{"dp_type": "Dataset", "free_text": "Sea Level Rise"}
[{"awards": "2136938 Tedesco, Marco", "bounds_geometry": ["POLYGON((-40 67.55,-39.611 67.55,-39.222 67.55,-38.833 67.55,-38.444 67.55,-38.055 67.55,-37.666 67.55,-37.277 67.55,-36.888 67.55,-36.499 67.55,-36.11 67.55,-36.11 67.28999999999999,-36.11 67.03,-36.11 66.77,-36.11 66.51,-36.11 66.25,-36.11 65.99,-36.11 65.73,-36.11 65.47,-36.11 65.21000000000001,-36.11 64.95,-36.499 64.95,-36.888 64.95,-37.277 64.95,-37.666 64.95,-38.055 64.95,-38.444 64.95,-38.833 64.95,-39.222 64.95,-39.611 64.95,-40 64.95,-40 65.21000000000001,-40 65.47,-40 65.73,-40 65.99,-40 66.25,-40 66.51,-40 66.77,-40 67.03,-40 67.28999999999999,-40 67.55))"], "date_created": "Mon, 07 Oct 2024 00:00:00 GMT", "description": "This dataset contains high-resolution satellite-derived snow/ice surface melt-related data on a common 100 m equal area grid (Albers equal area projection; EPSG 9822) over Helheim Glacier and surrounding areas in Greenland. The data is used as part of a machine learning framework that aims to fill data gaps in computed meltwater fraction on the 100 m grid using a range of methods, results of which will be published separately.\r\n\u003cbr/\u003e\u003cbr/\u003e\r\n\u003cbr/\u003e\u003cbr/\u003eThe data include fraction of a grid cell covered by meltwater derived from Sentinel-1 synthetic aperture radar (SAR) backscatter, satellite-derived passive microwave (PMW) brightness temperatures, snowpack liquid water content within the first meter of snow and atmospheric and radiative variables from the Mod\u00e9le Atmosph\u00e9rique R\u00e8gional (MAR) regional climate model, spectral reflectance in four wavelength bands from the Moderate Resolution Imaging Spectroradiometer (MODIS), a static digital elevation model (DEM), and an ice sheet mask. \r\n\u003cbr/\u003e\u003cbr/\u003eA similar dataset has also been produced for Larsen C ice shelf and is also available through the US Antarctic Program Data Center. \r\n\u003cbr/\u003e\u003cbr/\u003e\r\n\u003cbr/\u003e\u003cbr/\u003e\r\n\u003cbr/\u003e\u003cbr/\u003e", "east": -36.11, "geometry": ["POINT(-38.055 66.25)"], "keywords": "Antarctica; Climate Modeling; Cryosphere; Downscaling; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland; Ice Sheet; Machine Learning; MAR; Remote Sensing; Sea Level Rise; Snow/ice; Snow/Ice; Surface Melt", "locations": "Greenland; Antarctica; Greenland", "north": 67.55, "nsf_funding_programs": "Polar Cyberinfrastructure", "persons": "Alexander, Patrick; Antwerpen, Raphael; Cervone, Guido; Fettweis, Xavier; L\u00fctjens, Bj\u00f6rn; Tedesco, Marco", "project_titles": "Collaborative Research: EAGER: Generation of high resolution surface melting maps over Antarctica using regional climate models, remote sensing and machine learning", "projects": [{"proj_uid": "p0010277", "repository": "USAP-DC", "title": "Collaborative Research: EAGER: Generation of high resolution surface melting maps over Antarctica using regional climate models, remote sensing and machine learning"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": 64.95, "title": "Surface melt-related multi-source remote-sensing and climate model data over Helheim Glacier, Greenland for segmentation and machine learning applications", "uid": "601841", "west": -40.0}, {"awards": "2136938 Tedesco, Marco", "bounds_geometry": ["POLYGON((-68.5 -65.25,-67.35 -65.25,-66.2 -65.25,-65.05 -65.25,-63.9 -65.25,-62.75 -65.25,-61.6 -65.25,-60.45 -65.25,-59.3 -65.25,-58.15 -65.25,-57 -65.25,-57 -65.652,-57 -66.054,-57 -66.456,-57 -66.858,-57 -67.25999999999999,-57 -67.66199999999999,-57 -68.064,-57 -68.466,-57 -68.868,-57 -69.27,-58.15 -69.27,-59.3 -69.27,-60.45 -69.27,-61.6 -69.27,-62.75 -69.27,-63.9 -69.27,-65.05 -69.27,-66.2 -69.27,-67.35 -69.27,-68.5 -69.27,-68.5 -68.868,-68.5 -68.466,-68.5 -68.064,-68.5 -67.66199999999999,-68.5 -67.25999999999999,-68.5 -66.858,-68.5 -66.456,-68.5 -66.054,-68.5 -65.652,-68.5 -65.25))"], "date_created": "Mon, 07 Oct 2024 00:00:00 GMT", "description": "This dataset contains high-resolution satellite-derived snow/ice surface melt-related data on a common 100 m equal area grid (Lambert azimuthal equal area projection; EPSG 9820) over Larsen C Ice Shelf and surrounding areas in Antarctica. The data is prepared to be used as part of a machine learning framework that aims to fill data gaps in computed meltwater fraction on the 100 m grid using a range of methods, results of which will be published separately.\r\n\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eThe data include fraction of a grid cell covered by meltwater derived from Sentinel-1 synthetic aperture radar (SAR) backscatter, satellite-derived passive microwave (PMW) brightness temperatures, snowpack liquid water content within the first meter of snow and atmospheric and radiative variables from the Mod\u00e9le Atmosph\u00e9rique R\u00e8gional (MAR) regional climate model, a static digital elevation model (DEM), and an ice sheet mask. \r\n\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eA similar dataset has been produced for Helheim Glacier, Greenland and is also available through the US Antarctic Program Data Center.", "east": -57.0, "geometry": ["POINT(-62.75 -67.25999999999999)"], "keywords": "Antarctica; Climate Modeling; Cryosphere; Downscaling; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Larsen C Ice Shelf; Machine Learning; MAR; Remote Sensing; Sea Level Rise; Snow/ice; Snow/Ice; Surface Melt", "locations": "Antarctica; Larsen C Ice Shelf", "north": -65.25, "nsf_funding_programs": "Polar Cyberinfrastructure", "persons": "Alexander, Patrick; Antwerpen, Raphael; Cervone, Guido; Fettweis, Xavier; L\u00fctjens, Bj\u00f6rn; Tedesco, Marco", "project_titles": "Collaborative Research: EAGER: Generation of high resolution surface melting maps over Antarctica using regional climate models, remote sensing and machine learning", "projects": [{"proj_uid": "p0010277", "repository": "USAP-DC", "title": "Collaborative Research: EAGER: Generation of high resolution surface melting maps over Antarctica using regional climate models, remote sensing and machine learning"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -69.27, "title": "Surface melt-related multi-source remote-sensing and climate model data over Larsen C Ice Shelf, Antarctica for segmentation and machine learning applications", "uid": "601842", "west": -68.5}, {"awards": "0440775 Jacobs, Stanley; 0632282 Jacobs, Stanley", "bounds_geometry": ["POLYGON((-116.9985 -67.6776,-112.63225 -67.6776,-108.266 -67.6776,-103.89975000000001 -67.6776,-99.5335 -67.6776,-95.16725 -67.6776,-90.801 -67.6776,-86.43475000000001 -67.6776,-82.0685 -67.6776,-77.70224999999999 -67.6776,-73.336 -67.6776,-73.336 -68.37069,-73.336 -69.06378,-73.336 -69.75687,-73.336 -70.44996,-73.336 -71.14305,-73.336 -71.83614,-73.336 -72.52923,-73.336 -73.22232000000001,-73.336 -73.91541000000001,-73.336 -74.6085,-77.70224999999999 -74.6085,-82.0685 -74.6085,-86.43475000000001 -74.6085,-90.801 -74.6085,-95.16725 -74.6085,-99.5335 -74.6085,-103.89975000000001 -74.6085,-108.266 -74.6085,-112.63225 -74.6085,-116.9985 -74.6085,-116.9985 -73.91541000000001,-116.9985 -73.22232000000001,-116.9985 -72.52923,-116.9985 -71.83614,-116.9985 -71.14305,-116.9985 -70.44996,-116.9985 -69.75687,-116.9985 -69.06378,-116.9985 -68.37069,-116.9985 -67.6776))"], "date_created": "Mon, 22 Jul 2024 00:00:00 GMT", "description": "Ocean currents, temperature, salinity and pressure time series from five oceanographic moorings deployed in the Amundsen and Bellingshausen Seas, Antarctica. The moorings were deployed during the 2006 expedition ANT-XXIII/4 aboard the R/V Polarstern and retrieved during the R/V Nathaniel B. Palmer cruise NBP0702 in 2007. The deployments were part of a multidisciplinary effort to study the upwelling of relatively warm deep water onto the Amundsen Sea continental shelf and how it relates to atmospheric forcing and bottom bathymetry and how the warm waters interact with both glacial and sea ice. This study constitutes a contribution of a coordinated research effort in the region known as the Amundsen Sea Embayment Project or ASEP.", "east": -73.336, "geometry": ["POINT(-95.16725 -71.14305)"], "keywords": "Amundsen Sea; Antarctica; Cryosphere; Mooring; Ocean Currents; Pressure; Salinity; Temperature", "locations": "Antarctica; Amundsen Sea", "north": -67.6776, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "persons": "Jacobs, Stanley; Giulivi, Claudia F.", "project_titles": "Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise - IPY/ASEP; The Amundsen Continental Shelf and the Antarctic Ice Sheet", "projects": [{"proj_uid": "p0000836", "repository": "USAP-DC", "title": "The Amundsen Continental Shelf and the Antarctic Ice Sheet"}, {"proj_uid": "p0000332", "repository": "USAP-DC", "title": "Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise - IPY/ASEP"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -74.6085, "title": "Amundsen Sea Continental Shelf Mooring Data (2006-2007)", "uid": "601809", "west": -116.9985}, {"awards": "1149085 Bassis, Jeremy", "bounds_geometry": ["POLYGON((66 -68,66.9 -68,67.8 -68,68.7 -68,69.6 -68,70.5 -68,71.4 -68,72.3 -68,73.2 -68,74.1 -68,75 -68,75 -68.6,75 -69.2,75 -69.8,75 -70.4,75 -71,75 -71.6,75 -72.2,75 -72.8,75 -73.4,75 -74,74.1 -74,73.2 -74,72.3 -74,71.4 -74,70.5 -74,69.6 -74,68.7 -74,67.8 -74,66.9 -74,66 -74,66 -73.4,66 -72.8,66 -72.2,66 -71.6,66 -71,66 -70.4,66 -69.8,66 -69.2,66 -68.6,66 -68))"], "date_created": "Fri, 13 Oct 2023 00:00:00 GMT", "description": "This dataset contains a time series of rift length change for a set of 78 rifts in 13 ice shelves and a time series of rift lengths for 5 rifts in the Amery Ice Shelf for the period 2002-2015.\r\n(This dataset has been transfered from NSIDC (nsidc0652)", "east": 75.0, "geometry": ["POINT(70.5 -71)"], "keywords": "Amery Ice Shelf; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; MODIS", "locations": "Amery Ice Shelf; Antarctica; Amery Ice Shelf", "north": -68.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Bassis, Jeremy; Walker, Catherine", "project_titles": "CAREER: Bound to Improve - Improved Estimates of the Glaciological Contribution to Sea Level Rise", "projects": [{"proj_uid": "p0010437", "repository": "USAP-DC", "title": "CAREER: Bound to Improve - Improved Estimates of the Glaciological Contribution to Sea Level Rise"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -74.0, "title": "Antarctic Ice Shelf Rift Propagation Rates", "uid": "601740", "west": 66.0}, {"awards": "0632282 Jacobs, Stanley", "bounds_geometry": ["POLYGON((-130 -66,-127 -66,-124 -66,-121 -66,-118 -66,-115 -66,-112 -66,-109 -66,-106 -66,-103 -66,-100 -66,-100 -66.95,-100 -67.9,-100 -68.85,-100 -69.8,-100 -70.75,-100 -71.7,-100 -72.65,-100 -73.6,-100 -74.55,-100 -75.5,-103 -75.5,-106 -75.5,-109 -75.5,-112 -75.5,-115 -75.5,-118 -75.5,-121 -75.5,-124 -75.5,-127 -75.5,-130 -75.5,-130 -74.55,-130 -73.6,-130 -72.65,-130 -71.7,-130 -70.75,-130 -69.8,-130 -68.85,-130 -67.9,-130 -66.95,-130 -66))"], "date_created": "Thu, 25 Jun 2020 00:00:00 GMT", "description": "This data set was acquired with a LDEO LADCP Sonar during Nathaniel B. Palmer expedition NBP0901 conducted in 2009 (Chief Scientist: Dr. Stan Jacobs; Investigator(s): Dr. Andreas Thurnherr). These data files are of ASCII format and include Current Measurement data and were processed after data collection. Data were acquired as part of the project(s): Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise, Shedding dynamic light on iron limitation: The interplay of iron limitation and dynamic irradiance conditions in governing the phytoplankton distribution in the Ross Sea, and Collaborative Research: Sampling the ocean - sea ice interaction in the Pacific center of the Antarctic Dipole, and funding was provided by NSF grant(s): OPP06-32282.", "east": -100.0, "geometry": ["POINT(-115 -70.75)"], "keywords": "Amundsen Sea; Antarctica; Current Measurements; LADCP; NBP0901; Oceans; Physical Oceanography; Pine Island Bay; R/v Nathaniel B. Palmer; Southern Ocean", "locations": "Antarctica; Pine Island Bay; Southern Ocean; Amundsen Sea", "north": -66.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Thurnherr, Andreas", "project_titles": "Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise - IPY/ASEP", "projects": [{"proj_uid": "p0000332", "repository": "USAP-DC", "title": "Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise - IPY/ASEP"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.5, "title": "Calibrated Hydrographic Data acquired with a LADCP from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901", "uid": "601349", "west": -130.0}, {"awards": "0632282 Jacobs, Stanley", "bounds_geometry": ["POLYGON((-130 -64,-126.5 -64,-123 -64,-119.5 -64,-116 -64,-112.5 -64,-109 -64,-105.5 -64,-102 -64,-98.5 -64,-95 -64,-95 -65.15,-95 -66.3,-95 -67.45,-95 -68.6,-95 -69.75,-95 -70.9,-95 -72.05,-95 -73.2,-95 -74.35,-95 -75.5,-98.5 -75.5,-102 -75.5,-105.5 -75.5,-109 -75.5,-112.5 -75.5,-116 -75.5,-119.5 -75.5,-123 -75.5,-126.5 -75.5,-130 -75.5,-130 -74.35,-130 -73.2,-130 -72.05,-130 -70.9,-130 -69.75,-130 -68.6,-130 -67.45,-130 -66.3,-130 -65.15,-130 -64))"], "date_created": "Thu, 25 Jun 2020 00:00:00 GMT", "description": "This data set was derived from data acquired during Nathaniel B. Palmer expedition NBP0901 conducted in 2009 (Chief Scientist: Dr. Stan Jacobs; Investigator(s): Dr. Stan Jacobs and Dr. Bruce Huber). These data files are of Matlab Binary format and include Current Measurement, Salinity, and Temperature data and were processed after data collection. Data were acquired as part of the project(s): Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise, Shedding dynamic light on iron limitation: The interplay of iron limitation and dynamic irradiance conditions in governing the phytoplankton distribution in the Ross Sea, and Collaborative Research: Sampling the ocean - sea ice interaction in the Pacific center of the Antarctic Dipole, and funding was provided by NSF grant(s): OPP06-32282.", "east": -95.0, "geometry": ["POINT(-112.5 -69.75)"], "keywords": "Amundsen Sea; Antarctic; Antarctica; CTD; CTD Data; Current Measurements; NBP0901; Oceans; Physical Oceanography; Pine Island Bay; Pine Island Glacier; R/v Nathaniel B. Palmer; Salinity; Southern Ocean; Temperature", "locations": "Antarctica; Antarctic; Southern Ocean; Pine Island Glacier; Pine Island Bay; Amundsen Sea", "north": -64.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Huber, Bruce; Jacobs, Stanley", "project_titles": "Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise - IPY/ASEP", "projects": [{"proj_uid": "p0000332", "repository": "USAP-DC", "title": "Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise - IPY/ASEP"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.5, "title": "Processed Temperature, Salinity, and Current Measurement Data from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901", "uid": "601350", "west": -130.0}, {"awards": "1443386 Emslie, Steven", "bounds_geometry": ["POLYGON((-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -61.130769444,-180 -62.261538888,-180 -63.392308332,-180 -64.523077776,-180 -65.65384722,-180 -66.784616664,-180 -67.915386108,-180 -69.046155552,-180 -70.176924996,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,180 -71.30769444,179.019305556 -71.30769444,178.038611112 -71.30769444,177.057916668 -71.30769444,176.077222224 -71.30769444,175.09652778 -71.30769444,174.115833336 -71.30769444,173.135138892 -71.30769444,172.154444448 -71.30769444,171.173750004 -71.30769444,170.19305556 -71.30769444,170.19305556 -70.176924996,170.19305556 -69.046155552,170.19305556 -67.915386108,170.19305556 -66.784616664,170.19305556 -65.65384722,170.19305556 -64.523077776,170.19305556 -63.392308332,170.19305556 -62.261538888,170.19305556 -61.130769444,170.19305556 -60,171.173750004 -60,172.154444448 -60,173.135138892 -60,174.115833336 -60,175.09652778 -60,176.077222224 -60,177.057916668 -60,178.038611112 -60,179.019305556 -60,-180 -60))"], "date_created": "Tue, 02 Jun 2020 00:00:00 GMT", "description": "We report new discoveries and radiocarbon dates on active and abandoned Ad\u00e9lie penguin (Pygoscelis adeliae) colonies at Cape Adare, Antarctica. This colony, first established at approximately 2000 BP (calendar years before present, i.e. 1950), is currently the largest for this species with approximately 338 000 breeding pairs, most located on lowlying Ridley Beach. We hypothesize that this colony first formed after fast ice began blocking open-water access by breeding penguins to the Scott Coast in the southern Ross Sea during a cooling period also at approximately 2000 BP. Our results suggest that the new colony at Cape Adare continued to grow, expanding to a large upper terrace above Ridley Beach, until it exceeded approximately 500 000 breeding pairs (a \u0027supercolony\u0027) by approximately 1200 BP. The high marine productivity associated with the Ross Sea polynya and continental shelf break supported this growth, but the colony collapsed to its present size for unknown reasons after approximately 1200 BP. Ridley Beach will probably be abandoned in the near future due to rising sea level in this region. We predict that penguins will retreat to higher elevations at Cape Adare and that the Scott Coast will be reoccupied by breeding penguins as fast ice continues to dissipate earlier each summer, restoring open-water access to beaches there.", "east": 170.19305556, "geometry": ["POINT(175.09652778 -65.65384722)"], "keywords": "Adelie Penguin; Antarctica; Biota; Cape Adare; East Antarctica; Population Movement; Pygoscelis Adeliae; Radiocarbon; Ross Sea; Sea Level Rise; Stable Isotopes", "locations": "Cape Adare; Antarctica; Ross Sea; East Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "McKenzie, Ashley; Patterson, William; Emslie, Steven D.", "project_titles": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators", "projects": [{"proj_uid": "p0010047", "repository": "USAP-DC", "title": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -71.30769444, "title": "The rise and fall of an ancient Adelie penguin \u0027supercolony\u0027 at Cape Adare, Antarctica", "uid": "601327", "west": -180.0}, {"awards": "1043649 Hock, Regine", "bounds_geometry": ["POINT(-61 -62.75)", "POINT(-57.5 -61.75)"], "date_created": "Wed, 17 Feb 2016 00:00:00 GMT", "description": "The data contain the time series totals of SAR derived detrended surface velocities from Livingston Island, as well as GeoTiff files generated from intensity tracking of Synthetic Aperture Radar (SAR) imagery. The images include average annual velocity and ice thickness of King George Island, and average annual velocity, ice thickness, and a digital elevation model of Livingston Island.", "east": -57.5, "geometry": ["POINT(-61 -62.75)", "POINT(-57.5 -61.75)"], "keywords": "Antarctica; Antarctic Peninsula; Digital Elevation Model; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness; Ice Velocity", "locations": "Antarctic Peninsula; Antarctica", "north": -61.75, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Osmanoglu, Batuhan; Hock, Regine", "project_titles": "Contribution of Western Antarctic Peninsula glaciers to sea level rise: Separation of the dynamic and climatic components", "projects": [{"proj_uid": "p0000054", "repository": "USAP-DC", "title": "Contribution of Western Antarctic Peninsula glaciers to sea level rise: Separation of the dynamic and climatic components"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -62.75, "title": "King George and Livingston Islands: Velocities and Digital Elevation Model", "uid": "609667", "west": -61.0}, {"awards": "1141973 Tedesco, Marco", "bounds_geometry": ["POLYGON((-94.7374 -56.9464,-89.23679 -56.9464,-83.73618 -56.9464,-78.23557 -56.9464,-72.73496 -56.9464,-67.23435 -56.9464,-61.73374 -56.9464,-56.23313 -56.9464,-50.73252 -56.9464,-45.23191 -56.9464,-39.7313 -56.9464,-39.7313 -59.19838,-39.7313 -61.45036,-39.7313 -63.70234,-39.7313 -65.95432,-39.7313 -68.2063,-39.7313 -70.45828,-39.7313 -72.71026,-39.7313 -74.96224,-39.7313 -77.21422,-39.7313 -79.4662,-45.23191 -79.4662,-50.73252 -79.4662,-56.23313 -79.4662,-61.73374 -79.4662,-67.23435 -79.4662,-72.73496 -79.4662,-78.23557 -79.4662,-83.73618 -79.4662,-89.23679 -79.4662,-94.7374 -79.4662,-94.7374 -77.21422,-94.7374 -74.96224,-94.7374 -72.71026,-94.7374 -70.45828,-94.7374 -68.2063,-94.7374 -65.95432,-94.7374 -63.70234,-94.7374 -61.45036,-94.7374 -59.19838,-94.7374 -56.9464))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award supports a project to generate first-time validated enhanced spatial resolution (5-10 km) maps of surface melting over the Antarctic Peninsula for the period 1958 - to date from the outputs of a regional climate model and different downscaling techniques. These maps will be assessed and validated through new high spatial resolution (2.25 km) surface melting maps obtained from the QuikSCAT satellite for the period 1999 - 2009. The intellectual merit of this work is that it would be the first time that the outputs of a regional climate model would be used to study surface melting over Antarctica at such high spatial resolution and the first time that such results are validated by means of an observational tool that has such a large spatial coverage and high spatial resolution. The results generated in this study would also provide a first-time opportunity to study the melt distribution over the Peninsula and its correlation with climate drivers, such as the Southern Annual Mode (SAM) and the El Nino-Southern Oscillation (ENSO) at these unprecedented spatial scales. The enhanced resolution melting maps will also offer a unique opportunity to study melting trends and patterns over specific regions of the Peninsula, such as the Wilkins and the Larsen A and B ice shelves and evaluate whether the extreme melting observed during the recent collapses was unprecedented over the + 50 years. The broader impacts of the project are that it will integrate research and education by fully supporting one female undergrad student, a PhD student and partially supporting a PostDoc. The work will be done at a minority-serving institution and the PhD student who worked on the development of the high-resolution melting data set from QuikSCAT will become the PostDoc who will work on this project. Teaching and learning will be supported by incorporating research results into graduate and undergrad level courses and will be disseminated over the web and through appropriate channels. Results from this project will also benefit the society at large as they will improve our understanding of the links between atmospheric patterns and surface melting and they will contribute to improving estimates of sea level rise from the Antarctica continent.", "east": -39.7313, "geometry": ["POINT(-67.23435 -68.2063)"], "keywords": "Antarctica; Atmosphere; Climate; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Meteorology; Model", "locations": "Antarctica", "north": -56.9464, "nsf_funding_programs": null, "persons": "Tedesco, Marco", "project_titles": "Enhanced Spatial Resolution Surface Melting over the Antarctic Peninsula (1958 - to date) from a Regional Climate Model Validated through Remote Sensing Observations", "projects": [{"proj_uid": "p0000313", "repository": "USAP-DC", "title": "Enhanced Spatial Resolution Surface Melting over the Antarctic Peninsula (1958 - to date) from a Regional Climate Model Validated through Remote Sensing Observations"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.4662, "title": "Enhanced Spatial Resolution Surface Melting over the Antarctic Peninsula (1958 - to date) from a Regional Climate Model Validated through Remote Sensing Observations", "uid": "600160", "west": -94.7374}, {"awards": "1043750 Chen, Jianli", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award supports a project to improve the estimate of long-term and inter-annual variability of Antarctic ice sheet mass balance at continental, regional, and catchment scales, using satellite gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) and other geodetic measurements. The work will improve the quantification of long-term mass change rates over Antarctica using GRACE gravity data with a longer record and newer generation(s) of products and will develop advanced numerical forward modeling techniques that can accurately correct leakage effects associated with GRACE data processing, and significantly improve spatial resolution of GRACE mass rate estimates over Antarctica. The work will also contribute to a better understanding of crustal uplift rates due to postglacial rebound (PGR) and present day ice load change over Antarctica via PGR models, GPS measurements, and combined analysis of GRACE and ICESat elevation changes. Inter-annual variations of ice mass over Antarctica will be investigated at continental and catchment scales and connections to regional climate change will be studied. The major deliverables from this study will be improved assessments of ice mass balance for the entire Antarctic ice sheet and potential contribution to global mean sea level rise. The work will also provide estimates of regional ice mass change rates over Antarctica, with a focus along the coast in the Amundsen Sea Embayment, the Peninsula in West Antarctica, and in Wilkes Land and Victoria Land in East Antarctica. Estimates of inter-annual ice mass change over Antarctica at various spatial scales, and assessments of uncertainty of GRACE ice rate estimates and PGR models errors over Antarctica will also be made. The intellectual merits of the proposed investigation include 1) providing improved assessments of Antarctic ice mass balance at different temporal and spatial scales with unprecedented accuracy, an important contribution to broad areas of polar science research; 2) combining high accuracy GPS vertical uplift measurements and PGR models to better quantify long-term crust uplift effects that are not distinguishable from ice mass changes by GRACE; and 3) unifying the work of several investigations at the forefront of quantifying ice sheet and glacier mass balance and crustal uplift based on a variety of modern space geodetic observations. The broader impacts include the fact that the project will actively involve student participation and training, through the support of two graduate students. In addition the project will contribute to general education and public outreach (E/PO) activities and the results from this investigation will help inspire future geoscientists and promote public awareness of significant manifestations of climate change.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; GRACE; Potential Field; Satellite Data", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Chen, Jianli", "project_titles": "Collaborative Research: Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements", "projects": [{"proj_uid": "p0000415", "repository": "USAP-DC", "title": "Collaborative Research: Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements", "uid": "600159", "west": -180.0}, {"awards": "0944653 Forster, Richard", "bounds_geometry": ["POLYGON((-119.4 -78.1,-118.46 -78.1,-117.52 -78.1,-116.58 -78.1,-115.64 -78.1,-114.7 -78.1,-113.76 -78.1,-112.82 -78.1,-111.88 -78.1,-110.94 -78.1,-110 -78.1,-110 -78.29,-110 -78.48,-110 -78.67,-110 -78.86,-110 -79.05,-110 -79.24,-110 -79.43,-110 -79.62,-110 -79.81,-110 -80,-110.94 -80,-111.88 -80,-112.82 -80,-113.76 -80,-114.7 -80,-115.64 -80,-116.58 -80,-117.52 -80,-118.46 -80,-119.4 -80,-119.4 -79.81,-119.4 -79.62,-119.4 -79.43,-119.4 -79.24,-119.4 -79.05,-119.4 -78.86,-119.4 -78.67,-119.4 -78.48,-119.4 -78.29,-119.4 -78.1))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "This award supports a project to broaden the knowledge of annual accumulation patterns over the West Antarctic Ice Sheet by processing existing near-surface radar data taken on the US ITASE traverse in 2000 and by gathering and validating new ultra/super-high-frequency (UHF) radar images of near surface layers (to depths of ~15 m), expanding abilities to monitor recent annual accumulation patterns from point source ice cores to radar lines. Shallow (15 m) ice cores will be collected in conjunction with UHF radar images to confirm that radar echoed returns correspond with annual layers, and/or sub-annual density changes in the near-surface snow, as determined from ice core stable isotopes. This project will additionally improve accumulation monitoring from space-borne instruments by comparing the spatial-radar-derived-annual accumulation time series to the passive microwave time series dating back over 3 decades and covering most of Antarctica. The intellectual merit of this project is that mapping the spatial and temporal variations in accumulation rates over the Antarctic ice sheet is essential for understanding ice sheet responses to climate forcing. Antarctic precipitation rate is projected to increase up to 20% in the coming century from the predicted warming. Accumulation is a key component for determining ice sheet mass balance and, hence, sea level rise, yet our ability to measure annual accumulation variability over the past 5 decades (satellite era) is mostly limited to point-source ice cores. Developing a radar and ice core derived annual accumulation dataset will provide validation data for space-born remote sensing algorithms, climate models and, additionally, establish accumulation trends. The broader impacts of the project are that it will advance discovery and understanding within the climatology, glaciology and remote sensing communities by verifying the use of UHF radars to monitor annual layers as determined by visual, chemical and isotopic analysis from corresponding shallow ice cores and will provide a dataset of annual to near-annual accumulation measurements over the past ~5 decades across WAIS divide from existing radar data and proposed radar data. By determining if temporal changes in the passive microwave signal are correlated with temporal changes in accumulation will help assess the utility of passive microwave remote sensing to monitor accumulation rates over ice sheets for future decades. The project will promote teaching, training and learning, and increase representation of underrepresented groups by becoming involved in the NASA History of Winter project and Thermochron Mission and by providing K-12 teachers with training to monitor snow accumulation and temperature here in the US, linking polar research to the student\u0027s backyard. The project will train both undergraduate and graduate students in polar research and will encouraging young investigators to become involved in careers in science. In particular, two REU students will participate in original research projects as part of this larger project, from development of a hypothesis to presentation and publication of the results. The support of a new, young woman scientist will help to increase gender diversity in polar research.\n", "east": -110.0, "geometry": ["POINT(-114.7 -79.05)"], "keywords": "Airborne Radar; Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Radar; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -78.1, "nsf_funding_programs": null, "persons": "Forster, Richard", "project_titles": "Collaborative Research: Annual satellite era accumulation patterns over WAIS Divide: A study using shallow ice cores, near-surface radars and satellites", "projects": [{"proj_uid": "p0000079", "repository": "USAP-DC", "title": "Collaborative Research: Annual satellite era accumulation patterns over WAIS Divide: A study using shallow ice cores, near-surface radars and satellites"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -80.0, "title": "Annual Satellite Era Accumulation Patterns Over WAIS Divide: A Study Using Shallow Ice Cores, Near-Surface Radars and Satellites", "uid": "600146", "west": -119.4}, {"awards": "1043485 Curtice, Josh", "bounds_geometry": ["POLYGON((163.4 -77.47989,163.9848 -77.47989,164.5696 -77.47989,165.1544 -77.47989,165.7392 -77.47989,166.324 -77.47989,166.9088 -77.47989,167.4936 -77.47989,168.0784 -77.47989,168.6632 -77.47989,169.248 -77.47989,169.248 -77.565701,169.248 -77.651512,169.248 -77.737323,169.248 -77.823134,169.248 -77.908945,169.248 -77.994756,169.248 -78.080567,169.248 -78.166378,169.248 -78.252189,169.248 -78.338,168.6632 -78.338,168.0784 -78.338,167.4936 -78.338,166.9088 -78.338,166.324 -78.338,165.7392 -78.338,165.1544 -78.338,164.5696 -78.338,163.9848 -78.338,163.4 -78.338,163.4 -78.252189,163.4 -78.166378,163.4 -78.080567,163.4 -77.994756,163.4 -77.908945,163.4 -77.823134,163.4 -77.737323,163.4 -77.651512,163.4 -77.565701,163.4 -77.47989))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "This award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation.\n", "east": 169.248, "geometry": ["POINT(166.324 -77.908945)"], "keywords": "Antarctica; Cosmogenic Dating; Ross Sea; Sample/collection Description; Sample/Collection Description; Southern Ocean; WAIS", "locations": "WAIS; Ross Sea; Southern Ocean; Antarctica", "north": -77.47989, "nsf_funding_programs": null, "persons": "Kurz, Mark D.; Curtice, Josh", "project_titles": "Collaborative Research: A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea", "projects": [{"proj_uid": "p0000194", "repository": "USAP-DC", "title": "Collaborative Research: A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.338, "title": "A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea", "uid": "600123", "west": 163.4}, {"awards": "0732804 McPhee, Miles", "bounds_geometry": ["POINT(166.25 -77.42)"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "The Office of Polar Programs, Antarctic Integrated and System Science Program has made this award to support an interdisciplinary study of the effects of the ocean on the stability of glacial ice in the most dynamic region the West Antarctic Ice Sheet, namely the Pine Island Glacier in the Amundsen Sea Embayment. The collaborative project builds on the knowledge gained by the highly successful West Antarctic Ice Sheet program and is being jointly sponsored with NASA. Recent observations indicate a significant ice loss, equivalent to 10% of the ongoing increase in sea-level rise, in this region. These changes are largest along the coast and propagate rapidly inland, indicating the critical impact of the ocean on ice sheet stability in the region. While a broad range of remote sensing and ground-based instrumentation is available to characterize changes of the ice surface and internal structure (deformation, ice motion, melt) and the shape of the underlying sediment and rock bed, instrumentation has yet to be successfully deployed for observing boundary layer processes of the ocean cavity which underlies the floating ice shelf and where rapid melting is apparently occurring. Innovative, mini ocean sensors that can be lowered through boreholes in the ice shelf (about 500 m thick) will be developed and deployed to automatically provide ocean profiling information over at least three years. Their data will be transmitted through a conducting cable frozen in the borehole to the surface where it will be further transmitted via satellite to a laboratory in the US. Geophysical and remote sensing methods (seismic, GPS, altimetry, stereo imaging, radar profiling) will be applied to map the geometry of the ice shelf, the shape of the sub ice-shelf cavity, the ice surface geometry and deformations within the glacial ice. To integrate the seismic, glaciological and oceanographic observations, a new 3-dimensional coupled ice-ocean model is being developed which will be the first of its kind. NASA is supporting satellite based research and the deployment of a robotic-camera system to explore the environment in the ocean cavity underlying the ice shelf and NSF is supporting all other aspects of this study. \n\nBroader impacts: This project is motivated by the potential societal impacts of rapid sea level rise and should result in critically needed improvements in characterizing and predicting the behavior of coupled ocean-ice systems. It is a contribution to the International Polar Year and was endorsed by the International Council for Science as a component of the \u0027Multidisciplinary Study of the Amundsen Sea Embayment\u0027 proposal #258 of the honeycomb of endorsed IPY activities. The research involves substantial international partnerships with the British Antarctic Survey and the University of Bristol in the UK. The investigators will partner with the previously funded \u0027Polar Palooza\u0027 education and outreach program in addition to undertaking a diverse set of outreach activities of their own. Eight graduate students and one undergraduate as well as one post doc will be integrated into this research project.\n", "east": 166.25, "geometry": ["POINT(166.25 -77.42)"], "keywords": "Antarctica; Atmosphere; McMurdo; Meteorology; Oceans; Ross Island; Southern Ocean", "locations": "Ross Island; Antarctica; McMurdo; Southern Ocean", "north": -77.42, "nsf_funding_programs": null, "persons": "McPhee, Miles G.", "project_titles": "Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica", "projects": [{"proj_uid": "p0000043", "repository": "USAP-DC", "title": "Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.42, "title": "Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica", "uid": "600072", "west": 166.25}, {"awards": "0636731 Bender, Michael", "bounds_geometry": ["POLYGON((-180 -72.6,-176.887 -72.6,-173.774 -72.6,-170.661 -72.6,-167.548 -72.6,-164.435 -72.6,-161.322 -72.6,-158.209 -72.6,-155.096 -72.6,-151.983 -72.6,-148.87 -72.6,-148.87 -73.533,-148.87 -74.466,-148.87 -75.399,-148.87 -76.332,-148.87 -77.265,-148.87 -78.198,-148.87 -79.131,-148.87 -80.064,-148.87 -80.997,-148.87 -81.93,-151.983 -81.93,-155.096 -81.93,-158.209 -81.93,-161.322 -81.93,-164.435 -81.93,-167.548 -81.93,-170.661 -81.93,-173.774 -81.93,-176.887 -81.93,180 -81.93,174.335 -81.93,168.67 -81.93,163.005 -81.93,157.34 -81.93,151.675 -81.93,146.01 -81.93,140.345 -81.93,134.68 -81.93,129.015 -81.93,123.35 -81.93,123.35 -80.997,123.35 -80.064,123.35 -79.131,123.35 -78.198,123.35 -77.265,123.35 -76.332,123.35 -75.399,123.35 -74.466,123.35 -73.533,123.35 -72.6,129.015 -72.6,134.68 -72.6,140.345 -72.6,146.01 -72.6,151.675 -72.6,157.34 -72.6,163.005 -72.6,168.67 -72.6,174.335 -72.6,-180 -72.6))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "This project studies ancient ice buried in the Dry Valleys of Antarctica. The ice, which may approach ten million years in age, will be dated using argon and uranium radioisotope techniques. High-risk work, if successful it will offer the first and perhaps only samples of the Earth\u0027s atmosphere from millions of years in the past. These samples could offer critically important tests of paleoclimate records and proxies, as well as a glimpse into the characteristics of a past world much like the predicted future, warmer Earth. The broader impacts are graduate student education, and potentially contributing to society\u0027s understanding of global climate change and sea level rise.\n", "east": 123.35, "geometry": ["POINT(167.24 -77.265)"], "keywords": "Antarctica; Dry Valleys; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope Record; Lake Vostok; Paleoclimate", "locations": "Antarctica; Lake Vostok; Dry Valleys", "north": -72.6, "nsf_funding_programs": null, "persons": "Bender, Michael", "project_titles": "Collaborative Research: Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica", "projects": [{"proj_uid": "p0000039", "repository": "USAP-DC", "title": "Collaborative Research: Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -81.93, "title": "Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica", "uid": "600069", "west": -148.87}, {"awards": "0944475 Kaplan, Michael", "bounds_geometry": ["POLYGON((-180 -84.1,-176.97 -84.1,-173.94 -84.1,-170.91 -84.1,-167.88 -84.1,-164.85 -84.1,-161.82 -84.1,-158.79 -84.1,-155.76 -84.1,-152.73 -84.1,-149.7 -84.1,-149.7 -84.43,-149.7 -84.76,-149.7 -85.09,-149.7 -85.42,-149.7 -85.75,-149.7 -86.08,-149.7 -86.41,-149.7 -86.74,-149.7 -87.07,-149.7 -87.4,-152.73 -87.4,-155.76 -87.4,-158.79 -87.4,-161.82 -87.4,-164.85 -87.4,-167.88 -87.4,-170.91 -87.4,-173.94 -87.4,-176.97 -87.4,180 -87.4,178.12 -87.4,176.24 -87.4,174.36 -87.4,172.48 -87.4,170.6 -87.4,168.72 -87.4,166.84 -87.4,164.96 -87.4,163.08 -87.4,161.2 -87.4,161.2 -87.07,161.2 -86.74,161.2 -86.41,161.2 -86.08,161.2 -85.75,161.2 -85.42,161.2 -85.09,161.2 -84.76,161.2 -84.43,161.2 -84.1,163.08 -84.1,164.96 -84.1,166.84 -84.1,168.72 -84.1,170.6 -84.1,172.48 -84.1,174.36 -84.1,176.24 -84.1,178.12 -84.1,-180 -84.1))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: The proposed work will investigate changes in the compositional variation of glacial tills over time across two concentric sequences of Pleistocene moraines located adjacent to the heads of East Antarctic outlet glaciers in the Transantarctic Mountains (TAM). The chronologic framework for this work will be generated from cosmogenic exposure ages of boulders on prominent morainal ridges. The PIs hypothesize that variations in till composition may indicate a change in ice flow direction or a change in the composition of the original source area, while ages of the moraines provide a long-term terrestrial perspective on ice sheet dynamics. Both results are vital for modeling experiments that aim to reconstruct the East Antarctic Ice Sheet and assess its role in the global climate system and its potential impact on global sea level rise. The variation of till compositions through time also allows for a more accurate interpretation of sediment cores from the Ross Sea and the Southern Ocean. Additionally, till exposures at the head of some East Antarctic outlet glaciers have been shown to contain subglacial material derived from East Antarctic bedrock, providing a window through the ice to view East Antarctica\u0027s inaccessible bedrock. Till samples will be collected from two well-preserved sequences of moraine crests at Mt. Howe (head of Scott Glacier) and Mt. Achernar (between Beardmore and Nimrod Glaciers). Each size fraction in glacial till provides potentially valuable information, and the PIs will measure the petrography of the clast and sand fractions, quantitative X-ray diffraction on the crushed \u003c2mm fraction, elemental abundance of the silt/clay fraction, and U/Pb of detrital zircons in the sand fraction. Data collection will rely on established methods previously used in this region and the PIs will also explore new methods to assess their efficacy. On the same moraines crests sampled for provenance studies, the PIs will sample for cosmogenic surface exposure analyses to provide a chronologic framework at the sites for provenance changes through time.\nBroader Impact: The proposed research involves graduate and undergraduate training in a diverse array of laboratory methods. Students and PIs will be make presentations to community and campus groups, as well as conduct interviews with local news outlets. The proposed work also establishes a new, potentially long-term, collaboration between scientists at IUPUI and LDEO and brings a new PI (Kaplan) into the field of Antarctic Earth Sciences.", "east": -149.7, "geometry": ["POINT(-174.25 -85.75)"], "keywords": "Antarctica; Cosmogenic Dating; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica", "north": -84.1, "nsf_funding_programs": null, "persons": "Kaplan, Michael", "project_titles": "Collaborative Research: Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines", "projects": [{"proj_uid": "p0000459", "repository": "USAP-DC", "title": "Collaborative Research: Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.4, "title": "Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines", "uid": "600115", "west": 161.2}, {"awards": "0739693 Ashworth, Allan", "bounds_geometry": ["POLYGON((160 -77,160.2 -77,160.4 -77,160.6 -77,160.8 -77,161 -77,161.2 -77,161.4 -77,161.6 -77,161.8 -77,162 -77,162 -77.1,162 -77.2,162 -77.3,162 -77.4,162 -77.5,162 -77.6,162 -77.7,162 -77.8,162 -77.9,162 -78,161.8 -78,161.6 -78,161.4 -78,161.2 -78,161 -78,160.8 -78,160.6 -78,160.4 -78,160.2 -78,160 -78,160 -77.9,160 -77.8,160 -77.7,160 -77.6,160 -77.5,160 -77.4,160 -77.3,160 -77.2,160 -77.1,160 -77))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project studies the last vestiges of life in Antarctica from exceptionally well-preserved fossils of tundra life--mosses, diatoms, ostracods, Nothofagus leaves, wood, and insect remains recently discovered in ancient lake sediments from the McMurdo Dry Valleys. The area will be studied by an interdisciplinary team to elucidate information about climate and biogeography. These deposits offer unique and direct information about the characteristics of Antarctica during a key period in its history, the time when it was freezing. This information is critical for correlation with indirect proxies, such as though obtained from drill cores, for climate and state of the ice sheet. The results will also help understand the origin and migration of similar organisms found in South America, India and Australia. In terms of broader impacts, this project supports an early career researcher, undergraduate and graduate student research, various forms of outreach to K12 students, and extensive international collaboration. The work also has societal relevance in that the outcomes will offer direct constraints on Antarctica\u0027s ice sheet during a time with atmospheric CO2 contents similar to those of the earth in the coming centuries, and thus may help predictive models of sea level rise.", "east": 162.0, "geometry": ["POINT(161 -77.5)"], "keywords": "Antarctica; Geochronology; Geology/Geophysics - Other; GPS; Solid Earth", "locations": "Antarctica", "north": -77.0, "nsf_funding_programs": null, "persons": "Ashworth, Allan; Lewis, Adam", "project_titles": "Collaborative Research: Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains", "projects": [{"proj_uid": "p0000188", "repository": "USAP-DC", "title": "Collaborative Research: Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains", "uid": "600081", "west": 160.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Surface melt-related multi-source remote-sensing and climate model data over Helheim Glacier, Greenland for segmentation and machine learning applications
|
2136938 |
2024-10-07 | Alexander, Patrick; Antwerpen, Raphael; Cervone, Guido; Fettweis, Xavier; Lütjens, Björn; Tedesco, Marco |
Collaborative Research: EAGER: Generation of high resolution surface melting maps over Antarctica using regional climate models, remote sensing and machine learning |
This dataset contains high-resolution satellite-derived snow/ice surface melt-related data on a common 100 m equal area grid (Albers equal area projection; EPSG 9822) over Helheim Glacier and surrounding areas in Greenland. The data is used as part of a machine learning framework that aims to fill data gaps in computed meltwater fraction on the 100 m grid using a range of methods, results of which will be published separately. <br/><br/> <br/><br/>The data include fraction of a grid cell covered by meltwater derived from Sentinel-1 synthetic aperture radar (SAR) backscatter, satellite-derived passive microwave (PMW) brightness temperatures, snowpack liquid water content within the first meter of snow and atmospheric and radiative variables from the Modéle Atmosphérique Règional (MAR) regional climate model, spectral reflectance in four wavelength bands from the Moderate Resolution Imaging Spectroradiometer (MODIS), a static digital elevation model (DEM), and an ice sheet mask. <br/><br/>A similar dataset has also been produced for Larsen C ice shelf and is also available through the US Antarctic Program Data Center. <br/><br/> <br/><br/> <br/><br/> | ["POLYGON((-40 67.55,-39.611 67.55,-39.222 67.55,-38.833 67.55,-38.444 67.55,-38.055 67.55,-37.666 67.55,-37.277 67.55,-36.888 67.55,-36.499 67.55,-36.11 67.55,-36.11 67.28999999999999,-36.11 67.03,-36.11 66.77,-36.11 66.51,-36.11 66.25,-36.11 65.99,-36.11 65.73,-36.11 65.47,-36.11 65.21000000000001,-36.11 64.95,-36.499 64.95,-36.888 64.95,-37.277 64.95,-37.666 64.95,-38.055 64.95,-38.444 64.95,-38.833 64.95,-39.222 64.95,-39.611 64.95,-40 64.95,-40 65.21000000000001,-40 65.47,-40 65.73,-40 65.99,-40 66.25,-40 66.51,-40 66.77,-40 67.03,-40 67.28999999999999,-40 67.55))"] | ["POINT(-38.055 66.25)"] | false | false |
Surface melt-related multi-source remote-sensing and climate model data over Larsen C Ice Shelf, Antarctica for segmentation and machine learning applications
|
2136938 |
2024-10-07 | Alexander, Patrick; Antwerpen, Raphael; Cervone, Guido; Fettweis, Xavier; Lütjens, Björn; Tedesco, Marco |
Collaborative Research: EAGER: Generation of high resolution surface melting maps over Antarctica using regional climate models, remote sensing and machine learning |
This dataset contains high-resolution satellite-derived snow/ice surface melt-related data on a common 100 m equal area grid (Lambert azimuthal equal area projection; EPSG 9820) over Larsen C Ice Shelf and surrounding areas in Antarctica. The data is prepared to be used as part of a machine learning framework that aims to fill data gaps in computed meltwater fraction on the 100 m grid using a range of methods, results of which will be published separately. <br/><br/><br/>The data include fraction of a grid cell covered by meltwater derived from Sentinel-1 synthetic aperture radar (SAR) backscatter, satellite-derived passive microwave (PMW) brightness temperatures, snowpack liquid water content within the first meter of snow and atmospheric and radiative variables from the Modéle Atmosphérique Règional (MAR) regional climate model, a static digital elevation model (DEM), and an ice sheet mask. <br/><br/><br/>A similar dataset has been produced for Helheim Glacier, Greenland and is also available through the US Antarctic Program Data Center. | ["POLYGON((-68.5 -65.25,-67.35 -65.25,-66.2 -65.25,-65.05 -65.25,-63.9 -65.25,-62.75 -65.25,-61.6 -65.25,-60.45 -65.25,-59.3 -65.25,-58.15 -65.25,-57 -65.25,-57 -65.652,-57 -66.054,-57 -66.456,-57 -66.858,-57 -67.25999999999999,-57 -67.66199999999999,-57 -68.064,-57 -68.466,-57 -68.868,-57 -69.27,-58.15 -69.27,-59.3 -69.27,-60.45 -69.27,-61.6 -69.27,-62.75 -69.27,-63.9 -69.27,-65.05 -69.27,-66.2 -69.27,-67.35 -69.27,-68.5 -69.27,-68.5 -68.868,-68.5 -68.466,-68.5 -68.064,-68.5 -67.66199999999999,-68.5 -67.25999999999999,-68.5 -66.858,-68.5 -66.456,-68.5 -66.054,-68.5 -65.652,-68.5 -65.25))"] | ["POINT(-62.75 -67.25999999999999)"] | false | false |
Amundsen Sea Continental Shelf Mooring Data (2006-2007)
|
0440775 0632282 |
2024-07-22 | Jacobs, Stanley; Giulivi, Claudia F. |
The Amundsen Continental Shelf and the Antarctic Ice Sheet Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise - IPY/ASEP |
Ocean currents, temperature, salinity and pressure time series from five oceanographic moorings deployed in the Amundsen and Bellingshausen Seas, Antarctica. The moorings were deployed during the 2006 expedition ANT-XXIII/4 aboard the R/V Polarstern and retrieved during the R/V Nathaniel B. Palmer cruise NBP0702 in 2007. The deployments were part of a multidisciplinary effort to study the upwelling of relatively warm deep water onto the Amundsen Sea continental shelf and how it relates to atmospheric forcing and bottom bathymetry and how the warm waters interact with both glacial and sea ice. This study constitutes a contribution of a coordinated research effort in the region known as the Amundsen Sea Embayment Project or ASEP. | ["POLYGON((-116.9985 -67.6776,-112.63225 -67.6776,-108.266 -67.6776,-103.89975000000001 -67.6776,-99.5335 -67.6776,-95.16725 -67.6776,-90.801 -67.6776,-86.43475000000001 -67.6776,-82.0685 -67.6776,-77.70224999999999 -67.6776,-73.336 -67.6776,-73.336 -68.37069,-73.336 -69.06378,-73.336 -69.75687,-73.336 -70.44996,-73.336 -71.14305,-73.336 -71.83614,-73.336 -72.52923,-73.336 -73.22232000000001,-73.336 -73.91541000000001,-73.336 -74.6085,-77.70224999999999 -74.6085,-82.0685 -74.6085,-86.43475000000001 -74.6085,-90.801 -74.6085,-95.16725 -74.6085,-99.5335 -74.6085,-103.89975000000001 -74.6085,-108.266 -74.6085,-112.63225 -74.6085,-116.9985 -74.6085,-116.9985 -73.91541000000001,-116.9985 -73.22232000000001,-116.9985 -72.52923,-116.9985 -71.83614,-116.9985 -71.14305,-116.9985 -70.44996,-116.9985 -69.75687,-116.9985 -69.06378,-116.9985 -68.37069,-116.9985 -67.6776))"] | ["POINT(-95.16725 -71.14305)"] | false | false |
Antarctic Ice Shelf Rift Propagation Rates
|
1149085 |
2023-10-13 | Bassis, Jeremy; Walker, Catherine |
CAREER: Bound to Improve - Improved Estimates of the Glaciological Contribution to Sea Level Rise |
This dataset contains a time series of rift length change for a set of 78 rifts in 13 ice shelves and a time series of rift lengths for 5 rifts in the Amery Ice Shelf for the period 2002-2015. (This dataset has been transfered from NSIDC (nsidc0652) | ["POLYGON((66 -68,66.9 -68,67.8 -68,68.7 -68,69.6 -68,70.5 -68,71.4 -68,72.3 -68,73.2 -68,74.1 -68,75 -68,75 -68.6,75 -69.2,75 -69.8,75 -70.4,75 -71,75 -71.6,75 -72.2,75 -72.8,75 -73.4,75 -74,74.1 -74,73.2 -74,72.3 -74,71.4 -74,70.5 -74,69.6 -74,68.7 -74,67.8 -74,66.9 -74,66 -74,66 -73.4,66 -72.8,66 -72.2,66 -71.6,66 -71,66 -70.4,66 -69.8,66 -69.2,66 -68.6,66 -68))"] | ["POINT(70.5 -71)"] | false | false |
Calibrated Hydrographic Data acquired with a LADCP from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901
|
0632282 |
2020-06-25 | Thurnherr, Andreas |
Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise - IPY/ASEP |
This data set was acquired with a LDEO LADCP Sonar during Nathaniel B. Palmer expedition NBP0901 conducted in 2009 (Chief Scientist: Dr. Stan Jacobs; Investigator(s): Dr. Andreas Thurnherr). These data files are of ASCII format and include Current Measurement data and were processed after data collection. Data were acquired as part of the project(s): Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise, Shedding dynamic light on iron limitation: The interplay of iron limitation and dynamic irradiance conditions in governing the phytoplankton distribution in the Ross Sea, and Collaborative Research: Sampling the ocean - sea ice interaction in the Pacific center of the Antarctic Dipole, and funding was provided by NSF grant(s): OPP06-32282. | ["POLYGON((-130 -66,-127 -66,-124 -66,-121 -66,-118 -66,-115 -66,-112 -66,-109 -66,-106 -66,-103 -66,-100 -66,-100 -66.95,-100 -67.9,-100 -68.85,-100 -69.8,-100 -70.75,-100 -71.7,-100 -72.65,-100 -73.6,-100 -74.55,-100 -75.5,-103 -75.5,-106 -75.5,-109 -75.5,-112 -75.5,-115 -75.5,-118 -75.5,-121 -75.5,-124 -75.5,-127 -75.5,-130 -75.5,-130 -74.55,-130 -73.6,-130 -72.65,-130 -71.7,-130 -70.75,-130 -69.8,-130 -68.85,-130 -67.9,-130 -66.95,-130 -66))"] | ["POINT(-115 -70.75)"] | false | false |
Processed Temperature, Salinity, and Current Measurement Data from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901
|
0632282 |
2020-06-25 | Huber, Bruce; Jacobs, Stanley |
Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise - IPY/ASEP |
This data set was derived from data acquired during Nathaniel B. Palmer expedition NBP0901 conducted in 2009 (Chief Scientist: Dr. Stan Jacobs; Investigator(s): Dr. Stan Jacobs and Dr. Bruce Huber). These data files are of Matlab Binary format and include Current Measurement, Salinity, and Temperature data and were processed after data collection. Data were acquired as part of the project(s): Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise, Shedding dynamic light on iron limitation: The interplay of iron limitation and dynamic irradiance conditions in governing the phytoplankton distribution in the Ross Sea, and Collaborative Research: Sampling the ocean - sea ice interaction in the Pacific center of the Antarctic Dipole, and funding was provided by NSF grant(s): OPP06-32282. | ["POLYGON((-130 -64,-126.5 -64,-123 -64,-119.5 -64,-116 -64,-112.5 -64,-109 -64,-105.5 -64,-102 -64,-98.5 -64,-95 -64,-95 -65.15,-95 -66.3,-95 -67.45,-95 -68.6,-95 -69.75,-95 -70.9,-95 -72.05,-95 -73.2,-95 -74.35,-95 -75.5,-98.5 -75.5,-102 -75.5,-105.5 -75.5,-109 -75.5,-112.5 -75.5,-116 -75.5,-119.5 -75.5,-123 -75.5,-126.5 -75.5,-130 -75.5,-130 -74.35,-130 -73.2,-130 -72.05,-130 -70.9,-130 -69.75,-130 -68.6,-130 -67.45,-130 -66.3,-130 -65.15,-130 -64))"] | ["POINT(-112.5 -69.75)"] | false | false |
The rise and fall of an ancient Adelie penguin 'supercolony' at Cape Adare, Antarctica
|
1443386 |
2020-06-02 | McKenzie, Ashley; Patterson, William; Emslie, Steven D. |
Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators |
We report new discoveries and radiocarbon dates on active and abandoned Adélie penguin (Pygoscelis adeliae) colonies at Cape Adare, Antarctica. This colony, first established at approximately 2000 BP (calendar years before present, i.e. 1950), is currently the largest for this species with approximately 338 000 breeding pairs, most located on lowlying Ridley Beach. We hypothesize that this colony first formed after fast ice began blocking open-water access by breeding penguins to the Scott Coast in the southern Ross Sea during a cooling period also at approximately 2000 BP. Our results suggest that the new colony at Cape Adare continued to grow, expanding to a large upper terrace above Ridley Beach, until it exceeded approximately 500 000 breeding pairs (a 'supercolony') by approximately 1200 BP. The high marine productivity associated with the Ross Sea polynya and continental shelf break supported this growth, but the colony collapsed to its present size for unknown reasons after approximately 1200 BP. Ridley Beach will probably be abandoned in the near future due to rising sea level in this region. We predict that penguins will retreat to higher elevations at Cape Adare and that the Scott Coast will be reoccupied by breeding penguins as fast ice continues to dissipate earlier each summer, restoring open-water access to beaches there. | ["POLYGON((-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -61.130769444,-180 -62.261538888,-180 -63.392308332,-180 -64.523077776,-180 -65.65384722,-180 -66.784616664,-180 -67.915386108,-180 -69.046155552,-180 -70.176924996,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,180 -71.30769444,179.019305556 -71.30769444,178.038611112 -71.30769444,177.057916668 -71.30769444,176.077222224 -71.30769444,175.09652778 -71.30769444,174.115833336 -71.30769444,173.135138892 -71.30769444,172.154444448 -71.30769444,171.173750004 -71.30769444,170.19305556 -71.30769444,170.19305556 -70.176924996,170.19305556 -69.046155552,170.19305556 -67.915386108,170.19305556 -66.784616664,170.19305556 -65.65384722,170.19305556 -64.523077776,170.19305556 -63.392308332,170.19305556 -62.261538888,170.19305556 -61.130769444,170.19305556 -60,171.173750004 -60,172.154444448 -60,173.135138892 -60,174.115833336 -60,175.09652778 -60,176.077222224 -60,177.057916668 -60,178.038611112 -60,179.019305556 -60,-180 -60))"] | ["POINT(175.09652778 -65.65384722)"] | false | false |
King George and Livingston Islands: Velocities and Digital Elevation Model
|
1043649 |
2016-02-17 | Osmanoglu, Batuhan; Hock, Regine |
Contribution of Western Antarctic Peninsula glaciers to sea level rise: Separation of the dynamic and climatic components |
The data contain the time series totals of SAR derived detrended surface velocities from Livingston Island, as well as GeoTiff files generated from intensity tracking of Synthetic Aperture Radar (SAR) imagery. The images include average annual velocity and ice thickness of King George Island, and average annual velocity, ice thickness, and a digital elevation model of Livingston Island. | ["POINT(-61 -62.75)", "POINT(-57.5 -61.75)"] | ["POINT(-61 -62.75)", "POINT(-57.5 -61.75)"] | false | false |
Enhanced Spatial Resolution Surface Melting over the Antarctic Peninsula (1958 - to date) from a Regional Climate Model Validated through Remote Sensing Observations
|
1141973 |
2016-01-01 | Tedesco, Marco |
Enhanced Spatial Resolution Surface Melting over the Antarctic Peninsula (1958 - to date) from a Regional Climate Model Validated through Remote Sensing Observations |
This award supports a project to generate first-time validated enhanced spatial resolution (5-10 km) maps of surface melting over the Antarctic Peninsula for the period 1958 - to date from the outputs of a regional climate model and different downscaling techniques. These maps will be assessed and validated through new high spatial resolution (2.25 km) surface melting maps obtained from the QuikSCAT satellite for the period 1999 - 2009. The intellectual merit of this work is that it would be the first time that the outputs of a regional climate model would be used to study surface melting over Antarctica at such high spatial resolution and the first time that such results are validated by means of an observational tool that has such a large spatial coverage and high spatial resolution. The results generated in this study would also provide a first-time opportunity to study the melt distribution over the Peninsula and its correlation with climate drivers, such as the Southern Annual Mode (SAM) and the El Nino-Southern Oscillation (ENSO) at these unprecedented spatial scales. The enhanced resolution melting maps will also offer a unique opportunity to study melting trends and patterns over specific regions of the Peninsula, such as the Wilkins and the Larsen A and B ice shelves and evaluate whether the extreme melting observed during the recent collapses was unprecedented over the + 50 years. The broader impacts of the project are that it will integrate research and education by fully supporting one female undergrad student, a PhD student and partially supporting a PostDoc. The work will be done at a minority-serving institution and the PhD student who worked on the development of the high-resolution melting data set from QuikSCAT will become the PostDoc who will work on this project. Teaching and learning will be supported by incorporating research results into graduate and undergrad level courses and will be disseminated over the web and through appropriate channels. Results from this project will also benefit the society at large as they will improve our understanding of the links between atmospheric patterns and surface melting and they will contribute to improving estimates of sea level rise from the Antarctica continent. | ["POLYGON((-94.7374 -56.9464,-89.23679 -56.9464,-83.73618 -56.9464,-78.23557 -56.9464,-72.73496 -56.9464,-67.23435 -56.9464,-61.73374 -56.9464,-56.23313 -56.9464,-50.73252 -56.9464,-45.23191 -56.9464,-39.7313 -56.9464,-39.7313 -59.19838,-39.7313 -61.45036,-39.7313 -63.70234,-39.7313 -65.95432,-39.7313 -68.2063,-39.7313 -70.45828,-39.7313 -72.71026,-39.7313 -74.96224,-39.7313 -77.21422,-39.7313 -79.4662,-45.23191 -79.4662,-50.73252 -79.4662,-56.23313 -79.4662,-61.73374 -79.4662,-67.23435 -79.4662,-72.73496 -79.4662,-78.23557 -79.4662,-83.73618 -79.4662,-89.23679 -79.4662,-94.7374 -79.4662,-94.7374 -77.21422,-94.7374 -74.96224,-94.7374 -72.71026,-94.7374 -70.45828,-94.7374 -68.2063,-94.7374 -65.95432,-94.7374 -63.70234,-94.7374 -61.45036,-94.7374 -59.19838,-94.7374 -56.9464))"] | ["POINT(-67.23435 -68.2063)"] | false | false |
Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements
|
1043750 |
2016-01-01 | Chen, Jianli |
Collaborative Research: Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements |
This award supports a project to improve the estimate of long-term and inter-annual variability of Antarctic ice sheet mass balance at continental, regional, and catchment scales, using satellite gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) and other geodetic measurements. The work will improve the quantification of long-term mass change rates over Antarctica using GRACE gravity data with a longer record and newer generation(s) of products and will develop advanced numerical forward modeling techniques that can accurately correct leakage effects associated with GRACE data processing, and significantly improve spatial resolution of GRACE mass rate estimates over Antarctica. The work will also contribute to a better understanding of crustal uplift rates due to postglacial rebound (PGR) and present day ice load change over Antarctica via PGR models, GPS measurements, and combined analysis of GRACE and ICESat elevation changes. Inter-annual variations of ice mass over Antarctica will be investigated at continental and catchment scales and connections to regional climate change will be studied. The major deliverables from this study will be improved assessments of ice mass balance for the entire Antarctic ice sheet and potential contribution to global mean sea level rise. The work will also provide estimates of regional ice mass change rates over Antarctica, with a focus along the coast in the Amundsen Sea Embayment, the Peninsula in West Antarctica, and in Wilkes Land and Victoria Land in East Antarctica. Estimates of inter-annual ice mass change over Antarctica at various spatial scales, and assessments of uncertainty of GRACE ice rate estimates and PGR models errors over Antarctica will also be made. The intellectual merits of the proposed investigation include 1) providing improved assessments of Antarctic ice mass balance at different temporal and spatial scales with unprecedented accuracy, an important contribution to broad areas of polar science research; 2) combining high accuracy GPS vertical uplift measurements and PGR models to better quantify long-term crust uplift effects that are not distinguishable from ice mass changes by GRACE; and 3) unifying the work of several investigations at the forefront of quantifying ice sheet and glacier mass balance and crustal uplift based on a variety of modern space geodetic observations. The broader impacts include the fact that the project will actively involve student participation and training, through the support of two graduate students. In addition the project will contribute to general education and public outreach (E/PO) activities and the results from this investigation will help inspire future geoscientists and promote public awareness of significant manifestations of climate change. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Annual Satellite Era Accumulation Patterns Over WAIS Divide: A Study Using Shallow Ice Cores, Near-Surface Radars and Satellites
|
0944653 |
2015-01-01 | Forster, Richard |
Collaborative Research: Annual satellite era accumulation patterns over WAIS Divide: A study using shallow ice cores, near-surface radars and satellites |
This award supports a project to broaden the knowledge of annual accumulation patterns over the West Antarctic Ice Sheet by processing existing near-surface radar data taken on the US ITASE traverse in 2000 and by gathering and validating new ultra/super-high-frequency (UHF) radar images of near surface layers (to depths of ~15 m), expanding abilities to monitor recent annual accumulation patterns from point source ice cores to radar lines. Shallow (15 m) ice cores will be collected in conjunction with UHF radar images to confirm that radar echoed returns correspond with annual layers, and/or sub-annual density changes in the near-surface snow, as determined from ice core stable isotopes. This project will additionally improve accumulation monitoring from space-borne instruments by comparing the spatial-radar-derived-annual accumulation time series to the passive microwave time series dating back over 3 decades and covering most of Antarctica. The intellectual merit of this project is that mapping the spatial and temporal variations in accumulation rates over the Antarctic ice sheet is essential for understanding ice sheet responses to climate forcing. Antarctic precipitation rate is projected to increase up to 20% in the coming century from the predicted warming. Accumulation is a key component for determining ice sheet mass balance and, hence, sea level rise, yet our ability to measure annual accumulation variability over the past 5 decades (satellite era) is mostly limited to point-source ice cores. Developing a radar and ice core derived annual accumulation dataset will provide validation data for space-born remote sensing algorithms, climate models and, additionally, establish accumulation trends. The broader impacts of the project are that it will advance discovery and understanding within the climatology, glaciology and remote sensing communities by verifying the use of UHF radars to monitor annual layers as determined by visual, chemical and isotopic analysis from corresponding shallow ice cores and will provide a dataset of annual to near-annual accumulation measurements over the past ~5 decades across WAIS divide from existing radar data and proposed radar data. By determining if temporal changes in the passive microwave signal are correlated with temporal changes in accumulation will help assess the utility of passive microwave remote sensing to monitor accumulation rates over ice sheets for future decades. The project will promote teaching, training and learning, and increase representation of underrepresented groups by becoming involved in the NASA History of Winter project and Thermochron Mission and by providing K-12 teachers with training to monitor snow accumulation and temperature here in the US, linking polar research to the student's backyard. The project will train both undergraduate and graduate students in polar research and will encouraging young investigators to become involved in careers in science. In particular, two REU students will participate in original research projects as part of this larger project, from development of a hypothesis to presentation and publication of the results. The support of a new, young woman scientist will help to increase gender diversity in polar research. | ["POLYGON((-119.4 -78.1,-118.46 -78.1,-117.52 -78.1,-116.58 -78.1,-115.64 -78.1,-114.7 -78.1,-113.76 -78.1,-112.82 -78.1,-111.88 -78.1,-110.94 -78.1,-110 -78.1,-110 -78.29,-110 -78.48,-110 -78.67,-110 -78.86,-110 -79.05,-110 -79.24,-110 -79.43,-110 -79.62,-110 -79.81,-110 -80,-110.94 -80,-111.88 -80,-112.82 -80,-113.76 -80,-114.7 -80,-115.64 -80,-116.58 -80,-117.52 -80,-118.46 -80,-119.4 -80,-119.4 -79.81,-119.4 -79.62,-119.4 -79.43,-119.4 -79.24,-119.4 -79.05,-119.4 -78.86,-119.4 -78.67,-119.4 -78.48,-119.4 -78.29,-119.4 -78.1))"] | ["POINT(-114.7 -79.05)"] | false | false |
A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea
|
1043485 |
2015-01-01 | Kurz, Mark D.; Curtice, Josh |
Collaborative Research: A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea |
This award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation. | ["POLYGON((163.4 -77.47989,163.9848 -77.47989,164.5696 -77.47989,165.1544 -77.47989,165.7392 -77.47989,166.324 -77.47989,166.9088 -77.47989,167.4936 -77.47989,168.0784 -77.47989,168.6632 -77.47989,169.248 -77.47989,169.248 -77.565701,169.248 -77.651512,169.248 -77.737323,169.248 -77.823134,169.248 -77.908945,169.248 -77.994756,169.248 -78.080567,169.248 -78.166378,169.248 -78.252189,169.248 -78.338,168.6632 -78.338,168.0784 -78.338,167.4936 -78.338,166.9088 -78.338,166.324 -78.338,165.7392 -78.338,165.1544 -78.338,164.5696 -78.338,163.9848 -78.338,163.4 -78.338,163.4 -78.252189,163.4 -78.166378,163.4 -78.080567,163.4 -77.994756,163.4 -77.908945,163.4 -77.823134,163.4 -77.737323,163.4 -77.651512,163.4 -77.565701,163.4 -77.47989))"] | ["POINT(166.324 -77.908945)"] | false | false |
Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica
|
0732804 |
2014-01-01 | McPhee, Miles G. |
Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica |
The Office of Polar Programs, Antarctic Integrated and System Science Program has made this award to support an interdisciplinary study of the effects of the ocean on the stability of glacial ice in the most dynamic region the West Antarctic Ice Sheet, namely the Pine Island Glacier in the Amundsen Sea Embayment. The collaborative project builds on the knowledge gained by the highly successful West Antarctic Ice Sheet program and is being jointly sponsored with NASA. Recent observations indicate a significant ice loss, equivalent to 10% of the ongoing increase in sea-level rise, in this region. These changes are largest along the coast and propagate rapidly inland, indicating the critical impact of the ocean on ice sheet stability in the region. While a broad range of remote sensing and ground-based instrumentation is available to characterize changes of the ice surface and internal structure (deformation, ice motion, melt) and the shape of the underlying sediment and rock bed, instrumentation has yet to be successfully deployed for observing boundary layer processes of the ocean cavity which underlies the floating ice shelf and where rapid melting is apparently occurring. Innovative, mini ocean sensors that can be lowered through boreholes in the ice shelf (about 500 m thick) will be developed and deployed to automatically provide ocean profiling information over at least three years. Their data will be transmitted through a conducting cable frozen in the borehole to the surface where it will be further transmitted via satellite to a laboratory in the US. Geophysical and remote sensing methods (seismic, GPS, altimetry, stereo imaging, radar profiling) will be applied to map the geometry of the ice shelf, the shape of the sub ice-shelf cavity, the ice surface geometry and deformations within the glacial ice. To integrate the seismic, glaciological and oceanographic observations, a new 3-dimensional coupled ice-ocean model is being developed which will be the first of its kind. NASA is supporting satellite based research and the deployment of a robotic-camera system to explore the environment in the ocean cavity underlying the ice shelf and NSF is supporting all other aspects of this study. Broader impacts: This project is motivated by the potential societal impacts of rapid sea level rise and should result in critically needed improvements in characterizing and predicting the behavior of coupled ocean-ice systems. It is a contribution to the International Polar Year and was endorsed by the International Council for Science as a component of the 'Multidisciplinary Study of the Amundsen Sea Embayment' proposal #258 of the honeycomb of endorsed IPY activities. The research involves substantial international partnerships with the British Antarctic Survey and the University of Bristol in the UK. The investigators will partner with the previously funded 'Polar Palooza' education and outreach program in addition to undertaking a diverse set of outreach activities of their own. Eight graduate students and one undergraduate as well as one post doc will be integrated into this research project. | ["POINT(166.25 -77.42)"] | ["POINT(166.25 -77.42)"] | false | false |
Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica
|
0636731 |
2014-01-01 | Bender, Michael |
Collaborative Research: Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica |
This project studies ancient ice buried in the Dry Valleys of Antarctica. The ice, which may approach ten million years in age, will be dated using argon and uranium radioisotope techniques. High-risk work, if successful it will offer the first and perhaps only samples of the Earth's atmosphere from millions of years in the past. These samples could offer critically important tests of paleoclimate records and proxies, as well as a glimpse into the characteristics of a past world much like the predicted future, warmer Earth. The broader impacts are graduate student education, and potentially contributing to society's understanding of global climate change and sea level rise. | ["POLYGON((-180 -72.6,-176.887 -72.6,-173.774 -72.6,-170.661 -72.6,-167.548 -72.6,-164.435 -72.6,-161.322 -72.6,-158.209 -72.6,-155.096 -72.6,-151.983 -72.6,-148.87 -72.6,-148.87 -73.533,-148.87 -74.466,-148.87 -75.399,-148.87 -76.332,-148.87 -77.265,-148.87 -78.198,-148.87 -79.131,-148.87 -80.064,-148.87 -80.997,-148.87 -81.93,-151.983 -81.93,-155.096 -81.93,-158.209 -81.93,-161.322 -81.93,-164.435 -81.93,-167.548 -81.93,-170.661 -81.93,-173.774 -81.93,-176.887 -81.93,180 -81.93,174.335 -81.93,168.67 -81.93,163.005 -81.93,157.34 -81.93,151.675 -81.93,146.01 -81.93,140.345 -81.93,134.68 -81.93,129.015 -81.93,123.35 -81.93,123.35 -80.997,123.35 -80.064,123.35 -79.131,123.35 -78.198,123.35 -77.265,123.35 -76.332,123.35 -75.399,123.35 -74.466,123.35 -73.533,123.35 -72.6,129.015 -72.6,134.68 -72.6,140.345 -72.6,146.01 -72.6,151.675 -72.6,157.34 -72.6,163.005 -72.6,168.67 -72.6,174.335 -72.6,-180 -72.6))"] | ["POINT(167.24 -77.265)"] | false | false |
Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines
|
0944475 |
2014-01-01 | Kaplan, Michael |
Collaborative Research: Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines |
Intellectual Merit: The proposed work will investigate changes in the compositional variation of glacial tills over time across two concentric sequences of Pleistocene moraines located adjacent to the heads of East Antarctic outlet glaciers in the Transantarctic Mountains (TAM). The chronologic framework for this work will be generated from cosmogenic exposure ages of boulders on prominent morainal ridges. The PIs hypothesize that variations in till composition may indicate a change in ice flow direction or a change in the composition of the original source area, while ages of the moraines provide a long-term terrestrial perspective on ice sheet dynamics. Both results are vital for modeling experiments that aim to reconstruct the East Antarctic Ice Sheet and assess its role in the global climate system and its potential impact on global sea level rise. The variation of till compositions through time also allows for a more accurate interpretation of sediment cores from the Ross Sea and the Southern Ocean. Additionally, till exposures at the head of some East Antarctic outlet glaciers have been shown to contain subglacial material derived from East Antarctic bedrock, providing a window through the ice to view East Antarctica's inaccessible bedrock. Till samples will be collected from two well-preserved sequences of moraine crests at Mt. Howe (head of Scott Glacier) and Mt. Achernar (between Beardmore and Nimrod Glaciers). Each size fraction in glacial till provides potentially valuable information, and the PIs will measure the petrography of the clast and sand fractions, quantitative X-ray diffraction on the crushed <2mm fraction, elemental abundance of the silt/clay fraction, and U/Pb of detrital zircons in the sand fraction. Data collection will rely on established methods previously used in this region and the PIs will also explore new methods to assess their efficacy. On the same moraines crests sampled for provenance studies, the PIs will sample for cosmogenic surface exposure analyses to provide a chronologic framework at the sites for provenance changes through time. Broader Impact: The proposed research involves graduate and undergraduate training in a diverse array of laboratory methods. Students and PIs will be make presentations to community and campus groups, as well as conduct interviews with local news outlets. The proposed work also establishes a new, potentially long-term, collaboration between scientists at IUPUI and LDEO and brings a new PI (Kaplan) into the field of Antarctic Earth Sciences. | ["POLYGON((-180 -84.1,-176.97 -84.1,-173.94 -84.1,-170.91 -84.1,-167.88 -84.1,-164.85 -84.1,-161.82 -84.1,-158.79 -84.1,-155.76 -84.1,-152.73 -84.1,-149.7 -84.1,-149.7 -84.43,-149.7 -84.76,-149.7 -85.09,-149.7 -85.42,-149.7 -85.75,-149.7 -86.08,-149.7 -86.41,-149.7 -86.74,-149.7 -87.07,-149.7 -87.4,-152.73 -87.4,-155.76 -87.4,-158.79 -87.4,-161.82 -87.4,-164.85 -87.4,-167.88 -87.4,-170.91 -87.4,-173.94 -87.4,-176.97 -87.4,180 -87.4,178.12 -87.4,176.24 -87.4,174.36 -87.4,172.48 -87.4,170.6 -87.4,168.72 -87.4,166.84 -87.4,164.96 -87.4,163.08 -87.4,161.2 -87.4,161.2 -87.07,161.2 -86.74,161.2 -86.41,161.2 -86.08,161.2 -85.75,161.2 -85.42,161.2 -85.09,161.2 -84.76,161.2 -84.43,161.2 -84.1,163.08 -84.1,164.96 -84.1,166.84 -84.1,168.72 -84.1,170.6 -84.1,172.48 -84.1,174.36 -84.1,176.24 -84.1,178.12 -84.1,-180 -84.1))"] | ["POINT(-174.25 -85.75)"] | false | false |
Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains
|
0739693 |
2009-01-01 | Ashworth, Allan; Lewis, Adam |
Collaborative Research: Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains |
This project studies the last vestiges of life in Antarctica from exceptionally well-preserved fossils of tundra life--mosses, diatoms, ostracods, Nothofagus leaves, wood, and insect remains recently discovered in ancient lake sediments from the McMurdo Dry Valleys. The area will be studied by an interdisciplinary team to elucidate information about climate and biogeography. These deposits offer unique and direct information about the characteristics of Antarctica during a key period in its history, the time when it was freezing. This information is critical for correlation with indirect proxies, such as though obtained from drill cores, for climate and state of the ice sheet. The results will also help understand the origin and migration of similar organisms found in South America, India and Australia. In terms of broader impacts, this project supports an early career researcher, undergraduate and graduate student research, various forms of outreach to K12 students, and extensive international collaboration. The work also has societal relevance in that the outcomes will offer direct constraints on Antarctica's ice sheet during a time with atmospheric CO2 contents similar to those of the earth in the coming centuries, and thus may help predictive models of sea level rise. | ["POLYGON((160 -77,160.2 -77,160.4 -77,160.6 -77,160.8 -77,161 -77,161.2 -77,161.4 -77,161.6 -77,161.8 -77,162 -77,162 -77.1,162 -77.2,162 -77.3,162 -77.4,162 -77.5,162 -77.6,162 -77.7,162 -77.8,162 -77.9,162 -78,161.8 -78,161.6 -78,161.4 -78,161.2 -78,161 -78,160.8 -78,160.6 -78,160.4 -78,160.2 -78,160 -78,160 -77.9,160 -77.8,160 -77.7,160 -77.6,160 -77.5,160 -77.4,160 -77.3,160 -77.2,160 -77.1,160 -77))"] | ["POINT(161 -77.5)"] | false | false |