{"dp_type": "Dataset", "free_text": "Sample/collection Description"}
[{"awards": "1946326 Doran, Peter", "bounds_geometry": ["POLYGON((163.093642 -77.592484,163.1049267 -77.592484,163.1162114 -77.592484,163.1274961 -77.592484,163.1387808 -77.592484,163.1500655 -77.592484,163.1613502 -77.592484,163.1726349 -77.592484,163.1839196 -77.592484,163.1952043 -77.592484,163.206489 -77.592484,163.206489 -77.5986389,163.206489 -77.6047938,163.206489 -77.6109487,163.206489 -77.6171036,163.206489 -77.6232585,163.206489 -77.6294134,163.206489 -77.6355683,163.206489 -77.6417232,163.206489 -77.6478781,163.206489 -77.654033,163.1952043 -77.654033,163.1839196 -77.654033,163.1726349 -77.654033,163.1613502 -77.654033,163.1500655 -77.654033,163.1387808 -77.654033,163.1274961 -77.654033,163.1162114 -77.654033,163.1049267 -77.654033,163.093642 -77.654033,163.093642 -77.6478781,163.093642 -77.6417232,163.093642 -77.6355683,163.093642 -77.6294134,163.093642 -77.6232585,163.093642 -77.6171036,163.093642 -77.6109487,163.093642 -77.6047938,163.093642 -77.5986389,163.093642 -77.592484))"], "date_created": "Wed, 09 Feb 2022 00:00:00 GMT", "description": "Location and metadata of samples collected from perched delta deposits along modern stream channels in lower Taylor Valley. Sample collection used equipment and followed procedures from the Desert Research Institute Luminescence Laboratory in Reno, NV.", "east": 163.206489, "geometry": ["POINT(163.1500655 -77.6232585)"], "keywords": "Antarctica; Sample/collection Description; Sample/Collection Description; Sample Location; Taylor Valley", "locations": "Taylor Valley; Antarctica", "north": -77.592484, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Doran, Peter; Stone, Michael", "project_titles": "EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers", "projects": [{"proj_uid": "p0010294", "repository": "USAP-DC", "title": "EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LTER", "south": -77.654033, "title": "EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers: Infrared Stimulated Luminescence data", "uid": "601520", "west": 163.093642}, {"awards": "1946326 Doran, Peter", "bounds_geometry": ["POLYGON((163.079602 -77.585467,163.1197073 -77.585467,163.1598126 -77.585467,163.1999179 -77.585467,163.2400232 -77.585467,163.2801285 -77.585467,163.3202338 -77.585467,163.3603391 -77.585467,163.4004444 -77.585467,163.4405497 -77.585467,163.480655 -77.585467,163.480655 -77.5924303,163.480655 -77.5993936,163.480655 -77.6063569,163.480655 -77.6133202,163.480655 -77.6202835,163.480655 -77.6272468,163.480655 -77.6342101,163.480655 -77.6411734,163.480655 -77.6481367,163.480655 -77.6551,163.4405497 -77.6551,163.4004444 -77.6551,163.3603391 -77.6551,163.3202338 -77.6551,163.2801285 -77.6551,163.2400232 -77.6551,163.1999179 -77.6551,163.1598126 -77.6551,163.1197073 -77.6551,163.079602 -77.6551,163.079602 -77.6481367,163.079602 -77.6411734,163.079602 -77.6342101,163.079602 -77.6272468,163.079602 -77.6202835,163.079602 -77.6133202,163.079602 -77.6063569,163.079602 -77.5993936,163.079602 -77.5924303,163.079602 -77.585467))"], "date_created": "Wed, 09 Feb 2022 00:00:00 GMT", "description": "Location and metadata of C-14 samples from Taylor Valley, East Antarctica", "east": 163.480655, "geometry": ["POINT(163.2801285 -77.6202835)"], "keywords": "Antarctica; Carbon-14; Sample/collection Description; Sample/Collection Description; Sample Location; Taylor Valley", "locations": "Taylor Valley; Antarctica", "north": -77.585467, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Doran, Peter; Stone, Michael", "project_titles": "EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers", "projects": [{"proj_uid": "p0010294", "repository": "USAP-DC", "title": "EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.6551, "title": "EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers: in situ 14C data", "uid": "601521", "west": 163.079602}, {"awards": "1644013 Gaetani, Glenn", "bounds_geometry": ["POLYGON((164.1 -77.1,164.65 -77.1,165.2 -77.1,165.75 -77.1,166.3 -77.1,166.85 -77.1,167.4 -77.1,167.95 -77.1,168.5 -77.1,169.05 -77.1,169.6 -77.1,169.6 -77.235,169.6 -77.37,169.6 -77.505,169.6 -77.64,169.6 -77.775,169.6 -77.91,169.6 -78.045,169.6 -78.18,169.6 -78.315,169.6 -78.45,169.05 -78.45,168.5 -78.45,167.95 -78.45,167.4 -78.45,166.85 -78.45,166.3 -78.45,165.75 -78.45,165.2 -78.45,164.65 -78.45,164.1 -78.45,164.1 -78.315,164.1 -78.18,164.1 -78.045,164.1 -77.91,164.1 -77.775,164.1 -77.64,164.1 -77.505,164.1 -77.37,164.1 -77.235,164.1 -77.1))"], "date_created": "Wed, 12 Jan 2022 00:00:00 GMT", "description": "G170 Sample Locations Ross Island \u0026 Discovery Province", "east": 169.6, "geometry": ["POINT(166.85 -77.775)"], "keywords": "Antarctica; Ross Island; Sample/collection Description; Sample/Collection Description; Sample Location", "locations": "Antarctica; Ross Island", "north": -77.1, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Gaetani, Glenn", "project_titles": "Collaborative Research: Determining Magma Storage Depths and Ascent Rates for the Erebus Volcanic Province, Antarctica Using Diffusive Water Loss from Olivine-hosted Melt Inclusion", "projects": [{"proj_uid": "p0010081", "repository": "USAP-DC", "title": "Collaborative Research: Determining Magma Storage Depths and Ascent Rates for the Erebus Volcanic Province, Antarctica Using Diffusive Water Loss from Olivine-hosted Melt Inclusion"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.45, "title": "G170 Sample Locations Ross Island \u0026 Discovery Province", "uid": "601504", "west": 164.1}, {"awards": "0338137 Anderson, John", "bounds_geometry": ["POLYGON((-76 -45.5,-75.2 -45.5,-74.4 -45.5,-73.6 -45.5,-72.8 -45.5,-72 -45.5,-71.2 -45.5,-70.4 -45.5,-69.6 -45.5,-68.8 -45.5,-68 -45.5,-68 -46.43,-68 -47.36,-68 -48.29,-68 -49.22,-68 -50.15,-68 -51.08,-68 -52.01,-68 -52.94,-68 -53.87,-68 -54.8,-68.8 -54.8,-69.6 -54.8,-70.4 -54.8,-71.2 -54.8,-72 -54.8,-72.8 -54.8,-73.6 -54.8,-74.4 -54.8,-75.2 -54.8,-76 -54.8,-76 -53.87,-76 -52.94,-76 -52.01,-76 -51.08,-76 -50.15,-76 -49.22,-76 -48.29,-76 -47.36,-76 -46.43,-76 -45.5))"], "date_created": "Fri, 17 Jul 2020 00:00:00 GMT", "description": "Excel file with station names, location and water depth and description of the coring device for NBP0505.", "east": -68.0, "geometry": ["POINT(-72 -50.15)"], "keywords": "Chile; Fjord; Marine Geoscience; NBP0505; R/v Nathaniel B. Palmer; Sample/collection Description; Sample/Collection Description; Sediment Core; Sediment Corer; Station List", "locations": "Chile; Chile", "north": -45.5, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Wellner, Julia; Anderson, John", "project_titles": "Collaborative Research: Controls on Sediment Yields from Tidewater Glaciers from Patagonia to Antarctica", "projects": [{"proj_uid": "p0000821", "repository": "USAP-DC", "title": "Collaborative Research: Controls on Sediment Yields from Tidewater Glaciers from Patagonia to Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -54.8, "title": "NBP0505 sediment core locations", "uid": "601362", "west": -76.0}, {"awards": "1245766 Waller, Rhian", "bounds_geometry": ["POLYGON((-66.5 -63,-65.95 -63,-65.4 -63,-64.85 -63,-64.3 -63,-63.75 -63,-63.2 -63,-62.65 -63,-62.1 -63,-61.55 -63,-61 -63,-61 -63.63,-61 -64.26,-61 -64.89,-61 -65.52,-61 -66.15,-61 -66.78,-61 -67.41,-61 -68.04,-61 -68.67,-61 -69.3,-61.55 -69.3,-62.1 -69.3,-62.65 -69.3,-63.2 -69.3,-63.75 -69.3,-64.3 -69.3,-64.85 -69.3,-65.4 -69.3,-65.95 -69.3,-66.5 -69.3,-66.5 -68.67,-66.5 -68.04,-66.5 -67.41,-66.5 -66.78,-66.5 -66.15,-66.5 -65.52,-66.5 -64.89,-66.5 -64.26,-66.5 -63.63,-66.5 -63))"], "date_created": "Thu, 07 Mar 2019 00:00:00 GMT", "description": "Station location information of trawl and CTD stations used for collecting coral samples and water for incubation during expedition NBP1509 in 2015 near the Antarctic Peninsula.", "east": -61.0, "geometry": ["POINT(-63.75 -66.15)"], "keywords": "Antarctica; Antarctic Peninsula; Biota; Corals; CTD; LMG1509; Oceans; Otter Trawl; R/v Laurence M. Gould; Sample/collection Description; Sample/Collection Description; Sample Location; Southern Ocean", "locations": "Southern Ocean; Antarctic Peninsula; Antarctica", "north": -63.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Waller, Rhian", "project_titles": "Cold Corals in Hot Water - Investigating the Physiological Responses of Antarctic Coral Larvae to Climate change Stress", "projects": [{"proj_uid": "p0010017", "repository": "USAP-DC", "title": "Cold Corals in Hot Water - Investigating the Physiological Responses of Antarctic Coral Larvae to Climate change Stress"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -69.3, "title": "Log Sheets of coral samples for LMG1509", "uid": "601160", "west": -66.5}, {"awards": "1143834 Huber, Bruce", "bounds_geometry": ["POINT(120.5 -66.2)"], "date_created": "Wed, 15 Nov 2017 00:00:00 GMT", "description": "Time series of temperature and salinity from a sediment trap mooring deployed during NBP1402 on 04 March 2014 at 66S 11, 122 E 30.2, depth 547 m. The mooring was recovered from Aurora Australis on 26 December 2014 ", "east": 120.5, "geometry": ["POINT(120.5 -66.2)"], "keywords": "Antarctica; Mooring; NBP1402; Oceans; Physical Oceanography; Sabrina Coast; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Southern Ocean; Antarctica; Sabrina Coast", "north": -66.2, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Huber, Bruce", "project_titles": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics", "projects": [{"proj_uid": "p0000008", "repository": "USAP-DC", "title": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -66.2, "title": "Sabrina Coast mooring data - sediment trap mooring 2014", "uid": "601069", "west": 120.5}, {"awards": "1143834 Huber, Bruce", "bounds_geometry": ["POLYGON((117 -66,119.9 -66,122.8 -66,125.7 -66,128.6 -66,131.5 -66,134.4 -66,137.3 -66,140.2 -66,143.1 -66,146 -66,146 -66.1,146 -66.2,146 -66.3,146 -66.4,146 -66.5,146 -66.6,146 -66.7,146 -66.8,146 -66.9,146 -67,143.1 -67,140.2 -67,137.3 -67,134.4 -67,131.5 -67,128.6 -67,125.7 -67,122.8 -67,119.9 -67,117 -67,117 -66.9,117 -66.8,117 -66.7,117 -66.6,117 -66.5,117 -66.4,117 -66.3,117 -66.2,117 -66.1,117 -66))"], "date_created": "Wed, 15 Nov 2017 00:00:00 GMT", "description": "Lowered Acoustic Doppler Current Profiler (LADCP) data collected concurrently with 15 CTD profiles during NBP1402. The LADCP acquires profiles of water current, expressed as U and V components (E-W and N-S).", "east": 146.0, "geometry": ["POINT(131.5 -66.5)"], "keywords": "ADCP Acoustic Doppler Current Profiler; Antarctica; NBP1402; Oceans; Physical Oceanography; Sabrina Coast; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Antarctica; Southern Ocean; Sabrina Coast", "north": -66.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Huber, Bruce", "project_titles": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics", "projects": [{"proj_uid": "p0000008", "repository": "USAP-DC", "title": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.0, "title": "NBP1402 Lowered ADCP data", "uid": "601068", "west": 117.0}, {"awards": "1143834 Huber, Bruce", "bounds_geometry": ["POLYGON((117 -66,119.9 -66,122.8 -66,125.7 -66,128.6 -66,131.5 -66,134.4 -66,137.3 -66,140.2 -66,143.1 -66,146 -66,146 -66.1,146 -66.2,146 -66.3,146 -66.4,146 -66.5,146 -66.6,146 -66.7,146 -66.8,146 -66.9,146 -67,143.1 -67,140.2 -67,137.3 -67,134.4 -67,131.5 -67,128.6 -67,125.7 -67,122.8 -67,119.9 -67,117 -67,117 -66.9,117 -66.8,117 -66.7,117 -66.6,117 -66.5,117 -66.4,117 -66.3,117 -66.2,117 -66.1,117 -66))"], "date_created": "Fri, 10 Nov 2017 00:00:00 GMT", "description": "Conductivity, Temperature, Depth (CTD) profiles from NBP1402, final, calibrated version. Data are reported as an ascii table suitable for import to Ocean Data View.", "east": 146.0, "geometry": ["POINT(131.5 -66.5)"], "keywords": "Antarctica; CTD Data; NBP1402; Oceans; Physical Oceanography; Sabrina Coast; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Sabrina Coast; Antarctica; Southern Ocean", "north": -66.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Huber, Bruce", "project_titles": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics", "projects": [{"proj_uid": "p0000008", "repository": "USAP-DC", "title": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.0, "title": "NBP1402 Final CTD data", "uid": "601067", "west": 117.0}, {"awards": "1341500 Ryberg, Patricia", "bounds_geometry": null, "date_created": "Tue, 07 Nov 2017 00:00:00 GMT", "description": "Images of Late Permian glossopterid reproductive structures from Allan Hills in the Beardmore Glacier Region of Antarctica.", "east": null, "geometry": null, "keywords": "Antarctica; Biota; Fossil; Sample/collection Description; Sample/Collection Description; Transantarctic Mountains", "locations": "Antarctica; Transantarctic Mountains", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Ryberg, Patricia", "project_titles": "RUI: Antarctic Paleobotany: Permian Floral Characteristics in a Sedimentary Setting", "projects": [{"proj_uid": "p0010134", "repository": "USAP-DC", "title": "RUI: Antarctic Paleobotany: Permian Floral Characteristics in a Sedimentary Setting"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Images of Fossil Plants of Antarctica", "uid": "601066", "west": null}, {"awards": "1043471 Kaplan, Michael", "bounds_geometry": ["POLYGON((-112.5 -79.468,-112.4586 -79.468,-112.4172 -79.468,-112.3758 -79.468,-112.3344 -79.468,-112.293 -79.468,-112.2516 -79.468,-112.2102 -79.468,-112.1688 -79.468,-112.1274 -79.468,-112.086 -79.468,-112.086 -79.4712,-112.086 -79.4744,-112.086 -79.4776,-112.086 -79.4808,-112.086 -79.484,-112.086 -79.4872,-112.086 -79.4904,-112.086 -79.4936,-112.086 -79.4968,-112.086 -79.5,-112.1274 -79.5,-112.1688 -79.5,-112.2102 -79.5,-112.2516 -79.5,-112.293 -79.5,-112.3344 -79.5,-112.3758 -79.5,-112.4172 -79.5,-112.4586 -79.5,-112.5 -79.5,-112.5 -79.4968,-112.5 -79.4936,-112.5 -79.4904,-112.5 -79.4872,-112.5 -79.484,-112.5 -79.4808,-112.5 -79.4776,-112.5 -79.4744,-112.5 -79.4712,-112.5 -79.468))"], "date_created": "Fri, 27 Oct 2017 00:00:00 GMT", "description": "Listed are samples of WAIS Divide and Byrd (deep) ice that were analyzed for radiogenic isotopes at LDEO.", "east": -112.086, "geometry": ["POINT(-112.293 -79.484)"], "keywords": "Antarctica; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Sample/collection Description; Sample/Collection Description; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.468, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Kaplan, Michael", "project_titles": "A Study of Atmospheric Dust in the WAIS Divide Ice Core Based on Sr-Nd-Pb-He Isotopes", "projects": [{"proj_uid": "p0000081", "repository": "USAP-DC", "title": "A Study of Atmospheric Dust in the WAIS Divide Ice Core Based on Sr-Nd-Pb-He Isotopes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.5, "title": "List of samples of WAIS Divide and Byrd (deep) ice that were analyzed for radiogenic isotopes at LDEO", "uid": "601065", "west": -112.5}, {"awards": "1246378 Shevenell, Amelia", "bounds_geometry": ["POLYGON((-65.32 -64.15,-65.309 -64.15,-65.298 -64.15,-65.287 -64.15,-65.276 -64.15,-65.265 -64.15,-65.254 -64.15,-65.243 -64.15,-65.232 -64.15,-65.221 -64.15,-65.21 -64.15,-65.21 -64.186,-65.21 -64.222,-65.21 -64.258,-65.21 -64.294,-65.21 -64.33,-65.21 -64.366,-65.21 -64.402,-65.21 -64.438,-65.21 -64.474,-65.21 -64.51,-65.221 -64.51,-65.232 -64.51,-65.243 -64.51,-65.254 -64.51,-65.265 -64.51,-65.276 -64.51,-65.287 -64.51,-65.298 -64.51,-65.309 -64.51,-65.32 -64.51,-65.32 -64.474,-65.32 -64.438,-65.32 -64.402,-65.32 -64.366,-65.32 -64.33,-65.32 -64.294,-65.32 -64.258,-65.32 -64.222,-65.32 -64.186,-65.32 -64.15))"], "date_created": "Wed, 25 Oct 2017 00:00:00 GMT", "description": "These are unpublished stable isotope data from a series of sediment cores collected during LMG12-11 and LMG13-11 down the axis of Anvers Trough. These records span the LMG to recent.", "east": -65.21, "geometry": ["POINT(-65.265 -64.33)"], "keywords": "Antarctica; Antarctic Peninsula; Anvers Trough; Chemistry:sediment; Chemistry:Sediment; Foraminifera; Geochemistry; Isotope; LMG1211; LMG1311; Marine Sediments; Oceans; Paleoclimate; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Southern Ocean; Antarctic Peninsula; Antarctica; Anvers Trough", "north": -64.15, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Shevenell, Amelia", "project_titles": "Late Quaternary Evolution of the Lambert Glacier/Amery Ice Shelf System, Prydz Bay, Antarctica", "projects": [{"proj_uid": "p0000381", "repository": "USAP-DC", "title": "Late Quaternary Evolution of the Lambert Glacier/Amery Ice Shelf System, Prydz Bay, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.51, "title": "Anvers Trough Foraminifer Stable Isotope data", "uid": "601064", "west": -65.32}, {"awards": "1246170 Hall, Brenda", "bounds_geometry": ["POLYGON((155.4 -79.8,155.54 -79.8,155.68 -79.8,155.82 -79.8,155.96 -79.8,156.1 -79.8,156.24 -79.8,156.38 -79.8,156.52 -79.8,156.66 -79.8,156.8 -79.8,156.8 -79.82,156.8 -79.84,156.8 -79.86,156.8 -79.88,156.8 -79.9,156.8 -79.92,156.8 -79.94,156.8 -79.96,156.8 -79.98,156.8 -80,156.66 -80,156.52 -80,156.38 -80,156.24 -80,156.1 -80,155.96 -80,155.82 -80,155.68 -80,155.54 -80,155.4 -80,155.4 -79.98,155.4 -79.96,155.4 -79.94,155.4 -79.92,155.4 -79.9,155.4 -79.88,155.4 -79.86,155.4 -79.84,155.4 -79.82,155.4 -79.8))"], "date_created": "Mon, 23 Oct 2017 00:00:00 GMT", "description": "Hatherton Glacier Radiocarbon Data", "east": 156.8, "geometry": ["POINT(156.1 -79.9)"], "keywords": "Antarctica; Geochronology; Hatherton Glacier; Radiocarbon; Sample/collection Description; Sample/Collection Description; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica; Hatherton Glacier", "north": -79.8, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Hall, Brenda", "project_titles": "Collaborative Research: Assessing the Antarctic Contribution to Sea-level Changes during the Last Deglaciation: Constraints from Darwin Glacier", "projects": [{"proj_uid": "p0000304", "repository": "USAP-DC", "title": "Collaborative Research: Assessing the Antarctic Contribution to Sea-level Changes during the Last Deglaciation: Constraints from Darwin Glacier"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "Hatherton Glacier Radiocarbon Data", "uid": "601063", "west": 155.4}, {"awards": "1041022 McClintock, James", "bounds_geometry": ["POLYGON((-64.5 -64.5,-64.45 -64.5,-64.4 -64.5,-64.35 -64.5,-64.3 -64.5,-64.25 -64.5,-64.2 -64.5,-64.15 -64.5,-64.1 -64.5,-64.05 -64.5,-64 -64.5,-64 -64.54,-64 -64.58,-64 -64.62,-64 -64.66,-64 -64.7,-64 -64.74,-64 -64.78,-64 -64.82,-64 -64.86,-64 -64.9,-64.05 -64.9,-64.1 -64.9,-64.15 -64.9,-64.2 -64.9,-64.25 -64.9,-64.3 -64.9,-64.35 -64.9,-64.4 -64.9,-64.45 -64.9,-64.5 -64.9,-64.5 -64.86,-64.5 -64.82,-64.5 -64.78,-64.5 -64.74,-64.5 -64.7,-64.5 -64.66,-64.5 -64.62,-64.5 -64.58,-64.5 -64.54,-64.5 -64.5))"], "date_created": "Fri, 20 Oct 2017 00:00:00 GMT", "description": "", "east": -64.0, "geometry": ["POINT(-64.25 -64.7)"], "keywords": "Antarctica; Antarctic Peninsula; Biota; Chemistry:fluid; Chemistry:Fluid; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Antarctic Peninsula; Southern Ocean; Antarctica", "north": -64.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Amsler, Charles; Schram, Julie", "project_titles": "The effects of ocean acidification and rising sea surface temperatures on shallow-water benthic organisms in Antarctica", "projects": [{"proj_uid": "p0000426", "repository": "USAP-DC", "title": "The effects of ocean acidification and rising sea surface temperatures on shallow-water benthic organisms in Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.9, "title": "Data from Schram et al. 2017 MEPS", "uid": "601062", "west": -64.5}, {"awards": "1142002 Kaplan, Michael", "bounds_geometry": ["POLYGON((-58 -63.7,-57.95 -63.7,-57.9 -63.7,-57.85 -63.7,-57.8 -63.7,-57.75 -63.7,-57.7 -63.7,-57.65 -63.7,-57.6 -63.7,-57.55 -63.7,-57.5 -63.7,-57.5 -63.73,-57.5 -63.76,-57.5 -63.79,-57.5 -63.82,-57.5 -63.85,-57.5 -63.88,-57.5 -63.91,-57.5 -63.94,-57.5 -63.97,-57.5 -64,-57.55 -64,-57.6 -64,-57.65 -64,-57.7 -64,-57.75 -64,-57.8 -64,-57.85 -64,-57.9 -64,-57.95 -64,-58 -64,-58 -63.97,-58 -63.94,-58 -63.91,-58 -63.88,-58 -63.85,-58 -63.82,-58 -63.79,-58 -63.76,-58 -63.73,-58 -63.7))"], "date_created": "Sat, 16 Sep 2017 00:00:00 GMT", "description": "These are data sets obtained with the supported award. The ages concern the histories of glaciers, ice sheets, and general cryospheric and climatic activities of the northern Antarctic Peninsula and surrounding area.They cover periods from prior to the last global glacial maximum (stage 3 and older?) as well as since deglaciation.", "east": -57.5, "geometry": ["POINT(-57.75 -63.85)"], "keywords": "Antarctica; Antarctic Peninsula; Glaciers/ice Sheet; Glaciers/Ice Sheet; GPS; James Ross Island; Sample/collection Description; Sample/Collection Description; Solid Earth", "locations": "Antarctic Peninsula; James Ross Island; Antarctica", "north": -63.7, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Kaplan, Michael", "project_titles": "Terrestrial Geological Context for Glacier Change in the Northeast Antarctica Peninsula", "projects": [{"proj_uid": "p0000337", "repository": "USAP-DC", "title": "Terrestrial Geological Context for Glacier Change in the Northeast Antarctica Peninsula"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.0, "title": "10Be and 14C data from northern Antarctic Peninsula", "uid": "601051", "west": -58.0}, {"awards": "1142069 Dunbar, Nelia; 1142007 Kurbatov, Andrei", "bounds_geometry": ["POLYGON((0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,216 -60,252 -60,288 -60,324 -60,360 -60,360 -63,360 -66,360 -69,360 -72,360 -75,360 -78,360 -81,360 -84,360 -87,360 -90,324 -90,288 -90,252 -90,216 -90,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,0 -87,0 -84,0 -81,0 -78,0 -75,0 -72,0 -69,0 -66,0 -63,0 -60))"], "date_created": "Wed, 13 Sep 2017 00:00:00 GMT", "description": "This collaborative interdisciplinary research project aims to consolidate, into a single user-friendly database, information about volcanic products detected in Antarctica. By consolidating information about volcanic sources, and physical and geochemical characteristics of volcanic products, this systematic data collection approach will improve the ability of researchers to identify volcanic ash, or tephra, from specific volcanic eruptions that may be spread over large areas in a geologically instantaneous amount of time. AntT database is designed to assist in the identification and cross-correlation of time intervals in various paleoclimate archives that contain volcanic layers from often unknown sources.", "east": 360.0, "geometry": ["POINT(180 -75)"], "keywords": "Antarctica; Geochemistry; Geochronology; Glaciology; Intracontinental Magmatism; IntraContinental Magmatism; Sample/collection Description; Sample/Collection Description; Tephra", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Kurbatov, Andrei V.; Dunbar, Nelia", "project_titles": "Collaborative Research: Developing an Antarctic Tephra Database for Interdisciplinary Paleoclimate Research (AntT)", "projects": [{"proj_uid": "p0000328", "repository": "USAP-DC", "title": "Collaborative Research: Developing an Antarctic Tephra Database for Interdisciplinary Paleoclimate Research (AntT)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Antarctic Tephra Data Base AntT static web site ", "uid": "601052", "west": 0.0}, {"awards": "1143836 Leventer, Amy", "bounds_geometry": ["POLYGON((120 -66,120.1 -66,120.2 -66,120.3 -66,120.4 -66,120.5 -66,120.6 -66,120.7 -66,120.8 -66,120.9 -66,121 -66,121 -66.4,121 -66.8,121 -67.2,121 -67.6,121 -68,121 -68.4,121 -68.8,121 -69.2,121 -69.6,121 -70,120.9 -70,120.8 -70,120.7 -70,120.6 -70,120.5 -70,120.4 -70,120.3 -70,120.2 -70,120.1 -70,120 -70,120 -69.6,120 -69.2,120 -68.8,120 -68.4,120 -68,120 -67.6,120 -67.2,120 -66.8,120 -66.4,120 -66))"], "date_created": "Fri, 18 Aug 2017 00:00:00 GMT", "description": "Foraminifer assemblage data for Paleocene sediments collected on Totten continental shelf, East Antarctica.", "east": 121.0, "geometry": ["POINT(120.5 -68)"], "keywords": "Antarctica; Biota; Continental Margin; Foraminifera; NBP1402; Oceans; Paleoclimate; Sabrina Coast; Sample/collection Description; Sample/Collection Description; Southern Ocean; Totten Glacier", "locations": "Sabrina Coast; Antarctica; Totten Glacier; Southern Ocean", "north": -66.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Shevenell, Amelia; Leventer, Amy", "project_titles": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics", "projects": [{"proj_uid": "p0000008", "repository": "USAP-DC", "title": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "NBP14-02 JPC-55 foraminifer assemblage data", "uid": "601042", "west": 120.0}, {"awards": "1142122 Miller, Nathan", "bounds_geometry": ["POLYGON((166.5 -77.5,166.55 -77.5,166.6 -77.5,166.65 -77.5,166.7 -77.5,166.75 -77.5,166.8 -77.5,166.85 -77.5,166.9 -77.5,166.95 -77.5,167 -77.5,167 -77.55,167 -77.6,167 -77.65,167 -77.7,167 -77.75,167 -77.8,167 -77.85,167 -77.9,167 -77.95,167 -78,166.95 -78,166.9 -78,166.85 -78,166.8 -78,166.75 -78,166.7 -78,166.65 -78,166.6 -78,166.55 -78,166.5 -78,166.5 -77.95,166.5 -77.9,166.5 -77.85,166.5 -77.8,166.5 -77.75,166.5 -77.7,166.5 -77.65,166.5 -77.6,166.5 -77.55,166.5 -77.5))"], "date_created": "Mon, 07 Aug 2017 00:00:00 GMT", "description": "This dataset includes data from the publication Flynn and Todgham 2017 - Thermal windows and metabolic performance curves in a developing Antarctic fish. Included are data on embryo survival, development, and metabolic rate.", "east": 167.0, "geometry": ["POINT(166.75 -77.75)"], "keywords": "Antarctica; Biota; Fish; McMurdo Sound; Oceans; Ross Sea; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Antarctica; Ross Sea; McMurdo Sound; Southern Ocean", "north": -77.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Todgham, Anne; Miller, Nathan", "project_titles": "RUI: Synergistic effects of Ocean Acidification and Warming on Larval Development in Antarctic Fishes", "projects": [{"proj_uid": "p0000411", "repository": "USAP-DC", "title": "RUI: Synergistic effects of Ocean Acidification and Warming on Larval Development in Antarctic Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Thermal windows and metabolic performance curves in a developing Antarctic fish", "uid": "601040", "west": 166.5}, {"awards": "1246190 Yu, Zicheng", "bounds_geometry": ["POLYGON((-68.5 -64,-67.73 -64,-66.96 -64,-66.19 -64,-65.42 -64,-64.65 -64,-63.88 -64,-63.11 -64,-62.34 -64,-61.57 -64,-60.8 -64,-60.8 -64.36,-60.8 -64.72,-60.8 -65.08,-60.8 -65.44,-60.8 -65.8,-60.8 -66.16,-60.8 -66.52,-60.8 -66.88,-60.8 -67.24,-60.8 -67.6,-61.57 -67.6,-62.34 -67.6,-63.11 -67.6,-63.88 -67.6,-64.65 -67.6,-65.42 -67.6,-66.19 -67.6,-66.96 -67.6,-67.73 -67.6,-68.5 -67.6,-68.5 -67.24,-68.5 -66.88,-68.5 -66.52,-68.5 -66.16,-68.5 -65.8,-68.5 -65.44,-68.5 -65.08,-68.5 -64.72,-68.5 -64.36,-68.5 -64))"], "date_created": "Mon, 24 Jul 2017 00:00:00 GMT", "description": "We used subfossil mosses and peats to document changes in regional climate, cryosphere, and terrestrial ecosystems in the western Antarctic Peninsula at ~65S latitude. We find that most peat-forming ecosystems have initiated since 2800 cal BP, in response to warmer summers and increasing summer insolation. The period at 900-600 cal BP was coldest as indicated by ice advance, abundance of kill ages from ice-entombed mosses exposed recently from retreating glacial ice, and apparent gap in peatbank initiation. Furthermore, the discovery of a novel Antarctic hairgrass (Deschampsia antarctica) peatland at 2300-1200 cal BP from the mainland Antarctic Peninsula suggests a much warmer climate than the present. A warming and wetting climate in the 1980s caused very high carbon accumulation in a Polytrichum strictum moss peatbank. Our results document dramatic transformations of landscape and ecosystems in response to past warmer climate, providing a telltale sign for what may come in the future.", "east": -60.8, "geometry": ["POINT(-64.65 -65.8)"], "keywords": "Antarctica; Antarctic Peninsula; Biota; Moss; Paleoclimate; Sample/collection Description; Sample/Collection Description", "locations": "Antarctica; Antarctic Peninsula", "north": -64.0, "nsf_funding_programs": null, "persons": "Yu, Zicheng", "project_titles": "Collaborative Research: Response of Carbon Accumulation in Moss Peatbanks to Past Warm Climates in the Antarctic Peninsula", "projects": [{"proj_uid": "p0000341", "repository": "USAP-DC", "title": "Collaborative Research: Response of Carbon Accumulation in Moss Peatbanks to Past Warm Climates in the Antarctic Peninsula"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.6, "title": "Late Holocene paleoecological and paleoclimatic data from moss peatbanks in the western Antarctic Peninsula", "uid": "601037", "west": -68.5}, {"awards": "1141993 Rich, Jeremy", "bounds_geometry": ["POINT(-64.05 -64.77)"], "date_created": "Mon, 12 Jun 2017 00:00:00 GMT", "description": "From winter to late summer during the 2013-2014 season at Palmer Station, Antarctica, we collected weekly to bi-weekly samples of the seawater intake to measure changes in bacterial community composition, based on sequencing 16S rRNA genes. Along with the sequences, we collected data on environmental parameters in the samples (chlorophyll a, bacterial production, salinity, nutrients, bacterial cell numbers, and particulate organic carbon and nitrogen).", "east": -64.05, "geometry": ["POINT(-64.05 -64.77)"], "keywords": "Antarctica; Antarctic Peninsula; Bacteria; Biota; Genetic; Geochemistry; Palmer Station; Sample/collection Description; Sample/Collection Description; Sea Water; Southern Ocean", "locations": "Antarctica; Antarctic Peninsula; Palmer Station; Southern Ocean", "north": -64.77, "nsf_funding_programs": null, "persons": "Rich, Jeremy", "project_titles": "Collaborative Research: Microbial Community Assembly in Coastal Waters of the Western Antarctic Peninsula", "projects": [{"proj_uid": "p0000409", "repository": "USAP-DC", "title": "Collaborative Research: Microbial Community Assembly in Coastal Waters of the Western Antarctic Peninsula"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.77, "title": "Seasonal Succession of Bacterial Communities in Coastal Waters of the Western Antarctic Peninsula", "uid": "601032", "west": -64.05}, {"awards": "1443554 Buys, Emmanuel", "bounds_geometry": ["POLYGON((166.163 -76.665,166.2635 -76.665,166.364 -76.665,166.4645 -76.665,166.565 -76.665,166.6655 -76.665,166.766 -76.665,166.8665 -76.665,166.967 -76.665,167.0675 -76.665,167.168 -76.665,167.168 -76.782,167.168 -76.899,167.168 -77.016,167.168 -77.133,167.168 -77.25,167.168 -77.367,167.168 -77.484,167.168 -77.601,167.168 -77.718,167.168 -77.835,167.0675 -77.835,166.967 -77.835,166.8665 -77.835,166.766 -77.835,166.6655 -77.835,166.565 -77.835,166.4645 -77.835,166.364 -77.835,166.2635 -77.835,166.163 -77.835,166.163 -77.718,166.163 -77.601,166.163 -77.484,166.163 -77.367,166.163 -77.25,166.163 -77.133,166.163 -77.016,166.163 -76.899,166.163 -76.782,166.163 -76.665))"], "date_created": "Sat, 27 May 2017 00:00:00 GMT", "description": "The Weddell seal is a champion diving mammal - key elements of their physiological specializations to breath-hold are their ability for remarkable adjustment of their heart and blood vessel system, coordinating blood pressure and flow to specific body regions based on their metabolic requirements, and their ability to sustain periods without oxygen. The goal of this study is to unravel the molecular mechanisms underlying the dive response, specifically, to study a signaling pathway that coordinates local blood flow. This dataset identifies what animals were sampled and the details of what biosamples were collected to test the hypothesis that signaling modifications prevent local blood vessel changes under low oxygen conditions, thereby allowing the centrally mediated diving reflex to override local perfusion control. The metadata also details cryopreserved cells and cell lines that can be used to study the molecular effects of low oxygen conditions in the laboratory", "east": 167.168, "geometry": ["POINT(166.6655 -77.25)"], "keywords": "Antarctica; Biota; McMurdo Sound; Ross Sea; Sample/collection Description; Sample/Collection Description; Seals", "locations": "Antarctica; McMurdo Sound; Ross Sea", "north": -76.665, "nsf_funding_programs": null, "persons": "Hindle, Allyson; Buys, Emmanuel", "project_titles": "Unraveling the Genomic and Molecular Basis of the Dive Response: Nitric Oxide Signaling and Vasoregulation in the Weddell Seal", "projects": [{"proj_uid": "p0000072", "repository": "USAP-DC", "title": "Unraveling the Genomic and Molecular Basis of the Dive Response: Nitric Oxide Signaling and Vasoregulation in the Weddell Seal"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.835, "title": "Biosamples and observations from Weddell Seal colonies in McMurdo Sound during the 2015-2016 Antarctic field season", "uid": "601028", "west": 166.163}, {"awards": "1245659 Petrenko, Vasilii", "bounds_geometry": ["POINT(161.71353 -77.75855)"], "date_created": "Wed, 24 May 2017 00:00:00 GMT", "description": "This dataset contains measurements of paleoatmospheric 14C of methane (14CH4) for the Younger Dryas - Preboreal Transition from Taylor Glacier, Antarctica, as well as a range of supporting data. The supporting data include [CH4], [CO], [14CO], sample ages, CH4 emissions and analysis of uncertainties.", "east": 161.71353, "geometry": ["POINT(161.71353 -77.75855)"], "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Critical Zone; Geochemistry; Methane; Paleoclimate; Sample/collection Description; Sample/Collection Description; Solid Earth; Taylor Glacier; Transantarctic Mountains; Younger Dryas", "locations": "Taylor Glacier; Transantarctic Mountains; Antarctica", "north": -77.75855, "nsf_funding_programs": null, "persons": "Petrenko, Vasilii; Severinghaus, Jeffrey P.", "project_titles": "Collaborative Research: A \"Horizontal Ice Core\" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica", "projects": [{"proj_uid": "p0000099", "repository": "USAP-DC", "title": "Collaborative Research: A \"Horizontal Ice Core\" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.75855, "title": "Measurements of 14C-methane for the Younger Dryas - Preboreal Transition from Taylor Glacier, Antarctica", "uid": "601029", "west": 161.71353}, {"awards": "1246463 Burns, Jennifer", "bounds_geometry": ["POINT(166.55 -77.75)"], "date_created": "Wed, 24 May 2017 00:00:00 GMT", "description": "This dataset includes an inventory of Weddell Seals captured by net, tagged, and observed at colonies in the Erebus Bay region of Antarctica during 4 austral field seasons between November 2013 and February 2017. Observations recorded include body mass, length, and molt category.", "east": 166.55, "geometry": ["POINT(166.55 -77.75)"], "keywords": "Antarctica; Biota; McMurdo Sound; Oceans; Ross Sea; Sample/collection Description; Sample/Collection Description; Seals", "locations": "McMurdo Sound; Ross Sea; Antarctica", "north": -77.75, "nsf_funding_programs": null, "persons": "Burns, Jennifer", "project_titles": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals", "projects": [{"proj_uid": "p0000229", "repository": "USAP-DC", "title": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.75, "title": "Specimen logs and observations from Weddell Seal colonies in Erebus Bay, 2013-2017", "uid": "601027", "west": 166.55}, {"awards": "1148982 Hansen, Samantha", "bounds_geometry": ["POLYGON((153.327 -73.032547,154.5063012 -73.032547,155.6856024 -73.032547,156.8649036 -73.032547,158.0442048 -73.032547,159.223506 -73.032547,160.4028072 -73.032547,161.5821084 -73.032547,162.7614096 -73.032547,163.9407108 -73.032547,165.120012 -73.032547,165.120012 -73.3530275,165.120012 -73.673508,165.120012 -73.9939885,165.120012 -74.314469,165.120012 -74.6349495,165.120012 -74.95543,165.120012 -75.2759105,165.120012 -75.596391,165.120012 -75.9168715,165.120012 -76.237352,163.9407108 -76.237352,162.7614096 -76.237352,161.5821084 -76.237352,160.4028072 -76.237352,159.223506 -76.237352,158.0442048 -76.237352,156.8649036 -76.237352,155.6856024 -76.237352,154.5063012 -76.237352,153.327 -76.237352,153.327 -75.9168715,153.327 -75.596391,153.327 -75.2759105,153.327 -74.95543,153.327 -74.6349495,153.327 -74.314469,153.327 -73.9939885,153.327 -73.673508,153.327 -73.3530275,153.327 -73.032547))"], "date_created": "Thu, 20 Apr 2017 00:00:00 GMT", "description": "Using data from the Transantarctic Mountains (TAMs) Northern Network, shear-wave splitting analysis has been employed to constrain azimuthal anisotropy beneath a portion of the northern TAMs. Splitting measurements were made for PKS, SKS, and SKKS phases with the eigenvalue method in SplitLab. The results show two distinct geographic regions of anisotropy: one behind the TAMs front and the other along the Ross Sea coastline. The anisotropic structure behind the TAMs front is best attributed to relict fabric associated with past tectonic episodes. Along the coastline, the anisotropy is interpreted to reflect mantle flow associated with rift-related decompression melting and Cenozoic extension.", "east": 165.120012, "geometry": ["POINT(159.223506 -74.6349495)"], "keywords": "Antarctica; Geology/Geophysics - Other; GPS; Sample/collection Description; Sample/Collection Description; Seismology; Shearwave Spitting; Solid Earth; Transantarctic Mountains", "locations": "Antarctica; Transantarctic Mountains", "north": -73.032547, "nsf_funding_programs": null, "persons": "Hansen, Samantha", "project_titles": "CAREER: Deciphering the Tectonic History of the Transantarctic Mountains and the Wilkes Subglacial Basin", "projects": [{"proj_uid": "p0000300", "repository": "USAP-DC", "title": "CAREER: Deciphering the Tectonic History of the Transantarctic Mountains and the Wilkes Subglacial Basin"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.237352, "title": "Shear Wave Splitting Analysis and Seismic Anisotropy beneath the Northern Transantarctic Mountains", "uid": "601019", "west": 153.327}, {"awards": "1246379 Smith, Nathan", "bounds_geometry": ["POLYGON((160 -85,160.6 -85,161.2 -85,161.8 -85,162.4 -85,163 -85,163.6 -85,164.2 -85,164.8 -85,165.4 -85,166 -85,166 -85.2,166 -85.4,166 -85.6,166 -85.8,166 -86,166 -86.2,166 -86.4,166 -86.6,166 -86.8,166 -87,165.4 -87,164.8 -87,164.2 -87,163.6 -87,163 -87,162.4 -87,161.8 -87,161.2 -87,160.6 -87,160 -87,160 -86.8,160 -86.6,160 -86.4,160 -86.2,160 -86,160 -85.8,160 -85.6,160 -85.4,160 -85.2,160 -85))"], "date_created": "Wed, 29 Mar 2017 00:00:00 GMT", "description": "This proposal supports research on the Early Jurassic Hanson Formation vertebrate fauna of the Beardmore Glacier region of Antarctica. The project supports preparation and systematic and paleobiological research on four Antarctic dinosaurs, including two new species, collected in the Central Transantarctic Mountains. With the new material Cryolophosaurus will become one of the most complete Early Jurassic theropods known, and thus has the potential to become a keystone taxon for resolving the debated early evolutionary history of theropod dinosaurs, the group that gave rise to birds. Two new dinosaur specimens include a nearly complete articulated skeleton of a juvenile sauropodomorph, and the articulated hip region of another small individual. Both appear to be new taxa. The dinosaurs from the Hanson Formation represent some of the highest paleolatitude vertebrates known from the Jurassic. The PIs generated CT datasets for Cryolophosaurus and the more complete new sauropodomorph species to mine for phylogenetic trait information, and to investigate their comparative neuroanatomy and feeding behavior. Histological datasets have been generated from multiple skeletal elements for all four Mt. Kirkpatrick taxa to understand patterns of growth in different clades of polar dinosaurs and compare them to relatives from lower paleolatitudes. This paleohistological study of a relatively diverse sample of sauropodomorph taxa from Antarctica may contribute to determining whether and how these dinosaurs responded to contemporary climatic extremes. The PIs have established a successful undergraduate training program as part of previous research. Summer interns from Augustana are trained at the Field Museum in specimen preparation, curation, molding/casting, and histological sampling. They also participate in existing Field Museum REU programs, including a course on phylogenetic systematics. Four undergraduate internships and student research projects will be supported through this proposal. A postdoctoral researcher has also been supported on this project The PIs are developing a traveling exhibit on Antarctic Dinosaurs that they estimate will be seen by over 2 million people over the five-year tour (opening June 2018 at the Field Museum of Natural History).", "east": 166.0, "geometry": ["POINT(163 -86)"], "keywords": "Antarctica; Beardmore Glacier; Biota; Fossil; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains", "locations": "Transantarctic Mountains; Beardmore Glacier; Antarctica", "north": -85.0, "nsf_funding_programs": null, "persons": "Smith, Nathan", "project_titles": "Collaborative Research: Continued Research on the Jurassic Vertebrate Fauna from the Beardmore Glacier Region of Antarctica", "projects": [{"proj_uid": "p0000083", "repository": "USAP-DC", "title": "Collaborative Research: Continued Research on the Jurassic Vertebrate Fauna from the Beardmore Glacier Region of Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.0, "title": "Vertebrate fossils from the Hanson Formation at Mt. Kirkpatrick, in the Beardmore Glacier region of Antarctica", "uid": "601016", "west": 160.0}, {"awards": "1142097 Bochdansky, Alexander", "bounds_geometry": ["POLYGON((163.90952 -67.00006,170.04898 -67.00006,176.18844 -67.00006,182.3279 -67.00006,188.46736 -67.00006,194.60682 -67.00006,200.74628 -67.00006,206.88574 -67.00006,213.0252 -67.00006,219.16466 -67.00006,225.30412 -67.00006,225.30412 -68.15911,225.30412 -69.31816,225.30412 -70.47721,225.30412 -71.63626,225.30412 -72.79531,225.30412 -73.95436,225.30412 -75.11341,225.30412 -76.27246,225.30412 -77.43151,225.30412 -78.59056,219.16466 -78.59056,213.0252 -78.59056,206.88574 -78.59056,200.74628 -78.59056,194.60682 -78.59056,188.46736 -78.59056,182.3279 -78.59056,176.18844 -78.59056,170.04898 -78.59056,163.90952 -78.59056,163.90952 -77.43151,163.90952 -76.27246,163.90952 -75.11341,163.90952 -73.95436,163.90952 -72.79531,163.90952 -71.63626,163.90952 -70.47721,163.90952 -69.31816,163.90952 -68.15911,163.90952 -67.00006))"], "date_created": "Mon, 23 Jan 2017 00:00:00 GMT", "description": null, "east": 225.30412, "geometry": ["POINT(-165.39318 -72.79531)"], "keywords": "Antarctica; Biota; Holographic Microscopy; Oceans; Photo/video; Photo/Video; Phytoplankton; Ross Sea; Sample/collection Description; Sample/Collection Description; Southern Ocean; Video Particle Profiler", "locations": "Southern Ocean; Antarctica; Ross Sea", "north": -67.00006, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Bochdansky, Alexander", "project_titles": "Collaborative research: TRacing the fate of Algal Carbon Export in the Ross Sea (TRACERS)", "projects": [{"proj_uid": "p0000307", "repository": "USAP-DC", "title": "Collaborative research: TRacing the fate of Algal Carbon Export in the Ross Sea (TRACERS)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.59056, "title": "Video Particle Profiler (VPP) and Digital Inline Holographic Microscopy (DIHM) data from cruise NBP1302", "uid": "600388", "west": 163.90952}, {"awards": "0947821 Ashworth, Allan", "bounds_geometry": ["POLYGON((166.58793 -85.11733,166.595533 -85.11733,166.603136 -85.11733,166.610739 -85.11733,166.618342 -85.11733,166.625945 -85.11733,166.633548 -85.11733,166.641151 -85.11733,166.648754 -85.11733,166.656357 -85.11733,166.66396 -85.11733,166.66396 -85.117836,166.66396 -85.118342,166.66396 -85.118848,166.66396 -85.119354,166.66396 -85.11986,166.66396 -85.120366,166.66396 -85.120872,166.66396 -85.121378,166.66396 -85.121884,166.66396 -85.12239,166.656357 -85.12239,166.648754 -85.12239,166.641151 -85.12239,166.633548 -85.12239,166.625945 -85.12239,166.618342 -85.12239,166.610739 -85.12239,166.603136 -85.12239,166.595533 -85.12239,166.58793 -85.12239,166.58793 -85.121884,166.58793 -85.121378,166.58793 -85.120872,166.58793 -85.120366,166.58793 -85.11986,166.58793 -85.119354,166.58793 -85.118848,166.58793 -85.118342,166.58793 -85.117836,166.58793 -85.11733))"], "date_created": "Tue, 17 Jan 2017 00:00:00 GMT", "description": null, "east": 166.66396, "geometry": ["POINT(166.625945 -85.11986)"], "keywords": "Antarctica; Beardmore Glacier; Biota; Fossil; GPS; Oliver Bluffs; Paleoclimate; Sample/collection Description; Sample/Collection Description; Seeds; Solid Earth; Transantarctic Mountains", "locations": "Transantarctic Mountains; Beardmore Glacier; Oliver Bluffs; Antarctica", "north": -85.11733, "nsf_funding_programs": null, "persons": "Ashworth, Allan", "project_titles": "Neogene Paleoecology of the Beardmore Glacier Region", "projects": [{"proj_uid": "p0000424", "repository": "USAP-DC", "title": "Neogene Paleoecology of the Beardmore Glacier Region"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.12239, "title": "Neogene Paleoecology of the Beardmore Glacier Region", "uid": "600387", "west": 166.58793}, {"awards": "1141877 Aronson, Richard", "bounds_geometry": null, "date_created": "Tue, 10 Jan 2017 00:00:00 GMT", "description": "Elevated temperatures and ocean acidification are both threatening the Southern Ocean. The effects of these environmental changes are poorly understood, but preliminary data suggest that they are driving a biological invasion. Specifically, large populations of skeleton-crushing king crabs, Paralomis birsteini, have been detected off Marguerite Bay on the West Antarctic Peninsula. These crabs appear to be invading the continental shelf region where benthic communities have evolved in the absence of such top-predators. Thus, this invasion could result in a wholesale restructuring of the Antarctic benthic ecosystem. The proposed work seeks to document this invasion and better understand the effects of the introduction of P. birsteini on the ecology of this region. A towed underwater vehicle will be used to photographically image communities, and communities with and without P. birsteini will be compared quantitatively. Additionally, crabs will trapped and various aspects of their morphology and physiology will be assessed. This research is unique in that it will document a biological invasion in real-time and it will therefore enhance our general understandings of the drivers of invasion and resilience in biological communities. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of undergraduate and graduate students and will foster an international collaboration with British scientists. Researchers on this project will participate in outreach thorough the development of K-12 curricular materials.", "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula; Anvers Island; Benthos; Biota; Camera Tow; LMG1502; Marguerite Bay; NBP1002; NBP1310; Oceans; Photo/video; Photo/Video; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Marguerite Bay; Antarctica; Southern Ocean; Antarctic Peninsula; Anvers Island", "north": null, "nsf_funding_programs": null, "persons": "Aronson, Richard", "project_titles": "Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos", "projects": [{"proj_uid": "p0000303", "repository": "USAP-DC", "title": "Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Climate Change and Predatory Invasion of the Antarctic Benthos", "uid": "600385", "west": null}, {"awards": "1043781 O\u0027Brien, Kristin", "bounds_geometry": null, "date_created": "Tue, 06 Dec 2016 00:00:00 GMT", "description": null, "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Fish; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Southern Ocean; Antarctic Peninsula; Antarctica", "north": null, "nsf_funding_programs": null, "persons": "O\u0027Brien, Kristin", "project_titles": "Collaborative research: Redox Balance in Antarctic Notothenioid fishes: Do Icefishes have an Advantage?", "projects": [{"proj_uid": "p0000320", "repository": "USAP-DC", "title": "Collaborative research: Redox Balance in Antarctic Notothenioid fishes: Do Icefishes have an Advantage?"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Redox Balance in Antarctic Notothenioid Fishes", "uid": "600382", "west": null}, {"awards": "1043554 Willenbring, Jane", "bounds_geometry": ["POINT(161.5 -77.5)"], "date_created": "Wed, 09 Nov 2016 00:00:00 GMT", "description": "The PIs propose to address the question of whether ice surface melting zones developed at high elevations during warm climatic phases in the Transantarctic Mountains. Evidence from sediment cores drilled by the ANDRILL program indicates that open water in the Ross Sea could have been a source of warmth during Pliocene and Pleistocene. The question is whether marine warmth penetrated inland to the ice sheet margins. The glacial record may be ill suited to answer this question, as cold-based glaciers may respond too slowly to register brief warmth. Questions also surround possible orbital controls on regional climate and ice sheet margins. Northern Hemisphere insolation at obliquity and precession timescales is thought to control Antarctic climate through oceanic or atmospheric connections, but new thinking suggests that the duration of Southern Hemisphere summer may be more important. The PIs propose to use high elevation alluvial deposits in the Transantarctic Mountains as a proxy for inland warmth. These relatively young fans, channels, and debris flow levees stand out as visible evidence for the presence of melt water in an otherwise ancient, frozen landscape. Based on initial analyses of an alluvial fan in the Olympus Range, these deposits are sensitive recorders of rare melt events that occur at orbital timescales. For their study they will 1) map alluvial deposits using aerial photography, satellite imagery and GPS assisted field surveys to establish water sources and to quantify parameters effecting melt water production, 2) date stratigraphic sequences within these deposits using OSL, cosmogenic nuclide, and interbedded volcanic ash chronologies, 3) use paired nuclide analyses to estimate exposure and burial times, and rates of deposition and erosion, and 4) use micro and regional scale climate modeling to estimate paleoenvironmental conditions associated with melt events.\nThis study will produce a record of inland melting from sites adjacent to ice sheet margins to help determine controls on regional climate along margins of the East Antarctic Ice Sheet to aid ice sheet and sea level modeling studies. The proposal will support several graduate and undergraduates. A PhD student will be supported on existing funding. The PIs will work with multiple K-12 schools to conduct interviews and webcasts from Antarctica and they will make follow up visits to classrooms after the field season is complete.", "east": 161.5, "geometry": ["POINT(161.5 -77.5)"], "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Cosmogenic Radionuclides; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Isotope; Sample/collection Description; Sample/Collection Description; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica", "north": -77.5, "nsf_funding_programs": null, "persons": "Willenbring, Jane", "project_titles": "Collaborative Research: Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins", "projects": [{"proj_uid": "p0000429", "repository": "USAP-DC", "title": "Collaborative Research: Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.5, "title": "Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins", "uid": "600379", "west": 161.5}, {"awards": "1443444 Yuan, Xiaojun", "bounds_geometry": ["POLYGON((65.4503 -63.5143,67.2063 -63.5143,68.9623 -63.5143,70.7183 -63.5143,72.4743 -63.5143,74.2303 -63.5143,75.9863 -63.5143,77.7423 -63.5143,79.4983 -63.5143,81.2543 -63.5143,83.0103 -63.5143,83.0103 -64.09423,83.0103 -64.67416,83.0103 -65.25409,83.0103 -65.83402,83.0103 -66.41395,83.0103 -66.99388,83.0103 -67.57381,83.0103 -68.15374,83.0103 -68.73367,83.0103 -69.3136,81.2543 -69.3136,79.4983 -69.3136,77.7423 -69.3136,75.9863 -69.3136,74.2303 -69.3136,72.4743 -69.3136,70.7183 -69.3136,68.9623 -69.3136,67.2063 -69.3136,65.4503 -69.3136,65.4503 -68.73367,65.4503 -68.15374,65.4503 -67.57381,65.4503 -66.99388,65.4503 -66.41395,65.4503 -65.83402,65.4503 -65.25409,65.4503 -64.67416,65.4503 -64.09423,65.4503 -63.5143))"], "date_created": "Mon, 02 May 2016 00:00:00 GMT", "description": "This dataset contains inventories and location maps for CTD data acquired by the icebreaker R/V Xue Long in the Prydz Bay- Amery Ice Shelf region. A total of 68 stations were acquired in February 2015 and 24 stations in March 2017, as part of a joint US/China project to study Antarctic Bottom Water (AABW) formation.", "east": 83.0103, "geometry": ["POINT(74.2303 -66.41395)"], "keywords": "CTD Data; Oceans; Physical Oceanography; Prydz Bay; Sample/collection Description; Sample/Collection Description; Southern Ocean; Xue Long", "locations": "Southern Ocean; Prydz Bay", "north": -63.5143, "nsf_funding_programs": null, "persons": "Yuan, Xiaojun", "project_titles": "Collaborative Research: Contribution of Prydz Bay Shelf Water to Antarctic Bottom Water Formation", "projects": [{"proj_uid": "p0000295", "repository": "USAP-DC", "title": "Collaborative Research: Contribution of Prydz Bay Shelf Water to Antarctic Bottom Water Formation"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -69.3136, "title": "CTD Data Acquired by R/V Xue Long in the Prydz Bay- Amery Ice Shelf Region, 2015-2017", "uid": "600174", "west": 65.4503}, {"awards": "1141877 Aronson, Richard", "bounds_geometry": ["POLYGON((-111.18 -49.98,-105.429 -49.98,-99.678 -49.98,-93.927 -49.98,-88.176 -49.98,-82.425 -49.98,-76.674 -49.98,-70.923 -49.98,-65.172 -49.98,-59.421 -49.98,-53.67 -49.98,-53.67 -52.826,-53.67 -55.672,-53.67 -58.518,-53.67 -61.364,-53.67 -64.21,-53.67 -67.056,-53.67 -69.902,-53.67 -72.748,-53.67 -75.594,-53.67 -78.44,-59.421 -78.44,-65.172 -78.44,-70.923 -78.44,-76.674 -78.44,-82.425 -78.44,-88.176 -78.44,-93.927 -78.44,-99.678 -78.44,-105.429 -78.44,-111.18 -78.44,-111.18 -75.594,-111.18 -72.748,-111.18 -69.902,-111.18 -67.056,-111.18 -64.21,-111.18 -61.364,-111.18 -58.518,-111.18 -55.672,-111.18 -52.826,-111.18 -49.98))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "Elevated temperatures and ocean acidification are both threatening the Southern Ocean. The effects of these environmental changes are poorly understood, but preliminary data suggest that they are driving a biological invasion. Specifically, large populations of skeleton-crushing king crabs, Paralomis birsteini, have been detected off Marguerite Bay on the West Antarctic Peninsula. These crabs appear to be invading the continental shelf region where benthic communities have evolved in the absence of such top-predators. Thus, this invasion could result in a wholesale restructuring of the Antarctic benthic ecosystem. The proposed work seeks to document this invasion and better understand the effects of the introduction of P. birsteini on the ecology of this region. A towed underwater vehicle will be used to photographically image communities, and communities with and without P. birsteini will be compared quantitatively. Additionally, crabs will trapped and various aspects of their morphology and physiology will be assessed. This research is unique in that it will document a biological invasion in real-time and it will therefore enhance our general understandings of the drivers of invasion and resilience in biological communities. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of undergraduate and graduate students and will foster an international collaboration with British scientists. Researchers on this project will participate in outreach thorough the development of K-12 curricular materials.", "east": -53.67, "geometry": ["POINT(-82.425 -64.21)"], "keywords": "Antarctica; Antarctic Peninsula; Anvers Island; Benthos; Biota; Camera Tow; LMG1502; Marguerite Bay; NBP1002; NBP1310; Oceans; Photo/video; Photo/Video; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Southern Ocean; Antarctica; Anvers Island; Marguerite Bay; Antarctic Peninsula", "north": -49.98, "nsf_funding_programs": null, "persons": "Aronson, Richard", "project_titles": "Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos", "projects": [{"proj_uid": "p0000303", "repository": "USAP-DC", "title": "Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.44, "title": "Climate Change and Predatory Invasion of the Antarctic Benthos", "uid": "600171", "west": -111.18}, {"awards": "1250208 Friedlaender, Ari", "bounds_geometry": ["POLYGON((-80 -63,-78 -63,-76 -63,-74 -63,-72 -63,-70 -63,-68 -63,-66 -63,-64 -63,-62 -63,-60 -63,-60 -63.7,-60 -64.4,-60 -65.1,-60 -65.8,-60 -66.5,-60 -67.2,-60 -67.9,-60 -68.6,-60 -69.3,-60 -70,-62 -70,-64 -70,-66 -70,-68 -70,-70 -70,-72 -70,-74 -70,-76 -70,-78 -70,-80 -70,-80 -69.3,-80 -68.6,-80 -67.9,-80 -67.2,-80 -66.5,-80 -65.8,-80 -65.1,-80 -64.4,-80 -63.7,-80 -63))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "Whales play a central role in the ecology and biogeochemistry of the Southern Ocean. However, little is known regarding their distribution and behavior, in part because of challenges associated with studying these organisms from large research vessels. This research will take advantage of the unique opportunity presented by the 2012-2013 test run of the smaller, more mobile R/V Point Sur. This work will use the Point Sur to investigate humpback whales in the waters studied by the Palmer Long Term Ecological Research (LTER) Station off the Western Antarctic Peninsula (WAP). Employing a combination of long-term satellite-linked tags and short-term suction cup tags, researchers will investigate the distribution, abundance and foraging behaviors of whales in this region. Whale biogeography will then be related to quantitative surveys of krill, their primary food source. Hypotheses regarding whale distribution and foraging strategies as well as physical oceanographic features will be tested. The WAP is undergoing some of the most dramatic warming on the planet, and a better understanding of the ecology of top predators is central to developing an understanding of the impacts of this change. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. Finally, this work will be coordinated with the extensive infrastructure of the Palmer LTER site, enabling outreach and educational activities.\n", "east": -60.0, "geometry": ["POINT(-70 -66.5)"], "keywords": "Antarctica; Antarctic Peninsula; Biota; Oceans; Sample/collection Description; Sample/Collection Description; Southern Ocean; Whales", "locations": "Southern Ocean; Antarctica; Antarctic Peninsula", "north": -63.0, "nsf_funding_programs": null, "persons": "Friedlaender, Ari; Johnston, David; Nowacek, Douglas", "project_titles": "RAPID: Linking the Movement Patterns and Foraging Behavior of Humpback Whales to their Prey across Multiple Spatial Scales within the LTER Study Region", "projects": [{"proj_uid": "p0000666", "repository": "USAP-DC", "title": "RAPID: Linking the Movement Patterns and Foraging Behavior of Humpback Whales to their Prey across Multiple Spatial Scales within the LTER Study Region"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "Linking the Movement Patterns and Foraging Behavior of Humpback Whales to their Prey across Multiple Spatial Scales within the LTER Study Region", "uid": "600151", "west": -80.0}, {"awards": "1355533 Dayton, Paul", "bounds_geometry": ["POLYGON((163 -78,163.4 -78,163.8 -78,164.2 -78,164.6 -78,165 -78,165.4 -78,165.8 -78,166.2 -78,166.6 -78,167 -78,167 -78.05,167 -78.1,167 -78.15,167 -78.2,167 -78.25,167 -78.3,167 -78.35,167 -78.4,167 -78.45,167 -78.5,166.6 -78.5,166.2 -78.5,165.8 -78.5,165.4 -78.5,165 -78.5,164.6 -78.5,164.2 -78.5,163.8 -78.5,163.4 -78.5,163 -78.5,163 -78.45,163 -78.4,163 -78.35,163 -78.3,163 -78.25,163 -78.2,163 -78.15,163 -78.1,163 -78.05,163 -78))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "Antarctic benthic communities are characterized by many species of sponges (Phylum Porifera), long thought to exhibit extremely slow demographic patterns of settlement, growth and reproduction. This project will analyze many hundreds of diver and remotely operated underwater vehicle photographs documenting a unique, episodic settlement event that occurred between 2000 and 2010 in McMurdo Sound that challenges this paradigm of slow growth. Artificial structures were placed on the seafloor between 1967 and 1974 at several sites, but no sponges were observed to settle on these structures until 2004. By 2010 some 40 species of sponges had settled and grown to be surprisingly large. Given the paradigm of slow settlement and growth supported by the long observation period (37 years, 1967-2004), this extraordinary large-scale settlement and rapid growth over just a 6-year time span is astonishing. This project utilizes image processing software (ImageJ) to obtain metrics (linear dimensions to estimate size, frequency, percent cover) for sponges and other fauna visible in the photographs. It uses R to conduct multidimensional scaling to ordinate community data and ANOSIM to test for differences of community data among sites and times and structures. It will also use SIMPER and ranked species abundances to discriminate species responsible for any differences.\nThis work focuses on Antarctic sponges, but the observations of massive episodic recruitment and growth are important to understanding seafloor communities worldwide. Ecosystems are composed of populations, and populations are ecologically described by their distribution and abundance. A little appreciated fact is that sponges often dominate marine communities, but because sponges are so hard to study, most workers focus on other groups such as corals, kelps, or bivalves. Because most sponges settle and grow slowly their life history is virtually unstudied. The assumption of relative stasis of the Antarctic seafloor community is common, and this project will shatter this paradigm by documenting a dramatic episodic event. Finally, the project takes advantage of old transects from the 1960s and 1970s and compares them with extensive 2010 surveys of the same habitats and sometimes the same intact transect lines, offering a long-term perspective of community change. The investigators will publish these results in peer-reviewed journals, give presentations to the general public and will involve students from local outreach programs, high schools, and undergraduates at UCSD to help with the analysis.", "east": 167.0, "geometry": ["POINT(165 -78.25)"], "keywords": "Antarctica; Bentic Fauna; Biota; McMurdo Sound; Oceans; Ross Sea; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Antarctica; Ross Sea; McMurdo Sound; Southern Ocean", "north": -78.0, "nsf_funding_programs": null, "persons": "Dayton, Paul", "project_titles": "EAGER: A Multi-decadal Record of Antarctic Benthos: Image Analysis to Maximize Data Utilization", "projects": [{"proj_uid": "p0000401", "repository": "USAP-DC", "title": "EAGER: A Multi-decadal Record of Antarctic Benthos: Image Analysis to Maximize Data Utilization"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.5, "title": "A Multi-decadal Record of Antarctic Benthos: Image Analysis to Maximize Data Utilization", "uid": "600164", "west": 163.0}, {"awards": "1142162 Stone, John", "bounds_geometry": ["POLYGON((-104.14 -81.07,-102.24 -81.07,-100.34 -81.07,-98.44 -81.07,-96.54 -81.07,-94.64 -81.07,-92.74 -81.07,-90.84 -81.07,-88.94 -81.07,-87.04 -81.07,-85.14 -81.07,-85.14 -81.207,-85.14 -81.344,-85.14 -81.481,-85.14 -81.618,-85.14 -81.755,-85.14 -81.892,-85.14 -82.029,-85.14 -82.166,-85.14 -82.303,-85.14 -82.44,-87.04 -82.44,-88.94 -82.44,-90.84 -82.44,-92.74 -82.44,-94.64 -82.44,-96.54 -82.44,-98.44 -82.44,-100.34 -82.44,-102.24 -82.44,-104.14 -82.44,-104.14 -82.303,-104.14 -82.166,-104.14 -82.029,-104.14 -81.892,-104.14 -81.755,-104.14 -81.618,-104.14 -81.481,-104.14 -81.344,-104.14 -81.207,-104.14 -81.07))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award supports a reconnaissance geological and radar-sounding study of promising sites in West Antarctica for a future project to measure cosmogenic nuclides in subglacial bedrock. Field work will take place in the Whitmore Mountains, close to the WAIS divide, and on the Nash and Pirrit Hills, downflow from the divide in the Weddell Sea drainage. At each site geological indicators of higher (and lower) ice levels in the past will be mapped and evidence of subglacial erosion or its absence will be documented. Elevation transects of both glacial erratics and adjacent bedrock samples will be collected to establish the timing of recent deglaciation at the sites and provide a complement to similar measurements on material from depth transects obtained by future subglacial drilling. At each site, bedrock ridges will be traced into the subsurface with closely-spaced ice-penetrating radar surveys, using a combination of instruments and frequencies to obtain the highest possible surface detail. Collectively the results will define prospective sites for subglacial sampling, and maximize the potential information to be obtained from such samples in future studies. The intellectual merit of this project is that measurements of cosmogenic nuclides in subglacial bedrock hold promise for resolving the questions of whether the West Antarctic ice sheet collapsed completely in the past, whether it is prone to repeated large deglaciations, and if so, what is their magnitude and frequency. Such studies will require careful choice of targets, to locate sites where bedrock geology is favorable, cosmogenic nuclide records are likely to have been protected from subglacial erosion, and the local ice-surface response is indicative of large-scale ice sheet behavior. The broader impacts of this work include helping to determine whether subglacial surfaces in West Antarctica were ever exposed to cosmic rays, which will provide unambiguous evidence for or against a smaller ice sheet in the past. This is an important step towards establishing whether the WAIS is vulnerable to collapse in future, and will ultimately help to address uncertainty in forecasting sea level change. The results will also provide ground truth for models of ice-sheet dynamics and long-term ice sheet evolution, and will help researchers use these models to identify paleoclimate conditions responsible for WAIS deglaciation. The education and training of students (both undergraduate and graduate students) will play an important role in the project, which will involve Antarctic fieldwork, technically challenging labwork, data collection and interpretation, and communication of the outcome to scientists and the general public.", "east": -85.14, "geometry": ["POINT(-94.64 -81.755)"], "keywords": "Antarctica; Be-10; Chemistry:rock; Chemistry:Rock; Cosmogenic Dating; Glaciology; Nunataks; Sample/collection Description; Sample/Collection Description; Solid Earth; Whitmore Mountains", "locations": "Whitmore Mountains; Antarctica", "north": -81.07, "nsf_funding_programs": null, "persons": "Stone, John", "project_titles": "Glacial-interglacial History of West Antarctic Nunataks and Site Reconnaissance for Subglacial Bedrock Sampling", "projects": [{"proj_uid": "p0000335", "repository": "USAP-DC", "title": "Glacial-interglacial History of West Antarctic Nunataks and Site Reconnaissance for Subglacial Bedrock Sampling"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.44, "title": "Glacial-interglacial History of West Antarctic Nunataks and Site Reconnaissance for Subglacial Bedrock Sampling", "uid": "600162", "west": -104.14}, {"awards": "0944282 Hasiotis, Stephen", "bounds_geometry": ["POINT(175 -86)"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This proposal will study the diversity, abundance, and tiering patterns of ichnofossils in continental and marine deposits of the Beacon Supergroup in the Beardmore Glacier Area (BGA). The PIs will focus on continental strata that contain a variety of ichnofossils and paleosols. Ichnofossils will be evaluated for their architectural and surficial morphologies, and will be compared to modern and ancient traces to interpret the tracemaker behavior and paleoenvironmental setting. Distribution of ichnofossils within these units may indicate the effect of lateral variability of pedogenesis, the magnitude and frequency of depositional events, and the amount of moisture within the sediment, as well as the effects of climate change. The paleoclimatic significance of ichnofossils will be determined by comparing the burrow size, occurrence, tiering, and pedogenic significance of ichnofossils in measured sections of stratigraphic units deposited during global warming and cooling episodes. Comparisons will be made between BGA formations to stratigraphically equivalent rocks deposited at low paleolatitudes with previously determined paleoclimatic settings. The objectives of this project are to address two major questions: what differences existed in ichnodiversity, abundance, and tiering in marine and continental deposits between high- and low-paleolatitudes, and was there a dearth of habitat usage in continental deposits during the late Paleozoic and Mesozoic, particularly in fluvial and lacustrine environments compared to the habitat usage in the marine realm at that time?\nThis study will enhance the ability to interpret paleoenvironments to the subenvironmental scale, understand the evolution of soil biota and ecosystems at high paleolatitudes, determine the role of organisms in soil formation at high paleolatitudes, explore the effects of climate change on the body size and diversity of organisms in the soil communities, and develop new tools to interpret paleoclimate in high latitudes. There is a strong education component associated with this proposal.", "east": 175.0, "geometry": ["POINT(175 -86)"], "keywords": "Antarctica; Beardmore Glacier; Biota; Fossil; Paleoclimate; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica; Beardmore Glacier", "north": -86.0, "nsf_funding_programs": null, "persons": "Hasiotis, Stephen", "project_titles": "Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica", "projects": [{"proj_uid": "p0000423", "repository": "USAP-DC", "title": "Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -86.0, "title": "Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica", "uid": "600156", "west": 175.0}, {"awards": "0229314 Stone, John", "bounds_geometry": ["POLYGON((-136.32 -85.38,-135.136 -85.38,-133.952 -85.38,-132.768 -85.38,-131.584 -85.38,-130.4 -85.38,-129.216 -85.38,-128.032 -85.38,-126.848 -85.38,-125.664 -85.38,-124.48 -85.38,-124.48 -85.493,-124.48 -85.606,-124.48 -85.719,-124.48 -85.832,-124.48 -85.945,-124.48 -86.058,-124.48 -86.171,-124.48 -86.284,-124.48 -86.397,-124.48 -86.51,-125.664 -86.51,-126.848 -86.51,-128.032 -86.51,-129.216 -86.51,-130.4 -86.51,-131.584 -86.51,-132.768 -86.51,-133.952 -86.51,-135.136 -86.51,-136.32 -86.51,-136.32 -86.397,-136.32 -86.284,-136.32 -86.171,-136.32 -86.058,-136.32 -85.945,-136.32 -85.832,-136.32 -85.719,-136.32 -85.606,-136.32 -85.493,-136.32 -85.38))"], "date_created": "Mon, 30 Mar 2015 00:00:00 GMT", "description": "This data set contains site, sample, and analytical data from which to calculate cosmogenic nuclide-based exposure ages for glacial deposits adjacent to Reedy Glacier, Antarctica. The data are formatted as input for the CRONUS online exposure-age calculator (http://www.hess.ess.edu/), which determines the exposure age from the cosmogenic Beryllium-10 and Aluminum-26 production rates.", "east": -124.48, "geometry": ["POINT(-130.4 -85.945)"], "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Cosmogenic; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Reedy Glacier; Sample/collection Description; Sample/Collection Description", "locations": "Antarctica; Reedy Glacier", "north": -85.38, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Stone, John", "project_titles": "Collaborative Research: Late Quaternary History of Reedy Glacier", "projects": [{"proj_uid": "p0000029", "repository": "USAP-DC", "title": "Collaborative Research: Late Quaternary History of Reedy Glacier"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -86.51, "title": "Reedy Glacier Exposure Ages, Antarctica", "uid": "609601", "west": -136.32}, {"awards": "0739575 Emslie, Steven", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "The research combines interdisciplinary study in geology, paleontology, and biology, using stable isotope and radiocarbon analyses, to examine how climate change and resource utilization have influenced population distribution, movement, and diet in penguins during the mid-to-late Holocene. Previous investigations have demonstrated that abandoned colonies contain well-preserved remains that can be used to examine differential responses of penguins to climate change in various sectors of Antarctica. As such, the research team will investigate abandoned and active pygoscelid penguin (Adelie, Chinstrap, and Gentoo) colonies in the Antarctic Peninsula and Ross Sea regions, and possibly Prydz Bay, in collaboration with Chinese scientists during four field seasons. Stable isotope analyses will be conducted on recovered penguin tissues and prey remains in guano to address hypotheses on penguin occupation history, population movement, and diet in relation to climate change since the late Pleistocene. The study will include one Ph.D., two Masters and 16 undergraduate students in advanced research over the project period. Students will be exposed to a variety of fields, the scientific method, and international scientific research. They will complete field and lab research for individual projects or Honor\u0027s theses for academic credit. The project also will include web-based outreach, lectures to middle school students, and the development of interactive exercises that highlight hypothesis-driven research and the ecology of Antarctica. Two undergraduate students in French and Spanish languages at UNCW will be hired to assist in translating the Web page postings for broader access to this information.\n", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Antarctic Peninsula; Biota; Geochronology; Global; Penguin; Ross Sea; Sample/collection Description; Sample/Collection Description; Scotia Sea; Southern Ocean", "locations": "Antarctic Peninsula; Global; Ross Sea; Scotia Sea; Southern Ocean; Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Emslie, Steven; Patterson, William; Polito, Michael", "project_titles": "Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica", "projects": [{"proj_uid": "p0000317", "repository": "USAP-DC", "title": "Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica", "uid": "600145", "west": -180.0}, {"awards": "1146399 Sidor, Christian", "bounds_geometry": ["POLYGON((162.41 -84.27,163.409 -84.27,164.408 -84.27,165.407 -84.27,166.406 -84.27,167.405 -84.27,168.404 -84.27,169.403 -84.27,170.402 -84.27,171.401 -84.27,172.4 -84.27,172.4 -84.353,172.4 -84.436,172.4 -84.519,172.4 -84.602,172.4 -84.685,172.4 -84.768,172.4 -84.851,172.4 -84.934,172.4 -85.017,172.4 -85.1,171.401 -85.1,170.402 -85.1,169.403 -85.1,168.404 -85.1,167.405 -85.1,166.406 -85.1,165.407 -85.1,164.408 -85.1,163.409 -85.1,162.41 -85.1,162.41 -85.017,162.41 -84.934,162.41 -84.851,162.41 -84.768,162.41 -84.685,162.41 -84.602,162.41 -84.519,162.41 -84.436,162.41 -84.353,162.41 -84.27))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "The PI requests support for preparation of a large collection of vertebrate fossils recently recovered from the Central Transantarctic Mountains (CTAM) of Antarctica. These fossils will be used to place early Mesozoic Antarctic dinosaurs and other vertebrates into a global evolutionary, biogeographic, and faunal context; assess the degree of endemism in Triassic vertebrate faunas of Antarctica; constrain temporal relationships of the Triassic Antarctic vertebrate faunas; and refine the stratigraphic context for the Triassic Antarctic vertebrate assemblages to establish a paleoenvironmental framework. The lower and middle Triassic fossils offer a rare window on life in terrestrial environments at high-latitudes immediately after the Permian mass extinction.\n\nThe PI will use their fossils to educate the public about the geologic, climatic, and biologic history of Antarctica by visiting local schools. They will create and publish at least two new videos to the Burke Museum blog that relate the graduate student\u0027s experience of fieldwork in Antarctica. They will also update the Antarctica section on the UWBM \u0027Explore Your World\u0027 website with images and findings from their field season.\n", "east": 172.4, "geometry": ["POINT(167.405 -84.685)"], "keywords": "Antarctica; Biota; Fossil; Paleoclimate; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains; Triassic", "locations": "Transantarctic Mountains; Antarctica", "north": -84.27, "nsf_funding_programs": null, "persons": "Sidor, Christian", "project_titles": "Preparation of Vertebrate Fossils from the Triassic of Antarctica", "projects": [{"proj_uid": "p0000418", "repository": "USAP-DC", "title": "Preparation of Vertebrate Fossils from the Triassic of Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.1, "title": "Preparation of Vertebrate Fossils from the Triassic of Antarctica", "uid": "600144", "west": 162.41}, {"awards": "1343649 Levy, Joseph", "bounds_geometry": ["POLYGON((162.852 -77.6111,162.9893 -77.6111,163.1266 -77.6111,163.2639 -77.6111,163.4012 -77.6111,163.5385 -77.6111,163.6758 -77.6111,163.8131 -77.6111,163.9504 -77.6111,164.0877 -77.6111,164.225 -77.6111,164.225 -77.65331,164.225 -77.69552,164.225 -77.73773,164.225 -77.77994,164.225 -77.82215,164.225 -77.86436,164.225 -77.90657,164.225 -77.94878,164.225 -77.99099,164.225 -78.0332,164.0877 -78.0332,163.9504 -78.0332,163.8131 -78.0332,163.6758 -78.0332,163.5385 -78.0332,163.4012 -78.0332,163.2639 -78.0332,163.1266 -78.0332,162.9893 -78.0332,162.852 -78.0332,162.852 -77.99099,162.852 -77.94878,162.852 -77.90657,162.852 -77.86436,162.852 -77.82215,162.852 -77.77994,162.852 -77.73773,162.852 -77.69552,162.852 -77.65331,162.852 -77.6111))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "The PIs propose to quantify the hillslope water, solute, and carbon budgets for Taylor Valley in the McMurdo Dry Valleys, using water tracks to investigate near-surface geological processes and challenge the paradigm that shallow groundwater is minimal or non-exixtant. Water tracks are linear zones of high soil moisture that route shallow groundwater downslope in permafrost dominated soils. Four hypotheses will be tested: 1) water tracks are important pathways for water and solute transport; 2) water tracks transport more dissolved silica than streams in Taylor Valley indicating they are the primary site of chemical weathering for cold desert soils and bedrock; 3) water tracks that drain highland terrains are dominated by humidity-separated brines while water tracks that drain lowland terrains are dominated by marine aerosols; 4) water tracks are the sites of the highest terrestrial soil carbon concentrations and the strongest CO2 fluxes in Taylor Valley and their carbon content increases with soil age, while carbon flux decreases with age. To test these hypotheses the PIs will carry out a suite of field measurements supported by modeling and remote sensing. They will install shallow permafrost wells in water tracks that span the range of geological, climatological, and topographic conditions in Taylor Valley. Multifrequency electromagnetic induction sounding of the upper ~1 m of the permafrost will create the first comprehensive map of soil moisture in Taylor Valley, and will permit direct quantification of water track discharge across the valley. The carbon contents of water track soils will be measured and linked to global carbon dynamics.\n\nNon-science majors at Oregon State University will be integrated into the proposed research through a new Global Environmental Change course focusing on the scientific method in Antarctica. Three undergraduate students, members of underrepresented minorities, will be entrained in the research, will contribute to all aspects of field and laboratory science, and will present results at national meetings.\n", "east": 164.225, "geometry": ["POINT(163.5385 -77.82215)"], "keywords": "Antarctica; Chemistry:soil; Chemistry:Soil; Critical Zone; Dry Valleys; Permafrost; Sample/collection Description; Sample/Collection Description; Well Measurements", "locations": "Dry Valleys; Antarctica", "north": -77.6111, "nsf_funding_programs": null, "persons": "Levy, Joseph", "project_titles": "Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica", "projects": [{"proj_uid": "p0000407", "repository": "USAP-DC", "title": "Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0332, "title": "Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica", "uid": "600139", "west": 162.852}, {"awards": "1332492 Lohmann, Rainer", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "Many persistent organic pollutants (POPs), though banned in the U.S. since the 1970s, remain in the environment and continue to reach hitherto pristine regions such as the Arctic and Antarctic. The overall goals of this RAPID project are to better understand the remobilization of POPs from melting glaciers in the Antarctic, and their transfer into the food-web. Legacy POPs have characteristic chemical signatures that will be used ascertain the origin of POPs in the Antarctic atmosphere and marine food-web. Samples that were collected in 2010 will be analyzed for a wide range of legacy POPs, and their behavior will be contrasted with results for emerging contaminants. The intellectual merit of the proposed research combines (a) the use of chemical signatures to assess whether melting glaciers are releasing legacy POPs back into the Antarctic marine ecosystem, and (b) a better understanding of the food-web dynamics of legacy POPs versus emerging organic pollutants.\n\nThe broader impacts of the proposed research project will include the training of the next generation of scientists through support for a graduate student and a postdoctoral scholar. As well, this work will result in a better understanding of the relationship between pollutants, trophic food web ecology and global climate change in the pristine Antarctic ecosystem.\n", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Animal Tracking; Antarctica; Antarctic Peninsula; Atmosphere; Biota; Chemistry:fluid; Chemistry:Fluid; Human Dimensions; McMurdo Sound; Oceans; Palmer Station; Pollution; Ross Sea; Sample/collection Description; Sample/Collection Description; Seals; Southern Ocean; Weddell Sea", "locations": "Weddell Sea; McMurdo Sound; Ross Sea; Antarctic Peninsula; Southern Ocean; Palmer Station; Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Lohmann, Rainer", "project_titles": "RAPID: Origin of Persistent Organic Pollutants in the Antarctic Atmosphere, Snow and Marine Food WEB", "projects": [{"proj_uid": "p0000344", "repository": "USAP-DC", "title": "RAPID: Origin of Persistent Organic Pollutants in the Antarctic Atmosphere, Snow and Marine Food WEB"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Origin of Persistent Organic Pollutants in the Antarctic Atmosphere, Snow and Marine Food Web", "uid": "600138", "west": -180.0}, {"awards": "1321782 Costa, Daniel", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "Identifying the basic habitat requirements of Antarctic predators is fundamental to understanding how they will respond to the human-induced challenges of commercial fisheries and climate change. This understanding can only be achieved if the underlying linkages to physical processes are related to animal movements. As part of the international Retrospective Analysis of Antarctic Tracking Data (RAATD) organized by the SCAR Expert Group of Birds and Marine Mammals, this research will collate and synthesize tracking data from crabeater seals, Lobodon carcinophagus, and Weddell seals, Leptonychotes weddelli. These data will be combined with all available data from the Southern Ocean that has been collected by researchers from Norway, United Kingdom, Germany, Australia and the USA. These data will be analyzed using a common analytical approach and synthesized into a synoptic view of these two species across the Southern Ocean. The diving and movement patterns will be examined for each species. As well, the total home range and core habitat utilization patterns for each species and region will be determined. This study will develop global habitat maps for each species based on physical and biological attributes of their \u0027hot-spots\u0027 and then overlay all the species specific maps to identify multi-species areas of ecological significance. Broader impacts include support and training for a postdoctoral scholar, the production of a publicly available database and the participation in an international data synthesis effort.\n", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Animal Tracking; Antarctica; Biota; Oceans; Sample/collection Description; Sample/Collection Description; Seals; Southern Ocean", "locations": "Antarctica; Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Costa, Daniel", "project_titles": "Retrospective Analysis of Antarctic Tracking data (RAATD): International Crabeater and Weddell Seal Tracking Data Sets", "projects": [{"proj_uid": "p0000346", "repository": "USAP-DC", "title": "Retrospective Analysis of Antarctic Tracking data (RAATD): International Crabeater and Weddell Seal Tracking Data Sets"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Retrospective Analysis of Antarctic Tracking data (RAATD): International Crabeater and Weddell Seal Tracking Data Sets", "uid": "600137", "west": -180.0}, {"awards": "1303896 Kirschvink, Joseph", "bounds_geometry": ["POLYGON((-57 -63,-56.9 -63,-56.8 -63,-56.7 -63,-56.6 -63,-56.5 -63,-56.4 -63,-56.3 -63,-56.2 -63,-56.1 -63,-56 -63,-56 -63.2,-56 -63.4,-56 -63.6,-56 -63.8,-56 -64,-56 -64.2,-56 -64.4,-56 -64.6,-56 -64.8,-56 -65,-56.1 -65,-56.2 -65,-56.3 -65,-56.4 -65,-56.5 -65,-56.6 -65,-56.7 -65,-56.8 -65,-56.9 -65,-57 -65,-57 -64.8,-57 -64.6,-57 -64.4,-57 -64.2,-57 -64,-57 -63.8,-57 -63.6,-57 -63.4,-57 -63.2,-57 -63))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "The PI will collect samples to extend the magneto-stratigraphic record of late Cretaceous sediments of the James Ross Basin, Antarctica. RAPID support will allow him to take advantage of an invitation from the Instituto Antartico Argentino (IAA) to participate on an excursion to James Ross Island in the Antarctic Peninsula. The PI hopes to collect samples that will refine the position of several geomagnetic reversals between the end of the Cretaceous long normal Chron and the lower portion of Chron 31R. The Brandy Bay locality targeted by this expedition is the best place in the basin for calibrating the biostratigraphic position of the top of the Cretaceous Long Normal Chron, which is one of the most reliable correlation horizons in the entire Geological Time Scale.\n\nThe top of the Cretaceous long normal Chron is not properly correlated to southern hemisphere biostratigraphy. Locating this event will be a major addition to understanding geological time. This expedition will provide opportunities for an undergraduate student. This project is based on a productive collaboration with an Argentine scientist.", "east": -56.0, "geometry": ["POINT(-56.5 -64)"], "keywords": "Antarctica; GPS; James Ross Basin; Sample/collection Description; Sample/Collection Description; Solid Earth", "locations": "James Ross Basin; Antarctica", "north": -63.0, "nsf_funding_programs": null, "persons": "Kirschvink, Joseph", "project_titles": "Magnetostratigraphy of Cretaceous Sediments in the James Ross Island Basin, Antarctica", "projects": [{"proj_uid": "p0000419", "repository": "USAP-DC", "title": "Magnetostratigraphy of Cretaceous Sediments in the James Ross Island Basin, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Magnetostratigraphy of Cretaceous Sediments in the James Ross Island Basin, Antarctica", "uid": "600136", "west": -57.0}, {"awards": "1043485 Curtice, Josh", "bounds_geometry": ["POLYGON((163.4 -77.47989,163.9848 -77.47989,164.5696 -77.47989,165.1544 -77.47989,165.7392 -77.47989,166.324 -77.47989,166.9088 -77.47989,167.4936 -77.47989,168.0784 -77.47989,168.6632 -77.47989,169.248 -77.47989,169.248 -77.565701,169.248 -77.651512,169.248 -77.737323,169.248 -77.823134,169.248 -77.908945,169.248 -77.994756,169.248 -78.080567,169.248 -78.166378,169.248 -78.252189,169.248 -78.338,168.6632 -78.338,168.0784 -78.338,167.4936 -78.338,166.9088 -78.338,166.324 -78.338,165.7392 -78.338,165.1544 -78.338,164.5696 -78.338,163.9848 -78.338,163.4 -78.338,163.4 -78.252189,163.4 -78.166378,163.4 -78.080567,163.4 -77.994756,163.4 -77.908945,163.4 -77.823134,163.4 -77.737323,163.4 -77.651512,163.4 -77.565701,163.4 -77.47989))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "This award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation.\n", "east": 169.248, "geometry": ["POINT(166.324 -77.908945)"], "keywords": "Antarctica; Cosmogenic Dating; Ross Sea; Sample/collection Description; Sample/Collection Description; Southern Ocean; WAIS", "locations": "Ross Sea; WAIS; Antarctica; Southern Ocean", "north": -77.47989, "nsf_funding_programs": null, "persons": "Kurz, Mark D.; Curtice, Josh", "project_titles": "Collaborative Research: A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea", "projects": [{"proj_uid": "p0000194", "repository": "USAP-DC", "title": "Collaborative Research: A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.338, "title": "A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea", "uid": "600123", "west": 163.4}, {"awards": "1043454 Kooyman, Gerald", "bounds_geometry": ["POLYGON((-172.642 -72.55,-170.9074 -72.55,-169.1728 -72.55,-167.4382 -72.55,-165.7036 -72.55,-163.969 -72.55,-162.2344 -72.55,-160.4998 -72.55,-158.7652 -72.55,-157.0306 -72.55,-155.296 -72.55,-155.296 -73.0743,-155.296 -73.5986,-155.296 -74.1229,-155.296 -74.6472,-155.296 -75.1715,-155.296 -75.6958,-155.296 -76.2201,-155.296 -76.7444,-155.296 -77.2687,-155.296 -77.793,-157.0306 -77.793,-158.7652 -77.793,-160.4998 -77.793,-162.2344 -77.793,-163.969 -77.793,-165.7036 -77.793,-167.4382 -77.793,-169.1728 -77.793,-170.9074 -77.793,-172.642 -77.793,-172.642 -77.2687,-172.642 -76.7444,-172.642 -76.2201,-172.642 -75.6958,-172.642 -75.1715,-172.642 -74.6472,-172.642 -74.1229,-172.642 -73.5986,-172.642 -73.0743,-172.642 -72.55))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "The emperor penguin dives deeper and longer, fasts longer, and endures the harshest weather conditions of all diving birds. It spends about four and half months per annum deep in Antarctic pack ice away from shore and stations, and thus is largely unavailable for study. This time includes preparation for the molt, and travel to the colony to breed, a time period in which great swings in body weight occur. This study will fill an important gap in what we know about the biology of the annual cycle of the emperor by examining the molt-post molt period. The P.I. proposes to traverse the Amundsen and Bellingshausen seas on the Oden, to locate and tag emperor penguins during the molt season. The objectives are to (1) Place satellite tags on 20 adult post molt birds to determine their route, rate of travel, and diving behavior as they return back to their breeding colonies, (2) Obtain an index of body condition, (3) Collect guano to determine the type of food consumed by emperor penguins in the region, (4) Conduct shipboard surveys to sight and plot the location and abundance of adult and juvenile birds on the ship\u0027s track. The PI hypothesizes that bird dives will be shallow during the initial post-molt phase, and that food will consist primarily of krill; that there will be differential dispersal of birds from the Ross Sea vs. Marie Byrd Land, with Ross Sea birds traveling farther; and that the greatest adult mortality occurs during the molt and early post molt period. Broader impacts include training of a post doc, a graduate student, and an aquarium volunteer. The P.I. also will present findings through a website, through public lectures, and in collaboration with the Birch aquarium.\n", "east": -155.296, "geometry": ["POINT(-163.969 -75.1715)"], "keywords": "Amundsen Sea; Biota; Oceans; Penguin; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Southern Ocean; Amundsen Sea", "north": -72.55, "nsf_funding_programs": null, "persons": "Kooyman, Gerald", "project_titles": "Pre and post molt biology of emperor penguins - Oden trans - Ross / Amundsen Sea cruise", "projects": [{"proj_uid": "p0000325", "repository": "USAP-DC", "title": "Pre and post molt biology of emperor penguins - Oden trans - Ross / Amundsen Sea cruise"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.793, "title": "Pre and Post Molt Biology of Emperor Penguins - Oden Trans - Ross / Amundsen Sea Cruise", "uid": "600149", "west": -172.642}, {"awards": "0944248 MacAyeal, Douglas", "bounds_geometry": ["POLYGON((-63 -63,-62.2 -63,-61.4 -63,-60.6 -63,-59.8 -63,-59 -63,-58.2 -63,-57.4 -63,-56.6 -63,-55.8 -63,-55 -63,-55 -63.4,-55 -63.8,-55 -64.2,-55 -64.6,-55 -65,-55 -65.4,-55 -65.8,-55 -66.2,-55 -66.6,-55 -67,-55.8 -67,-56.6 -67,-57.4 -67,-58.2 -67,-59 -67,-59.8 -67,-60.6 -67,-61.4 -67,-62.2 -67,-63 -67,-63 -66.6,-63 -66.2,-63 -65.8,-63 -65.4,-63 -65,-63 -64.6,-63 -64.2,-63 -63.8,-63 -63.4,-63 -63))"], "date_created": "Tue, 29 Apr 2014 00:00:00 GMT", "description": "This data set addresses why surface melt water lakes on ice shelves and ice sheets are notably influential in triggering ice-shelf break-up and modulating seasonal ice flow, and are thus principle avenues by which environmental change can be transmitted to the ice sheets of Antarctica and Greenland. A comparative analysis is performed of lake geometry and derived depth (using Landsat image reflectance) in two distinct regions, one a collapsing ice shelf and the other an ablation zone of a land terminating ice sheet, to better characterize the range of surface lake variability.", "east": -55.0, "geometry": ["POINT(-59 -65)"], "keywords": "Antarctica; Antarctic Peninsula; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Larsen B Ice Shelf; Sample/collection Description; Sample/Collection Description; Supraglacial Meltwater", "locations": "Larsen B Ice Shelf; Antarctica; Antarctic Peninsula", "north": -63.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "MacAyeal, Douglas", "project_titles": "Model Studies of Surface Water Behavior on Ice Shelves", "projects": [{"proj_uid": "p0000052", "repository": "USAP-DC", "title": "Model Studies of Surface Water Behavior on Ice Shelves"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.0, "title": "Standing Water Depth on Larsen B Ice Shelf", "uid": "609584", "west": -63.0}, {"awards": "1043619 Hemming, Sidney", "bounds_geometry": ["POLYGON((-180 -63.997,-179.7982 -63.997,-179.5964 -63.997,-179.3946 -63.997,-179.1928 -63.997,-178.991 -63.997,-178.7892 -63.997,-178.5874 -63.997,-178.3856 -63.997,-178.1838 -63.997,-177.982 -63.997,-177.982 -66.3324,-177.982 -68.6678,-177.982 -71.0032,-177.982 -73.3386,-177.982 -75.674,-177.982 -78.0094,-177.982 -80.3448,-177.982 -82.6802,-177.982 -85.0156,-177.982 -87.351,-178.1838 -87.351,-178.3856 -87.351,-178.5874 -87.351,-178.7892 -87.351,-178.991 -87.351,-179.1928 -87.351,-179.3946 -87.351,-179.5964 -87.351,-179.7982 -87.351,180 -87.351,172.54273 -87.351,165.08546 -87.351,157.62819 -87.351,150.17092 -87.351,142.71365 -87.351,135.25638 -87.351,127.79911 -87.351,120.34184 -87.351,112.88457 -87.351,105.4273 -87.351,105.4273 -85.0156,105.4273 -82.6802,105.4273 -80.3448,105.4273 -78.0094,105.4273 -75.674,105.4273 -73.3386,105.4273 -71.0032,105.4273 -68.6678,105.4273 -66.3324,105.4273 -63.997,112.88457 -63.997,120.34184 -63.997,127.79911 -63.997,135.25638 -63.997,142.71365 -63.997,150.17092 -63.997,157.62819 -63.997,165.08546 -63.997,172.54273 -63.997,-180 -63.997))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: The PIs proposed a provenance study of glacial deposits in the Ross Embayment that will provide a broad scale geochronologic survey of detrital minerals in till to help characterize bedrock beneath the East Antarctic ice sheet and constrain Antarctica?s glacial history. This project capitalizes on previous investments in field sampling. Analytical tools applied to single mineral grains extracted from existing collections of glacial till will generate ?fingerprints? of East Antarctic outlet glaciers and West Antarctic till to refine paleo-ice flow models for the Ross Embayment during the last glacial maximum, older records from ANDRILL cores, and to assess IRD sources in the Southern Ocean. New provenance tracers will include a suite of geochronological methods that together provide greater insights into the orogenic and erosional history the region. This project will include U/Pb of detrital zircons, (U-Th)/He on a subset of the U/Pb dated zircons, as well as Ar-Ar of detrital hornblende, mica and feldspars.\nBroader Impacts: This research will train one M.S. student at IUPUI, a Ph.D. student at Columbia, and several undergraduates at both institutions. Graduate students involved in the project will be involved in mentoring undergraduate researchers. Incorporation of research discoveries will be brought into the classroom by providing concrete examples and exercises at the appropriate level. Licht and Columbia graduate student E. Pierce are developing outreach projects with local secondary school teachers to investigate the provenance of glacial materials in their local areas. The research will have broad applicability to many fields.", "east": 105.4273, "geometry": ["POINT(143.72265 -75.674)"], "keywords": "Antarctica; East Antarctica; Geochemistry; Ross Sea; Sample/collection Description; Sample/Collection Description; Solid Earth; Southern Ocean; West Antarctica", "locations": "Southern Ocean; West Antarctica; East Antarctica; Antarctica; Ross Sea", "north": -63.997, "nsf_funding_programs": null, "persons": "Hemming, Sidney R.", "project_titles": "Collaborative Research: East Antarctic outlet glacier contributions to the Ross Sea from chronology of detrital grains", "projects": [{"proj_uid": "p0000333", "repository": "USAP-DC", "title": "Collaborative Research: East Antarctic outlet glacier contributions to the Ross Sea from chronology of detrital grains"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.351, "title": "East Antarctic outlet glacier contributions to the Ross Sea from chronology of detrital grains", "uid": "600124", "west": -177.982}, {"awards": "0944475 Kaplan, Michael", "bounds_geometry": ["POLYGON((-180 -84.1,-176.97 -84.1,-173.94 -84.1,-170.91 -84.1,-167.88 -84.1,-164.85 -84.1,-161.82 -84.1,-158.79 -84.1,-155.76 -84.1,-152.73 -84.1,-149.7 -84.1,-149.7 -84.43,-149.7 -84.76,-149.7 -85.09,-149.7 -85.42,-149.7 -85.75,-149.7 -86.08,-149.7 -86.41,-149.7 -86.74,-149.7 -87.07,-149.7 -87.4,-152.73 -87.4,-155.76 -87.4,-158.79 -87.4,-161.82 -87.4,-164.85 -87.4,-167.88 -87.4,-170.91 -87.4,-173.94 -87.4,-176.97 -87.4,180 -87.4,178.12 -87.4,176.24 -87.4,174.36 -87.4,172.48 -87.4,170.6 -87.4,168.72 -87.4,166.84 -87.4,164.96 -87.4,163.08 -87.4,161.2 -87.4,161.2 -87.07,161.2 -86.74,161.2 -86.41,161.2 -86.08,161.2 -85.75,161.2 -85.42,161.2 -85.09,161.2 -84.76,161.2 -84.43,161.2 -84.1,163.08 -84.1,164.96 -84.1,166.84 -84.1,168.72 -84.1,170.6 -84.1,172.48 -84.1,174.36 -84.1,176.24 -84.1,178.12 -84.1,-180 -84.1))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: The proposed work will investigate changes in the compositional variation of glacial tills over time across two concentric sequences of Pleistocene moraines located adjacent to the heads of East Antarctic outlet glaciers in the Transantarctic Mountains (TAM). The chronologic framework for this work will be generated from cosmogenic exposure ages of boulders on prominent morainal ridges. The PIs hypothesize that variations in till composition may indicate a change in ice flow direction or a change in the composition of the original source area, while ages of the moraines provide a long-term terrestrial perspective on ice sheet dynamics. Both results are vital for modeling experiments that aim to reconstruct the East Antarctic Ice Sheet and assess its role in the global climate system and its potential impact on global sea level rise. The variation of till compositions through time also allows for a more accurate interpretation of sediment cores from the Ross Sea and the Southern Ocean. Additionally, till exposures at the head of some East Antarctic outlet glaciers have been shown to contain subglacial material derived from East Antarctic bedrock, providing a window through the ice to view East Antarctica\u0027s inaccessible bedrock. Till samples will be collected from two well-preserved sequences of moraine crests at Mt. Howe (head of Scott Glacier) and Mt. Achernar (between Beardmore and Nimrod Glaciers). Each size fraction in glacial till provides potentially valuable information, and the PIs will measure the petrography of the clast and sand fractions, quantitative X-ray diffraction on the crushed \u003c2mm fraction, elemental abundance of the silt/clay fraction, and U/Pb of detrital zircons in the sand fraction. Data collection will rely on established methods previously used in this region and the PIs will also explore new methods to assess their efficacy. On the same moraines crests sampled for provenance studies, the PIs will sample for cosmogenic surface exposure analyses to provide a chronologic framework at the sites for provenance changes through time.\nBroader Impact: The proposed research involves graduate and undergraduate training in a diverse array of laboratory methods. Students and PIs will be make presentations to community and campus groups, as well as conduct interviews with local news outlets. The proposed work also establishes a new, potentially long-term, collaboration between scientists at IUPUI and LDEO and brings a new PI (Kaplan) into the field of Antarctic Earth Sciences.", "east": -149.7, "geometry": ["POINT(-174.25 -85.75)"], "keywords": "Antarctica; Cosmogenic Dating; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica", "north": -84.1, "nsf_funding_programs": null, "persons": "Kaplan, Michael", "project_titles": "Collaborative Research: Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines", "projects": [{"proj_uid": "p0000459", "repository": "USAP-DC", "title": "Collaborative Research: Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.4, "title": "Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines", "uid": "600115", "west": 161.2}, {"awards": "0724929 Simms, Alexander", "bounds_geometry": null, "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "This data set includes optically stimulated luminescence (OSL) ages and elevations obtained from raised beach ridges across the Antarctic Peninsula.", "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula; Sample/collection Description; Sample/Collection Description; Solid Earth", "locations": "Antarctica; Antarctic Peninsula", "north": null, "nsf_funding_programs": null, "persons": "Simms, Alexander", "project_titles": "SGER: Testing the use of OSL dating of beach deposits along the Antarctic Peninsula", "projects": [{"proj_uid": "p0000266", "repository": "USAP-DC", "title": "SGER: Testing the use of OSL dating of beach deposits along the Antarctic Peninsula"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Optically Stimulated Luminescence Ages of Raised Beaches", "uid": "600026", "west": null}, {"awards": "0732655 Mosley-Thompson, Ellen", "bounds_geometry": ["POLYGON((-63 -60,-62.6 -60,-62.2 -60,-61.8 -60,-61.4 -60,-61 -60,-60.6 -60,-60.2 -60,-59.8 -60,-59.4 -60,-59 -60,-59 -60.5,-59 -61,-59 -61.5,-59 -62,-59 -62.5,-59 -63,-59 -63.5,-59 -64,-59 -64.5,-59 -65,-59.4 -65,-59.8 -65,-60.2 -65,-60.6 -65,-61 -65,-61.4 -65,-61.8 -65,-62.2 -65,-62.6 -65,-63 -65,-63 -64.5,-63 -64,-63 -63.5,-63 -63,-63 -62.5,-63 -62,-63 -61.5,-63 -61,-63 -60.5,-63 -60))"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "Like no other region on Earth, the northern Antarctic Peninsula represents a spectacular natural laboratory of climate change and provides the opportunity to study the record of past climate and ecological shifts alongside the present-day changes in one of the most rapidly warming regions on Earth. This award supported the cryospheric and oceanographic components of an integrated multi-disciplinary program to address these rapid and fundamental changes now taking place in Antarctic Peninsula (AP). By making use of a marine research platform (the RV NB Palmer and on-board helicopters) and additional logistical support from the Argentine Antarctic program, the project brought together glaciologists, oceanographers, marine geologists and biologists who have worked collaboratively to address fundamental interdisciplinary questions regarding climate change.", "east": -59.0, "geometry": ["POINT(-61 -62.5)"], "keywords": "Antarctica; Antarctic Peninsula; Bruce Plateau; Glaciology; Ice Core Records; Isotope; LARISSA; Paleoclimate; Sample/collection Description; Sample/Collection Description; Snow Accumulation", "locations": "Antarctic Peninsula; Bruce Plateau; Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Thompson, Lonnie G.; Mosley-Thompson, Ellen", "project_titles": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans", "projects": [{"proj_uid": "p0000101", "repository": "USAP-DC", "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LARISSA", "south": -65.0, "title": "Abrupt Environmental Change in the Larsen Ice Shelf System (LARISSA) - Cryosphere and Oceans", "uid": "600167", "west": -63.0}, {"awards": "0738975 Baker, Ian", "bounds_geometry": ["POINT(-148.82 -81.66)"], "date_created": "Mon, 26 Nov 2012 00:00:00 GMT", "description": "This data set characterizes the microstructure in ice cores, in particular the microstructural locations of impurities, grain orientations, and strain gradients. The fabric of polycrystalline ice is typically described using only the c-axis orientation, but this is insufficient for a full description of grain orientations in this hexagonal material. Thus, both the a-axis and c-axis are used in this data set showing pole figures for five depths of the Siple Dome (SDMA) core between 640 m and 790 m and misorientation angle distribution for the same grains.", "east": -148.82, "geometry": ["POINT(-148.82 -81.66)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Sample/collection Description; Sample/Collection Description; Siple Dome; Siple Dome Ice Core; South Pole; WAISCORES", "locations": "Antarctica; South Pole; Siple Dome", "north": -81.66, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Baker, Ian; Obbard, Rachel; Sieg, Katherine", "project_titles": "Advanced Microstructural Characterization of Polar Ice Cores", "projects": [{"proj_uid": "p0000178", "repository": "USAP-DC", "title": "Advanced Microstructural Characterization of Polar Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.66, "title": "Siple Dome A (SDMA) Grain Orientation 640 - 790 Meters", "uid": "609526", "west": -148.82}, {"awards": "0944474 Robinson, Laura", "bounds_geometry": ["POLYGON((-70.5 -54.5,-66.95 -54.5,-63.4 -54.5,-59.85 -54.5,-56.3 -54.5,-52.75 -54.5,-49.2 -54.5,-45.65 -54.5,-42.1 -54.5,-38.55 -54.5,-35 -54.5,-35 -55.2,-35 -55.9,-35 -56.6,-35 -57.3,-35 -58,-35 -58.7,-35 -59.4,-35 -60.1,-35 -60.8,-35 -61.5,-38.55 -61.5,-42.1 -61.5,-45.65 -61.5,-49.2 -61.5,-52.75 -61.5,-56.3 -61.5,-59.85 -61.5,-63.4 -61.5,-66.95 -61.5,-70.5 -61.5,-70.5 -60.8,-70.5 -60.1,-70.5 -59.4,-70.5 -58.7,-70.5 -58,-70.5 -57.3,-70.5 -56.6,-70.5 -55.9,-70.5 -55.2,-70.5 -54.5))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "Polar oceans are the main sites of deep-water formation and are critical to the exchange of heat and carbon between the deep ocean and the atmosphere. This award \"Historic perspectives on climate and biogeography from deep-sea corals in the Drake Passage\" will address the following specific research questions: What was the radiocarbon content of the Southern Ocean during the last glacial maximum and during past rapid climate change events? and What are the major controls on the past and present distribution of cold-water corals within the Drake Passage and adjacent continental shelves? Testing these overall questions will allow the researchers to better understand how processes in the Southern Ocean are linked to climate change over millennia. This award is being funded by the Antarctic Earth Sciences Program of NSF\u0027s Office of Polar Programs, Antarctic Division. INTELLECTUAL MERIT: The skeletons of deep-sea corals are abundant in the Southern Ocean, and can be dated using U-series techniques making them a useful archive of oceanographic history. By pairing U-series and radiocarbon analyses the awardees can reconstruct the radiocarbon content of seawater in the past, allowing them to address the research questions raised above. Collection of living deep-sea corals along with environmental data will allow them to address the broader biogeography questions posed above as well. The awardees are uniquely qualified to answer these questions in their respective labs via cutting edge technologies, and they have shown promising results from a preliminary pilot cruise to the area in 2008. BROADER IMPACTS: Societal Relevance: The proposed paleoclimate research will make significant advances toward constraining the Southern Ocean\u0027s influence on global climate, specifically it should help set the bounds for the upper limits on how fast the ocean circulation might change in this region of the world, which is of high societal relevance in this era of changing climate. Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating undergraduate through post-doctoral students into research programs; ii) promotion of K-12 teaching and learning programs by providing information via a cruise website and in-school talks, iii) making the data collected available to the wider research community via data archives such as Seamounts Online and the Seamount Biogeographic Network and iv) reaching a larger public audience through such venues as interviews in the popular media.", "east": -35.0, "geometry": ["POINT(-52.75 -58)"], "keywords": "Biota; Corals; Cruise Report; Drake Passage; NBP1103; Oceans; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Southern Ocean; Drake Passage", "north": -54.5, "nsf_funding_programs": null, "persons": "Robinson, Laura", "project_titles": "Collaborative Research: Historic Perspectives on Climate and Biogeography from Deep-sea Corals in the Drake Passage", "projects": [{"proj_uid": "p0000514", "repository": "USAP-DC", "title": "Collaborative Research: Historic Perspectives on Climate and Biogeography from Deep-sea Corals in the Drake Passage"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -61.5, "title": "Historic Perspectives on Climate and Biogeography from Deep-Sea Corals in the Drake Passage", "uid": "600114", "west": -70.5}, {"awards": "0538479 Seibel, Brad", "bounds_geometry": ["POLYGON((166 -77,166.1 -77,166.2 -77,166.3 -77,166.4 -77,166.5 -77,166.6 -77,166.7 -77,166.8 -77,166.9 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.9 -78,166.8 -78,166.7 -78,166.6 -78,166.5 -78,166.4 -78,166.3 -78,166.2 -78,166.1 -78,166 -78,166 -77.9,166 -77.8,166 -77.7,166 -77.6,166 -77.5,166 -77.4,166 -77.3,166 -77.2,166 -77.1,166 -77))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Rising atmospheric carbon dioxide concentrations have resulted in greater oceanic uptake of anthropogenic carbon dioxide. Elevated partial pressure of carbon dioxide can impact marine organisms both via decreased carbonate saturation that affects calcification rates and via disturbance to acid-base (metabolic) physiology. Pteropod molluscs (Thecosomata) form shells made of aragonite, a type of calcium carbonate that is highly soluble, suggesting that these organisms may be particularly sensitive to increasing carbon dioxide and reduced carbonate ion concentration. Thecosome pteropods, which dominate the calcium carbonate export south of the Antarctic Polar Front, will be the first major group of marine calcifying organisms to experience carbonate undersaturation within parts of their present-day geographical ranges as a result of anthropogenic carbon dioxide. An unusual, co-evolved relationship between thecosomes and their specialized gymnosome predators provides a unique backdrop against which to assess the physiological and ecological importance of elevated partial pressure of carbon dioxide. Pteropods are functionally important components of the Antarctic ecosystem with potential to influence phytoplankton stocks, carbon export, and dimethyl sulfide levels that, in turn, influence global climate through ocean-atmosphere feedback loops. The research will quantify the impact of elevated carbon dioxide on a dominant aragonitic pteropod, Limacina helicina, and its specialist predator, the gymnosome Clione antarctica, in the Ross Sea through laboratory experimentation. Results will be disseminated broadly to enhance scientific understanding in this field. The project involves collaboration between researchers at a predominantly undergraduate institution with a significant enrollment of students that are typically underrepresented in the research environment (California State University San Marcos - CSUSM) and at a Ph.D.-granting institution (University of Rhode Island - URI). The program will promote education and learning through the joint education of undergraduate students and graduate students at CSUSM and URI as part of a research team, as well as through the teaching activities of the principal investigators. Dr. Keating, CSUSM professor of science education, will participate in the McMurdo fieldwork and lead the outreach opportunities for the project.", "east": 167.0, "geometry": ["POINT(166.5 -77.5)"], "keywords": "Biota; CO2; Mcmurdo Station; Oceans; Ross Island; Sample/collection Description; Sample/Collection Description; Shell Fish; Southern Ocean", "locations": "Southern Ocean; Ross Island", "north": -77.0, "nsf_funding_programs": null, "persons": "Seibel, Brad", "project_titles": "Collaborative Research: Impacts of Elevated pCO2 on a Dominant Aragonitic Pteropod (Thecosomata) and its Specialist Predator (Gymnosomata) in the Ross Sea", "projects": [{"proj_uid": "p0000694", "repository": "USAP-DC", "title": "Collaborative Research: Impacts of Elevated pCO2 on a Dominant Aragonitic Pteropod (Thecosomata) and its Specialist Predator (Gymnosomata) in the Ross Sea"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Impacts of Elevated pCO2 on a Dominant Aragonitic Pteropod (Thecosomata) and its Specialist Predator (Gymnosomata) in the Ross Sea", "uid": "600055", "west": 166.0}, {"awards": "0338087 Scheltema, Rudolf", "bounds_geometry": ["POLYGON((-70 -53,-68.4 -53,-66.8 -53,-65.2 -53,-63.6 -53,-62 -53,-60.4 -53,-58.8 -53,-57.2 -53,-55.6 -53,-54 -53,-54 -54.5,-54 -56,-54 -57.5,-54 -59,-54 -60.5,-54 -62,-54 -63.5,-54 -65,-54 -66.5,-54 -68,-55.6 -68,-57.2 -68,-58.8 -68,-60.4 -68,-62 -68,-63.6 -68,-65.2 -68,-66.8 -68,-68.4 -68,-70 -68,-70 -66.5,-70 -65,-70 -63.5,-70 -62,-70 -60.5,-70 -59,-70 -57.5,-70 -56,-70 -54.5,-70 -53))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Because of extreme isolation of the Antarctic continent since the Early Oligocene, one expects a unique invertebrate benthic fauna with a high degree of endemism. Yet some invertebrate taxa that constitute important ecological components of sedimentary benthic communities include more than 40 percent non-endemic species (e.g., benthic polychaetes). To account for non-endemic species, intermittent genetic exchange must occur between Antarctic and other (e.g. South American) populations. The most likely mechanism for such gene flow, at least for in-faunal and mobile macrobenthos, is dispersal of planktonic larvae across the sub- Antarctic and Antarctic polar fronts. To test for larval dispersal as a mechanism of maintaining genetic continuity across polar fronts, the scientists propose to (1) take plankton samples along transects across Drake passage during both the austral summer and winter seasons while concurrently collecting the appropriate hydrographic data. Such data will help elucidate the hydrographic mechanisms that allow dispersal across Drake Passage. Using a molecular phylogenetic approach, they will (2) compare seemingly identical adult forms from Antarctic and South America continents to identify genetic breaks, historical gene flow, and control for the presence of cryptic species. (3) Similar molecular tools will be used to relate planktonic larvae to their adult forms. Through this procedure, they propose to link the larval forms respectively to their Antarctic or South America origins. The proposed work builds on previous research that provides the basis for this effort to develop a synthetic understanding of historical gene flow and present day dispersal mechanism in South American/Drake Passage/Antarctic Peninsular region. Furthermore, this work represents one of the first attempts to examine recent gene flow in Antarctic benthic invertebrates. Graduate students and a postdoctoral fellow will be trained during this research.", "east": -54.0, "geometry": ["POINT(-62 -60.5)"], "keywords": "Antarctica; Biota; Oceans; R/v Laurence M. Gould; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Antarctica; Southern Ocean", "north": -53.0, "nsf_funding_programs": null, "persons": "Scheltema, Rudolf", "project_titles": "Collaborative Research: Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates", "projects": [{"proj_uid": "p0000189", "repository": "USAP-DC", "title": "Collaborative Research: Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -68.0, "title": "Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates", "uid": "600035", "west": -70.0}, {"awards": "0338342 Foreman, Christine; 0338260 Chin, Yu-Ping", "bounds_geometry": ["POINT(166.167 -77.55)"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "Dissolved organic matter (DOM) is a significant chemical component in aquatic systems because it acts as an important carbon source for microorganisms, absorbs harmful radiation in sunlight, is able to complex metals, and can participate in important biogeochemical reactions. This study will investigate the biogeochemical cycling of DOM in a small coastal Antarctic pond, Pony Lake, located on Cape Royds, Ross Island. Because there are no higher plants present at this site all of the DOM in this lake is derived from microorganisms. Thus, Pony Lake is an ideal site to study the effect of physical, chemical, and microbial processes on the composition and character of the DOM pool. Finally, Pony Lake is also an ideal site to collect an International Humic Substances Society (IHSS) fulvic acid standard. Unlike other IHSS standards, this standard will not contain DOM components derived from higher land plants. To better understand the role of physical influences, the project will study the changes in the DOM pool as the lake evolves from ice-covered to ice-free conditions during the summer, as well as the relationship of DOM to the observed turnover of dominant microbial communities in the lake. Scientists will also monitor changes in microbial abundance, diversity, and productivity that may occur during the ice to open-water transition period. This research will provide much needed information regarding the relationship between microbial diversity and DOM biogeochemistry. Middle school science students will be active participants in this project through the Internet, while scientists are in the field, and in the lab.", "east": 166.167, "geometry": ["POINT(166.167 -77.55)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Critical Zone; Ross Island; Sample/collection Description; Sample/Collection Description; Water Samples", "locations": "Ross Island; Antarctica", "north": -77.55, "nsf_funding_programs": null, "persons": "Chin, Yu-Ping; Foreman, Christine", "project_titles": "Collaborative Research: Biogeochemistry of Dissolved Organic Matter in Pony Lake, Ross Island", "projects": [{"proj_uid": "p0000548", "repository": "USAP-DC", "title": "Collaborative Research: Biogeochemistry of Dissolved Organic Matter in Pony Lake, Ross Island"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.55, "title": "Biogeochemistry of Dissolved Organic Matter in Pony Lake, Ross Island", "uid": "600168", "west": 166.167}, {"awards": "0437887 Sidell, Bruce", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "The polar ocean presently surrounding Antarctica is the coldest, most thermally stable marine environment on earth. Because oxygen solubility in seawater is inversely proportional to temperature, the cold Antarctic seas are an exceptionally oxygen-rich aquatic habitat. Eight families of a single perciform suborder, the Notothenioidei, dominate the present fish fauna surrounding Antarctica. Notothenioids account for approximately 35% of fish species and 90% of fish biomass south of the Antarctic Polar Front. Radiation of closely related notothenioid species thus has occurred rapidly and under a very unusual set of conditions: relative oceanographic isolation from other faunas due to circumpolar currents and deep ocean trenches surrounding the continent, chronically, severely cold water temperatures, very high oxygen availability, very low levels of niche competition in a Southern Ocean depauperate of species subsequent to a dramatic crash in species diversity of fishes that occurred sometime between the mid-Tertiary and present. These features make Antarctic notothenioid fishes an uniquely attractive group for the study of physiological and biochemical adaptations to cold body temperature. Few distinctive features of Antarctic fishes are as unique as the pattern of expression of oxygen-binding proteins in one notothenioid family, the Channichthyidae (Antarctic icefishes). All channichthyid icefishes lack the circulating oxygen-binding protein, hemoglobin (Hb); the intracellular oxygen-binding protein, myoglobin (Mb) is not uniformly expressed in species of this family. Both proteins are normally considered essential for adequate delivery of oxygen to aerobically poised tissues of animals. To compensate for the absence of Hb, icefishes have developed large hearts, rapidly circulate a large blood volume and possess elaborate vasculature of larger lumenal diameter than is seen in red-blooded fishes. Loss of Mb expression in oxidative muscles correlates with dramatic elevation in density of mitochondria within the cell, although each individual organelle is less densely packed with respiratory proteins. Within the framework of oxygen movement, the adaptive significance of greater vascular density and mitochondrial populations is understandable but mechanisms underlying development of these characteristics remain unknown. The answer may lie in another major function of both Hb and Mb, degradation of the ubiquitous bioactive compound, nitric oxide (NO). The research will test the hypothesis that loss of hemoprotein expression in icefishes has resulted in an increase in levels of NO that mediate modification of vascular systems and expansion of mitochondrial populations in oxidative tissues. The objectives of the proposal are to quantify the vascular density of retinas in +Hb and -Hb notothenioid species, to characterize NOS isoforms and catalytic activity in retina and cardiac muscle of Antarctic notothenioid fishes, to evaluate level of expression of downstream factors implicat ed in angiogenesis (in retinal tissue) and mitochondrial biogenesis (in cardiac muscle), and to determine whether inhibition of NOS in vivo results in regression of angiogenic and mitochondrial biogenic responses in icefishes. Broader impacts range from basic biology, through training of young scientists, to enhanced understanding of clinically relevant biomedical processes.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Biota; Oceans; Pot; Sample/collection Description; Sample/Collection Description; Southern Ocean; Trawl", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Sidell, Bruce", "project_titles": "Collaborative Research: Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis.", "projects": [{"proj_uid": "p0000527", "repository": "USAP-DC", "title": "Collaborative Research: Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis."}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis", "uid": "600039", "west": -180.0}, {"awards": "0440954 Miller, Molly", "bounds_geometry": ["POLYGON((159 -76.61667,159.05 -76.61667,159.1 -76.61667,159.15 -76.61667,159.2 -76.61667,159.25 -76.61667,159.3 -76.61667,159.35 -76.61667,159.4 -76.61667,159.45 -76.61667,159.5 -76.61667,159.5 -76.630003,159.5 -76.643336,159.5 -76.656669,159.5 -76.670002,159.5 -76.683335,159.5 -76.696668,159.5 -76.710001,159.5 -76.723334,159.5 -76.736667,159.5 -76.75,159.45 -76.75,159.4 -76.75,159.35 -76.75,159.3 -76.75,159.25 -76.75,159.2 -76.75,159.15 -76.75,159.1 -76.75,159.05 -76.75,159 -76.75,159 -76.736667,159 -76.723334,159 -76.710001,159 -76.696668,159 -76.683335,159 -76.670002,159 -76.656669,159 -76.643336,159 -76.630003,159 -76.61667))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project studies fossils from two to three hundred million year old rocks in the Allan Hills area of Antarctica. Similar deposits from lower latitudes have been used to develop a model of Permo-Triassic climate, wherein melting of continental glaciers in the early Permian leads to the establishment of forests in a cold, wet climate. Conditions became warmer and dryer by the early Triassic, inhibiting plant growth until a moistening climate in the late Triassic allowed plant to flourish once again. This project will test and refine this model and investigate the general effects of climate change on landscapes and ecosystems using the unique exposures and well-preserved fossil and sediment records in the Allan Hills area. The area will be searched for fossil forests, vertebrate tracks and burrows, arthropod trackways, and subaqueously produced biogenic structures, which have been found in other areas of Antarctica. Finds will be integrated with previous paleobiologic studies to reconstruct and interpret ecosystems and their changes. Structures and rock types documenting the end phases of continental glaciation and other major episodic sedimentations will also be described and interpreted. This project contributes to understanding the: (1) evolution of terrestrial and freshwater ecosystems and how they were affected by the end-Permian extinction, (2) abundance and diversity of terrestrial and aquatic arthropods at high latitudes, (3) paleogeographic distribution and evolution of vertebrates and invertebrates as recorded by trace and body fossils; and (3) response of landscapes to changes in climate. In terms of broader impacts, this project will provide an outstanding introduction to field research for graduate and undergraduate students, and generate related opportunities for several undergraduates. It will also stimulate exchange of ideas among research and primarily undergraduate institutions. Novel outreach activities are also planned to convey Earth history to the general public, including a short film on the research process and products, and paintings by a professional scientific illustrator of Permo-Traissic landscapes and ecosystems.", "east": 159.5, "geometry": ["POINT(159.25 -76.683335)"], "keywords": "Allan Hills; Antarctica; Paleontology; Sample/collection Description; Sample/Collection Description; Solid Earth", "locations": "Allan Hills; Antarctica", "north": -76.61667, "nsf_funding_programs": null, "persons": "Miller, Molly", "project_titles": "Collaborative Research: Reconstructing the High Latitude Permian-Triassic: Life, Landscapes, and Climate Recorded in the Allan Hills, South Victoria Land, Antarctica", "projects": [{"proj_uid": "p0000207", "repository": "USAP-DC", "title": "Collaborative Research: Reconstructing the High Latitude Permian-Triassic: Life, Landscapes, and Climate Recorded in the Allan Hills, South Victoria Land, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.75, "title": "Reconstructing the High Latitude Permian-Triassic: Life, Landscapes, and Climate Recorded in the Allan Hills, South Victoria Land, Antarctica", "uid": "600045", "west": 159.0}, {"awards": "0636629 Kurz, Mark", "bounds_geometry": ["POLYGON((160.7 -77.8,161.06 -77.8,161.42 -77.8,161.78 -77.8,162.14 -77.8,162.5 -77.8,162.86 -77.8,163.22 -77.8,163.58 -77.8,163.94 -77.8,164.3 -77.8,164.3 -77.86,164.3 -77.92,164.3 -77.98,164.3 -78.04,164.3 -78.1,164.3 -78.16,164.3 -78.22,164.3 -78.28,164.3 -78.34,164.3 -78.4,163.94 -78.4,163.58 -78.4,163.22 -78.4,162.86 -78.4,162.5 -78.4,162.14 -78.4,161.78 -78.4,161.42 -78.4,161.06 -78.4,160.7 -78.4,160.7 -78.34,160.7 -78.28,160.7 -78.22,160.7 -78.16,160.7 -78.1,160.7 -78.04,160.7 -77.98,160.7 -77.92,160.7 -77.86,160.7 -77.8))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project uses cosmogenic nuclide dating and LIDAR studies of surface roughness to understand weathering and landscape evolution in the Dry Valleys of Antarctica. The work focuses on two processes: cryoturbation of frozen soils and the development of patterned, frozen ground on ancient lava flows. The approach includes innovative uses of He3 profiling. Results will also be applied to understanding the glacial history of the Dry Valleys. There are potential applications to understanding the history of the East Antarctic Ice Sheet and the formation of Martian landscapes. The broader impacts include graduate student education. As well, the work may contribute to our understanding of the history of the Antarctic ice sheets, which is important to modeling their behavior during global climate change.", "east": 164.3, "geometry": ["POINT(162.5 -78.1)"], "keywords": "Antarctica; Cosmogenic Radionuclides; Dry Valleys; Geology/Geophysics - Other; Glaciology; LIDAR; Navigation; Sample/collection Description; Sample/Collection Description", "locations": "Dry Valleys; Antarctica", "north": -77.8, "nsf_funding_programs": null, "persons": "Soule, S. Adam; Kurz, Mark D.", "project_titles": "Periglacial Landscape Evolution in Antarctic Lava Flows and Glacial Tills", "projects": [{"proj_uid": "p0000559", "repository": "USAP-DC", "title": "Periglacial Landscape Evolution in Antarctic Lava Flows and Glacial Tills"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.4, "title": "Periglacial Landscape Evolution in Antarctic Lava Flows and Glacial Tills", "uid": "600066", "west": 160.7}, {"awards": "0739452 Mukhopadhyay, Sujoy", "bounds_geometry": ["POLYGON((161 -76,161.2 -76,161.4 -76,161.6 -76,161.8 -76,162 -76,162.2 -76,162.4 -76,162.6 -76,162.8 -76,163 -76,163 -76.2,163 -76.4,163 -76.6,163 -76.8,163 -77,163 -77.2,163 -77.4,163 -77.6,163 -77.8,163 -78,162.8 -78,162.6 -78,162.4 -78,162.2 -78,162 -78,161.8 -78,161.6 -78,161.4 -78,161.2 -78,161 -78,161 -77.8,161 -77.6,161 -77.4,161 -77.2,161 -77,161 -76.8,161 -76.6,161 -76.4,161 -76.2,161 -76))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project seeks to answer a simple question: how old are potholes and related geomorphic features found in the uplands of the McMurdo Dry Valleys, Antarctica? Some research suggests that they are over ten million years old and date the growth of the East Antarctic Ice Sheet, the world\u0027s largest. However, some evidence suggests that these are young, erosional features that continuing to evolve to this day. This project uses cosmogenic nuclide dating to determine the age of the pothole floors. The results are important for determining the ice sheet?s history and interpreting the O-isotope record from the marine sediment cores, key records of global climate. Broader impacts include K12 outreach and incorporation of outcomes into university courses.", "east": 163.0, "geometry": ["POINT(162 -77)"], "keywords": "Antarctica; Cosmogenic Dating; Dry Valleys; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Paleoclimate; Sample/collection Description; Sample/Collection Description; Solid Earth", "locations": "Dry Valleys; Antarctica", "north": -76.0, "nsf_funding_programs": null, "persons": "Mukhopadhyay, Sujoy", "project_titles": "Landform Evolution in the Dry Valleys and its implications for Miocene-Pliocene Climate Change in Antarctica", "projects": [{"proj_uid": "p0000461", "repository": "USAP-DC", "title": "Landform Evolution in the Dry Valleys and its implications for Miocene-Pliocene Climate Change in Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Landform Evolution in the Dry Valleys and its implications for Miocene-Pliocene Climate Change in Antarctica", "uid": "600074", "west": 161.0}, {"awards": "0739512 Walker, Sally", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project answers a simple question: why are there so few fossils in sediment cores from Antarctica\u0027s continental shelf? Antarctica\u0027s benthos are as biologically rich as those of the tropics. Shell-secreting organisms should have left a trail throughout geologic time, but have not. This trail is particularly important because these organisms record regional climate in ways that are critical to interpreting the global climate record. This study uses field experiments and targeted observations of modern benthic systems to examine the biases inflicted by fossil preservation. By examining a spectrum of ice-affected habitats, this project provides paleoenvironmental insights into carbonate preservation, sedimentation rates, and burial processes; and will provide new approaches to reconstructing the Cenozoic history of Antarctica. Broader impacts include graduate and undergraduate research and education, development of undergraduate curricula to link art and science, K12 outreach, public outreach via the web, and societal relevance through improved understanding of records of global climate change.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Biota; Glaciers/ice Sheet; Glaciers/Ice Sheet; McMurdo Sound; Oceans; Sample/collection Description; Sample/Collection Description", "locations": "McMurdo Sound; Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Walker, Sally", "project_titles": "Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores; Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past", "projects": [{"proj_uid": "p0000203", "repository": "USAP-DC", "title": "Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores"}, {"proj_uid": "p0010238", "repository": "USAP-DC", "title": "Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores", "uid": "600077", "west": -180.0}, {"awards": "0742057 Gallager, Scott", "bounds_geometry": ["POLYGON((-168.291 -64.846,-165.018 -64.846,-161.745 -64.846,-158.472 -64.846,-155.199 -64.846,-151.926 -64.846,-148.653 -64.846,-145.38 -64.846,-142.107 -64.846,-138.834 -64.846,-135.561 -64.846,-135.561 -66.0269,-135.561 -67.2078,-135.561 -68.3887,-135.561 -69.5696,-135.561 -70.7505,-135.561 -71.9314,-135.561 -73.1123,-135.561 -74.2932,-135.561 -75.4741,-135.561 -76.655,-138.834 -76.655,-142.107 -76.655,-145.38 -76.655,-148.653 -76.655,-151.926 -76.655,-155.199 -76.655,-158.472 -76.655,-161.745 -76.655,-165.018 -76.655,-168.291 -76.655,-168.291 -75.4741,-168.291 -74.2932,-168.291 -73.1123,-168.291 -71.9314,-168.291 -70.7505,-168.291 -69.5696,-168.291 -68.3887,-168.291 -67.2078,-168.291 -66.0269,-168.291 -64.846))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "The research will continue and extend the study in the Southern Ocean that was initiated during the Oden Southern Ocean 2006 expedition in collaboration with Swedish scientist Mellissa Chierici. We will quantify carbon flux through the food web in the marginal ice zone (MIZ) by measuring size fractionated primary and secondary production, grazing and carbon flux through nanoplankton (2-20 um), microplankton (20-200um), and mesoplankton (200-2000 um). Community structure, species abundance and size specific grazing rates will be quantified using a variety of techniques both underway and at ice stations along the MIZ. The proposed cruise track extends across the Drake Passage to the Western Antarctic Peninsula (WAP) with three station transects along a gradient from the open ocean through the marginal ice zone (MIZ) in the Bellinghausen and Amundsen Seas and into the Ross Sea Polynya. Ice stations along each transect will provide material to characterize production associated with annual ice. Underway measurements of primary and secondary production (chlorophyll, CDOM, microplankton, and mesoplankton) and hydrography (temperature, salinity, pH, DO, turbidity) will establish a baseline for future cruises and as support for other projects such as biogeochemical studies on carbon dioxide drawdown and trace metal work on primary production. The outcome of these measurements will be a description of nano to mesoplankton standing stocks, community structure, and carbon flux along the MIZ in the Bellinghausen and Amundsen Seas and the Ross Sea Polynya.", "east": -135.561, "geometry": ["POINT(-151.926 -70.7505)"], "keywords": "Amundsen Sea; Biota; Microbiology; Navigation; Oceans; Oden; OSO2007; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Amundsen Sea; Southern Ocean", "north": -64.846, "nsf_funding_programs": null, "persons": "Dennett, Mark; Gallager, Scott", "project_titles": "SGER: Primary and Secondary Production and Carbon Flux Through the Microbial Community Along the Western Antarctic Marginal Ice Zone on the Oden Southern Ocean 2007 Expeditions", "projects": [{"proj_uid": "p0000563", "repository": "USAP-DC", "title": "SGER: Primary and Secondary Production and Carbon Flux Through the Microbial Community Along the Western Antarctic Marginal Ice Zone on the Oden Southern Ocean 2007 Expeditions"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.655, "title": "SGER: Primary and Secondary Production and Carbon Flux Through the Microbial Community Along the Western Antarctic Marginal Ice Zone on the Oden Southern Ocean 2007 Expeditions", "uid": "600086", "west": -168.291}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Wed, 02 Nov 2005 00:00:00 GMT", "description": "The MODIS Mosaic of Antarctica 2003-2004 (MOA2004) Image Map consists of two cloud-free digital image maps that show mean surface morphology and a quantitative measure of optical snow grain size on the Antarctic continent and surrounding islands. The 260 orbit swaths used to create the 2003/2004 MOA Surface Morphology Image Map and the 2003/2004 MOA Grain Size Image Map were acquired 20 November 2003 through 29 February 2004 by the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on board the NASA EOS Aqua and Terra satellites. The 122 orbit swaths used to create the 2003 MOA Grain Size Image Map were acquired 1 November 2003 through 17 December 2003. Vector data sets with the corresponding coastlines, ice sheet grounding lines, and islands are also provided.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; MODIS; Sample/collection Description; Sample/Collection Description; Solid Earth", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Haran, Terry; Bohlander, Jennifer; Scambos, Ted; Painter, Thomas; Fahnestock, Mark", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "MODIS Mosaic of Antarctica 2003-2004 (MOA2004) Image Map", "uid": "609280", "west": -180.0}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POLYGON((-180 -50,-144 -50,-108 -50,-72 -50,-36 -50,0 -50,36 -50,72 -50,108 -50,144 -50,180 -50,180 -54,180 -58,180 -62,180 -66,180 -70,180 -74,180 -78,180 -82,180 -86,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -86,-180 -82,-180 -78,-180 -74,-180 -70,-180 -66,-180 -62,-180 -58,-180 -54,-180 -50))"], "date_created": "Tue, 23 Mar 2004 00:00:00 GMT", "description": "This compilation of recent ice velocity data of the Antarctic ice sheet is intended for use by the polar scientific community. The data are presented in tabular form (ASCII), containing latitude, longitude, speed, bearing, and error ranges. A metadata header describes the source of the data, the time of measurement, and gives details on measurement accuracy and precision. The tables are available for ftp transfer.\n\nWeb pages developed specifically for this data set provide detailed information for viewing and selecting the velocity data. These pages contain large satellite image maps (available as jpeg files). The data sets used to create these images were contributed by several investigators, generally from already published work. Both in situ and image-based methods are used.\n\nReferences for the data sets are included with the data tables. If you have well-characterized Antarctic ice velocity data you would like to contribute to this site, please contact teds@icehouse.colorado.edu. If you have any questions concerning the relevance of these data to your work please contact NSIDC User Services.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Velocity; Sample/collection Description; Sample/Collection Description", "locations": "Antarctica; Antarctica", "north": -50.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Bindschadler, Robert; Raymond, Charles", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Antarctic Ice Velocity Data", "uid": "609070", "west": -180.0}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": null, "date_created": "Mon, 01 Jan 2001 00:00:00 GMT", "description": "Recent changes in the extent and stability of ice shelves in the Antarctic Peninsula prompted NSIDC to begin a monitoring program using data from the AVHRR Polar 1 km Data Set. NSIDC regularly reviews images of those ice shelves considered susceptible to rapid change due to climatic warming, and of several other major shelves that occasionally calve major icebergs.\n\nThe images in this site represent a selected subset of the available scenes, generally the clearest and most informative scenes available. The scenes are derived from either the AVHRR visible (vis) or thermal (temp) channels, enhanced by combining two channels using principal components processing. In the thermal images, bright areas are colder areas. A few additional scenes from other sensors (MODIS, Landsat) are included to provide some supplemental information on ice shelf structure and events.\n\nIf you wish to save an image, you can do so through the \u0027Save image as\u0027 option of the browser\u0027s pop-up menu. For more information contact NSIDC User Services.", "east": null, "geometry": null, "keywords": "Antarctica; AVHRR; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Sample/collection Description; Sample/Collection Description; Sea Ice", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Scambos, Ted; Raup, Bruce H.; Bohlander, Jennifer", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": null, "title": "Images of Antarctic Ice Shelves", "uid": "609102", "west": null}, {"awards": "9316338 Jacobel, Robert", "bounds_geometry": ["POLYGON((-155 -81,-154 -81,-153 -81,-152 -81,-151 -81,-150 -81,-149 -81,-148 -81,-147 -81,-146 -81,-145 -81,-145 -81.2,-145 -81.4,-145 -81.6,-145 -81.8,-145 -82,-145 -82.2,-145 -82.4,-145 -82.6,-145 -82.8,-145 -83,-146 -83,-147 -83,-148 -83,-149 -83,-150 -83,-151 -83,-152 -83,-153 -83,-154 -83,-155 -83,-155 -82.8,-155 -82.6,-155 -82.4,-155 -82.2,-155 -82,-155 -81.8,-155 -81.6,-155 -81.4,-155 -81.2,-155 -81))"], "date_created": "Fri, 01 Jan 1999 00:00:00 GMT", "description": "The Siple Dome Glaciology and Ice Stream History project was part of Western Divide West Antarctic Ice Cores (WAISCORES), an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica.\n\nThis project supported glaciological studies of Siple Dome and its surroundings between Ice Streams C and D, via two major goals. First, it sought to characterize the dynamic environment and ice stratigraphy of Siple Dome and its surroundings, with the specific mission of assessing Siple Dome as a potential deep core site; and second, to determine whether the configuration of ice stream flow in the region has changed over time. Both goals are relevant to understanding the dynamics of the West Antarctic Ice Sheet (WAIS), its history, and potential future behavior.\n\nThis project was a collaboration between Saint Olaf College, the University of Washington, and the National Snow and Ice Data Center at the University of Colorado. It included studies of satellite imagery and acquisition and analysis of field data from GPS, firn cores and snow pits, and ground-based ice-penetrating radar.\n\nData in this collection were obtained during two Antarctic field seasons in 1994\u201395 and 1996\u201397. The data set is available via FTP as Microsoft Excel Spreadsheet (.xls) and ASCII tab delimited (.txt) files. Related notes are available as a Microsoft Word (.doc) or text (.txt) file. Related images and charts are available as Graphics Interchange Format (.gif) and Joint Photographic Experts Group (.jpg) files.", "east": -145.0, "geometry": ["POINT(-150 -82)"], "keywords": "Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Sample/collection Description; Sample/Collection Description; Siple Dome; Siple Dome Ice Core", "locations": "Antarctica; Siple Dome", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Jacobel, Robert", "project_titles": "Siple Dome Glaciology and Ice Stream History", "projects": [{"proj_uid": "p0000190", "repository": "USAP-DC", "title": "Siple Dome Glaciology and Ice Stream History"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -83.0, "title": "Siple Dome Glaciology and Ice Stream History 1994, 1996", "uid": "609085", "west": -155.0}, {"awards": "9526374 Alley, Richard", "bounds_geometry": ["POINT(-149 -81)"], "date_created": "Wed, 01 Jan 1997 00:00:00 GMT", "description": "This data set is part of the West Antarctic Ice Sheet cores (WAISCORES) project, an NSF-funded project to understand the influence of the West Antarctic Ice Sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica.\n\nThis data set includes melt layers and annual layer data for Siple Dome cores A through J, and upstream core C (UpC). Cores were examined on a light table after the core had been sectioned longitudinally and samples removed for isotopic, chemical, and other analyses, and after the surface had been smoothed using a planer. Major stratigraphic features were noted, such as coarse-grained and fine-grained firn at shallow depths, and coarse-bubbled and fine-bubbled ice at greater depth. Melt layers were identified as bubble-free or nearly-bubble-free zones. Core lengths ranged from 30 to 133 meters.\n\nData in this collection were obtained in the summer of 1997. The data set is available via FTP as ACSII data (.dat), metadata (.meta) and text (.txt) files.", "east": -149.0, "geometry": ["POINT(-149 -81)"], "keywords": "Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Sample/collection Description; Sample/Collection Description; Siple Dome; Siple Dome Ice Core; WAISCORES", "locations": "Antarctica; Siple Dome", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Alley, Richard", "project_titles": "Physical Properties of the Siple Dome Deep Ice Core", "projects": [{"proj_uid": "p0000059", "repository": "USAP-DC", "title": "Physical Properties of the Siple Dome Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.0, "title": "Visible Stratigraphic Dating, Siple Dome and Upstream C Cores", "uid": "609121", "west": -149.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers: Infrared Stimulated Luminescence data
|
1946326 |
2022-02-09 | Doran, Peter; Stone, Michael |
EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers |
Location and metadata of samples collected from perched delta deposits along modern stream channels in lower Taylor Valley. Sample collection used equipment and followed procedures from the Desert Research Institute Luminescence Laboratory in Reno, NV. | ["POLYGON((163.093642 -77.592484,163.1049267 -77.592484,163.1162114 -77.592484,163.1274961 -77.592484,163.1387808 -77.592484,163.1500655 -77.592484,163.1613502 -77.592484,163.1726349 -77.592484,163.1839196 -77.592484,163.1952043 -77.592484,163.206489 -77.592484,163.206489 -77.5986389,163.206489 -77.6047938,163.206489 -77.6109487,163.206489 -77.6171036,163.206489 -77.6232585,163.206489 -77.6294134,163.206489 -77.6355683,163.206489 -77.6417232,163.206489 -77.6478781,163.206489 -77.654033,163.1952043 -77.654033,163.1839196 -77.654033,163.1726349 -77.654033,163.1613502 -77.654033,163.1500655 -77.654033,163.1387808 -77.654033,163.1274961 -77.654033,163.1162114 -77.654033,163.1049267 -77.654033,163.093642 -77.654033,163.093642 -77.6478781,163.093642 -77.6417232,163.093642 -77.6355683,163.093642 -77.6294134,163.093642 -77.6232585,163.093642 -77.6171036,163.093642 -77.6109487,163.093642 -77.6047938,163.093642 -77.5986389,163.093642 -77.592484))"] | ["POINT(163.1500655 -77.6232585)"] | false | false |
EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers: in situ 14C data
|
1946326 |
2022-02-09 | Doran, Peter; Stone, Michael |
EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers |
Location and metadata of C-14 samples from Taylor Valley, East Antarctica | ["POLYGON((163.079602 -77.585467,163.1197073 -77.585467,163.1598126 -77.585467,163.1999179 -77.585467,163.2400232 -77.585467,163.2801285 -77.585467,163.3202338 -77.585467,163.3603391 -77.585467,163.4004444 -77.585467,163.4405497 -77.585467,163.480655 -77.585467,163.480655 -77.5924303,163.480655 -77.5993936,163.480655 -77.6063569,163.480655 -77.6133202,163.480655 -77.6202835,163.480655 -77.6272468,163.480655 -77.6342101,163.480655 -77.6411734,163.480655 -77.6481367,163.480655 -77.6551,163.4405497 -77.6551,163.4004444 -77.6551,163.3603391 -77.6551,163.3202338 -77.6551,163.2801285 -77.6551,163.2400232 -77.6551,163.1999179 -77.6551,163.1598126 -77.6551,163.1197073 -77.6551,163.079602 -77.6551,163.079602 -77.6481367,163.079602 -77.6411734,163.079602 -77.6342101,163.079602 -77.6272468,163.079602 -77.6202835,163.079602 -77.6133202,163.079602 -77.6063569,163.079602 -77.5993936,163.079602 -77.5924303,163.079602 -77.585467))"] | ["POINT(163.2801285 -77.6202835)"] | false | false |
G170 Sample Locations Ross Island & Discovery Province
|
1644013 |
2022-01-12 | Gaetani, Glenn |
Collaborative Research: Determining Magma Storage Depths and Ascent Rates for the Erebus Volcanic Province, Antarctica Using Diffusive Water Loss from Olivine-hosted Melt Inclusion |
G170 Sample Locations Ross Island & Discovery Province | ["POLYGON((164.1 -77.1,164.65 -77.1,165.2 -77.1,165.75 -77.1,166.3 -77.1,166.85 -77.1,167.4 -77.1,167.95 -77.1,168.5 -77.1,169.05 -77.1,169.6 -77.1,169.6 -77.235,169.6 -77.37,169.6 -77.505,169.6 -77.64,169.6 -77.775,169.6 -77.91,169.6 -78.045,169.6 -78.18,169.6 -78.315,169.6 -78.45,169.05 -78.45,168.5 -78.45,167.95 -78.45,167.4 -78.45,166.85 -78.45,166.3 -78.45,165.75 -78.45,165.2 -78.45,164.65 -78.45,164.1 -78.45,164.1 -78.315,164.1 -78.18,164.1 -78.045,164.1 -77.91,164.1 -77.775,164.1 -77.64,164.1 -77.505,164.1 -77.37,164.1 -77.235,164.1 -77.1))"] | ["POINT(166.85 -77.775)"] | false | false |
NBP0505 sediment core locations
|
0338137 |
2020-07-17 | Wellner, Julia; Anderson, John |
Collaborative Research: Controls on Sediment Yields from Tidewater Glaciers from Patagonia to Antarctica |
Excel file with station names, location and water depth and description of the coring device for NBP0505. | ["POLYGON((-76 -45.5,-75.2 -45.5,-74.4 -45.5,-73.6 -45.5,-72.8 -45.5,-72 -45.5,-71.2 -45.5,-70.4 -45.5,-69.6 -45.5,-68.8 -45.5,-68 -45.5,-68 -46.43,-68 -47.36,-68 -48.29,-68 -49.22,-68 -50.15,-68 -51.08,-68 -52.01,-68 -52.94,-68 -53.87,-68 -54.8,-68.8 -54.8,-69.6 -54.8,-70.4 -54.8,-71.2 -54.8,-72 -54.8,-72.8 -54.8,-73.6 -54.8,-74.4 -54.8,-75.2 -54.8,-76 -54.8,-76 -53.87,-76 -52.94,-76 -52.01,-76 -51.08,-76 -50.15,-76 -49.22,-76 -48.29,-76 -47.36,-76 -46.43,-76 -45.5))"] | ["POINT(-72 -50.15)"] | false | false |
Log Sheets of coral samples for LMG1509
|
1245766 |
2019-03-07 | Waller, Rhian |
Cold Corals in Hot Water - Investigating the Physiological Responses of Antarctic Coral Larvae to Climate change Stress |
Station location information of trawl and CTD stations used for collecting coral samples and water for incubation during expedition NBP1509 in 2015 near the Antarctic Peninsula. | ["POLYGON((-66.5 -63,-65.95 -63,-65.4 -63,-64.85 -63,-64.3 -63,-63.75 -63,-63.2 -63,-62.65 -63,-62.1 -63,-61.55 -63,-61 -63,-61 -63.63,-61 -64.26,-61 -64.89,-61 -65.52,-61 -66.15,-61 -66.78,-61 -67.41,-61 -68.04,-61 -68.67,-61 -69.3,-61.55 -69.3,-62.1 -69.3,-62.65 -69.3,-63.2 -69.3,-63.75 -69.3,-64.3 -69.3,-64.85 -69.3,-65.4 -69.3,-65.95 -69.3,-66.5 -69.3,-66.5 -68.67,-66.5 -68.04,-66.5 -67.41,-66.5 -66.78,-66.5 -66.15,-66.5 -65.52,-66.5 -64.89,-66.5 -64.26,-66.5 -63.63,-66.5 -63))"] | ["POINT(-63.75 -66.15)"] | false | false |
Sabrina Coast mooring data - sediment trap mooring 2014
|
1143834 |
2017-11-15 | Huber, Bruce |
Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics |
Time series of temperature and salinity from a sediment trap mooring deployed during NBP1402 on 04 March 2014 at 66S 11, 122 E 30.2, depth 547 m. The mooring was recovered from Aurora Australis on 26 December 2014 | ["POINT(120.5 -66.2)"] | ["POINT(120.5 -66.2)"] | false | false |
NBP1402 Lowered ADCP data
|
1143834 |
2017-11-15 | Huber, Bruce |
Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics |
Lowered Acoustic Doppler Current Profiler (LADCP) data collected concurrently with 15 CTD profiles during NBP1402. The LADCP acquires profiles of water current, expressed as U and V components (E-W and N-S). | ["POLYGON((117 -66,119.9 -66,122.8 -66,125.7 -66,128.6 -66,131.5 -66,134.4 -66,137.3 -66,140.2 -66,143.1 -66,146 -66,146 -66.1,146 -66.2,146 -66.3,146 -66.4,146 -66.5,146 -66.6,146 -66.7,146 -66.8,146 -66.9,146 -67,143.1 -67,140.2 -67,137.3 -67,134.4 -67,131.5 -67,128.6 -67,125.7 -67,122.8 -67,119.9 -67,117 -67,117 -66.9,117 -66.8,117 -66.7,117 -66.6,117 -66.5,117 -66.4,117 -66.3,117 -66.2,117 -66.1,117 -66))"] | ["POINT(131.5 -66.5)"] | false | false |
NBP1402 Final CTD data
|
1143834 |
2017-11-10 | Huber, Bruce |
Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics |
Conductivity, Temperature, Depth (CTD) profiles from NBP1402, final, calibrated version. Data are reported as an ascii table suitable for import to Ocean Data View. | ["POLYGON((117 -66,119.9 -66,122.8 -66,125.7 -66,128.6 -66,131.5 -66,134.4 -66,137.3 -66,140.2 -66,143.1 -66,146 -66,146 -66.1,146 -66.2,146 -66.3,146 -66.4,146 -66.5,146 -66.6,146 -66.7,146 -66.8,146 -66.9,146 -67,143.1 -67,140.2 -67,137.3 -67,134.4 -67,131.5 -67,128.6 -67,125.7 -67,122.8 -67,119.9 -67,117 -67,117 -66.9,117 -66.8,117 -66.7,117 -66.6,117 -66.5,117 -66.4,117 -66.3,117 -66.2,117 -66.1,117 -66))"] | ["POINT(131.5 -66.5)"] | false | false |
Images of Fossil Plants of Antarctica
|
1341500 |
2017-11-07 | Ryberg, Patricia |
RUI: Antarctic Paleobotany: Permian Floral Characteristics in a Sedimentary Setting |
Images of Late Permian glossopterid reproductive structures from Allan Hills in the Beardmore Glacier Region of Antarctica. | [] | [] | false | false |
List of samples of WAIS Divide and Byrd (deep) ice that were analyzed for radiogenic isotopes at LDEO
|
1043471 |
2017-10-27 | Kaplan, Michael |
A Study of Atmospheric Dust in the WAIS Divide Ice Core Based on Sr-Nd-Pb-He Isotopes |
Listed are samples of WAIS Divide and Byrd (deep) ice that were analyzed for radiogenic isotopes at LDEO. | ["POLYGON((-112.5 -79.468,-112.4586 -79.468,-112.4172 -79.468,-112.3758 -79.468,-112.3344 -79.468,-112.293 -79.468,-112.2516 -79.468,-112.2102 -79.468,-112.1688 -79.468,-112.1274 -79.468,-112.086 -79.468,-112.086 -79.4712,-112.086 -79.4744,-112.086 -79.4776,-112.086 -79.4808,-112.086 -79.484,-112.086 -79.4872,-112.086 -79.4904,-112.086 -79.4936,-112.086 -79.4968,-112.086 -79.5,-112.1274 -79.5,-112.1688 -79.5,-112.2102 -79.5,-112.2516 -79.5,-112.293 -79.5,-112.3344 -79.5,-112.3758 -79.5,-112.4172 -79.5,-112.4586 -79.5,-112.5 -79.5,-112.5 -79.4968,-112.5 -79.4936,-112.5 -79.4904,-112.5 -79.4872,-112.5 -79.484,-112.5 -79.4808,-112.5 -79.4776,-112.5 -79.4744,-112.5 -79.4712,-112.5 -79.468))"] | ["POINT(-112.293 -79.484)"] | false | false |
Anvers Trough Foraminifer Stable Isotope data
|
1246378 |
2017-10-25 | Shevenell, Amelia |
Late Quaternary Evolution of the Lambert Glacier/Amery Ice Shelf System, Prydz Bay, Antarctica |
These are unpublished stable isotope data from a series of sediment cores collected during LMG12-11 and LMG13-11 down the axis of Anvers Trough. These records span the LMG to recent. | ["POLYGON((-65.32 -64.15,-65.309 -64.15,-65.298 -64.15,-65.287 -64.15,-65.276 -64.15,-65.265 -64.15,-65.254 -64.15,-65.243 -64.15,-65.232 -64.15,-65.221 -64.15,-65.21 -64.15,-65.21 -64.186,-65.21 -64.222,-65.21 -64.258,-65.21 -64.294,-65.21 -64.33,-65.21 -64.366,-65.21 -64.402,-65.21 -64.438,-65.21 -64.474,-65.21 -64.51,-65.221 -64.51,-65.232 -64.51,-65.243 -64.51,-65.254 -64.51,-65.265 -64.51,-65.276 -64.51,-65.287 -64.51,-65.298 -64.51,-65.309 -64.51,-65.32 -64.51,-65.32 -64.474,-65.32 -64.438,-65.32 -64.402,-65.32 -64.366,-65.32 -64.33,-65.32 -64.294,-65.32 -64.258,-65.32 -64.222,-65.32 -64.186,-65.32 -64.15))"] | ["POINT(-65.265 -64.33)"] | false | false |
Hatherton Glacier Radiocarbon Data
|
1246170 |
2017-10-23 | Hall, Brenda |
Collaborative Research: Assessing the Antarctic Contribution to Sea-level Changes during the Last Deglaciation: Constraints from Darwin Glacier |
Hatherton Glacier Radiocarbon Data | ["POLYGON((155.4 -79.8,155.54 -79.8,155.68 -79.8,155.82 -79.8,155.96 -79.8,156.1 -79.8,156.24 -79.8,156.38 -79.8,156.52 -79.8,156.66 -79.8,156.8 -79.8,156.8 -79.82,156.8 -79.84,156.8 -79.86,156.8 -79.88,156.8 -79.9,156.8 -79.92,156.8 -79.94,156.8 -79.96,156.8 -79.98,156.8 -80,156.66 -80,156.52 -80,156.38 -80,156.24 -80,156.1 -80,155.96 -80,155.82 -80,155.68 -80,155.54 -80,155.4 -80,155.4 -79.98,155.4 -79.96,155.4 -79.94,155.4 -79.92,155.4 -79.9,155.4 -79.88,155.4 -79.86,155.4 -79.84,155.4 -79.82,155.4 -79.8))"] | ["POINT(156.1 -79.9)"] | false | false |
Data from Schram et al. 2017 MEPS
|
1041022 |
2017-10-20 | Amsler, Charles; Schram, Julie |
The effects of ocean acidification and rising sea surface temperatures on shallow-water benthic organisms in Antarctica |
["POLYGON((-64.5 -64.5,-64.45 -64.5,-64.4 -64.5,-64.35 -64.5,-64.3 -64.5,-64.25 -64.5,-64.2 -64.5,-64.15 -64.5,-64.1 -64.5,-64.05 -64.5,-64 -64.5,-64 -64.54,-64 -64.58,-64 -64.62,-64 -64.66,-64 -64.7,-64 -64.74,-64 -64.78,-64 -64.82,-64 -64.86,-64 -64.9,-64.05 -64.9,-64.1 -64.9,-64.15 -64.9,-64.2 -64.9,-64.25 -64.9,-64.3 -64.9,-64.35 -64.9,-64.4 -64.9,-64.45 -64.9,-64.5 -64.9,-64.5 -64.86,-64.5 -64.82,-64.5 -64.78,-64.5 -64.74,-64.5 -64.7,-64.5 -64.66,-64.5 -64.62,-64.5 -64.58,-64.5 -64.54,-64.5 -64.5))"] | ["POINT(-64.25 -64.7)"] | false | false | |
10Be and 14C data from northern Antarctic Peninsula
|
1142002 |
2017-09-16 | Kaplan, Michael |
Terrestrial Geological Context for Glacier Change in the Northeast Antarctica Peninsula |
These are data sets obtained with the supported award. The ages concern the histories of glaciers, ice sheets, and general cryospheric and climatic activities of the northern Antarctic Peninsula and surrounding area.They cover periods from prior to the last global glacial maximum (stage 3 and older?) as well as since deglaciation. | ["POLYGON((-58 -63.7,-57.95 -63.7,-57.9 -63.7,-57.85 -63.7,-57.8 -63.7,-57.75 -63.7,-57.7 -63.7,-57.65 -63.7,-57.6 -63.7,-57.55 -63.7,-57.5 -63.7,-57.5 -63.73,-57.5 -63.76,-57.5 -63.79,-57.5 -63.82,-57.5 -63.85,-57.5 -63.88,-57.5 -63.91,-57.5 -63.94,-57.5 -63.97,-57.5 -64,-57.55 -64,-57.6 -64,-57.65 -64,-57.7 -64,-57.75 -64,-57.8 -64,-57.85 -64,-57.9 -64,-57.95 -64,-58 -64,-58 -63.97,-58 -63.94,-58 -63.91,-58 -63.88,-58 -63.85,-58 -63.82,-58 -63.79,-58 -63.76,-58 -63.73,-58 -63.7))"] | ["POINT(-57.75 -63.85)"] | false | false |
Antarctic Tephra Data Base AntT static web site
|
1142069 1142007 |
2017-09-13 | Kurbatov, Andrei V.; Dunbar, Nelia |
Collaborative Research: Developing an Antarctic Tephra Database for Interdisciplinary Paleoclimate Research (AntT) |
This collaborative interdisciplinary research project aims to consolidate, into a single user-friendly database, information about volcanic products detected in Antarctica. By consolidating information about volcanic sources, and physical and geochemical characteristics of volcanic products, this systematic data collection approach will improve the ability of researchers to identify volcanic ash, or tephra, from specific volcanic eruptions that may be spread over large areas in a geologically instantaneous amount of time. AntT database is designed to assist in the identification and cross-correlation of time intervals in various paleoclimate archives that contain volcanic layers from often unknown sources. | ["POLYGON((0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,216 -60,252 -60,288 -60,324 -60,360 -60,360 -63,360 -66,360 -69,360 -72,360 -75,360 -78,360 -81,360 -84,360 -87,360 -90,324 -90,288 -90,252 -90,216 -90,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,0 -87,0 -84,0 -81,0 -78,0 -75,0 -72,0 -69,0 -66,0 -63,0 -60))"] | ["POINT(180 -75)"] | false | false |
NBP14-02 JPC-55 foraminifer assemblage data
|
1143836 |
2017-08-18 | Shevenell, Amelia; Leventer, Amy |
Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics |
Foraminifer assemblage data for Paleocene sediments collected on Totten continental shelf, East Antarctica. | ["POLYGON((120 -66,120.1 -66,120.2 -66,120.3 -66,120.4 -66,120.5 -66,120.6 -66,120.7 -66,120.8 -66,120.9 -66,121 -66,121 -66.4,121 -66.8,121 -67.2,121 -67.6,121 -68,121 -68.4,121 -68.8,121 -69.2,121 -69.6,121 -70,120.9 -70,120.8 -70,120.7 -70,120.6 -70,120.5 -70,120.4 -70,120.3 -70,120.2 -70,120.1 -70,120 -70,120 -69.6,120 -69.2,120 -68.8,120 -68.4,120 -68,120 -67.6,120 -67.2,120 -66.8,120 -66.4,120 -66))"] | ["POINT(120.5 -68)"] | false | false |
Thermal windows and metabolic performance curves in a developing Antarctic fish
|
1142122 |
2017-08-07 | Todgham, Anne; Miller, Nathan |
RUI: Synergistic effects of Ocean Acidification and Warming on Larval Development in Antarctic Fishes |
This dataset includes data from the publication Flynn and Todgham 2017 - Thermal windows and metabolic performance curves in a developing Antarctic fish. Included are data on embryo survival, development, and metabolic rate. | ["POLYGON((166.5 -77.5,166.55 -77.5,166.6 -77.5,166.65 -77.5,166.7 -77.5,166.75 -77.5,166.8 -77.5,166.85 -77.5,166.9 -77.5,166.95 -77.5,167 -77.5,167 -77.55,167 -77.6,167 -77.65,167 -77.7,167 -77.75,167 -77.8,167 -77.85,167 -77.9,167 -77.95,167 -78,166.95 -78,166.9 -78,166.85 -78,166.8 -78,166.75 -78,166.7 -78,166.65 -78,166.6 -78,166.55 -78,166.5 -78,166.5 -77.95,166.5 -77.9,166.5 -77.85,166.5 -77.8,166.5 -77.75,166.5 -77.7,166.5 -77.65,166.5 -77.6,166.5 -77.55,166.5 -77.5))"] | ["POINT(166.75 -77.75)"] | false | false |
Late Holocene paleoecological and paleoclimatic data from moss peatbanks in the western Antarctic Peninsula
|
1246190 |
2017-07-24 | Yu, Zicheng |
Collaborative Research: Response of Carbon Accumulation in Moss Peatbanks to Past Warm Climates in the Antarctic Peninsula |
We used subfossil mosses and peats to document changes in regional climate, cryosphere, and terrestrial ecosystems in the western Antarctic Peninsula at ~65S latitude. We find that most peat-forming ecosystems have initiated since 2800 cal BP, in response to warmer summers and increasing summer insolation. The period at 900-600 cal BP was coldest as indicated by ice advance, abundance of kill ages from ice-entombed mosses exposed recently from retreating glacial ice, and apparent gap in peatbank initiation. Furthermore, the discovery of a novel Antarctic hairgrass (Deschampsia antarctica) peatland at 2300-1200 cal BP from the mainland Antarctic Peninsula suggests a much warmer climate than the present. A warming and wetting climate in the 1980s caused very high carbon accumulation in a Polytrichum strictum moss peatbank. Our results document dramatic transformations of landscape and ecosystems in response to past warmer climate, providing a telltale sign for what may come in the future. | ["POLYGON((-68.5 -64,-67.73 -64,-66.96 -64,-66.19 -64,-65.42 -64,-64.65 -64,-63.88 -64,-63.11 -64,-62.34 -64,-61.57 -64,-60.8 -64,-60.8 -64.36,-60.8 -64.72,-60.8 -65.08,-60.8 -65.44,-60.8 -65.8,-60.8 -66.16,-60.8 -66.52,-60.8 -66.88,-60.8 -67.24,-60.8 -67.6,-61.57 -67.6,-62.34 -67.6,-63.11 -67.6,-63.88 -67.6,-64.65 -67.6,-65.42 -67.6,-66.19 -67.6,-66.96 -67.6,-67.73 -67.6,-68.5 -67.6,-68.5 -67.24,-68.5 -66.88,-68.5 -66.52,-68.5 -66.16,-68.5 -65.8,-68.5 -65.44,-68.5 -65.08,-68.5 -64.72,-68.5 -64.36,-68.5 -64))"] | ["POINT(-64.65 -65.8)"] | false | false |
Seasonal Succession of Bacterial Communities in Coastal Waters of the Western Antarctic Peninsula
|
1141993 |
2017-06-12 | Rich, Jeremy |
Collaborative Research: Microbial Community Assembly in Coastal Waters of the Western Antarctic Peninsula |
From winter to late summer during the 2013-2014 season at Palmer Station, Antarctica, we collected weekly to bi-weekly samples of the seawater intake to measure changes in bacterial community composition, based on sequencing 16S rRNA genes. Along with the sequences, we collected data on environmental parameters in the samples (chlorophyll a, bacterial production, salinity, nutrients, bacterial cell numbers, and particulate organic carbon and nitrogen). | ["POINT(-64.05 -64.77)"] | ["POINT(-64.05 -64.77)"] | false | false |
Biosamples and observations from Weddell Seal colonies in McMurdo Sound during the 2015-2016 Antarctic field season
|
1443554 |
2017-05-27 | Hindle, Allyson; Buys, Emmanuel |
Unraveling the Genomic and Molecular Basis of the Dive Response: Nitric Oxide Signaling and Vasoregulation in the Weddell Seal |
The Weddell seal is a champion diving mammal - key elements of their physiological specializations to breath-hold are their ability for remarkable adjustment of their heart and blood vessel system, coordinating blood pressure and flow to specific body regions based on their metabolic requirements, and their ability to sustain periods without oxygen. The goal of this study is to unravel the molecular mechanisms underlying the dive response, specifically, to study a signaling pathway that coordinates local blood flow. This dataset identifies what animals were sampled and the details of what biosamples were collected to test the hypothesis that signaling modifications prevent local blood vessel changes under low oxygen conditions, thereby allowing the centrally mediated diving reflex to override local perfusion control. The metadata also details cryopreserved cells and cell lines that can be used to study the molecular effects of low oxygen conditions in the laboratory | ["POLYGON((166.163 -76.665,166.2635 -76.665,166.364 -76.665,166.4645 -76.665,166.565 -76.665,166.6655 -76.665,166.766 -76.665,166.8665 -76.665,166.967 -76.665,167.0675 -76.665,167.168 -76.665,167.168 -76.782,167.168 -76.899,167.168 -77.016,167.168 -77.133,167.168 -77.25,167.168 -77.367,167.168 -77.484,167.168 -77.601,167.168 -77.718,167.168 -77.835,167.0675 -77.835,166.967 -77.835,166.8665 -77.835,166.766 -77.835,166.6655 -77.835,166.565 -77.835,166.4645 -77.835,166.364 -77.835,166.2635 -77.835,166.163 -77.835,166.163 -77.718,166.163 -77.601,166.163 -77.484,166.163 -77.367,166.163 -77.25,166.163 -77.133,166.163 -77.016,166.163 -76.899,166.163 -76.782,166.163 -76.665))"] | ["POINT(166.6655 -77.25)"] | false | false |
Measurements of 14C-methane for the Younger Dryas - Preboreal Transition from Taylor Glacier, Antarctica
|
1245659 |
2017-05-24 | Petrenko, Vasilii; Severinghaus, Jeffrey P. |
Collaborative Research: A "Horizontal Ice Core" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica |
This dataset contains measurements of paleoatmospheric 14C of methane (14CH4) for the Younger Dryas - Preboreal Transition from Taylor Glacier, Antarctica, as well as a range of supporting data. The supporting data include [CH4], [CO], [14CO], sample ages, CH4 emissions and analysis of uncertainties. | ["POINT(161.71353 -77.75855)"] | ["POINT(161.71353 -77.75855)"] | false | false |
Specimen logs and observations from Weddell Seal colonies in Erebus Bay, 2013-2017
|
1246463 |
2017-05-24 | Burns, Jennifer |
The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals |
This dataset includes an inventory of Weddell Seals captured by net, tagged, and observed at colonies in the Erebus Bay region of Antarctica during 4 austral field seasons between November 2013 and February 2017. Observations recorded include body mass, length, and molt category. | ["POINT(166.55 -77.75)"] | ["POINT(166.55 -77.75)"] | false | false |
Shear Wave Splitting Analysis and Seismic Anisotropy beneath the Northern Transantarctic Mountains
|
1148982 |
2017-04-20 | Hansen, Samantha |
CAREER: Deciphering the Tectonic History of the Transantarctic Mountains and the Wilkes Subglacial Basin |
Using data from the Transantarctic Mountains (TAMs) Northern Network, shear-wave splitting analysis has been employed to constrain azimuthal anisotropy beneath a portion of the northern TAMs. Splitting measurements were made for PKS, SKS, and SKKS phases with the eigenvalue method in SplitLab. The results show two distinct geographic regions of anisotropy: one behind the TAMs front and the other along the Ross Sea coastline. The anisotropic structure behind the TAMs front is best attributed to relict fabric associated with past tectonic episodes. Along the coastline, the anisotropy is interpreted to reflect mantle flow associated with rift-related decompression melting and Cenozoic extension. | ["POLYGON((153.327 -73.032547,154.5063012 -73.032547,155.6856024 -73.032547,156.8649036 -73.032547,158.0442048 -73.032547,159.223506 -73.032547,160.4028072 -73.032547,161.5821084 -73.032547,162.7614096 -73.032547,163.9407108 -73.032547,165.120012 -73.032547,165.120012 -73.3530275,165.120012 -73.673508,165.120012 -73.9939885,165.120012 -74.314469,165.120012 -74.6349495,165.120012 -74.95543,165.120012 -75.2759105,165.120012 -75.596391,165.120012 -75.9168715,165.120012 -76.237352,163.9407108 -76.237352,162.7614096 -76.237352,161.5821084 -76.237352,160.4028072 -76.237352,159.223506 -76.237352,158.0442048 -76.237352,156.8649036 -76.237352,155.6856024 -76.237352,154.5063012 -76.237352,153.327 -76.237352,153.327 -75.9168715,153.327 -75.596391,153.327 -75.2759105,153.327 -74.95543,153.327 -74.6349495,153.327 -74.314469,153.327 -73.9939885,153.327 -73.673508,153.327 -73.3530275,153.327 -73.032547))"] | ["POINT(159.223506 -74.6349495)"] | false | false |
Vertebrate fossils from the Hanson Formation at Mt. Kirkpatrick, in the Beardmore Glacier region of Antarctica
|
1246379 |
2017-03-29 | Smith, Nathan |
Collaborative Research: Continued Research on the Jurassic Vertebrate Fauna from the Beardmore Glacier Region of Antarctica |
This proposal supports research on the Early Jurassic Hanson Formation vertebrate fauna of the Beardmore Glacier region of Antarctica. The project supports preparation and systematic and paleobiological research on four Antarctic dinosaurs, including two new species, collected in the Central Transantarctic Mountains. With the new material Cryolophosaurus will become one of the most complete Early Jurassic theropods known, and thus has the potential to become a keystone taxon for resolving the debated early evolutionary history of theropod dinosaurs, the group that gave rise to birds. Two new dinosaur specimens include a nearly complete articulated skeleton of a juvenile sauropodomorph, and the articulated hip region of another small individual. Both appear to be new taxa. The dinosaurs from the Hanson Formation represent some of the highest paleolatitude vertebrates known from the Jurassic. The PIs generated CT datasets for Cryolophosaurus and the more complete new sauropodomorph species to mine for phylogenetic trait information, and to investigate their comparative neuroanatomy and feeding behavior. Histological datasets have been generated from multiple skeletal elements for all four Mt. Kirkpatrick taxa to understand patterns of growth in different clades of polar dinosaurs and compare them to relatives from lower paleolatitudes. This paleohistological study of a relatively diverse sample of sauropodomorph taxa from Antarctica may contribute to determining whether and how these dinosaurs responded to contemporary climatic extremes. The PIs have established a successful undergraduate training program as part of previous research. Summer interns from Augustana are trained at the Field Museum in specimen preparation, curation, molding/casting, and histological sampling. They also participate in existing Field Museum REU programs, including a course on phylogenetic systematics. Four undergraduate internships and student research projects will be supported through this proposal. A postdoctoral researcher has also been supported on this project The PIs are developing a traveling exhibit on Antarctic Dinosaurs that they estimate will be seen by over 2 million people over the five-year tour (opening June 2018 at the Field Museum of Natural History). | ["POLYGON((160 -85,160.6 -85,161.2 -85,161.8 -85,162.4 -85,163 -85,163.6 -85,164.2 -85,164.8 -85,165.4 -85,166 -85,166 -85.2,166 -85.4,166 -85.6,166 -85.8,166 -86,166 -86.2,166 -86.4,166 -86.6,166 -86.8,166 -87,165.4 -87,164.8 -87,164.2 -87,163.6 -87,163 -87,162.4 -87,161.8 -87,161.2 -87,160.6 -87,160 -87,160 -86.8,160 -86.6,160 -86.4,160 -86.2,160 -86,160 -85.8,160 -85.6,160 -85.4,160 -85.2,160 -85))"] | ["POINT(163 -86)"] | false | false |
Video Particle Profiler (VPP) and Digital Inline Holographic Microscopy (DIHM) data from cruise NBP1302
|
1142097 |
2017-01-23 | Bochdansky, Alexander |
Collaborative research: TRacing the fate of Algal Carbon Export in the Ross Sea (TRACERS) |
None | ["POLYGON((163.90952 -67.00006,170.04898 -67.00006,176.18844 -67.00006,182.3279 -67.00006,188.46736 -67.00006,194.60682 -67.00006,200.74628 -67.00006,206.88574 -67.00006,213.0252 -67.00006,219.16466 -67.00006,225.30412 -67.00006,225.30412 -68.15911,225.30412 -69.31816,225.30412 -70.47721,225.30412 -71.63626,225.30412 -72.79531,225.30412 -73.95436,225.30412 -75.11341,225.30412 -76.27246,225.30412 -77.43151,225.30412 -78.59056,219.16466 -78.59056,213.0252 -78.59056,206.88574 -78.59056,200.74628 -78.59056,194.60682 -78.59056,188.46736 -78.59056,182.3279 -78.59056,176.18844 -78.59056,170.04898 -78.59056,163.90952 -78.59056,163.90952 -77.43151,163.90952 -76.27246,163.90952 -75.11341,163.90952 -73.95436,163.90952 -72.79531,163.90952 -71.63626,163.90952 -70.47721,163.90952 -69.31816,163.90952 -68.15911,163.90952 -67.00006))"] | ["POINT(-165.39318 -72.79531)"] | false | false |
Neogene Paleoecology of the Beardmore Glacier Region
|
0947821 |
2017-01-17 | Ashworth, Allan |
Neogene Paleoecology of the Beardmore Glacier Region |
None | ["POLYGON((166.58793 -85.11733,166.595533 -85.11733,166.603136 -85.11733,166.610739 -85.11733,166.618342 -85.11733,166.625945 -85.11733,166.633548 -85.11733,166.641151 -85.11733,166.648754 -85.11733,166.656357 -85.11733,166.66396 -85.11733,166.66396 -85.117836,166.66396 -85.118342,166.66396 -85.118848,166.66396 -85.119354,166.66396 -85.11986,166.66396 -85.120366,166.66396 -85.120872,166.66396 -85.121378,166.66396 -85.121884,166.66396 -85.12239,166.656357 -85.12239,166.648754 -85.12239,166.641151 -85.12239,166.633548 -85.12239,166.625945 -85.12239,166.618342 -85.12239,166.610739 -85.12239,166.603136 -85.12239,166.595533 -85.12239,166.58793 -85.12239,166.58793 -85.121884,166.58793 -85.121378,166.58793 -85.120872,166.58793 -85.120366,166.58793 -85.11986,166.58793 -85.119354,166.58793 -85.118848,166.58793 -85.118342,166.58793 -85.117836,166.58793 -85.11733))"] | ["POINT(166.625945 -85.11986)"] | false | false |
Climate Change and Predatory Invasion of the Antarctic Benthos
|
1141877 |
2017-01-10 | Aronson, Richard |
Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos |
Elevated temperatures and ocean acidification are both threatening the Southern Ocean. The effects of these environmental changes are poorly understood, but preliminary data suggest that they are driving a biological invasion. Specifically, large populations of skeleton-crushing king crabs, Paralomis birsteini, have been detected off Marguerite Bay on the West Antarctic Peninsula. These crabs appear to be invading the continental shelf region where benthic communities have evolved in the absence of such top-predators. Thus, this invasion could result in a wholesale restructuring of the Antarctic benthic ecosystem. The proposed work seeks to document this invasion and better understand the effects of the introduction of P. birsteini on the ecology of this region. A towed underwater vehicle will be used to photographically image communities, and communities with and without P. birsteini will be compared quantitatively. Additionally, crabs will trapped and various aspects of their morphology and physiology will be assessed. This research is unique in that it will document a biological invasion in real-time and it will therefore enhance our general understandings of the drivers of invasion and resilience in biological communities. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of undergraduate and graduate students and will foster an international collaboration with British scientists. Researchers on this project will participate in outreach thorough the development of K-12 curricular materials. | [] | [] | false | false |
Redox Balance in Antarctic Notothenioid Fishes
|
1043781 |
2016-12-06 | O'Brien, Kristin |
Collaborative research: Redox Balance in Antarctic Notothenioid fishes: Do Icefishes have an Advantage? |
None | [] | [] | false | false |
Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins
|
1043554 |
2016-11-09 | Willenbring, Jane |
Collaborative Research: Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins |
The PIs propose to address the question of whether ice surface melting zones developed at high elevations during warm climatic phases in the Transantarctic Mountains. Evidence from sediment cores drilled by the ANDRILL program indicates that open water in the Ross Sea could have been a source of warmth during Pliocene and Pleistocene. The question is whether marine warmth penetrated inland to the ice sheet margins. The glacial record may be ill suited to answer this question, as cold-based glaciers may respond too slowly to register brief warmth. Questions also surround possible orbital controls on regional climate and ice sheet margins. Northern Hemisphere insolation at obliquity and precession timescales is thought to control Antarctic climate through oceanic or atmospheric connections, but new thinking suggests that the duration of Southern Hemisphere summer may be more important. The PIs propose to use high elevation alluvial deposits in the Transantarctic Mountains as a proxy for inland warmth. These relatively young fans, channels, and debris flow levees stand out as visible evidence for the presence of melt water in an otherwise ancient, frozen landscape. Based on initial analyses of an alluvial fan in the Olympus Range, these deposits are sensitive recorders of rare melt events that occur at orbital timescales. For their study they will 1) map alluvial deposits using aerial photography, satellite imagery and GPS assisted field surveys to establish water sources and to quantify parameters effecting melt water production, 2) date stratigraphic sequences within these deposits using OSL, cosmogenic nuclide, and interbedded volcanic ash chronologies, 3) use paired nuclide analyses to estimate exposure and burial times, and rates of deposition and erosion, and 4) use micro and regional scale climate modeling to estimate paleoenvironmental conditions associated with melt events. This study will produce a record of inland melting from sites adjacent to ice sheet margins to help determine controls on regional climate along margins of the East Antarctic Ice Sheet to aid ice sheet and sea level modeling studies. The proposal will support several graduate and undergraduates. A PhD student will be supported on existing funding. The PIs will work with multiple K-12 schools to conduct interviews and webcasts from Antarctica and they will make follow up visits to classrooms after the field season is complete. | ["POINT(161.5 -77.5)"] | ["POINT(161.5 -77.5)"] | false | false |
CTD Data Acquired by R/V Xue Long in the Prydz Bay- Amery Ice Shelf Region, 2015-2017
|
1443444 |
2016-05-02 | Yuan, Xiaojun |
Collaborative Research: Contribution of Prydz Bay Shelf Water to Antarctic Bottom Water Formation |
This dataset contains inventories and location maps for CTD data acquired by the icebreaker R/V Xue Long in the Prydz Bay- Amery Ice Shelf region. A total of 68 stations were acquired in February 2015 and 24 stations in March 2017, as part of a joint US/China project to study Antarctic Bottom Water (AABW) formation. | ["POLYGON((65.4503 -63.5143,67.2063 -63.5143,68.9623 -63.5143,70.7183 -63.5143,72.4743 -63.5143,74.2303 -63.5143,75.9863 -63.5143,77.7423 -63.5143,79.4983 -63.5143,81.2543 -63.5143,83.0103 -63.5143,83.0103 -64.09423,83.0103 -64.67416,83.0103 -65.25409,83.0103 -65.83402,83.0103 -66.41395,83.0103 -66.99388,83.0103 -67.57381,83.0103 -68.15374,83.0103 -68.73367,83.0103 -69.3136,81.2543 -69.3136,79.4983 -69.3136,77.7423 -69.3136,75.9863 -69.3136,74.2303 -69.3136,72.4743 -69.3136,70.7183 -69.3136,68.9623 -69.3136,67.2063 -69.3136,65.4503 -69.3136,65.4503 -68.73367,65.4503 -68.15374,65.4503 -67.57381,65.4503 -66.99388,65.4503 -66.41395,65.4503 -65.83402,65.4503 -65.25409,65.4503 -64.67416,65.4503 -64.09423,65.4503 -63.5143))"] | ["POINT(74.2303 -66.41395)"] | false | false |
Climate Change and Predatory Invasion of the Antarctic Benthos
|
1141877 |
2016-01-01 | Aronson, Richard |
Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos |
Elevated temperatures and ocean acidification are both threatening the Southern Ocean. The effects of these environmental changes are poorly understood, but preliminary data suggest that they are driving a biological invasion. Specifically, large populations of skeleton-crushing king crabs, Paralomis birsteini, have been detected off Marguerite Bay on the West Antarctic Peninsula. These crabs appear to be invading the continental shelf region where benthic communities have evolved in the absence of such top-predators. Thus, this invasion could result in a wholesale restructuring of the Antarctic benthic ecosystem. The proposed work seeks to document this invasion and better understand the effects of the introduction of P. birsteini on the ecology of this region. A towed underwater vehicle will be used to photographically image communities, and communities with and without P. birsteini will be compared quantitatively. Additionally, crabs will trapped and various aspects of their morphology and physiology will be assessed. This research is unique in that it will document a biological invasion in real-time and it will therefore enhance our general understandings of the drivers of invasion and resilience in biological communities. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of undergraduate and graduate students and will foster an international collaboration with British scientists. Researchers on this project will participate in outreach thorough the development of K-12 curricular materials. | ["POLYGON((-111.18 -49.98,-105.429 -49.98,-99.678 -49.98,-93.927 -49.98,-88.176 -49.98,-82.425 -49.98,-76.674 -49.98,-70.923 -49.98,-65.172 -49.98,-59.421 -49.98,-53.67 -49.98,-53.67 -52.826,-53.67 -55.672,-53.67 -58.518,-53.67 -61.364,-53.67 -64.21,-53.67 -67.056,-53.67 -69.902,-53.67 -72.748,-53.67 -75.594,-53.67 -78.44,-59.421 -78.44,-65.172 -78.44,-70.923 -78.44,-76.674 -78.44,-82.425 -78.44,-88.176 -78.44,-93.927 -78.44,-99.678 -78.44,-105.429 -78.44,-111.18 -78.44,-111.18 -75.594,-111.18 -72.748,-111.18 -69.902,-111.18 -67.056,-111.18 -64.21,-111.18 -61.364,-111.18 -58.518,-111.18 -55.672,-111.18 -52.826,-111.18 -49.98))"] | ["POINT(-82.425 -64.21)"] | false | false |
Linking the Movement Patterns and Foraging Behavior of Humpback Whales to their Prey across Multiple Spatial Scales within the LTER Study Region
|
1250208 |
2016-01-01 | Friedlaender, Ari; Johnston, David; Nowacek, Douglas |
RAPID: Linking the Movement Patterns and Foraging Behavior of Humpback Whales to their Prey across Multiple Spatial Scales within the LTER Study Region |
Whales play a central role in the ecology and biogeochemistry of the Southern Ocean. However, little is known regarding their distribution and behavior, in part because of challenges associated with studying these organisms from large research vessels. This research will take advantage of the unique opportunity presented by the 2012-2013 test run of the smaller, more mobile R/V Point Sur. This work will use the Point Sur to investigate humpback whales in the waters studied by the Palmer Long Term Ecological Research (LTER) Station off the Western Antarctic Peninsula (WAP). Employing a combination of long-term satellite-linked tags and short-term suction cup tags, researchers will investigate the distribution, abundance and foraging behaviors of whales in this region. Whale biogeography will then be related to quantitative surveys of krill, their primary food source. Hypotheses regarding whale distribution and foraging strategies as well as physical oceanographic features will be tested. The WAP is undergoing some of the most dramatic warming on the planet, and a better understanding of the ecology of top predators is central to developing an understanding of the impacts of this change. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. Finally, this work will be coordinated with the extensive infrastructure of the Palmer LTER site, enabling outreach and educational activities. | ["POLYGON((-80 -63,-78 -63,-76 -63,-74 -63,-72 -63,-70 -63,-68 -63,-66 -63,-64 -63,-62 -63,-60 -63,-60 -63.7,-60 -64.4,-60 -65.1,-60 -65.8,-60 -66.5,-60 -67.2,-60 -67.9,-60 -68.6,-60 -69.3,-60 -70,-62 -70,-64 -70,-66 -70,-68 -70,-70 -70,-72 -70,-74 -70,-76 -70,-78 -70,-80 -70,-80 -69.3,-80 -68.6,-80 -67.9,-80 -67.2,-80 -66.5,-80 -65.8,-80 -65.1,-80 -64.4,-80 -63.7,-80 -63))"] | ["POINT(-70 -66.5)"] | false | false |
A Multi-decadal Record of Antarctic Benthos: Image Analysis to Maximize Data Utilization
|
1355533 |
2016-01-01 | Dayton, Paul |
EAGER: A Multi-decadal Record of Antarctic Benthos: Image Analysis to Maximize Data Utilization |
Antarctic benthic communities are characterized by many species of sponges (Phylum Porifera), long thought to exhibit extremely slow demographic patterns of settlement, growth and reproduction. This project will analyze many hundreds of diver and remotely operated underwater vehicle photographs documenting a unique, episodic settlement event that occurred between 2000 and 2010 in McMurdo Sound that challenges this paradigm of slow growth. Artificial structures were placed on the seafloor between 1967 and 1974 at several sites, but no sponges were observed to settle on these structures until 2004. By 2010 some 40 species of sponges had settled and grown to be surprisingly large. Given the paradigm of slow settlement and growth supported by the long observation period (37 years, 1967-2004), this extraordinary large-scale settlement and rapid growth over just a 6-year time span is astonishing. This project utilizes image processing software (ImageJ) to obtain metrics (linear dimensions to estimate size, frequency, percent cover) for sponges and other fauna visible in the photographs. It uses R to conduct multidimensional scaling to ordinate community data and ANOSIM to test for differences of community data among sites and times and structures. It will also use SIMPER and ranked species abundances to discriminate species responsible for any differences. This work focuses on Antarctic sponges, but the observations of massive episodic recruitment and growth are important to understanding seafloor communities worldwide. Ecosystems are composed of populations, and populations are ecologically described by their distribution and abundance. A little appreciated fact is that sponges often dominate marine communities, but because sponges are so hard to study, most workers focus on other groups such as corals, kelps, or bivalves. Because most sponges settle and grow slowly their life history is virtually unstudied. The assumption of relative stasis of the Antarctic seafloor community is common, and this project will shatter this paradigm by documenting a dramatic episodic event. Finally, the project takes advantage of old transects from the 1960s and 1970s and compares them with extensive 2010 surveys of the same habitats and sometimes the same intact transect lines, offering a long-term perspective of community change. The investigators will publish these results in peer-reviewed journals, give presentations to the general public and will involve students from local outreach programs, high schools, and undergraduates at UCSD to help with the analysis. | ["POLYGON((163 -78,163.4 -78,163.8 -78,164.2 -78,164.6 -78,165 -78,165.4 -78,165.8 -78,166.2 -78,166.6 -78,167 -78,167 -78.05,167 -78.1,167 -78.15,167 -78.2,167 -78.25,167 -78.3,167 -78.35,167 -78.4,167 -78.45,167 -78.5,166.6 -78.5,166.2 -78.5,165.8 -78.5,165.4 -78.5,165 -78.5,164.6 -78.5,164.2 -78.5,163.8 -78.5,163.4 -78.5,163 -78.5,163 -78.45,163 -78.4,163 -78.35,163 -78.3,163 -78.25,163 -78.2,163 -78.15,163 -78.1,163 -78.05,163 -78))"] | ["POINT(165 -78.25)"] | false | false |
Glacial-interglacial History of West Antarctic Nunataks and Site Reconnaissance for Subglacial Bedrock Sampling
|
1142162 |
2016-01-01 | Stone, John |
Glacial-interglacial History of West Antarctic Nunataks and Site Reconnaissance for Subglacial Bedrock Sampling |
This award supports a reconnaissance geological and radar-sounding study of promising sites in West Antarctica for a future project to measure cosmogenic nuclides in subglacial bedrock. Field work will take place in the Whitmore Mountains, close to the WAIS divide, and on the Nash and Pirrit Hills, downflow from the divide in the Weddell Sea drainage. At each site geological indicators of higher (and lower) ice levels in the past will be mapped and evidence of subglacial erosion or its absence will be documented. Elevation transects of both glacial erratics and adjacent bedrock samples will be collected to establish the timing of recent deglaciation at the sites and provide a complement to similar measurements on material from depth transects obtained by future subglacial drilling. At each site, bedrock ridges will be traced into the subsurface with closely-spaced ice-penetrating radar surveys, using a combination of instruments and frequencies to obtain the highest possible surface detail. Collectively the results will define prospective sites for subglacial sampling, and maximize the potential information to be obtained from such samples in future studies. The intellectual merit of this project is that measurements of cosmogenic nuclides in subglacial bedrock hold promise for resolving the questions of whether the West Antarctic ice sheet collapsed completely in the past, whether it is prone to repeated large deglaciations, and if so, what is their magnitude and frequency. Such studies will require careful choice of targets, to locate sites where bedrock geology is favorable, cosmogenic nuclide records are likely to have been protected from subglacial erosion, and the local ice-surface response is indicative of large-scale ice sheet behavior. The broader impacts of this work include helping to determine whether subglacial surfaces in West Antarctica were ever exposed to cosmic rays, which will provide unambiguous evidence for or against a smaller ice sheet in the past. This is an important step towards establishing whether the WAIS is vulnerable to collapse in future, and will ultimately help to address uncertainty in forecasting sea level change. The results will also provide ground truth for models of ice-sheet dynamics and long-term ice sheet evolution, and will help researchers use these models to identify paleoclimate conditions responsible for WAIS deglaciation. The education and training of students (both undergraduate and graduate students) will play an important role in the project, which will involve Antarctic fieldwork, technically challenging labwork, data collection and interpretation, and communication of the outcome to scientists and the general public. | ["POLYGON((-104.14 -81.07,-102.24 -81.07,-100.34 -81.07,-98.44 -81.07,-96.54 -81.07,-94.64 -81.07,-92.74 -81.07,-90.84 -81.07,-88.94 -81.07,-87.04 -81.07,-85.14 -81.07,-85.14 -81.207,-85.14 -81.344,-85.14 -81.481,-85.14 -81.618,-85.14 -81.755,-85.14 -81.892,-85.14 -82.029,-85.14 -82.166,-85.14 -82.303,-85.14 -82.44,-87.04 -82.44,-88.94 -82.44,-90.84 -82.44,-92.74 -82.44,-94.64 -82.44,-96.54 -82.44,-98.44 -82.44,-100.34 -82.44,-102.24 -82.44,-104.14 -82.44,-104.14 -82.303,-104.14 -82.166,-104.14 -82.029,-104.14 -81.892,-104.14 -81.755,-104.14 -81.618,-104.14 -81.481,-104.14 -81.344,-104.14 -81.207,-104.14 -81.07))"] | ["POINT(-94.64 -81.755)"] | false | false |
Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica
|
0944282 |
2016-01-01 | Hasiotis, Stephen |
Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica |
This proposal will study the diversity, abundance, and tiering patterns of ichnofossils in continental and marine deposits of the Beacon Supergroup in the Beardmore Glacier Area (BGA). The PIs will focus on continental strata that contain a variety of ichnofossils and paleosols. Ichnofossils will be evaluated for their architectural and surficial morphologies, and will be compared to modern and ancient traces to interpret the tracemaker behavior and paleoenvironmental setting. Distribution of ichnofossils within these units may indicate the effect of lateral variability of pedogenesis, the magnitude and frequency of depositional events, and the amount of moisture within the sediment, as well as the effects of climate change. The paleoclimatic significance of ichnofossils will be determined by comparing the burrow size, occurrence, tiering, and pedogenic significance of ichnofossils in measured sections of stratigraphic units deposited during global warming and cooling episodes. Comparisons will be made between BGA formations to stratigraphically equivalent rocks deposited at low paleolatitudes with previously determined paleoclimatic settings. The objectives of this project are to address two major questions: what differences existed in ichnodiversity, abundance, and tiering in marine and continental deposits between high- and low-paleolatitudes, and was there a dearth of habitat usage in continental deposits during the late Paleozoic and Mesozoic, particularly in fluvial and lacustrine environments compared to the habitat usage in the marine realm at that time? This study will enhance the ability to interpret paleoenvironments to the subenvironmental scale, understand the evolution of soil biota and ecosystems at high paleolatitudes, determine the role of organisms in soil formation at high paleolatitudes, explore the effects of climate change on the body size and diversity of organisms in the soil communities, and develop new tools to interpret paleoclimate in high latitudes. There is a strong education component associated with this proposal. | ["POINT(175 -86)"] | ["POINT(175 -86)"] | false | false |
Reedy Glacier Exposure Ages, Antarctica
|
0229314 |
2015-03-30 | Stone, John |
Collaborative Research: Late Quaternary History of Reedy Glacier |
This data set contains site, sample, and analytical data from which to calculate cosmogenic nuclide-based exposure ages for glacial deposits adjacent to Reedy Glacier, Antarctica. The data are formatted as input for the CRONUS online exposure-age calculator (http://www.hess.ess.edu/), which determines the exposure age from the cosmogenic Beryllium-10 and Aluminum-26 production rates. | ["POLYGON((-136.32 -85.38,-135.136 -85.38,-133.952 -85.38,-132.768 -85.38,-131.584 -85.38,-130.4 -85.38,-129.216 -85.38,-128.032 -85.38,-126.848 -85.38,-125.664 -85.38,-124.48 -85.38,-124.48 -85.493,-124.48 -85.606,-124.48 -85.719,-124.48 -85.832,-124.48 -85.945,-124.48 -86.058,-124.48 -86.171,-124.48 -86.284,-124.48 -86.397,-124.48 -86.51,-125.664 -86.51,-126.848 -86.51,-128.032 -86.51,-129.216 -86.51,-130.4 -86.51,-131.584 -86.51,-132.768 -86.51,-133.952 -86.51,-135.136 -86.51,-136.32 -86.51,-136.32 -86.397,-136.32 -86.284,-136.32 -86.171,-136.32 -86.058,-136.32 -85.945,-136.32 -85.832,-136.32 -85.719,-136.32 -85.606,-136.32 -85.493,-136.32 -85.38))"] | ["POINT(-130.4 -85.945)"] | false | false |
Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica
|
0739575 |
2015-01-01 | Emslie, Steven; Patterson, William; Polito, Michael |
Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica |
The research combines interdisciplinary study in geology, paleontology, and biology, using stable isotope and radiocarbon analyses, to examine how climate change and resource utilization have influenced population distribution, movement, and diet in penguins during the mid-to-late Holocene. Previous investigations have demonstrated that abandoned colonies contain well-preserved remains that can be used to examine differential responses of penguins to climate change in various sectors of Antarctica. As such, the research team will investigate abandoned and active pygoscelid penguin (Adelie, Chinstrap, and Gentoo) colonies in the Antarctic Peninsula and Ross Sea regions, and possibly Prydz Bay, in collaboration with Chinese scientists during four field seasons. Stable isotope analyses will be conducted on recovered penguin tissues and prey remains in guano to address hypotheses on penguin occupation history, population movement, and diet in relation to climate change since the late Pleistocene. The study will include one Ph.D., two Masters and 16 undergraduate students in advanced research over the project period. Students will be exposed to a variety of fields, the scientific method, and international scientific research. They will complete field and lab research for individual projects or Honor's theses for academic credit. The project also will include web-based outreach, lectures to middle school students, and the development of interactive exercises that highlight hypothesis-driven research and the ecology of Antarctica. Two undergraduate students in French and Spanish languages at UNCW will be hired to assist in translating the Web page postings for broader access to this information. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Preparation of Vertebrate Fossils from the Triassic of Antarctica
|
1146399 |
2015-01-01 | Sidor, Christian |
Preparation of Vertebrate Fossils from the Triassic of Antarctica |
The PI requests support for preparation of a large collection of vertebrate fossils recently recovered from the Central Transantarctic Mountains (CTAM) of Antarctica. These fossils will be used to place early Mesozoic Antarctic dinosaurs and other vertebrates into a global evolutionary, biogeographic, and faunal context; assess the degree of endemism in Triassic vertebrate faunas of Antarctica; constrain temporal relationships of the Triassic Antarctic vertebrate faunas; and refine the stratigraphic context for the Triassic Antarctic vertebrate assemblages to establish a paleoenvironmental framework. The lower and middle Triassic fossils offer a rare window on life in terrestrial environments at high-latitudes immediately after the Permian mass extinction. The PI will use their fossils to educate the public about the geologic, climatic, and biologic history of Antarctica by visiting local schools. They will create and publish at least two new videos to the Burke Museum blog that relate the graduate student's experience of fieldwork in Antarctica. They will also update the Antarctica section on the UWBM 'Explore Your World' website with images and findings from their field season. | ["POLYGON((162.41 -84.27,163.409 -84.27,164.408 -84.27,165.407 -84.27,166.406 -84.27,167.405 -84.27,168.404 -84.27,169.403 -84.27,170.402 -84.27,171.401 -84.27,172.4 -84.27,172.4 -84.353,172.4 -84.436,172.4 -84.519,172.4 -84.602,172.4 -84.685,172.4 -84.768,172.4 -84.851,172.4 -84.934,172.4 -85.017,172.4 -85.1,171.401 -85.1,170.402 -85.1,169.403 -85.1,168.404 -85.1,167.405 -85.1,166.406 -85.1,165.407 -85.1,164.408 -85.1,163.409 -85.1,162.41 -85.1,162.41 -85.017,162.41 -84.934,162.41 -84.851,162.41 -84.768,162.41 -84.685,162.41 -84.602,162.41 -84.519,162.41 -84.436,162.41 -84.353,162.41 -84.27))"] | ["POINT(167.405 -84.685)"] | false | false |
Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica
|
1343649 |
2015-01-01 | Levy, Joseph |
Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica |
The PIs propose to quantify the hillslope water, solute, and carbon budgets for Taylor Valley in the McMurdo Dry Valleys, using water tracks to investigate near-surface geological processes and challenge the paradigm that shallow groundwater is minimal or non-exixtant. Water tracks are linear zones of high soil moisture that route shallow groundwater downslope in permafrost dominated soils. Four hypotheses will be tested: 1) water tracks are important pathways for water and solute transport; 2) water tracks transport more dissolved silica than streams in Taylor Valley indicating they are the primary site of chemical weathering for cold desert soils and bedrock; 3) water tracks that drain highland terrains are dominated by humidity-separated brines while water tracks that drain lowland terrains are dominated by marine aerosols; 4) water tracks are the sites of the highest terrestrial soil carbon concentrations and the strongest CO2 fluxes in Taylor Valley and their carbon content increases with soil age, while carbon flux decreases with age. To test these hypotheses the PIs will carry out a suite of field measurements supported by modeling and remote sensing. They will install shallow permafrost wells in water tracks that span the range of geological, climatological, and topographic conditions in Taylor Valley. Multifrequency electromagnetic induction sounding of the upper ~1 m of the permafrost will create the first comprehensive map of soil moisture in Taylor Valley, and will permit direct quantification of water track discharge across the valley. The carbon contents of water track soils will be measured and linked to global carbon dynamics. Non-science majors at Oregon State University will be integrated into the proposed research through a new Global Environmental Change course focusing on the scientific method in Antarctica. Three undergraduate students, members of underrepresented minorities, will be entrained in the research, will contribute to all aspects of field and laboratory science, and will present results at national meetings. | ["POLYGON((162.852 -77.6111,162.9893 -77.6111,163.1266 -77.6111,163.2639 -77.6111,163.4012 -77.6111,163.5385 -77.6111,163.6758 -77.6111,163.8131 -77.6111,163.9504 -77.6111,164.0877 -77.6111,164.225 -77.6111,164.225 -77.65331,164.225 -77.69552,164.225 -77.73773,164.225 -77.77994,164.225 -77.82215,164.225 -77.86436,164.225 -77.90657,164.225 -77.94878,164.225 -77.99099,164.225 -78.0332,164.0877 -78.0332,163.9504 -78.0332,163.8131 -78.0332,163.6758 -78.0332,163.5385 -78.0332,163.4012 -78.0332,163.2639 -78.0332,163.1266 -78.0332,162.9893 -78.0332,162.852 -78.0332,162.852 -77.99099,162.852 -77.94878,162.852 -77.90657,162.852 -77.86436,162.852 -77.82215,162.852 -77.77994,162.852 -77.73773,162.852 -77.69552,162.852 -77.65331,162.852 -77.6111))"] | ["POINT(163.5385 -77.82215)"] | false | false |
Origin of Persistent Organic Pollutants in the Antarctic Atmosphere, Snow and Marine Food Web
|
1332492 |
2015-01-01 | Lohmann, Rainer |
RAPID: Origin of Persistent Organic Pollutants in the Antarctic Atmosphere, Snow and Marine Food WEB |
Many persistent organic pollutants (POPs), though banned in the U.S. since the 1970s, remain in the environment and continue to reach hitherto pristine regions such as the Arctic and Antarctic. The overall goals of this RAPID project are to better understand the remobilization of POPs from melting glaciers in the Antarctic, and their transfer into the food-web. Legacy POPs have characteristic chemical signatures that will be used ascertain the origin of POPs in the Antarctic atmosphere and marine food-web. Samples that were collected in 2010 will be analyzed for a wide range of legacy POPs, and their behavior will be contrasted with results for emerging contaminants. The intellectual merit of the proposed research combines (a) the use of chemical signatures to assess whether melting glaciers are releasing legacy POPs back into the Antarctic marine ecosystem, and (b) a better understanding of the food-web dynamics of legacy POPs versus emerging organic pollutants. The broader impacts of the proposed research project will include the training of the next generation of scientists through support for a graduate student and a postdoctoral scholar. As well, this work will result in a better understanding of the relationship between pollutants, trophic food web ecology and global climate change in the pristine Antarctic ecosystem. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Retrospective Analysis of Antarctic Tracking data (RAATD): International Crabeater and Weddell Seal Tracking Data Sets
|
1321782 |
2015-01-01 | Costa, Daniel |
Retrospective Analysis of Antarctic Tracking data (RAATD): International Crabeater and Weddell Seal Tracking Data Sets |
Identifying the basic habitat requirements of Antarctic predators is fundamental to understanding how they will respond to the human-induced challenges of commercial fisheries and climate change. This understanding can only be achieved if the underlying linkages to physical processes are related to animal movements. As part of the international Retrospective Analysis of Antarctic Tracking Data (RAATD) organized by the SCAR Expert Group of Birds and Marine Mammals, this research will collate and synthesize tracking data from crabeater seals, Lobodon carcinophagus, and Weddell seals, Leptonychotes weddelli. These data will be combined with all available data from the Southern Ocean that has been collected by researchers from Norway, United Kingdom, Germany, Australia and the USA. These data will be analyzed using a common analytical approach and synthesized into a synoptic view of these two species across the Southern Ocean. The diving and movement patterns will be examined for each species. As well, the total home range and core habitat utilization patterns for each species and region will be determined. This study will develop global habitat maps for each species based on physical and biological attributes of their 'hot-spots' and then overlay all the species specific maps to identify multi-species areas of ecological significance. Broader impacts include support and training for a postdoctoral scholar, the production of a publicly available database and the participation in an international data synthesis effort. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Magnetostratigraphy of Cretaceous Sediments in the James Ross Island Basin, Antarctica
|
1303896 |
2015-01-01 | Kirschvink, Joseph |
Magnetostratigraphy of Cretaceous Sediments in the James Ross Island Basin, Antarctica |
The PI will collect samples to extend the magneto-stratigraphic record of late Cretaceous sediments of the James Ross Basin, Antarctica. RAPID support will allow him to take advantage of an invitation from the Instituto Antartico Argentino (IAA) to participate on an excursion to James Ross Island in the Antarctic Peninsula. The PI hopes to collect samples that will refine the position of several geomagnetic reversals between the end of the Cretaceous long normal Chron and the lower portion of Chron 31R. The Brandy Bay locality targeted by this expedition is the best place in the basin for calibrating the biostratigraphic position of the top of the Cretaceous Long Normal Chron, which is one of the most reliable correlation horizons in the entire Geological Time Scale. The top of the Cretaceous long normal Chron is not properly correlated to southern hemisphere biostratigraphy. Locating this event will be a major addition to understanding geological time. This expedition will provide opportunities for an undergraduate student. This project is based on a productive collaboration with an Argentine scientist. | ["POLYGON((-57 -63,-56.9 -63,-56.8 -63,-56.7 -63,-56.6 -63,-56.5 -63,-56.4 -63,-56.3 -63,-56.2 -63,-56.1 -63,-56 -63,-56 -63.2,-56 -63.4,-56 -63.6,-56 -63.8,-56 -64,-56 -64.2,-56 -64.4,-56 -64.6,-56 -64.8,-56 -65,-56.1 -65,-56.2 -65,-56.3 -65,-56.4 -65,-56.5 -65,-56.6 -65,-56.7 -65,-56.8 -65,-56.9 -65,-57 -65,-57 -64.8,-57 -64.6,-57 -64.4,-57 -64.2,-57 -64,-57 -63.8,-57 -63.6,-57 -63.4,-57 -63.2,-57 -63))"] | ["POINT(-56.5 -64)"] | false | false |
A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea
|
1043485 |
2015-01-01 | Kurz, Mark D.; Curtice, Josh |
Collaborative Research: A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea |
This award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation. | ["POLYGON((163.4 -77.47989,163.9848 -77.47989,164.5696 -77.47989,165.1544 -77.47989,165.7392 -77.47989,166.324 -77.47989,166.9088 -77.47989,167.4936 -77.47989,168.0784 -77.47989,168.6632 -77.47989,169.248 -77.47989,169.248 -77.565701,169.248 -77.651512,169.248 -77.737323,169.248 -77.823134,169.248 -77.908945,169.248 -77.994756,169.248 -78.080567,169.248 -78.166378,169.248 -78.252189,169.248 -78.338,168.6632 -78.338,168.0784 -78.338,167.4936 -78.338,166.9088 -78.338,166.324 -78.338,165.7392 -78.338,165.1544 -78.338,164.5696 -78.338,163.9848 -78.338,163.4 -78.338,163.4 -78.252189,163.4 -78.166378,163.4 -78.080567,163.4 -77.994756,163.4 -77.908945,163.4 -77.823134,163.4 -77.737323,163.4 -77.651512,163.4 -77.565701,163.4 -77.47989))"] | ["POINT(166.324 -77.908945)"] | false | false |
Pre and Post Molt Biology of Emperor Penguins - Oden Trans - Ross / Amundsen Sea Cruise
|
1043454 |
2015-01-01 | Kooyman, Gerald |
Pre and post molt biology of emperor penguins - Oden trans - Ross / Amundsen Sea cruise |
The emperor penguin dives deeper and longer, fasts longer, and endures the harshest weather conditions of all diving birds. It spends about four and half months per annum deep in Antarctic pack ice away from shore and stations, and thus is largely unavailable for study. This time includes preparation for the molt, and travel to the colony to breed, a time period in which great swings in body weight occur. This study will fill an important gap in what we know about the biology of the annual cycle of the emperor by examining the molt-post molt period. The P.I. proposes to traverse the Amundsen and Bellingshausen seas on the Oden, to locate and tag emperor penguins during the molt season. The objectives are to (1) Place satellite tags on 20 adult post molt birds to determine their route, rate of travel, and diving behavior as they return back to their breeding colonies, (2) Obtain an index of body condition, (3) Collect guano to determine the type of food consumed by emperor penguins in the region, (4) Conduct shipboard surveys to sight and plot the location and abundance of adult and juvenile birds on the ship's track. The PI hypothesizes that bird dives will be shallow during the initial post-molt phase, and that food will consist primarily of krill; that there will be differential dispersal of birds from the Ross Sea vs. Marie Byrd Land, with Ross Sea birds traveling farther; and that the greatest adult mortality occurs during the molt and early post molt period. Broader impacts include training of a post doc, a graduate student, and an aquarium volunteer. The P.I. also will present findings through a website, through public lectures, and in collaboration with the Birch aquarium. | ["POLYGON((-172.642 -72.55,-170.9074 -72.55,-169.1728 -72.55,-167.4382 -72.55,-165.7036 -72.55,-163.969 -72.55,-162.2344 -72.55,-160.4998 -72.55,-158.7652 -72.55,-157.0306 -72.55,-155.296 -72.55,-155.296 -73.0743,-155.296 -73.5986,-155.296 -74.1229,-155.296 -74.6472,-155.296 -75.1715,-155.296 -75.6958,-155.296 -76.2201,-155.296 -76.7444,-155.296 -77.2687,-155.296 -77.793,-157.0306 -77.793,-158.7652 -77.793,-160.4998 -77.793,-162.2344 -77.793,-163.969 -77.793,-165.7036 -77.793,-167.4382 -77.793,-169.1728 -77.793,-170.9074 -77.793,-172.642 -77.793,-172.642 -77.2687,-172.642 -76.7444,-172.642 -76.2201,-172.642 -75.6958,-172.642 -75.1715,-172.642 -74.6472,-172.642 -74.1229,-172.642 -73.5986,-172.642 -73.0743,-172.642 -72.55))"] | ["POINT(-163.969 -75.1715)"] | false | false |
Standing Water Depth on Larsen B Ice Shelf
|
0944248 |
2014-04-29 | MacAyeal, Douglas |
Model Studies of Surface Water Behavior on Ice Shelves |
This data set addresses why surface melt water lakes on ice shelves and ice sheets are notably influential in triggering ice-shelf break-up and modulating seasonal ice flow, and are thus principle avenues by which environmental change can be transmitted to the ice sheets of Antarctica and Greenland. A comparative analysis is performed of lake geometry and derived depth (using Landsat image reflectance) in two distinct regions, one a collapsing ice shelf and the other an ablation zone of a land terminating ice sheet, to better characterize the range of surface lake variability. | ["POLYGON((-63 -63,-62.2 -63,-61.4 -63,-60.6 -63,-59.8 -63,-59 -63,-58.2 -63,-57.4 -63,-56.6 -63,-55.8 -63,-55 -63,-55 -63.4,-55 -63.8,-55 -64.2,-55 -64.6,-55 -65,-55 -65.4,-55 -65.8,-55 -66.2,-55 -66.6,-55 -67,-55.8 -67,-56.6 -67,-57.4 -67,-58.2 -67,-59 -67,-59.8 -67,-60.6 -67,-61.4 -67,-62.2 -67,-63 -67,-63 -66.6,-63 -66.2,-63 -65.8,-63 -65.4,-63 -65,-63 -64.6,-63 -64.2,-63 -63.8,-63 -63.4,-63 -63))"] | ["POINT(-59 -65)"] | false | false |
East Antarctic outlet glacier contributions to the Ross Sea from chronology of detrital grains
|
1043619 |
2014-01-01 | Hemming, Sidney R. |
Collaborative Research: East Antarctic outlet glacier contributions to the Ross Sea from chronology of detrital grains |
Intellectual Merit: The PIs proposed a provenance study of glacial deposits in the Ross Embayment that will provide a broad scale geochronologic survey of detrital minerals in till to help characterize bedrock beneath the East Antarctic ice sheet and constrain Antarctica?s glacial history. This project capitalizes on previous investments in field sampling. Analytical tools applied to single mineral grains extracted from existing collections of glacial till will generate ?fingerprints? of East Antarctic outlet glaciers and West Antarctic till to refine paleo-ice flow models for the Ross Embayment during the last glacial maximum, older records from ANDRILL cores, and to assess IRD sources in the Southern Ocean. New provenance tracers will include a suite of geochronological methods that together provide greater insights into the orogenic and erosional history the region. This project will include U/Pb of detrital zircons, (U-Th)/He on a subset of the U/Pb dated zircons, as well as Ar-Ar of detrital hornblende, mica and feldspars. Broader Impacts: This research will train one M.S. student at IUPUI, a Ph.D. student at Columbia, and several undergraduates at both institutions. Graduate students involved in the project will be involved in mentoring undergraduate researchers. Incorporation of research discoveries will be brought into the classroom by providing concrete examples and exercises at the appropriate level. Licht and Columbia graduate student E. Pierce are developing outreach projects with local secondary school teachers to investigate the provenance of glacial materials in their local areas. The research will have broad applicability to many fields. | ["POLYGON((-180 -63.997,-179.7982 -63.997,-179.5964 -63.997,-179.3946 -63.997,-179.1928 -63.997,-178.991 -63.997,-178.7892 -63.997,-178.5874 -63.997,-178.3856 -63.997,-178.1838 -63.997,-177.982 -63.997,-177.982 -66.3324,-177.982 -68.6678,-177.982 -71.0032,-177.982 -73.3386,-177.982 -75.674,-177.982 -78.0094,-177.982 -80.3448,-177.982 -82.6802,-177.982 -85.0156,-177.982 -87.351,-178.1838 -87.351,-178.3856 -87.351,-178.5874 -87.351,-178.7892 -87.351,-178.991 -87.351,-179.1928 -87.351,-179.3946 -87.351,-179.5964 -87.351,-179.7982 -87.351,180 -87.351,172.54273 -87.351,165.08546 -87.351,157.62819 -87.351,150.17092 -87.351,142.71365 -87.351,135.25638 -87.351,127.79911 -87.351,120.34184 -87.351,112.88457 -87.351,105.4273 -87.351,105.4273 -85.0156,105.4273 -82.6802,105.4273 -80.3448,105.4273 -78.0094,105.4273 -75.674,105.4273 -73.3386,105.4273 -71.0032,105.4273 -68.6678,105.4273 -66.3324,105.4273 -63.997,112.88457 -63.997,120.34184 -63.997,127.79911 -63.997,135.25638 -63.997,142.71365 -63.997,150.17092 -63.997,157.62819 -63.997,165.08546 -63.997,172.54273 -63.997,-180 -63.997))"] | ["POINT(143.72265 -75.674)"] | false | false |
Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines
|
0944475 |
2014-01-01 | Kaplan, Michael |
Collaborative Research: Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines |
Intellectual Merit: The proposed work will investigate changes in the compositional variation of glacial tills over time across two concentric sequences of Pleistocene moraines located adjacent to the heads of East Antarctic outlet glaciers in the Transantarctic Mountains (TAM). The chronologic framework for this work will be generated from cosmogenic exposure ages of boulders on prominent morainal ridges. The PIs hypothesize that variations in till composition may indicate a change in ice flow direction or a change in the composition of the original source area, while ages of the moraines provide a long-term terrestrial perspective on ice sheet dynamics. Both results are vital for modeling experiments that aim to reconstruct the East Antarctic Ice Sheet and assess its role in the global climate system and its potential impact on global sea level rise. The variation of till compositions through time also allows for a more accurate interpretation of sediment cores from the Ross Sea and the Southern Ocean. Additionally, till exposures at the head of some East Antarctic outlet glaciers have been shown to contain subglacial material derived from East Antarctic bedrock, providing a window through the ice to view East Antarctica's inaccessible bedrock. Till samples will be collected from two well-preserved sequences of moraine crests at Mt. Howe (head of Scott Glacier) and Mt. Achernar (between Beardmore and Nimrod Glaciers). Each size fraction in glacial till provides potentially valuable information, and the PIs will measure the petrography of the clast and sand fractions, quantitative X-ray diffraction on the crushed <2mm fraction, elemental abundance of the silt/clay fraction, and U/Pb of detrital zircons in the sand fraction. Data collection will rely on established methods previously used in this region and the PIs will also explore new methods to assess their efficacy. On the same moraines crests sampled for provenance studies, the PIs will sample for cosmogenic surface exposure analyses to provide a chronologic framework at the sites for provenance changes through time. Broader Impact: The proposed research involves graduate and undergraduate training in a diverse array of laboratory methods. Students and PIs will be make presentations to community and campus groups, as well as conduct interviews with local news outlets. The proposed work also establishes a new, potentially long-term, collaboration between scientists at IUPUI and LDEO and brings a new PI (Kaplan) into the field of Antarctic Earth Sciences. | ["POLYGON((-180 -84.1,-176.97 -84.1,-173.94 -84.1,-170.91 -84.1,-167.88 -84.1,-164.85 -84.1,-161.82 -84.1,-158.79 -84.1,-155.76 -84.1,-152.73 -84.1,-149.7 -84.1,-149.7 -84.43,-149.7 -84.76,-149.7 -85.09,-149.7 -85.42,-149.7 -85.75,-149.7 -86.08,-149.7 -86.41,-149.7 -86.74,-149.7 -87.07,-149.7 -87.4,-152.73 -87.4,-155.76 -87.4,-158.79 -87.4,-161.82 -87.4,-164.85 -87.4,-167.88 -87.4,-170.91 -87.4,-173.94 -87.4,-176.97 -87.4,180 -87.4,178.12 -87.4,176.24 -87.4,174.36 -87.4,172.48 -87.4,170.6 -87.4,168.72 -87.4,166.84 -87.4,164.96 -87.4,163.08 -87.4,161.2 -87.4,161.2 -87.07,161.2 -86.74,161.2 -86.41,161.2 -86.08,161.2 -85.75,161.2 -85.42,161.2 -85.09,161.2 -84.76,161.2 -84.43,161.2 -84.1,163.08 -84.1,164.96 -84.1,166.84 -84.1,168.72 -84.1,170.6 -84.1,172.48 -84.1,174.36 -84.1,176.24 -84.1,178.12 -84.1,-180 -84.1))"] | ["POINT(-174.25 -85.75)"] | false | false |
Optically Stimulated Luminescence Ages of Raised Beaches
|
0724929 |
2013-01-01 | Simms, Alexander |
SGER: Testing the use of OSL dating of beach deposits along the Antarctic Peninsula |
This data set includes optically stimulated luminescence (OSL) ages and elevations obtained from raised beach ridges across the Antarctic Peninsula. | [] | [] | false | false |
Abrupt Environmental Change in the Larsen Ice Shelf System (LARISSA) - Cryosphere and Oceans
|
0732655 |
2013-01-01 | Thompson, Lonnie G.; Mosley-Thompson, Ellen |
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans |
Like no other region on Earth, the northern Antarctic Peninsula represents a spectacular natural laboratory of climate change and provides the opportunity to study the record of past climate and ecological shifts alongside the present-day changes in one of the most rapidly warming regions on Earth. This award supported the cryospheric and oceanographic components of an integrated multi-disciplinary program to address these rapid and fundamental changes now taking place in Antarctic Peninsula (AP). By making use of a marine research platform (the RV NB Palmer and on-board helicopters) and additional logistical support from the Argentine Antarctic program, the project brought together glaciologists, oceanographers, marine geologists and biologists who have worked collaboratively to address fundamental interdisciplinary questions regarding climate change. | ["POLYGON((-63 -60,-62.6 -60,-62.2 -60,-61.8 -60,-61.4 -60,-61 -60,-60.6 -60,-60.2 -60,-59.8 -60,-59.4 -60,-59 -60,-59 -60.5,-59 -61,-59 -61.5,-59 -62,-59 -62.5,-59 -63,-59 -63.5,-59 -64,-59 -64.5,-59 -65,-59.4 -65,-59.8 -65,-60.2 -65,-60.6 -65,-61 -65,-61.4 -65,-61.8 -65,-62.2 -65,-62.6 -65,-63 -65,-63 -64.5,-63 -64,-63 -63.5,-63 -63,-63 -62.5,-63 -62,-63 -61.5,-63 -61,-63 -60.5,-63 -60))"] | ["POINT(-61 -62.5)"] | false | false |
Siple Dome A (SDMA) Grain Orientation 640 - 790 Meters
|
0738975 |
2012-11-26 | Baker, Ian; Obbard, Rachel; Sieg, Katherine |
Advanced Microstructural Characterization of Polar Ice Cores |
This data set characterizes the microstructure in ice cores, in particular the microstructural locations of impurities, grain orientations, and strain gradients. The fabric of polycrystalline ice is typically described using only the c-axis orientation, but this is insufficient for a full description of grain orientations in this hexagonal material. Thus, both the a-axis and c-axis are used in this data set showing pole figures for five depths of the Siple Dome (SDMA) core between 640 m and 790 m and misorientation angle distribution for the same grains. | ["POINT(-148.82 -81.66)"] | ["POINT(-148.82 -81.66)"] | false | false |
Historic Perspectives on Climate and Biogeography from Deep-Sea Corals in the Drake Passage
|
0944474 |
2011-01-01 | Robinson, Laura |
Collaborative Research: Historic Perspectives on Climate and Biogeography from Deep-sea Corals in the Drake Passage |
Polar oceans are the main sites of deep-water formation and are critical to the exchange of heat and carbon between the deep ocean and the atmosphere. This award "Historic perspectives on climate and biogeography from deep-sea corals in the Drake Passage" will address the following specific research questions: What was the radiocarbon content of the Southern Ocean during the last glacial maximum and during past rapid climate change events? and What are the major controls on the past and present distribution of cold-water corals within the Drake Passage and adjacent continental shelves? Testing these overall questions will allow the researchers to better understand how processes in the Southern Ocean are linked to climate change over millennia. This award is being funded by the Antarctic Earth Sciences Program of NSF's Office of Polar Programs, Antarctic Division. INTELLECTUAL MERIT: The skeletons of deep-sea corals are abundant in the Southern Ocean, and can be dated using U-series techniques making them a useful archive of oceanographic history. By pairing U-series and radiocarbon analyses the awardees can reconstruct the radiocarbon content of seawater in the past, allowing them to address the research questions raised above. Collection of living deep-sea corals along with environmental data will allow them to address the broader biogeography questions posed above as well. The awardees are uniquely qualified to answer these questions in their respective labs via cutting edge technologies, and they have shown promising results from a preliminary pilot cruise to the area in 2008. BROADER IMPACTS: Societal Relevance: The proposed paleoclimate research will make significant advances toward constraining the Southern Ocean's influence on global climate, specifically it should help set the bounds for the upper limits on how fast the ocean circulation might change in this region of the world, which is of high societal relevance in this era of changing climate. Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating undergraduate through post-doctoral students into research programs; ii) promotion of K-12 teaching and learning programs by providing information via a cruise website and in-school talks, iii) making the data collected available to the wider research community via data archives such as Seamounts Online and the Seamount Biogeographic Network and iv) reaching a larger public audience through such venues as interviews in the popular media. | ["POLYGON((-70.5 -54.5,-66.95 -54.5,-63.4 -54.5,-59.85 -54.5,-56.3 -54.5,-52.75 -54.5,-49.2 -54.5,-45.65 -54.5,-42.1 -54.5,-38.55 -54.5,-35 -54.5,-35 -55.2,-35 -55.9,-35 -56.6,-35 -57.3,-35 -58,-35 -58.7,-35 -59.4,-35 -60.1,-35 -60.8,-35 -61.5,-38.55 -61.5,-42.1 -61.5,-45.65 -61.5,-49.2 -61.5,-52.75 -61.5,-56.3 -61.5,-59.85 -61.5,-63.4 -61.5,-66.95 -61.5,-70.5 -61.5,-70.5 -60.8,-70.5 -60.1,-70.5 -59.4,-70.5 -58.7,-70.5 -58,-70.5 -57.3,-70.5 -56.6,-70.5 -55.9,-70.5 -55.2,-70.5 -54.5))"] | ["POINT(-52.75 -58)"] | false | false |
Impacts of Elevated pCO2 on a Dominant Aragonitic Pteropod (Thecosomata) and its Specialist Predator (Gymnosomata) in the Ross Sea
|
0538479 |
2010-01-01 | Seibel, Brad |
Collaborative Research: Impacts of Elevated pCO2 on a Dominant Aragonitic Pteropod (Thecosomata) and its Specialist Predator (Gymnosomata) in the Ross Sea |
Rising atmospheric carbon dioxide concentrations have resulted in greater oceanic uptake of anthropogenic carbon dioxide. Elevated partial pressure of carbon dioxide can impact marine organisms both via decreased carbonate saturation that affects calcification rates and via disturbance to acid-base (metabolic) physiology. Pteropod molluscs (Thecosomata) form shells made of aragonite, a type of calcium carbonate that is highly soluble, suggesting that these organisms may be particularly sensitive to increasing carbon dioxide and reduced carbonate ion concentration. Thecosome pteropods, which dominate the calcium carbonate export south of the Antarctic Polar Front, will be the first major group of marine calcifying organisms to experience carbonate undersaturation within parts of their present-day geographical ranges as a result of anthropogenic carbon dioxide. An unusual, co-evolved relationship between thecosomes and their specialized gymnosome predators provides a unique backdrop against which to assess the physiological and ecological importance of elevated partial pressure of carbon dioxide. Pteropods are functionally important components of the Antarctic ecosystem with potential to influence phytoplankton stocks, carbon export, and dimethyl sulfide levels that, in turn, influence global climate through ocean-atmosphere feedback loops. The research will quantify the impact of elevated carbon dioxide on a dominant aragonitic pteropod, Limacina helicina, and its specialist predator, the gymnosome Clione antarctica, in the Ross Sea through laboratory experimentation. Results will be disseminated broadly to enhance scientific understanding in this field. The project involves collaboration between researchers at a predominantly undergraduate institution with a significant enrollment of students that are typically underrepresented in the research environment (California State University San Marcos - CSUSM) and at a Ph.D.-granting institution (University of Rhode Island - URI). The program will promote education and learning through the joint education of undergraduate students and graduate students at CSUSM and URI as part of a research team, as well as through the teaching activities of the principal investigators. Dr. Keating, CSUSM professor of science education, will participate in the McMurdo fieldwork and lead the outreach opportunities for the project. | ["POLYGON((166 -77,166.1 -77,166.2 -77,166.3 -77,166.4 -77,166.5 -77,166.6 -77,166.7 -77,166.8 -77,166.9 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.9 -78,166.8 -78,166.7 -78,166.6 -78,166.5 -78,166.4 -78,166.3 -78,166.2 -78,166.1 -78,166 -78,166 -77.9,166 -77.8,166 -77.7,166 -77.6,166 -77.5,166 -77.4,166 -77.3,166 -77.2,166 -77.1,166 -77))"] | ["POINT(166.5 -77.5)"] | false | false |
Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates
|
0338087 |
2010-01-01 | Scheltema, Rudolf |
Collaborative Research: Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates |
Because of extreme isolation of the Antarctic continent since the Early Oligocene, one expects a unique invertebrate benthic fauna with a high degree of endemism. Yet some invertebrate taxa that constitute important ecological components of sedimentary benthic communities include more than 40 percent non-endemic species (e.g., benthic polychaetes). To account for non-endemic species, intermittent genetic exchange must occur between Antarctic and other (e.g. South American) populations. The most likely mechanism for such gene flow, at least for in-faunal and mobile macrobenthos, is dispersal of planktonic larvae across the sub- Antarctic and Antarctic polar fronts. To test for larval dispersal as a mechanism of maintaining genetic continuity across polar fronts, the scientists propose to (1) take plankton samples along transects across Drake passage during both the austral summer and winter seasons while concurrently collecting the appropriate hydrographic data. Such data will help elucidate the hydrographic mechanisms that allow dispersal across Drake Passage. Using a molecular phylogenetic approach, they will (2) compare seemingly identical adult forms from Antarctic and South America continents to identify genetic breaks, historical gene flow, and control for the presence of cryptic species. (3) Similar molecular tools will be used to relate planktonic larvae to their adult forms. Through this procedure, they propose to link the larval forms respectively to their Antarctic or South America origins. The proposed work builds on previous research that provides the basis for this effort to develop a synthetic understanding of historical gene flow and present day dispersal mechanism in South American/Drake Passage/Antarctic Peninsular region. Furthermore, this work represents one of the first attempts to examine recent gene flow in Antarctic benthic invertebrates. Graduate students and a postdoctoral fellow will be trained during this research. | ["POLYGON((-70 -53,-68.4 -53,-66.8 -53,-65.2 -53,-63.6 -53,-62 -53,-60.4 -53,-58.8 -53,-57.2 -53,-55.6 -53,-54 -53,-54 -54.5,-54 -56,-54 -57.5,-54 -59,-54 -60.5,-54 -62,-54 -63.5,-54 -65,-54 -66.5,-54 -68,-55.6 -68,-57.2 -68,-58.8 -68,-60.4 -68,-62 -68,-63.6 -68,-65.2 -68,-66.8 -68,-68.4 -68,-70 -68,-70 -66.5,-70 -65,-70 -63.5,-70 -62,-70 -60.5,-70 -59,-70 -57.5,-70 -56,-70 -54.5,-70 -53))"] | ["POINT(-62 -60.5)"] | false | false |
Biogeochemistry of Dissolved Organic Matter in Pony Lake, Ross Island
|
0338342 0338260 |
2009-01-01 | Chin, Yu-Ping; Foreman, Christine |
Collaborative Research: Biogeochemistry of Dissolved Organic Matter in Pony Lake, Ross Island |
Dissolved organic matter (DOM) is a significant chemical component in aquatic systems because it acts as an important carbon source for microorganisms, absorbs harmful radiation in sunlight, is able to complex metals, and can participate in important biogeochemical reactions. This study will investigate the biogeochemical cycling of DOM in a small coastal Antarctic pond, Pony Lake, located on Cape Royds, Ross Island. Because there are no higher plants present at this site all of the DOM in this lake is derived from microorganisms. Thus, Pony Lake is an ideal site to study the effect of physical, chemical, and microbial processes on the composition and character of the DOM pool. Finally, Pony Lake is also an ideal site to collect an International Humic Substances Society (IHSS) fulvic acid standard. Unlike other IHSS standards, this standard will not contain DOM components derived from higher land plants. To better understand the role of physical influences, the project will study the changes in the DOM pool as the lake evolves from ice-covered to ice-free conditions during the summer, as well as the relationship of DOM to the observed turnover of dominant microbial communities in the lake. Scientists will also monitor changes in microbial abundance, diversity, and productivity that may occur during the ice to open-water transition period. This research will provide much needed information regarding the relationship between microbial diversity and DOM biogeochemistry. Middle school science students will be active participants in this project through the Internet, while scientists are in the field, and in the lab. | ["POINT(166.167 -77.55)"] | ["POINT(166.167 -77.55)"] | false | false |
Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis
|
0437887 |
2009-01-01 | Sidell, Bruce |
Collaborative Research: Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis. |
The polar ocean presently surrounding Antarctica is the coldest, most thermally stable marine environment on earth. Because oxygen solubility in seawater is inversely proportional to temperature, the cold Antarctic seas are an exceptionally oxygen-rich aquatic habitat. Eight families of a single perciform suborder, the Notothenioidei, dominate the present fish fauna surrounding Antarctica. Notothenioids account for approximately 35% of fish species and 90% of fish biomass south of the Antarctic Polar Front. Radiation of closely related notothenioid species thus has occurred rapidly and under a very unusual set of conditions: relative oceanographic isolation from other faunas due to circumpolar currents and deep ocean trenches surrounding the continent, chronically, severely cold water temperatures, very high oxygen availability, very low levels of niche competition in a Southern Ocean depauperate of species subsequent to a dramatic crash in species diversity of fishes that occurred sometime between the mid-Tertiary and present. These features make Antarctic notothenioid fishes an uniquely attractive group for the study of physiological and biochemical adaptations to cold body temperature. Few distinctive features of Antarctic fishes are as unique as the pattern of expression of oxygen-binding proteins in one notothenioid family, the Channichthyidae (Antarctic icefishes). All channichthyid icefishes lack the circulating oxygen-binding protein, hemoglobin (Hb); the intracellular oxygen-binding protein, myoglobin (Mb) is not uniformly expressed in species of this family. Both proteins are normally considered essential for adequate delivery of oxygen to aerobically poised tissues of animals. To compensate for the absence of Hb, icefishes have developed large hearts, rapidly circulate a large blood volume and possess elaborate vasculature of larger lumenal diameter than is seen in red-blooded fishes. Loss of Mb expression in oxidative muscles correlates with dramatic elevation in density of mitochondria within the cell, although each individual organelle is less densely packed with respiratory proteins. Within the framework of oxygen movement, the adaptive significance of greater vascular density and mitochondrial populations is understandable but mechanisms underlying development of these characteristics remain unknown. The answer may lie in another major function of both Hb and Mb, degradation of the ubiquitous bioactive compound, nitric oxide (NO). The research will test the hypothesis that loss of hemoprotein expression in icefishes has resulted in an increase in levels of NO that mediate modification of vascular systems and expansion of mitochondrial populations in oxidative tissues. The objectives of the proposal are to quantify the vascular density of retinas in +Hb and -Hb notothenioid species, to characterize NOS isoforms and catalytic activity in retina and cardiac muscle of Antarctic notothenioid fishes, to evaluate level of expression of downstream factors implicat ed in angiogenesis (in retinal tissue) and mitochondrial biogenesis (in cardiac muscle), and to determine whether inhibition of NOS in vivo results in regression of angiogenic and mitochondrial biogenic responses in icefishes. Broader impacts range from basic biology, through training of young scientists, to enhanced understanding of clinically relevant biomedical processes. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Reconstructing the High Latitude Permian-Triassic: Life, Landscapes, and Climate Recorded in the Allan Hills, South Victoria Land, Antarctica
|
0440954 |
2009-01-01 | Miller, Molly |
Collaborative Research: Reconstructing the High Latitude Permian-Triassic: Life, Landscapes, and Climate Recorded in the Allan Hills, South Victoria Land, Antarctica |
This project studies fossils from two to three hundred million year old rocks in the Allan Hills area of Antarctica. Similar deposits from lower latitudes have been used to develop a model of Permo-Triassic climate, wherein melting of continental glaciers in the early Permian leads to the establishment of forests in a cold, wet climate. Conditions became warmer and dryer by the early Triassic, inhibiting plant growth until a moistening climate in the late Triassic allowed plant to flourish once again. This project will test and refine this model and investigate the general effects of climate change on landscapes and ecosystems using the unique exposures and well-preserved fossil and sediment records in the Allan Hills area. The area will be searched for fossil forests, vertebrate tracks and burrows, arthropod trackways, and subaqueously produced biogenic structures, which have been found in other areas of Antarctica. Finds will be integrated with previous paleobiologic studies to reconstruct and interpret ecosystems and their changes. Structures and rock types documenting the end phases of continental glaciation and other major episodic sedimentations will also be described and interpreted. This project contributes to understanding the: (1) evolution of terrestrial and freshwater ecosystems and how they were affected by the end-Permian extinction, (2) abundance and diversity of terrestrial and aquatic arthropods at high latitudes, (3) paleogeographic distribution and evolution of vertebrates and invertebrates as recorded by trace and body fossils; and (3) response of landscapes to changes in climate. In terms of broader impacts, this project will provide an outstanding introduction to field research for graduate and undergraduate students, and generate related opportunities for several undergraduates. It will also stimulate exchange of ideas among research and primarily undergraduate institutions. Novel outreach activities are also planned to convey Earth history to the general public, including a short film on the research process and products, and paintings by a professional scientific illustrator of Permo-Traissic landscapes and ecosystems. | ["POLYGON((159 -76.61667,159.05 -76.61667,159.1 -76.61667,159.15 -76.61667,159.2 -76.61667,159.25 -76.61667,159.3 -76.61667,159.35 -76.61667,159.4 -76.61667,159.45 -76.61667,159.5 -76.61667,159.5 -76.630003,159.5 -76.643336,159.5 -76.656669,159.5 -76.670002,159.5 -76.683335,159.5 -76.696668,159.5 -76.710001,159.5 -76.723334,159.5 -76.736667,159.5 -76.75,159.45 -76.75,159.4 -76.75,159.35 -76.75,159.3 -76.75,159.25 -76.75,159.2 -76.75,159.15 -76.75,159.1 -76.75,159.05 -76.75,159 -76.75,159 -76.736667,159 -76.723334,159 -76.710001,159 -76.696668,159 -76.683335,159 -76.670002,159 -76.656669,159 -76.643336,159 -76.630003,159 -76.61667))"] | ["POINT(159.25 -76.683335)"] | false | false |
Periglacial Landscape Evolution in Antarctic Lava Flows and Glacial Tills
|
0636629 |
2009-01-01 | Soule, S. Adam; Kurz, Mark D. |
Periglacial Landscape Evolution in Antarctic Lava Flows and Glacial Tills |
This project uses cosmogenic nuclide dating and LIDAR studies of surface roughness to understand weathering and landscape evolution in the Dry Valleys of Antarctica. The work focuses on two processes: cryoturbation of frozen soils and the development of patterned, frozen ground on ancient lava flows. The approach includes innovative uses of He3 profiling. Results will also be applied to understanding the glacial history of the Dry Valleys. There are potential applications to understanding the history of the East Antarctic Ice Sheet and the formation of Martian landscapes. The broader impacts include graduate student education. As well, the work may contribute to our understanding of the history of the Antarctic ice sheets, which is important to modeling their behavior during global climate change. | ["POLYGON((160.7 -77.8,161.06 -77.8,161.42 -77.8,161.78 -77.8,162.14 -77.8,162.5 -77.8,162.86 -77.8,163.22 -77.8,163.58 -77.8,163.94 -77.8,164.3 -77.8,164.3 -77.86,164.3 -77.92,164.3 -77.98,164.3 -78.04,164.3 -78.1,164.3 -78.16,164.3 -78.22,164.3 -78.28,164.3 -78.34,164.3 -78.4,163.94 -78.4,163.58 -78.4,163.22 -78.4,162.86 -78.4,162.5 -78.4,162.14 -78.4,161.78 -78.4,161.42 -78.4,161.06 -78.4,160.7 -78.4,160.7 -78.34,160.7 -78.28,160.7 -78.22,160.7 -78.16,160.7 -78.1,160.7 -78.04,160.7 -77.98,160.7 -77.92,160.7 -77.86,160.7 -77.8))"] | ["POINT(162.5 -78.1)"] | false | false |
Landform Evolution in the Dry Valleys and its implications for Miocene-Pliocene Climate Change in Antarctica
|
0739452 |
2009-01-01 | Mukhopadhyay, Sujoy |
Landform Evolution in the Dry Valleys and its implications for Miocene-Pliocene Climate Change in Antarctica |
This project seeks to answer a simple question: how old are potholes and related geomorphic features found in the uplands of the McMurdo Dry Valleys, Antarctica? Some research suggests that they are over ten million years old and date the growth of the East Antarctic Ice Sheet, the world's largest. However, some evidence suggests that these are young, erosional features that continuing to evolve to this day. This project uses cosmogenic nuclide dating to determine the age of the pothole floors. The results are important for determining the ice sheet?s history and interpreting the O-isotope record from the marine sediment cores, key records of global climate. Broader impacts include K12 outreach and incorporation of outcomes into university courses. | ["POLYGON((161 -76,161.2 -76,161.4 -76,161.6 -76,161.8 -76,162 -76,162.2 -76,162.4 -76,162.6 -76,162.8 -76,163 -76,163 -76.2,163 -76.4,163 -76.6,163 -76.8,163 -77,163 -77.2,163 -77.4,163 -77.6,163 -77.8,163 -78,162.8 -78,162.6 -78,162.4 -78,162.2 -78,162 -78,161.8 -78,161.6 -78,161.4 -78,161.2 -78,161 -78,161 -77.8,161 -77.6,161 -77.4,161 -77.2,161 -77,161 -76.8,161 -76.6,161 -76.4,161 -76.2,161 -76))"] | ["POINT(162 -77)"] | false | false |
Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores
|
0739512 |
2009-01-01 | Walker, Sally |
Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past |
This project answers a simple question: why are there so few fossils in sediment cores from Antarctica's continental shelf? Antarctica's benthos are as biologically rich as those of the tropics. Shell-secreting organisms should have left a trail throughout geologic time, but have not. This trail is particularly important because these organisms record regional climate in ways that are critical to interpreting the global climate record. This study uses field experiments and targeted observations of modern benthic systems to examine the biases inflicted by fossil preservation. By examining a spectrum of ice-affected habitats, this project provides paleoenvironmental insights into carbonate preservation, sedimentation rates, and burial processes; and will provide new approaches to reconstructing the Cenozoic history of Antarctica. Broader impacts include graduate and undergraduate research and education, development of undergraduate curricula to link art and science, K12 outreach, public outreach via the web, and societal relevance through improved understanding of records of global climate change. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
SGER: Primary and Secondary Production and Carbon Flux Through the Microbial Community Along the Western Antarctic Marginal Ice Zone on the Oden Southern Ocean 2007 Expeditions
|
0742057 |
2009-01-01 | Dennett, Mark; Gallager, Scott |
SGER: Primary and Secondary Production and Carbon Flux Through the Microbial Community Along the Western Antarctic Marginal Ice Zone on the Oden Southern Ocean 2007 Expeditions |
The research will continue and extend the study in the Southern Ocean that was initiated during the Oden Southern Ocean 2006 expedition in collaboration with Swedish scientist Mellissa Chierici. We will quantify carbon flux through the food web in the marginal ice zone (MIZ) by measuring size fractionated primary and secondary production, grazing and carbon flux through nanoplankton (2-20 um), microplankton (20-200um), and mesoplankton (200-2000 um). Community structure, species abundance and size specific grazing rates will be quantified using a variety of techniques both underway and at ice stations along the MIZ. The proposed cruise track extends across the Drake Passage to the Western Antarctic Peninsula (WAP) with three station transects along a gradient from the open ocean through the marginal ice zone (MIZ) in the Bellinghausen and Amundsen Seas and into the Ross Sea Polynya. Ice stations along each transect will provide material to characterize production associated with annual ice. Underway measurements of primary and secondary production (chlorophyll, CDOM, microplankton, and mesoplankton) and hydrography (temperature, salinity, pH, DO, turbidity) will establish a baseline for future cruises and as support for other projects such as biogeochemical studies on carbon dioxide drawdown and trace metal work on primary production. The outcome of these measurements will be a description of nano to mesoplankton standing stocks, community structure, and carbon flux along the MIZ in the Bellinghausen and Amundsen Seas and the Ross Sea Polynya. | ["POLYGON((-168.291 -64.846,-165.018 -64.846,-161.745 -64.846,-158.472 -64.846,-155.199 -64.846,-151.926 -64.846,-148.653 -64.846,-145.38 -64.846,-142.107 -64.846,-138.834 -64.846,-135.561 -64.846,-135.561 -66.0269,-135.561 -67.2078,-135.561 -68.3887,-135.561 -69.5696,-135.561 -70.7505,-135.561 -71.9314,-135.561 -73.1123,-135.561 -74.2932,-135.561 -75.4741,-135.561 -76.655,-138.834 -76.655,-142.107 -76.655,-145.38 -76.655,-148.653 -76.655,-151.926 -76.655,-155.199 -76.655,-158.472 -76.655,-161.745 -76.655,-165.018 -76.655,-168.291 -76.655,-168.291 -75.4741,-168.291 -74.2932,-168.291 -73.1123,-168.291 -71.9314,-168.291 -70.7505,-168.291 -69.5696,-168.291 -68.3887,-168.291 -67.2078,-168.291 -66.0269,-168.291 -64.846))"] | ["POINT(-151.926 -70.7505)"] | false | false |
MODIS Mosaic of Antarctica 2003-2004 (MOA2004) Image Map
|
None | 2005-11-02 | Haran, Terry; Bohlander, Jennifer; Scambos, Ted; Painter, Thomas; Fahnestock, Mark | No project link provided | The MODIS Mosaic of Antarctica 2003-2004 (MOA2004) Image Map consists of two cloud-free digital image maps that show mean surface morphology and a quantitative measure of optical snow grain size on the Antarctic continent and surrounding islands. The 260 orbit swaths used to create the 2003/2004 MOA Surface Morphology Image Map and the 2003/2004 MOA Grain Size Image Map were acquired 20 November 2003 through 29 February 2004 by the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on board the NASA EOS Aqua and Terra satellites. The 122 orbit swaths used to create the 2003 MOA Grain Size Image Map were acquired 1 November 2003 through 17 December 2003. Vector data sets with the corresponding coastlines, ice sheet grounding lines, and islands are also provided. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Antarctic Ice Velocity Data
|
None | 2004-03-23 | Bindschadler, Robert; Raymond, Charles | No project link provided | This compilation of recent ice velocity data of the Antarctic ice sheet is intended for use by the polar scientific community. The data are presented in tabular form (ASCII), containing latitude, longitude, speed, bearing, and error ranges. A metadata header describes the source of the data, the time of measurement, and gives details on measurement accuracy and precision. The tables are available for ftp transfer. Web pages developed specifically for this data set provide detailed information for viewing and selecting the velocity data. These pages contain large satellite image maps (available as jpeg files). The data sets used to create these images were contributed by several investigators, generally from already published work. Both in situ and image-based methods are used. References for the data sets are included with the data tables. If you have well-characterized Antarctic ice velocity data you would like to contribute to this site, please contact teds@icehouse.colorado.edu. If you have any questions concerning the relevance of these data to your work please contact NSIDC User Services. | ["POLYGON((-180 -50,-144 -50,-108 -50,-72 -50,-36 -50,0 -50,36 -50,72 -50,108 -50,144 -50,180 -50,180 -54,180 -58,180 -62,180 -66,180 -70,180 -74,180 -78,180 -82,180 -86,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -86,-180 -82,-180 -78,-180 -74,-180 -70,-180 -66,-180 -62,-180 -58,-180 -54,-180 -50))"] | ["POINT(0 -89.999)"] | false | false |
Images of Antarctic Ice Shelves
|
None | 2001-01-01 | Scambos, Ted; Raup, Bruce H.; Bohlander, Jennifer | No project link provided | Recent changes in the extent and stability of ice shelves in the Antarctic Peninsula prompted NSIDC to begin a monitoring program using data from the AVHRR Polar 1 km Data Set. NSIDC regularly reviews images of those ice shelves considered susceptible to rapid change due to climatic warming, and of several other major shelves that occasionally calve major icebergs. The images in this site represent a selected subset of the available scenes, generally the clearest and most informative scenes available. The scenes are derived from either the AVHRR visible (vis) or thermal (temp) channels, enhanced by combining two channels using principal components processing. In the thermal images, bright areas are colder areas. A few additional scenes from other sensors (MODIS, Landsat) are included to provide some supplemental information on ice shelf structure and events. If you wish to save an image, you can do so through the 'Save image as' option of the browser's pop-up menu. For more information contact NSIDC User Services. | [] | [] | false | false |
Siple Dome Glaciology and Ice Stream History 1994, 1996
|
9316338 |
1999-01-01 | Jacobel, Robert |
Siple Dome Glaciology and Ice Stream History |
The Siple Dome Glaciology and Ice Stream History project was part of Western Divide West Antarctic Ice Cores (WAISCORES), an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. This project supported glaciological studies of Siple Dome and its surroundings between Ice Streams C and D, via two major goals. First, it sought to characterize the dynamic environment and ice stratigraphy of Siple Dome and its surroundings, with the specific mission of assessing Siple Dome as a potential deep core site; and second, to determine whether the configuration of ice stream flow in the region has changed over time. Both goals are relevant to understanding the dynamics of the West Antarctic Ice Sheet (WAIS), its history, and potential future behavior. This project was a collaboration between Saint Olaf College, the University of Washington, and the National Snow and Ice Data Center at the University of Colorado. It included studies of satellite imagery and acquisition and analysis of field data from GPS, firn cores and snow pits, and ground-based ice-penetrating radar. Data in this collection were obtained during two Antarctic field seasons in 1994–95 and 1996–97. The data set is available via FTP as Microsoft Excel Spreadsheet (.xls) and ASCII tab delimited (.txt) files. Related notes are available as a Microsoft Word (.doc) or text (.txt) file. Related images and charts are available as Graphics Interchange Format (.gif) and Joint Photographic Experts Group (.jpg) files. | ["POLYGON((-155 -81,-154 -81,-153 -81,-152 -81,-151 -81,-150 -81,-149 -81,-148 -81,-147 -81,-146 -81,-145 -81,-145 -81.2,-145 -81.4,-145 -81.6,-145 -81.8,-145 -82,-145 -82.2,-145 -82.4,-145 -82.6,-145 -82.8,-145 -83,-146 -83,-147 -83,-148 -83,-149 -83,-150 -83,-151 -83,-152 -83,-153 -83,-154 -83,-155 -83,-155 -82.8,-155 -82.6,-155 -82.4,-155 -82.2,-155 -82,-155 -81.8,-155 -81.6,-155 -81.4,-155 -81.2,-155 -81))"] | ["POINT(-150 -82)"] | false | false |
Visible Stratigraphic Dating, Siple Dome and Upstream C Cores
|
9526374 |
1997-01-01 | Alley, Richard |
Physical Properties of the Siple Dome Deep Ice Core |
This data set is part of the West Antarctic Ice Sheet cores (WAISCORES) project, an NSF-funded project to understand the influence of the West Antarctic Ice Sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. This data set includes melt layers and annual layer data for Siple Dome cores A through J, and upstream core C (UpC). Cores were examined on a light table after the core had been sectioned longitudinally and samples removed for isotopic, chemical, and other analyses, and after the surface had been smoothed using a planer. Major stratigraphic features were noted, such as coarse-grained and fine-grained firn at shallow depths, and coarse-bubbled and fine-bubbled ice at greater depth. Melt layers were identified as bubble-free or nearly-bubble-free zones. Core lengths ranged from 30 to 133 meters. Data in this collection were obtained in the summer of 1997. The data set is available via FTP as ACSII data (.dat), metadata (.meta) and text (.txt) files. | ["POINT(-149 -81)"] | ["POINT(-149 -81)"] | false | false |