{"dp_type": "Project", "free_text": "MACROALGAE (SEAWEEDS)"}
[{"awards": "2301026 Amsler, Charles", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Thu, 16 May 2024 00:00:00 GMT", "description": "General abstract\u003cbr/\u003e\u003cbr/\u003eMost organisms alternate between life stages that vary in the number and arrangement of their chromosomes, in the number of cells they possess, and in the environmental conditions in which they are best adapted to live. Much of what we understand about these alternations comes from organisms like animals and land plants in which one of the two stages dominates the life cycle with the other small and short-lived. However, across the tree of life there are countless examples of organisms in which both stages are of long duration, multicellular, or both. These life cycles challenge common ideas used to explain ecological and evolutionary patterns we see in nature. Macroalgae (seaweeds) display a wide range of life cycle types and consequently are excellent models to test and expand ideas about how life cycles evolve. Undersea forests of seaweeds with a variety of life cycle types dominate the shallow waters of the western Antarctic Peninsula where they are ecologically important and, for most of the species, at the southern end of their geographic range. Using existing samples from previous expeditions to Antarctica, the investigators are uniquely positioned to test and expand knowledge of life cycle evolution and how this intersects with reproductive mode variation. This project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the public. The project will support a postdoctoral scholar as well as a faculty member new to US Antarctic research. The investigators will take advantage of an existing program to include high school or undergraduate students in the work which will also expand mentorship experience for the postdoc. All team members will contribute by writing for blogs produced by professional societies for the public. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eTechnical abstract\u003cbr/\u003e\u003cbr/\u003eExisting macroalgal taxa samples from across a latitudinal gradient in the western Antarctic Peninsula will be used to explore patterns of genetic diversity from the center to the southern latitudinal limits of their range. Not only will genetic diversity be documented for an understudied and critical group of Antarctic organisms, but how it changes with latitude, compounded by high levels of endemism, will be explored. This will be accomplished by (i) characterization of latitudinal gradients in genetic diversity of many species and (ii) determination of the reproductive system of five focal foundation species. At present, there are few genetic data for macroalgae, dominant primary producers in coastal ecosystems around the world. This gap is particularly acute along Antarctic coastlines that are experiencing rapid climate change. Furthermore, Antarctica is isolated by the Southern Ocean, decreasing the likelihood of regular migration from other land masses. Latitudinal reproductive system patterns are predicted to be largely driven by recolonization events that increase with latitude due to changes in iceberg scour and sea ice coverage. Thus, Antarctica is the best place to understand what processes underlie reproductive mode variation in populations that are isolated, including many endemic taxa, while simultaneously extending our knowledge about how marginal environments converge with complex life cycles.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "MACROALGAE (SEAWEEDS); Antarctic Peninsula", "locations": "Antarctic Peninsula", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Amsler, Charles; Krueger-Hadfield, Stacy", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "Historical and Contemporary Drivers of Macroalgal Reproductive System Variation along the Western Antarctic Peninsula", "uid": "p0010460", "west": null}, {"awards": "2037598 Alberto, Filipe; 2037670 Heine, John", "bounds_geometry": "POLYGON((162 -76,162.8 -76,163.6 -76,164.4 -76,165.2 -76,166 -76,166.8 -76,167.6 -76,168.4 -76,169.2 -76,170 -76,170 -76.3,170 -76.6,170 -76.9,170 -77.2,170 -77.5,170 -77.8,170 -78.1,170 -78.4,170 -78.7,170 -79,169.2 -79,168.4 -79,167.6 -79,166.8 -79,166 -79,165.2 -79,164.4 -79,163.6 -79,162.8 -79,162 -79,162 -78.7,162 -78.4,162 -78.1,162 -77.8,162 -77.5,162 -77.2,162 -76.9,162 -76.6,162 -76.3,162 -76))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 23 May 2022 00:00:00 GMT", "description": "Collaborative Research: Biogeography, population genetics, and ecology of two common species of fleshy red algae in McMurdo Sound\r\n\r\nClimate change is predicted to increase the period of fast ice-free conditions in polar habitats. As early colonizers, macroalgae may take advantage of increased light availability to outcompete invertebrates (e.g., sponges, bryozoans, tunicates, and polychaetes) for space in shallow subtidal hardbottom habitats. The project will compare patterns in vegetative and reproductive characteristics of two macroalgal species Phyllophora antarctica and Iridaea cordata collected from the 1980s to present-day. Populations will be collected from coastal and offshore sites in shallow (3\u20134 m) and greater (approx.12 m) depths at Cape Royds, Cape Evans, Little Razorback Islands, Turtle Rock, Arrival Heights, Granite Harbor, and Dellbridge Seamount. Genetic diversity of the two algal species will be measured and is expected to be relatively low due to limited dispersal in McMurdo Sound. No previous research has investigated the potential effects of climate, in particular reductions in annual sea ice cover and resulting increase in light intensity and duration, on macroalgal communities in McMurdo Sound. For the first time, photogrammetry will be used to collect community-level data on the newly discovered offshore Dellbridge Seamount and 3D visualization from the video footage will be shared with web-based interactive applications to engage and educate the public in subtidal polar ecology and the importance of Antarctic science to their lives.\r\n", "east": 170.0, "geometry": "POINT(166 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; McMurdo Sound; USAP-DC; Amd/Us; COMMUNITY DYNAMICS; FIELD INVESTIGATION; MACROALGAE (SEAWEEDS); USA/NSF", "locations": "McMurdo Sound", "north": -76.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Heine, John; Goldberg, Nisse; Alberto, Filipe", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": -79.0, "title": "Collaborative Research: Biogeography, Population Genetics, and Ecology of two Common Species of Fleshy Red Algae in McMurdo Sound", "uid": "p0010322", "west": 162.0}, {"awards": "1848887 McClintock, James", "bounds_geometry": "POINT(-64.0527 -64.77423)", "dataset_titles": "2020 and 2023 Underwater video transect community analysis data; 2020 daily seawater carbonate chemistry; 2023 daily seawater carbonate chemistry; Amphipod counts from 2020 ocean acidification experiment; Feeding of Gondogeneia antarctica maintained under ambient and low pH treatments; Palatability of Desmarestia menziesii extracts from ambient and low pH treatments; Palatability of Palmaria decipiens thallus from ambient and low pH treatments; Underwater transect videos used for 2020 and 2023 community analyses", "datasets": [{"dataset_uid": "601793", "doi": "10.15784/601793", "keywords": "Antarctica; Cryosphere; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Feeding of Gondogeneia antarctica maintained under ambient and low pH treatments", "url": "https://www.usap-dc.org/view/dataset/601793"}, {"dataset_uid": "601700", "doi": "10.15784/601700", "keywords": "Antarctica; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "2020 daily seawater carbonate chemistry", "url": "https://www.usap-dc.org/view/dataset/601700"}, {"dataset_uid": "601701", "doi": "10.15784/601701", "keywords": "Antarctica; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "2023 daily seawater carbonate chemistry", "url": "https://www.usap-dc.org/view/dataset/601701"}, {"dataset_uid": "601702", "doi": "10.15784/601702", "keywords": "Antarctica; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Amphipod counts from 2020 ocean acidification experiment", "url": "https://www.usap-dc.org/view/dataset/601702"}, {"dataset_uid": "601787", "doi": "10.15784/601787", "keywords": "Antarctica; Antarctic Peninsula; Biota; Cryosphere; Species Abundance; Video Transects", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "2020 and 2023 Underwater video transect community analysis data", "url": "https://www.usap-dc.org/view/dataset/601787"}, {"dataset_uid": "601796", "doi": "10.15784/601796", "keywords": "Antarctica; Biota; Cryosphere; Oceans; Southern Ocean; Video Transects", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Underwater transect videos used for 2020 and 2023 community analyses", "url": "https://www.usap-dc.org/view/dataset/601796"}, {"dataset_uid": "601791", "doi": "10.15784/601791", "keywords": "Antarctica; Cryosphere; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Palatability of Desmarestia menziesii extracts from ambient and low pH treatments", "url": "https://www.usap-dc.org/view/dataset/601791"}, {"dataset_uid": "601792", "doi": "10.15784/601792", "keywords": "Antarctica; Cryosphere; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Palatability of Palmaria decipiens thallus from ambient and low pH treatments", "url": "https://www.usap-dc.org/view/dataset/601792"}], "date_created": "Mon, 21 Jun 2021 00:00:00 GMT", "description": "Undersea forests of seaweeds dominate the shallow waters of the central and northern coast of the western Antarctic Peninsula and provide critical structural habitat and carbon resources (food) for a host of marine organisms. Most of the seaweeds are chemically defended against herbivores yet support very high densities of herbivorous shrimp-like grazers (crustaceans, primarily amphipods) which greatly benefit their hosts by consuming filamentous and microscopic algae that otherwise overgrow the seaweeds. The amphipods benefit from the association with the chemically defended seaweeds by gaining an associational refuge from fish predation. The project builds on recent work that has demonstrated that several species of amphipods that are key members of crustacean assemblages associated with the seaweeds suffer significant mortality when chronically exposed to increased seawater acidity (reduced pH) and elevated temperatures representative of near-future oceans. By simulating these environmental conditions in the laboratory at Palmer Station, Antarctica, the investigators will test the overall hypothesis that ocean acidification will play a significant role in structuring crustacean assemblages associated with seaweeds. Broader impacts include expanding fundamental knowledge of the impacts of global climate change by focusing on a geographic region of the earth uniquely susceptible to climate change. This project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. This includes training graduate students and early career scientists with an emphasis on diversity, presentations to K-12 groups and the general public, and a variety of social media-based outreach programs.\r\n\r\nThe project will compare population and assemblage-wide impacts of natural (ambient) and carbon dioxide enriched seawater on assemblages of seaweed-associated crustacean grazers. Based on prior results, it is likely that some species will be relative \"winners\" and some will be relative \"losers\" under the changed conditions. The project will then aim to carry out measurements of growth, calcification, mineralogy, the incidence of molts, and biochemical and energetic body composition for two key amphipod \"winners\" and two key amphipod \"losers\". These measurements will allow an assessment of what factors drive species-specific enhanced or diminished performance under conditions of ocean acidification and sea surface warming. The project will expand on what little is known about prospective impacts of changing conditions on benthic marine Crustacea, in Antarctica, a taxonomic group that faces the additional physiological stressor of molting. The project is likely to provide additional insight on the indirect regulation of the seaweeds that comprise Antarctic undersea forests that provide key architectural components of the coastal marine ecosystem.", "east": -64.0527, "geometry": "POINT(-64.0527 -64.77423)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; Amd/Us; AMD; COASTAL; BENTHIC; USAP-DC; Palmer Station; ANIMALS/INVERTEBRATES; FIELD INVESTIGATION; MACROALGAE (SEAWEEDS)", "locations": "Palmer Station", "north": -64.77423, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Amsler, Charles; McClintock, James", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.77423, "title": "Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica", "uid": "p0010193", "west": -64.0527}, {"awards": "1744550 Amsler, Charles; 1744570 Galloway, Aaron; 1744602 Iken, Katrin; 1744584 Klein, Andrew", "bounds_geometry": "POLYGON((-70 -61,-69 -61,-68 -61,-67 -61,-66 -61,-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-60 -61,-60 -61.772,-60 -62.544,-60 -63.316,-60 -64.088,-60 -64.86,-60 -65.632,-60 -66.404,-60 -67.176,-60 -67.948,-60 -68.72,-61 -68.72,-62 -68.72,-63 -68.72,-64 -68.72,-65 -68.72,-66 -68.72,-67 -68.72,-68 -68.72,-69 -68.72,-70 -68.72,-70 -67.948,-70 -67.176,-70 -66.404,-70 -65.632,-70 -64.86,-70 -64.088,-70 -63.316,-70 -62.544,-70 -61.772,-70 -61))", "dataset_titles": "Average global horizontal solar irradiance at study sites; Carbon and nitrogen isotope data along a gradient at the Antarctic Peninsula; Chemical composition data for Desmarestia menziesii; Chemical composition data for Himantothallus grandifolius; Chemical composition data for Iridaea ; Chemical composition data for Sarcopeltis antarctica ; Computed fetch for project study sites; Five year mean annual and summer sea ice concentration grids for the Western Antarctic Peninsula from AMSR2, National Ice Center Charts and the Sea Ice Index ; Gridded sea ice concentrations from National Ice Center (NIC) Charts 2014-2019 for Western Antarctic Peninsula ; Initial release of code and data associated with Whippo et al. (2024) Fatty acid profiles and stable isotope composition of Antarctic macroalgae: A baseline for a combined biomarker approach in food web studies.; Landsat Sea Ice/Cloud classifications surrounding project study sites; Latitude and longitude data for project study sites; LMG1904 expedition data; Macroalgal species collected along horizontal transect components ; Modelled Solar Irradiance for Western Antarctic Pennisula; Sea Ice Concentration Timeseries for study sites; Underwater transect videos used for community analyses; Underwater video transect community analysis data; VIIRS KD(490) diffuse attenuation coefficients for study sites", "datasets": [{"dataset_uid": "601643", "doi": "10.15784/601643", "keywords": "Antarctica; Antarctic Peninsula; LMG1904; National Ice Center Charts; R/v Laurence M. Gould; Sea Ice Concentration", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Gridded sea ice concentrations from National Ice Center (NIC) Charts 2014-2019 for Western Antarctic Peninsula ", "url": "https://www.usap-dc.org/view/dataset/601643"}, {"dataset_uid": "200402", "doi": "10.5281/zenodo.10524919", "keywords": null, "people": null, "repository": "Zendo", "science_program": null, "title": "Initial release of code and data associated with Whippo et al. (2024) Fatty acid profiles and stable isotope composition of Antarctic macroalgae: A baseline for a combined biomarker approach in food web studies.", "url": "https://zenodo.org/records/10524920"}, {"dataset_uid": "601651", "doi": "10.15784/601651", "keywords": "Antarctica; Antarctic Peninsula; Biota; GIS; GIS Data; LMG1904; R/v Laurence M. Gould; Solar Radiation", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Modelled Solar Irradiance for Western Antarctic Pennisula", "url": "https://www.usap-dc.org/view/dataset/601651"}, {"dataset_uid": "601640", "doi": "10.15784/601640", "keywords": "Antarctica; Biota; Diffuse Attenuation Coefficient; LMG1904; R/v Laurence M. Gould; Turbidity", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "VIIRS KD(490) diffuse attenuation coefficients for study sites", "url": "https://www.usap-dc.org/view/dataset/601640"}, {"dataset_uid": "601649", "doi": "10.15784/601649", "keywords": "Antarctica; Antarctic Peninsula; LMG1904; National Ice Center Charts; Sea Ice Concentration", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Five year mean annual and summer sea ice concentration grids for the Western Antarctic Peninsula from AMSR2, National Ice Center Charts and the Sea Ice Index ", "url": "https://www.usap-dc.org/view/dataset/601649"}, {"dataset_uid": "601610", "doi": "10.15784/601610", "keywords": "Antarctica; Antarctic Peninsula; Benthic Communities; Biota; Macroalgae; Macroinvertebrates; Oceans; Video Transects", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Underwater transect videos used for community analyses", "url": "https://www.usap-dc.org/view/dataset/601610"}, {"dataset_uid": "200147", "doi": "10.7284/908260", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "LMG1904 expedition data", "url": "https://www.rvdata.us/search/cruise/LMG1904"}, {"dataset_uid": "601641", "doi": "10.15784/601641", "keywords": "Antarctica; Average Global Horizontal Solar Irradiance; Biota; LMG1904; R/v Laurence M. Gould", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Average global horizontal solar irradiance at study sites", "url": "https://www.usap-dc.org/view/dataset/601641"}, {"dataset_uid": "601642", "doi": "10.15784/601642", "keywords": "Antarctica; Antarctic Peninsula; Biota; LMG1904; R/v Laurence M. Gould; Sea Ice Concentration", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Sea Ice Concentration Timeseries for study sites", "url": "https://www.usap-dc.org/view/dataset/601642"}, {"dataset_uid": "601882", "doi": "10.15784/601882", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Macroalgae", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Chemical composition data for Desmarestia menziesii", "url": "https://www.usap-dc.org/view/dataset/601882"}, {"dataset_uid": "601725", "doi": "10.15784/601725", "keywords": "Antarctica; Antarctic Peninsula", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Macroalgal species collected along horizontal transect components ", "url": "https://www.usap-dc.org/view/dataset/601725"}, {"dataset_uid": "601883", "doi": "10.15784/601883", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Macroalgae", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Chemical composition data for Himantothallus grandifolius", "url": "https://www.usap-dc.org/view/dataset/601883"}, {"dataset_uid": "601884", "doi": "10.15784/601884", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Macroalgae", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Chemical composition data for Iridaea ", "url": "https://www.usap-dc.org/view/dataset/601884"}, {"dataset_uid": "601885", "doi": "10.15784/601885", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Macroalgae", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Chemical composition data for Sarcopeltis antarctica ", "url": "https://www.usap-dc.org/view/dataset/601885"}, {"dataset_uid": "601330", "doi": "10.15784/601330", "keywords": "Antarctica; Antarctic Peninsula; Biota; LMG1904; R/v Laurence M. Gould; Sample Location", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Latitude and longitude data for project study sites", "url": "https://www.usap-dc.org/view/dataset/601330"}, {"dataset_uid": "601653", "doi": "10.15784/601653", "keywords": "Antarctica; Antarctic Peninsula; Biota; Carbon; Carbon Isotopes; LMG1904; Nitrogen Isotopes; Oceans", "people": "Iken, Katrin", "repository": "USAP-DC", "science_program": null, "title": "Carbon and nitrogen isotope data along a gradient at the Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601653"}, {"dataset_uid": "601639", "doi": "10.15784/601639", "keywords": "Antarctica; Antarctic Peninsula; Biota; Fetch; LMG1904; R/v Laurence M. Gould", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Computed fetch for project study sites", "url": "https://www.usap-dc.org/view/dataset/601639"}, {"dataset_uid": "601654", "doi": "10.15784/601654", "keywords": "Antarctica; Antarctic Peninsula; GIS; LANDSAT; LMG1904; Remote Sensing; R/v Laurence M. Gould", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Landsat Sea Ice/Cloud classifications surrounding project study sites", "url": "https://www.usap-dc.org/view/dataset/601654"}, {"dataset_uid": "601619", "doi": "10.15784/601619", "keywords": "Antarctica; Antarctic Peninsula; Benthic Communities; Biota; Macroalgae; Macroinvertebrates; Oceans; Video Transects", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Underwater video transect community analysis data", "url": "https://www.usap-dc.org/view/dataset/601619"}], "date_created": "Thu, 04 Jun 2020 00:00:00 GMT", "description": "The western Antarctic Peninsula has become a model for understanding cold water communities and how they may be changing in Antarctica and elsewhere. Brown macroalgae (seaweeds) form extensive undersea forests in the northern portion of this region where they play a key role in providing both physical structure and a food (carbon) source for shallow water communities. Yet between Anvers Island (64 degrees S latitude) and Adelaide Island (67 S latitude) these macroalgae become markedly less abundant and diverse. This is probably because the habitat to the south is covered by more sea ice for a longer period, and the sea ice reduces the amount of light that reaches the algae. The reduced macroalgal cover undoubtedly impacts other organisms in the food web, but the ways in which it alters sea-floor community processes and organization is unknown. This project will quantitatively document the macroalgal communities at multiple sites between Anvers and Adelaide Islands using a combination of SCUBA diving, video surveys, and algal collections. Sea ice cover, light levels, and other environmental parameters on community structure will be modelled to determine which factors have the largest influence. Impacts on community structure, food webs, and carbon flow will be assessed through a mixture of SCUBA diving and video surveys. Broader impacts include the training of graduate students and a postdoctoral researcher, as well as numerous informal public education activities including lectures, presentations to K-12 groups, and a variety of social media-based outreach.\u003cbr/\u003e\u003cbr/\u003eMacroalgal communities are more abundance and diverse to the north along the Western Antarctic Peninsula, perhaps due to the greater light availability that is associated with shorter period of sea-ice cover. This project will determine the causes and community level consequence of this variation in algal community structure. First, satellite data on sea ice extent and water turbidity will be used to select study sites between 64 S and 69 S where the extent of annual sea ice cover is the primary factor influencing subsurface light levels. Then, variations in macroalgal cover across these study sites will be determined by video line-transect surveys conducted by SCUBA divers. The health, growth, and physiological status of species found at the different sites will be determined by quadrat sampling. The relative importance of macroalgal-derived carbon to the common invertebrate consumers in the foodweb will be assessed with stable isotope and fatty acid biomarker techniques. This will reveal how variation in macroalgal abundance and species composition across the sea ice cover gradient impacts sea floor community composition and carbon flow throughout the food web. In combination, this work will facilitate predictions of how the ongoing reductions in extent and duration of sea ice cover that is occurring in the region as a result of global climate change will impact the structure of nearshore benthic communities.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -60.0, "geometry": "POINT(-65 -64.86)", "instruments": null, "is_usap_dc": true, "keywords": "COASTAL; R/V LMG; MACROALGAE (SEAWEEDS); BENTHIC; USAP-DC; Antarctic Peninsula", "locations": "Antarctic Peninsula", "north": -61.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Amsler, Charles; McClintock, James; Iken, Katrin; Galloway, Aaron; Klein, Andrew", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "USAP-DC", "repositories": "R2R; USAP-DC; Zendo", "science_programs": null, "south": -68.72, "title": "Collaborative Research: Sea ice as a driver of Antarctic benthic macroalgal community composition and nearshore trophic connectivity", "uid": "p0010104", "west": -70.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |
---|---|---|---|---|---|---|---|---|---|---|
Historical and Contemporary Drivers of Macroalgal Reproductive System Variation along the Western Antarctic Peninsula
|
2301026 |
2024-05-16 | Amsler, Charles; Krueger-Hadfield, Stacy | No dataset link provided | General abstract<br/><br/>Most organisms alternate between life stages that vary in the number and arrangement of their chromosomes, in the number of cells they possess, and in the environmental conditions in which they are best adapted to live. Much of what we understand about these alternations comes from organisms like animals and land plants in which one of the two stages dominates the life cycle with the other small and short-lived. However, across the tree of life there are countless examples of organisms in which both stages are of long duration, multicellular, or both. These life cycles challenge common ideas used to explain ecological and evolutionary patterns we see in nature. Macroalgae (seaweeds) display a wide range of life cycle types and consequently are excellent models to test and expand ideas about how life cycles evolve. Undersea forests of seaweeds with a variety of life cycle types dominate the shallow waters of the western Antarctic Peninsula where they are ecologically important and, for most of the species, at the southern end of their geographic range. Using existing samples from previous expeditions to Antarctica, the investigators are uniquely positioned to test and expand knowledge of life cycle evolution and how this intersects with reproductive mode variation. This project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the public. The project will support a postdoctoral scholar as well as a faculty member new to US Antarctic research. The investigators will take advantage of an existing program to include high school or undergraduate students in the work which will also expand mentorship experience for the postdoc. All team members will contribute by writing for blogs produced by professional societies for the public. <br/><br/><br/>Technical abstract<br/><br/>Existing macroalgal taxa samples from across a latitudinal gradient in the western Antarctic Peninsula will be used to explore patterns of genetic diversity from the center to the southern latitudinal limits of their range. Not only will genetic diversity be documented for an understudied and critical group of Antarctic organisms, but how it changes with latitude, compounded by high levels of endemism, will be explored. This will be accomplished by (i) characterization of latitudinal gradients in genetic diversity of many species and (ii) determination of the reproductive system of five focal foundation species. At present, there are few genetic data for macroalgae, dominant primary producers in coastal ecosystems around the world. This gap is particularly acute along Antarctic coastlines that are experiencing rapid climate change. Furthermore, Antarctica is isolated by the Southern Ocean, decreasing the likelihood of regular migration from other land masses. Latitudinal reproductive system patterns are predicted to be largely driven by recolonization events that increase with latitude due to changes in iceberg scour and sea ice coverage. Thus, Antarctica is the best place to understand what processes underlie reproductive mode variation in populations that are isolated, including many endemic taxa, while simultaneously extending our knowledge about how marginal environments converge with complex life cycles.<br/><br/>This award reflects NSF''s statutory mission and has been deemed worthy of support through evaluation using the Foundation''s intellectual merit and broader impacts review criteria. | None | None | false | false | |
Collaborative Research: Biogeography, Population Genetics, and Ecology of two Common Species of Fleshy Red Algae in McMurdo Sound
|
2037598 2037670 |
2022-05-23 | Heine, John; Goldberg, Nisse; Alberto, Filipe | No dataset link provided | Collaborative Research: Biogeography, population genetics, and ecology of two common species of fleshy red algae in McMurdo Sound Climate change is predicted to increase the period of fast ice-free conditions in polar habitats. As early colonizers, macroalgae may take advantage of increased light availability to outcompete invertebrates (e.g., sponges, bryozoans, tunicates, and polychaetes) for space in shallow subtidal hardbottom habitats. The project will compare patterns in vegetative and reproductive characteristics of two macroalgal species Phyllophora antarctica and Iridaea cordata collected from the 1980s to present-day. Populations will be collected from coastal and offshore sites in shallow (3–4 m) and greater (approx.12 m) depths at Cape Royds, Cape Evans, Little Razorback Islands, Turtle Rock, Arrival Heights, Granite Harbor, and Dellbridge Seamount. Genetic diversity of the two algal species will be measured and is expected to be relatively low due to limited dispersal in McMurdo Sound. No previous research has investigated the potential effects of climate, in particular reductions in annual sea ice cover and resulting increase in light intensity and duration, on macroalgal communities in McMurdo Sound. For the first time, photogrammetry will be used to collect community-level data on the newly discovered offshore Dellbridge Seamount and 3D visualization from the video footage will be shared with web-based interactive applications to engage and educate the public in subtidal polar ecology and the importance of Antarctic science to their lives. | POLYGON((162 -76,162.8 -76,163.6 -76,164.4 -76,165.2 -76,166 -76,166.8 -76,167.6 -76,168.4 -76,169.2 -76,170 -76,170 -76.3,170 -76.6,170 -76.9,170 -77.2,170 -77.5,170 -77.8,170 -78.1,170 -78.4,170 -78.7,170 -79,169.2 -79,168.4 -79,167.6 -79,166.8 -79,166 -79,165.2 -79,164.4 -79,163.6 -79,162.8 -79,162 -79,162 -78.7,162 -78.4,162 -78.1,162 -77.8,162 -77.5,162 -77.2,162 -76.9,162 -76.6,162 -76.3,162 -76)) | POINT(166 -77.5) | false | false | |
Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica
|
1848887 |
2021-06-21 | Amsler, Charles; McClintock, James | Undersea forests of seaweeds dominate the shallow waters of the central and northern coast of the western Antarctic Peninsula and provide critical structural habitat and carbon resources (food) for a host of marine organisms. Most of the seaweeds are chemically defended against herbivores yet support very high densities of herbivorous shrimp-like grazers (crustaceans, primarily amphipods) which greatly benefit their hosts by consuming filamentous and microscopic algae that otherwise overgrow the seaweeds. The amphipods benefit from the association with the chemically defended seaweeds by gaining an associational refuge from fish predation. The project builds on recent work that has demonstrated that several species of amphipods that are key members of crustacean assemblages associated with the seaweeds suffer significant mortality when chronically exposed to increased seawater acidity (reduced pH) and elevated temperatures representative of near-future oceans. By simulating these environmental conditions in the laboratory at Palmer Station, Antarctica, the investigators will test the overall hypothesis that ocean acidification will play a significant role in structuring crustacean assemblages associated with seaweeds. Broader impacts include expanding fundamental knowledge of the impacts of global climate change by focusing on a geographic region of the earth uniquely susceptible to climate change. This project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. This includes training graduate students and early career scientists with an emphasis on diversity, presentations to K-12 groups and the general public, and a variety of social media-based outreach programs. The project will compare population and assemblage-wide impacts of natural (ambient) and carbon dioxide enriched seawater on assemblages of seaweed-associated crustacean grazers. Based on prior results, it is likely that some species will be relative "winners" and some will be relative "losers" under the changed conditions. The project will then aim to carry out measurements of growth, calcification, mineralogy, the incidence of molts, and biochemical and energetic body composition for two key amphipod "winners" and two key amphipod "losers". These measurements will allow an assessment of what factors drive species-specific enhanced or diminished performance under conditions of ocean acidification and sea surface warming. The project will expand on what little is known about prospective impacts of changing conditions on benthic marine Crustacea, in Antarctica, a taxonomic group that faces the additional physiological stressor of molting. The project is likely to provide additional insight on the indirect regulation of the seaweeds that comprise Antarctic undersea forests that provide key architectural components of the coastal marine ecosystem. | POINT(-64.0527 -64.77423) | POINT(-64.0527 -64.77423) | false | false | ||
Collaborative Research: Sea ice as a driver of Antarctic benthic macroalgal community composition and nearshore trophic connectivity
|
1744550 1744570 1744602 1744584 |
2020-06-04 | Amsler, Charles; McClintock, James; Iken, Katrin; Galloway, Aaron; Klein, Andrew | The western Antarctic Peninsula has become a model for understanding cold water communities and how they may be changing in Antarctica and elsewhere. Brown macroalgae (seaweeds) form extensive undersea forests in the northern portion of this region where they play a key role in providing both physical structure and a food (carbon) source for shallow water communities. Yet between Anvers Island (64 degrees S latitude) and Adelaide Island (67 S latitude) these macroalgae become markedly less abundant and diverse. This is probably because the habitat to the south is covered by more sea ice for a longer period, and the sea ice reduces the amount of light that reaches the algae. The reduced macroalgal cover undoubtedly impacts other organisms in the food web, but the ways in which it alters sea-floor community processes and organization is unknown. This project will quantitatively document the macroalgal communities at multiple sites between Anvers and Adelaide Islands using a combination of SCUBA diving, video surveys, and algal collections. Sea ice cover, light levels, and other environmental parameters on community structure will be modelled to determine which factors have the largest influence. Impacts on community structure, food webs, and carbon flow will be assessed through a mixture of SCUBA diving and video surveys. Broader impacts include the training of graduate students and a postdoctoral researcher, as well as numerous informal public education activities including lectures, presentations to K-12 groups, and a variety of social media-based outreach.<br/><br/>Macroalgal communities are more abundance and diverse to the north along the Western Antarctic Peninsula, perhaps due to the greater light availability that is associated with shorter period of sea-ice cover. This project will determine the causes and community level consequence of this variation in algal community structure. First, satellite data on sea ice extent and water turbidity will be used to select study sites between 64 S and 69 S where the extent of annual sea ice cover is the primary factor influencing subsurface light levels. Then, variations in macroalgal cover across these study sites will be determined by video line-transect surveys conducted by SCUBA divers. The health, growth, and physiological status of species found at the different sites will be determined by quadrat sampling. The relative importance of macroalgal-derived carbon to the common invertebrate consumers in the foodweb will be assessed with stable isotope and fatty acid biomarker techniques. This will reveal how variation in macroalgal abundance and species composition across the sea ice cover gradient impacts sea floor community composition and carbon flow throughout the food web. In combination, this work will facilitate predictions of how the ongoing reductions in extent and duration of sea ice cover that is occurring in the region as a result of global climate change will impact the structure of nearshore benthic communities.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-70 -61,-69 -61,-68 -61,-67 -61,-66 -61,-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-60 -61,-60 -61.772,-60 -62.544,-60 -63.316,-60 -64.088,-60 -64.86,-60 -65.632,-60 -66.404,-60 -67.176,-60 -67.948,-60 -68.72,-61 -68.72,-62 -68.72,-63 -68.72,-64 -68.72,-65 -68.72,-66 -68.72,-67 -68.72,-68 -68.72,-69 -68.72,-70 -68.72,-70 -67.948,-70 -67.176,-70 -66.404,-70 -65.632,-70 -64.86,-70 -64.088,-70 -63.316,-70 -62.544,-70 -61.772,-70 -61)) | POINT(-65 -64.86) | false | false |