{"dp_type": "Project", "free_text": "LGM"}
[{"awards": "0944150 Hall, Brenda", "bounds_geometry": "POLYGON((163.6 -77.5,163.7 -77.5,163.8 -77.5,163.9 -77.5,164 -77.5,164.1 -77.5,164.2 -77.5,164.3 -77.5,164.4 -77.5,164.5 -77.5,164.6 -77.5,164.6 -77.57,164.6 -77.64,164.6 -77.71,164.6 -77.78,164.6 -77.85,164.6 -77.92,164.6 -77.99,164.6 -78.06,164.6 -78.13,164.6 -78.2,164.5 -78.2,164.4 -78.2,164.3 -78.2,164.2 -78.2,164.1 -78.2,164 -78.2,163.9 -78.2,163.8 -78.2,163.7 -78.2,163.6 -78.2,163.6 -78.13,163.6 -78.06,163.6 -77.99,163.6 -77.92,163.6 -77.85,163.6 -77.78,163.6 -77.71,163.6 -77.64,163.6 -77.57,163.6 -77.5))", "dataset_titles": "Marshall Valley Radiocarbon Data; Marshall Valley U-Series Data; Royal Society Range Headland Moraine Belt Radiocarbon Data; Salmon Valley Radiocarbon Data", "datasets": [{"dataset_uid": "601528", "doi": "10.15784/601528", "keywords": "234U/230Th Dating; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Last Glacial Maximum; Marshall Drift; Marshall Valley; MIS 6; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Marshall Valley U-Series Data", "url": "https://www.usap-dc.org/view/dataset/601528"}, {"dataset_uid": "601556", "doi": "10.15784/601556", "keywords": "Antarctica; Last Glacial Maximum; McMurdo Sound; Radiocarbon Dates; Ross Sea Drift; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Salmon Valley Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601556"}, {"dataset_uid": "601555", "doi": "10.15784/601555", "keywords": "Antarctica; Last Glacial Maximum; McMurdo Sound; Radiocarbon Dates; Ross Sea Drift; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Royal Society Range Headland Moraine Belt Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601555"}, {"dataset_uid": "601529", "doi": "10.15784/601529", "keywords": "Algae; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marshall Valley; Radiocarbon; Ross Sea Drift; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Marshall Valley Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601529"}], "date_created": "Thu, 03 Mar 2022 00:00:00 GMT", "description": "This award supports a project to investigate the sensitivity of the Antarctic ice sheet (AIS) to global climate change over the last two Glacial/Interglacial cycles. The intellectual merit of the project is that despite its importance to Earth\u0027s climate system, we currently lack a full understanding of AIS sensitivity to global climate change. This project will reconstruct and precisely date the history of marine-based ice in the Ross Sea sector over the last two glacial/interglacial cycles, which will enable a better understanding of the potential driving mechanisms (i.e., sea-level rise, ice dynamics, ocean temperature variations) for ice fluctuations. This will also help to place present ice?]sheet behavior in a long-term context. During the last glacial maximum (LGM), the AIS is known to have filled the Ross Embayment and although much has been done both in the marine and terrestrial settings to constrain its extent, the chronology of the ice sheet, particularly the timing and duration of the maximum and the pattern of initial recession, remains uncertain. In addition, virtually nothing is known of the penultimate glaciation, other than it is presumed to have been generally similar to the LGM. These shortcomings greatly limit our ability to understand AIS evolution and the driving mechanisms behind ice sheet fluctuations. This project will develop a detailed record of ice extent and chronology in the western Ross Embayment for not only the LGM, but also for the penultimate glaciation (Stage 6), from well-dated glacial geologic data in the Royal Society Range. Chronology will come primarily from high-precision Accelerator Mass Spectrometry (AMS) Carbon-14 (14C) and multi-collector Inductively Coupled Plasma (ICP)-Mass Spectrometry (MS) 234Uranium/230Thorium dating of lake algae and carbonates known to be widespread in the proposed field area. ", "east": 164.6, "geometry": "POINT(164.1 -77.85)", "instruments": null, "is_usap_dc": true, "keywords": "LABORATORY; Amd/Us; AMD; USA/NSF; GLACIAL LANDFORMS; USAP-DC; Royal Society Range; GLACIER ELEVATION/ICE SHEET ELEVATION", "locations": "Royal Society Range", "north": -77.5, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hall, Brenda; Denton, George", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.2, "title": "Sensitivity of the Antarctic Ice Sheet to Climate Change over the Last Two Glacial/Interglacial Cycles", "uid": "p0010302", "west": 163.6}, {"awards": "2039419 Swanger, Kate", "bounds_geometry": "POLYGON((161 -77.3,161.2 -77.3,161.4 -77.3,161.6 -77.3,161.8 -77.3,162 -77.3,162.2 -77.3,162.4 -77.3,162.6 -77.3,162.8 -77.3,163 -77.3,163 -77.35,163 -77.4,163 -77.45,163 -77.5,163 -77.55,163 -77.6,163 -77.65,163 -77.7,163 -77.75,163 -77.8,162.8 -77.8,162.6 -77.8,162.4 -77.8,162.2 -77.8,162 -77.8,161.8 -77.8,161.6 -77.8,161.4 -77.8,161.2 -77.8,161 -77.8,161 -77.75,161 -77.7,161 -77.65,161 -77.6,161 -77.55,161 -77.5,161 -77.45,161 -77.4,161 -77.35,161 -77.3))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 16 Dec 2021 00:00:00 GMT", "description": "The McMurdo Dry Valleys are the largest ice-free region in Antarctica and home to a seasonally active hydrologic system, with streams and saline lakes. Streams are fed by summer meltwater from local glaciers and snowbanks. Therefore, streamflow is tied to summer climate conditions such as air temperatures, ground temperatures, winds, and incoming solar radiation. Based on 50 years of monitoring, summer stream activity has been observed to change, and it likely varied during the geologic past in response to regional climate change and fluctuating glaciers. Thus, deposits from these streams can address questions about past climate, meltwater, and lake level changes in this region. How did meltwater streamflow respond to past climate change? How did streamflow vary during periods of glacial advance and retreat? At what times did large lakes fill many of the valleys and what was their extent? The researchers plan to acquire a record of stream activity for the Dry Valleys that will span the three largest valleys and a time period of about 100,000 years. This record will come from a series of active and ancient alluvial fans that were deposited by streams as they flowed from valley sidewalls onto valley floors. The study will provide a long-term context with which to assess recent observed changes to stream activity and lake levels. The research will be led by two female mid-career investigators and contribute significantly to student research opportunities and education. The research will contribute to graduate and undergraduate education by including students in both field and laboratory research, as well as incorporating data and results into the classroom. The research will be disseminated to K-12 and non-scientific communities through outreach that includes professional development training for K-12 teachers in eastern Massachusetts, development of hands-on activities, visits to K-12 classrooms, and STEM education and literacy activities in North Carolina. The PIs propose to constrain rates of fluvial deposition and periods of increased fluvial activity in the McMurdo Dry Valleys during the Holocene and late Pleistocene. During 50 years of hydrologic monitoring in the Dry Valleys, scientists have observed that streams exhibit significant response to summer conditions. Previous studies of glacial and lacustrine deposits indicate regional glacier advance in the Dry Valleys during recent interglacial periods and high lake levels during and after the Last Glacial Maximum (LGM), with potentially significant low and high stands during the Holocene. However, the geologic record of meltwater activity is poorly constrained. The PIs seek to develop the first spatially-extensive record of stream deposition in the Dry Valleys by analyzing and dating alluvial fans. Given that alluvial fans are deposited by summer meltwater streams in a relatively stable tectonic setting, this record will serve as a proxy of regional summer climate conditions. Meltwater streams are an important component of the regional hydrologic system, connecting glaciers to lakes and affecting ecosystems and soils. A record of fluvial deposition is key to understanding the relationship between past climate change and regional hydrology. The proposed research will include remote- and field-based mapping of alluvial fans, stream channels, and meltwater sources as well as modeling potential incoming solar radiation to the fans and moisture sources during the austral summer. In the field, the PIs will document stratigraphy, collect near-surface sediments from 25 fans across four valleys (Taylor, Pearse, Wright, and Victoria), and collect 2- to 3-m vertical cores of ice-cemented sediments from three alluvial fan complexes. The PIs will then conduct depositional dating of fluvial sands via optically stimulated luminescence, and analyze mineralogy and bulk major element chemistry with X-ray powder diffraction and X-ray fluorescence. From these analyses, the PIs propose to (1) determine the timing of local- to regional-scale periods of high fluvial deposition, (2) calculate depositional rates, and (3) constrain depositional environments and sediment provenance. Given that many of the alluvial fans occur below the hypothesized maximum extents of glacially-dammed lakes in Wright and Victoria valleys, detailed stratigraphy, sediment provenance, and OSL dating of these fans could shed light on ongoing debates regarding the timing and extent of LGM and post-LGM lakes. The work will support a postdoctoral researcher, a PhD student, and many undergraduate and master\u2019s students in cross-disciplinary research that spans stratigraphy, geochemistry, paleoclimatology and physics. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 163.0, "geometry": "POINT(162 -77.55)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; Amd/Us; SEDIMENTS; USA/NSF; AMD; Dry Valleys; USAP-DC", "locations": "Dry Valleys", "north": -77.3, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Swanger, Kate", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -77.8, "title": "Collaborative Research: Holocene and Late Pleistocene Stream Deposition in the McMurdo Dry Valleys, Antarctica as a Proxy for Glacial Meltwater and Paleoclimate", "uid": "p0010285", "west": 161.0}, {"awards": "0838783 Conway, Howard; 0838256 Todd, Claire; 0838784 Balco, Gregory", "bounds_geometry": "POLYGON((-66.27517 -83.23921,-65.341961 -83.23921,-64.408752 -83.23921,-63.475543 -83.23921,-62.542334 -83.23921,-61.609125 -83.23921,-60.675916 -83.23921,-59.742707 -83.23921,-58.809498 -83.23921,-57.876289 -83.23921,-56.94308 -83.23921,-56.94308 -83.359865,-56.94308 -83.48052,-56.94308 -83.601175,-56.94308 -83.72183,-56.94308 -83.842485,-56.94308 -83.96314,-56.94308 -84.083795,-56.94308 -84.20445,-56.94308 -84.325105,-56.94308 -84.44576,-57.876289 -84.44576,-58.809498 -84.44576,-59.742707 -84.44576,-60.675916 -84.44576,-61.609125 -84.44576,-62.542334 -84.44576,-63.475543 -84.44576,-64.408752 -84.44576,-65.341961 -84.44576,-66.27517 -84.44576,-66.27517 -84.325105,-66.27517 -84.20445,-66.27517 -84.083795,-66.27517 -83.96314,-66.27517 -83.842485,-66.27517 -83.72183,-66.27517 -83.601175,-66.27517 -83.48052,-66.27517 -83.359865,-66.27517 -83.23921))", "dataset_titles": "Interface to observational data collected in this project and geologic age information derived therefrom. Dynamic content, continuously updated.; Web page linking to documents containing data collected in this project. Static content", "datasets": [{"dataset_uid": "200195", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Web page linking to documents containing data collected in this project. Static content", "url": "http://noblegas.berkeley.edu/~balcs/pensacola/"}, {"dataset_uid": "200194", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Interface to observational data collected in this project and geologic age information derived therefrom. Dynamic content, continuously updated.", "url": "https://version2.ice-d.org/antarctica/nsf/"}], "date_created": "Sat, 19 Dec 2020 00:00:00 GMT", "description": "This award supports a project to find and date geologic evidence of past ice-marginal positions in the Pensacola Mountains, which border the Foundation Ice Stream at the head of the Weddell Sea embayment. The project will involve glacial geologic mapping and cosmogenic-nuclide surface exposure dating of glacially transported erratics. An ice-flow model will be used to link our exposure-dating results together in a glaciologically consistent way, and to relate them to regional LGM to Holocene elevation changes. A secondary focus of the project seeks to improve the effectiveness of exposure-dating methods in understanding ice sheet change. Changes in the location of the ice margin, and thus the exposure ages that record these changes, are controlled not only by regional ice sheet mass balance, but also by local effects on snow- and icefields immediately adjacent to the exposure-dating sites. This part of the project will combine glaciological observations near the present ice margin with targeted exposure- age sampling in an effort to better understand the processes controlling the ice margin location, and improve the interpretation of very recent exposure-age data as a record of latest Holocene to present ice sheet changes. The intellectual merit of the project is that it will provide direct geologic evidence of LGM-to-Holocene ice volume change in a region of Antarctica where no such evidence now exists. The broader impacts of the work involve both gathering information needed for accurate understanding of past and present global sea level change. Secondly, this project will help to develop and maintain the human and intellectual resources necessary for continued excellence in polar research and global change education, by linking experienced Antarctic researchers with early career scientists who seek to develop their expertise in both research and education. In addition, it brings together two early career scientists whose careers are focused at opposite ends of the research-education spectrum, thus facilitating better integration of research and education both in the careers of these scientists and in the outcome of this project. This award has field work in Antarctica.", "east": -56.94308, "geometry": "POINT(-61.609125 -83.842485)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; GLACIER THICKNESS/ICE SHEET THICKNESS; NOT APPLICABLE; GLACIER ELEVATION/ICE SHEET ELEVATION; Antarctica", "locations": "Antarctica", "north": -83.23921, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Balco, Gregory; Todd, Claire; Conway, Howard", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "PI website", "repositories": "ICE-D; PI website", "science_programs": null, "south": -84.44576, "title": "Collaborative Research: Last Glacial Maximum and Deglaciation Chronology for the Foundation Ice Stream and Southeastern Weddell Sea Embayment", "uid": "p0010151", "west": -66.27517}, {"awards": "1341736 Adams, Byron", "bounds_geometry": "POLYGON((-177.4099 -84.4661,-177.08229 -84.4661,-176.75468 -84.4661,-176.42707 -84.4661,-176.09946 -84.4661,-175.77185 -84.4661,-175.44424 -84.4661,-175.11663000000001 -84.4661,-174.78902 -84.4661,-174.46141 -84.4661,-174.1338 -84.4661,-174.1338 -84.56828,-174.1338 -84.67045999999999,-174.1338 -84.77264,-174.1338 -84.87482,-174.1338 -84.977,-174.1338 -85.07918,-174.1338 -85.18136,-174.1338 -85.28354,-174.1338 -85.38571999999999,-174.1338 -85.4879,-174.46141 -85.4879,-174.78902 -85.4879,-175.11663000000001 -85.4879,-175.44424 -85.4879,-175.77185 -85.4879,-176.09946 -85.4879,-176.42707 -85.4879,-176.75468 -85.4879,-177.08229 -85.4879,-177.4099 -85.4879,-177.4099 -85.38571999999999,-177.4099 -85.28354,-177.4099 -85.18136,-177.4099 -85.07918,-177.4099 -84.977,-177.4099 -84.87482,-177.4099 -84.77264,-177.4099 -84.67045999999999,-177.4099 -84.56828,-177.4099 -84.4661))", "dataset_titles": "Dataset DS-TAMS: Genetic diversity of Collembola from the Transantarctic Mountains; GenBank accession numbers MN619477 to MN619610; Meteoric 10Be data of soils from the Shackleton Glacier region; Shackleton Glacier region soil water-soluble geochemical data; Shackleton Glacier region water-soluble salt isotopes; Soil invertebrate surveys from the Shackleton Glacier region of Antarctica during the 2017-2018 austral summer", "datasets": [{"dataset_uid": "200258", "doi": "doi:10.6073/pasta/7959821e5f6f8d56d94bb6a26873b3ae", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "Soil invertebrate surveys from the Shackleton Glacier region of Antarctica during the 2017-2018 austral summer", "url": "https://doi.org/10.6073/pasta/7959821e5f6f8d56d94bb6a26873b3ae"}, {"dataset_uid": "200174", "doi": "10.5883/DS-TAMS", "keywords": null, "people": null, "repository": "Barcode of Life Datasystems (BOLD)", "science_program": null, "title": "Dataset DS-TAMS: Genetic diversity of Collembola from the Transantarctic Mountains", "url": "http://dx.doi.org/10.5883/DS-TAMS"}, {"dataset_uid": "200175", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "GenBank accession numbers MN619477 to MN619610", "url": "https://www.ncbi.nlm.nih.gov/nuccore/MN619477"}, {"dataset_uid": "601418", "doi": "10.15784/601418", "keywords": "Antarctica; Geochemistry; Shackleton Glacier", "people": "Gardner, Christopher B.; Lyons, W. Berry; Diaz, Melisa A.", "repository": "USAP-DC", "science_program": null, "title": "Shackleton Glacier region soil water-soluble geochemical data", "url": "https://www.usap-dc.org/view/dataset/601418"}, {"dataset_uid": "601419", "doi": "10.15784/601419", "keywords": "Antarctica; Geochemistry; Nitrate; Shackleton Glacier; Stable Isotopes; Sulfate; Transantarctic Mountains", "people": "Lyons, W. Berry; Gardner, Christopher B.; Diaz, Melisa A.", "repository": "USAP-DC", "science_program": null, "title": "Shackleton Glacier region water-soluble salt isotopes", "url": "https://www.usap-dc.org/view/dataset/601419"}, {"dataset_uid": "601421", "doi": "10.15784/601421", "keywords": "Antarctica; Be-10; Beryllium-10; Cosmogenic Radionuclides; Geochemistry; Geomorphology; Shackleton Glacier; Surface Exposure Dates", "people": "Diaz, Melisa A.", "repository": "USAP-DC", "science_program": null, "title": "Meteoric 10Be data of soils from the Shackleton Glacier region", "url": "https://www.usap-dc.org/view/dataset/601421"}], "date_created": "Mon, 02 Nov 2020 00:00:00 GMT", "description": "The project will characterize the functional, taxonomic, biotic and abiotic drivers of soil ecosystems in the Trans Antarctic Mountains (one of the most remote and harsh terrestrial landscapes on the planet). The work will utilize new high-throughput DNA and RNA sequencing technologies to identify members of the microbial communities and determine if the microbial community structures are independent of local environmental heterogeneities. In addition the project will determine if microbial diversity and function are correlated with time since the last glacial maximum (LGM). The expected results will greatly contribute to our knowledge regarding rates of microbial succession and help define the some of the limits to life and life-maintaining processes on Earth. The project will analyze genomes and RNA derived from these genomes to describe the relationships between biodiversity and ecosystem functioning from soils above and below LGM elevations and to correlate these with the environmental drivers associated with their development during the last ~18,000 years. The team will identify the taxonomic diversity and the functional genetic composition within a broad suite of soil biota and examine their patterns of assembly and distribution within the framework of their geological legacies. The project will mentor participants from undergraduate students to postdoctoral researchers and prepare them to effectively engage in research to meet their career aspirations. The project will contribute to ongoing public education efforts through relationships with K-12 teachers and administrators- to include University-Public School partnerships. Less formal activities include public lecture series and weblogs aimed at providing information on Antarctic polar desert ecosystems to the general public. Targeted classrooms near each PI\u0027s institution will participate in online, real-time discussions about current topics in Antarctic ecosystems research.", "east": -174.1338, "geometry": "POINT(-175.77185 -84.977)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; LABORATORY; AMD; Amd/Us; USA/NSF; TERRESTRIAL ECOSYSTEMS; Transantarctic Mountains; USAP-DC", "locations": "Transantarctic Mountains", "north": -84.4661, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Earth Sciences", "paleo_time": null, "persons": "Adams, Byron; Fierer, Noah; Wall, Diana; Diaz, Melisa A.; Gardner, Christopher B.; Lyons, W. Berry", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "EDI", "repositories": "Barcode of Life Datasystems (BOLD); EDI; NCBI GenBank; USAP-DC", "science_programs": null, "south": -85.4879, "title": "Collaborative Research: The Role of Glacial History on the Structure and Functioning of Ecological Communities in the Shackleton Glacier Region of the Transantarctic Mountains", "uid": "p0010140", "west": -177.4099}, {"awards": "1246357 Bart, Philip", "bounds_geometry": null, "dataset_titles": "NBP1502 Cruise Geophysics and underway data; NBP1502 YoYo camera benthic images from Ross Sea", "datasets": [{"dataset_uid": "000245", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1502 Cruise Geophysics and underway data", "url": "https://www.rvdata.us/search/cruise/NBP1502"}, {"dataset_uid": "601182", "doi": "10.15784/601182", "keywords": "Antarctica; Benthic; Benthic Images; Benthos; Bentic Fauna; Camera Tow; Marine Geoscience; Marine Sediments; NBP1502; Photo; Photo/video; Photo/Video; Ross Sea; R/v Nathaniel B. Palmer; Southern Ocean; Yoyo Camera", "people": "Bart, Philip", "repository": "USAP-DC", "science_program": null, "title": "NBP1502 YoYo camera benthic images from Ross Sea", "url": "https://www.usap-dc.org/view/dataset/601182"}], "date_created": "Mon, 03 Jun 2019 00:00:00 GMT", "description": "Intellectual Merit: Evidence from the eastern Ross Sea continental shelf indicates that the West Antarctic Ice Sheet advanced and retreated during the last glacial cycle, but it is unclear whether the ice sheet advanced to the shelf edge or just to the middle shelf. These two end-member scenarios offer different interpretations as to why, how, and when the West Antarctic Ice Sheet oscillated. The PI proposes to acquire seismic, multibeam, and core data from Whales Deep, to evaluate the timing and duration of two advances of grounded ice to the outer and middle shelf of the Whales Deep Basin, a West Antarctic Ice Sheet paleo ice stream trough in eastern Ross Sea. Grounding events are represented by seismically resolvable Grounding Zone Wedges. The PI will collect radiocarbon dates on in situ benthic foraminifera from the grounding zone diamict as well as ramped pyrolysis radiocarbon dates on acid insoluble organics from open-marine mud overlying the grounding zone diamict. Using these data the PI will calculate the duration of the two grounding events. Furthermore, the PI will test a numerical model prediction that West Antarctic Ice Sheet retreat must have involved melting at the marine terminus of the ice sheet. Pore-water from the grounding zone diamict will be extracted from piston cores to determine salinity and \u0026#948;18O values that should indicate if significant melting occurred at the grounding line. Broader impacts: The data collected will provide constraints on the timing and pattern of Last Glacial Maximum advance and retreat that can be incorporated into interpretations of ice-surface elevation changes. The proposed activities will provide valuable field and research training to undergraduate/graduate students and a Louisiana high-school science teacher. The research will be interactively shared with middle- and high-school science students and with visitors to the LSU Museum of Natural Science Weekend-Science Program.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e AIRGUN ARRAYS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e SEISMIC REFLECTION PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e LONG STREAMERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERA; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "STRATIGRAPHIC SEQUENCE; R/V NBP; Ross Sea; Antarctica; MICROFOSSILS; RADIOCARBON; PALEOCLIMATE RECONSTRUCTIONS; SEDIMENTS; Southern Ocean; OCEANS; GEOSCIENTIFIC INFORMATION", "locations": "Antarctica; Ross Sea; Southern Ocean", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bart, Philip; Steinberg, Deborah", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": null, "title": "Timing and Duration of the LGM and Post-LGM Grounding Events in Whales Deep Paleo Ice Stream, Eastern Ross Sea Middle Continental Shelf", "uid": "p0000877", "west": null}, {"awards": "1443471 Koutnik, Michelle; 1443341 Hawley, Robert", "bounds_geometry": "POLYGON((110 -89,117 -89,124 -89,131 -89,138 -89,145 -89,152 -89,159 -89,166 -89,173 -89,180 -89,180 -89.1,180 -89.2,180 -89.3,180 -89.4,180 -89.5,180 -89.6,180 -89.7,180 -89.8,180 -89.9,180 -90,173 -90,166 -90,159 -90,152 -90,145 -90,138 -90,131 -90,124 -90,117 -90,110 -90,110 -89.9,110 -89.8,110 -89.7,110 -89.6,110 -89.5,110 -89.4,110 -89.3,110 -89.2,110 -89.1,110 -89))", "dataset_titles": "7MHz radar in the vicinity of South Pole; Firn density and compaction rates 50km upstream of South Pole; Firn temperatures 50km upstream of South Pole; Shallow radar near South Pole; South Pole area GPS velocities; SPICEcore Advection", "datasets": [{"dataset_uid": "601266", "doi": "10.15784/601266", "keywords": "Antarctica; Ice Core Data; South Pole; SPICEcore", "people": "Fudge, T. J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SPICEcore Advection", "url": "https://www.usap-dc.org/view/dataset/601266"}, {"dataset_uid": "601100", "doi": "10.15784/601100", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ice Velocity", "people": "Waddington, Edwin D.; Lilien, David; Fudge, T. J.; Koutnik, Michelle; Conway, Howard", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole area GPS velocities", "url": "https://www.usap-dc.org/view/dataset/601100"}, {"dataset_uid": "601369", "doi": "10.15784/601369", "keywords": "Antarctica; Ice Sheet", "people": "Lilien, David; Stevens, Max; Koutnik, Michelle; Conway, Howard; Waddington, Edwin D.; Fudge, T. J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "7MHz radar in the vicinity of South Pole", "url": "https://www.usap-dc.org/view/dataset/601369"}, {"dataset_uid": "601525", "doi": "10.15784/601525", "keywords": "Antarctica; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Snow/ice; Snow/Ice; South Pole; SPICEcore; Temperature", "people": "Waddington, Edwin D.; Stevens, Christopher Max; Lilien, David; Conway, Howard; Fudge, T. J.; Koutnik, Michelle", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Firn temperatures 50km upstream of South Pole", "url": "https://www.usap-dc.org/view/dataset/601525"}, {"dataset_uid": "601099", "doi": "10.15784/601099", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Radar; Snow Accumulation; Snow/ice; Snow/Ice", "people": "Conway, Howard; Koutnik, Michelle; Waddington, Edwin D.; Lilien, David; Fudge, T. J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Shallow radar near South Pole", "url": "https://www.usap-dc.org/view/dataset/601099"}, {"dataset_uid": "601680", "doi": "10.15784/601680", "keywords": "Antarctica; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Snow/ice; Snow/Ice; South Pole; Temperature", "people": "Stevens, Christopher Max; Conway, Howard; Waddington, Edwin D.; Fudge, T. J.; Lilien, David; Koutnik, Michelle", "repository": "USAP-DC", "science_program": null, "title": "Firn density and compaction rates 50km upstream of South Pole", "url": "https://www.usap-dc.org/view/dataset/601680"}], "date_created": "Thu, 14 Jun 2018 00:00:00 GMT", "description": "Ice-core records are critical to understanding past climate variations. An Antarctic ice core currently being drilled at the South Pole will allow detailed investigation of atmospheric gases and fill an important gap in understanding the pattern of climate variability across Antarctica. Critical to the interpretation of any ice core are: 1) accurate chronologies for both the ice and the trapped gas and 2) demonstration that records from the ice core reliably reflect climate. The proposed research will improve the ice and gas chronologies by making measurements of snow compaction in the upstream catchment in order to constrain age models of the ice. These measurements will be a key data set needed for better understanding and predicting time-varying conditions in the upper part of the ice sheet. The research team will measure the modern spatial gradients in accumulation rate, surface temperature, and water stable isotopes from shallow ice cores in the upstream catchment in order to determine the climate history from the ice-core record. The new ice-flow measurements will make it possible to define the path of ice from upstream to the South Pole ice-core drill site to assess spatial gradients in snowfall and to infer histories of snowfall from internal layers within the ice sheet. The project will be led by an early-career scientist, provide broad training to graduate students, and engage in public outreach on polar science. Ice-core records of stable isotopes, aerosol-born particles, and atmospheric gases are critical to understanding past climate variations. The proposed research will improve the ice and gas chronologies in the South Pole ice core by making in situ measurements of firn compaction in the upstream catchment to constrain models of the gas-age ice-age difference. The firn measurements will be a key data set needed to form a constitutive relationship for firn, and will drive better understanding and prediction of transient firn evolution. The research team will measure the modern gradients in accumulation rate, surface temperature, and water stable isotopes in the upstream catchment to separate spatial (advection) variations from temporal (climate) variations in the ice-core records. The ice-flow measurements will define the flowline upstream of the drill site, assess spatial gradients in accumulation, and infer histories of accumulation from radar-observed internal layers. Results will directly enhance interpretation of South Pole ice-core records, and also advance understanding of firn densification and drive next-generation firn models.", "east": 180.0, "geometry": "POINT(145 -89.5)", "instruments": null, "is_usap_dc": true, "keywords": "FIRN; Firn; USAP-DC; South Pole; Radar; FIELD SURVEYS; ICE CORE RECORDS", "locations": "South Pole", "north": -89.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Koutnik, Michelle; Conway, Howard; Waddington, Edwin D.; Fudge, T. J.; Hawley, Robert L.; Osterberg, Erich", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: Characterization of Upstream Ice and Firn Dynamics affecting the South Pole Ice Core", "uid": "p0000200", "west": 110.0}, {"awards": "0944021 Brook, Edward J.; 0944307 Conway, Howard; 0943466 Hawley, Robert", "bounds_geometry": "POLYGON((-163 -79,-162.8 -79,-162.6 -79,-162.4 -79,-162.2 -79,-162 -79,-161.8 -79,-161.6 -79,-161.4 -79,-161.2 -79,-161 -79,-161 -79.05,-161 -79.1,-161 -79.15,-161 -79.2,-161 -79.25,-161 -79.3,-161 -79.35,-161 -79.4,-161 -79.45,-161 -79.5,-161.2 -79.5,-161.4 -79.5,-161.6 -79.5,-161.8 -79.5,-162 -79.5,-162.2 -79.5,-162.4 -79.5,-162.6 -79.5,-162.8 -79.5,-163 -79.5,-163 -79.45,-163 -79.4,-163 -79.35,-163 -79.3,-163 -79.25,-163 -79.2,-163 -79.15,-163 -79.1,-163 -79.05,-163 -79))", "dataset_titles": "Roosevelt Island Borehole Firn temperatures; Roosevelt Island Borehole Optical Televiewer logs; Roosevelt Island Ice Core Time Scale and Associated Data; Roosevelt Island: Radar and GPS", "datasets": [{"dataset_uid": "601085", "doi": "10.15784/601085", "keywords": "Antarctica; Borehole; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Records; Ice Fabric; Optical Images; Roosevelt Island; Snow/ice; Snow/Ice; Temperature", "people": "Hawley, Robert L.; Clemens-Sewall, David; Giese, Alexandra", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Borehole Firn temperatures", "url": "https://www.usap-dc.org/view/dataset/601085"}, {"dataset_uid": "601359", "doi": "10.15784/601359", "keywords": "Antarctica; CO2; Ice Core; Roosevelt Island", "people": "Lee, James; Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Ice Core Time Scale and Associated Data", "url": "https://www.usap-dc.org/view/dataset/601359"}, {"dataset_uid": "601070", "doi": "10.15784/601070", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; GPS Data; Ice Velocity; Navigation; Radar; Roosevelt Island; Ross Sea", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island: Radar and GPS", "url": "https://www.usap-dc.org/view/dataset/601070"}, {"dataset_uid": "601086", "doi": "10.15784/601086", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Roosevelt Island; Snow/ice; Snow/Ice", "people": "Clemens-Sewall, David; Hawley, Robert L.", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Borehole Optical Televiewer logs", "url": "https://www.usap-dc.org/view/dataset/601086"}], "date_created": "Fri, 16 Feb 2018 00:00:00 GMT", "description": "This award supports a project to use the Roosevelt Island ice core as a glaciological dipstick for the eastern Ross Sea. Recent attention has focused on the eastern Ross Embayment, where there are no geological constraints on ice thickness changes, due to the lack of protruding rock \"dipsticks\" where the ice sheet can leave datable records of high stands. Recent work has shown how dated ice cores can be used as dipsticks to derive ice-thickness histories. Partners from New Zealand and Denmark will extract an ice core from Roosevelt Island during the 2010-2011 and 2011-12 austral summers. Their science objective is to contribute to understanding of climate variability over the past 40kyr. The science goal of this project is not the climate record, but rather the history of deglaciation in the Ross Sea. The new history from the eastern Ross Sea will be combined with the glacial histories from the central Ross Sea (Siple Dome and Byrd) and existing and emerging histories from geologic and marine records along the western Ross Sea margin and will allow investigators to establish an updated, self-consistent model of the configuration and thickness of ice in the Ross Embayment during the LGM, and the timing of deglaciation. Results from this work will provide ground truth for new-generation ice-sheet models that incorporate ice streams and fast-flow dynamics. Realistic ice-sheet models are needed not only for predicting the response to future possible environments, but also for investigating past behaviors of ice sheets. This research contributes to the primary goals of the West Antarctic Ice Sheet Initiative as well as the IPY focus on ice-sheet history and dynamics. It also contributes to understanding spatial and temporal patterns of climate change and climate dynamics over the past 40kyr, one of the primary goals of the International Partnerships in Ice Core Sciences (IPICS). The project will help to develop the next generation of scientists and will contribute to the education and training of two Ph.D. students. All participants will benefit from the international collaboration, which will expose them to different field and laboratory techniques and benefit future collaborative work. All participants are involved in scientific outreach and undergraduate education, and are committed to fostering diversity. Outreach will be accomplished through regularly scheduled community and K-12 outreach events, talks and popular writing by the PIs, as well as through University press offices.", "east": -161.0, "geometry": "POINT(-162 -79.25)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "AMD; FIELD INVESTIGATION; Amd/Us; Deglaciation; USAP-DC; USA/NSF; NOT APPLICABLE; Ice Core; Not provided; Ross Sea Embayment", "locations": "Ross Sea Embayment", "north": -79.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Conway, Howard; Brook, Edward J.; Hawley, Robert L.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.5, "title": "Collaborative Research: Deglaciation of the Ross Sea Embayment - constraints from Roosevelt Island", "uid": "p0000272", "west": -163.0}, {"awards": "1246170 Hall, Brenda; 1246110 Stone, John", "bounds_geometry": "POLYGON((154 -79.75,154.7 -79.75,155.4 -79.75,156.1 -79.75,156.8 -79.75,157.5 -79.75,158.2 -79.75,158.9 -79.75,159.6 -79.75,160.3 -79.75,161 -79.75,161 -79.8,161 -79.85,161 -79.9,161 -79.95,161 -80,161 -80.05,161 -80.1,161 -80.15,161 -80.2,161 -80.25,160.3 -80.25,159.6 -80.25,158.9 -80.25,158.2 -80.25,157.5 -80.25,156.8 -80.25,156.1 -80.25,155.4 -80.25,154.7 -80.25,154 -80.25,154 -80.2,154 -80.15,154 -80.1,154 -80.05,154 -80,154 -79.95,154 -79.9,154 -79.85,154 -79.8,154 -79.75))", "dataset_titles": "Darwin and Hatherton Glaciers; Hatherton Glacier Radiocarbon Data", "datasets": [{"dataset_uid": "200038", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Darwin and Hatherton Glaciers", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "601063", "doi": "10.15784/601063", "keywords": "Antarctica; Geochronology; Hatherton Glacier; Radiocarbon; Sample/collection Description; Sample/Collection Description; Transantarctic Mountains", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Hatherton Glacier Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601063"}], "date_created": "Mon, 23 Oct 2017 00:00:00 GMT", "description": "Hall/1246170 This award supports a project to reconstruct past ice-surface elevations from detailed glacial mapping and dating of moraines (using 14C dates of algae from former ice-marginal ponds and 10Be surface exposure ages) in the region of the Darwin-Hatherton Glaciers in Antarctica in order to try and resolve very different interpretations that currently exist about the glacial history in the region. The results will be integrated with existing climate and geophysical data into a flow-line model to gain insight into glacier response to climate and ice-dynamics perturbations during the Late Glacial Maximum (LGM) in Antarctica. The work will contribute to a better understanding of both LGM ice thickness and whether or not there is any evidence that Antarctica contributed to Meltwater Pulse (MWP)-1A a very controversial topic in Antarctic glacial geology. The intellectual merit of the work relates to the fact that reconstructing past fluctuations of the Antarctic Ice Sheet (AIS) is critical for understanding the sensitivity of ice volume to sea-level and climatic change. Constraints on past behavior help put ongoing changes into context and provide a basis for predicting future sea-level rise. Broader impacts include the support of two graduate and two undergraduate students, as well as a female early-career investigator. Graduate students will be involved in all stages of the project from planning and field mapping to geochronological analyses, interpretation, synthesis and reporting. Two undergraduates will work on lab-based research from the project. The project also will include visits to K-12 classrooms to talk about glaciers and climate change, correspondence with teachers and students from the field, and web-based outreach. This award has field work in Antarctica.", "east": 161.0, "geometry": "POINT(157.5 -80)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; FIELD INVESTIGATION; Antarctica", "locations": "Antarctica", "north": -79.75, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Hall, Brenda; Stone, John; Conway, Howard", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "ICE-D", "repositories": "ICE-D; USAP-DC", "science_programs": null, "south": -80.25, "title": "Collaborative Research: Assessing the Antarctic Contribution to Sea-level Changes during the Last Deglaciation: Constraints from Darwin Glacier", "uid": "p0000304", "west": 154.0}, {"awards": "1142002 Kaplan, Michael", "bounds_geometry": "POLYGON((-58 -63.7,-57.95 -63.7,-57.9 -63.7,-57.85 -63.7,-57.8 -63.7,-57.75 -63.7,-57.7 -63.7,-57.65 -63.7,-57.6 -63.7,-57.55 -63.7,-57.5 -63.7,-57.5 -63.73,-57.5 -63.76,-57.5 -63.79,-57.5 -63.82,-57.5 -63.85,-57.5 -63.88,-57.5 -63.91,-57.5 -63.94,-57.5 -63.97,-57.5 -64,-57.55 -64,-57.6 -64,-57.65 -64,-57.7 -64,-57.75 -64,-57.8 -64,-57.85 -64,-57.9 -64,-57.95 -64,-58 -64,-58 -63.97,-58 -63.94,-58 -63.91,-58 -63.88,-58 -63.85,-58 -63.82,-58 -63.79,-58 -63.76,-58 -63.73,-58 -63.7))", "dataset_titles": "10Be and 14C data from northern Antarctic Peninsula", "datasets": [{"dataset_uid": "601051", "doi": "10.15784/601051", "keywords": "Antarctica; Antarctic Peninsula; Glaciers/ice Sheet; Glaciers/Ice Sheet; GPS; James Ross Island; Sample/collection Description; Sample/Collection Description; Solid Earth", "people": "Kaplan, Michael", "repository": "USAP-DC", "science_program": null, "title": "10Be and 14C data from northern Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601051"}], "date_created": "Tue, 19 Sep 2017 00:00:00 GMT", "description": "Intellectual Merit: The PIs propose to investigate last glacial maximum through Holocene glacial change on the northeastern Antarctic Peninsula, an area distinguished by dramatic ice shelf collapses and retreat of upstream glaciers. However, there is a lack of long-term context to know the relative significance of recent events over longer time scales. The PIs will obtain data on former ice margin positions, ice thicknesses, glacier retreat and thinning rates, and Holocene glacier change in the James Ross Island Archipelago and areas near the former Larsen-A ice shelf. These data include maximum- and minimum-limiting 14C and cosmogenic-nuclide exposure dates integrated with geomorphology and stratigraphy. Understanding the extent, nature, and history of glacial events is important for placing current changes in glacial extent into a long-term context. This research will also contribute to understanding the sensitivity of ice shelves and glaciers in this region to climate change. Records of changes in land-terminating glaciers will also address outstanding questions related to climate change since the LGM and through the Holocene. The PIs will collect samples during cooperative field projects with scientists of the Instituto Anta\u0026#769;rtico Argentino and the Korea Polar Research Institute planned as part of existing, larger, research projects. Broader impacts: The proposed work includes collaborations with Argentina and Korea. The PIs are currently involved in or are initiating education and outreach activities that will be incorporated into this project. These include interactions with the American Museum of Natural History, the United States Military Academy at West Point, and undergraduate involvement in their laboratories. This project provides a significant opportunity to engage the public as it focuses on an area where environmental changes are the object of attention in the popular media.", "east": -57.5, "geometry": "POINT(-57.75 -63.85)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctic Peninsula; GLACIATION; Not provided", "locations": "Antarctic Peninsula", "north": -63.7, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Kaplan, Michael", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.0, "title": "Terrestrial Geological Context for Glacier Change in the Northeast Antarctica Peninsula", "uid": "p0000337", "west": -58.0}, {"awards": "0229314 Stone, John", "bounds_geometry": null, "dataset_titles": "Reedy Glacier Exposure Ages, Antarctica", "datasets": [{"dataset_uid": "609601", "doi": "10.7265/N5MG7MF1", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Cosmogenic; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Reedy Glacier; Sample/collection Description; Sample/Collection Description", "people": "Stone, John", "repository": "USAP-DC", "science_program": null, "title": "Reedy Glacier Exposure Ages, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609601"}], "date_created": "Mon, 30 Mar 2015 00:00:00 GMT", "description": "The stability of the marine West Antarctic Ice Sheet (WAIS) remains an important, unresolved problem for predicting future sea level change. Recent studies indicate that the mass balance of the ice sheet today may be negative or positive. The apparent differences may stem in part from short-term fluctuations in flow. By comparison, geologic observations provide evidence of behavior over much longer time scales. Recent work involving glacial-geologic mapping, dating and ice-penetrating radar surveys suggests that deglaciation of both the Ross Sea Embayment and coastal Marie Byrd Land continued into the late Holocene, and leaves open the possibility of ongoing deglaciation and grounding-line retreat. However, previous work in the Ross Sea Embayment was based on data from just three locations that are all far to the north of the present grounding line. Additional data from farther south in the Ross Sea Embayment are needed to investigate whether recession has ended, or if the rate and pattern of deglaciation inferred from our previous study still apply to the present grounding line. This award provides support to reconstruct the evolution of Reedy Glacier, in the southern Transantarctic Mountains, since the Last Glacial Maximum (LGM). Because Reedy Glacier emerges from the mountains above the grounding line, its surface slope and elevation should record changes in thickness of grounded ice in the Ross Sea up to the present day. The deglaciation chronology of Reedy Glacier therefore can indicate whether Holocene retreat of the WAIS ended thousands of years ago, or is still continuing at present. This integrated glaciologic, glacial-geologic, and cosmogenic-isotope exposure- dating project will reconstruct past levels of Reedy Glacier. Over two field seasons, moraines will be mapped, dated and correlated at sites along the length of the glacier. Radar and GPS measurements will be made to supplement existing ice thickness and velocity data, which are needed as input for a model of glacier dynamics. The model will be used to relate geologic measurements to the grounding-line position downstream. Ultimately, the mapping, dating and ice-modeling components of the study will be integrated into a reconstruction that defines changes in ice thickness in the southern Ross Sea since the LGM, and relates these changes to the history of grounding-line retreat. This work directly addresses key goals of the West Antarctic Ice Sheet Initiative, which are to understand the dynamics, recent history and possible future behavior of the West Antarctic Ice Sheet.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "Surface Exposure Dates; FIELD SURVEYS; Aluminum-26; Erosion; Rock Samples; Beryllium-10; Exposure Age", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Stone, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Late Quaternary History of Reedy Glacier", "uid": "p0000029", "west": null}, {"awards": "0839122 Saltzman, Eric; 0839093 McConnell, Joseph; 0839075 Priscu, John", "bounds_geometry": "POINT(112.05 -79.28)", "dataset_titles": "Fluorescence spectroscopy data from the West Antarctic Ice Sheet (WAIS) Divide ice core, WDC06A; Holocene Black Carbon in Antarctica; Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core; Prokaryotic cell concentration record from the WAIS Divide ice core", "datasets": [{"dataset_uid": "601006", "doi": "10.15784/601006", "keywords": "Antarctica; Fluorescence Spectroscopy; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "people": "Priscu, John; D\u0027Andrilli, Juliana", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Fluorescence spectroscopy data from the West Antarctic Ice Sheet (WAIS) Divide ice core, WDC06A", "url": "https://www.usap-dc.org/view/dataset/601006"}, {"dataset_uid": "601072", "doi": "10.15784/601072", "keywords": "Antarctica; Biota; Cell Counts; Glaciology; Microbiology; WAIS Divide; WAIS Divide Ice Core", "people": "Santibanez, Pamela; Priscu, John", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Prokaryotic cell concentration record from the WAIS Divide ice core", "url": "https://www.usap-dc.org/view/dataset/601072"}, {"dataset_uid": "601034", "doi": "10.15784/601034", "keywords": "Antarctica; Atmosphere; Black Carbon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Arienzo, Monica; McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Holocene Black Carbon in Antarctica", "url": "https://www.usap-dc.org/view/dataset/601034"}, {"dataset_uid": "601361", "doi": "10.15784/601361", "keywords": "Antarctica; Carbonyl Sulfide; Trace Gases", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/601361"}], "date_created": "Fri, 30 May 2014 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to use the WAIS Divide deep core to investigate the Last Deglaciation at sub-annual resolution through an integrated set of chemical and biological analyses. The intellectual merit of the project is that these analyses, combined with others, will take advantage of the high snow accumulation WAIS Divide site yielding the highest time resolution glacio-biogeochemical and gas record of any deep Antarctic ice core. With other high resolution Greenland cores (GISP2 and GRIP) and lower resolution Antarctic cores, the combined record will yield new insights into worldwide climate dynamics and abrupt change. The proposed chemical, biological, and elemental tracer measurements will also be used to address all of the WAIS Divide science themes. The broader impacts of the project include education and outreach activities such as numerous presentations to local K-12 students; opportunities for student and teacher involvement in the laboratory work; a teacher training program in Earth sciences in the heavily minority Santa Ana, Compton, and Costa Mesa, California school districts; and development of high school curricula. Extensive graduate and undergraduate student involvement also is planned and will include one post doctoral associate, one graduate student, and undergraduate hourly involvement at DRI; a graduate student and undergraduates at University of California, Irvine (UCI); and a post doctoral fellow at MSU. Student recruitment will be made from underrepresented groups building on a long track record of involvement and will include the NSF funded California Alliance for Minority Participation (CAMP) and the Montana American Indian Research Opportunities (AIRO).\u003cbr/\u003e\u003cbr/\u003eThis award does not involve field work in Antarctica.", "east": 112.05, "geometry": "POINT(112.05 -79.28)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e CARBON ANALYZERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e WAS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e ICE CORE MELTER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PHOTOMETERS \u003e SPECTROPHOTOMETERS", "is_usap_dc": true, "keywords": "FIELD SURVEYS; Bacteria Ice Core; LABORATORY; Ice Core; FIELD INVESTIGATION; West Antarctica; Not provided; Dissolved Organic Carbon", "locations": "West Antarctica", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "Foreman, Christine; Skidmore, Mark; Saltzman, Eric; McConnell, Joseph; Priscu, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.28, "title": "Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core", "uid": "p0000273", "west": 112.05}, {"awards": "0838615 Hall, Brenda", "bounds_geometry": "POLYGON((-177.13 -84.55,-177.074 -84.55,-177.018 -84.55,-176.962 -84.55,-176.906 -84.55,-176.85 -84.55,-176.794 -84.55,-176.738 -84.55,-176.682 -84.55,-176.626 -84.55,-176.57 -84.55,-176.57 -84.615,-176.57 -84.68,-176.57 -84.745,-176.57 -84.81,-176.57 -84.875,-176.57 -84.94,-176.57 -85.005,-176.57 -85.07,-176.57 -85.135,-176.57 -85.2,-176.626 -85.2,-176.682 -85.2,-176.738 -85.2,-176.794 -85.2,-176.85 -85.2,-176.906 -85.2,-176.962 -85.2,-177.018 -85.2,-177.074 -85.2,-177.13 -85.2,-177.13 -85.135,-177.13 -85.07,-177.13 -85.005,-177.13 -84.94,-177.13 -84.875,-177.13 -84.81,-177.13 -84.745,-177.13 -84.68,-177.13 -84.615,-177.13 -84.55))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 05 Sep 2013 00:00:00 GMT", "description": "Stone/0838818 \u003cbr/\u003e\u003cbr/\u003eThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). \u003cbr/\u003e\u003cbr/\u003eThis award supports a project to study the former thickness and retreat history of Shackleton and Beardmore Glaciers which flow through the Transantarctic Mountains (TAMs) into the southern Ross Sea. Lateral moraine deposits along the lower reaches of these major outlet glaciers will be mapped and dated and the results will help to date the LGM and constrain the thickness of ice where it left the Transantarctic Mountains and flowed into the Ross Sea. The intellectual merit of the project is that the results will allow scientists to distinguish between models of ice retreat, which have important implications for former ice configuration and dynamics, and to constrain the contribution from Ross Sea deglaciation to global sea level through the late Holocene. In addition, this will make a significant contribution to a better understanding of the magnitude and timing of postglacial sea-level change and the potential contribution of Antarctica to sea-level rise in future. The broader impacts of the project are that the work will help quantify changes in grounded ice volume since the LGM, improve understanding of the ice dynamics responsible, and examine their implications for future sea level change. The project will train future scientists through participation of two graduate students and undergraduates who will develop self-contained research projects. As in previous Antarctic projects, there will be interaction with K-12 students through classroom visits, web-based expedition journals, letters from the field, and discussions with teachers and will allow the project to be shared with a wide audience. This award has field work in Antarctica.", "east": -176.57, "geometry": "POINT(-176.85 -84.875)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": -84.55, "nsf_funding_programs": "Antarctic Instrumentation and Support", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Hall, Brenda", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -85.2, "title": "Collaborative Research: Constraints on the last Ross Ice Sheet from Glacial Deposits in the Southern Transantarctic Mountains", "uid": "p0000094", "west": -177.13}, {"awards": "0636818 Stone, John", "bounds_geometry": "POLYGON((-157 -85,-156 -85,-155 -85,-154 -85,-153 -85,-152 -85,-151 -85,-150 -85,-149 -85,-148 -85,-147 -85,-147 -85.3,-147 -85.6,-147 -85.9,-147 -86.2,-147 -86.5,-147 -86.8,-147 -87.1,-147 -87.4,-147 -87.7,-147 -88,-148 -88,-149 -88,-150 -88,-151 -88,-152 -88,-153 -88,-154 -88,-155 -88,-156 -88,-157 -88,-157 -87.7,-157 -87.4,-157 -87.1,-157 -86.8,-157 -86.5,-157 -86.2,-157 -85.9,-157 -85.6,-157 -85.3,-157 -85))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 05 Aug 2011 00:00:00 GMT", "description": "Hall/0636687\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to investigate late Pleistocene and Holocene changes in Scott Glacier, a key outlet glacier that flows directly into the Ross Sea just west of the present-day West Antarctic Ice Sheet (WAIS) grounding line. The overarching goals are to understand changes in WAIS configuration in the Ross Sea sector at and since the last glacial maximum (LGM) and to determine whether Holocene retreat observed in the Ross Embayment has ended or if it is still ongoing. To address these goals, moraine and drift sequences associated with Scott Glacier will be mapped and dated and ice thickness, surface velocity and surface mass balance will be measured to constrain an ice-flow model of the glacier. This model will be used to help interpret the dated geologic sequences. The intellectual merit of the project relates to gaining a better understanding of the West Antarctic Ice Sheet and how changing activity of fast-flowing outlet glaciers and ice streams exerts strong control on the mass balance of the ice sheet. Previous work suggests that grounding-line retreat in the Ross Sea continued into the late Holocene and left open the possibility of ongoing deglaciation as part of a long-term trend. Results from Reedy Glacier, an outlet glacier just behind the grounding line, suggest that retreat may have slowed substantially over the past 2000 years and perhaps even stopped. By coupling the work on Scott Glacier with recent data from Reedy Glacier, the grounding-line position will be bracketed and it should be possible to establish whether the retreat has truly ended or if it is ongoing. The broader impacts of the work relate to the societal relevance of an improved understanding of the West Antarctic ice sheet to establish how it will respond to current and possible future environmental changes. The work addresses this key goal of the West Antarctic Ice Sheet Initiative, as well as the International Polar Year focus on ice sheet history and dynamics. The work will develop future scientists through the education and training of one undergraduate and two Ph.D. students, interaction with K-12 students through classroom visits, web-based \u0027expedition\u0027 journals, letters from the field, and discussions with teachers. Results from this project will be posted with previous exposure dating results from Antarctica, on the University of Washington Cosmogenic Nuclide Lab website, which also provides information about chemical procedures and calculation methods to other scientists working with cosmogenic nuclides.", "east": -147.0, "geometry": "POINT(-152 -86.5)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": -85.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Stone, John; Conway, Howard", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -88.0, "title": "Collaborative Research:Grounding-line Retreat in the Southern Ross Sea - Constraints from Scott Glacier", "uid": "p0000149", "west": -157.0}, {"awards": "0902957 Robinson, Laura", "bounds_geometry": "POLYGON((-70.5 -54.5,-66.95 -54.5,-63.4 -54.5,-59.85 -54.5,-56.3 -54.5,-52.75 -54.5,-49.2 -54.5,-45.65 -54.5,-42.1 -54.5,-38.55 -54.5,-35 -54.5,-35 -55.2,-35 -55.9,-35 -56.6,-35 -57.3,-35 -58,-35 -58.7,-35 -59.4,-35 -60.1,-35 -60.8,-35 -61.5,-38.55 -61.5,-42.1 -61.5,-45.65 -61.5,-49.2 -61.5,-52.75 -61.5,-56.3 -61.5,-59.85 -61.5,-63.4 -61.5,-66.95 -61.5,-70.5 -61.5,-70.5 -60.8,-70.5 -60.1,-70.5 -59.4,-70.5 -58.7,-70.5 -58,-70.5 -57.3,-70.5 -56.6,-70.5 -55.9,-70.5 -55.2,-70.5 -54.5))", "dataset_titles": "LGM and Deglacial Radiocarbon from U-series Dated Drake Passage Deep-sea Corals", "datasets": [{"dataset_uid": "600111", "doi": "10.15784/600111", "keywords": "Biota; Corals; Drake Passage; Geochronology; NBP0805; Oceans; Paleoclimate; Radiocarbon; Southern Ocean", "people": "Robinson, Laura", "repository": "USAP-DC", "science_program": null, "title": "LGM and Deglacial Radiocarbon from U-series Dated Drake Passage Deep-sea Corals", "url": "https://www.usap-dc.org/view/dataset/600111"}], "date_created": "Tue, 28 Jun 2011 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The proposal seeks funds to continue a follow-up analytical work of deep-sea corals collected in the Drake Passage during a research cruise. The project\u0027s goal is paleo-climate research looking to constrain the depth structure and time evolution of the radiocarbon content of the Southern Ocean during the glacial and deglaciation. Radiocarbon is a versatile tracer of past climate; its radioactive decay provides an internal clock with which to assess the rates of processes, and it can be used to trace the movement of carbon through the Earth\u0027s system. It enters the ocean through air-sea gas exchange, so processes that limits this will, therefore, reduce the radiocarbon content of both surface and deep waters. The Southern Ocean is a critical location for exchange of heat and carbon between the deep-ocean and atmospheric reservoirs, and the deep waters formed there fill large volumes of the global deep and intermediate oceans. As strong currents tend to scour away sediments, carbonate preservation is limited, and radiocarbon reservoir ages are poorly constrained, many traditional paleoceanographic techniques become impractical. It is proposed to alleviate these difficulties analyzing the chemical composition of deep-sea coral skeletons. Their aragonitic skeletons can be precisely dated using U-series decay, and when coupled with radiocarbon analyses will allow to calculate the C14/C12 ratio of the past water column.", "east": -35.0, "geometry": "POINT(-52.75 -58)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -54.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Robinson, Laura", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -61.5, "title": "LGM and Deglacial Radiocarbon from U-series Dated Drake Passage Deep-sea Corals", "uid": "p0000519", "west": -70.5}, {"awards": "0732467 Domack, Eugene", "bounds_geometry": null, "dataset_titles": "Cosmogenic-Nuclide Data at ICe-D; Expedition data of LMG0903; Expedition data of NBP1001; NBP1001 cruise data; Processed CTD Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001; Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001", "datasets": [{"dataset_uid": "002651", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1001", "url": "https://www.rvdata.us/search/cruise/NBP1001"}, {"dataset_uid": "601346", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Current Measurements; LADCP; Larsen Ice Shelf; NBP1001; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer", "people": "Huber, Bruce; Gordon, Arnold", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601346"}, {"dataset_uid": "002715", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0903", "url": "https://www.rvdata.us/search/cruise/LMG0903"}, {"dataset_uid": "601345", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; CTD; CTD Data; LARISSA; Larsen Ice Shelf; NBP1001; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Huber, Bruce; Gordon, Arnold", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Processed CTD Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601345"}, {"dataset_uid": "000142", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1001 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP1001"}, {"dataset_uid": "200297", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic-Nuclide Data at ICe-D", "url": "https://version2.ice-d.org/antarctica/nsf/"}], "date_created": "Thu, 03 Mar 2011 00:00:00 GMT", "description": "This award supports a research cruise to perform geologic studies in the area under and surrounding the former Larsen B ice shelf, on the Antarctic Peninsula. The ice shelf\u0027s disintegration in 2002 coupled with the unique marine geology of the area make it possible to understand the conditions leading to ice shelf collapse. Bellwethers of climate change that reflect both oceanographic and atmospheric conditions, ice shelves also hold back glacial flow in key areas of the polar regions. Their collapse results in glacial surging and could cause rapid rise in global sea levels. This project characterizes the Larsen ice shelf\u0027s history and conditions leading to its collapse by determining: 1) the size of the Larsen B during warmer climates and higher sea levels back to the Eemian interglacial, 125,000 years ago; 2) the configuration of the Antarctic Peninsula ice sheet during the LGM and its subsequent retreat; 3) the causes of the Larsen B\u0027s stability through the Holocene, during which other shelves have come and gone; 4) the controls on the dynamics of ice shelf margins, especially the roles of surface melting and oceanic processes, and 5) the changes in sediment flux, both biogenic and lithogenic, after large ice shelf breakup. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eThe broader impacts include graduate and undergraduate education through research projects and workshops; outreach to the general public through a television documentary and websites, and international collaboration with scientists from Belgium, Spain, Argentina, Canada, Germany and the UK. The work also has important societal relevance. Improving our understanding of how ice shelves behave in a warming world will improve models of sea level rise.\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eThe project is supported under NSF\u0027s International Polar Year (IPY) research emphasis area on \"Understanding Environmental Change in Polar Regions\".", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG; Larsen Ice Shelf; R/V NBP; Antarctic Peninsula; ICE SHEETS", "locations": "Antarctic Peninsula; Larsen Ice Shelf", "north": null, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Domack, Eugene Walter; Blanchette, Robert", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "ICE-D; R2R; USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine and Quaternary Geosciences", "uid": "p0000841", "west": null}, {"awards": "9909734 Anderson, John", "bounds_geometry": "POLYGON((-73.80311 -52.35021,-71.817373 -52.35021,-69.831636 -52.35021,-67.845899 -52.35021,-65.860162 -52.35021,-63.874425 -52.35021,-61.888688 -52.35021,-59.902951 -52.35021,-57.917214 -52.35021,-55.931477 -52.35021,-53.94574 -52.35021,-53.94574 -53.954842,-53.94574 -55.559474,-53.94574 -57.164106,-53.94574 -58.768738,-53.94574 -60.37337,-53.94574 -61.978002,-53.94574 -63.582634,-53.94574 -65.187266,-53.94574 -66.791898,-53.94574 -68.39653,-55.931477 -68.39653,-57.917214 -68.39653,-59.902951 -68.39653,-61.888688 -68.39653,-63.874425 -68.39653,-65.860162 -68.39653,-67.845899 -68.39653,-69.831636 -68.39653,-71.817373 -68.39653,-73.80311 -68.39653,-73.80311 -66.791898,-73.80311 -65.187266,-73.80311 -63.582634,-73.80311 -61.978002,-73.80311 -60.37337,-73.80311 -58.768738,-73.80311 -57.164106,-73.80311 -55.559474,-73.80311 -53.954842,-73.80311 -52.35021))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001803", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0201"}], "date_created": "Thu, 03 Mar 2011 00:00:00 GMT", "description": "9909734 Anderson This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research on the glaciomarine geology of the continental shelves of West Antarctica and the Antarctic Peninsula. It is hypothesized that the different glacial systems of the Antarctic Peninsula region have been more responsive to climate change and sea-level rise than either the West Antarctic or East Antarctic ice sheets. This is due mainly to the smaller size of these ice masses and the higher latitude location of the peninsula. Indeed, ice shelves of the Antarctic Peninsula are currently retreating at rates of up to a kilometer per year. But are these changes due to recent atmospheric warming in the region or are they simply the final phase of retreat since the last glacial maximum? This project hypothesizes that the deglacial history of the Antarctic Peninsula region has been quite complex, with different glacial systems retreating at different rates and at different times. This complex recessional history reflects the different sizes as well as different climatic and physiographic settings of glacial systems in the region. An understanding of the Late Pleistocene to Holocene glacial history of the Antarctic Peninsula glacial systems is needed to address how these systems responded to sea-level and climate change during that time interval. This investigation acquire new marine geological and geophysical data from the continental shelf to determine if and when different glacial systems were grounded on the shelf, to establish the extent of grounded ice, and to examine the history of glacial retreat. The project will build on an extensive seismic data set and hundreds of sediment cores collected along the Peninsula during earlier (1980\u0027s) cruises. Key to this investigation is the acquisition of swath bathymetry, side-scan sonar and very high-resolution sub-bottom (chirp) profiles from key drainage outlets. These new data will provide the necessary geomorphologic and stratigraphic framework for reconstructing the Antarctic Peninsula glacial record. Anticipated results will help constrain models for future glacier and ice sheet activity.", "east": -53.94574, "geometry": "POINT(-63.874425 -60.37337)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.35021, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John; Anderson, Jason", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -68.39653, "title": "LGM Late Pleistocene to Holocene Glacial History of West Antarctica", "uid": "p0000600", "west": -73.80311}, {"awards": "0541054 Sletten, Ronald; 0737168 Prentice, Michael", "bounds_geometry": "POLYGON((162.2335 -77.5047,162.3803 -77.5047,162.5271 -77.5047,162.6739 -77.5047,162.8207 -77.5047,162.9675 -77.5047,163.1143 -77.5047,163.2611 -77.5047,163.4079 -77.5047,163.5547 -77.5047,163.7015 -77.5047,163.7015 -77.52814,163.7015 -77.55158,163.7015 -77.57502,163.7015 -77.59846,163.7015 -77.6219,163.7015 -77.64534,163.7015 -77.66878,163.7015 -77.69222,163.7015 -77.71566,163.7015 -77.7391,163.5547 -77.7391,163.4079 -77.7391,163.2611 -77.7391,163.1143 -77.7391,162.9675 -77.7391,162.8207 -77.7391,162.6739 -77.7391,162.5271 -77.7391,162.3803 -77.7391,162.2335 -77.7391,162.2335 -77.71566,162.2335 -77.69222,162.2335 -77.66878,162.2335 -77.64534,162.2335 -77.6219,162.2335 -77.59846,162.2335 -77.57502,162.2335 -77.55158,162.2335 -77.52814,162.2335 -77.5047))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 06 Oct 2010 00:00:00 GMT", "description": "This award supports a project to examine the stratigraphy of near-surface sediments in Taylor Valley, Antarctica. Two contrasting hypotheses have been proposed for surface sediments in lower Taylor Valley, which have important and very different implications for how the West Antarctic Ice Sheet (WAIS) responded to the sea-level rise of the last deglaciation and Holocene environmental changes. One hypothesis holds that the sediments, designated Ross I drift, directly reflect \u003e10,000 14C-years of WAIS shrinkage in the Ross Sea during and perhaps driven by deglacial sea-level rise. The other hypothesis, holds that the Taylor sediments have little significance for WAIS change during the deglaciation. These two hypotheses reflect fundamentally different interpretations of the sediment record. Over the course of two field seasons and a third year at the home institutions, the project will test these two hypotheses using glacial geology, geochemistry, ground penetrating radar (GPR) at both 100 MHz and 400 MHz, and portable sediment coring. The intellectual merit of the proposed work is that it will test these two hypotheses and make novel use of the subsurface record that may result in new insights into WAIS sensitivity during the deglaciation. The study will also directly test the conclusion that Glacial Lake Washburn was much larger than previously proposed during the Last Glacial Maximum (LGM). This occurrence, if real, represents a stunning climate anomaly. Answers to these local ice sheet and lake questions directly pertain to larger scale issues concerning the influences of sea-level rise, climate change, and internal ice-sheet dynamics on the recession of the WAIS since the LGM. There are numerous broader impacts to this project. Understanding the glacial and lake history in the McMurdo Sound region has important implications for the role that the WAIS will play in future sea-level and global climate change. Moreover, the history of Taylor Valley has significance for the ecosystem studies currently being conducted by the LTER group. Lastly, during the course of the proposed research, the project will train two graduate and undergraduate students and the research will be featured prominently in the teaching of students.", "east": 163.7015, "geometry": "POINT(162.9675 -77.6219)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR", "is_usap_dc": false, "keywords": "Not provided; Salt", "locations": null, "north": -77.5047, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "Prentice, Michael; Sletten, Ronald S.", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -77.7391, "title": "Collaborative Research: Fluctuations of the West Antarctic Ice Sheet in Relation to Lake History in Taylor Valley, Antarctica, Since the Last Glacial Maximum", "uid": "p0000656", "west": 162.2335}, {"awards": "9814349 Hall, Brenda", "bounds_geometry": "POLYGON((-70.4838 -52.3532,-68.92937 -52.3532,-67.37494 -52.3532,-65.82051 -52.3532,-64.26608 -52.3532,-62.71165 -52.3532,-61.15722 -52.3532,-59.60279 -52.3532,-58.04836 -52.3532,-56.49393 -52.3532,-54.9395 -52.3532,-54.9395 -53.61625,-54.9395 -54.8793,-54.9395 -56.14235,-54.9395 -57.4054,-54.9395 -58.66845,-54.9395 -59.9315,-54.9395 -61.19455,-54.9395 -62.4576,-54.9395 -63.72065,-54.9395 -64.9837,-56.49393 -64.9837,-58.04836 -64.9837,-59.60279 -64.9837,-61.15722 -64.9837,-62.71165 -64.9837,-64.26608 -64.9837,-65.82051 -64.9837,-67.37494 -64.9837,-68.92937 -64.9837,-70.4838 -64.9837,-70.4838 -63.72065,-70.4838 -62.4576,-70.4838 -61.19455,-70.4838 -59.9315,-70.4838 -58.66845,-70.4838 -57.4054,-70.4838 -56.14235,-70.4838 -54.8793,-70.4838 -53.61625,-70.4838 -52.3532))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001743", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0209"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award supports a two year program to produce a new reconstruction of ice extent, elevation and thickness at the Last Glacial Maximum (LGM) for the South Shetland Islands in the Antarctic Peninsula. One field season on Livingston Island will involve mapping the areal extent and geomorphology of glacial drift and determining the elevation and distribution of trimlines. In addition, ice flow direction will be determined by mapping and measuring the elevation of erosional features and the position of erratic boulders. One of the main goals of this work will be to demonstrate whether or not organic material suitable for radiocarbon dating exists in the South Shetland Islands. If so, the age of the deposits will be determined by measuring the carbon-14 age of plant, algal, and fungal remains preserved at the base of the deposits, as well as incorporated marine shells, seal skin and other organic material that may be found in raised beach deposits. Another goal will be to concentrate on the development of relative sea-level curves from 2-3 key areas to show whether or not construction of such curves for the South Shetland Islands is possible. The new reconstruction of ice extent, elevation and thickness at the Last Glacial Maximum for the South Shetland Islands which will be produced by this work will be useful in studies of ocean circulation and ice dynamics in the vicinity of the Drake Passage. It will also contribute to the production of a deglacial chronology which will afford important clues about the mechanisms controlling ice retreat in this region of the southern hemisphere.", "east": -54.9395, "geometry": "POINT(-62.71165 -58.66845)", "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -52.3532, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hall, Brenda; Taylor, Frederick", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -64.9837, "title": "AMS Radiocarbon Chronology of Glacier Fluctuations in the South Shetland Islands During the Last Glacial/Interglacial Hemicycle:Implications for Global Climate Change", "uid": "p0000596", "west": -70.4838}, {"awards": "0538630 Severinghaus, Jeffrey", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 01 Apr 2009 00:00:00 GMT", "description": "0538630\u003cbr/\u003eSeveringhaus\u003cbr/\u003eThis award supports a project to produce the first record of Kr/N2 in the paleo-atmosphere as measured in air bubbles trapped in ice cores. These measurements may be indicative of past variations in mean ocean temperature. Knowing the mean ocean temperature in the past will give insight into past variations in deep ocean temperature, which remain poorly understood. Deep ocean temperature variations are important for understanding the mechanisms of climate change. Krypton is highly soluble in water, and its solubility varies with temperature, with higher solubilities at colder water temperatures. A colder ocean during the last glacial period would therefore hold more krypton than today\u0027s ocean. Because the total amount of krypton in the ocean-atmosphere system is constant, the increase in the krypton inventory in the glacial ocean should cause a resultant decrease in the atmospheric inventory of krypton. The primary goal of this work is to develop the use of Kr/N2 as an indicator of paleo-oceanic mean temperature. This will involve improving the analytical technique for the Kr/N2 measurement itself, and measuring the Kr/N2 in air bubbles in ice from the last glacial maximum (LGM) and the late Holocene in the Vostok and GISP2 ice cores. This provides an estimate of LGM mean ocean temperature change, and allows for a comparison between previous estimates of deep ocean temperature during the LGM. The Vostok ice core is ideal for this purpose because of the absence of melt layers, which compromise the krypton and xenon signal. Another goal is to improve precision on the Xe/N2 measurement, which could serve as a second, independent proxy of ocean temperature change. A mean ocean temperature time series during this transition may help to explain these observations. Additionally, the proposed work will measure the Kr/N2 from marine isotope stage (MIS) 3 in the GISP2 ice core. Knowing the past ocean temperature during MIS 3 will help to constrain sea level estimates during this time period. The broader impacts of the proposed work: are that it will provide the first estimate of the extent and timing of mean ocean temperature change in the past. This will help to constrain previously proposed mechanisms of climate change involving large changes in deep ocean temperature. This project will also support the education of a graduate student. The PI gives interviews and talks to the media and public about climate change, and the work will enhance these outreach activities. Finally, the work will occur during the International Polar Year (IPY), and will underscore the unique importance of the polar regions for understanding the global atmosphere and ocean system.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Paleoatmospheric Krypton and Xenon Abundances from Trapped Air in Polar Ice as Indicators of Past Mean Ocean Temperature", "uid": "p0000553", "west": null}, {"awards": "0230268 Anderson, Robert", "bounds_geometry": "POLYGON((-180 -50,-169 -50,-158 -50,-147 -50,-136 -50,-125 -50,-114 -50,-103 -50,-92 -50,-81 -50,-70 -50,-70 -51.5,-70 -53,-70 -54.5,-70 -56,-70 -57.5,-70 -59,-70 -60.5,-70 -62,-70 -63.5,-70 -65,-81 -65,-92 -65,-103 -65,-114 -65,-125 -65,-136 -65,-147 -65,-158 -65,-169 -65,180 -65,177 -65,174 -65,171 -65,168 -65,165 -65,162 -65,159 -65,156 -65,153 -65,150 -65,150 -63.5,150 -62,150 -60.5,150 -59,150 -57.5,150 -56,150 -54.5,150 -53,150 -51.5,150 -50,153 -50,156 -50,159 -50,162 -50,165 -50,168 -50,171 -50,174 -50,177 -50,-180 -50))", "dataset_titles": "Southern Ocean Deglacial Opal, Radionuclide, and Diatom Upwelling Data", "datasets": [{"dataset_uid": "000199", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Southern Ocean Deglacial Opal, Radionuclide, and Diatom Upwelling Data", "url": "https://www.ncdc.noaa.gov/paleo/study/8439"}], "date_created": "Mon, 12 Jan 2009 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the \"Silicic Acid Leakage Hypothesis\" as it relates to global carbon dioxide fluctuations during glacial-interglacial cycles.\u003cbr/\u003e\u003cbr/\u003eIntellectual Merit\u003cbr/\u003eThis project will evaluate the burial rate of biogenic opal in the Pacific sector of the Southern Ocean, both during the Last Glacial Maximum (LGM) and during the Holocene, as a critical test of the \"Silicic Acid Leakage Hypothesis\". \u003cbr/\u003e\u003cbr/\u003eThe \"Silicic Acid Leakage Hypothesis\" has been proposed recently to explain the glacial reduction in the carbon dioxide content of the atmosphere that has been reconstructed from Antarctic ice cores. Vast amounts of dissolved Si (silicic acid) are supplied to surface waters of the Southern Ocean by wind-driven upwelling of deep waters. Today, that dissolved Si is consumed almost quantitatively by diatoms who form skeletal structures composed of biogenic opal (a mineral form of silicon). According to the \"Silicic Acid Leakage Hypothesis\", environmental conditions in the Southern Ocean during glacial periods were unfavorable for diatom growth, leading to reduced (compared to interglacials) efficiency of dissolved Si utilization. Dissolved Si that was not consumed biologically in the glacial Southern ocean was then exported to the tropics in waters that sink in winter to depths of a few hundred meters along the northern fringes of the Antarctic Circumpolar Current, and return some decades later to the sunlit surface in tropical regions of wind-driven upwelling. \u003cbr/\u003e\u003cbr/\u003eAn increase in the amount of dissolved Si that \"leaks\" out of the Southern Ocean and later upwells at low latitudes could shift the global average composition of phytoplankton toward a greater abundance of diatoms and fewer CaCO3-secreting taxa (especially coccolithophorids). Consequences of such a taxonomic shift in the ocean\u0027s phytoplankton assemblage include:\u003cbr/\u003e a) an increase in the global average organic carbon/calcium carbonate ratio of particulate biogenic material sinking into the deep sea;\u003cbr/\u003e b) a reduction in the preservation and burial of calcium carbonate in marine sediments;\u003cbr/\u003e c) an increase in ocean alkalinity as a consequence of the first two changes mentioned above, and;\u003cbr/\u003e d) a lowering of atmospheric CO2 concentrations in response to increased alkalinity of ocean waters. \u003cbr/\u003e\u003cbr/\u003eA complete assessment of the Silicic acid leakage hypothesis will require an evaluation of: (1) Si utilization efficiencies using newly-developed stable isotopic techniques; (2) opal burial rates in low-latitude upwelling regions; and (3) opal burial rates in the Southern Ocean. This project addresses the last of these topics. \u003cbr/\u003e\u003cbr/\u003ePrevious work has shown that there was little change in opal burial rate between the LGM and the Holocene in the Atlantic and Indian sectors of the Southern Ocean. Preliminary results (summarized in this proposal) suggest that the Pacific may have been different, however, in that opal burial rates in the Pacific sector seem to have been lower during the LGM than during the Holocene, allowing for the possibility of \"Si leakage\" from this region. However, available results are too sparse to make any quantitative conclusions at this time. For that reason, we propose to make a comprehensive evaluation of opal burial rates in the Pacific sector of the Southern Ocean. \u003cbr/\u003e\u003cbr/\u003eSignificance and Broader Impacts\u003cbr/\u003eDetermining the mechanism(s) by which the ocean has regulated climate-related changes in the CO2 content of the atmosphere has been the focus of a substantial effort by paleoceanographers over the past two decades. The Silicic Acid Leakage Hypothesis is a viable new candidate mechanism that warrants further exploration and testing. Completion of the proposed work will contribute significantly to that effort. \u003cbr/\u003e\u003cbr/\u003eDuring the course of this work, several undergraduates will be exposed to paleoclimate research through their involvement in this project. Burckle and Anderson are both dedicated to the education and training of young scientists, and to the recruitment of women and under-represented minorities. To illustrate, two summer students (undergraduates) worked in Burckle\u0027s lab during the summer of 2002. One was a woman and the other (male) was a member of an under-represented minority. Anderson and Burckle will continue with similar recruitment efforts during the course of the proposed study. A minority student who has expressed an interest in working on this research during the summer of 2003 has already been identified.", "east": -70.0, "geometry": "POINT(-140 -57.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -50.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, Robert; Burckle, Lloyd", "platforms": "Not provided", "repo": "NCEI", "repositories": "NCEI", "science_programs": null, "south": -65.0, "title": "Opal Burial in the Pacific Sector of the Southern Ocean: A Test of the \"Silicic Acid Leakage Hypothesis.\"", "uid": "p0000457", "west": 150.0}, {"awards": "0538475 Bart, Philip", "bounds_geometry": "POLYGON((-180 -75,-178 -75,-176 -75,-174 -75,-172 -75,-170 -75,-168 -75,-166 -75,-164 -75,-162 -75,-160 -75,-160 -75.3,-160 -75.6,-160 -75.9,-160 -76.2,-160 -76.5,-160 -76.8,-160 -77.1,-160 -77.4,-160 -77.7,-160 -78,-162 -78,-164 -78,-166 -78,-168 -78,-170 -78,-172 -78,-174 -78,-176 -78,-178 -78,-180 -78,-180 -77.7,-180 -77.4,-180 -77.1,-180 -76.8,-180 -76.5,-180 -76.2,-180 -75.9,-180 -75.6,-180 -75.3,-180 -75))", "dataset_titles": "NBP0802 and NBP0803 Sediment samples (full data link not provided); NBP0802 data; NBP0803 data", "datasets": [{"dataset_uid": "000123", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0803 data", "url": "https://www.rvdata.us/search/cruise/NBP0803"}, {"dataset_uid": "000122", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0802 data", "url": "https://www.rvdata.us/search/cruise/NBP0802"}, {"dataset_uid": "000138", "doi": "", "keywords": null, "people": null, "repository": "AMGRF", "science_program": null, "title": "NBP0802 and NBP0803 Sediment samples (full data link not provided)", "url": "http://www.arf.fsu.edu/"}], "date_created": "Thu, 29 Mar 2007 00:00:00 GMT", "description": "This project determines the recent history of the West Antarctic Ice Sheet (WAIS) through a multidisciplinary study of the seabed in the Ross Sea of Antarctica. WAIS is perhaps the world\u0027s most critical ice sheet to sea level rise dut to near-future global warming. its history has been a key focus for the past decade, but there are significant questions as to whether WAIS was stable during the last glacial maximum--about 20,000 years ago--or undergoing advance and retreat. This project studies grounding zone translantions in Eastern Basin to constrain WAIS movements using a multidisciplinary approach that integrates multibeam bathymetry, seismic stratigraphy, sedimentology, diatom biostratigraphy, radiocarbon dating, 10Be concentration analyses, and numerical modeling.\u003cbr/\u003e\u003cbr/\u003eThe broader impacts include improving society\u0027s understanding of sea level rise linked to global warming; postdoctoral, graduate, and undergraduate education; and expanding the participation of groups underrepresented in Earth sciences through links with LSU\u0027s Geoscience Alliance to Encourage Minority Participation.", "east": -160.0, "geometry": "POINT(-170 -76.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e SEISMIC REFLECTION PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e WATERGUNS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES", "is_usap_dc": true, "keywords": "Ross Sea; R/V NBP; Ice Sheet; Last Glacial Maximum; Seismic Stratigraphy", "locations": "Ross Sea", "north": -75.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "Bart, Philip; Tomkin, Jonathan", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "AMGRF; R2R", "science_programs": null, "south": -78.0, "title": "WAIS grounding-zone migrations in Eastern Basin, Ross Sea and the LGM dilemma: New strategies to resolve the style and timing of outer continental shelf grounding events", "uid": "p0000539", "west": -180.0}, {"awards": "0126270 Doran, Peter", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 05 Feb 2007 00:00:00 GMT", "description": "Polar Programs, provides funds for a study of sediment cores from the McMurdo Dry Valley lakes. The Dry Valley lakes have a long history of fluctuating levels reflecting regional climate change. The history of lake level fluctuations is generally known from the LGM to early Holocene through 14C dates of buried organic matter in paleolake deposits. However, the youngest paleolake deposits available are between 8000 to 9000 14C yr BP, suggesting that lake levels were at or below current levels for much of the Holocene. Thus, any information about the lake history and climate controls for the Holocene is largely contained in bottom sediments. This project will attempt to extract paleoclimatic information from sediment cores for a series of closed-basin dry valley lakes under study by the McMurdo LTER site. This work involves multiple approaches to dating the sediments and use of several climate proxy approaches to extract century to millennial scale chronologies from Antarctic lacustrine deposits. This research uses knowledge on lake processes gained over the past eight years by the LTER to calibrate climate proxies from lake sediments. Proxies for lake depth and ice thickness, which are largely controlled by summer climate, are the focus of this work. This study focuses on four key questions: 1. How sensitively do dry valley lake sediments record Holocene environmental and climate variability? 2. What is the paleoclimatic variability in the dry valleys on a century and millennial scale throughout the Holocene? Especially, is the 1200 yr evaporative event unique, or are there other such events in the record? 3. Does a mid-Holocene (7000 to 5000 yr BP) climate shift occur in the dry valleys as documented elsewhere in the polar regions? 4. Is there evidence, in the dry valley lake record of the 1500 yr Holocene periodicities recently recognized in the Taylor Dome record? Core collection will be performed with LTER support using a state-of-the-art percussion/piston corer system that has been used successfully to retrieve long cores (10 to 20 m) from other remote polar locations. Analyses to be done include algal pigments, biogenic silica, basic geochemistry, organic and inorganic carbon and nitrogen content, stable isotopes of carbon, nitrogen, and oxygen, carbonate phases, salt content and mineralogy, and grain size. In addition this project will pursue a multi-chronometer approach to assess the age of the core through optically-stimulated luminescence, 226Ra/230Th , 230Th/234U, and 14C techniques. New experimentation with U-series techniques will be performed to allow for greater precision in the dry valley lake sediments. Compound specific isotopes and lipid biomarkers , which are powerful tools for inferring past lake conditions, will also be assessed. Combined, these analyses will provide a new century to millennial scale continuous record of the Holocene climate change in the Ross Sea region.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS", "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "Doran, Peter", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Paleoclimate Inferred from Lake Sediment Cores in Taylor Valley, Antarctica", "uid": "p0000092", "west": null}, {"awards": "0088054 Goldstein, Steven", "bounds_geometry": "POLYGON((-180 -39.57,-144 -39.57,-108 -39.57,-72 -39.57,-36 -39.57,0 -39.57,36 -39.57,72 -39.57,108 -39.57,144 -39.57,180 -39.57,180 -42.967,180 -46.364,180 -49.761,180 -53.158,180 -56.555,180 -59.952,180 -63.349,180 -66.746,180 -70.143,180 -73.54,144 -73.54,108 -73.54,72 -73.54,36 -73.54,0 -73.54,-36 -73.54,-72 -73.54,-108 -73.54,-144 -73.54,-180 -73.54,-180 -70.143,-180 -66.746,-180 -63.349,-180 -59.952,-180 -56.555,-180 -53.158,-180 -49.761,-180 -46.364,-180 -42.967,-180 -39.57))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 26 Apr 2005 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the sediment core from the Southern Ocean for paleoenvironmental research. The polar regions are susceptible to the largest changes in climate and are among the least accessible places on Earth. Current concern about the instability of the West Antarctic Ice Sheet has heightened awareness of the vulnerability of polar regions. This proposal seeks to gain a basic understanding of the isotopic characteristics of terrigenous sediment sources derived from Antarctica in the Holocene and Last Glacial Maximum, and their dispersal into the Southern Ocean. Terrigenous clastic sediments are brought to the ocean from continental sources via rivers, ice and wind, and distributed within the ocean by surface and deep currents. At present there are virtually no isotopic data on circumpolar detritus, save a few strontium (Sr) isotopic ratios in the Atlantic sector. This project will fill part of this gap. From the large range in geological ages of crustal provinces of Antarctica, we would predict that there are large isotopic differences in detritus around the continent. The main objectives are to (1) characterize the strontium-neodymium-lead-argon (Sr-Nd-Pb-Ar) isotope compositions of sediment sources derived from Antarctica, (2) to identify the composition and source ages of major ice rafted detritus (IRD) contributions by analyzing individual grains of hornblende and feldspar in conjunction with bulk isotopic analysis, and (3) track sediment dispersal into the Antarctic Circumpolar Current (ACC) during the Holocene and Last Glacial Maximum.\u003cbr/\u003e\u003cbr/\u003eBecause of the paucity of circumpolar data, this research necessarily has a large exploratory component. Consequently, it will provide a basic database for future studies. Nevertheless there are important hypothesis-driven questions that will be addressed in this primary pass. Can lessons learned in North Atlantic IRD studies be applied toward understanding the history of Antarctic ice sheets? Can the large geological variability around the Antarctic margin be treated as a series of natural tracer injections into the ACC, and thus characterize its trajectory, speed, and interaction with other current systems today and in the past? The proposed study is motivated by an exciting set of results from the South Atlantic, showing that detrital Sr isotope ratios are a sensitive current tracer in that region. This research should serve a basic need across many Earth Science disciplines if the use of long-lived radiogenic isotopes (Sr-Nd-Pb-Ar) as tracers of marine sediment sources is successful in elucidating processes related to changing climatic conditions. The results of this study will fill a basic gap in our knowledge of an important region of the Earth. At the same time, it will provide an essential basis for attempting reconstruction of the ACC during the LGM, as well as for future studies of Antarctic geology, ice sheet history, and the Southern Ocean circulation.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": -39.57, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Roy, Martin; Hemming, Sidney R.; Goldstein, Steven L.; Van De Flierdt, Christina-Maria", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -73.54, "title": "Establishing the Pattern of Holocene-LGM Changes in Sediment Contributions from Antarctica to the Southern Ocean", "uid": "p0000724", "west": -180.0}, {"awards": "9980691 Wahlen, Martin", "bounds_geometry": null, "dataset_titles": "Atmospheric CO2 Trapped in the Ice Core from Siple Dome, Antarctica", "datasets": [{"dataset_uid": "609202", "doi": "10.7265/N5N877Q9", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; CO2; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Deck, Bruce; Ahn, Jinho; Wahlen, Martin", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Atmospheric CO2 Trapped in the Ice Core from Siple Dome, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609202"}], "date_created": "Thu, 11 Dec 2003 00:00:00 GMT", "description": "9980691 Wahlen This award is for support for three years of funding to reconstruct the atmospheric carbon dioxide (CO2) and carbon-13 isotope (d13C) concentration in ice cores from Antarctica over several climatic periods. Samples from the Holocene, the Last Glacial Maximum (LGM)-Holocene transition and glacial stadial/interstadial episodes will be examined. Samples from the Siple Dome ice core drilled in 1998/99 will be made, in addition to measurements from the Taylor Dome and Vostok ice cores. The major objectives are to investigate the phase relationships between variations in the concentration of atmospheric CO2, its carbon isotope composition, and temperature changes (indicated by 18dO and dD of the ice) during deglaciations as well as across rapid climate change events (e.g. Dansgaard-Oeschger events). This will help to determine systematic changes in the global carbon cycle during and between different climatic periods, and to ascertain if the widely spread northern hemisphere temperature stadial/interstadial events produced a global atmospheric carbon dioxide signal. Proven experimental techniques will be used.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "FIELD SURVEYS; Siple Dome; Ice Core; USAP-DC; Carbon Dioxide", "locations": "Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Wahlen, Martin; Ahn, Jinho; Deck, Bruce", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "CO2 and Delta 13CO2 in Antarctic Ice Cores", "uid": "p0000166", "west": null}, {"awards": "9615292 Wahlen, Martin", "bounds_geometry": null, "dataset_titles": "Carbon-Isotopic Composition of Atmospheric CO2 since the Last Glacial Maximum; Taylor Dome Ice Core Chemistry, Ion, and Isotope Data", "datasets": [{"dataset_uid": "609246", "doi": "", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Paleoclimate; Taylor Dome; Taylor Dome Ice Core", "people": "Indermuhle, A.; Sowers, Todd A.; Smith, Jesse; Brook, Edward J.; Mayewski, Paul A.; Steig, Eric J.", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Taylor Dome Ice Core Chemistry, Ion, and Isotope Data", "url": "https://www.usap-dc.org/view/dataset/609246"}, {"dataset_uid": "609108", "doi": "10.7265/N54F1NN5", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Taylor Dome; Taylor Dome Ice Core", "people": "Wahlen, Martin", "repository": "USAP-DC", "science_program": null, "title": "Carbon-Isotopic Composition of Atmospheric CO2 since the Last Glacial Maximum", "url": "https://www.usap-dc.org/view/dataset/609108"}], "date_created": "Tue, 01 Jan 2002 00:00:00 GMT", "description": "This award is for support of a program to reconstruct the record of atmospheric carbon dioxide (and the carbon-13 isotopes of carbon dioxide) over several intervals, including the Last Glacial Maximum-Holocene transition, interstadial episodes, the mid-Holocene, the last 1000 years and the penultimate glacial period, using ice from the Taylor Dome and Vostok ice cores. The major objective of this study is to investigate the phase relationship between variations of the greenhouse gases occluded in the ice cores and temperature changes (indicated by oxygen and deuterium isotopes) during the last deglaciation. In addition, the concentration of atmospheric carbon dioxide over the past 1000 years and during the mid-Holocene will be determined in these cores.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "USAP-DC; Ice Core; GROUND-BASED OBSERVATIONS; Carbon; Trapped Gases; Glaciology; GROUND STATIONS; Taylor Dome; Carbon Dioxide; Isotope; Antarctica; Nitrogen", "locations": "Antarctica; Taylor Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Steig, Eric J.; Wahlen, Martin; Smith, Jesse; Brook, Edward J.; Indermuhle, A.; Mayewski, Paul A.; Sowers, Todd A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": null, "title": "Carbon Dioxide and Carbon Isotopes in the Taylor Dome and Vostok Ice Cores", "uid": "p0000153", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sensitivity of the Antarctic Ice Sheet to Climate Change over the Last Two Glacial/Interglacial Cycles
|
0944150 |
2022-03-03 | Hall, Brenda; Denton, George |
|
This award supports a project to investigate the sensitivity of the Antarctic ice sheet (AIS) to global climate change over the last two Glacial/Interglacial cycles. The intellectual merit of the project is that despite its importance to Earth's climate system, we currently lack a full understanding of AIS sensitivity to global climate change. This project will reconstruct and precisely date the history of marine-based ice in the Ross Sea sector over the last two glacial/interglacial cycles, which will enable a better understanding of the potential driving mechanisms (i.e., sea-level rise, ice dynamics, ocean temperature variations) for ice fluctuations. This will also help to place present ice?]sheet behavior in a long-term context. During the last glacial maximum (LGM), the AIS is known to have filled the Ross Embayment and although much has been done both in the marine and terrestrial settings to constrain its extent, the chronology of the ice sheet, particularly the timing and duration of the maximum and the pattern of initial recession, remains uncertain. In addition, virtually nothing is known of the penultimate glaciation, other than it is presumed to have been generally similar to the LGM. These shortcomings greatly limit our ability to understand AIS evolution and the driving mechanisms behind ice sheet fluctuations. This project will develop a detailed record of ice extent and chronology in the western Ross Embayment for not only the LGM, but also for the penultimate glaciation (Stage 6), from well-dated glacial geologic data in the Royal Society Range. Chronology will come primarily from high-precision Accelerator Mass Spectrometry (AMS) Carbon-14 (14C) and multi-collector Inductively Coupled Plasma (ICP)-Mass Spectrometry (MS) 234Uranium/230Thorium dating of lake algae and carbonates known to be widespread in the proposed field area. | POLYGON((163.6 -77.5,163.7 -77.5,163.8 -77.5,163.9 -77.5,164 -77.5,164.1 -77.5,164.2 -77.5,164.3 -77.5,164.4 -77.5,164.5 -77.5,164.6 -77.5,164.6 -77.57,164.6 -77.64,164.6 -77.71,164.6 -77.78,164.6 -77.85,164.6 -77.92,164.6 -77.99,164.6 -78.06,164.6 -78.13,164.6 -78.2,164.5 -78.2,164.4 -78.2,164.3 -78.2,164.2 -78.2,164.1 -78.2,164 -78.2,163.9 -78.2,163.8 -78.2,163.7 -78.2,163.6 -78.2,163.6 -78.13,163.6 -78.06,163.6 -77.99,163.6 -77.92,163.6 -77.85,163.6 -77.78,163.6 -77.71,163.6 -77.64,163.6 -77.57,163.6 -77.5)) | POINT(164.1 -77.85) | false | false | |||||||||
Collaborative Research: Holocene and Late Pleistocene Stream Deposition in the McMurdo Dry Valleys, Antarctica as a Proxy for Glacial Meltwater and Paleoclimate
|
2039419 |
2021-12-16 | Swanger, Kate | No dataset link provided | The McMurdo Dry Valleys are the largest ice-free region in Antarctica and home to a seasonally active hydrologic system, with streams and saline lakes. Streams are fed by summer meltwater from local glaciers and snowbanks. Therefore, streamflow is tied to summer climate conditions such as air temperatures, ground temperatures, winds, and incoming solar radiation. Based on 50 years of monitoring, summer stream activity has been observed to change, and it likely varied during the geologic past in response to regional climate change and fluctuating glaciers. Thus, deposits from these streams can address questions about past climate, meltwater, and lake level changes in this region. How did meltwater streamflow respond to past climate change? How did streamflow vary during periods of glacial advance and retreat? At what times did large lakes fill many of the valleys and what was their extent? The researchers plan to acquire a record of stream activity for the Dry Valleys that will span the three largest valleys and a time period of about 100,000 years. This record will come from a series of active and ancient alluvial fans that were deposited by streams as they flowed from valley sidewalls onto valley floors. The study will provide a long-term context with which to assess recent observed changes to stream activity and lake levels. The research will be led by two female mid-career investigators and contribute significantly to student research opportunities and education. The research will contribute to graduate and undergraduate education by including students in both field and laboratory research, as well as incorporating data and results into the classroom. The research will be disseminated to K-12 and non-scientific communities through outreach that includes professional development training for K-12 teachers in eastern Massachusetts, development of hands-on activities, visits to K-12 classrooms, and STEM education and literacy activities in North Carolina. The PIs propose to constrain rates of fluvial deposition and periods of increased fluvial activity in the McMurdo Dry Valleys during the Holocene and late Pleistocene. During 50 years of hydrologic monitoring in the Dry Valleys, scientists have observed that streams exhibit significant response to summer conditions. Previous studies of glacial and lacustrine deposits indicate regional glacier advance in the Dry Valleys during recent interglacial periods and high lake levels during and after the Last Glacial Maximum (LGM), with potentially significant low and high stands during the Holocene. However, the geologic record of meltwater activity is poorly constrained. The PIs seek to develop the first spatially-extensive record of stream deposition in the Dry Valleys by analyzing and dating alluvial fans. Given that alluvial fans are deposited by summer meltwater streams in a relatively stable tectonic setting, this record will serve as a proxy of regional summer climate conditions. Meltwater streams are an important component of the regional hydrologic system, connecting glaciers to lakes and affecting ecosystems and soils. A record of fluvial deposition is key to understanding the relationship between past climate change and regional hydrology. The proposed research will include remote- and field-based mapping of alluvial fans, stream channels, and meltwater sources as well as modeling potential incoming solar radiation to the fans and moisture sources during the austral summer. In the field, the PIs will document stratigraphy, collect near-surface sediments from 25 fans across four valleys (Taylor, Pearse, Wright, and Victoria), and collect 2- to 3-m vertical cores of ice-cemented sediments from three alluvial fan complexes. The PIs will then conduct depositional dating of fluvial sands via optically stimulated luminescence, and analyze mineralogy and bulk major element chemistry with X-ray powder diffraction and X-ray fluorescence. From these analyses, the PIs propose to (1) determine the timing of local- to regional-scale periods of high fluvial deposition, (2) calculate depositional rates, and (3) constrain depositional environments and sediment provenance. Given that many of the alluvial fans occur below the hypothesized maximum extents of glacially-dammed lakes in Wright and Victoria valleys, detailed stratigraphy, sediment provenance, and OSL dating of these fans could shed light on ongoing debates regarding the timing and extent of LGM and post-LGM lakes. The work will support a postdoctoral researcher, a PhD student, and many undergraduate and master’s students in cross-disciplinary research that spans stratigraphy, geochemistry, paleoclimatology and physics. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((161 -77.3,161.2 -77.3,161.4 -77.3,161.6 -77.3,161.8 -77.3,162 -77.3,162.2 -77.3,162.4 -77.3,162.6 -77.3,162.8 -77.3,163 -77.3,163 -77.35,163 -77.4,163 -77.45,163 -77.5,163 -77.55,163 -77.6,163 -77.65,163 -77.7,163 -77.75,163 -77.8,162.8 -77.8,162.6 -77.8,162.4 -77.8,162.2 -77.8,162 -77.8,161.8 -77.8,161.6 -77.8,161.4 -77.8,161.2 -77.8,161 -77.8,161 -77.75,161 -77.7,161 -77.65,161 -77.6,161 -77.55,161 -77.5,161 -77.45,161 -77.4,161 -77.35,161 -77.3)) | POINT(162 -77.55) | false | false | |||||||||
Collaborative Research: Last Glacial Maximum and Deglaciation Chronology for the Foundation Ice Stream and Southeastern Weddell Sea Embayment
|
0838783 0838256 0838784 |
2020-12-19 | Balco, Gregory; Todd, Claire; Conway, Howard | This award supports a project to find and date geologic evidence of past ice-marginal positions in the Pensacola Mountains, which border the Foundation Ice Stream at the head of the Weddell Sea embayment. The project will involve glacial geologic mapping and cosmogenic-nuclide surface exposure dating of glacially transported erratics. An ice-flow model will be used to link our exposure-dating results together in a glaciologically consistent way, and to relate them to regional LGM to Holocene elevation changes. A secondary focus of the project seeks to improve the effectiveness of exposure-dating methods in understanding ice sheet change. Changes in the location of the ice margin, and thus the exposure ages that record these changes, are controlled not only by regional ice sheet mass balance, but also by local effects on snow- and icefields immediately adjacent to the exposure-dating sites. This part of the project will combine glaciological observations near the present ice margin with targeted exposure- age sampling in an effort to better understand the processes controlling the ice margin location, and improve the interpretation of very recent exposure-age data as a record of latest Holocene to present ice sheet changes. The intellectual merit of the project is that it will provide direct geologic evidence of LGM-to-Holocene ice volume change in a region of Antarctica where no such evidence now exists. The broader impacts of the work involve both gathering information needed for accurate understanding of past and present global sea level change. Secondly, this project will help to develop and maintain the human and intellectual resources necessary for continued excellence in polar research and global change education, by linking experienced Antarctic researchers with early career scientists who seek to develop their expertise in both research and education. In addition, it brings together two early career scientists whose careers are focused at opposite ends of the research-education spectrum, thus facilitating better integration of research and education both in the careers of these scientists and in the outcome of this project. This award has field work in Antarctica. | POLYGON((-66.27517 -83.23921,-65.341961 -83.23921,-64.408752 -83.23921,-63.475543 -83.23921,-62.542334 -83.23921,-61.609125 -83.23921,-60.675916 -83.23921,-59.742707 -83.23921,-58.809498 -83.23921,-57.876289 -83.23921,-56.94308 -83.23921,-56.94308 -83.359865,-56.94308 -83.48052,-56.94308 -83.601175,-56.94308 -83.72183,-56.94308 -83.842485,-56.94308 -83.96314,-56.94308 -84.083795,-56.94308 -84.20445,-56.94308 -84.325105,-56.94308 -84.44576,-57.876289 -84.44576,-58.809498 -84.44576,-59.742707 -84.44576,-60.675916 -84.44576,-61.609125 -84.44576,-62.542334 -84.44576,-63.475543 -84.44576,-64.408752 -84.44576,-65.341961 -84.44576,-66.27517 -84.44576,-66.27517 -84.325105,-66.27517 -84.20445,-66.27517 -84.083795,-66.27517 -83.96314,-66.27517 -83.842485,-66.27517 -83.72183,-66.27517 -83.601175,-66.27517 -83.48052,-66.27517 -83.359865,-66.27517 -83.23921)) | POINT(-61.609125 -83.842485) | false | false | ||||||||||
Collaborative Research: The Role of Glacial History on the Structure and Functioning of Ecological Communities in the Shackleton Glacier Region of the Transantarctic Mountains
|
1341736 |
2020-11-02 | Adams, Byron; Fierer, Noah; Wall, Diana; Diaz, Melisa A.; Gardner, Christopher B.; Lyons, W. Berry | The project will characterize the functional, taxonomic, biotic and abiotic drivers of soil ecosystems in the Trans Antarctic Mountains (one of the most remote and harsh terrestrial landscapes on the planet). The work will utilize new high-throughput DNA and RNA sequencing technologies to identify members of the microbial communities and determine if the microbial community structures are independent of local environmental heterogeneities. In addition the project will determine if microbial diversity and function are correlated with time since the last glacial maximum (LGM). The expected results will greatly contribute to our knowledge regarding rates of microbial succession and help define the some of the limits to life and life-maintaining processes on Earth. The project will analyze genomes and RNA derived from these genomes to describe the relationships between biodiversity and ecosystem functioning from soils above and below LGM elevations and to correlate these with the environmental drivers associated with their development during the last ~18,000 years. The team will identify the taxonomic diversity and the functional genetic composition within a broad suite of soil biota and examine their patterns of assembly and distribution within the framework of their geological legacies. The project will mentor participants from undergraduate students to postdoctoral researchers and prepare them to effectively engage in research to meet their career aspirations. The project will contribute to ongoing public education efforts through relationships with K-12 teachers and administrators- to include University-Public School partnerships. Less formal activities include public lecture series and weblogs aimed at providing information on Antarctic polar desert ecosystems to the general public. Targeted classrooms near each PI's institution will participate in online, real-time discussions about current topics in Antarctic ecosystems research. | POLYGON((-177.4099 -84.4661,-177.08229 -84.4661,-176.75468 -84.4661,-176.42707 -84.4661,-176.09946 -84.4661,-175.77185 -84.4661,-175.44424 -84.4661,-175.11663000000001 -84.4661,-174.78902 -84.4661,-174.46141 -84.4661,-174.1338 -84.4661,-174.1338 -84.56828,-174.1338 -84.67045999999999,-174.1338 -84.77264,-174.1338 -84.87482,-174.1338 -84.977,-174.1338 -85.07918,-174.1338 -85.18136,-174.1338 -85.28354,-174.1338 -85.38571999999999,-174.1338 -85.4879,-174.46141 -85.4879,-174.78902 -85.4879,-175.11663000000001 -85.4879,-175.44424 -85.4879,-175.77185 -85.4879,-176.09946 -85.4879,-176.42707 -85.4879,-176.75468 -85.4879,-177.08229 -85.4879,-177.4099 -85.4879,-177.4099 -85.38571999999999,-177.4099 -85.28354,-177.4099 -85.18136,-177.4099 -85.07918,-177.4099 -84.977,-177.4099 -84.87482,-177.4099 -84.77264,-177.4099 -84.67045999999999,-177.4099 -84.56828,-177.4099 -84.4661)) | POINT(-175.77185 -84.977) | false | false | ||||||||||
Timing and Duration of the LGM and Post-LGM Grounding Events in Whales Deep Paleo Ice Stream, Eastern Ross Sea Middle Continental Shelf
|
1246357 |
2019-06-03 | Bart, Philip; Steinberg, Deborah |
|
Intellectual Merit: Evidence from the eastern Ross Sea continental shelf indicates that the West Antarctic Ice Sheet advanced and retreated during the last glacial cycle, but it is unclear whether the ice sheet advanced to the shelf edge or just to the middle shelf. These two end-member scenarios offer different interpretations as to why, how, and when the West Antarctic Ice Sheet oscillated. The PI proposes to acquire seismic, multibeam, and core data from Whales Deep, to evaluate the timing and duration of two advances of grounded ice to the outer and middle shelf of the Whales Deep Basin, a West Antarctic Ice Sheet paleo ice stream trough in eastern Ross Sea. Grounding events are represented by seismically resolvable Grounding Zone Wedges. The PI will collect radiocarbon dates on in situ benthic foraminifera from the grounding zone diamict as well as ramped pyrolysis radiocarbon dates on acid insoluble organics from open-marine mud overlying the grounding zone diamict. Using these data the PI will calculate the duration of the two grounding events. Furthermore, the PI will test a numerical model prediction that West Antarctic Ice Sheet retreat must have involved melting at the marine terminus of the ice sheet. Pore-water from the grounding zone diamict will be extracted from piston cores to determine salinity and δ18O values that should indicate if significant melting occurred at the grounding line. Broader impacts: The data collected will provide constraints on the timing and pattern of Last Glacial Maximum advance and retreat that can be incorporated into interpretations of ice-surface elevation changes. The proposed activities will provide valuable field and research training to undergraduate/graduate students and a Louisiana high-school science teacher. The research will be interactively shared with middle- and high-school science students and with visitors to the LSU Museum of Natural Science Weekend-Science Program. | None | None | false | false | |||||||||
Collaborative Research: Characterization of Upstream Ice and Firn Dynamics affecting the South Pole Ice Core
|
1443471 1443341 |
2018-06-14 | Koutnik, Michelle; Conway, Howard; Waddington, Edwin D.; Fudge, T. J.; Hawley, Robert L.; Osterberg, Erich | Ice-core records are critical to understanding past climate variations. An Antarctic ice core currently being drilled at the South Pole will allow detailed investigation of atmospheric gases and fill an important gap in understanding the pattern of climate variability across Antarctica. Critical to the interpretation of any ice core are: 1) accurate chronologies for both the ice and the trapped gas and 2) demonstration that records from the ice core reliably reflect climate. The proposed research will improve the ice and gas chronologies by making measurements of snow compaction in the upstream catchment in order to constrain age models of the ice. These measurements will be a key data set needed for better understanding and predicting time-varying conditions in the upper part of the ice sheet. The research team will measure the modern spatial gradients in accumulation rate, surface temperature, and water stable isotopes from shallow ice cores in the upstream catchment in order to determine the climate history from the ice-core record. The new ice-flow measurements will make it possible to define the path of ice from upstream to the South Pole ice-core drill site to assess spatial gradients in snowfall and to infer histories of snowfall from internal layers within the ice sheet. The project will be led by an early-career scientist, provide broad training to graduate students, and engage in public outreach on polar science. Ice-core records of stable isotopes, aerosol-born particles, and atmospheric gases are critical to understanding past climate variations. The proposed research will improve the ice and gas chronologies in the South Pole ice core by making in situ measurements of firn compaction in the upstream catchment to constrain models of the gas-age ice-age difference. The firn measurements will be a key data set needed to form a constitutive relationship for firn, and will drive better understanding and prediction of transient firn evolution. The research team will measure the modern gradients in accumulation rate, surface temperature, and water stable isotopes in the upstream catchment to separate spatial (advection) variations from temporal (climate) variations in the ice-core records. The ice-flow measurements will define the flowline upstream of the drill site, assess spatial gradients in accumulation, and infer histories of accumulation from radar-observed internal layers. Results will directly enhance interpretation of South Pole ice-core records, and also advance understanding of firn densification and drive next-generation firn models. | POLYGON((110 -89,117 -89,124 -89,131 -89,138 -89,145 -89,152 -89,159 -89,166 -89,173 -89,180 -89,180 -89.1,180 -89.2,180 -89.3,180 -89.4,180 -89.5,180 -89.6,180 -89.7,180 -89.8,180 -89.9,180 -90,173 -90,166 -90,159 -90,152 -90,145 -90,138 -90,131 -90,124 -90,117 -90,110 -90,110 -89.9,110 -89.8,110 -89.7,110 -89.6,110 -89.5,110 -89.4,110 -89.3,110 -89.2,110 -89.1,110 -89)) | POINT(145 -89.5) | false | false | ||||||||||
Collaborative Research: Deglaciation of the Ross Sea Embayment - constraints from Roosevelt Island
|
0944021 0944307 0943466 |
2018-02-16 | Conway, Howard; Brook, Edward J.; Hawley, Robert L. | This award supports a project to use the Roosevelt Island ice core as a glaciological dipstick for the eastern Ross Sea. Recent attention has focused on the eastern Ross Embayment, where there are no geological constraints on ice thickness changes, due to the lack of protruding rock "dipsticks" where the ice sheet can leave datable records of high stands. Recent work has shown how dated ice cores can be used as dipsticks to derive ice-thickness histories. Partners from New Zealand and Denmark will extract an ice core from Roosevelt Island during the 2010-2011 and 2011-12 austral summers. Their science objective is to contribute to understanding of climate variability over the past 40kyr. The science goal of this project is not the climate record, but rather the history of deglaciation in the Ross Sea. The new history from the eastern Ross Sea will be combined with the glacial histories from the central Ross Sea (Siple Dome and Byrd) and existing and emerging histories from geologic and marine records along the western Ross Sea margin and will allow investigators to establish an updated, self-consistent model of the configuration and thickness of ice in the Ross Embayment during the LGM, and the timing of deglaciation. Results from this work will provide ground truth for new-generation ice-sheet models that incorporate ice streams and fast-flow dynamics. Realistic ice-sheet models are needed not only for predicting the response to future possible environments, but also for investigating past behaviors of ice sheets. This research contributes to the primary goals of the West Antarctic Ice Sheet Initiative as well as the IPY focus on ice-sheet history and dynamics. It also contributes to understanding spatial and temporal patterns of climate change and climate dynamics over the past 40kyr, one of the primary goals of the International Partnerships in Ice Core Sciences (IPICS). The project will help to develop the next generation of scientists and will contribute to the education and training of two Ph.D. students. All participants will benefit from the international collaboration, which will expose them to different field and laboratory techniques and benefit future collaborative work. All participants are involved in scientific outreach and undergraduate education, and are committed to fostering diversity. Outreach will be accomplished through regularly scheduled community and K-12 outreach events, talks and popular writing by the PIs, as well as through University press offices. | POLYGON((-163 -79,-162.8 -79,-162.6 -79,-162.4 -79,-162.2 -79,-162 -79,-161.8 -79,-161.6 -79,-161.4 -79,-161.2 -79,-161 -79,-161 -79.05,-161 -79.1,-161 -79.15,-161 -79.2,-161 -79.25,-161 -79.3,-161 -79.35,-161 -79.4,-161 -79.45,-161 -79.5,-161.2 -79.5,-161.4 -79.5,-161.6 -79.5,-161.8 -79.5,-162 -79.5,-162.2 -79.5,-162.4 -79.5,-162.6 -79.5,-162.8 -79.5,-163 -79.5,-163 -79.45,-163 -79.4,-163 -79.35,-163 -79.3,-163 -79.25,-163 -79.2,-163 -79.15,-163 -79.1,-163 -79.05,-163 -79)) | POINT(-162 -79.25) | false | false | ||||||||||
Collaborative Research: Assessing the Antarctic Contribution to Sea-level Changes during the Last Deglaciation: Constraints from Darwin Glacier
|
1246170 1246110 |
2017-10-23 | Hall, Brenda; Stone, John; Conway, Howard |
|
Hall/1246170 This award supports a project to reconstruct past ice-surface elevations from detailed glacial mapping and dating of moraines (using 14C dates of algae from former ice-marginal ponds and 10Be surface exposure ages) in the region of the Darwin-Hatherton Glaciers in Antarctica in order to try and resolve very different interpretations that currently exist about the glacial history in the region. The results will be integrated with existing climate and geophysical data into a flow-line model to gain insight into glacier response to climate and ice-dynamics perturbations during the Late Glacial Maximum (LGM) in Antarctica. The work will contribute to a better understanding of both LGM ice thickness and whether or not there is any evidence that Antarctica contributed to Meltwater Pulse (MWP)-1A a very controversial topic in Antarctic glacial geology. The intellectual merit of the work relates to the fact that reconstructing past fluctuations of the Antarctic Ice Sheet (AIS) is critical for understanding the sensitivity of ice volume to sea-level and climatic change. Constraints on past behavior help put ongoing changes into context and provide a basis for predicting future sea-level rise. Broader impacts include the support of two graduate and two undergraduate students, as well as a female early-career investigator. Graduate students will be involved in all stages of the project from planning and field mapping to geochronological analyses, interpretation, synthesis and reporting. Two undergraduates will work on lab-based research from the project. The project also will include visits to K-12 classrooms to talk about glaciers and climate change, correspondence with teachers and students from the field, and web-based outreach. This award has field work in Antarctica. | POLYGON((154 -79.75,154.7 -79.75,155.4 -79.75,156.1 -79.75,156.8 -79.75,157.5 -79.75,158.2 -79.75,158.9 -79.75,159.6 -79.75,160.3 -79.75,161 -79.75,161 -79.8,161 -79.85,161 -79.9,161 -79.95,161 -80,161 -80.05,161 -80.1,161 -80.15,161 -80.2,161 -80.25,160.3 -80.25,159.6 -80.25,158.9 -80.25,158.2 -80.25,157.5 -80.25,156.8 -80.25,156.1 -80.25,155.4 -80.25,154.7 -80.25,154 -80.25,154 -80.2,154 -80.15,154 -80.1,154 -80.05,154 -80,154 -79.95,154 -79.9,154 -79.85,154 -79.8,154 -79.75)) | POINT(157.5 -80) | false | false | |||||||||
Terrestrial Geological Context for Glacier Change in the Northeast Antarctica Peninsula
|
1142002 |
2017-09-19 | Kaplan, Michael |
|
Intellectual Merit: The PIs propose to investigate last glacial maximum through Holocene glacial change on the northeastern Antarctic Peninsula, an area distinguished by dramatic ice shelf collapses and retreat of upstream glaciers. However, there is a lack of long-term context to know the relative significance of recent events over longer time scales. The PIs will obtain data on former ice margin positions, ice thicknesses, glacier retreat and thinning rates, and Holocene glacier change in the James Ross Island Archipelago and areas near the former Larsen-A ice shelf. These data include maximum- and minimum-limiting 14C and cosmogenic-nuclide exposure dates integrated with geomorphology and stratigraphy. Understanding the extent, nature, and history of glacial events is important for placing current changes in glacial extent into a long-term context. This research will also contribute to understanding the sensitivity of ice shelves and glaciers in this region to climate change. Records of changes in land-terminating glaciers will also address outstanding questions related to climate change since the LGM and through the Holocene. The PIs will collect samples during cooperative field projects with scientists of the Instituto Antártico Argentino and the Korea Polar Research Institute planned as part of existing, larger, research projects. Broader impacts: The proposed work includes collaborations with Argentina and Korea. The PIs are currently involved in or are initiating education and outreach activities that will be incorporated into this project. These include interactions with the American Museum of Natural History, the United States Military Academy at West Point, and undergraduate involvement in their laboratories. This project provides a significant opportunity to engage the public as it focuses on an area where environmental changes are the object of attention in the popular media. | POLYGON((-58 -63.7,-57.95 -63.7,-57.9 -63.7,-57.85 -63.7,-57.8 -63.7,-57.75 -63.7,-57.7 -63.7,-57.65 -63.7,-57.6 -63.7,-57.55 -63.7,-57.5 -63.7,-57.5 -63.73,-57.5 -63.76,-57.5 -63.79,-57.5 -63.82,-57.5 -63.85,-57.5 -63.88,-57.5 -63.91,-57.5 -63.94,-57.5 -63.97,-57.5 -64,-57.55 -64,-57.6 -64,-57.65 -64,-57.7 -64,-57.75 -64,-57.8 -64,-57.85 -64,-57.9 -64,-57.95 -64,-58 -64,-58 -63.97,-58 -63.94,-58 -63.91,-58 -63.88,-58 -63.85,-58 -63.82,-58 -63.79,-58 -63.76,-58 -63.73,-58 -63.7)) | POINT(-57.75 -63.85) | false | false | |||||||||
Collaborative Research: Late Quaternary History of Reedy Glacier
|
0229314 |
2015-03-30 | Stone, John |
|
The stability of the marine West Antarctic Ice Sheet (WAIS) remains an important, unresolved problem for predicting future sea level change. Recent studies indicate that the mass balance of the ice sheet today may be negative or positive. The apparent differences may stem in part from short-term fluctuations in flow. By comparison, geologic observations provide evidence of behavior over much longer time scales. Recent work involving glacial-geologic mapping, dating and ice-penetrating radar surveys suggests that deglaciation of both the Ross Sea Embayment and coastal Marie Byrd Land continued into the late Holocene, and leaves open the possibility of ongoing deglaciation and grounding-line retreat. However, previous work in the Ross Sea Embayment was based on data from just three locations that are all far to the north of the present grounding line. Additional data from farther south in the Ross Sea Embayment are needed to investigate whether recession has ended, or if the rate and pattern of deglaciation inferred from our previous study still apply to the present grounding line. This award provides support to reconstruct the evolution of Reedy Glacier, in the southern Transantarctic Mountains, since the Last Glacial Maximum (LGM). Because Reedy Glacier emerges from the mountains above the grounding line, its surface slope and elevation should record changes in thickness of grounded ice in the Ross Sea up to the present day. The deglaciation chronology of Reedy Glacier therefore can indicate whether Holocene retreat of the WAIS ended thousands of years ago, or is still continuing at present. This integrated glaciologic, glacial-geologic, and cosmogenic-isotope exposure- dating project will reconstruct past levels of Reedy Glacier. Over two field seasons, moraines will be mapped, dated and correlated at sites along the length of the glacier. Radar and GPS measurements will be made to supplement existing ice thickness and velocity data, which are needed as input for a model of glacier dynamics. The model will be used to relate geologic measurements to the grounding-line position downstream. Ultimately, the mapping, dating and ice-modeling components of the study will be integrated into a reconstruction that defines changes in ice thickness in the southern Ross Sea since the LGM, and relates these changes to the history of grounding-line retreat. This work directly addresses key goals of the West Antarctic Ice Sheet Initiative, which are to understand the dynamics, recent history and possible future behavior of the West Antarctic Ice Sheet. | None | None | false | false | |||||||||
Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core
|
0839122 0839093 0839075 |
2014-05-30 | Foreman, Christine; Skidmore, Mark; Saltzman, Eric; McConnell, Joseph; Priscu, John | This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>This award supports a project to use the WAIS Divide deep core to investigate the Last Deglaciation at sub-annual resolution through an integrated set of chemical and biological analyses. The intellectual merit of the project is that these analyses, combined with others, will take advantage of the high snow accumulation WAIS Divide site yielding the highest time resolution glacio-biogeochemical and gas record of any deep Antarctic ice core. With other high resolution Greenland cores (GISP2 and GRIP) and lower resolution Antarctic cores, the combined record will yield new insights into worldwide climate dynamics and abrupt change. The proposed chemical, biological, and elemental tracer measurements will also be used to address all of the WAIS Divide science themes. The broader impacts of the project include education and outreach activities such as numerous presentations to local K-12 students; opportunities for student and teacher involvement in the laboratory work; a teacher training program in Earth sciences in the heavily minority Santa Ana, Compton, and Costa Mesa, California school districts; and development of high school curricula. Extensive graduate and undergraduate student involvement also is planned and will include one post doctoral associate, one graduate student, and undergraduate hourly involvement at DRI; a graduate student and undergraduates at University of California, Irvine (UCI); and a post doctoral fellow at MSU. Student recruitment will be made from underrepresented groups building on a long track record of involvement and will include the NSF funded California Alliance for Minority Participation (CAMP) and the Montana American Indian Research Opportunities (AIRO).<br/><br/>This award does not involve field work in Antarctica. | POINT(112.05 -79.28) | POINT(112.05 -79.28) | false | false | ||||||||||
Collaborative Research: Constraints on the last Ross Ice Sheet from Glacial Deposits in the Southern Transantarctic Mountains
|
0838615 |
2013-09-05 | Hall, Brenda | No dataset link provided | Stone/0838818 <br/><br/>This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). <br/><br/>This award supports a project to study the former thickness and retreat history of Shackleton and Beardmore Glaciers which flow through the Transantarctic Mountains (TAMs) into the southern Ross Sea. Lateral moraine deposits along the lower reaches of these major outlet glaciers will be mapped and dated and the results will help to date the LGM and constrain the thickness of ice where it left the Transantarctic Mountains and flowed into the Ross Sea. The intellectual merit of the project is that the results will allow scientists to distinguish between models of ice retreat, which have important implications for former ice configuration and dynamics, and to constrain the contribution from Ross Sea deglaciation to global sea level through the late Holocene. In addition, this will make a significant contribution to a better understanding of the magnitude and timing of postglacial sea-level change and the potential contribution of Antarctica to sea-level rise in future. The broader impacts of the project are that the work will help quantify changes in grounded ice volume since the LGM, improve understanding of the ice dynamics responsible, and examine their implications for future sea level change. The project will train future scientists through participation of two graduate students and undergraduates who will develop self-contained research projects. As in previous Antarctic projects, there will be interaction with K-12 students through classroom visits, web-based expedition journals, letters from the field, and discussions with teachers and will allow the project to be shared with a wide audience. This award has field work in Antarctica. | POLYGON((-177.13 -84.55,-177.074 -84.55,-177.018 -84.55,-176.962 -84.55,-176.906 -84.55,-176.85 -84.55,-176.794 -84.55,-176.738 -84.55,-176.682 -84.55,-176.626 -84.55,-176.57 -84.55,-176.57 -84.615,-176.57 -84.68,-176.57 -84.745,-176.57 -84.81,-176.57 -84.875,-176.57 -84.94,-176.57 -85.005,-176.57 -85.07,-176.57 -85.135,-176.57 -85.2,-176.626 -85.2,-176.682 -85.2,-176.738 -85.2,-176.794 -85.2,-176.85 -85.2,-176.906 -85.2,-176.962 -85.2,-177.018 -85.2,-177.074 -85.2,-177.13 -85.2,-177.13 -85.135,-177.13 -85.07,-177.13 -85.005,-177.13 -84.94,-177.13 -84.875,-177.13 -84.81,-177.13 -84.745,-177.13 -84.68,-177.13 -84.615,-177.13 -84.55)) | POINT(-176.85 -84.875) | false | false | |||||||||
Collaborative Research:Grounding-line Retreat in the Southern Ross Sea - Constraints from Scott Glacier
|
0636818 |
2011-08-05 | Stone, John; Conway, Howard | No dataset link provided | Hall/0636687<br/><br/>This award supports a project to investigate late Pleistocene and Holocene changes in Scott Glacier, a key outlet glacier that flows directly into the Ross Sea just west of the present-day West Antarctic Ice Sheet (WAIS) grounding line. The overarching goals are to understand changes in WAIS configuration in the Ross Sea sector at and since the last glacial maximum (LGM) and to determine whether Holocene retreat observed in the Ross Embayment has ended or if it is still ongoing. To address these goals, moraine and drift sequences associated with Scott Glacier will be mapped and dated and ice thickness, surface velocity and surface mass balance will be measured to constrain an ice-flow model of the glacier. This model will be used to help interpret the dated geologic sequences. The intellectual merit of the project relates to gaining a better understanding of the West Antarctic Ice Sheet and how changing activity of fast-flowing outlet glaciers and ice streams exerts strong control on the mass balance of the ice sheet. Previous work suggests that grounding-line retreat in the Ross Sea continued into the late Holocene and left open the possibility of ongoing deglaciation as part of a long-term trend. Results from Reedy Glacier, an outlet glacier just behind the grounding line, suggest that retreat may have slowed substantially over the past 2000 years and perhaps even stopped. By coupling the work on Scott Glacier with recent data from Reedy Glacier, the grounding-line position will be bracketed and it should be possible to establish whether the retreat has truly ended or if it is ongoing. The broader impacts of the work relate to the societal relevance of an improved understanding of the West Antarctic ice sheet to establish how it will respond to current and possible future environmental changes. The work addresses this key goal of the West Antarctic Ice Sheet Initiative, as well as the International Polar Year focus on ice sheet history and dynamics. The work will develop future scientists through the education and training of one undergraduate and two Ph.D. students, interaction with K-12 students through classroom visits, web-based 'expedition' journals, letters from the field, and discussions with teachers. Results from this project will be posted with previous exposure dating results from Antarctica, on the University of Washington Cosmogenic Nuclide Lab website, which also provides information about chemical procedures and calculation methods to other scientists working with cosmogenic nuclides. | POLYGON((-157 -85,-156 -85,-155 -85,-154 -85,-153 -85,-152 -85,-151 -85,-150 -85,-149 -85,-148 -85,-147 -85,-147 -85.3,-147 -85.6,-147 -85.9,-147 -86.2,-147 -86.5,-147 -86.8,-147 -87.1,-147 -87.4,-147 -87.7,-147 -88,-148 -88,-149 -88,-150 -88,-151 -88,-152 -88,-153 -88,-154 -88,-155 -88,-156 -88,-157 -88,-157 -87.7,-157 -87.4,-157 -87.1,-157 -86.8,-157 -86.5,-157 -86.2,-157 -85.9,-157 -85.6,-157 -85.3,-157 -85)) | POINT(-152 -86.5) | false | false | |||||||||
LGM and Deglacial Radiocarbon from U-series Dated Drake Passage Deep-sea Corals
|
0902957 |
2011-06-28 | Robinson, Laura |
|
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The proposal seeks funds to continue a follow-up analytical work of deep-sea corals collected in the Drake Passage during a research cruise. The project's goal is paleo-climate research looking to constrain the depth structure and time evolution of the radiocarbon content of the Southern Ocean during the glacial and deglaciation. Radiocarbon is a versatile tracer of past climate; its radioactive decay provides an internal clock with which to assess the rates of processes, and it can be used to trace the movement of carbon through the Earth's system. It enters the ocean through air-sea gas exchange, so processes that limits this will, therefore, reduce the radiocarbon content of both surface and deep waters. The Southern Ocean is a critical location for exchange of heat and carbon between the deep-ocean and atmospheric reservoirs, and the deep waters formed there fill large volumes of the global deep and intermediate oceans. As strong currents tend to scour away sediments, carbonate preservation is limited, and radiocarbon reservoir ages are poorly constrained, many traditional paleoceanographic techniques become impractical. It is proposed to alleviate these difficulties analyzing the chemical composition of deep-sea coral skeletons. Their aragonitic skeletons can be precisely dated using U-series decay, and when coupled with radiocarbon analyses will allow to calculate the C14/C12 ratio of the past water column. | POLYGON((-70.5 -54.5,-66.95 -54.5,-63.4 -54.5,-59.85 -54.5,-56.3 -54.5,-52.75 -54.5,-49.2 -54.5,-45.65 -54.5,-42.1 -54.5,-38.55 -54.5,-35 -54.5,-35 -55.2,-35 -55.9,-35 -56.6,-35 -57.3,-35 -58,-35 -58.7,-35 -59.4,-35 -60.1,-35 -60.8,-35 -61.5,-38.55 -61.5,-42.1 -61.5,-45.65 -61.5,-49.2 -61.5,-52.75 -61.5,-56.3 -61.5,-59.85 -61.5,-63.4 -61.5,-66.95 -61.5,-70.5 -61.5,-70.5 -60.8,-70.5 -60.1,-70.5 -59.4,-70.5 -58.7,-70.5 -58,-70.5 -57.3,-70.5 -56.6,-70.5 -55.9,-70.5 -55.2,-70.5 -54.5)) | POINT(-52.75 -58) | false | false | |||||||||
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine and Quaternary Geosciences
|
0732467 |
2011-03-03 | Domack, Eugene Walter; Blanchette, Robert | This award supports a research cruise to perform geologic studies in the area under and surrounding the former Larsen B ice shelf, on the Antarctic Peninsula. The ice shelf's disintegration in 2002 coupled with the unique marine geology of the area make it possible to understand the conditions leading to ice shelf collapse. Bellwethers of climate change that reflect both oceanographic and atmospheric conditions, ice shelves also hold back glacial flow in key areas of the polar regions. Their collapse results in glacial surging and could cause rapid rise in global sea levels. This project characterizes the Larsen ice shelf's history and conditions leading to its collapse by determining: 1) the size of the Larsen B during warmer climates and higher sea levels back to the Eemian interglacial, 125,000 years ago; 2) the configuration of the Antarctic Peninsula ice sheet during the LGM and its subsequent retreat; 3) the causes of the Larsen B's stability through the Holocene, during which other shelves have come and gone; 4) the controls on the dynamics of ice shelf margins, especially the roles of surface melting and oceanic processes, and 5) the changes in sediment flux, both biogenic and lithogenic, after large ice shelf breakup. <br/><br/><br/><br/>The broader impacts include graduate and undergraduate education through research projects and workshops; outreach to the general public through a television documentary and websites, and international collaboration with scientists from Belgium, Spain, Argentina, Canada, Germany and the UK. The work also has important societal relevance. Improving our understanding of how ice shelves behave in a warming world will improve models of sea level rise.<br/><br/><br/><br/>The project is supported under NSF's International Polar Year (IPY) research emphasis area on "Understanding Environmental Change in Polar Regions". | None | None | false | false | ||||||||||
LGM Late Pleistocene to Holocene Glacial History of West Antarctica
|
9909734 |
2011-03-03 | Anderson, John; Anderson, Jason |
|
9909734 Anderson This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research on the glaciomarine geology of the continental shelves of West Antarctica and the Antarctic Peninsula. It is hypothesized that the different glacial systems of the Antarctic Peninsula region have been more responsive to climate change and sea-level rise than either the West Antarctic or East Antarctic ice sheets. This is due mainly to the smaller size of these ice masses and the higher latitude location of the peninsula. Indeed, ice shelves of the Antarctic Peninsula are currently retreating at rates of up to a kilometer per year. But are these changes due to recent atmospheric warming in the region or are they simply the final phase of retreat since the last glacial maximum? This project hypothesizes that the deglacial history of the Antarctic Peninsula region has been quite complex, with different glacial systems retreating at different rates and at different times. This complex recessional history reflects the different sizes as well as different climatic and physiographic settings of glacial systems in the region. An understanding of the Late Pleistocene to Holocene glacial history of the Antarctic Peninsula glacial systems is needed to address how these systems responded to sea-level and climate change during that time interval. This investigation acquire new marine geological and geophysical data from the continental shelf to determine if and when different glacial systems were grounded on the shelf, to establish the extent of grounded ice, and to examine the history of glacial retreat. The project will build on an extensive seismic data set and hundreds of sediment cores collected along the Peninsula during earlier (1980's) cruises. Key to this investigation is the acquisition of swath bathymetry, side-scan sonar and very high-resolution sub-bottom (chirp) profiles from key drainage outlets. These new data will provide the necessary geomorphologic and stratigraphic framework for reconstructing the Antarctic Peninsula glacial record. Anticipated results will help constrain models for future glacier and ice sheet activity. | POLYGON((-73.80311 -52.35021,-71.817373 -52.35021,-69.831636 -52.35021,-67.845899 -52.35021,-65.860162 -52.35021,-63.874425 -52.35021,-61.888688 -52.35021,-59.902951 -52.35021,-57.917214 -52.35021,-55.931477 -52.35021,-53.94574 -52.35021,-53.94574 -53.954842,-53.94574 -55.559474,-53.94574 -57.164106,-53.94574 -58.768738,-53.94574 -60.37337,-53.94574 -61.978002,-53.94574 -63.582634,-53.94574 -65.187266,-53.94574 -66.791898,-53.94574 -68.39653,-55.931477 -68.39653,-57.917214 -68.39653,-59.902951 -68.39653,-61.888688 -68.39653,-63.874425 -68.39653,-65.860162 -68.39653,-67.845899 -68.39653,-69.831636 -68.39653,-71.817373 -68.39653,-73.80311 -68.39653,-73.80311 -66.791898,-73.80311 -65.187266,-73.80311 -63.582634,-73.80311 -61.978002,-73.80311 -60.37337,-73.80311 -58.768738,-73.80311 -57.164106,-73.80311 -55.559474,-73.80311 -53.954842,-73.80311 -52.35021)) | POINT(-63.874425 -60.37337) | false | false | |||||||||
Collaborative Research: Fluctuations of the West Antarctic Ice Sheet in Relation to Lake History in Taylor Valley, Antarctica, Since the Last Glacial Maximum
|
0541054 0737168 |
2010-10-06 | Prentice, Michael; Sletten, Ronald S. | No dataset link provided | This award supports a project to examine the stratigraphy of near-surface sediments in Taylor Valley, Antarctica. Two contrasting hypotheses have been proposed for surface sediments in lower Taylor Valley, which have important and very different implications for how the West Antarctic Ice Sheet (WAIS) responded to the sea-level rise of the last deglaciation and Holocene environmental changes. One hypothesis holds that the sediments, designated Ross I drift, directly reflect >10,000 14C-years of WAIS shrinkage in the Ross Sea during and perhaps driven by deglacial sea-level rise. The other hypothesis, holds that the Taylor sediments have little significance for WAIS change during the deglaciation. These two hypotheses reflect fundamentally different interpretations of the sediment record. Over the course of two field seasons and a third year at the home institutions, the project will test these two hypotheses using glacial geology, geochemistry, ground penetrating radar (GPR) at both 100 MHz and 400 MHz, and portable sediment coring. The intellectual merit of the proposed work is that it will test these two hypotheses and make novel use of the subsurface record that may result in new insights into WAIS sensitivity during the deglaciation. The study will also directly test the conclusion that Glacial Lake Washburn was much larger than previously proposed during the Last Glacial Maximum (LGM). This occurrence, if real, represents a stunning climate anomaly. Answers to these local ice sheet and lake questions directly pertain to larger scale issues concerning the influences of sea-level rise, climate change, and internal ice-sheet dynamics on the recession of the WAIS since the LGM. There are numerous broader impacts to this project. Understanding the glacial and lake history in the McMurdo Sound region has important implications for the role that the WAIS will play in future sea-level and global climate change. Moreover, the history of Taylor Valley has significance for the ecosystem studies currently being conducted by the LTER group. Lastly, during the course of the proposed research, the project will train two graduate and undergraduate students and the research will be featured prominently in the teaching of students. | POLYGON((162.2335 -77.5047,162.3803 -77.5047,162.5271 -77.5047,162.6739 -77.5047,162.8207 -77.5047,162.9675 -77.5047,163.1143 -77.5047,163.2611 -77.5047,163.4079 -77.5047,163.5547 -77.5047,163.7015 -77.5047,163.7015 -77.52814,163.7015 -77.55158,163.7015 -77.57502,163.7015 -77.59846,163.7015 -77.6219,163.7015 -77.64534,163.7015 -77.66878,163.7015 -77.69222,163.7015 -77.71566,163.7015 -77.7391,163.5547 -77.7391,163.4079 -77.7391,163.2611 -77.7391,163.1143 -77.7391,162.9675 -77.7391,162.8207 -77.7391,162.6739 -77.7391,162.5271 -77.7391,162.3803 -77.7391,162.2335 -77.7391,162.2335 -77.71566,162.2335 -77.69222,162.2335 -77.66878,162.2335 -77.64534,162.2335 -77.6219,162.2335 -77.59846,162.2335 -77.57502,162.2335 -77.55158,162.2335 -77.52814,162.2335 -77.5047)) | POINT(162.9675 -77.6219) | false | false | |||||||||
AMS Radiocarbon Chronology of Glacier Fluctuations in the South Shetland Islands During the Last Glacial/Interglacial Hemicycle:Implications for Global Climate Change
|
9814349 |
2010-05-04 | Hall, Brenda; Taylor, Frederick |
|
This award supports a two year program to produce a new reconstruction of ice extent, elevation and thickness at the Last Glacial Maximum (LGM) for the South Shetland Islands in the Antarctic Peninsula. One field season on Livingston Island will involve mapping the areal extent and geomorphology of glacial drift and determining the elevation and distribution of trimlines. In addition, ice flow direction will be determined by mapping and measuring the elevation of erosional features and the position of erratic boulders. One of the main goals of this work will be to demonstrate whether or not organic material suitable for radiocarbon dating exists in the South Shetland Islands. If so, the age of the deposits will be determined by measuring the carbon-14 age of plant, algal, and fungal remains preserved at the base of the deposits, as well as incorporated marine shells, seal skin and other organic material that may be found in raised beach deposits. Another goal will be to concentrate on the development of relative sea-level curves from 2-3 key areas to show whether or not construction of such curves for the South Shetland Islands is possible. The new reconstruction of ice extent, elevation and thickness at the Last Glacial Maximum for the South Shetland Islands which will be produced by this work will be useful in studies of ocean circulation and ice dynamics in the vicinity of the Drake Passage. It will also contribute to the production of a deglacial chronology which will afford important clues about the mechanisms controlling ice retreat in this region of the southern hemisphere. | POLYGON((-70.4838 -52.3532,-68.92937 -52.3532,-67.37494 -52.3532,-65.82051 -52.3532,-64.26608 -52.3532,-62.71165 -52.3532,-61.15722 -52.3532,-59.60279 -52.3532,-58.04836 -52.3532,-56.49393 -52.3532,-54.9395 -52.3532,-54.9395 -53.61625,-54.9395 -54.8793,-54.9395 -56.14235,-54.9395 -57.4054,-54.9395 -58.66845,-54.9395 -59.9315,-54.9395 -61.19455,-54.9395 -62.4576,-54.9395 -63.72065,-54.9395 -64.9837,-56.49393 -64.9837,-58.04836 -64.9837,-59.60279 -64.9837,-61.15722 -64.9837,-62.71165 -64.9837,-64.26608 -64.9837,-65.82051 -64.9837,-67.37494 -64.9837,-68.92937 -64.9837,-70.4838 -64.9837,-70.4838 -63.72065,-70.4838 -62.4576,-70.4838 -61.19455,-70.4838 -59.9315,-70.4838 -58.66845,-70.4838 -57.4054,-70.4838 -56.14235,-70.4838 -54.8793,-70.4838 -53.61625,-70.4838 -52.3532)) | POINT(-62.71165 -58.66845) | false | false | |||||||||
Paleoatmospheric Krypton and Xenon Abundances from Trapped Air in Polar Ice as Indicators of Past Mean Ocean Temperature
|
0538630 |
2009-04-01 | Severinghaus, Jeffrey P. | No dataset link provided | 0538630<br/>Severinghaus<br/>This award supports a project to produce the first record of Kr/N2 in the paleo-atmosphere as measured in air bubbles trapped in ice cores. These measurements may be indicative of past variations in mean ocean temperature. Knowing the mean ocean temperature in the past will give insight into past variations in deep ocean temperature, which remain poorly understood. Deep ocean temperature variations are important for understanding the mechanisms of climate change. Krypton is highly soluble in water, and its solubility varies with temperature, with higher solubilities at colder water temperatures. A colder ocean during the last glacial period would therefore hold more krypton than today's ocean. Because the total amount of krypton in the ocean-atmosphere system is constant, the increase in the krypton inventory in the glacial ocean should cause a resultant decrease in the atmospheric inventory of krypton. The primary goal of this work is to develop the use of Kr/N2 as an indicator of paleo-oceanic mean temperature. This will involve improving the analytical technique for the Kr/N2 measurement itself, and measuring the Kr/N2 in air bubbles in ice from the last glacial maximum (LGM) and the late Holocene in the Vostok and GISP2 ice cores. This provides an estimate of LGM mean ocean temperature change, and allows for a comparison between previous estimates of deep ocean temperature during the LGM. The Vostok ice core is ideal for this purpose because of the absence of melt layers, which compromise the krypton and xenon signal. Another goal is to improve precision on the Xe/N2 measurement, which could serve as a second, independent proxy of ocean temperature change. A mean ocean temperature time series during this transition may help to explain these observations. Additionally, the proposed work will measure the Kr/N2 from marine isotope stage (MIS) 3 in the GISP2 ice core. Knowing the past ocean temperature during MIS 3 will help to constrain sea level estimates during this time period. The broader impacts of the proposed work: are that it will provide the first estimate of the extent and timing of mean ocean temperature change in the past. This will help to constrain previously proposed mechanisms of climate change involving large changes in deep ocean temperature. This project will also support the education of a graduate student. The PI gives interviews and talks to the media and public about climate change, and the work will enhance these outreach activities. Finally, the work will occur during the International Polar Year (IPY), and will underscore the unique importance of the polar regions for understanding the global atmosphere and ocean system. | None | None | false | false | |||||||||
Opal Burial in the Pacific Sector of the Southern Ocean: A Test of the "Silicic Acid Leakage Hypothesis."
|
0230268 |
2009-01-12 | Anderson, Robert; Burckle, Lloyd |
|
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the "Silicic Acid Leakage Hypothesis" as it relates to global carbon dioxide fluctuations during glacial-interglacial cycles.<br/><br/>Intellectual Merit<br/>This project will evaluate the burial rate of biogenic opal in the Pacific sector of the Southern Ocean, both during the Last Glacial Maximum (LGM) and during the Holocene, as a critical test of the "Silicic Acid Leakage Hypothesis". <br/><br/>The "Silicic Acid Leakage Hypothesis" has been proposed recently to explain the glacial reduction in the carbon dioxide content of the atmosphere that has been reconstructed from Antarctic ice cores. Vast amounts of dissolved Si (silicic acid) are supplied to surface waters of the Southern Ocean by wind-driven upwelling of deep waters. Today, that dissolved Si is consumed almost quantitatively by diatoms who form skeletal structures composed of biogenic opal (a mineral form of silicon). According to the "Silicic Acid Leakage Hypothesis", environmental conditions in the Southern Ocean during glacial periods were unfavorable for diatom growth, leading to reduced (compared to interglacials) efficiency of dissolved Si utilization. Dissolved Si that was not consumed biologically in the glacial Southern ocean was then exported to the tropics in waters that sink in winter to depths of a few hundred meters along the northern fringes of the Antarctic Circumpolar Current, and return some decades later to the sunlit surface in tropical regions of wind-driven upwelling. <br/><br/>An increase in the amount of dissolved Si that "leaks" out of the Southern Ocean and later upwells at low latitudes could shift the global average composition of phytoplankton toward a greater abundance of diatoms and fewer CaCO3-secreting taxa (especially coccolithophorids). Consequences of such a taxonomic shift in the ocean's phytoplankton assemblage include:<br/> a) an increase in the global average organic carbon/calcium carbonate ratio of particulate biogenic material sinking into the deep sea;<br/> b) a reduction in the preservation and burial of calcium carbonate in marine sediments;<br/> c) an increase in ocean alkalinity as a consequence of the first two changes mentioned above, and;<br/> d) a lowering of atmospheric CO2 concentrations in response to increased alkalinity of ocean waters. <br/><br/>A complete assessment of the Silicic acid leakage hypothesis will require an evaluation of: (1) Si utilization efficiencies using newly-developed stable isotopic techniques; (2) opal burial rates in low-latitude upwelling regions; and (3) opal burial rates in the Southern Ocean. This project addresses the last of these topics. <br/><br/>Previous work has shown that there was little change in opal burial rate between the LGM and the Holocene in the Atlantic and Indian sectors of the Southern Ocean. Preliminary results (summarized in this proposal) suggest that the Pacific may have been different, however, in that opal burial rates in the Pacific sector seem to have been lower during the LGM than during the Holocene, allowing for the possibility of "Si leakage" from this region. However, available results are too sparse to make any quantitative conclusions at this time. For that reason, we propose to make a comprehensive evaluation of opal burial rates in the Pacific sector of the Southern Ocean. <br/><br/>Significance and Broader Impacts<br/>Determining the mechanism(s) by which the ocean has regulated climate-related changes in the CO2 content of the atmosphere has been the focus of a substantial effort by paleoceanographers over the past two decades. The Silicic Acid Leakage Hypothesis is a viable new candidate mechanism that warrants further exploration and testing. Completion of the proposed work will contribute significantly to that effort. <br/><br/>During the course of this work, several undergraduates will be exposed to paleoclimate research through their involvement in this project. Burckle and Anderson are both dedicated to the education and training of young scientists, and to the recruitment of women and under-represented minorities. To illustrate, two summer students (undergraduates) worked in Burckle's lab during the summer of 2002. One was a woman and the other (male) was a member of an under-represented minority. Anderson and Burckle will continue with similar recruitment efforts during the course of the proposed study. A minority student who has expressed an interest in working on this research during the summer of 2003 has already been identified. | POLYGON((-180 -50,-169 -50,-158 -50,-147 -50,-136 -50,-125 -50,-114 -50,-103 -50,-92 -50,-81 -50,-70 -50,-70 -51.5,-70 -53,-70 -54.5,-70 -56,-70 -57.5,-70 -59,-70 -60.5,-70 -62,-70 -63.5,-70 -65,-81 -65,-92 -65,-103 -65,-114 -65,-125 -65,-136 -65,-147 -65,-158 -65,-169 -65,180 -65,177 -65,174 -65,171 -65,168 -65,165 -65,162 -65,159 -65,156 -65,153 -65,150 -65,150 -63.5,150 -62,150 -60.5,150 -59,150 -57.5,150 -56,150 -54.5,150 -53,150 -51.5,150 -50,153 -50,156 -50,159 -50,162 -50,165 -50,168 -50,171 -50,174 -50,177 -50,-180 -50)) | POINT(-140 -57.5) | false | false | |||||||||
WAIS grounding-zone migrations in Eastern Basin, Ross Sea and the LGM dilemma: New strategies to resolve the style and timing of outer continental shelf grounding events
|
0538475 |
2007-03-29 | Bart, Philip; Tomkin, Jonathan |
|
This project determines the recent history of the West Antarctic Ice Sheet (WAIS) through a multidisciplinary study of the seabed in the Ross Sea of Antarctica. WAIS is perhaps the world's most critical ice sheet to sea level rise dut to near-future global warming. its history has been a key focus for the past decade, but there are significant questions as to whether WAIS was stable during the last glacial maximum--about 20,000 years ago--or undergoing advance and retreat. This project studies grounding zone translantions in Eastern Basin to constrain WAIS movements using a multidisciplinary approach that integrates multibeam bathymetry, seismic stratigraphy, sedimentology, diatom biostratigraphy, radiocarbon dating, 10Be concentration analyses, and numerical modeling.<br/><br/>The broader impacts include improving society's understanding of sea level rise linked to global warming; postdoctoral, graduate, and undergraduate education; and expanding the participation of groups underrepresented in Earth sciences through links with LSU's Geoscience Alliance to Encourage Minority Participation. | POLYGON((-180 -75,-178 -75,-176 -75,-174 -75,-172 -75,-170 -75,-168 -75,-166 -75,-164 -75,-162 -75,-160 -75,-160 -75.3,-160 -75.6,-160 -75.9,-160 -76.2,-160 -76.5,-160 -76.8,-160 -77.1,-160 -77.4,-160 -77.7,-160 -78,-162 -78,-164 -78,-166 -78,-168 -78,-170 -78,-172 -78,-174 -78,-176 -78,-178 -78,-180 -78,-180 -77.7,-180 -77.4,-180 -77.1,-180 -76.8,-180 -76.5,-180 -76.2,-180 -75.9,-180 -75.6,-180 -75.3,-180 -75)) | POINT(-170 -76.5) | false | false | |||||||||
Paleoclimate Inferred from Lake Sediment Cores in Taylor Valley, Antarctica
|
0126270 |
2007-02-05 | Doran, Peter | No dataset link provided | Polar Programs, provides funds for a study of sediment cores from the McMurdo Dry Valley lakes. The Dry Valley lakes have a long history of fluctuating levels reflecting regional climate change. The history of lake level fluctuations is generally known from the LGM to early Holocene through 14C dates of buried organic matter in paleolake deposits. However, the youngest paleolake deposits available are between 8000 to 9000 14C yr BP, suggesting that lake levels were at or below current levels for much of the Holocene. Thus, any information about the lake history and climate controls for the Holocene is largely contained in bottom sediments. This project will attempt to extract paleoclimatic information from sediment cores for a series of closed-basin dry valley lakes under study by the McMurdo LTER site. This work involves multiple approaches to dating the sediments and use of several climate proxy approaches to extract century to millennial scale chronologies from Antarctic lacustrine deposits. This research uses knowledge on lake processes gained over the past eight years by the LTER to calibrate climate proxies from lake sediments. Proxies for lake depth and ice thickness, which are largely controlled by summer climate, are the focus of this work. This study focuses on four key questions: 1. How sensitively do dry valley lake sediments record Holocene environmental and climate variability? 2. What is the paleoclimatic variability in the dry valleys on a century and millennial scale throughout the Holocene? Especially, is the 1200 yr evaporative event unique, or are there other such events in the record? 3. Does a mid-Holocene (7000 to 5000 yr BP) climate shift occur in the dry valleys as documented elsewhere in the polar regions? 4. Is there evidence, in the dry valley lake record of the 1500 yr Holocene periodicities recently recognized in the Taylor Dome record? Core collection will be performed with LTER support using a state-of-the-art percussion/piston corer system that has been used successfully to retrieve long cores (10 to 20 m) from other remote polar locations. Analyses to be done include algal pigments, biogenic silica, basic geochemistry, organic and inorganic carbon and nitrogen content, stable isotopes of carbon, nitrogen, and oxygen, carbonate phases, salt content and mineralogy, and grain size. In addition this project will pursue a multi-chronometer approach to assess the age of the core through optically-stimulated luminescence, 226Ra/230Th , 230Th/234U, and 14C techniques. New experimentation with U-series techniques will be performed to allow for greater precision in the dry valley lake sediments. Compound specific isotopes and lipid biomarkers , which are powerful tools for inferring past lake conditions, will also be assessed. Combined, these analyses will provide a new century to millennial scale continuous record of the Holocene climate change in the Ross Sea region. | None | None | false | false | |||||||||
Establishing the Pattern of Holocene-LGM Changes in Sediment Contributions from Antarctica to the Southern Ocean
|
0088054 |
2005-04-26 | Roy, Martin; Hemming, Sidney R.; Goldstein, Steven L.; Van De Flierdt, Christina-Maria | No dataset link provided | This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the sediment core from the Southern Ocean for paleoenvironmental research. The polar regions are susceptible to the largest changes in climate and are among the least accessible places on Earth. Current concern about the instability of the West Antarctic Ice Sheet has heightened awareness of the vulnerability of polar regions. This proposal seeks to gain a basic understanding of the isotopic characteristics of terrigenous sediment sources derived from Antarctica in the Holocene and Last Glacial Maximum, and their dispersal into the Southern Ocean. Terrigenous clastic sediments are brought to the ocean from continental sources via rivers, ice and wind, and distributed within the ocean by surface and deep currents. At present there are virtually no isotopic data on circumpolar detritus, save a few strontium (Sr) isotopic ratios in the Atlantic sector. This project will fill part of this gap. From the large range in geological ages of crustal provinces of Antarctica, we would predict that there are large isotopic differences in detritus around the continent. The main objectives are to (1) characterize the strontium-neodymium-lead-argon (Sr-Nd-Pb-Ar) isotope compositions of sediment sources derived from Antarctica, (2) to identify the composition and source ages of major ice rafted detritus (IRD) contributions by analyzing individual grains of hornblende and feldspar in conjunction with bulk isotopic analysis, and (3) track sediment dispersal into the Antarctic Circumpolar Current (ACC) during the Holocene and Last Glacial Maximum.<br/><br/>Because of the paucity of circumpolar data, this research necessarily has a large exploratory component. Consequently, it will provide a basic database for future studies. Nevertheless there are important hypothesis-driven questions that will be addressed in this primary pass. Can lessons learned in North Atlantic IRD studies be applied toward understanding the history of Antarctic ice sheets? Can the large geological variability around the Antarctic margin be treated as a series of natural tracer injections into the ACC, and thus characterize its trajectory, speed, and interaction with other current systems today and in the past? The proposed study is motivated by an exciting set of results from the South Atlantic, showing that detrital Sr isotope ratios are a sensitive current tracer in that region. This research should serve a basic need across many Earth Science disciplines if the use of long-lived radiogenic isotopes (Sr-Nd-Pb-Ar) as tracers of marine sediment sources is successful in elucidating processes related to changing climatic conditions. The results of this study will fill a basic gap in our knowledge of an important region of the Earth. At the same time, it will provide an essential basis for attempting reconstruction of the ACC during the LGM, as well as for future studies of Antarctic geology, ice sheet history, and the Southern Ocean circulation. | POLYGON((-180 -39.57,-144 -39.57,-108 -39.57,-72 -39.57,-36 -39.57,0 -39.57,36 -39.57,72 -39.57,108 -39.57,144 -39.57,180 -39.57,180 -42.967,180 -46.364,180 -49.761,180 -53.158,180 -56.555,180 -59.952,180 -63.349,180 -66.746,180 -70.143,180 -73.54,144 -73.54,108 -73.54,72 -73.54,36 -73.54,0 -73.54,-36 -73.54,-72 -73.54,-108 -73.54,-144 -73.54,-180 -73.54,-180 -70.143,-180 -66.746,-180 -63.349,-180 -59.952,-180 -56.555,-180 -53.158,-180 -49.761,-180 -46.364,-180 -42.967,-180 -39.57)) | POINT(0 -89.999) | false | false | |||||||||
CO2 and Delta 13CO2 in Antarctic Ice Cores
|
9980691 |
2003-12-11 | Wahlen, Martin; Ahn, Jinho; Deck, Bruce |
|
9980691 Wahlen This award is for support for three years of funding to reconstruct the atmospheric carbon dioxide (CO2) and carbon-13 isotope (d13C) concentration in ice cores from Antarctica over several climatic periods. Samples from the Holocene, the Last Glacial Maximum (LGM)-Holocene transition and glacial stadial/interstadial episodes will be examined. Samples from the Siple Dome ice core drilled in 1998/99 will be made, in addition to measurements from the Taylor Dome and Vostok ice cores. The major objectives are to investigate the phase relationships between variations in the concentration of atmospheric CO2, its carbon isotope composition, and temperature changes (indicated by 18dO and dD of the ice) during deglaciations as well as across rapid climate change events (e.g. Dansgaard-Oeschger events). This will help to determine systematic changes in the global carbon cycle during and between different climatic periods, and to ascertain if the widely spread northern hemisphere temperature stadial/interstadial events produced a global atmospheric carbon dioxide signal. Proven experimental techniques will be used. | None | None | false | false | |||||||||
Carbon Dioxide and Carbon Isotopes in the Taylor Dome and Vostok Ice Cores
|
9615292 |
2002-01-01 | Steig, Eric J.; Wahlen, Martin; Smith, Jesse; Brook, Edward J.; Indermuhle, A.; Mayewski, Paul A.; Sowers, Todd A. |
|
This award is for support of a program to reconstruct the record of atmospheric carbon dioxide (and the carbon-13 isotopes of carbon dioxide) over several intervals, including the Last Glacial Maximum-Holocene transition, interstadial episodes, the mid-Holocene, the last 1000 years and the penultimate glacial period, using ice from the Taylor Dome and Vostok ice cores. The major objective of this study is to investigate the phase relationship between variations of the greenhouse gases occluded in the ice cores and temperature changes (indicated by oxygen and deuterium isotopes) during the last deglaciation. In addition, the concentration of atmospheric carbon dioxide over the past 1000 years and during the mid-Holocene will be determined in these cores. | None | None | false | false |