{"dp_type": "Dataset", "free_text": "Metabolism"}
[{"awards": "1745130 Moran, Amy", "bounds_geometry": null, "date_created": "Sat, 04 Jan 2025 00:00:00 GMT", "description": "Counts of Odontaster along 50-m transects at the McMurdo Intake Jetty (2019, 2020) and Cinder Cones (2022), including incidence of SSWS and staging of each visibly affected individual starfish.", "east": null, "geometry": null, "keywords": "Antarctica; Cryosphere; McMurdo; McMurdo Sound", "locations": "McMurdo; McMurdo Sound; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Moran, Amy; Thurber, Andrew", "project_titles": "Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development ", "projects": [{"proj_uid": "p0010187", "repository": "USAP-DC", "title": "Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Survey Metadata. All counts of Odontaster validus from SSWS surveys at the McMurdo Intake Jetty and Cinder Cones", "uid": "601869", "west": null}, {"awards": "1850988 Teets, Nicholas", "bounds_geometry": ["POLYGON((-64.0844 -64.7651,-64.07249 -64.7651,-64.06058 -64.7651,-64.04867 -64.7651,-64.03676 -64.7651,-64.02485 -64.7651,-64.01294 -64.7651,-64.00103 -64.7651,-63.98912 -64.7651,-63.97721 -64.7651,-63.9653 -64.7651,-63.9653 -64.76798000000001,-63.9653 -64.77086,-63.9653 -64.77374,-63.9653 -64.77662,-63.9653 -64.7795,-63.9653 -64.78238,-63.9653 -64.78526,-63.9653 -64.78814,-63.9653 -64.79101999999999,-63.9653 -64.7939,-63.97721 -64.7939,-63.98912 -64.7939,-64.00103 -64.7939,-64.01294 -64.7939,-64.02485 -64.7939,-64.03676 -64.7939,-64.04867 -64.7939,-64.06058 -64.7939,-64.07249 -64.7939,-64.0844 -64.7939,-64.0844 -64.79101999999999,-64.0844 -64.78814,-64.0844 -64.78526,-64.0844 -64.78238,-64.0844 -64.7795,-64.0844 -64.77662,-64.0844 -64.77374,-64.0844 -64.77086,-64.0844 -64.76798000000001,-64.0844 -64.7651))"], "date_created": "Fri, 03 Jan 2025 00:00:00 GMT", "description": "For this study, larvae were collected every week for the entire summer field season from five sites, four located on Cormorant Island and a fifth site on Humble Island. The dataset contains microhabitat data for each site, as well as the metabolic rate, carbohydrate content, lipid content, and protein content of the larvae collected at those sites for each time point.", "east": -63.9653, "geometry": ["POINT(-64.02485 -64.7795)"], "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Seasonality", "locations": "Antarctic Peninsula; Antarctica", "north": -64.7651, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Teets, Nicholas; Spacht, Drew; Gantz, Josiah D.; Devlin, Jack; McCabe, Eleanor; Lee, Richard; Denlinger, David", "project_titles": "NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects", "projects": [{"proj_uid": "p0010203", "repository": "USAP-DC", "title": "NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.7939, "title": "Fine\u2011scale variation in microhabitat conditions influences physiology and metabolism in an Antarctic insect", "uid": "601865", "west": -64.0844}, {"awards": "1745130 Moran, Amy", "bounds_geometry": ["POLYGON((166 -77,166.08 -77,166.16 -77,166.24 -77,166.32 -77,166.4 -77,166.48000000000002 -77,166.56 -77,166.64000000000001 -77,166.72 -77,166.8 -77,166.8 -77.09,166.8 -77.18,166.8 -77.27,166.8 -77.36,166.8 -77.45,166.8 -77.54,166.8 -77.63000000000001,166.8 -77.72,166.8 -77.81,166.8 -77.9,166.72 -77.9,166.64000000000001 -77.9,166.56 -77.9,166.48000000000002 -77.9,166.4 -77.9,166.32 -77.9,166.24 -77.9,166.16 -77.9,166.08 -77.9,166 -77.9,166 -77.81,166 -77.72,166 -77.63000000000001,166 -77.54,166 -77.45,166 -77.36,166 -77.27,166 -77.18,166 -77.09,166 -77))"], "date_created": "Thu, 02 Jan 2025 00:00:00 GMT", "description": "Temperature and conductivity measurements collected from Hobo loggers deployed ~3cm from the benthos at six sites around McMurdo Sound in 2021-2022 at depths of 20-30 m. ", "east": 166.8, "geometry": ["POINT(166.4 -77.45)"], "keywords": "Antarctica; Cryosphere; McMurdo Sound; Salinity; Temperature", "locations": "McMurdo Sound; Antarctica", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Moran, Amy", "project_titles": "Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development ", "projects": [{"proj_uid": "p0010187", "repository": "USAP-DC", "title": "Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Benthic seawater temperature and conductivity measurements at six sites in McMurdo Sound", "uid": "601870", "west": 166.0}, {"awards": "1745130 Moran, Amy", "bounds_geometry": ["POLYGON((163 -76,163.3 -76,163.6 -76,163.9 -76,164.2 -76,164.5 -76,164.8 -76,165.1 -76,165.4 -76,165.7 -76,166 -76,166 -76.2,166 -76.4,166 -76.6,166 -76.8,166 -77,166 -77.2,166 -77.4,166 -77.6,166 -77.8,166 -78,165.7 -78,165.4 -78,165.1 -78,164.8 -78,164.5 -78,164.2 -78,163.9 -78,163.6 -78,163.3 -78,163 -78,163 -77.8,163 -77.6,163 -77.4,163 -77.2,163 -77,163 -76.8,163 -76.6,163 -76.4,163 -76.2,163 -76))"], "date_created": "Mon, 24 Jul 2023 00:00:00 GMT", "description": "Measurements of the longest diameters of 17 eggs of Colossendeis megalonyx, laid on October 25 2021 and photographed on October 27 2021.", "east": 166.0, "geometry": ["POINT(164.5 -77)"], "keywords": "Antarctica; McMurdo", "locations": "McMurdo; Antarctica", "north": -76.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Moran, Amy", "project_titles": "Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development ", "projects": [{"proj_uid": "p0010187", "repository": "USAP-DC", "title": "Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Egg diameters of Colossendeis megalonyx", "uid": "601717", "west": 163.0}, {"awards": "1745130 Moran, Amy", "bounds_geometry": ["POLYGON((166.66 -77.84,166.661 -77.84,166.662 -77.84,166.66299999999998 -77.84,166.664 -77.84,166.665 -77.84,166.666 -77.84,166.667 -77.84,166.66799999999998 -77.84,166.66899999999998 -77.84,166.67 -77.84,166.67 -77.84100000000001,166.67 -77.842,166.67 -77.843,166.67 -77.844,166.67 -77.845,166.67 -77.846,166.67 -77.847,166.67 -77.848,166.67 -77.84899999999999,166.67 -77.85,166.66899999999998 -77.85,166.66799999999998 -77.85,166.667 -77.85,166.666 -77.85,166.665 -77.85,166.664 -77.85,166.66299999999998 -77.85,166.662 -77.85,166.661 -77.85,166.66 -77.85,166.66 -77.84899999999999,166.66 -77.848,166.66 -77.847,166.66 -77.846,166.66 -77.845,166.66 -77.844,166.66 -77.843,166.66 -77.842,166.66 -77.84100000000001,166.66 -77.84))"], "date_created": "Mon, 24 Jul 2023 00:00:00 GMT", "description": "This video shows the behavior of an adult of Colossendeis megalonyx around a recently-deposited egg mass from a mating group of the same species. The egg mass is indicated by a white circle and label that appears close to the beginning of the video. The adult can be seen manipulating the egg mass with its ovigerous legs (long, with scoop at the end) and palps (shorter). Next to the adult and egg mass are two other Colossendeis in mating posture. The video was taken by Graham Lobert on November 1, 2021 on a GoPro Hero Black at a timelapse rate of one frame per second, played back at 30 fps. The egg mass is approximately three cm across the short diameter.", "east": 166.67, "geometry": ["POINT(166.665 -77.845)"], "keywords": "Antarctica; McMurdo; Pycnogonida; Sea Spider", "locations": "McMurdo; Antarctica", "north": -77.84, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Moran, Amy; Lobert, Graham", "project_titles": "Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development ", "projects": [{"proj_uid": "p0010187", "repository": "USAP-DC", "title": "Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.85, "title": "Video of Colossendeis megalonyx behavior around egg mass", "uid": "601716", "west": 166.66}, {"awards": "1341663 O\u0027Brien, Kristin; 1341602 Crockett, Elizabeth", "bounds_geometry": null, "date_created": "Fri, 18 Dec 2020 00:00:00 GMT", "description": "The ability of Antarctic notothenioid fishes to mount a robust molecular response to hypoxia is largely unknown. The transcription factor, hypoxia-inducible factor-1 (HIF-1), a heterodimer of HIF-1\u03b1 and HIF-1\u03b2 subunits, is the master regulator of oxygen homeostasis in most metazoans. We sought to determine if, in the hearts of Antarctic notothenioids, HIF-1 is activated and functional in response to either an acute heat stress or hypoxia. The red-blooded Notothenia coriiceps and the hemoglobinless icefish, Chaenocephalus aceratus, were exposed to their critical thermal maximum (CTMAX) or hypoxia (5.0 \u00b1 0.3 mg of O2 L-1) for 2 h. Additionally, N. coriiceps was exposed to 2.3 \u00b1 0.3 mg of O2 L-1 for 12 h, and red-blooded Gobionotothen gibberifrons was exposed to both levels of hypoxia. Levels of HIF-1\u03b1 were quantified in nuclei isolated from heart ventricles using western blotting. Transcript levels of genes involved in anaerobic metabolism, and known to be regulated by HIF-1, were quantified by real-time PCR, and lactate levels were measured in heart ventricles. Protein levels of HIF-1\u03b1 increase in nuclei of hearts of N. coriiceps and C. aceratus in response to exposure to CTMAX and in hearts of N. coriiceps exposed to severe hypoxia, yet mRNA levels of anaerobic metabolic genes do not increase in any species, nor do lactate levels increase, suggesting that HIF-1 does not stimulate metabolic remodeling in hearts of notothenioids under these conditions. Together, these data suggest that Antarctic notothenioids may be vulnerable to hypoxic events, which are likely to increase with climate warming. ", "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula", "locations": "Antarctica; Antarctic Peninsula", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "O\u0027Brien, Kristin", "project_titles": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0010084", "repository": "USAP-DC", "title": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Hypoxia response of hearts of Antarctic fishes", "uid": "601406", "west": null}, {"awards": "1341663 O\u0027Brien, Kristin", "bounds_geometry": null, "date_created": "Fri, 18 Dec 2020 00:00:00 GMT", "description": "Studies in temperate fishes provide evidence that cardiac mitochondrial function and the capacity to fuel cardiac work contribute to thermal tolerance. Here, we tested the hypothesis that decreased cardiac aerobic metabolic capacity contributes to the lower thermal tolerance of the haemoglobinless Antarctic icefish, Chaenocephalus aceratus, compared with that of the red-blooded Antarctic species, Notothenia coriiceps. Maximal activities of citrate synthase (CS) and lactate dehydrogenase (LDH), respiration rates of isolated mitochondria, adenylate levels and changes in mitochondrial protein expression were quantified from hearts of animals held at ambient temperature or exposed to their critical thermal maximum (CTmax). Compared with C. aceratus, activity of CS, ATP concentration and energy charge were higher in hearts of N. coriiceps at ambient temperature and CTmax While state 3 mitochondrial respiration rates were not impaired by exposure to CTmax in either species, state 4 rates, indicative of proton leakage, increased following exposure to CTmax in C. aceratus but not N. coriiceps The interactive effect of temperature and species resulted in an increase in antioxidants and aerobic metabolic enzymes in N. coriiceps but not in C. aceratus Together, our results support the hypothesis that the lower aerobic metabolic capacity of C. aceratus hearts contributes to its low thermal tolerance. ", "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula", "locations": "Antarctica; Antarctic Peninsula", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "O\u0027Brien, Kristin", "project_titles": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0010084", "repository": "USAP-DC", "title": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Cardiac metabolism in Antarctic fishes in response to an acute increase in temperature", "uid": "601405", "west": null}, {"awards": "1341476 Moran, Amy; 1341485 Woods, H. Arthur", "bounds_geometry": ["POINT(166.67 -77.85)"], "date_created": "Fri, 07 Dec 2018 00:00:00 GMT", "description": "This dataset contains morphometric (mass, surface area, cuticle thickness, cuticle morphometrics) and physiological (oxygen consumption) data for Antarctic pycnognonids collected in McMurdo Sound, Antarctica .", "east": 166.67, "geometry": ["POINT(166.67 -77.85)"], "keywords": "Antarctica; Biomechanics; Biota; Cold Adaptation; McMurdo Sound; Metabolism; Oceans; Oxygen; Pycnogonida; Southern Ocean", "locations": "Antarctica; Southern Ocean; McMurdo Sound", "north": -77.85, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Moran, Amy; Woods, H. Arthur; Tobalske, Bret", "project_titles": "Collaborative Research: Body Size, Oxygen, and Vulnerability to Climate Change in Antarctic Pycnogonida", "projects": [{"proj_uid": "p0000007", "repository": "USAP-DC", "title": "Collaborative Research: Body Size, Oxygen, and Vulnerability to Climate Change in Antarctic Pycnogonida"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.85, "title": "Physiological and biochemical measurements on Pycnogonida from McMurdo Sound", "uid": "601142", "west": 166.67}, {"awards": "1141978 Foreman, Christine", "bounds_geometry": ["POLYGON((161.1667 -77.117,161.21673 -77.117,161.26676 -77.117,161.31679 -77.117,161.36682 -77.117,161.41685 -77.117,161.46688 -77.117,161.51691 -77.117,161.56694 -77.117,161.61697 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.61697 -77.117,161.56694 -77.117,161.51691 -77.117,161.46688 -77.117,161.41685 -77.117,161.36682 -77.117,161.31679 -77.117,161.26676 -77.117,161.21673 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117))"], "date_created": "Fri, 23 Mar 2018 00:00:00 GMT", "description": "Mass spectra of external metabolites were obtained with a 1290 Ultra Performance Liquid Chromatography system coupled to a 6538 Ultra High Definition Accurate-Mass Quadrupole-Time of Flight mass spectrometer operated in positive mode with an electrospray ionization source (Agilent Technologies). 30 mL of filtered media was concentrated per sample by solid phase extraction. External metabolites were re-suspended in 50% (v/v) acetonitrile, and were separated using a reverse-phase Kinetix 1.7 um C18, 100A, 150 mm - 2.1 mm column. Data presented are from UPLC-Q-TOF measurements of mass to charge ratio, retention time, and replicate-averaged extracted ion chromatogram abundance values (counts) of molecular species that demonstrated a significant change in abundance (Two-way ANOVA, adjusted P\u003c0.01) during incubations based on time point (T0: d0, T1: d27, T2: d63, T3: d98) and carbon source (Cotton Glacier: CG, Pony Lake: PL, Suwannee River: SR).", "east": 161.667, "geometry": ["POINT(161.41685 -77.117)"], "keywords": "Antarctica; Biota; Exometabolites; Mass Spectrometry; Microbes; Microbiology", "locations": "Antarctica", "north": -77.117, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Foreman, Christine; Tigges, Michelle; Bothner, Brian", "project_titles": "Multidimensional \"omics\" characterization of microbial metabolism and dissolved organic matter in Antarctica", "projects": [{"proj_uid": "p0000408", "repository": "USAP-DC", "title": "Multidimensional \"omics\" characterization of microbial metabolism and dissolved organic matter in Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.117, "title": "UPLC-Q-TOF data of Cotton Glacier exometabolites", "uid": "601089", "west": 161.1667}, {"awards": "1141978 Foreman, Christine", "bounds_geometry": ["POINT(161.667 -77.117)"], "date_created": "Tue, 19 Dec 2017 00:00:00 GMT", "description": "Metadata presented include Fourier transform ion cyclotron resonance mass spectrometry characterization of carbon source material molecular composition for three isolated lyophilized OM samples: Cotton Glacier Supraglacial stream, IHSS Pony Lake, and IHSS Suwannee River", "east": 161.667, "geometry": ["POINT(161.667 -77.117)"], "keywords": "Antarctica; Biota; Chemistry:fluid; Chemistry:Fluid; Fluorescence Spectroscopy; Mass Spectrometry", "locations": "Antarctica", "north": -77.117, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "D\u0027Andrilli, Juliana; Foreman, Christine", "project_titles": "Multidimensional \"omics\" characterization of microbial metabolism and dissolved organic matter in Antarctica", "projects": [{"proj_uid": "p0000408", "repository": "USAP-DC", "title": "Multidimensional \"omics\" characterization of microbial metabolism and dissolved organic matter in Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.117, "title": "FT-ICR MS Metadata", "uid": "601077", "west": 161.667}, {"awards": "1141978 Foreman, Christine", "bounds_geometry": ["POINT(161.667 -77.117)"], "date_created": "Tue, 19 Dec 2017 00:00:00 GMT", "description": "Metadata presented include high resolution respiration data from Janthinobacterium sp. CG3 for three dissolved organic matter samples Cotton Glacier Supraglacial stream, Pony Lake fulvic acid, and Suwannee River Natural Organic Matter (NOM).", "east": 161.667, "geometry": ["POINT(161.667 -77.117)"], "keywords": "Antarctica; Biota; Chemistry:fluid; Chemistry:Fluid; Fluorescence Spectroscopy; Mass Spectrometry", "locations": "Antarctica", "north": -77.117, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Foreman, Christine; Smith, Heidi", "project_titles": "Multidimensional \"omics\" characterization of microbial metabolism and dissolved organic matter in Antarctica", "projects": [{"proj_uid": "p0000408", "repository": "USAP-DC", "title": "Multidimensional \"omics\" characterization of microbial metabolism and dissolved organic matter in Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.117, "title": "Respiration Metadata", "uid": "601076", "west": 161.667}, {"awards": "0738658 Price, P. Buford", "bounds_geometry": ["POINT(-112.135833 -79.482778)"], "date_created": "Thu, 03 Apr 2014 00:00:00 GMT", "description": "This data set consists of data from optical logs made at the WAIS Divide with a laser dust logger in clear ice at depths between 1403.58 meters and 3329.8 meters.", "east": -112.135833, "geometry": ["POINT(-112.135833 -79.482778)"], "keywords": "Antarctica; Atmosphere; Chemistry:ice; Chemistry:Ice; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Laser Dust Logger; WAIS Divide Ice Core", "locations": "Antarctica", "north": -79.482778, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Bay, Ryan", "project_titles": "Climatology, Meteorology, and Microbial Metabolism in Ice with Dust Loggers and Fluorimetry", "projects": [{"proj_uid": "p0000009", "repository": "USAP-DC", "title": "Climatology, Meteorology, and Microbial Metabolism in Ice with Dust Loggers and Fluorimetry"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.482778, "title": "WAIS Divide Laser Dust Logger Data", "uid": "609540", "west": -112.135833}, {"awards": "0838996 Hollibaugh, James", "bounds_geometry": ["POLYGON((-79 -63,-77.5 -63,-76 -63,-74.5 -63,-73 -63,-71.5 -63,-70 -63,-68.5 -63,-67 -63,-65.5 -63,-64 -63,-64 -63.8,-64 -64.6,-64 -65.4,-64 -66.2,-64 -67,-64 -67.8,-64 -68.6,-64 -69.4,-64 -70.2,-64 -71,-65.5 -71,-67 -71,-68.5 -71,-70 -71,-71.5 -71,-73 -71,-74.5 -71,-76 -71,-77.5 -71,-79 -71,-79 -70.2,-79 -69.4,-79 -68.6,-79 -67.8,-79 -67,-79 -66.2,-79 -65.4,-79 -64.6,-79 -63.8,-79 -63))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Ammonia oxidation is the first step in the conversion of regenerated nitrogen to dinitrogen gas, a 3-step pathway mediated by 3 distinct guilds of bacteria and archaea. Ammonia oxidation and the overall process of nitrification-denitrification have received relatively little attention in polar oceans where the effects of climate change on biogeochemical rates are likely to be pronounced. Previous work on Ammonia Oxidizing Archaea (AOA) in the Palmer LTER study area West of the Antarctic Peninsula (WAP), has suggested strong vertical segregation of crenarchaeote metabolism, with the \u0027winter water\u0027 (WW, ~50-100 m depth range) dominated by non-AOA crenarchaeotes, while Crenarchaeota populations in the \u0027circumpolar deep water\u0027 (CDW), which lies immediately below the winter water (150-3500 m), are dominated by AOA. Analysis of a limited number of samples from the Arctic Ocean did not reveal a comparable vertical segregation of AOA, and suggested that AOA and Crenarchaeota abundance is much lower there than in the Antarctic. These findings led to 3 hypotheses that will be tested in this project: 1) the apparent low abundance of Crenarchaeota and AOA in Arctic Ocean samples may be due to spatial or temporal variability in populations; 2) the WW population of Crenarchaeota in the WAP is dominated by a heterotroph; 3) the WW population of Crenarchaeota in the WAP \u0027grows in\u0027 during spring and summer after this water mass forms.\n\nThe study will contribute substantially to understanding an important aspect of the nitrogen cycle in the Palmer LTER (Long Term Ecological Research) study area by providing insights into the ecology and physiology of AOA. The natural segregation of crenarchaeote phenotypes in waters of the WAP, coupled with metagenomic studies in progress in the same area by others (A. Murray, H. Ducklow), offers the possibility of major breakthroughs in understanding of the metabolic capabilities of these organisms. This knowledge is needed to model how water column nitrification will respond to changes in polar ecosystems accompanying global climate change. The Principal Investigator will participate fully in the education and outreach efforts of the Palmer LTER, including making highlights of our findings available for posting to their project web site and participating in outreach (for example, Schoolyard LTER). The research also will involve undergraduates (including the field work if possible) and will support high school interns in the P.I.\u0027s laboratory over the summer.\n", "east": -64.0, "geometry": ["POINT(-71.5 -67)"], "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; LMG1006; LMG1101; LTER Palmer Station; Oceans; Southern Ocean", "locations": "Southern Ocean", "north": -63.0, "nsf_funding_programs": null, "persons": "Hollibaugh, James T.", "project_titles": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula", "projects": [{"proj_uid": "p0000359", "repository": "USAP-DC", "title": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -71.0, "title": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula", "uid": "600105", "west": -79.0}, {"awards": "0836061 Dennett, Mark", "bounds_geometry": ["POLYGON((-170 -69,-163 -69,-156 -69,-149 -69,-142 -69,-135 -69,-128 -69,-121 -69,-114 -69,-107 -69,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-100 -77,-100 -78,-100 -79,-107 -79,-114 -79,-121 -79,-128 -79,-135 -79,-142 -79,-149 -79,-156 -79,-163 -79,-170 -79,-170 -78,-170 -77,-170 -76,-170 -75,-170 -74,-170 -73,-170 -72,-170 -71,-170 -70,-170 -69))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "Convincing evidence now confirms that polar regions are changing rapidly in response to human activities. Changes in sea ice extent and thickness will have profound implications for productivity, food webs and carbon fluxes at high latitudes, since sea ice biota are a significant source of biogenic matter for the ecosystem. While sea ice is often thought to be a barrier to gas exchange between the ocean and the atmosphere, it more likely functions as a source or sink for climate-active gases such as carbon dioxide and ozone-depleting organohalogens, due in part to activities of microbes embedded in the sea ice matrix. This project brings together experienced US and Swedish investigators to examine the controls by sea-ice biota on the production and degradation of key climate-active gases in the Pacific sector of the Southern Ocean. We hypothesize that 1) the physical properties of the sea-ice environment will determine the community structure and activities of the sea ice biota; 2) the productivity, biomass, physiological state and species composition of ice algae will determine the production of specific classes of organic carbon, including organohalogens; 3) heterotrophic co-metabolism within the ice will break down these compounds to some extent, depending on the microbial community structure and productivity, and 4) the sea ice to atmosphere fluxes of CO2 and organohalogens will be inversely related. This project will build close scientific collaborations between US and Swedish researchers and also train young scientists, including members of underrepresented groups. Dissemination of results will include the scientific literature, and public outreach venues including interactions with a PolarTrec teacher.", "east": -100.0, "geometry": ["POINT(-135 -74)"], "keywords": "Amundsen Sea; Antarctica; Biota; Oceans; Oden; Oden2008; Plankton; Sea Ice; Southern Ocean", "locations": "Southern Ocean; Antarctica; Amundsen Sea", "north": -69.0, "nsf_funding_programs": null, "persons": "Dennett, Mark", "project_titles": "Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota", "projects": [{"proj_uid": "p0000137", "repository": "USAP-DC", "title": "Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "Controls on Climate-Active Gases by Amundsen Sea Ice Biota", "uid": "600091", "west": -170.0}, {"awards": "0836112 Smith, Walker", "bounds_geometry": ["POLYGON((-170 -69,-163 -69,-156 -69,-149 -69,-142 -69,-135 -69,-128 -69,-121 -69,-114 -69,-107 -69,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-100 -77,-100 -78,-100 -79,-107 -79,-114 -79,-121 -79,-128 -79,-135 -79,-142 -79,-149 -79,-156 -79,-163 -79,-170 -79,-170 -78,-170 -77,-170 -76,-170 -75,-170 -74,-170 -73,-170 -72,-170 -71,-170 -70,-170 -69))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Convincing evidence now confirms that polar regions are changing rapidly in response to human activities. Changes in sea ice extent and thickness will have profound implications for productivity, food webs and carbon fluxes at high latitudes, since sea ice biota are a significant source of biogenic matter for the ecosystem. While sea ice is often thought to be a barrier to gas exchange between the ocean and the atmosphere, it more likely functions as a source or sink for climate-active gases such as carbon dioxide and ozone-depleting organohalogens, due in part to activities of microbes embedded in the sea ice matrix. This project brings together experienced US and Swedish investigators to examine the controls by sea-ice biota on the production and degradation of key climate-active gases in the Pacific sector of the Southern Ocean. We hypothesize that 1) the physical properties of the sea-ice environment will determine the community structure and activities of the sea ice biota; 2) the productivity, biomass, physiological state and species composition of ice algae will determine the production of specific classes of organic carbon, including organohalogens; 3) heterotrophic co-metabolism within the ice will break down these compounds to some extent, depending on the microbial community structure and productivity, and 4) the sea ice to atmosphere fluxes of CO2 and organohalogens will be inversely related. This project will build close scientific collaborations between US and Swedish researchers and also train young scientists, including members of underrepresented groups. Dissemination of results will include the scientific literature, and public outreach venues including interactions with a PolarTrec teacher.\n", "east": -100.0, "geometry": ["POINT(-135 -74)"], "keywords": "Amundsen Sea; Antarctica; Chemistry:fluid; Chemistry:Fluid; CTD Data; Oceans; Oden; Oden2008; Sea Ice; Sea Surface; Southern Ocean", "locations": "Antarctica; Sea Surface; Southern Ocean; Amundsen Sea", "north": -69.0, "nsf_funding_programs": null, "persons": "Smith, Walker", "project_titles": "Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota", "projects": [{"proj_uid": "p0000137", "repository": "USAP-DC", "title": "Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "Controls on Climate-Active Gases by Amundsen Sea Ice Biota", "uid": "600092", "west": -170.0}, {"awards": "0538594 Ponganis, Paul", "bounds_geometry": ["POLYGON((165.983 -77.683,166.0164 -77.683,166.0498 -77.683,166.0832 -77.683,166.1166 -77.683,166.15 -77.683,166.1834 -77.683,166.2168 -77.683,166.2502 -77.683,166.2836 -77.683,166.317 -77.683,166.317 -77.6897,166.317 -77.6964,166.317 -77.7031,166.317 -77.7098,166.317 -77.7165,166.317 -77.7232,166.317 -77.7299,166.317 -77.7366,166.317 -77.7433,166.317 -77.75,166.2836 -77.75,166.2502 -77.75,166.2168 -77.75,166.1834 -77.75,166.15 -77.75,166.1166 -77.75,166.0832 -77.75,166.0498 -77.75,166.0164 -77.75,165.983 -77.75,165.983 -77.7433,165.983 -77.7366,165.983 -77.7299,165.983 -77.7232,165.983 -77.7165,165.983 -77.7098,165.983 -77.7031,165.983 -77.6964,165.983 -77.6897,165.983 -77.683))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "The research will examine blood and muscle oxygen store depletion in relation to the documented aerobic dive limit (ADL, onset of post-dive blood lactate accumulation) in diving of emperor penguins. The intellectual merits of this proposal involve its evaluation of the physiological basis of the ADL concept. The ADL is probably the most commonly-used, but rarely measured, factor to interpret and model the behavior and foraging ecology of diving animals. Based on prior studies, and on recent investigations of respiratory and blood oxygen depletion during dives of emperor penguins, it is hypothesized that the ADL is a result of the depletion of myoglobin (Mb)-bound oxygen and increased glycolysis in the primary locomotory muscles. This project will accurately define the physiological mechanisms underlying the ADL through 1) evaluation of the rate and magnitude of muscle oxygen depletion during dives in relation to the previously measured ADL, 2) characterization of the hemoglobin-oxygen dissociation curve in blood of emperor penguins and comparison of that curve to those of other diving and non-diving species, 3) application of the emperor hemoglogin-oxygen dissociation curve to previously collected oxygen and hemoglobin data in order to estimate the rate and magnitude of blood oxygen depletion during dives, and 4) measurement of muscle phosphoocreatine and glycogen concentrations in order to estimate their potential contributions to muscle energy metabolism during diving. The project also continues the census and monitoring of the emperor colonies in the Ross Sea, which is especially important in light of both fisheries activity and the movement of iceberg B15-A. Broader impacts of the project include: 1) technological development of microprocessor-based, \u0027backpack\u0027 near-infrared spectrophotometer, which will be applicable not only to other species, but also to other fields (i.e., exercise physiology), 2) collaboration with the Department of Anesthesia at the U.S. Naval Hospital in San Diego in the training of anesthesia residents in research techniques, 3) the training and thesis research of two graduate students in these techniques and in Antarctic field research, and 4) a better understanding of the ADL concept and its use in the fields of diving behavior and physiology. In addition the annual census of emperor penguin colonies in the Ross Sea, in conjunction with the continued evaluation of previously developed remote cameras to monitor colony status, will form the basis of a new educational web site, and allow development of an educational outreach program to school children through SeaWorld of San Diego.", "east": 166.317, "geometry": ["POINT(166.15 -77.7165)"], "keywords": "Antarctica; Biota; Oceans; Penguin; Southern Ocean", "locations": "Southern Ocean; Antarctica", "north": -77.683, "nsf_funding_programs": null, "persons": "Ponganis, Paul", "project_titles": "The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins", "projects": [{"proj_uid": "p0000535", "repository": "USAP-DC", "title": "The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.75, "title": "The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins", "uid": "600057", "west": 165.983}, {"awards": "0634682 Kanatous, Shane", "bounds_geometry": ["POLYGON((160 -77,160.7 -77,161.4 -77,162.1 -77,162.8 -77,163.5 -77,164.2 -77,164.9 -77,165.6 -77,166.3 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.3 -78,165.6 -78,164.9 -78,164.2 -78,163.5 -78,162.8 -78,162.1 -78,161.4 -78,160.7 -78,160 -78,160 -77.9,160 -77.8,160 -77.7,160 -77.6,160 -77.5,160 -77.4,160 -77.3,160 -77.2,160 -77.1,160 -77))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "During the past three decades, intensive field studies have revealed much about the behavior, physiology, life history, and population dynamics of the Weddell seal (Leptonychotes weddelli) population of McMurdo Sound, Antarctica. These animals are marine predators that are highly adapted for an aquatic life in shore-fast and pack ice habitats. They must locate and capture sparsely distributed under the ice. Most of what is known about their diving behavior is based on studies of adult animals with little known about the development or the genetic controls of diving behavior of young animals. The goal of this project is to examine the temporal development of aerobic capacity, lipid metabolism and oxygen stores in the skeletal muscles of young Weddell seals and to determine which aspects of the cellular environment are important in the regulation of these adaptations during maturation. This project builds on past results to investigate the molecular controls that underlie the development of these adaptations. The first objective is to further characterize the ontogenetic changes in muscle aerobic capacity, lipid metabolism and myoglobin concentration and distribution using enzymatic, immuno-histochemical and myoglobin assays in newly weaned, subadult, and adult seals. The second objective is to determine the molecular controls that regulate these changes in aerobic capacity, fiber type distribution and myoglobin in skeletal muscles during maturation. Through subtractive hybridization and subsequent analysis, differences in mRNA populations in the swimming muscles of the different age classes of Weddell seals will be determined. These techniques will allow for the identification of the proteins and transcription factors that influence the ontogenetic changes in myoglobin concentration, fiber type distribution and aerobic capacity. These results will increase our understanding of both the ontogeny and molecular mechanisms by which young seals acquire the physiological capabilities to make deep (up to 700 m) and long aerobic dives (ca 20 min). This study will advance knowledge of the molecular regulation for the adaptations that enable active skeletal muscle to function under hypoxic conditions; this has a broader application for human medicine especially in regards to cardiac and pulmonary disease. Additional broader impacts include the participation of underrepresented scientists and a continuation of a website in collaboration with the Science Teachers Access to Resources at Southwestern University (STARS Program) which involves weekly updates about research efforts during the field season, weekly questions/answer session involving students and teachers, and updates on research results throughout the year.", "east": 167.0, "geometry": ["POINT(163.5 -77.5)"], "keywords": "Antarctica; Biota; Oceans; Seals; Sea Surface; Southern Ocean", "locations": "Antarctica; Sea Surface; Southern Ocean", "north": -77.0, "nsf_funding_programs": null, "persons": "Lyons, W. Berry; Kanatous, Shane", "project_titles": "The Molecular Signals that Regulate the Ontogeny of Aerobic Capacity, Lipid Metabolism and Elevated Myoglobin Concentrations in the Skeletal Muscles of Weddell Seals", "projects": [{"proj_uid": "p0000536", "repository": "USAP-DC", "title": "The Molecular Signals that Regulate the Ontogeny of Aerobic Capacity, Lipid Metabolism and Elevated Myoglobin Concentrations in the Skeletal Muscles of Weddell Seals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "The Molecular Signals that Regulate the Ontogeny of Aerobic Capacity, Lipid Metabolism and Elevated Myoglobin Concentrations in the Skeletal Muscles of Weddell Seals", "uid": "600063", "west": 160.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Survey Metadata. All counts of Odontaster validus from SSWS surveys at the McMurdo Intake Jetty and Cinder Cones
|
1745130 |
2025-01-04 | Moran, Amy; Thurber, Andrew |
Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development |
Counts of Odontaster along 50-m transects at the McMurdo Intake Jetty (2019, 2020) and Cinder Cones (2022), including incidence of SSWS and staging of each visibly affected individual starfish. | [] | [] | false | false |
Fine‑scale variation in microhabitat conditions influences physiology and metabolism in an Antarctic insect
|
1850988 |
2025-01-03 | Teets, Nicholas; Spacht, Drew; Gantz, Josiah D.; Devlin, Jack; McCabe, Eleanor; Lee, Richard; Denlinger, David |
NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects |
For this study, larvae were collected every week for the entire summer field season from five sites, four located on Cormorant Island and a fifth site on Humble Island. The dataset contains microhabitat data for each site, as well as the metabolic rate, carbohydrate content, lipid content, and protein content of the larvae collected at those sites for each time point. | ["POLYGON((-64.0844 -64.7651,-64.07249 -64.7651,-64.06058 -64.7651,-64.04867 -64.7651,-64.03676 -64.7651,-64.02485 -64.7651,-64.01294 -64.7651,-64.00103 -64.7651,-63.98912 -64.7651,-63.97721 -64.7651,-63.9653 -64.7651,-63.9653 -64.76798000000001,-63.9653 -64.77086,-63.9653 -64.77374,-63.9653 -64.77662,-63.9653 -64.7795,-63.9653 -64.78238,-63.9653 -64.78526,-63.9653 -64.78814,-63.9653 -64.79101999999999,-63.9653 -64.7939,-63.97721 -64.7939,-63.98912 -64.7939,-64.00103 -64.7939,-64.01294 -64.7939,-64.02485 -64.7939,-64.03676 -64.7939,-64.04867 -64.7939,-64.06058 -64.7939,-64.07249 -64.7939,-64.0844 -64.7939,-64.0844 -64.79101999999999,-64.0844 -64.78814,-64.0844 -64.78526,-64.0844 -64.78238,-64.0844 -64.7795,-64.0844 -64.77662,-64.0844 -64.77374,-64.0844 -64.77086,-64.0844 -64.76798000000001,-64.0844 -64.7651))"] | ["POINT(-64.02485 -64.7795)"] | false | false |
Benthic seawater temperature and conductivity measurements at six sites in McMurdo Sound
|
1745130 |
2025-01-02 | Moran, Amy |
Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development |
Temperature and conductivity measurements collected from Hobo loggers deployed ~3cm from the benthos at six sites around McMurdo Sound in 2021-2022 at depths of 20-30 m. | ["POLYGON((166 -77,166.08 -77,166.16 -77,166.24 -77,166.32 -77,166.4 -77,166.48000000000002 -77,166.56 -77,166.64000000000001 -77,166.72 -77,166.8 -77,166.8 -77.09,166.8 -77.18,166.8 -77.27,166.8 -77.36,166.8 -77.45,166.8 -77.54,166.8 -77.63000000000001,166.8 -77.72,166.8 -77.81,166.8 -77.9,166.72 -77.9,166.64000000000001 -77.9,166.56 -77.9,166.48000000000002 -77.9,166.4 -77.9,166.32 -77.9,166.24 -77.9,166.16 -77.9,166.08 -77.9,166 -77.9,166 -77.81,166 -77.72,166 -77.63000000000001,166 -77.54,166 -77.45,166 -77.36,166 -77.27,166 -77.18,166 -77.09,166 -77))"] | ["POINT(166.4 -77.45)"] | false | false |
Egg diameters of Colossendeis megalonyx
|
1745130 |
2023-07-24 | Moran, Amy |
Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development |
Measurements of the longest diameters of 17 eggs of Colossendeis megalonyx, laid on October 25 2021 and photographed on October 27 2021. | ["POLYGON((163 -76,163.3 -76,163.6 -76,163.9 -76,164.2 -76,164.5 -76,164.8 -76,165.1 -76,165.4 -76,165.7 -76,166 -76,166 -76.2,166 -76.4,166 -76.6,166 -76.8,166 -77,166 -77.2,166 -77.4,166 -77.6,166 -77.8,166 -78,165.7 -78,165.4 -78,165.1 -78,164.8 -78,164.5 -78,164.2 -78,163.9 -78,163.6 -78,163.3 -78,163 -78,163 -77.8,163 -77.6,163 -77.4,163 -77.2,163 -77,163 -76.8,163 -76.6,163 -76.4,163 -76.2,163 -76))"] | ["POINT(164.5 -77)"] | false | false |
Video of Colossendeis megalonyx behavior around egg mass
|
1745130 |
2023-07-24 | Moran, Amy; Lobert, Graham |
Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development |
This video shows the behavior of an adult of Colossendeis megalonyx around a recently-deposited egg mass from a mating group of the same species. The egg mass is indicated by a white circle and label that appears close to the beginning of the video. The adult can be seen manipulating the egg mass with its ovigerous legs (long, with scoop at the end) and palps (shorter). Next to the adult and egg mass are two other Colossendeis in mating posture. The video was taken by Graham Lobert on November 1, 2021 on a GoPro Hero Black at a timelapse rate of one frame per second, played back at 30 fps. The egg mass is approximately three cm across the short diameter. | ["POLYGON((166.66 -77.84,166.661 -77.84,166.662 -77.84,166.66299999999998 -77.84,166.664 -77.84,166.665 -77.84,166.666 -77.84,166.667 -77.84,166.66799999999998 -77.84,166.66899999999998 -77.84,166.67 -77.84,166.67 -77.84100000000001,166.67 -77.842,166.67 -77.843,166.67 -77.844,166.67 -77.845,166.67 -77.846,166.67 -77.847,166.67 -77.848,166.67 -77.84899999999999,166.67 -77.85,166.66899999999998 -77.85,166.66799999999998 -77.85,166.667 -77.85,166.666 -77.85,166.665 -77.85,166.664 -77.85,166.66299999999998 -77.85,166.662 -77.85,166.661 -77.85,166.66 -77.85,166.66 -77.84899999999999,166.66 -77.848,166.66 -77.847,166.66 -77.846,166.66 -77.845,166.66 -77.844,166.66 -77.843,166.66 -77.842,166.66 -77.84100000000001,166.66 -77.84))"] | ["POINT(166.665 -77.845)"] | false | false |
Hypoxia response of hearts of Antarctic fishes
|
1341663 1341602 |
2020-12-18 | O'Brien, Kristin |
Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes |
The ability of Antarctic notothenioid fishes to mount a robust molecular response to hypoxia is largely unknown. The transcription factor, hypoxia-inducible factor-1 (HIF-1), a heterodimer of HIF-1α and HIF-1β subunits, is the master regulator of oxygen homeostasis in most metazoans. We sought to determine if, in the hearts of Antarctic notothenioids, HIF-1 is activated and functional in response to either an acute heat stress or hypoxia. The red-blooded Notothenia coriiceps and the hemoglobinless icefish, Chaenocephalus aceratus, were exposed to their critical thermal maximum (CTMAX) or hypoxia (5.0 ± 0.3 mg of O2 L-1) for 2 h. Additionally, N. coriiceps was exposed to 2.3 ± 0.3 mg of O2 L-1 for 12 h, and red-blooded Gobionotothen gibberifrons was exposed to both levels of hypoxia. Levels of HIF-1α were quantified in nuclei isolated from heart ventricles using western blotting. Transcript levels of genes involved in anaerobic metabolism, and known to be regulated by HIF-1, were quantified by real-time PCR, and lactate levels were measured in heart ventricles. Protein levels of HIF-1α increase in nuclei of hearts of N. coriiceps and C. aceratus in response to exposure to CTMAX and in hearts of N. coriiceps exposed to severe hypoxia, yet mRNA levels of anaerobic metabolic genes do not increase in any species, nor do lactate levels increase, suggesting that HIF-1 does not stimulate metabolic remodeling in hearts of notothenioids under these conditions. Together, these data suggest that Antarctic notothenioids may be vulnerable to hypoxic events, which are likely to increase with climate warming. | [] | [] | false | false |
Cardiac metabolism in Antarctic fishes in response to an acute increase in temperature
|
1341663 |
2020-12-18 | O'Brien, Kristin |
Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes |
Studies in temperate fishes provide evidence that cardiac mitochondrial function and the capacity to fuel cardiac work contribute to thermal tolerance. Here, we tested the hypothesis that decreased cardiac aerobic metabolic capacity contributes to the lower thermal tolerance of the haemoglobinless Antarctic icefish, Chaenocephalus aceratus, compared with that of the red-blooded Antarctic species, Notothenia coriiceps. Maximal activities of citrate synthase (CS) and lactate dehydrogenase (LDH), respiration rates of isolated mitochondria, adenylate levels and changes in mitochondrial protein expression were quantified from hearts of animals held at ambient temperature or exposed to their critical thermal maximum (CTmax). Compared with C. aceratus, activity of CS, ATP concentration and energy charge were higher in hearts of N. coriiceps at ambient temperature and CTmax While state 3 mitochondrial respiration rates were not impaired by exposure to CTmax in either species, state 4 rates, indicative of proton leakage, increased following exposure to CTmax in C. aceratus but not N. coriiceps The interactive effect of temperature and species resulted in an increase in antioxidants and aerobic metabolic enzymes in N. coriiceps but not in C. aceratus Together, our results support the hypothesis that the lower aerobic metabolic capacity of C. aceratus hearts contributes to its low thermal tolerance. | [] | [] | false | false |
Physiological and biochemical measurements on Pycnogonida from McMurdo Sound
|
1341476 1341485 |
2018-12-07 | Moran, Amy; Woods, H. Arthur; Tobalske, Bret |
Collaborative Research: Body Size, Oxygen, and Vulnerability to Climate Change in Antarctic Pycnogonida |
This dataset contains morphometric (mass, surface area, cuticle thickness, cuticle morphometrics) and physiological (oxygen consumption) data for Antarctic pycnognonids collected in McMurdo Sound, Antarctica . | ["POINT(166.67 -77.85)"] | ["POINT(166.67 -77.85)"] | false | false |
UPLC-Q-TOF data of Cotton Glacier exometabolites
|
1141978 |
2018-03-23 | Foreman, Christine; Tigges, Michelle; Bothner, Brian |
Multidimensional "omics" characterization of microbial metabolism and dissolved organic matter in Antarctica |
Mass spectra of external metabolites were obtained with a 1290 Ultra Performance Liquid Chromatography system coupled to a 6538 Ultra High Definition Accurate-Mass Quadrupole-Time of Flight mass spectrometer operated in positive mode with an electrospray ionization source (Agilent Technologies). 30 mL of filtered media was concentrated per sample by solid phase extraction. External metabolites were re-suspended in 50% (v/v) acetonitrile, and were separated using a reverse-phase Kinetix 1.7 um C18, 100A, 150 mm - 2.1 mm column. Data presented are from UPLC-Q-TOF measurements of mass to charge ratio, retention time, and replicate-averaged extracted ion chromatogram abundance values (counts) of molecular species that demonstrated a significant change in abundance (Two-way ANOVA, adjusted P<0.01) during incubations based on time point (T0: d0, T1: d27, T2: d63, T3: d98) and carbon source (Cotton Glacier: CG, Pony Lake: PL, Suwannee River: SR). | ["POLYGON((161.1667 -77.117,161.21673 -77.117,161.26676 -77.117,161.31679 -77.117,161.36682 -77.117,161.41685 -77.117,161.46688 -77.117,161.51691 -77.117,161.56694 -77.117,161.61697 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.667 -77.117,161.61697 -77.117,161.56694 -77.117,161.51691 -77.117,161.46688 -77.117,161.41685 -77.117,161.36682 -77.117,161.31679 -77.117,161.26676 -77.117,161.21673 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117,161.1667 -77.117))"] | ["POINT(161.41685 -77.117)"] | false | false |
FT-ICR MS Metadata
|
1141978 |
2017-12-19 | D'Andrilli, Juliana; Foreman, Christine |
Multidimensional "omics" characterization of microbial metabolism and dissolved organic matter in Antarctica |
Metadata presented include Fourier transform ion cyclotron resonance mass spectrometry characterization of carbon source material molecular composition for three isolated lyophilized OM samples: Cotton Glacier Supraglacial stream, IHSS Pony Lake, and IHSS Suwannee River | ["POINT(161.667 -77.117)"] | ["POINT(161.667 -77.117)"] | false | false |
Respiration Metadata
|
1141978 |
2017-12-19 | Foreman, Christine; Smith, Heidi |
Multidimensional "omics" characterization of microbial metabolism and dissolved organic matter in Antarctica |
Metadata presented include high resolution respiration data from Janthinobacterium sp. CG3 for three dissolved organic matter samples Cotton Glacier Supraglacial stream, Pony Lake fulvic acid, and Suwannee River Natural Organic Matter (NOM). | ["POINT(161.667 -77.117)"] | ["POINT(161.667 -77.117)"] | false | false |
WAIS Divide Laser Dust Logger Data
|
0738658 |
2014-04-03 | Bay, Ryan |
Climatology, Meteorology, and Microbial Metabolism in Ice with Dust Loggers and Fluorimetry |
This data set consists of data from optical logs made at the WAIS Divide with a laser dust logger in clear ice at depths between 1403.58 meters and 3329.8 meters. | ["POINT(-112.135833 -79.482778)"] | ["POINT(-112.135833 -79.482778)"] | false | false |
Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula
|
0838996 |
2014-01-01 | Hollibaugh, James T. |
Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula |
Ammonia oxidation is the first step in the conversion of regenerated nitrogen to dinitrogen gas, a 3-step pathway mediated by 3 distinct guilds of bacteria and archaea. Ammonia oxidation and the overall process of nitrification-denitrification have received relatively little attention in polar oceans where the effects of climate change on biogeochemical rates are likely to be pronounced. Previous work on Ammonia Oxidizing Archaea (AOA) in the Palmer LTER study area West of the Antarctic Peninsula (WAP), has suggested strong vertical segregation of crenarchaeote metabolism, with the 'winter water' (WW, ~50-100 m depth range) dominated by non-AOA crenarchaeotes, while Crenarchaeota populations in the 'circumpolar deep water' (CDW), which lies immediately below the winter water (150-3500 m), are dominated by AOA. Analysis of a limited number of samples from the Arctic Ocean did not reveal a comparable vertical segregation of AOA, and suggested that AOA and Crenarchaeota abundance is much lower there than in the Antarctic. These findings led to 3 hypotheses that will be tested in this project: 1) the apparent low abundance of Crenarchaeota and AOA in Arctic Ocean samples may be due to spatial or temporal variability in populations; 2) the WW population of Crenarchaeota in the WAP is dominated by a heterotroph; 3) the WW population of Crenarchaeota in the WAP 'grows in' during spring and summer after this water mass forms. The study will contribute substantially to understanding an important aspect of the nitrogen cycle in the Palmer LTER (Long Term Ecological Research) study area by providing insights into the ecology and physiology of AOA. The natural segregation of crenarchaeote phenotypes in waters of the WAP, coupled with metagenomic studies in progress in the same area by others (A. Murray, H. Ducklow), offers the possibility of major breakthroughs in understanding of the metabolic capabilities of these organisms. This knowledge is needed to model how water column nitrification will respond to changes in polar ecosystems accompanying global climate change. The Principal Investigator will participate fully in the education and outreach efforts of the Palmer LTER, including making highlights of our findings available for posting to their project web site and participating in outreach (for example, Schoolyard LTER). The research also will involve undergraduates (including the field work if possible) and will support high school interns in the P.I.'s laboratory over the summer. | ["POLYGON((-79 -63,-77.5 -63,-76 -63,-74.5 -63,-73 -63,-71.5 -63,-70 -63,-68.5 -63,-67 -63,-65.5 -63,-64 -63,-64 -63.8,-64 -64.6,-64 -65.4,-64 -66.2,-64 -67,-64 -67.8,-64 -68.6,-64 -69.4,-64 -70.2,-64 -71,-65.5 -71,-67 -71,-68.5 -71,-70 -71,-71.5 -71,-73 -71,-74.5 -71,-76 -71,-77.5 -71,-79 -71,-79 -70.2,-79 -69.4,-79 -68.6,-79 -67.8,-79 -67,-79 -66.2,-79 -65.4,-79 -64.6,-79 -63.8,-79 -63))"] | ["POINT(-71.5 -67)"] | false | false |
Controls on Climate-Active Gases by Amundsen Sea Ice Biota
|
0836061 |
2011-01-01 | Dennett, Mark |
Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota |
Convincing evidence now confirms that polar regions are changing rapidly in response to human activities. Changes in sea ice extent and thickness will have profound implications for productivity, food webs and carbon fluxes at high latitudes, since sea ice biota are a significant source of biogenic matter for the ecosystem. While sea ice is often thought to be a barrier to gas exchange between the ocean and the atmosphere, it more likely functions as a source or sink for climate-active gases such as carbon dioxide and ozone-depleting organohalogens, due in part to activities of microbes embedded in the sea ice matrix. This project brings together experienced US and Swedish investigators to examine the controls by sea-ice biota on the production and degradation of key climate-active gases in the Pacific sector of the Southern Ocean. We hypothesize that 1) the physical properties of the sea-ice environment will determine the community structure and activities of the sea ice biota; 2) the productivity, biomass, physiological state and species composition of ice algae will determine the production of specific classes of organic carbon, including organohalogens; 3) heterotrophic co-metabolism within the ice will break down these compounds to some extent, depending on the microbial community structure and productivity, and 4) the sea ice to atmosphere fluxes of CO2 and organohalogens will be inversely related. This project will build close scientific collaborations between US and Swedish researchers and also train young scientists, including members of underrepresented groups. Dissemination of results will include the scientific literature, and public outreach venues including interactions with a PolarTrec teacher. | ["POLYGON((-170 -69,-163 -69,-156 -69,-149 -69,-142 -69,-135 -69,-128 -69,-121 -69,-114 -69,-107 -69,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-100 -77,-100 -78,-100 -79,-107 -79,-114 -79,-121 -79,-128 -79,-135 -79,-142 -79,-149 -79,-156 -79,-163 -79,-170 -79,-170 -78,-170 -77,-170 -76,-170 -75,-170 -74,-170 -73,-170 -72,-170 -71,-170 -70,-170 -69))"] | ["POINT(-135 -74)"] | false | false |
Controls on Climate-Active Gases by Amundsen Sea Ice Biota
|
0836112 |
2010-01-01 | Smith, Walker |
Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota |
Convincing evidence now confirms that polar regions are changing rapidly in response to human activities. Changes in sea ice extent and thickness will have profound implications for productivity, food webs and carbon fluxes at high latitudes, since sea ice biota are a significant source of biogenic matter for the ecosystem. While sea ice is often thought to be a barrier to gas exchange between the ocean and the atmosphere, it more likely functions as a source or sink for climate-active gases such as carbon dioxide and ozone-depleting organohalogens, due in part to activities of microbes embedded in the sea ice matrix. This project brings together experienced US and Swedish investigators to examine the controls by sea-ice biota on the production and degradation of key climate-active gases in the Pacific sector of the Southern Ocean. We hypothesize that 1) the physical properties of the sea-ice environment will determine the community structure and activities of the sea ice biota; 2) the productivity, biomass, physiological state and species composition of ice algae will determine the production of specific classes of organic carbon, including organohalogens; 3) heterotrophic co-metabolism within the ice will break down these compounds to some extent, depending on the microbial community structure and productivity, and 4) the sea ice to atmosphere fluxes of CO2 and organohalogens will be inversely related. This project will build close scientific collaborations between US and Swedish researchers and also train young scientists, including members of underrepresented groups. Dissemination of results will include the scientific literature, and public outreach venues including interactions with a PolarTrec teacher. | ["POLYGON((-170 -69,-163 -69,-156 -69,-149 -69,-142 -69,-135 -69,-128 -69,-121 -69,-114 -69,-107 -69,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-100 -77,-100 -78,-100 -79,-107 -79,-114 -79,-121 -79,-128 -79,-135 -79,-142 -79,-149 -79,-156 -79,-163 -79,-170 -79,-170 -78,-170 -77,-170 -76,-170 -75,-170 -74,-170 -73,-170 -72,-170 -71,-170 -70,-170 -69))"] | ["POINT(-135 -74)"] | false | false |
The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins
|
0538594 |
2009-01-01 | Ponganis, Paul |
The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins |
The research will examine blood and muscle oxygen store depletion in relation to the documented aerobic dive limit (ADL, onset of post-dive blood lactate accumulation) in diving of emperor penguins. The intellectual merits of this proposal involve its evaluation of the physiological basis of the ADL concept. The ADL is probably the most commonly-used, but rarely measured, factor to interpret and model the behavior and foraging ecology of diving animals. Based on prior studies, and on recent investigations of respiratory and blood oxygen depletion during dives of emperor penguins, it is hypothesized that the ADL is a result of the depletion of myoglobin (Mb)-bound oxygen and increased glycolysis in the primary locomotory muscles. This project will accurately define the physiological mechanisms underlying the ADL through 1) evaluation of the rate and magnitude of muscle oxygen depletion during dives in relation to the previously measured ADL, 2) characterization of the hemoglobin-oxygen dissociation curve in blood of emperor penguins and comparison of that curve to those of other diving and non-diving species, 3) application of the emperor hemoglogin-oxygen dissociation curve to previously collected oxygen and hemoglobin data in order to estimate the rate and magnitude of blood oxygen depletion during dives, and 4) measurement of muscle phosphoocreatine and glycogen concentrations in order to estimate their potential contributions to muscle energy metabolism during diving. The project also continues the census and monitoring of the emperor colonies in the Ross Sea, which is especially important in light of both fisheries activity and the movement of iceberg B15-A. Broader impacts of the project include: 1) technological development of microprocessor-based, 'backpack' near-infrared spectrophotometer, which will be applicable not only to other species, but also to other fields (i.e., exercise physiology), 2) collaboration with the Department of Anesthesia at the U.S. Naval Hospital in San Diego in the training of anesthesia residents in research techniques, 3) the training and thesis research of two graduate students in these techniques and in Antarctic field research, and 4) a better understanding of the ADL concept and its use in the fields of diving behavior and physiology. In addition the annual census of emperor penguin colonies in the Ross Sea, in conjunction with the continued evaluation of previously developed remote cameras to monitor colony status, will form the basis of a new educational web site, and allow development of an educational outreach program to school children through SeaWorld of San Diego. | ["POLYGON((165.983 -77.683,166.0164 -77.683,166.0498 -77.683,166.0832 -77.683,166.1166 -77.683,166.15 -77.683,166.1834 -77.683,166.2168 -77.683,166.2502 -77.683,166.2836 -77.683,166.317 -77.683,166.317 -77.6897,166.317 -77.6964,166.317 -77.7031,166.317 -77.7098,166.317 -77.7165,166.317 -77.7232,166.317 -77.7299,166.317 -77.7366,166.317 -77.7433,166.317 -77.75,166.2836 -77.75,166.2502 -77.75,166.2168 -77.75,166.1834 -77.75,166.15 -77.75,166.1166 -77.75,166.0832 -77.75,166.0498 -77.75,166.0164 -77.75,165.983 -77.75,165.983 -77.7433,165.983 -77.7366,165.983 -77.7299,165.983 -77.7232,165.983 -77.7165,165.983 -77.7098,165.983 -77.7031,165.983 -77.6964,165.983 -77.6897,165.983 -77.683))"] | ["POINT(166.15 -77.7165)"] | false | false |
The Molecular Signals that Regulate the Ontogeny of Aerobic Capacity, Lipid Metabolism and Elevated Myoglobin Concentrations in the Skeletal Muscles of Weddell Seals
|
0634682 |
2009-01-01 | Lyons, W. Berry; Kanatous, Shane |
The Molecular Signals that Regulate the Ontogeny of Aerobic Capacity, Lipid Metabolism and Elevated Myoglobin Concentrations in the Skeletal Muscles of Weddell Seals |
During the past three decades, intensive field studies have revealed much about the behavior, physiology, life history, and population dynamics of the Weddell seal (Leptonychotes weddelli) population of McMurdo Sound, Antarctica. These animals are marine predators that are highly adapted for an aquatic life in shore-fast and pack ice habitats. They must locate and capture sparsely distributed under the ice. Most of what is known about their diving behavior is based on studies of adult animals with little known about the development or the genetic controls of diving behavior of young animals. The goal of this project is to examine the temporal development of aerobic capacity, lipid metabolism and oxygen stores in the skeletal muscles of young Weddell seals and to determine which aspects of the cellular environment are important in the regulation of these adaptations during maturation. This project builds on past results to investigate the molecular controls that underlie the development of these adaptations. The first objective is to further characterize the ontogenetic changes in muscle aerobic capacity, lipid metabolism and myoglobin concentration and distribution using enzymatic, immuno-histochemical and myoglobin assays in newly weaned, subadult, and adult seals. The second objective is to determine the molecular controls that regulate these changes in aerobic capacity, fiber type distribution and myoglobin in skeletal muscles during maturation. Through subtractive hybridization and subsequent analysis, differences in mRNA populations in the swimming muscles of the different age classes of Weddell seals will be determined. These techniques will allow for the identification of the proteins and transcription factors that influence the ontogenetic changes in myoglobin concentration, fiber type distribution and aerobic capacity. These results will increase our understanding of both the ontogeny and molecular mechanisms by which young seals acquire the physiological capabilities to make deep (up to 700 m) and long aerobic dives (ca 20 min). This study will advance knowledge of the molecular regulation for the adaptations that enable active skeletal muscle to function under hypoxic conditions; this has a broader application for human medicine especially in regards to cardiac and pulmonary disease. Additional broader impacts include the participation of underrepresented scientists and a continuation of a website in collaboration with the Science Teachers Access to Resources at Southwestern University (STARS Program) which involves weekly updates about research efforts during the field season, weekly questions/answer session involving students and teachers, and updates on research results throughout the year. | ["POLYGON((160 -77,160.7 -77,161.4 -77,162.1 -77,162.8 -77,163.5 -77,164.2 -77,164.9 -77,165.6 -77,166.3 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.3 -78,165.6 -78,164.9 -78,164.2 -78,163.5 -78,162.8 -78,162.1 -78,161.4 -78,160.7 -78,160 -78,160 -77.9,160 -77.8,160 -77.7,160 -77.6,160 -77.5,160 -77.4,160 -77.3,160 -77.2,160 -77.1,160 -77))"] | ["POINT(163.5 -77.5)"] | false | false |