{"dp_type": "Project", "free_text": "GLACIER MOTION/ICE SHEET MOTION"}
[{"awards": "2053169 Kingslake, Jonathan", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 15 Sep 2023 00:00:00 GMT", "description": "When ice sheets and glaciers lose ice faster than it accumulates from snowfall, they shrink and contribute to sea-level rise. This has consequences for coastal communities around the globe by, for example, increasing the frequency of damaging storm surges. Sea-level rise is already underway and a major challenge for the geoscience community is improving predictions of how this will evolve. The Antarctic Ice Sheet is the largest potential contributor to sea-level rise and its future is highly uncertain. It loses ice through two main mechanisms: the formation of icebergs and melting at the base of floating ice shelves on its periphery. Ice flows under gravity towards the ocean and the rate of ice flow controls how fast ice sheets and glaciers shrink. In Greenland and Antarctica, ice flow is focused into outlet glaciers and ice streams, which flow much faster than surrounding areas. Moreover, parts of the Greenland Ice Sheet speed up and slow down substantially on hourly to seasonal time scales, particularly where meltwater from the surface reaches the base of the ice. Meltwater reaching the base changes ice flow by altering basal water pressure and consequently the friction exerted on the ice by the rock and sediment beneath. This phenomenon has been observed frequently in Greenland but not in Antarctica. Recent satellite observations suggest this phenomenon also occurs on outlet glaciers in the Antarctic Peninsula. Meltwater reaching the base of the Antarctic Ice Sheet is likely to become more common as air temperature and surface melting are predicted to increase around Antarctica this century. This project aims to confirm the recent satellite observations, establish a baseline against which to compare future changes, and improve understanding of the direct influence of meltwater on Antarctic Ice Sheet dynamics. This is a project jointly funded by the National Science Foundation?s Directorate for Geosciences (NSF/GEO) and the National Environment Research Council (NERC) of the United Kingdom (UK) via the NSF/GEO-NERC Lead Agency Agreement. This Agreement allows a single joint US/UK proposal to be submitted and peer-reviewed by the Agency whose investigator has the largest proportion of the budget. Upon successful joint determination of an award recommendation, each Agency funds the proportion of the budget that supports scientists at institutions in their respective countries.\r\n\r\nThis project will include a field campaign on Flask Glacier, an Antarctic Peninsula outlet glacier, and a continent-wide remote sensing survey. These activities will allow the team to test three hypotheses related to the Antarctic Ice Sheet?s dynamic response to surface meltwater: (1) short-term changes in ice velocity indicated by satellite data result from surface meltwater reaching the bed, (2) this is widespread in Antarctica today, and (3) this results in a measurable increase in mean annual ice discharge. The project is a collaboration between US- and UK-based researchers and will be supported logistically by the British Antarctic Survey. The project aims to provide insights into both the drivers and implications of short-term changes in ice flow velocity caused by surface melting. For example, showing conclusively that meltwater directly influences Antarctic ice dynamics would have significant implications for understanding the response of Antarctica to atmospheric warming, as it did in Greenland when the phenomenon was first detected there twenty years ago. This work will also potentially influence other fields, as surface meltwater reaching the bed of the Antarctic Ice Sheet may affect ice rheology, subglacial hydrology, submarine melting, calving, ocean circulation, and ocean biogeochemistry. The project aims to have broader impacts on science and society by supporting early-career scientists, UK-US collaboration, education and outreach, and adoption of open data science approaches within the glaciological community.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "ICE SHEETS; GLACIER MOTION/ICE SHEET MOTION; Antarctic Peninsula; BASAL SHEAR STRESS", "locations": "Antarctic Peninsula", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Kingslake, Jonathan; Sole, Andrew; Livingstone, Stephen; Winter, Kate; Ely, Jeremy", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "NSFGEO-NERC: Investigating the Direct Influence of Meltwater on Antarctic Ice Sheet Dynamics", "uid": "p0010436", "west": null}, {"awards": "2012958 Meyer, Colin", "bounds_geometry": null, "dataset_titles": "Frozen fringe friction ; Ring shear bed deformation measurements ", "datasets": [{"dataset_uid": "601756", "doi": "10.15784/601756", "keywords": "Antarctica", "people": "Zoet, Lucas", "repository": "USAP-DC", "science_program": null, "title": "Frozen fringe friction ", "url": "https://www.usap-dc.org/view/dataset/601756"}, {"dataset_uid": "601757", "doi": "10.15784/601757", "keywords": "Antarctica", "people": "Zoet, Lucas", "repository": "USAP-DC", "science_program": null, "title": "Ring shear bed deformation measurements ", "url": "https://www.usap-dc.org/view/dataset/601757"}], "date_created": "Wed, 13 Sep 2023 00:00:00 GMT", "description": "The fastest-changing regions of the Antarctic and Greenland Ice Sheets that contribute most to sea-level rise are underlain by soft sediments that facilitate glacier motion. Glacier ice can infiltrate several meters into these sediments, depending on the temperature and water pressure at the base of the glacier. To understand how ice infiltration into subglacial sediments affects glacier slip, the team will conduct laboratory experiments under relevant temperature and pressure conditions and compare the results to state-of-the-art mathematical models. Through an undergraduate research exchange between University of Wisconsin-Madison, Dartmouth College, and the College of Menominee Nation, Native American students will work on laboratory experiments in one summer and mathematical theory in the following summer.\u003cbr/\u003e\u003cbr/\u003eIce-sediment interactions are a central component of ice-sheet and landform-development models. Limited process understanding poses a key uncertainty for ice-sheet models that are used to forecast sea-level rise. This uncertainty underscores the importance of developing experimentally validated, theoretically robust descriptions of processes at the ice-sediment interface. To achieve this, the team aims to build on long-established theoretical, experimental, and field investigations that have elucidated the central role of premelting and surface-energy effects in controlling the dynamics of frost heave in soils. Project members will theoretically describe and experimentally test the role of premelting at the basal ice-sediment interface. The experiments are designed to provide quantitative insight into the impact of ice infiltration into sediments on glacier sliding, erosion, and subglacial landform evolution.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "BASAL SHEAR STRESS; GLACIER MOTION/ICE SHEET MOTION; GLACIERS/ICE SHEETS", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology; Arctic Natural Sciences", "paleo_time": null, "persons": "Meyer, Colin; Rempel, Alan; Zoet, Lucas", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Freeze-on of Subglacial Sediments in Experiments and Theory", "uid": "p0010434", "west": null}, {"awards": "2317927 Hills, Benjamin", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Radar Reflectivity at Whillans Ice Plain", "datasets": [{"dataset_uid": "200401", "doi": "10.5281/zenodo.11201199", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Radar Reflectivity at Whillans Ice Plain", "url": "https://doi.org/10.5281/zenodo.11201199"}], "date_created": "Mon, 07 Aug 2023 00:00:00 GMT", "description": "Ice flow is resisted by frictional forces that keep a glacier from immediately sliding into the ocean. Friction comes in two varieties: internal friction within the ice column which resists ice deformation and basal friction which resists ice sliding over its bedrock substrate. Partitioning between internal and basal friction is difficult since both have similar expressions at the most common target for data collection?the ice-sheet surface. However, understanding this partitioning is important because the physical processes that control internal and basal friction act and evolve at different timescales. This project combines spaceborne remote sensing observations from the ice-sheet surface with ice-penetrating radar data that images the internal structure of the ice sheet in order to partition the contribution of each source of friction. Results will advance the fundamental understanding of ice flow and will strengthen projections of future sea-level rise. Broader Impacts of the project include facilitating data reuse for the ice-sheet research community; the strategy for distributing the software toolkit includes student mentorship and hackathon teaching.\r\n\r\nThe researcher will expand the impact of existing ice-penetrating datasets by 1) developing new open-source algorithms for extraction of englacial stratigraphy; 2) creating stratigraphy data products that can be assimilated into future studies of ice motion; and 3) using statistical analyses to integrate radar datasets into larger-scale interpretations with remote sensing datasets of ice-surface velocity, altimetry, climate variables, and model-derived basal friction. The computational tools developed as part of this effort will be integrated and released as a reusable software toolkit for ice-penetrating radar data analysis. The toolkit will be validated and tested by deployment to cloud-hosted JupyterHub instances, which will serve as a singular interface to access radar and remote sensing data, load them into a unified framework, step through a predefined processing flow, and carry out statistical analyses. In some areas, the imaged englacial stratigraphy will deviate from the ice-dynamic setting expected based on surface measurements alone. There, the internal dynamics (or ice-dynamic history) are inconsistent with the surface dynamics, likely because internal friction is poorly constrained and misattributed to basal friction instead. This work will develop the data and statistical tools for constraining internal friction from ice-penetrating radar, making those data products and tools available for future work.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING", "is_usap_dc": true, "keywords": "GLACIER MOTION/ICE SHEET MOTION; BT-67; Antarctica; GLACIER TOPOGRAPHY/ICE SHEET TOPOGRAPHY; DHC-6; ICE SHEETS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Post Doc/Travel", "paleo_time": null, "persons": "Hills, Benjamin", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e BT-67; AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6", "repo": "Zenodo", "repositories": "Zenodo", "science_programs": null, "south": -90.0, "title": "Postdoctoral Fellowship: OPP-PRF: Disentangling Ice-sheet Internal and Basal Processes through Novel Ice-penetrating Radar Integration Built on Scalable, Cloud-based Infrastructure", "uid": "p0010428", "west": -180.0}, {"awards": "1847173 Duddu, Ravindra", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 07 Jul 2023 00:00:00 GMT", "description": "Iceberg calving is a complex natural fracture process and a dominant cause of mass loss from the floating ice shelves on the margins of the Antarctic ice sheet. There is concern that rapid changes at these ice shelves can destabilize parts of the ice sheet and accelerate their contribution to sea-level rise. The goal of this project is to understand and simulate the fracture mechanics of calving and to develop physically-consistent calving schemes for ice-sheet models. This would enable more reliable estimation of Antarctic mass loss by reducing the uncertainty in projections. The research plan is integrated with an education and outreach plan that aims to (1) enhance computational modeling skills of engineering and Earth science students through a cross-college course and a high-performance computing workshop and (2) increase participation and diversity in engineering and sciences by providing interdisciplinary research opportunities to undergraduates and by deploying new cyberlearning tools to engage local K-12 students in the Metro Nashville Public Schools in computational science and engineering, and glaciology.\u003cbr/\u003e\u003cbr/\u003eThis project aims to provide fundamental understanding of iceberg calving by advancing the frontiers in computational fracture mechanics and nonlinear continuum mechanics and translating it to glaciology. The project investigates crevasse propagation using poro-damage mechanics models for hydrofracture that are consistent with nonlinear viscous ice rheology, along with the thermodynamics of refreezing in narrow crevasses at meter length scales. It will develop a fracture-physics based scheme to better represent calving in ice-sheet models using a multiscale method. The effort will also address research questions related to calving behavior of floating ice shelves and glaciers, with the goal of enabling more reliable prediction of calving fronts in whole-Antarctic ice-sheet simulations over decadal-to-millennial time scales.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "United States Of America; GLACIER MOTION/ICE SHEET MOTION", "locations": "United States Of America", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Duddu, Ravindra", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "CAREER: Fracture Mechanics of Antarctic Ice Shelves and Glaciers - Representing Iceberg Calving in Ice Sheet Models and Developing Cyberlearning Tools for Outreach", "uid": "p0010423", "west": null}, {"awards": "1643285 Joughin, Ian; 1643174 Padman, Laurence", "bounds_geometry": "POLYGON((-104 -73,-102.2 -73,-100.4 -73,-98.6 -73,-96.8 -73,-95 -73,-93.2 -73,-91.4 -73,-89.6 -73,-87.8 -73,-86 -73,-86 -73.8,-86 -74.6,-86 -75.4,-86 -76.2,-86 -77,-86 -77.8,-86 -78.6,-86 -79.4,-86 -80.2,-86 -81,-87.8 -81,-89.6 -81,-91.4 -81,-93.2 -81,-95 -81,-96.8 -81,-98.6 -81,-100.4 -81,-102.2 -81,-104 -81,-104 -80.2,-104 -79.4,-104 -78.6,-104 -77.8,-104 -77,-104 -76.2,-104 -75.4,-104 -74.6,-104 -73.8,-104 -73))", "dataset_titles": "Beta Version of Plume Model; Data associated with Ice-Shelf Retreat Drives Recent Pine Island Glacier Speedup and Ocean-Induced Melt Volume Directly Paces Ice Loss from Pine Island Glacier; icepack; Pine Island Basin Scale Model", "datasets": [{"dataset_uid": "200290", "doi": "http://hdl.handle.net/1773/46687", "keywords": null, "people": null, "repository": "Uni. Washington ResearchWorks Archive", "science_program": null, "title": "Data associated with Ice-Shelf Retreat Drives Recent Pine Island Glacier Speedup and Ocean-Induced Melt Volume Directly Paces Ice Loss from Pine Island Glacier", "url": "https://doi.org/10.6069/2MZZ-6B61"}, {"dataset_uid": "200313", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Beta Version of Plume Model", "url": "https://github.com/icepack/plumes"}, {"dataset_uid": "200314", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "icepack", "url": "https://github.com/icepack/icepack"}, {"dataset_uid": "200315", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Pine Island Basin Scale Model", "url": "https://github.com/fastice/icesheetModels"}], "date_created": "Fri, 13 May 2022 00:00:00 GMT", "description": "Overview: Several recent studies indicate continuing and increasing ice loss from the Amundsen Sea region of West Antarctica (chiefly Pine Island and Thwaites glaciers). This loss is initiated by thinning of the floating ice shelves by basal melting driven by circulation of relatively warm ocean water under the ice shelves. This thinning triggers ice-dynamics related feedbacks, which leads to loss of ice from the grounded ice sheet. Models suggest that, even though long-term committed ice loss might be governed by ice dynamics, the magnitude of ocean-driven melting at the base of the ice shelves plays a critical role in controlling the rate of ice loss. These conclusions, however, are based on simple parameterized models for melt rate that do not take into account how ocean circulation will change in future as large-scale climate forcing changes, and as the ice shelves thin and retreat through both excess melting and accelerated ice flow. Given that present global climate models struggle to resolve the modern ocean state close to the ice shelves around Antarctica, their projections of future impacts on basal melting and time scale of ice loss have large uncertainties.\r\nThis project is aimed at reducing these uncertainties though two approaches: (i) assessing, for a given ocean state, how the melt rates will change as ice-shelf cavities evolve through melting and grounding-line retreat, and (ii) improving understanding of the sensitivity of melt rates beneath the Pine Island and Thwaites ice shelves to changes in ocean state on the Amundsen Sea continental shelf. These studies will provide more realistic bounds on ice loss and sea level rise, and lay the groundwork for development of future fully-coupled ice sheet-ocean simulations.\r\nIntellectual Merit: Rather than pursue a strategy of using fully coupled models, this project adopts a simpler semi-coupled approach to understand the sensitivity of ice-shelf melting to future forcing. Specifically, the project focuses on using regional ocean circulation models to understand current and future patterns of melting in ice-shelf cavities. The project\u2019s preliminary stage will focus on developing high-resolution ice-shelf cavity-circulation models driven by modern observed regional ocean state and validated with current patterns of melt inferred from satellite observations. Next, an ice-flow model will be used to estimate the future grounding line at various stages of retreat. Using these results, an iterative process with the ocean-circulation and ice-flow models will be applied to determine melt rates at each stage of grounding line retreat. These results will help assess whether more physically constrained melt-rate estimates substantially alter the hypothesis that unstable collapse of the Amundsen Sea sector of West Antarctica is underway. Further, by multiple simulations with modified open-ocean boundary conditions, this study will provide a better understanding of the sensitivity of melt to future changes in regional forcing. For example, what is the sensitivity of melt to changes in Circumpolar Deep Water temperature and to changes in the thermocline height driven be changes in wind forcing? Finally, several semi-coupled ice-ocean simulations will be used to investigate the influence of the ocean-circulation driven distribution of melt over the next several decades. These simulations will provide a much-improved understanding of the linkages between far-field ocean forcing, cavity circulation and melting, and ice-sheet response.\r\nBroader Impacts: Planning within the current large range of uncertainty in future sea level change leads to high social and economic costs for governments and businesses worldwide. Thus, our project to reduce sea-level rise uncertainty has strong societal as well as scientific interest. The findings and methods will be applicable to ice shelf cavities in other parts of Antarctica and northern Greenland, and will set the stage for future studies with fully coupled models as computational resources improve. This interdisciplinary work combines expertise of glaciologists and oceanographers, and will contribute to the education of new researchers in this field, with participation of graduate students and postdocs. Through several outreach activities, team members will help make the public aware of the dramatic changes occurring in Antarctica along with the likely consequences.\r\n\r\nThis proposal does not require fieldwork in the Antarctic.\r\n", "east": -86.0, "geometry": "POINT(-95 -77)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIER MOTION/ICE SHEET MOTION; USA/NSF; ICE SHEETS; AMD; USAP-DC; MODELS; Amd/Us; Pine Island Glacier", "locations": "Pine Island Glacier", "north": -73.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science", "paleo_time": null, "persons": "Joughin, Ian; Dutrieux, Pierre; Padman, Laurence; Springer, Scott", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repo": "Uni. Washington ResearchWorks Archive", "repositories": "GitHub; Uni. Washington ResearchWorks Archive", "science_programs": null, "south": -81.0, "title": "Collaborative Research: Modeling ice-ocean interaction for the rapidly evolving ice shelf cavities of Pine Island and Thwaites glaciers, Antarctica ", "uid": "p0010318", "west": -104.0}, {"awards": "1739027 Tulaczyk, Slawek", "bounds_geometry": "POLYGON((-125 -73,-122.1 -73,-119.2 -73,-116.3 -73,-113.4 -73,-110.5 -73,-107.6 -73,-104.7 -73,-101.8 -73,-98.9 -73,-96 -73,-96 -73.7,-96 -74.4,-96 -75.1,-96 -75.8,-96 -76.5,-96 -77.2,-96 -77.9,-96 -78.6,-96 -79.3,-96 -80,-98.9 -80,-101.8 -80,-104.7 -80,-107.6 -80,-110.5 -80,-113.4 -80,-116.3 -80,-119.2 -80,-122.1 -80,-125 -80,-125 -79.3,-125 -78.6,-125 -77.9,-125 -77.2,-125 -76.5,-125 -75.8,-125 -75.1,-125 -74.4,-125 -73.7,-125 -73))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 24 Jun 2021 00:00:00 GMT", "description": "This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Collapse of the West Antarctic Ice Sheet (WAIS) could raise the global sea level by about 5 meters (16 feet) and the scientific community considers it the most significant risk for coastal environments and cities. The risk arises from the deep, marine setting of WAIS. Although scientists have been aware of the precarious setting of this ice sheet since the early 1970s, it is only now that the flow of ice in several large drainage basins is undergoing dynamic change consistent with a potentially irreversible disintegration. Understanding WAIS stability and enabling more accurate prediction of sea-level rise through computer simulation are two of the key objectives facing the polar science community today. This project will directly address both objectives by: (1) using state-of-the-art technologies to observe rapidly deforming parts of Thwaites Glacier that may have significant control over the future evolution of WAIS, and (2) using these new observations to improve ice-sheet models used to predict future sea-level rise. This project brings together a multidisciplinary team of UK and US scientists. This international collaboration will result in new understanding of natural processes that may lead to the collapse of the WAIS and will boost infrastructure for research and education by creating a multidisciplinary network of scientists. This team will mentor three postdoctoral researchers, train four Ph.D. students and integrate undergraduate students in this research project.\r\n\r\nThe project will test the overarching hypothesis that shear-margin dynamics may exert powerful control on the future evolution of ice flow in Thwaites Drainage Basin. To test the hypothesis, the team will set up an ice observatory at two sites on the eastern shear margin of Thwaites Glacier. The team argues that weak topographic control makes this shear margin susceptible to outward migration and, possibly, sudden jumps in response to the drawdown of inland ice when the grounding line of Thwaites retreats. The ice observatory is designed to produce new and comprehensive constraints on englacial properties, including ice deformation rates, ice crystal fabric, ice viscosity, ice temperature, ice water content and basal melt rates. The ice observatory will also establish basal conditions, including thickness and porosity of the till layer and the deeper marine sediments, if any. Furthermore, the team will develop new knowledge with an emphasis on physical processes, including direct assessment of the spatial and temporal scales on which these processes operate. Seismic surveys will be carried out in 2D and 3D using wireless geophones. A network of broadband seismometers will identify icequakes produced by crevassing and basal sliding. Autonomous radar systems with phased arrays will produce sequential images of rapidly deforming internal layers in 3D while potentially also revealing the geometry of a basal water system. Datasets will be incorporated into numerical models developed on different spatial scales. One will focus specifically on shear-margin dynamics, the other on how shear-margin dynamics can influence ice flow in the whole drainage basin. Upon completion, the project aims to have confirmed whether the eastern shear margin of Thwaites Glacier can migrate rapidly, as hypothesized, and if so what the impacts will be in terms of sea-level rise in this century and beyond.\r\n", "east": -96.0, "geometry": "POINT(-110.5 -76.5)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; GLACIER MOTION/ICE SHEET MOTION; Thwaites Glacier; USAP-DC; USA/NSF; Magmatic Volatiles; AMD; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE; ICE SHEETS; Amd/Us", "locations": "Thwaites Glacier", "north": -73.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Tulaczyk, Slawek", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": "Thwaites (ITGC)", "south": -80.0, "title": "NSF-NERC: Thwaites Interdisciplinary Margin Evolution (TIME): The Role of Shear Margin Dynamics in the Future Evolution of the Thwaites Drainage Basin", "uid": "p0010199", "west": -125.0}, {"awards": "1643120 Iverson, Neal", "bounds_geometry": null, "dataset_titles": "Ice permeameter experimental parameters and results; Softening of temperate ice by interstitial water; Tertiary creep rates if temperate ice containing greater than 0.7% liquid water", "datasets": [{"dataset_uid": "601460", "doi": "10.15784/601460", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Stream; Lab Experiment; Rheology; Snow/ice; Snow/Ice; Water Content", "people": "Iverson, Neal", "repository": "USAP-DC", "science_program": null, "title": "Softening of temperate ice by interstitial water", "url": "https://www.usap-dc.org/view/dataset/601460"}, {"dataset_uid": "601833", "doi": null, "keywords": "Antarctica; Cryosphere", "people": "Iverson, Neal", "repository": "USAP-DC", "science_program": null, "title": "Tertiary creep rates if temperate ice containing greater than 0.7% liquid water", "url": "https://www.usap-dc.org/view/dataset/601833"}, {"dataset_uid": "601515", "doi": "10.15784/601515", "keywords": "Antarctica; Glacier Flow; Glacier Hydrology; Glaciological Instruments And Methods; Glaciology; Ice Physics; Ice Stream; Snow/ice; Snow/Ice", "people": "Iverson, Neal; Fowler, Jacob", "repository": "USAP-DC", "science_program": null, "title": "Ice permeameter experimental parameters and results", "url": "https://www.usap-dc.org/view/dataset/601515"}], "date_created": "Wed, 23 Jun 2021 00:00:00 GMT", "description": "This award supports a project to study the effect of liquid, intercrystalline water on the flow resistance of ice and the mobility of this water within ice. Water plays a central role in the flow of ice streams. It lubricates their bases and softens their margins, where flow speeds abruptly transition from rapid to slow. Within ice stream margins some ice is \"temperate,\u201d meaning that it is at its pressure-melting temperature with relatively thick water films at grain boundaries that significantly soften the ice. The amount of water in ice depends sensitively on its permeability, values of which are too poorly known to estimate the water contents of ice-stream shear margins or associated ice viscosities.\r\n \r\n\r\nThis award stems from the NSF/GEO-UK NERC lead agency opportunity (NSF 14-118) and is a collaboration between Iowa State University and Oxford University in the United Kingdom. The experimental part of the project is executed at Iowa State University and is the focus herein because it has been supported by NSF. Two sets of experiments are conducted. In one set, a large ring-shear device is used to shear ice in confined compression and at its melting temperature to study the sensitivity of ice viscosity to water content. Ice is sheared at stresses and strain rates comparable to those of ice-stream margins, and water content is varied through twice the range explored in the only previous set of experiments that investigated ice softening by water. The second set of experiments required the design, fabrication, and testing of a laboratory ice permeameter that allows the permeability of temperate ice to be measured. Experiments are conducted to study the dependence of ice permeability on ice grain size and water content--the two dependencies required to model grain-scale water flow through temperate ice.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "GLACIER MOTION/ICE SHEET MOTION; Rheology; Antarctica; LABORATORY; Ice Stream; USA/NSF; USAP-DC; Lab Experiment; Water Content", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Iverson, Neal; Zoet, Lucas", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "NSFGEO-NERC: Collaborative Research: Two-Phase Dynamics of Temperate Ice", "uid": "p0010197", "west": null}, {"awards": "1246151 Bromirski, Peter; 1246416 Stephen, Ralph", "bounds_geometry": "POLYGON((-180 -77,-179.5 -77,-179 -77,-178.5 -77,-178 -77,-177.5 -77,-177 -77,-176.5 -77,-176 -77,-175.5 -77,-175 -77,-175 -77.4,-175 -77.8,-175 -78.2,-175 -78.6,-175 -79,-175 -79.4,-175 -79.8,-175 -80.2,-175 -80.6,-175 -81,-175.5 -81,-176 -81,-176.5 -81,-177 -81,-177.5 -81,-178 -81,-178.5 -81,-179 -81,-179.5 -81,180 -81,179 -81,178 -81,177 -81,176 -81,175 -81,174 -81,173 -81,172 -81,171 -81,170 -81,170 -80.6,170 -80.2,170 -79.8,170 -79.4,170 -79,170 -78.6,170 -78.2,170 -77.8,170 -77.4,170 -77,171 -77,172 -77,173 -77,174 -77,175 -77,176 -77,177 -77,178 -77,179 -77,-180 -77))", "dataset_titles": "Collaborative Research: Dynamic Response of the Ross Ice Shelf to Wave-Induced Vibrations and Collaborative Research: Mantle Structure and Dynamics of the Ross Sea from a Passive Seismic Deployment on the Ross Ice Shelf. International Federation of Digital Seismograph Networks. ; Dynamic Response of the Ross Ice Shelf to Wave-induced Vibrations 2015/2016, UNAVCO, Inc., GPS/GNSS Observations Dataset", "datasets": [{"dataset_uid": "200207", "doi": "10.7914/SN/XH_2014", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Collaborative Research: Dynamic Response of the Ross Ice Shelf to Wave-Induced Vibrations and Collaborative Research: Mantle Structure and Dynamics of the Ross Sea from a Passive Seismic Deployment on the Ross Ice Shelf. International Federation of Digital Seismograph Networks. ", "url": "http://www.fdsn.org/networks/detail/XH_2014/"}, {"dataset_uid": "200209", "doi": "10.7283/58E3-GA46", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Dynamic Response of the Ross Ice Shelf to Wave-induced Vibrations 2015/2016, UNAVCO, Inc., GPS/GNSS Observations Dataset", "url": "https://doi.org/10.7283/58E3-GA46"}], "date_created": "Thu, 15 Apr 2021 00:00:00 GMT", "description": "This award supports a project intended to discover, through field observations and numerical simulations, how ocean wave-induced vibrations on ice shelves in general, and the Ross Ice Shelf (RIS), in particular, can be used (1) to infer spatial and temporal variability of ice shelf mechanical properties, (2) to infer bulk elastic properties from signal propagation characteristics, and (3) to determine whether the RIS response to infragravity (IG) wave forcing observed distant from the front propagates as stress waves from the front or is \"locally\" generated by IG wave energy penetrating the RIS cavity. The intellectual merit of the work is that ocean gravity waves are dynamic elements of the global ocean environment, affected by ocean warming and changes in ocean and atmospheric circulation patterns. Their evolution may thus drive changes in ice-shelf stability by both mechanical interactions, and potentially increased basal melting, which in turn feed back on sea level rise. Gravity wave-induced signal propagation across ice shelves depends on ice shelf and sub-shelf water cavity geometry (e.g. structure, thickness, crevasse density and orientation), as well as ice shelf physical properties. Emphasis will be placed on observation and modeling of the RIS response to IG wave forcing at periods from 75 to 300 s. Because IG waves are not appreciably damped by sea ice, seasonal monitoring will give insights into the year-round RIS response to this oceanographic forcing. The 3-year project will involve a 24-month period of continuous data collection spanning two annual cycles on the RIS. RIS ice-front array coverage overlaps with a synergistic Ross Sea Mantle Structure (RSMS) study, giving an expanded array beneficial for IG wave localization. The ice-shelf deployment will consist of sixteen stations equipped with broadband seismometers and barometers. Three seismic stations near the RIS front will provide reference response/forcing functions, and measure the variability of the response across the front. A linear seismic array orthogonal to the front will consist of three stations in-line with three RSMS stations. Passive seismic array monitoring will be used to determine the spatial and temporal distribution of ocean wave-induced signal sources along the front of the RIS and estimate ice shelf structure, with the high-density array used to monitor and localize fracture (icequake) activity. The broader impacts include providing baseline measurements to enable detection of ice-shelf changes over coming decades which will help scientists and policy-makers respond to the socio-environmental challenges of climate change and sea-level rise. A postdoctoral scholar in interdisciplinary Earth science will be involved throughout the course of the research. Students at Cuyamaca Community College, San Diego County, will develop and manage a web site for the project to be used as a teaching tool for earth science and oceanography classes, with development of an associated web site on waves for middle school students.\n\r\nUnderstanding and being able to anticipate changes in the glaciological regime of the Ross Ice Shelf (RIS) and West Antarctic Ice Sheet (WAIS) are key to improving sea level rise projections due to ongoing ice mass loss in West Antarctica. The fate of the WAIS is a first-order climate change and global societal issue for this century and beyond that affects coastal communities and coastal infrastructure globally. \r\n\r\nIce shelf--ocean interactions include impacts from tsunami, ocean swell (10-30s period), and very long period ocean waves that impact ice shelves and produce vibrations that induce a variety of seismic signals detected by seismometers buried in the ice shelf surface layer, called firn. To study the wave-induced vibrations in the RIS, an extensive seismic array was deployed from Nov. 2014 to Nov. 2016. This unique seismometer array deployment on an ice shelf made continuous observations of the response of the RIS to ocean wave impacts from ocean swell and very long period waves. An extensive description of the project motivation and background (including photos and videos of the deployment operations), and list of published studies of analyses of the seismic data collected by this project, are available at the project website https://iceshelfvibes.ucsd.edu. \r\n\r\nTwo types of seismic signals detected by the seismic array are most prevalent: flexural gravity waves (plate waves) and icequakes (signals analogous to those from earthquakes but from fracturing of the ice). \r\nLong period ocean waves flex the ice shelf at the same period as the ocean waves, with wave energy at periods greater than ocean swell more efficient at coupling energy into flexing the ice shelf. Termed flexural gravity waves or plate waves (Chen et al., 2018), their wave-induced vibrations can reach 100\u2019s of km from the ice edge where they are excited, with long period wave energy propagating in the water layer below the shelf coupled with the ice shelf flexure. Flexural gravity waves at very long periods (\u003e 300 s period), such as from tsunami impacts (Bromirski et al., 2017), can readily reach grounding zones and may play a role in long-term grounding zone evolution. \r\nSwell-induced icequake activity was found to be most prevalent at the shelf front during the austral summer (January \u2013 March) when seasonal sea ice is absent and the associated damping of swell by sea ice is minimal (Chen et al., 2019). \r\n\r\nIn addition to the seismic array, a 14 station GPS (global positioning system) array was installed during seismic data retrieval and station servicing operations in October-November 2015. The GPS stations, co-located with seismic stations, extended from the shelf front southward to about 415 km at interior station RS18. Due to logistical constraints associated with battery weight during installation, only one station (at DR10) operated year-round. The GPS data collected give a detailed record of changes in iceflow velocity that are in close agreement with the increasing velocity estimates approaching the shelf front from satellite observations. Importantly, the year-round data at DR10 show an unprecedented seasonal cycle of changes in iceflow velocity, with a speed-up in northward (seaward) ice flow during Jan.-May and then a velocity decrease from June-Sep. (returning to the long-term mean flow velocity). This annual ice flow velocity change cycle has been attributed in part to seasonal changes in ice shelf mass (thinning, reducing buttressing) due to melting at the RIS basal (bottom) surface from intrusion of warmer ocean water (Klein et al., 2020). ", "east": 170.0, "geometry": "POINT(177.5 -79)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; GLACIER MOTION/ICE SHEET MOTION; USAP-DC; Amd/Us; AMD; USA/NSF; Iris; Ross Ice Shelf", "locations": "Ross Ice Shelf", "north": -77.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Bromirski, Peter; Gerstoft, Peter; Stephen, Ralph", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "IRIS", "repositories": "IRIS; UNAVCO", "science_programs": null, "south": -81.0, "title": "Collaborative Research: Dynamic Response of the Ross Ice Shelf to Wave-induced Vibrations", "uid": "p0010169", "west": -175.0}, {"awards": "1643301 Gerbi, Christopher; 1643353 Christianson, Knut", "bounds_geometry": null, "dataset_titles": "ImpDAR: an impulse radar processor; SeidarT; South Pole Lake ApRES Radar; South Pole Lake GNSS; South Pole Lake: ground-based ice-penetrating radar", "datasets": [{"dataset_uid": "200202", "doi": "http://doi.org/10.5281/zenodo.3833057", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "ImpDAR: an impulse radar processor", "url": "https://www.github.com/dlilien/ImpDAR"}, {"dataset_uid": "200244", "doi": " https://zenodo.org/badge/latestdoi/382590632", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "SeidarT", "url": "https://github.com/UMainedynamics/SeidarT"}, {"dataset_uid": "601503", "doi": "10.15784/601503", "keywords": "Antarctica; Apres; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; South Pole; Subglacial Lakes; Vertical Velocity", "people": "Hills, Benjamin", "repository": "USAP-DC", "science_program": null, "title": "South Pole Lake ApRES Radar", "url": "https://www.usap-dc.org/view/dataset/601503"}, {"dataset_uid": "601502", "doi": "10.15784/601502", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GNSS; GPS; GPS Data; South Pole; Subglacial Lakes", "people": "Hills, Benjamin", "repository": "USAP-DC", "science_program": null, "title": "South Pole Lake GNSS", "url": "https://www.usap-dc.org/view/dataset/601502"}, {"dataset_uid": "200203", "doi": "", "keywords": null, "people": null, "repository": "Uni. Washington ResearchWorks Archive", "science_program": null, "title": "South Pole Lake: ground-based ice-penetrating radar", "url": "http://hdl.handle.net/1773/45293"}], "date_created": "Wed, 17 Feb 2021 00:00:00 GMT", "description": "This award supports a project to develop software that will allow researchers considering seismic or radar field surveys to test, ahead of time, whether the data they plan to collect will have sufficient resolution to measure the natural variations in the mechanical properties of ice, which determine the response of flowing ice to changing climatic conditions. The mechanical properties of ice depend largely on the temperature and the orientation of the crystals that make up the ice. The most accurate method for measuring ice crystal orientation and temperature is through drilling and direct analysis of an ice core. However, this method is very costly, time-consuming, and limited in spatial coverage. Geophysical techniques, such as seismic and radar, can cover much more area, but we have little knowledge about the practical limitations of these techniques as they relate to calculating mechanical properties. This project addresses that knowledge gap through construction of a computational toolbox that will allow accurate assessment of the ability of geophysical surveys to image crystal orientation and ice temperature. Researchers can then use these tools to adjust the field survey plans to maximize the return on investment. By working to improve the efficiency and effectiveness of future geophysical work related to glacial flow, this proposal will improve scientists? ability to quantify sea-level variations within the larger context of climate change. The project includes building new user-friendly, publicly accessible software and instructional modules. The work will provide training for graduate and undergraduate students, who will play a role in research and develop instructional materials. \r\n\r\nIce viscosity, the resistance of ice to flow, exerts significant control over ice velocity. Therefore, mapping ice viscosity is important for understanding the current and future behavior of glaciers and ice sheets. To do so, scientists must determine the temperature and crystal orientation fabric throughout the ice. Seismic and radar techniques can survey large areas quickly, and thus are promising, yet not fully tested, methods to efficiently measure the thermal and mechanical structure of flowing ice. As part of this project, scientists will develop and use a computational framework to quantify the degree to which seismic and radar techniques can resolve the crystal orientation fabric and temperature of streaming ice, and then test how sensitive ice flow is to the attendant uncertainty. To meet these goals, a numerical toolbox will be built which will allow the glacier/ice stream geometry and physical properties (temperature, crystal orientation fabric, density and acidity) to be varied. The toolbox will be capable of both creating synthetic radar and seismic profiles through forward modeling and inverting synthetic profiles to allow evaluation of how well geophysical techniques can image the original thermal and mechanical structure. These simulated radar and seismic data will allow scientists to better quantify the influence of the variability in mechanical properties of the ice on flow velocities and patterns. The results of this work will guide planning for future field campaigns, making them more effective and efficient. This project does not require fieldwork in the Antarctic.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "United States Of America; GLACIERS/ICE SHEETS; USAP-DC; GLACIER MOTION/ICE SHEET MOTION; GLACIER THICKNESS/ICE SHEET THICKNESS; ICE SHEETS; South Pole; USA/NSF; AMD; GLACIER TOPOGRAPHY/ICE SHEET TOPOGRAPHY; FIELD SURVEYS; Amd/Us", "locations": "South Pole; United States Of America", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Christianson, Knut; Gerbi, Christopher; Campbell, Seth; Vel, Senthil", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "GitHub", "repositories": "GitHub; Uni. Washington ResearchWorks Archive; USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Computational Methods Supporting Joint Seismic and Radar Inversion for Ice Fabric and Temperature in Streaming Flow", "uid": "p0010160", "west": null}, {"awards": "1842021 Campbell, Seth", "bounds_geometry": "POLYGON((-168 -82,-162.3 -82,-156.6 -82,-150.9 -82,-145.2 -82,-139.5 -82,-133.8 -82,-128.1 -82,-122.4 -82,-116.7 -82,-111 -82,-111 -82.5,-111 -83,-111 -83.5,-111 -84,-111 -84.5,-111 -85,-111 -85.5,-111 -86,-111 -86.5,-111 -87,-116.7 -87,-122.4 -87,-128.1 -87,-133.8 -87,-139.5 -87,-145.2 -87,-150.9 -87,-156.6 -87,-162.3 -87,-168 -87,-168 -86.5,-168 -86,-168 -85.5,-168 -85,-168 -84.5,-168 -84,-168 -83.5,-168 -83,-168 -82.5,-168 -82))", "dataset_titles": "2017 GPR Observations of the Whillans and Mercer Ice Streams; Whillans and Mercer Shear Margin Ice Flow simulation in ISSM", "datasets": [{"dataset_uid": "601403", "doi": "10.15784/601403", "keywords": "Antarctica; Crevasses; Glaciology; GPR; GPS; Ice Sheet Flow Model; Ice Shelf Dynamics; Snow/ice; Snow/Ice; Whillans Ice Stream", "people": "Kaluzienski, Lynn", "repository": "USAP-DC", "science_program": null, "title": "2017 GPR Observations of the Whillans and Mercer Ice Streams", "url": "https://www.usap-dc.org/view/dataset/601403"}, {"dataset_uid": "601404", "doi": "10.15784/601404", "keywords": "Antarctica; Glaciology; Ice Sheet Flow Model; Ice Shelf Dynamics; Mercer Ice Stream; Model Data; Snow/ice; Snow/Ice; Whillans Ice Stream", "people": "Kaluzienski, Lynn", "repository": "USAP-DC", "science_program": null, "title": "Whillans and Mercer Shear Margin Ice Flow simulation in ISSM", "url": "https://www.usap-dc.org/view/dataset/601404"}], "date_created": "Mon, 14 Dec 2020 00:00:00 GMT", "description": "The Siple Coast in West Antarctica has undergone significant glacier changes over the last millenium. Several ice streams--rapidly moving streams of ice bordered by slow-moving ice--exist in this region that feeds into the Ross Ice Shelf. A long-term slowdown of Whillans Ice Stream appears to be occurring, and this is affecting the zone between the Whillans and Mercer Ice Streams. However, the consistency of this slowdown and resulting changes to the shear margin between the two ice streams are unknown. Shear zone stability represents a potentially critical control on mass balance of ice sheets, especially in regions of fast ice flow where basal shear stress is minimal. This project is therefore focused on understanding the spatial and temporal change of ice flow kinematics, shear margin structure, and shear margin location between Whillans and Mercer Ice Streams. A collateral benefit of and driver for this as a RAPID project is to test a method for assessing where crevassing will develop in this zone of steep velocity gradients. Such a method may benefit not only near-term field-project planning in the 2018-19 field season, but also planning for future fieldwork and traverses.\u003cbr/\u003e\u003cbr/\u003eThe team will use velocity estimates derived from available remote sensing datasets to determine transient velocity patterns and shifts in the shear-zone location over the last 20 years. This velocity time series will be incorporated into a large-scale ice-sheet model to estimate ice-sheet susceptibility to changing boundary conditions over the next century based on likely regional ice-flux scenarios. This approach is an extension of recent work conducted by the team that shows promise for predicting areas of changing high strain rates indicative of an active glacier shear margin. The ultimate objectives are to characterize the flow field of merging ice streams over time and investigate lateral boundary migration. This will provide a better understanding of shear-margin control on ice-shelf and up-glacier stability.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -111.0, "geometry": "POINT(-139.5 -84.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "FIELD SURVEYS; Whillans Ice Stream; USAP-DC; Amd/Us; USA/NSF; GLACIER MOTION/ICE SHEET MOTION; MODELS; AMD", "locations": "Whillans Ice Stream", "north": -82.0, "nsf_funding_programs": "Antarctic Glaciology; Polar Special Initiatives", "paleo_time": null, "persons": "Campbell, Seth; Koons, Peter", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e MODELS \u003e MODELS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.0, "title": "RAPID Proposal: Constraining kinematics of the Whillans/Mercer Ice Stream Confluence", "uid": "p0010145", "west": -168.0}, {"awards": "1738913 Scambos, Ted", "bounds_geometry": "POLYGON((-118 -70,-116 -70,-114 -70,-112 -70,-110 -70,-108 -70,-106 -70,-104 -70,-102 -70,-100 -70,-98 -70,-98 -71,-98 -72,-98 -73,-98 -74,-98 -75,-98 -76,-98 -77,-98 -78,-98 -79,-98 -80,-100 -80,-102 -80,-104 -80,-106 -80,-108 -80,-110 -80,-112 -80,-114 -80,-116 -80,-118 -80,-118 -79,-118 -78,-118 -77,-118 -76,-118 -75,-118 -74,-118 -73,-118 -72,-118 -71,-118 -70))", "dataset_titles": "Profile CTD Data During Installation of AMIGOS-III Cavity and Channel On-Ice Moorings", "datasets": [{"dataset_uid": "601623", "doi": "10.15784/601623", "keywords": "Amundsen Sea; Antarctica; CTD; Ice Shelf", "people": "SCAMBOS, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Profile CTD Data During Installation of AMIGOS-III Cavity and Channel On-Ice Moorings", "url": "https://www.usap-dc.org/view/dataset/601623"}], "date_created": "Wed, 09 Sep 2020 00:00:00 GMT", "description": "This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. The Science Coordination Office will facilitate planning and coordination of the science and broader impacts of several international research projects studying Thwaites Glacier--one of the largest glaciers in Antarctica. The glacier is located on the Pacific coast of the Antarctic continent. It is flowing almost twice as fast now as in the 1970s, and is one of the largest likely contributors to sea-level rise over the coming decades to centuries. Many of the factors that will affect the speed and retreat of Thwaites Glacier will be addressed by the set of projects funded by the Thwaites initiative. The Science Coordination Office comprises a US-UK science and communications team that will work with each project\u0027s scientists and students, logistics planners, and NSF and NERC to ensure the overall success of the project. The Office will maintain an informative website, and will produce content to explain the activities of the scientists and highlight the results of the work. \u003cbr/\u003e\u003cbr/\u003eThe role of the Science Coordination Office will be to enhance integration and coordination among the science projects selected for the joint NSF-NERC Thwaites initiative to achieve maximum collective scientific and societal impact. The Office will facilitate scientific and logistical planning; facilitate data management, sharing, and discovery; and facilitate and support web content, outreach, and education for this high-profile research endeavor. The Office\u0027s role will be key to enabling the program to achieve its scientific goals and for the program to be broadly recognized and valued by scientists, the public, and policymakers.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -98.0, "geometry": "POINT(-108 -75)", "instruments": null, "is_usap_dc": true, "keywords": "OCEAN TEMPERATURE; GLACIER MOTION/ICE SHEET MOTION; BATHYMETRY; FIELD INVESTIGATION; FIELD SURVEYS; SNOW; SEDIMENTS; Antarctic Ice Sheet; WATER MASSES; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE; GLACIERS/ICE SHEETS; MARINE GEOPHYSICS", "locations": "Antarctic Ice Sheet", "north": -70.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Scambos, Ted; Vaughan, David G.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "NSF-NERC The Future of Thwaites Glacier and its Contribution to Sea-level Rise Science Coordination Office", "uid": "p0010127", "west": -118.0}, {"awards": "0125602 Padman, Laurence; 0125252 Padman, Laurence", "bounds_geometry": "POLYGON((-180 -40.231,-144 -40.231,-108 -40.231,-72 -40.231,-36 -40.231,0 -40.231,36 -40.231,72 -40.231,108 -40.231,144 -40.231,180 -40.231,180 -45.2079,180 -50.1848,180 -55.1617,180 -60.1386,180 -65.1155,180 -70.0924,180 -75.0693,180 -80.0462,180 -85.0231,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.0231,-180 -80.0462,-180 -75.0693,-180 -70.0924,-180 -65.1155,-180 -60.1386,-180 -55.1617,-180 -50.1848,-180 -45.2079,-180 -40.231))", "dataset_titles": "Antarctic Tide Gauge Database, version 1; AntTG_Database_Tools; CATS2008: Circum-Antarctic Tidal Simulation version 2008; CATS2008_v2023: Circum-Antarctic Tidal Simulation 2008, version 2023; pyTMD; TMD_Matlab_Toolbox_v2.5", "datasets": [{"dataset_uid": "601235", "doi": "10.15784/601235", "keywords": "Antarctica; Inverse Modeling; Model Data; Ocean Currents; Sea Surface; Tidal Models; Tides", "people": "Erofeeva, Svetlana; Howard, Susan L.; Padman, Laurence", "repository": "USAP-DC", "science_program": null, "title": "CATS2008: Circum-Antarctic Tidal Simulation version 2008", "url": "https://www.usap-dc.org/view/dataset/601235"}, {"dataset_uid": "200157", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "TMD_Matlab_Toolbox_v2.5", "url": "https://github.com/EarthAndSpaceResearch/TMD_Matlab_Toolbox_v2.5"}, {"dataset_uid": "601772", "doi": "10.15784/601772", "keywords": "Antarctica; Cryosphere; Inverse Modeling; Model Data; Ocean Currents; Oceans; Sea Surface; Southern Ocean; Tide Model; Tides", "people": "Sutterley, Tyler; Howard, Susan L.; Greene, Chad A.; Padman, Laurence; Erofeeva, Svetlana", "repository": "USAP-DC", "science_program": null, "title": "CATS2008_v2023: Circum-Antarctic Tidal Simulation 2008, version 2023", "url": "https://www.usap-dc.org/view/dataset/601772"}, {"dataset_uid": "200156", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "AntTG_Database_Tools", "url": "https://github.com/EarthAndSpaceResearch/AntTG_Database_Tools"}, {"dataset_uid": "200158", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "pyTMD", "url": "https://github.com/tsutterley/pyTMD"}, {"dataset_uid": "601358", "doi": "10.15784/601358", "keywords": "Antarctica; Oceans; Sea Surface Height; Tide Gauges; Tides", "people": "King, Matt; Howard, Susan L.; Padman, Laurence", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Tide Gauge Database, version 1", "url": "https://www.usap-dc.org/view/dataset/601358"}], "date_created": "Tue, 07 Jul 2020 00:00:00 GMT", "description": "The ocean tide is a large component of total variability of ocean surface height and currents in the seas surrounding Antarctica, including under the floating ice shelves. Maximum tidal height range exceeds 7 m (near the grounding line of Rutford Ice Stream) and maximum tidal currents exceed 1 m/s (near the shelf break in the northwest Ross Sea). Tides contribute to several important climate and ecosystems processes including: ocean mixing, production of dense bottom water, flow of warm Circumpolar Deep Water onto the continental shelves, melting at the bases of ice shelves, fracturing of the ice sheet near a glacier or ice stream\u2019s grounding line, production and decay of sea ice, and sediment resuspension. Tide heights and, in particular, currents can change as the ocean background state changes, and as the geometry of the coastal margins of the Antarctic Ice Sheet varies through ice shelf thickness changes and ice-front and grounding-line advances or retreats. For satellite-based studies of ocean surface height and ice shelf thickness changes, tide heights are a source of substantial noise that must be removed. Similarly, tidal currents can also be a substantial noise signal when trying to estimate mean ocean currents from short-term measurements such as from acoustic Doppler current profilers mounted on ships and CTD rosettes. Therefore, tide models play critical roles in understanding current and future ocean and ice states, and as a method for removing tides in various measurements. A paper in Reviews of Geophysics (Padman, Siegfried and Fricker, 2018, see list of project-related publications below) provides a detailed review of tides and tidal processes around Antarctica.\r\n\nThis project provides a gateway to tide models and a database of tide height coefficients at the Antarctic Data Center, and links to toolboxes to work with these models and data.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e GAUGES \u003e TIDE GAUGES", "is_usap_dc": true, "keywords": "Tide Gauges; OCEAN CURRENTS; Sea Surface Height; USAP-DC; GLACIER MOTION/ICE SHEET MOTION; Tides; Antarctica; MODELS; FIELD INVESTIGATION", "locations": "Antarctica", "north": -40.231, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Arctic System Science", "paleo_time": null, "persons": "Howard, Susan L.; Padman, Laurence; Erofeeva, Svetlana; King, Matt", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e MODELS \u003e MODELS", "repo": "USAP-DC", "repositories": "GitHub; USAP-DC", "science_programs": null, "south": -90.0, "title": "Ocean Tides around Antarctica and in the Southern Ocean", "uid": "p0010116", "west": -180.0}, {"awards": "1142167 Pettit, Erin; 1142035 Obbard, Rachel", "bounds_geometry": "POLYGON((-112.3 -79.2,-112.2 -79.2,-112.1 -79.2,-112 -79.2,-111.9 -79.2,-111.8 -79.2,-111.7 -79.2,-111.6 -79.2,-111.5 -79.2,-111.4 -79.2,-111.3 -79.2,-111.3 -79.23,-111.3 -79.26,-111.3 -79.29,-111.3 -79.32,-111.3 -79.35,-111.3 -79.38,-111.3 -79.41,-111.3 -79.44,-111.3 -79.47,-111.3 -79.5,-111.4 -79.5,-111.5 -79.5,-111.6 -79.5,-111.7 -79.5,-111.8 -79.5,-111.9 -79.5,-112 -79.5,-112.1 -79.5,-112.2 -79.5,-112.3 -79.5,-112.3 -79.47,-112.3 -79.44,-112.3 -79.41,-112.3 -79.38,-112.3 -79.35,-112.3 -79.32,-112.3 -79.29,-112.3 -79.26,-112.3 -79.23,-112.3 -79.2))", "dataset_titles": "ApRES Firn Density Study; ApRES Vertical Strain Study; GPS Horizontal Strain Network; South Pole (SPICEcore) Borehole Deformation; WAIS Divide Borehole Deformation", "datasets": [{"dataset_uid": "200141", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "GPS Horizontal Strain Network", "url": ""}, {"dataset_uid": "601322", "doi": "10.15784/601322", "keywords": "Antarctica; Firn; Firn Density; Glaciology; Ice Penetrating Radar; Phase Sensitive Radar; Radar; Snow/ice; Snow/Ice; WAIS Divide", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "ApRES Firn Density Study", "url": "https://www.usap-dc.org/view/dataset/601322"}, {"dataset_uid": "601314", "doi": "10.15784/601314", "keywords": "Acoustic Televiewer; Anisotropy; Antarctica; Borehole Logging; Deformation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Flow; WAIS Divide; WAIS Divide Ice Core", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Borehole Deformation", "url": "https://www.usap-dc.org/view/dataset/601314"}, {"dataset_uid": "601315", "doi": "10.15784/601315", "keywords": "Acoustic Televiewer; Anisotropy; Antarctica; Borehole Logging; Deformation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Flow; Snow/ice; Snow/Ice; South Pole; SPICEcore", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole (SPICEcore) Borehole Deformation", "url": "https://www.usap-dc.org/view/dataset/601315"}, {"dataset_uid": "601323", "doi": "10.15784/601323", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Penetrating Radar; Ice Strain; Phase Sensitive Radar; Radar; Snow/ice; Snow/Ice; WAIS Divide", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "ApRES Vertical Strain Study", "url": "https://www.usap-dc.org/view/dataset/601323"}], "date_created": "Fri, 15 May 2020 00:00:00 GMT", "description": "This award supports a project to develop a better understanding of the relation between ice microstructure, impurities, and ice flow and their connection to climate history for the West Antarctic Ice Sheet (WAIS) ice core site. This work builds on several ongoing studies at Siple Dome in West Antarctica and Dome C in East Antarctica. It is well known that the microstructure of ice evolves with depth and time in an ice sheet. This evolution of microstructure depends on the ice flow field, temperature, and impurity content. The ice flow field, in turn, depends on microstructure, leading to feedbacks that create layered variation in microstructure that relates to climate and flow history. The research proposed here focuses on developing a better understanding of: 1) how ice microstructure evolves with time and stress in an ice sheet and how that relates to impurity content, temperature, and strain rate; 2) how variations in ice microstructure and impurity content affect ice flow patterns near ice divides (on both small (1cm to 1m) and large (1m to 100km) scales); and 3) in what ways is the spatial variability of ice microstructure and its effect on ice flow important for interpretation of climate history in the WAIS Divide ice core. The study will integrate existing ice core and borehole data with a detailed study of ice microstructure using Electron Backscatter Diffraction (EBSD) techniques and measurements of borehole deformation through time using Acoustic Televiewers. This will be the first study to combine these two novel techniques for studying the relation between microstructure and deformation and it will build on other data being collected as part of other WAIS Divide borehole logging projects (e.g. sonic velocity, optical dust logging, temperature and other measurements on the ice core including fabric measurements from thin section analyses as well as studies of ice chemistry and stable isotopes. The intellectual merit of the work is that it will improve interpretation of ice core data (especially information on past accumulation) and overall understanding of ice flow. The broader impacts are that the work will ultimately contribute to a better interpretation of ice core records for both paleoclimate studies and for ice flow history, both of which connect to the broader questions of the role of ice in the climate system. The work will also advance the careers of two early-career female scientists, including one with a hearing impairment disability. This project will support a PhD student at the UAF and provide research and field experience for two or three undergraduates at Dartmouth. The PIs plan to include a teacher on their field team and collaborate with UAF\u0027s \"From STEM to STEAM\" toward enhancing the connection between art and science.", "east": -111.3, "geometry": "POINT(-111.8 -79.35)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR", "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; GLACIERS/ICE SHEETS; WAIS Divide; ICE CORE RECORDS; USAP-DC; GLACIER MOTION/ICE SHEET MOTION; Radar", "locations": "WAIS Divide", "north": -79.2, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Pettit, Erin; Obbard, Rachel", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "UNAVCO", "repositories": "UNAVCO; USAP-DC", "science_programs": "WAIS Divide Ice Core; SPICEcore", "south": -79.5, "title": "Collaborative Research: VeLveT Ice - eVoLution of Fabric and Texture in Ice at WAIS Divide, West Antarctica", "uid": "p0010098", "west": -112.3}, {"awards": "1443190 Parizek, Byron", "bounds_geometry": "POLYGON((-130 -73,-125.5 -73,-121 -73,-116.5 -73,-112 -73,-107.5 -73,-103 -73,-98.5 -73,-94 -73,-89.5 -73,-85 -73,-85 -73.9,-85 -74.8,-85 -75.7,-85 -76.6,-85 -77.5,-85 -78.4,-85 -79.3,-85 -80.2,-85 -81.1,-85 -82,-89.5 -82,-94 -82,-98.5 -82,-103 -82,-107.5 -82,-112 -82,-116.5 -82,-121 -82,-125.5 -82,-130 -82,-130 -81.1,-130 -80.2,-130 -79.3,-130 -78.4,-130 -77.5,-130 -76.6,-130 -75.7,-130 -74.8,-130 -73.9,-130 -73))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 16 Sep 2019 00:00:00 GMT", "description": "Accurate reconstructions and predictions of glacier movement on timescales of human interest require a better understanding of available observations and the ability to model the key processes that govern ice flow. The fact that many of these processes are interconnected, are loosely constrained by data, and involve not only the ice, but also the atmosphere, ocean, and solid Earth, makes this a challenging endeavor, but one that is essential for Earth-system modeling and the resulting climate and sea-level forecasts that are provided to policymakers worldwide. Based on the amount of ice present in the West Antarctic Ice Sheet and its ability to flow and/or melt into the ocean, its complete collapse would result in a global sea-level rise of 3.3 to 5 meters, making its stability and rate of change scientific questions of global societal significance. Whether or not a collapse eventually occurs, a better understanding of the potential West Antarctic contribution to sea level over the coming decades and centuries is necessary when considering the fate of coastal population centers. Recent observations of the Amundsen Sea Embayment of West Antarctica indicate that it is experiencing faster mass loss than any other region of the continent. At present, the long-term stability of this embayment is unknown, with both theory and observations suggesting that collapse is possible. This study is focused on this critical region as well as processes governing changes in outlet glacier flow. To this end, we will test an ice-sheet model against existing observations and improve treatment of key processes within ice sheet models.\r\n\r\nThis is a four-year (one year of no-cost extension) modeling study using the open-source Ice Sheet System Model in coordination with other models to help improve projections of future sea-level change. Overall project goals, which are distributed across the collaborating institutions, are to:\r\n1. hindcast the past two-to-three decades of evolution of the Amundsen Sea Embayment sector to determine controlling processes, incorporate and test parameterizations, and assess and improve model initialization, spinup, and performance;\r\n2. utilize observations from glacial settings and efficient process-oriented models to develop a better understanding of key processes associated with outlet glacier dynamics and to create numerically efficient parameterizations for these often sub-grid-scale processes;\r\n3. project a range of evolutions of the Amundsen Sea Embayment sector in the next several centuries given various forcings and inclusion or omission of physical processes in the model.\r\n", "east": -85.0, "geometry": "POINT(-107.5 -77.5)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; Antarctica; GLACIER MOTION/ICE SHEET MOTION; NOT APPLICABLE", "locations": "Antarctica", "north": -73.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Pollard, David; Parizek, Byron R.", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repositories": null, "science_programs": null, "south": -82.0, "title": "Collaborative Research: Evaluating Retreat in the Amundsen Sea Embayment: Assessing Controlling Processes, Uncertainties, and Projections", "uid": "p0010054", "west": -130.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NSFGEO-NERC: Investigating the Direct Influence of Meltwater on Antarctic Ice Sheet Dynamics
|
2053169 |
2023-09-15 | Kingslake, Jonathan; Sole, Andrew; Livingstone, Stephen; Winter, Kate; Ely, Jeremy | No dataset link provided | When ice sheets and glaciers lose ice faster than it accumulates from snowfall, they shrink and contribute to sea-level rise. This has consequences for coastal communities around the globe by, for example, increasing the frequency of damaging storm surges. Sea-level rise is already underway and a major challenge for the geoscience community is improving predictions of how this will evolve. The Antarctic Ice Sheet is the largest potential contributor to sea-level rise and its future is highly uncertain. It loses ice through two main mechanisms: the formation of icebergs and melting at the base of floating ice shelves on its periphery. Ice flows under gravity towards the ocean and the rate of ice flow controls how fast ice sheets and glaciers shrink. In Greenland and Antarctica, ice flow is focused into outlet glaciers and ice streams, which flow much faster than surrounding areas. Moreover, parts of the Greenland Ice Sheet speed up and slow down substantially on hourly to seasonal time scales, particularly where meltwater from the surface reaches the base of the ice. Meltwater reaching the base changes ice flow by altering basal water pressure and consequently the friction exerted on the ice by the rock and sediment beneath. This phenomenon has been observed frequently in Greenland but not in Antarctica. Recent satellite observations suggest this phenomenon also occurs on outlet glaciers in the Antarctic Peninsula. Meltwater reaching the base of the Antarctic Ice Sheet is likely to become more common as air temperature and surface melting are predicted to increase around Antarctica this century. This project aims to confirm the recent satellite observations, establish a baseline against which to compare future changes, and improve understanding of the direct influence of meltwater on Antarctic Ice Sheet dynamics. This is a project jointly funded by the National Science Foundation?s Directorate for Geosciences (NSF/GEO) and the National Environment Research Council (NERC) of the United Kingdom (UK) via the NSF/GEO-NERC Lead Agency Agreement. This Agreement allows a single joint US/UK proposal to be submitted and peer-reviewed by the Agency whose investigator has the largest proportion of the budget. Upon successful joint determination of an award recommendation, each Agency funds the proportion of the budget that supports scientists at institutions in their respective countries. This project will include a field campaign on Flask Glacier, an Antarctic Peninsula outlet glacier, and a continent-wide remote sensing survey. These activities will allow the team to test three hypotheses related to the Antarctic Ice Sheet?s dynamic response to surface meltwater: (1) short-term changes in ice velocity indicated by satellite data result from surface meltwater reaching the bed, (2) this is widespread in Antarctica today, and (3) this results in a measurable increase in mean annual ice discharge. The project is a collaboration between US- and UK-based researchers and will be supported logistically by the British Antarctic Survey. The project aims to provide insights into both the drivers and implications of short-term changes in ice flow velocity caused by surface melting. For example, showing conclusively that meltwater directly influences Antarctic ice dynamics would have significant implications for understanding the response of Antarctica to atmospheric warming, as it did in Greenland when the phenomenon was first detected there twenty years ago. This work will also potentially influence other fields, as surface meltwater reaching the bed of the Antarctic Ice Sheet may affect ice rheology, subglacial hydrology, submarine melting, calving, ocean circulation, and ocean biogeochemistry. The project aims to have broader impacts on science and society by supporting early-career scientists, UK-US collaboration, education and outreach, and adoption of open data science approaches within the glaciological community. | None | None | false | false | |||||||||||
Collaborative Research: Freeze-on of Subglacial Sediments in Experiments and Theory
|
2012958 |
2023-09-13 | Meyer, Colin; Rempel, Alan; Zoet, Lucas |
|
The fastest-changing regions of the Antarctic and Greenland Ice Sheets that contribute most to sea-level rise are underlain by soft sediments that facilitate glacier motion. Glacier ice can infiltrate several meters into these sediments, depending on the temperature and water pressure at the base of the glacier. To understand how ice infiltration into subglacial sediments affects glacier slip, the team will conduct laboratory experiments under relevant temperature and pressure conditions and compare the results to state-of-the-art mathematical models. Through an undergraduate research exchange between University of Wisconsin-Madison, Dartmouth College, and the College of Menominee Nation, Native American students will work on laboratory experiments in one summer and mathematical theory in the following summer.<br/><br/>Ice-sediment interactions are a central component of ice-sheet and landform-development models. Limited process understanding poses a key uncertainty for ice-sheet models that are used to forecast sea-level rise. This uncertainty underscores the importance of developing experimentally validated, theoretically robust descriptions of processes at the ice-sediment interface. To achieve this, the team aims to build on long-established theoretical, experimental, and field investigations that have elucidated the central role of premelting and surface-energy effects in controlling the dynamics of frost heave in soils. Project members will theoretically describe and experimentally test the role of premelting at the basal ice-sediment interface. The experiments are designed to provide quantitative insight into the impact of ice infiltration into sediments on glacier sliding, erosion, and subglacial landform evolution.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | |||||||||||
Postdoctoral Fellowship: OPP-PRF: Disentangling Ice-sheet Internal and Basal Processes through Novel Ice-penetrating Radar Integration Built on Scalable, Cloud-based Infrastructure
|
2317927 |
2023-08-07 | Hills, Benjamin |
|
Ice flow is resisted by frictional forces that keep a glacier from immediately sliding into the ocean. Friction comes in two varieties: internal friction within the ice column which resists ice deformation and basal friction which resists ice sliding over its bedrock substrate. Partitioning between internal and basal friction is difficult since both have similar expressions at the most common target for data collection?the ice-sheet surface. However, understanding this partitioning is important because the physical processes that control internal and basal friction act and evolve at different timescales. This project combines spaceborne remote sensing observations from the ice-sheet surface with ice-penetrating radar data that images the internal structure of the ice sheet in order to partition the contribution of each source of friction. Results will advance the fundamental understanding of ice flow and will strengthen projections of future sea-level rise. Broader Impacts of the project include facilitating data reuse for the ice-sheet research community; the strategy for distributing the software toolkit includes student mentorship and hackathon teaching. The researcher will expand the impact of existing ice-penetrating datasets by 1) developing new open-source algorithms for extraction of englacial stratigraphy; 2) creating stratigraphy data products that can be assimilated into future studies of ice motion; and 3) using statistical analyses to integrate radar datasets into larger-scale interpretations with remote sensing datasets of ice-surface velocity, altimetry, climate variables, and model-derived basal friction. The computational tools developed as part of this effort will be integrated and released as a reusable software toolkit for ice-penetrating radar data analysis. The toolkit will be validated and tested by deployment to cloud-hosted JupyterHub instances, which will serve as a singular interface to access radar and remote sensing data, load them into a unified framework, step through a predefined processing flow, and carry out statistical analyses. In some areas, the imaged englacial stratigraphy will deviate from the ice-dynamic setting expected based on surface measurements alone. There, the internal dynamics (or ice-dynamic history) are inconsistent with the surface dynamics, likely because internal friction is poorly constrained and misattributed to basal friction instead. This work will develop the data and statistical tools for constraining internal friction from ice-penetrating radar, making those data products and tools available for future work. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||
CAREER: Fracture Mechanics of Antarctic Ice Shelves and Glaciers - Representing Iceberg Calving in Ice Sheet Models and Developing Cyberlearning Tools for Outreach
|
1847173 |
2023-07-07 | Duddu, Ravindra | No dataset link provided | Iceberg calving is a complex natural fracture process and a dominant cause of mass loss from the floating ice shelves on the margins of the Antarctic ice sheet. There is concern that rapid changes at these ice shelves can destabilize parts of the ice sheet and accelerate their contribution to sea-level rise. The goal of this project is to understand and simulate the fracture mechanics of calving and to develop physically-consistent calving schemes for ice-sheet models. This would enable more reliable estimation of Antarctic mass loss by reducing the uncertainty in projections. The research plan is integrated with an education and outreach plan that aims to (1) enhance computational modeling skills of engineering and Earth science students through a cross-college course and a high-performance computing workshop and (2) increase participation and diversity in engineering and sciences by providing interdisciplinary research opportunities to undergraduates and by deploying new cyberlearning tools to engage local K-12 students in the Metro Nashville Public Schools in computational science and engineering, and glaciology.<br/><br/>This project aims to provide fundamental understanding of iceberg calving by advancing the frontiers in computational fracture mechanics and nonlinear continuum mechanics and translating it to glaciology. The project investigates crevasse propagation using poro-damage mechanics models for hydrofracture that are consistent with nonlinear viscous ice rheology, along with the thermodynamics of refreezing in narrow crevasses at meter length scales. It will develop a fracture-physics based scheme to better represent calving in ice-sheet models using a multiscale method. The effort will also address research questions related to calving behavior of floating ice shelves and glaciers, with the goal of enabling more reliable prediction of calving fronts in whole-Antarctic ice-sheet simulations over decadal-to-millennial time scales.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | |||||||||||
Collaborative Research: Modeling ice-ocean interaction for the rapidly evolving ice shelf cavities of Pine Island and Thwaites glaciers, Antarctica
|
1643285 1643174 |
2022-05-13 | Joughin, Ian; Dutrieux, Pierre; Padman, Laurence; Springer, Scott |
|
Overview: Several recent studies indicate continuing and increasing ice loss from the Amundsen Sea region of West Antarctica (chiefly Pine Island and Thwaites glaciers). This loss is initiated by thinning of the floating ice shelves by basal melting driven by circulation of relatively warm ocean water under the ice shelves. This thinning triggers ice-dynamics related feedbacks, which leads to loss of ice from the grounded ice sheet. Models suggest that, even though long-term committed ice loss might be governed by ice dynamics, the magnitude of ocean-driven melting at the base of the ice shelves plays a critical role in controlling the rate of ice loss. These conclusions, however, are based on simple parameterized models for melt rate that do not take into account how ocean circulation will change in future as large-scale climate forcing changes, and as the ice shelves thin and retreat through both excess melting and accelerated ice flow. Given that present global climate models struggle to resolve the modern ocean state close to the ice shelves around Antarctica, their projections of future impacts on basal melting and time scale of ice loss have large uncertainties. This project is aimed at reducing these uncertainties though two approaches: (i) assessing, for a given ocean state, how the melt rates will change as ice-shelf cavities evolve through melting and grounding-line retreat, and (ii) improving understanding of the sensitivity of melt rates beneath the Pine Island and Thwaites ice shelves to changes in ocean state on the Amundsen Sea continental shelf. These studies will provide more realistic bounds on ice loss and sea level rise, and lay the groundwork for development of future fully-coupled ice sheet-ocean simulations. Intellectual Merit: Rather than pursue a strategy of using fully coupled models, this project adopts a simpler semi-coupled approach to understand the sensitivity of ice-shelf melting to future forcing. Specifically, the project focuses on using regional ocean circulation models to understand current and future patterns of melting in ice-shelf cavities. The project’s preliminary stage will focus on developing high-resolution ice-shelf cavity-circulation models driven by modern observed regional ocean state and validated with current patterns of melt inferred from satellite observations. Next, an ice-flow model will be used to estimate the future grounding line at various stages of retreat. Using these results, an iterative process with the ocean-circulation and ice-flow models will be applied to determine melt rates at each stage of grounding line retreat. These results will help assess whether more physically constrained melt-rate estimates substantially alter the hypothesis that unstable collapse of the Amundsen Sea sector of West Antarctica is underway. Further, by multiple simulations with modified open-ocean boundary conditions, this study will provide a better understanding of the sensitivity of melt to future changes in regional forcing. For example, what is the sensitivity of melt to changes in Circumpolar Deep Water temperature and to changes in the thermocline height driven be changes in wind forcing? Finally, several semi-coupled ice-ocean simulations will be used to investigate the influence of the ocean-circulation driven distribution of melt over the next several decades. These simulations will provide a much-improved understanding of the linkages between far-field ocean forcing, cavity circulation and melting, and ice-sheet response. Broader Impacts: Planning within the current large range of uncertainty in future sea level change leads to high social and economic costs for governments and businesses worldwide. Thus, our project to reduce sea-level rise uncertainty has strong societal as well as scientific interest. The findings and methods will be applicable to ice shelf cavities in other parts of Antarctica and northern Greenland, and will set the stage for future studies with fully coupled models as computational resources improve. This interdisciplinary work combines expertise of glaciologists and oceanographers, and will contribute to the education of new researchers in this field, with participation of graduate students and postdocs. Through several outreach activities, team members will help make the public aware of the dramatic changes occurring in Antarctica along with the likely consequences. This proposal does not require fieldwork in the Antarctic. | POLYGON((-104 -73,-102.2 -73,-100.4 -73,-98.6 -73,-96.8 -73,-95 -73,-93.2 -73,-91.4 -73,-89.6 -73,-87.8 -73,-86 -73,-86 -73.8,-86 -74.6,-86 -75.4,-86 -76.2,-86 -77,-86 -77.8,-86 -78.6,-86 -79.4,-86 -80.2,-86 -81,-87.8 -81,-89.6 -81,-91.4 -81,-93.2 -81,-95 -81,-96.8 -81,-98.6 -81,-100.4 -81,-102.2 -81,-104 -81,-104 -80.2,-104 -79.4,-104 -78.6,-104 -77.8,-104 -77,-104 -76.2,-104 -75.4,-104 -74.6,-104 -73.8,-104 -73)) | POINT(-95 -77) | false | false | |||||||||||
NSF-NERC: Thwaites Interdisciplinary Margin Evolution (TIME): The Role of Shear Margin Dynamics in the Future Evolution of the Thwaites Drainage Basin
|
1739027 |
2021-06-24 | Tulaczyk, Slawek | No dataset link provided | This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Collapse of the West Antarctic Ice Sheet (WAIS) could raise the global sea level by about 5 meters (16 feet) and the scientific community considers it the most significant risk for coastal environments and cities. The risk arises from the deep, marine setting of WAIS. Although scientists have been aware of the precarious setting of this ice sheet since the early 1970s, it is only now that the flow of ice in several large drainage basins is undergoing dynamic change consistent with a potentially irreversible disintegration. Understanding WAIS stability and enabling more accurate prediction of sea-level rise through computer simulation are two of the key objectives facing the polar science community today. This project will directly address both objectives by: (1) using state-of-the-art technologies to observe rapidly deforming parts of Thwaites Glacier that may have significant control over the future evolution of WAIS, and (2) using these new observations to improve ice-sheet models used to predict future sea-level rise. This project brings together a multidisciplinary team of UK and US scientists. This international collaboration will result in new understanding of natural processes that may lead to the collapse of the WAIS and will boost infrastructure for research and education by creating a multidisciplinary network of scientists. This team will mentor three postdoctoral researchers, train four Ph.D. students and integrate undergraduate students in this research project. The project will test the overarching hypothesis that shear-margin dynamics may exert powerful control on the future evolution of ice flow in Thwaites Drainage Basin. To test the hypothesis, the team will set up an ice observatory at two sites on the eastern shear margin of Thwaites Glacier. The team argues that weak topographic control makes this shear margin susceptible to outward migration and, possibly, sudden jumps in response to the drawdown of inland ice when the grounding line of Thwaites retreats. The ice observatory is designed to produce new and comprehensive constraints on englacial properties, including ice deformation rates, ice crystal fabric, ice viscosity, ice temperature, ice water content and basal melt rates. The ice observatory will also establish basal conditions, including thickness and porosity of the till layer and the deeper marine sediments, if any. Furthermore, the team will develop new knowledge with an emphasis on physical processes, including direct assessment of the spatial and temporal scales on which these processes operate. Seismic surveys will be carried out in 2D and 3D using wireless geophones. A network of broadband seismometers will identify icequakes produced by crevassing and basal sliding. Autonomous radar systems with phased arrays will produce sequential images of rapidly deforming internal layers in 3D while potentially also revealing the geometry of a basal water system. Datasets will be incorporated into numerical models developed on different spatial scales. One will focus specifically on shear-margin dynamics, the other on how shear-margin dynamics can influence ice flow in the whole drainage basin. Upon completion, the project aims to have confirmed whether the eastern shear margin of Thwaites Glacier can migrate rapidly, as hypothesized, and if so what the impacts will be in terms of sea-level rise in this century and beyond. | POLYGON((-125 -73,-122.1 -73,-119.2 -73,-116.3 -73,-113.4 -73,-110.5 -73,-107.6 -73,-104.7 -73,-101.8 -73,-98.9 -73,-96 -73,-96 -73.7,-96 -74.4,-96 -75.1,-96 -75.8,-96 -76.5,-96 -77.2,-96 -77.9,-96 -78.6,-96 -79.3,-96 -80,-98.9 -80,-101.8 -80,-104.7 -80,-107.6 -80,-110.5 -80,-113.4 -80,-116.3 -80,-119.2 -80,-122.1 -80,-125 -80,-125 -79.3,-125 -78.6,-125 -77.9,-125 -77.2,-125 -76.5,-125 -75.8,-125 -75.1,-125 -74.4,-125 -73.7,-125 -73)) | POINT(-110.5 -76.5) | false | false | |||||||||||
NSFGEO-NERC: Collaborative Research: Two-Phase Dynamics of Temperate Ice
|
1643120 |
2021-06-23 | Iverson, Neal; Zoet, Lucas | This award supports a project to study the effect of liquid, intercrystalline water on the flow resistance of ice and the mobility of this water within ice. Water plays a central role in the flow of ice streams. It lubricates their bases and softens their margins, where flow speeds abruptly transition from rapid to slow. Within ice stream margins some ice is "temperate,” meaning that it is at its pressure-melting temperature with relatively thick water films at grain boundaries that significantly soften the ice. The amount of water in ice depends sensitively on its permeability, values of which are too poorly known to estimate the water contents of ice-stream shear margins or associated ice viscosities. This award stems from the NSF/GEO-UK NERC lead agency opportunity (NSF 14-118) and is a collaboration between Iowa State University and Oxford University in the United Kingdom. The experimental part of the project is executed at Iowa State University and is the focus herein because it has been supported by NSF. Two sets of experiments are conducted. In one set, a large ring-shear device is used to shear ice in confined compression and at its melting temperature to study the sensitivity of ice viscosity to water content. Ice is sheared at stresses and strain rates comparable to those of ice-stream margins, and water content is varied through twice the range explored in the only previous set of experiments that investigated ice softening by water. The second set of experiments required the design, fabrication, and testing of a laboratory ice permeameter that allows the permeability of temperate ice to be measured. Experiments are conducted to study the dependence of ice permeability on ice grain size and water content--the two dependencies required to model grain-scale water flow through temperate ice. | None | None | false | false | ||||||||||||
Collaborative Research: Dynamic Response of the Ross Ice Shelf to Wave-induced Vibrations
|
1246151 1246416 |
2021-04-15 | Bromirski, Peter; Gerstoft, Peter; Stephen, Ralph | This award supports a project intended to discover, through field observations and numerical simulations, how ocean wave-induced vibrations on ice shelves in general, and the Ross Ice Shelf (RIS), in particular, can be used (1) to infer spatial and temporal variability of ice shelf mechanical properties, (2) to infer bulk elastic properties from signal propagation characteristics, and (3) to determine whether the RIS response to infragravity (IG) wave forcing observed distant from the front propagates as stress waves from the front or is "locally" generated by IG wave energy penetrating the RIS cavity. The intellectual merit of the work is that ocean gravity waves are dynamic elements of the global ocean environment, affected by ocean warming and changes in ocean and atmospheric circulation patterns. Their evolution may thus drive changes in ice-shelf stability by both mechanical interactions, and potentially increased basal melting, which in turn feed back on sea level rise. Gravity wave-induced signal propagation across ice shelves depends on ice shelf and sub-shelf water cavity geometry (e.g. structure, thickness, crevasse density and orientation), as well as ice shelf physical properties. Emphasis will be placed on observation and modeling of the RIS response to IG wave forcing at periods from 75 to 300 s. Because IG waves are not appreciably damped by sea ice, seasonal monitoring will give insights into the year-round RIS response to this oceanographic forcing. The 3-year project will involve a 24-month period of continuous data collection spanning two annual cycles on the RIS. RIS ice-front array coverage overlaps with a synergistic Ross Sea Mantle Structure (RSMS) study, giving an expanded array beneficial for IG wave localization. The ice-shelf deployment will consist of sixteen stations equipped with broadband seismometers and barometers. Three seismic stations near the RIS front will provide reference response/forcing functions, and measure the variability of the response across the front. A linear seismic array orthogonal to the front will consist of three stations in-line with three RSMS stations. Passive seismic array monitoring will be used to determine the spatial and temporal distribution of ocean wave-induced signal sources along the front of the RIS and estimate ice shelf structure, with the high-density array used to monitor and localize fracture (icequake) activity. The broader impacts include providing baseline measurements to enable detection of ice-shelf changes over coming decades which will help scientists and policy-makers respond to the socio-environmental challenges of climate change and sea-level rise. A postdoctoral scholar in interdisciplinary Earth science will be involved throughout the course of the research. Students at Cuyamaca Community College, San Diego County, will develop and manage a web site for the project to be used as a teaching tool for earth science and oceanography classes, with development of an associated web site on waves for middle school students. Understanding and being able to anticipate changes in the glaciological regime of the Ross Ice Shelf (RIS) and West Antarctic Ice Sheet (WAIS) are key to improving sea level rise projections due to ongoing ice mass loss in West Antarctica. The fate of the WAIS is a first-order climate change and global societal issue for this century and beyond that affects coastal communities and coastal infrastructure globally. Ice shelf--ocean interactions include impacts from tsunami, ocean swell (10-30s period), and very long period ocean waves that impact ice shelves and produce vibrations that induce a variety of seismic signals detected by seismometers buried in the ice shelf surface layer, called firn. To study the wave-induced vibrations in the RIS, an extensive seismic array was deployed from Nov. 2014 to Nov. 2016. This unique seismometer array deployment on an ice shelf made continuous observations of the response of the RIS to ocean wave impacts from ocean swell and very long period waves. An extensive description of the project motivation and background (including photos and videos of the deployment operations), and list of published studies of analyses of the seismic data collected by this project, are available at the project website https://iceshelfvibes.ucsd.edu. Two types of seismic signals detected by the seismic array are most prevalent: flexural gravity waves (plate waves) and icequakes (signals analogous to those from earthquakes but from fracturing of the ice). Long period ocean waves flex the ice shelf at the same period as the ocean waves, with wave energy at periods greater than ocean swell more efficient at coupling energy into flexing the ice shelf. Termed flexural gravity waves or plate waves (Chen et al., 2018), their wave-induced vibrations can reach 100’s of km from the ice edge where they are excited, with long period wave energy propagating in the water layer below the shelf coupled with the ice shelf flexure. Flexural gravity waves at very long periods (> 300 s period), such as from tsunami impacts (Bromirski et al., 2017), can readily reach grounding zones and may play a role in long-term grounding zone evolution. Swell-induced icequake activity was found to be most prevalent at the shelf front during the austral summer (January – March) when seasonal sea ice is absent and the associated damping of swell by sea ice is minimal (Chen et al., 2019). In addition to the seismic array, a 14 station GPS (global positioning system) array was installed during seismic data retrieval and station servicing operations in October-November 2015. The GPS stations, co-located with seismic stations, extended from the shelf front southward to about 415 km at interior station RS18. Due to logistical constraints associated with battery weight during installation, only one station (at DR10) operated year-round. The GPS data collected give a detailed record of changes in iceflow velocity that are in close agreement with the increasing velocity estimates approaching the shelf front from satellite observations. Importantly, the year-round data at DR10 show an unprecedented seasonal cycle of changes in iceflow velocity, with a speed-up in northward (seaward) ice flow during Jan.-May and then a velocity decrease from June-Sep. (returning to the long-term mean flow velocity). This annual ice flow velocity change cycle has been attributed in part to seasonal changes in ice shelf mass (thinning, reducing buttressing) due to melting at the RIS basal (bottom) surface from intrusion of warmer ocean water (Klein et al., 2020). | POLYGON((-180 -77,-179.5 -77,-179 -77,-178.5 -77,-178 -77,-177.5 -77,-177 -77,-176.5 -77,-176 -77,-175.5 -77,-175 -77,-175 -77.4,-175 -77.8,-175 -78.2,-175 -78.6,-175 -79,-175 -79.4,-175 -79.8,-175 -80.2,-175 -80.6,-175 -81,-175.5 -81,-176 -81,-176.5 -81,-177 -81,-177.5 -81,-178 -81,-178.5 -81,-179 -81,-179.5 -81,180 -81,179 -81,178 -81,177 -81,176 -81,175 -81,174 -81,173 -81,172 -81,171 -81,170 -81,170 -80.6,170 -80.2,170 -79.8,170 -79.4,170 -79,170 -78.6,170 -78.2,170 -77.8,170 -77.4,170 -77,171 -77,172 -77,173 -77,174 -77,175 -77,176 -77,177 -77,178 -77,179 -77,-180 -77)) | POINT(177.5 -79) | false | false | ||||||||||||
Collaborative Research: Computational Methods Supporting Joint Seismic and Radar Inversion for Ice Fabric and Temperature in Streaming Flow
|
1643301 1643353 |
2021-02-17 | Christianson, Knut; Gerbi, Christopher; Campbell, Seth; Vel, Senthil |
|
This award supports a project to develop software that will allow researchers considering seismic or radar field surveys to test, ahead of time, whether the data they plan to collect will have sufficient resolution to measure the natural variations in the mechanical properties of ice, which determine the response of flowing ice to changing climatic conditions. The mechanical properties of ice depend largely on the temperature and the orientation of the crystals that make up the ice. The most accurate method for measuring ice crystal orientation and temperature is through drilling and direct analysis of an ice core. However, this method is very costly, time-consuming, and limited in spatial coverage. Geophysical techniques, such as seismic and radar, can cover much more area, but we have little knowledge about the practical limitations of these techniques as they relate to calculating mechanical properties. This project addresses that knowledge gap through construction of a computational toolbox that will allow accurate assessment of the ability of geophysical surveys to image crystal orientation and ice temperature. Researchers can then use these tools to adjust the field survey plans to maximize the return on investment. By working to improve the efficiency and effectiveness of future geophysical work related to glacial flow, this proposal will improve scientists? ability to quantify sea-level variations within the larger context of climate change. The project includes building new user-friendly, publicly accessible software and instructional modules. The work will provide training for graduate and undergraduate students, who will play a role in research and develop instructional materials. Ice viscosity, the resistance of ice to flow, exerts significant control over ice velocity. Therefore, mapping ice viscosity is important for understanding the current and future behavior of glaciers and ice sheets. To do so, scientists must determine the temperature and crystal orientation fabric throughout the ice. Seismic and radar techniques can survey large areas quickly, and thus are promising, yet not fully tested, methods to efficiently measure the thermal and mechanical structure of flowing ice. As part of this project, scientists will develop and use a computational framework to quantify the degree to which seismic and radar techniques can resolve the crystal orientation fabric and temperature of streaming ice, and then test how sensitive ice flow is to the attendant uncertainty. To meet these goals, a numerical toolbox will be built which will allow the glacier/ice stream geometry and physical properties (temperature, crystal orientation fabric, density and acidity) to be varied. The toolbox will be capable of both creating synthetic radar and seismic profiles through forward modeling and inverting synthetic profiles to allow evaluation of how well geophysical techniques can image the original thermal and mechanical structure. These simulated radar and seismic data will allow scientists to better quantify the influence of the variability in mechanical properties of the ice on flow velocities and patterns. The results of this work will guide planning for future field campaigns, making them more effective and efficient. This project does not require fieldwork in the Antarctic. | None | None | false | false | |||||||||||
RAPID Proposal: Constraining kinematics of the Whillans/Mercer Ice Stream Confluence
|
1842021 |
2020-12-14 | Campbell, Seth; Koons, Peter |
|
The Siple Coast in West Antarctica has undergone significant glacier changes over the last millenium. Several ice streams--rapidly moving streams of ice bordered by slow-moving ice--exist in this region that feeds into the Ross Ice Shelf. A long-term slowdown of Whillans Ice Stream appears to be occurring, and this is affecting the zone between the Whillans and Mercer Ice Streams. However, the consistency of this slowdown and resulting changes to the shear margin between the two ice streams are unknown. Shear zone stability represents a potentially critical control on mass balance of ice sheets, especially in regions of fast ice flow where basal shear stress is minimal. This project is therefore focused on understanding the spatial and temporal change of ice flow kinematics, shear margin structure, and shear margin location between Whillans and Mercer Ice Streams. A collateral benefit of and driver for this as a RAPID project is to test a method for assessing where crevassing will develop in this zone of steep velocity gradients. Such a method may benefit not only near-term field-project planning in the 2018-19 field season, but also planning for future fieldwork and traverses.<br/><br/>The team will use velocity estimates derived from available remote sensing datasets to determine transient velocity patterns and shifts in the shear-zone location over the last 20 years. This velocity time series will be incorporated into a large-scale ice-sheet model to estimate ice-sheet susceptibility to changing boundary conditions over the next century based on likely regional ice-flux scenarios. This approach is an extension of recent work conducted by the team that shows promise for predicting areas of changing high strain rates indicative of an active glacier shear margin. The ultimate objectives are to characterize the flow field of merging ice streams over time and investigate lateral boundary migration. This will provide a better understanding of shear-margin control on ice-shelf and up-glacier stability.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-168 -82,-162.3 -82,-156.6 -82,-150.9 -82,-145.2 -82,-139.5 -82,-133.8 -82,-128.1 -82,-122.4 -82,-116.7 -82,-111 -82,-111 -82.5,-111 -83,-111 -83.5,-111 -84,-111 -84.5,-111 -85,-111 -85.5,-111 -86,-111 -86.5,-111 -87,-116.7 -87,-122.4 -87,-128.1 -87,-133.8 -87,-139.5 -87,-145.2 -87,-150.9 -87,-156.6 -87,-162.3 -87,-168 -87,-168 -86.5,-168 -86,-168 -85.5,-168 -85,-168 -84.5,-168 -84,-168 -83.5,-168 -83,-168 -82.5,-168 -82)) | POINT(-139.5 -84.5) | false | false | |||||||||||
NSF-NERC The Future of Thwaites Glacier and its Contribution to Sea-level Rise Science Coordination Office
|
1738913 |
2020-09-09 | Scambos, Ted; Vaughan, David G. |
|
This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. The Science Coordination Office will facilitate planning and coordination of the science and broader impacts of several international research projects studying Thwaites Glacier--one of the largest glaciers in Antarctica. The glacier is located on the Pacific coast of the Antarctic continent. It is flowing almost twice as fast now as in the 1970s, and is one of the largest likely contributors to sea-level rise over the coming decades to centuries. Many of the factors that will affect the speed and retreat of Thwaites Glacier will be addressed by the set of projects funded by the Thwaites initiative. The Science Coordination Office comprises a US-UK science and communications team that will work with each project's scientists and students, logistics planners, and NSF and NERC to ensure the overall success of the project. The Office will maintain an informative website, and will produce content to explain the activities of the scientists and highlight the results of the work. <br/><br/>The role of the Science Coordination Office will be to enhance integration and coordination among the science projects selected for the joint NSF-NERC Thwaites initiative to achieve maximum collective scientific and societal impact. The Office will facilitate scientific and logistical planning; facilitate data management, sharing, and discovery; and facilitate and support web content, outreach, and education for this high-profile research endeavor. The Office's role will be key to enabling the program to achieve its scientific goals and for the program to be broadly recognized and valued by scientists, the public, and policymakers.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-118 -70,-116 -70,-114 -70,-112 -70,-110 -70,-108 -70,-106 -70,-104 -70,-102 -70,-100 -70,-98 -70,-98 -71,-98 -72,-98 -73,-98 -74,-98 -75,-98 -76,-98 -77,-98 -78,-98 -79,-98 -80,-100 -80,-102 -80,-104 -80,-106 -80,-108 -80,-110 -80,-112 -80,-114 -80,-116 -80,-118 -80,-118 -79,-118 -78,-118 -77,-118 -76,-118 -75,-118 -74,-118 -73,-118 -72,-118 -71,-118 -70)) | POINT(-108 -75) | false | false | |||||||||||
Ocean Tides around Antarctica and in the Southern Ocean
|
0125602 0125252 |
2020-07-07 | Howard, Susan L.; Padman, Laurence; Erofeeva, Svetlana; King, Matt | The ocean tide is a large component of total variability of ocean surface height and currents in the seas surrounding Antarctica, including under the floating ice shelves. Maximum tidal height range exceeds 7 m (near the grounding line of Rutford Ice Stream) and maximum tidal currents exceed 1 m/s (near the shelf break in the northwest Ross Sea). Tides contribute to several important climate and ecosystems processes including: ocean mixing, production of dense bottom water, flow of warm Circumpolar Deep Water onto the continental shelves, melting at the bases of ice shelves, fracturing of the ice sheet near a glacier or ice stream’s grounding line, production and decay of sea ice, and sediment resuspension. Tide heights and, in particular, currents can change as the ocean background state changes, and as the geometry of the coastal margins of the Antarctic Ice Sheet varies through ice shelf thickness changes and ice-front and grounding-line advances or retreats. For satellite-based studies of ocean surface height and ice shelf thickness changes, tide heights are a source of substantial noise that must be removed. Similarly, tidal currents can also be a substantial noise signal when trying to estimate mean ocean currents from short-term measurements such as from acoustic Doppler current profilers mounted on ships and CTD rosettes. Therefore, tide models play critical roles in understanding current and future ocean and ice states, and as a method for removing tides in various measurements. A paper in Reviews of Geophysics (Padman, Siegfried and Fricker, 2018, see list of project-related publications below) provides a detailed review of tides and tidal processes around Antarctica. This project provides a gateway to tide models and a database of tide height coefficients at the Antarctic Data Center, and links to toolboxes to work with these models and data. | POLYGON((-180 -40.231,-144 -40.231,-108 -40.231,-72 -40.231,-36 -40.231,0 -40.231,36 -40.231,72 -40.231,108 -40.231,144 -40.231,180 -40.231,180 -45.2079,180 -50.1848,180 -55.1617,180 -60.1386,180 -65.1155,180 -70.0924,180 -75.0693,180 -80.0462,180 -85.0231,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.0231,-180 -80.0462,-180 -75.0693,-180 -70.0924,-180 -65.1155,-180 -60.1386,-180 -55.1617,-180 -50.1848,-180 -45.2079,-180 -40.231)) | POINT(0 -89.999) | false | false | ||||||||||||
Collaborative Research: VeLveT Ice - eVoLution of Fabric and Texture in Ice at WAIS Divide, West Antarctica
|
1142167 1142035 |
2020-05-15 | Pettit, Erin; Obbard, Rachel |
|
This award supports a project to develop a better understanding of the relation between ice microstructure, impurities, and ice flow and their connection to climate history for the West Antarctic Ice Sheet (WAIS) ice core site. This work builds on several ongoing studies at Siple Dome in West Antarctica and Dome C in East Antarctica. It is well known that the microstructure of ice evolves with depth and time in an ice sheet. This evolution of microstructure depends on the ice flow field, temperature, and impurity content. The ice flow field, in turn, depends on microstructure, leading to feedbacks that create layered variation in microstructure that relates to climate and flow history. The research proposed here focuses on developing a better understanding of: 1) how ice microstructure evolves with time and stress in an ice sheet and how that relates to impurity content, temperature, and strain rate; 2) how variations in ice microstructure and impurity content affect ice flow patterns near ice divides (on both small (1cm to 1m) and large (1m to 100km) scales); and 3) in what ways is the spatial variability of ice microstructure and its effect on ice flow important for interpretation of climate history in the WAIS Divide ice core. The study will integrate existing ice core and borehole data with a detailed study of ice microstructure using Electron Backscatter Diffraction (EBSD) techniques and measurements of borehole deformation through time using Acoustic Televiewers. This will be the first study to combine these two novel techniques for studying the relation between microstructure and deformation and it will build on other data being collected as part of other WAIS Divide borehole logging projects (e.g. sonic velocity, optical dust logging, temperature and other measurements on the ice core including fabric measurements from thin section analyses as well as studies of ice chemistry and stable isotopes. The intellectual merit of the work is that it will improve interpretation of ice core data (especially information on past accumulation) and overall understanding of ice flow. The broader impacts are that the work will ultimately contribute to a better interpretation of ice core records for both paleoclimate studies and for ice flow history, both of which connect to the broader questions of the role of ice in the climate system. The work will also advance the careers of two early-career female scientists, including one with a hearing impairment disability. This project will support a PhD student at the UAF and provide research and field experience for two or three undergraduates at Dartmouth. The PIs plan to include a teacher on their field team and collaborate with UAF's "From STEM to STEAM" toward enhancing the connection between art and science. | POLYGON((-112.3 -79.2,-112.2 -79.2,-112.1 -79.2,-112 -79.2,-111.9 -79.2,-111.8 -79.2,-111.7 -79.2,-111.6 -79.2,-111.5 -79.2,-111.4 -79.2,-111.3 -79.2,-111.3 -79.23,-111.3 -79.26,-111.3 -79.29,-111.3 -79.32,-111.3 -79.35,-111.3 -79.38,-111.3 -79.41,-111.3 -79.44,-111.3 -79.47,-111.3 -79.5,-111.4 -79.5,-111.5 -79.5,-111.6 -79.5,-111.7 -79.5,-111.8 -79.5,-111.9 -79.5,-112 -79.5,-112.1 -79.5,-112.2 -79.5,-112.3 -79.5,-112.3 -79.47,-112.3 -79.44,-112.3 -79.41,-112.3 -79.38,-112.3 -79.35,-112.3 -79.32,-112.3 -79.29,-112.3 -79.26,-112.3 -79.23,-112.3 -79.2)) | POINT(-111.8 -79.35) | false | false | |||||||||||
Collaborative Research: Evaluating Retreat in the Amundsen Sea Embayment: Assessing Controlling Processes, Uncertainties, and Projections
|
1443190 |
2019-09-16 | Pollard, David; Parizek, Byron R. | No dataset link provided | Accurate reconstructions and predictions of glacier movement on timescales of human interest require a better understanding of available observations and the ability to model the key processes that govern ice flow. The fact that many of these processes are interconnected, are loosely constrained by data, and involve not only the ice, but also the atmosphere, ocean, and solid Earth, makes this a challenging endeavor, but one that is essential for Earth-system modeling and the resulting climate and sea-level forecasts that are provided to policymakers worldwide. Based on the amount of ice present in the West Antarctic Ice Sheet and its ability to flow and/or melt into the ocean, its complete collapse would result in a global sea-level rise of 3.3 to 5 meters, making its stability and rate of change scientific questions of global societal significance. Whether or not a collapse eventually occurs, a better understanding of the potential West Antarctic contribution to sea level over the coming decades and centuries is necessary when considering the fate of coastal population centers. Recent observations of the Amundsen Sea Embayment of West Antarctica indicate that it is experiencing faster mass loss than any other region of the continent. At present, the long-term stability of this embayment is unknown, with both theory and observations suggesting that collapse is possible. This study is focused on this critical region as well as processes governing changes in outlet glacier flow. To this end, we will test an ice-sheet model against existing observations and improve treatment of key processes within ice sheet models. This is a four-year (one year of no-cost extension) modeling study using the open-source Ice Sheet System Model in coordination with other models to help improve projections of future sea-level change. Overall project goals, which are distributed across the collaborating institutions, are to: 1. hindcast the past two-to-three decades of evolution of the Amundsen Sea Embayment sector to determine controlling processes, incorporate and test parameterizations, and assess and improve model initialization, spinup, and performance; 2. utilize observations from glacial settings and efficient process-oriented models to develop a better understanding of key processes associated with outlet glacier dynamics and to create numerically efficient parameterizations for these often sub-grid-scale processes; 3. project a range of evolutions of the Amundsen Sea Embayment sector in the next several centuries given various forcings and inclusion or omission of physical processes in the model. | POLYGON((-130 -73,-125.5 -73,-121 -73,-116.5 -73,-112 -73,-107.5 -73,-103 -73,-98.5 -73,-94 -73,-89.5 -73,-85 -73,-85 -73.9,-85 -74.8,-85 -75.7,-85 -76.6,-85 -77.5,-85 -78.4,-85 -79.3,-85 -80.2,-85 -81.1,-85 -82,-89.5 -82,-94 -82,-98.5 -82,-103 -82,-107.5 -82,-112 -82,-116.5 -82,-121 -82,-125.5 -82,-130 -82,-130 -81.1,-130 -80.2,-130 -79.3,-130 -78.4,-130 -77.5,-130 -76.6,-130 -75.7,-130 -74.8,-130 -73.9,-130 -73)) | POINT(-107.5 -77.5) | false | false |