we will search for long-period modulation of bubble and dust concentrations in order to provide definitive evidence for or against an effect of long-period variability of the sun or solar wind on climate. We will detect and accurately date ash layers in a WAIS Divide borehole. We will match them with ash layers that we previously detected in the Siple Dome borehole, and also match them with sulfate and ash layers found by others at Vostok, Dome Fuji, Dome C, and GISP2. The expected new data will allow us to extend our recent study which showed that the Antarctic record of volcanism correlates with abrupt climate change at a 95% to >99.8% significance level and that the volcanic signatures at bipolar locations match at better than 3 sigma during the interval 2 to 45 kiloyears. The results to be obtained during this grant period will position us to extend an accurate age vs depth relation and volcano-climate correlations to earlier than 150 kiloyears ago in the future WAIS Divide borehole to be drilled to bedrock. Using the miniBSLs to identify biomolecules via their fluorescence, we will log a 350-m borehole at WAIS Divide, and we will scan selected lengths of ice core at NICL. Among the biomolecules the miniBSLs can identify will be chlorophyll, which will provide the first map of aerobic microbes in ice, and F420, which will provide the first map of methanogens in ice. We will collaborate with others in relating results from WAIS Divide and NICL ice cores to broader topics in climatology, volcanology, and microbial ecology. We will continue to give broad training to undergraduate and graduate students, to attract underrepresented minorities to science, engineering, and math, and to educate the press and college teachers. A deeper understanding of the causes of abrupt climate change, including a causal relationship with strong volcanic eruptions, can enable us to understand and mitigate adverse effects on climate. | POINT(-112.06556 -79.469444) | POINT(-112.06556 -79.469444) | false | false | |||||||
Collaborative Research: Combined Physical Property Measurements at Siple Dome
|
0440447 0917509 |
2008-05-19 | Spencer, Matthew; Wilen, Larry |
|
This award supports a two-year collaborative effort to more fully understand the climatic history and physical properties of the Siple Dome, Antarctica deep ice core, to develop a new paleoclimatic technique based on bubble number-density, and to improve the U.S. capability to analyze ice-core physical properties rapidly and accurately. The Siple Dome ice core from West Antarctica is yielding important paleoclimatic insights, but has proven more difficult than some cores to interpret owing to the large iceflow effects on the paleoclimatic record. Paleoclimatic indicators that do not rely on iceflow corrections thus would be of value. The bubble number-density offers one such indicator, because it preserves information on mean temperature and accumulation rate during the transformation of firn to ice. We will focus on thin-section characteristics that are important to ice flow and the interpretation of the ice-core history, such as c-axis fabrics, and will use indicators that we have been developing, such as the correlation between grain elongation and the c-axis orientation, to gain additional information. To achieve this quickly and accurately, and to prepare for future projects, we propose to upgrade the automatic caxis- fabric analyzer that Wilen has built and housed at the National Ice Core Laboratory. The intellectual merit of the proposed activity includes improved estimates of paleoclimatic conditions in an important region, improved understanding of a new paleoclimatic research tool, greater understanding of ice flow and of linkages to physical properties, and a better instrument for further U.S. research in ice-core physical properties at the National Ice Core Laboratory. The broader impacts resulting from the proposed activity include providing better understanding of abrupt climate change and of ice flow, which eventually should help policy-makers, as well as an improved U.S. capability to analyze ice cores. The proposed research will assist the studies of two promising young scientists. Results of the research will be incorporated into courses and public outreach reaching at least hundreds or thousands of people per year. | POINT(-148.81 -81.65) | POINT(-148.81 -81.65) | false | false | |||||||
How Thick Is the Convective Zone: A Study of Firn Air in the Megadunes Near Vostok, Antarctica
|
0230452 |
2006-09-27 | Bauer, Rob; Albert, Mary R.; Severinghaus, Jeffrey P. |
|
This award supports a study of the chemical composition of air in the snow layer (firn) in a region of "megadunes" near Vostok station, Antarctica. It will test the hypothesis that a deep "convective zone" of vigorous wind-driven mixing can prevent gas fractionation in the upper one-third of the polar firn layer. In the megadunes, ultralow snow accumulation rates lead to structural changes (large grains, pipes, and cracks) that make the permeability of firn to air movement orders of magnitude higher than normal. The unknown thickness of the convective zone has hampered the interpretation of ice core 15N/14N and 40Ar/36Ar ratios as indicators of past firn thickness, which is a key constraint on the climatically important variables of temperature, accumulation rate, and gas age-ice age difference. Studying this "extreme end-member" example will better define the role of the convective zone in gas reconstructions. This study will pump air from a profile of ~20 depths in the firn, to definitively test for the presence of a convective zone based on the fit of observed 15 N/14N and 40Ar/36Ar to a molecular- and eddy-diffusion model. Permeability measurements on the core and 2-D air flow modeling (in collaboration with M. Albert) will permit a more physically realistic interpretation of the isotope data and will relate mixing vigor to air velocities. A new proxy indicator of convective zone thickness will be tested on firn and ice core bubble air, based on the principle that isotopes of slow-diffusing heavy noble gases (Kr, Xe) should be more affected by convection than isotopes of fast-diffusing N2 . These tools will be applied to a test of the hypothesis that the megadunes and a deep convective zone existed at the Vostok site during glacial periods, which would explain the anomalously low 15N/14N and 40Ar/36Ar in the Vostok ice core glacial periods. The broader impacts of this work include 1) clarification of phase relationships of greenhouse gases and temperature in ice core records, with implications for understanding of past and future climates, 2) education of one graduate student, and 3) building of collaborative relationships with five investigators. | POINT(124.5 -80.78) | POINT(124.5 -80.78) | false | false | |||||||
Collaborative Research: Trapped Gas Composition and the Chronology of the Vostok Ice Core
|
0230448 0230260 |
2006-01-18 | Battle, Mark; Bender, Michael; Suwa, Makoto; Severinghaus, Jeffrey P. |
|
High latitude deep ice cores contain fundamental records of polar temperatures, atmospheric dust loads (and continental aridity), greenhouse gas concentrations, the status of the biosphere, and other essential properties of past environments. An accurate chronology for these records is needed if their significance is to be fully realized. The dating challenge has stimulated efforts at orbital tuning. In this approach, one varies a timescale, within allowable limits, to optimize the match between a paleoenvironmental property and a curve of insolation through time. The ideal property would vary with time due to direct insolation forcing. It would be unaffected by complex climate feedbacks and teleconnections, and it would give a clean record with high signal/noise ratio. It is argued strongly that the O2/N2 ratio of ice core trapped gases is such a property, and evidence is presented that this property, whose atmospheric ratio is nearly constant, is tied to local summertime insolation. This award will support a project to analyze the O2/N2 ratios at 1 kyr intervals from ~ 115-400 ka in the Vostok ice core. Ancillary measurements will be made of Ar/N2, and Ne/N2 and heavy noble gas ratios, in order to understand bubble close-off fractionation and its manifestation in the Vostok trapped gas record. O2/N2 variations will be matched with summertime insolation at Vostok to achieve a high-accuracy chronology for the Vostok core. The Vostok and other correlatable climate records will then be reexamined to improve our understanding of the dynamics of Pleistocene climate change. | POLYGON((-75.34 86.6,-68.742 86.6,-62.144 86.6,-55.546 86.6,-48.948 86.6,-42.35 86.6,-35.752 86.6,-29.154 86.6,-22.556 86.6,-15.958 86.6,-9.36 86.6,-9.36 83.618,-9.36 80.636,-9.36 77.654,-9.36 74.672,-9.36 71.69,-9.36 68.708,-9.36 65.726,-9.36 62.744,-9.36 59.762,-9.36 56.78,-15.958 56.78,-22.556 56.78,-29.154 56.78,-35.752 56.78,-42.35 56.78,-48.948 56.78,-55.546 56.78,-62.144 56.78,-68.742 56.78,-75.34 56.78,-75.34 59.762,-75.34 62.744,-75.34 65.726,-75.34 68.708,-75.34 71.69,-75.34 74.672,-75.34 77.654,-75.34 80.636,-75.34 83.618,-75.34 86.6)) | POINT(106.8 -72.4667) | false | false | |||||||
Argon and nitrogen isotope measurements in the Vostok ice core as aconstraint on phasing of CO2 and temperature changes
|
0125468 |
2005-02-01 | Severinghaus, Jeffrey P. | No dataset link provided | This award supports the continued measurements of gas isotopes in the Vostok ice core, from Antarctica. One objective is to identify the phasing of carbon dioxide variations and temperature variations, which may place constraints on hypothesized cause and effect relationships. Identification of phasing has in the past been hampered by the large and uncertain age difference between the gases trapped in air bubbles and the surrounding ice. This work will circumvent this issue by employing an indicator of temperature in the gas phase. It is argued that 40Ar/39Ar behaves as a qualitative indicator of temperature, via an indirect relationship between temperature, accumulation rate, firn thickness, and gravitational fractionation of the gas isotopes. The proposed research will make nitrogen and argon isotope measurements on ~ 200 samples of ice covering Termination II (130,000 yr B.P.) and Termination IV (340,000 yr BP). The broader impacts may include a better understanding of the role of atmospheric carbon dioxide concentrations in climate change. | POLYGON((-180 -62.83,-144 -62.83,-108 -62.83,-72 -62.83,-36 -62.83,0 -62.83,36 -62.83,72 -62.83,108 -62.83,144 -62.83,180 -62.83,180 -65.547,180 -68.264,180 -70.981,180 -73.698,180 -76.415,180 -79.132,180 -81.849,180 -84.566,180 -87.283,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.283,-180 -84.566,-180 -81.849,-180 -79.132,-180 -76.415,-180 -73.698,-180 -70.981,-180 -68.264,-180 -65.547,-180 -62.83)) | POINT(0 -89.999) | false | false | |||||||
Digital Imaging for Ice Core Analysis
|
9615554 |
2003-05-14 | Fitzpatrick, Joan; Alley, Richard; Spencer, Matthew |
|
This award is for support for two years to develop the technology and methodology for digitizing the photographs and analyzing the thin sections from ice cores. In addition, the application of digital technology for whole-core stratigraphy, using digital photography, image enhancement and image processing will be investigated. The thin section analysis will be piloted with samples already in hand from the Taylor Dome ice core. If successful, these techniques will be applied to samples from the Siple Dome ice core, in cooperation with Principal Investigators already funded to retrieve and examine these sections. The original digital images with all original data annotation files will be distributed to Siple Dome principal investigators for their use in the interpretation of their own data. All software and hardware acquired for this project will become part of the permanent equipment inventory at the U.S. National Ice Core Laboratory and will be available for use by clients at the facility. | None | None | false | false | |||||||
Thermal Fractionation of Firn Air and the Ice Core Record of Abrupt Interstadial Climate Change
|
9725305 |
2001-01-01 | Battle, Mark; Grachev, Alexi; Severinghaus, Jeffrey P. |
|
9725305 Severinghaus This award supports a project to develop and apply a new technique for quantifying temperature changes in the past based on the thermodynamic principle of thermal diffusion, in which gas mixtures in a temperature gradient become fractionated. Air in polar firn is fractionated by temperature gradients induced by abrupt climate change, and a record of this air is preserved in bubbles in the ice. The magnitude of the abrupt temperature change, the precise relative timing, and an estimate of the absolute temperature change can be determined. By providing a gas-phase stratigraphic marker of temperature change, the phasing of methane (with decadal precision) and hence widespread climate change (relative to local polar temperature changes) can be determined (across five abrupt warming events during the last glacial period). | None | None | false | false | |||||||
Physical Properties of the Siple Dome Deep Ice Core
|
9526374 |
1997-01-01 | Alley, Richard |
|
This award is for support for a program of physical and visible studies on the shallow and deep ice cores to be retrieved from Siple Dome, West Antarctica. Visible examination of ice cores has proven to be a powerful technique for dating and paleoclimatic interpretation. Recent examination of a shallow core from Siple Dome indicates that annual-layer dating is possible and that visible examination will contribute significantly to the dating effort at Siple Dome. Once ages are obtained, distances between layers provide snow accumulation after correction for density variations and ice flow thinning. Thin- section examination of the core will contribute to understanding the visible stratigraphy, and will reveal c-axis fabrics which are related to past ice deformation. The results of this study should include a better understanding of rapid climate change in the Antarctic and should contribute to knowledge of the stability of the West Antarctic ice sheet. | None | None | false | false |