{"dp_type": "Dataset", "free_text": "Crustacea"}
[{"awards": "1848887 McClintock, James", "bounds_geometry": ["POLYGON((-64.36985 -64.77195,-64.3181783 -64.77195,-64.2665066 -64.77195,-64.2148349 -64.77195,-64.1631632 -64.77195,-64.1114915 -64.77195,-64.0598198 -64.77195,-64.0081481 -64.77195,-63.9564764 -64.77195,-63.9048047 -64.77195,-63.853133 -64.77195,-63.853133 -64.78477170000001,-63.853133 -64.7975934,-63.853133 -64.8104151,-63.853133 -64.8232368,-63.853133 -64.83605850000001,-63.853133 -64.8488802,-63.853133 -64.8617019,-63.853133 -64.8745236,-63.853133 -64.88734529999999,-63.853133 -64.900167,-63.9048047 -64.900167,-63.9564764 -64.900167,-64.0081481 -64.900167,-64.0598198 -64.900167,-64.1114915 -64.900167,-64.1631632 -64.900167,-64.2148349 -64.900167,-64.2665066 -64.900167,-64.3181783 -64.900167,-64.36985 -64.900167,-64.36985 -64.88734529999999,-64.36985 -64.8745236,-64.36985 -64.8617019,-64.36985 -64.8488802,-64.36985 -64.83605850000001,-64.36985 -64.8232368,-64.36985 -64.8104151,-64.36985 -64.7975934,-64.36985 -64.78477170000001,-64.36985 -64.77195))"], "date_created": "Tue, 04 Jun 2024 00:00:00 GMT", "description": "This dataset consists of underwater videos of transects along the benthos at 4 sites between the Joubin Islands and the Wawermans isalnds. These were used for community analyses of the benthic communities in combination with 2019 videos in dataset 601610 (https://doi.org/10.15784/601610 ). ", "east": -63.853133, "geometry": ["POINT(-64.1114915 -64.83605850000001)"], "keywords": "Antarctica; Biota; Cryosphere; Oceans; Southern Ocean; Video Transects", "locations": "Antarctica; Southern Ocean", "north": -64.77195, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Amsler, Charles", "project_titles": "Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica", "projects": [{"proj_uid": "p0010193", "repository": "USAP-DC", "title": "Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.900167, "title": "Underwater transect videos used for 2020 and 2023 community analyses", "uid": "601796", "west": -64.36985}, {"awards": "1848887 McClintock, James", "bounds_geometry": ["POINT(-64 -64)"], "date_created": "Fri, 24 May 2024 00:00:00 GMT", "description": "Feeding bioassay data from experiments testing consumption of untreated, palatable red macroalgal disks (Palmaria decipiens) by the amphipod Gondogeneia antarctica treated under ambient (pH 8.1), near future (7.7), and distant future (7.3) pH levels for 55 days.", "east": -64.0, "geometry": ["POINT(-64 -64)"], "keywords": "Antarctica; Cryosphere; Palmer Station", "locations": "Palmer Station; Antarctica", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Amsler, Charles", "project_titles": "Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica", "projects": [{"proj_uid": "p0010193", "repository": "USAP-DC", "title": "Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.0, "title": "Feeding of Gondogeneia antarctica maintained under ambient and low pH treatments", "uid": "601793", "west": -64.0}, {"awards": "1848887 McClintock, James", "bounds_geometry": ["POINT(-64 -64)"], "date_created": "Fri, 24 May 2024 00:00:00 GMT", "description": "Feeding bioassay data from experiments testing the palatability to an amphipod (Gondogeneia antarctica) thallus disks from the red alga, Palmaria decipiens treated under ambient (pH 8.1), near future (7.7), and distant future (7.3) pH levels for 18 days.", "east": -64.0, "geometry": ["POINT(-64 -64)"], "keywords": "Antarctica; Cryosphere; Palmer Station", "locations": "Antarctica; Palmer Station", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Amsler, Charles", "project_titles": "Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica", "projects": [{"proj_uid": "p0010193", "repository": "USAP-DC", "title": "Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.0, "title": "Palatability of Palmaria decipiens thallus from ambient and low pH treatments", "uid": "601792", "west": -64.0}, {"awards": "1848887 McClintock, James", "bounds_geometry": ["POINT(-64 -64)"], "date_created": "Wed, 22 May 2024 00:00:00 GMT", "description": "Feeding bioassay data from experiments testing the palatability to an amphipod (Gondogeneia antarctica) of half-natural concentration extracts of the brown alga Desmarestia menziesii treated under ambient (pH 8.1), near future (7.7), and distant future (7.3) pH levels for 52 days.", "east": -64.0, "geometry": ["POINT(-64 -64)"], "keywords": "Antarctica; Cryosphere; Palmer Station", "locations": "Palmer Station; Antarctica", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Amsler, Charles", "project_titles": "Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica", "projects": [{"proj_uid": "p0010193", "repository": "USAP-DC", "title": "Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.0, "title": "Palatability of Desmarestia menziesii extracts from ambient and low pH treatments", "uid": "601791", "west": -64.0}, {"awards": "1744550 Amsler, Charles; 1848887 McClintock, James", "bounds_geometry": ["POLYGON((-64.36985 -64.77195,-64.3181783 -64.77195,-64.2665066 -64.77195,-64.2148349 -64.77195,-64.1631632 -64.77195,-64.1114915 -64.77195,-64.0598198 -64.77195,-64.0081481 -64.77195,-63.9564764 -64.77195,-63.9048047 -64.77195,-63.853133 -64.77195,-63.853133 -64.78477170000001,-63.853133 -64.7975934,-63.853133 -64.8104151,-63.853133 -64.8232368,-63.853133 -64.83605850000001,-63.853133 -64.8488802,-63.853133 -64.8617019,-63.853133 -64.8745236,-63.853133 -64.88734529999999,-63.853133 -64.900167,-63.9048047 -64.900167,-63.9564764 -64.900167,-64.0081481 -64.900167,-64.0598198 -64.900167,-64.1114915 -64.900167,-64.1631632 -64.900167,-64.2148349 -64.900167,-64.2665066 -64.900167,-64.3181783 -64.900167,-64.36985 -64.900167,-64.36985 -64.88734529999999,-64.36985 -64.8745236,-64.36985 -64.8617019,-64.36985 -64.8488802,-64.36985 -64.83605850000001,-64.36985 -64.8232368,-64.36985 -64.8104151,-64.36985 -64.7975934,-64.36985 -64.78477170000001,-64.36985 -64.77195))"], "date_created": "Thu, 16 May 2024 00:00:00 GMT", "description": "File presents summary of image analysis of 956 screen grabs derived from 17 diver video transects of marine communities at 4 sites (A-D) along the Antarctic Peninsula surveyed in 2020 (sites B \u0026 C only) and 2023. The coordinates for these sites are in USAP-DC dataset 601330 (https://doi.org/10.15784/601330 ) and published in Amsler et al. 2003 (https://doi.org/10.1525/elementa.2023.00020).", "east": -63.853133, "geometry": ["POINT(-64.1114915 -64.83605850000001)"], "keywords": "Antarctica; Antarctic Peninsula; Biota; Cryosphere; Species Abundance; Video Transects", "locations": "Antarctica; Antarctic Peninsula", "north": -64.77195, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Amsler, Charles", "project_titles": "Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica", "projects": [{"proj_uid": "p0010193", "repository": "USAP-DC", "title": "Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.900167, "title": "2020 and 2023 Underwater video transect community analysis data", "uid": "601787", "west": -64.36985}, {"awards": "1848887 McClintock, James", "bounds_geometry": ["POLYGON((-64.06 -64.76,-64.059 -64.76,-64.058 -64.76,-64.057 -64.76,-64.056 -64.76,-64.055 -64.76,-64.054 -64.76,-64.053 -64.76,-64.05199999999999 -64.76,-64.051 -64.76,-64.05 -64.76,-64.05 -64.76100000000001,-64.05 -64.762,-64.05 -64.763,-64.05 -64.764,-64.05 -64.765,-64.05 -64.766,-64.05 -64.767,-64.05 -64.768,-64.05 -64.76899999999999,-64.05 -64.77,-64.051 -64.77,-64.05199999999999 -64.77,-64.053 -64.77,-64.054 -64.77,-64.055 -64.77,-64.056 -64.77,-64.057 -64.77,-64.058 -64.77,-64.059 -64.77,-64.06 -64.77,-64.06 -64.76899999999999,-64.06 -64.768,-64.06 -64.767,-64.06 -64.766,-64.06 -64.765,-64.06 -64.764,-64.06 -64.763,-64.06 -64.762,-64.06 -64.76100000000001,-64.06 -64.76))"], "date_created": "Thu, 22 Jun 2023 00:00:00 GMT", "description": "These data are counts of amphipods that had been maintained under ambient pH (8.0 to 8.1) and experimental pH levels of 7.7 (potential end-of-century ocean acidification conditions) and 7.3 (potential next-century conditions). The amphipods were collected from the brown macroalga Desmarestia menziesii and placed into experimental containers (5-gallon buckets) for 5-6 weeks (experimental period significantly shortened by COVID complications). D. menziesii was also present in the buckets and the density of amphipods on the macroalgae was the same as it was in the field collections. The dataset includes counts of amphipods in the initial conditions and at the end of the experiment from the three pH levels.", "east": -64.05, "geometry": ["POINT(-64.055 -64.765)"], "keywords": "Antarctica; Palmer Station", "locations": "Palmer Station; Antarctica", "north": -64.76, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Amsler, Charles", "project_titles": "Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica", "projects": [{"proj_uid": "p0010193", "repository": "USAP-DC", "title": "Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.77, "title": "Amphipod counts from 2020 ocean acidification experiment", "uid": "601702", "west": -64.06}, {"awards": "1848887 McClintock, James", "bounds_geometry": ["POLYGON((-64.06 -64.76,-64.058 -64.76,-64.056 -64.76,-64.054 -64.76,-64.052 -64.76,-64.05000000000001 -64.76,-64.048 -64.76,-64.046 -64.76,-64.04400000000001 -64.76,-64.042 -64.76,-64.04 -64.76,-64.04 -64.76100000000001,-64.04 -64.762,-64.04 -64.763,-64.04 -64.764,-64.04 -64.765,-64.04 -64.766,-64.04 -64.767,-64.04 -64.768,-64.04 -64.76899999999999,-64.04 -64.77,-64.042 -64.77,-64.04400000000001 -64.77,-64.046 -64.77,-64.048 -64.77,-64.05000000000001 -64.77,-64.052 -64.77,-64.054 -64.77,-64.056 -64.77,-64.058 -64.77,-64.06 -64.77,-64.06 -64.76899999999999,-64.06 -64.768,-64.06 -64.767,-64.06 -64.766,-64.06 -64.765,-64.06 -64.764,-64.06 -64.763,-64.06 -64.762,-64.06 -64.76100000000001,-64.06 -64.76))"], "date_created": "Thu, 22 Jun 2023 00:00:00 GMT", "description": "", "east": -64.04, "geometry": ["POINT(-64.05000000000001 -64.765)"], "keywords": "Antarctica; Palmer Station", "locations": "Palmer Station; Antarctica", "north": -64.76, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Amsler, Charles", "project_titles": "Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica", "projects": [{"proj_uid": "p0010193", "repository": "USAP-DC", "title": "Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.77, "title": "2023 daily seawater carbonate chemistry", "uid": "601701", "west": -64.06}, {"awards": "1848887 McClintock, James", "bounds_geometry": ["POLYGON((-64.06 -64.76,-64.058 -64.76,-64.056 -64.76,-64.054 -64.76,-64.052 -64.76,-64.05000000000001 -64.76,-64.048 -64.76,-64.046 -64.76,-64.04400000000001 -64.76,-64.042 -64.76,-64.04 -64.76,-64.04 -64.76100000000001,-64.04 -64.762,-64.04 -64.763,-64.04 -64.764,-64.04 -64.765,-64.04 -64.766,-64.04 -64.767,-64.04 -64.768,-64.04 -64.76899999999999,-64.04 -64.77,-64.042 -64.77,-64.04400000000001 -64.77,-64.046 -64.77,-64.048 -64.77,-64.05000000000001 -64.77,-64.052 -64.77,-64.054 -64.77,-64.056 -64.77,-64.058 -64.77,-64.06 -64.77,-64.06 -64.76899999999999,-64.06 -64.768,-64.06 -64.767,-64.06 -64.766,-64.06 -64.765,-64.06 -64.764,-64.06 -64.763,-64.06 -64.762,-64.06 -64.76100000000001,-64.06 -64.76))"], "date_created": "Thu, 22 Jun 2023 00:00:00 GMT", "description": "Results of daily monitoring of carbonate chemistry parameters in experimental containers (buckets).", "east": -64.04, "geometry": ["POINT(-64.05000000000001 -64.765)"], "keywords": "Antarctica; Palmer Station", "locations": "Palmer Station; Antarctica", "north": -64.76, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Amsler, Charles", "project_titles": "Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica", "projects": [{"proj_uid": "p0010193", "repository": "USAP-DC", "title": "Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.77, "title": "2020 daily seawater carbonate chemistry", "uid": "601700", "west": -64.06}, {"awards": "0542456 Caron, David; 0538148 Huber, Bruce", "bounds_geometry": ["POLYGON((169 -70.5,169.4 -70.5,169.8 -70.5,170.2 -70.5,170.6 -70.5,171 -70.5,171.4 -70.5,171.8 -70.5,172.2 -70.5,172.6 -70.5,173 -70.5,173 -70.65,173 -70.8,173 -70.95,173 -71.1,173 -71.25,173 -71.4,173 -71.55,173 -71.7,173 -71.85,173 -72,172.6 -72,172.2 -72,171.8 -72,171.4 -72,171 -72,170.6 -72,170.2 -72,169.8 -72,169.4 -72,169 -72,169 -71.85,169 -71.7,169 -71.55,169 -71.4,169 -71.25,169 -71.1,169 -70.95,169 -70.8,169 -70.65,169 -70.5))"], "date_created": "Thu, 25 Jun 2020 00:00:00 GMT", "description": "This data set was acquired with a CurrentMeter during Nathaniel B. Palmer expedition NBP0801 conducted in 2008 (Chief Scientist: Dr. David Caron; Investigator(s): Dr. Bruce Huber and Dr. Arnold Gordon). These data files are of Matlab Binary format and include Current Measurement, Salinity, and Temperature data and were processed after data collection. Data were acquired as part of the project(s): Cape Adare Long-term Mooring (CALM) and Collaborative Research:Do crustacean zooplankton play a pivotal role in structuring heterotrophic plankton communities., and funding was provided by NSF grant(s): ANT05-38148 and ANT05-42456.", "east": 173.0, "geometry": ["POINT(171 -71.25)"], "keywords": "Antarctica; Cape Adare; Mooring; NBP0801; Physical Oceanography; Ross Sea; R/v Nathaniel B. Palmer; Salinity; Southern Ocean; Temperature", "locations": "Antarctica; Southern Ocean; Cape Adare; Ross Sea; Ross Sea; Cape Adare; Antarctica", "north": -70.5, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "persons": "Huber, Bruce; Gordon, Arnold", "project_titles": "Cape Adare Long-term Mooring (CALM); Collaborative Research: Do Crustacean Zooplankton Play a Pivotal Role in Structuring Heterotrophic Plankton Communities in the Ross Sea?", "projects": [{"proj_uid": "p0000520", "repository": "USAP-DC", "title": "Collaborative Research: Do Crustacean Zooplankton Play a Pivotal Role in Structuring Heterotrophic Plankton Communities in the Ross Sea?"}, {"proj_uid": "p0000838", "repository": "USAP-DC", "title": "Cape Adare Long-term Mooring (CALM)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -72.0, "title": "Processed CurrentMeter Data from the Ross Sea near Antarctica acquired during the Nathaniel B. Palmer expedition NBP0801", "uid": "601344", "west": 169.0}, {"awards": "1043690 Scherer, Reed", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: Diatom abundance in sediment cores is typically used as a proxy for paleo primary productivity. This record is complicated by variable preservation, with most loss occurring in the water column via dissolution and zooplankton grazing. This study will investigate preservational biases via a series of controlled experiments to create proxies of original productivity based on morphological changes associated with diatom dissolution and fracture. The PIs will utilize fresh diatoms from culture. Specific objectives include: (1) Linking changes in diatom morphology to availability of dissolved silica and other physical and chemical parameters; (2) Documenting the dissolution process under controlled conditions; (3) Assessment of changes in morphology and diatom surface roughness with increased dissolution; (4) Documenting the physical effects of grazing and fecal pellet formation on diatom fragmentation and dissolution; and (5) Analyzing the impact of diatom dissolution on silica and carbon export. These objectives will be achieved by growing Southern Ocean diatom species in the laboratory under differing physical and chemical conditions; controlled serial dissolution experiments on cultured diatoms; analysis of the dissolution process by imaging frustules under scanning electron microscopy (SEM) and with micro-analysis of surface texture by atomic force microscopy (AFM); making the cultures available to krill and other live zooplankton crustaceans in order to analyze the specific effects of grazing and pelletization on diatom morphology; and comparing experimental results with natural plankton, sediment trap material, and selected Holocene, Pleistocene and Pliocene sediment core material.\nBroader impacts: This work will contribute to understanding of the use of diatom abundance as an indicator of paleoproductivity. The proposed experiments are multi-disciplinary in nature. Importantly, the project was designed, and the proposal largely written, by a Ph.D. candidate. The research proposed here will lead to peer-reviewed publications and provide a base for future studies over the course of an extremely promising scientific career. The project will also support an undergraduate research student at NIU. The PI is heavily involved in science outreach, including classroom visits, museum events and webinars related to evolution and climate change, and is active with NSF-funded outreach activities linked to the ANDRILL and WISSARD programs. He will continue these efforts with this project.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Biota; Diatom; Marine Sediments; Oceans; Sediment Core; Southern Ocean", "locations": "Antarctica; Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Haji-Sheikh, Michael; Scherer, Reed Paul", "project_titles": "Southern Ocean Diatom Taphonomy and Paleoproductivity: A Laboratory Study of Silica Degradation and Export", "projects": [{"proj_uid": "p0000360", "repository": "USAP-DC", "title": "Southern Ocean Diatom Taphonomy and Paleoproductivity: A Laboratory Study of Silica Degradation and Export"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Southern Ocean Diatom Taphonomy and Paleoproductivity: A Laboratory Study of Silica Degradation and Export", "uid": "600127", "west": -180.0}, {"awards": "0542111 Lonsdale, Darcy", "bounds_geometry": ["POINT(-166.287 -76.5799)"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "Recent studies of marine ecosystems show conflicting evidence for trophic cascades, and in particular the relative strength of the crustacean zooplankton-phytoplankton link. The Ross Sea is a natural laboratory for investigating this apparent conflict. It is a site of seasonally high abundances of phytoplankton, characterized by regions of distinct phytoplankton taxa; the southcentral polynya is strongly dominated by the colony-forming prymnesiophyte Phaeocystis antarctica, while coastal regions of this sea are typically dominated by diatoms or flagellate species. Recent studies indicate that, while the south-central polynya exhibits a massive phytoplankton bloom, the poor food quality of P. antarctica for many crustacean zooplankton prevents direct utilization of much of this phytoplankton bloom. Rather, evidence suggests that indirect utilization of this production may be the primary mechanism by which carbon and energy become available to those higher trophic levels. Specifically, we hypothesized that nano- and microzooplankton constitute an important food source for crustacean zooplankton (largely copepods and juvenile euphausiids) during the summer period in the Ross Sea where the phytoplankton assemblage is dominated by the prymnesiophyte. In turn, we also hypothesize that predation by copepods (and other Crustacea) controls and structures the species composition of these protistan assemblages. We occupied stations in the south-central Ross Sea Polynya (RSP) and Terra Nova Bay (TNB) during austral summer to test these hypotheses. We hypothesized that the diatom species that dominate the phytoplankton assemblage in TNB constitute a direct source of nutrition to herbivorous/omnivorous zooplankton (relative to the situation in the south-central RSP). That is, the contribution of heterotrophic protists to crustacean diets will be reduced in TNB. Our research addressed fundamental gaps in our knowledge of food web structure and trophic cascades.", "east": -166.287, "geometry": ["POINT(-166.287 -76.5799)"], "keywords": "Antarctica; Biota; Crustacea; Oceans; Phytoplankton; Ross Sea; Southern Ocean", "locations": "Ross Sea; Antarctica; Southern Ocean", "north": -76.5799, "nsf_funding_programs": null, "persons": "Lonsdale, Darcy", "project_titles": "Collaborative Research: Do Crustacean Zooplankton Play a Pivotal Role in Structuring Heterotrophic Plankton Communities in the Ross Sea?", "projects": [{"proj_uid": "p0000520", "repository": "USAP-DC", "title": "Collaborative Research: Do Crustacean Zooplankton Play a Pivotal Role in Structuring Heterotrophic Plankton Communities in the Ross Sea?"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.5799, "title": "Do Crustacean Zooplankton Play a Pivotal Role in Structuring Heterotrophic Plankton Communities in the Ross Sea?", "uid": "600059", "west": -166.287}, {"awards": "0442857 Baker, Bill", "bounds_geometry": ["POLYGON((-65 -63,-64.8 -63,-64.6 -63,-64.4 -63,-64.2 -63,-64 -63,-63.8 -63,-63.6 -63,-63.4 -63,-63.2 -63,-63 -63,-63 -63.2,-63 -63.4,-63 -63.6,-63 -63.8,-63 -64,-63 -64.2,-63 -64.4,-63 -64.6,-63 -64.8,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.8,-65 -64.6,-65 -64.4,-65 -64.2,-65 -64,-65 -63.8,-65 -63.6,-65 -63.4,-65 -63.2,-65 -63))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Mesoherbivores, and specifically amphipods, are a conspicuous and dominant component of the macroalgal community in Antarctica. Despite their high abundance, the functional ecology, and particularly the trophic relationships of Antarctic amphipods are poorly understood. This project will evaluate the importance of mesograzers (small invertebrate predators approximately 1 to 25 mm in body length) in western Antarctic Peninsula marine communities. This will be accomplished by examining the role of mesoherbivores in structuring macroalgal communities and by elucidating the ecological interactions of mesograzers with a dominant group of benthic macroinvertebrates, the marine sponges. Moreover, chemical studies will be conducted to gain a more thorough understanding of the chemical defenses that Antarctic Peninsula sponges direct towards crustacean mesograzers. Three sets of questions will be addressed concerning the importance of mesograzers, and amphipods in particular, in nearshore habitats of the western Antarctic Peninsula. First, the hypothesis that mesoherbivory is particularly heavy in western Antarctic Peninsula marine communities and has an important influence on algal community structure will be addressed. Initial studies will document which species of amphipods feed in whole or part on microalgae and macroalgae, the incidence and distribution of filamentous endophytes in dominant macroalgae, comparative night time patterns of amphipod abundances on macrophytes, and the role of chemical mediation in these relationships. Second, the broad hypothesis that mesograzers in general, and amphipods in particular, interact with and prey upon sponges to a greater extent than heretofore recognized in Antarctic communities will be tested. The functional basis of these associations will be considered by examining whether the sponges are used as prey, and if so, whether there is evidence that some sponges produce secondary metabolites that show efficacy against mesograzers such as amphipods. Third, the researchers will test the hypotheses that: 1) Antarctic algae and invertebrates biosynthesize secondary metabolites that deter feeding by amphipod predators; and 2) pigments found in three Antarctic sponges are tryptophan catabolites produced as defenses against crustacean predators that impact molting. Evaluation of these hypotheses will be based on isolation and characterization of the specific anti-feeding metabolites, on biosynthetic studies to establish the metabolic origin of the pigments, and on bioassays to establish the chemical defense roles of both groups of compounds. A variety of educational activities will be a major component of this project. Opportunities will be made to support graduate and undergraduate research, both through NSF programs as well as home university-based programs including a number of funded programs that enhance the representation of minorities in the sciences. Through their proven and highly successful interactive web program, the investigators will continue to involve a large numbers of teachers, K-12 students, and other members of the community at large in their scientific endeavors in Antarctica. Moreover, they will actively participate in outreach efforts by presenting numerous talks on their research to school and community groups.", "east": -63.0, "geometry": ["POINT(-64 -64)"], "keywords": "Antarctica; Biota; Oceans; Southern Ocean", "locations": "Southern Ocean; Antarctica", "north": -63.0, "nsf_funding_programs": null, "persons": "Baker, Bill", "project_titles": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula; Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing", "projects": [{"proj_uid": "p0000475", "repository": "USAP-DC", "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula"}, {"proj_uid": "p0010016", "repository": "USAP-DC", "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula", "uid": "600047", "west": -65.0}, {"awards": "0442769 McClintock, James", "bounds_geometry": ["POLYGON((-64.15 -64.78,-64.132 -64.78,-64.114 -64.78,-64.096 -64.78,-64.078 -64.78,-64.06 -64.78,-64.042 -64.78,-64.024 -64.78,-64.006 -64.78,-63.988 -64.78,-63.97 -64.78,-63.97 -64.784,-63.97 -64.788,-63.97 -64.792,-63.97 -64.796,-63.97 -64.8,-63.97 -64.804,-63.97 -64.808,-63.97 -64.812,-63.97 -64.816,-63.97 -64.82,-63.988 -64.82,-64.006 -64.82,-64.024 -64.82,-64.042 -64.82,-64.06 -64.82,-64.078 -64.82,-64.096 -64.82,-64.114 -64.82,-64.132 -64.82,-64.15 -64.82,-64.15 -64.816,-64.15 -64.812,-64.15 -64.808,-64.15 -64.804,-64.15 -64.8,-64.15 -64.796,-64.15 -64.792,-64.15 -64.788,-64.15 -64.784,-64.15 -64.78))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Mesoherbivores, and specifically amphipods, are a conspicuous and dominant component of the macroalgal community in Antarctica. Despite their high abundance, the functional ecology, and particularly the trophic relationships of Antarctic amphipods are poorly understood. This project will evaluate the importance of mesograzers (small invertebrate predators approximately 1 to 25 mm in body length) in western Antarctic Peninsula marine communities. This will be accomplished by examining the role of mesoherbivores in structuring macroalgal communities and by elucidating the ecological interactions of mesograzers with a dominant group of benthic macroinvertebrates, the marine sponges. Moreover, chemical studies will be conducted to gain a more thorough understanding of the chemical defenses that Antarctic Peninsula sponges direct towards crustacean mesograzers. Three sets of questions will be addressed concerning the importance of mesograzers, and amphipods in particular, in nearshore habitats of the western Antarctic Peninsula. First, the hypothesis that mesoherbivory is particularly heavy in western Antarctic Peninsula marine communities and has an important influence on algal community structure will be addressed. Initial studies will document which species of amphipods feed in whole or part on microalgae and macroalgae, the incidence and distribution of filamentous endophytes in dominant macroalgae, comparative night time patterns of amphipod abundances on macrophytes, and the role of chemical mediation in these relationships. Second, the broad hypothesis that mesograzers in general, and amphipods in particular, interact with and prey upon sponges to a greater extent than heretofore recognized in Antarctic communities will be tested. The functional basis of these associations will be considered by examining whether the sponges are used as prey, and if so, whether there is evidence that some sponges produce secondary metabolites that show efficacy against mesograzers such as amphipods. Third, the researchers will test the hypotheses that: 1) Antarctic algae and invertebrates biosynthesize secondary metabolites that deter feeding by amphipod predators; and 2) pigments found in three Antarctic sponges are tryptophan catabolites produced as defenses against crustacean predators that impact molting. Evaluation of these hypotheses will be based on isolation and characterization of the specific anti-feeding metabolites, on biosynthetic studies to establish the metabolic origin of the pigments, and on bioassays to establish the chemical defense roles of both groups of compounds. A variety of educational activities will be a major component of this project. Opportunities will be made to support graduate and undergraduate research, both through NSF programs as well as home university-based programs including a number of funded programs that enhance the representation of minorities in the sciences. Through their proven and highly successful interactive web program, the investigators will continue to involve a large numbers of teachers, K-12 students, and other members of the community at large in their scientific endeavors in Antarctica. Moreover, they will actively participate in outreach efforts by presenting numerous talks on their research to school and community groups.", "east": -63.97, "geometry": ["POINT(-64.06 -64.8)"], "keywords": "Antarctica; Biota; Oceans; Southern Ocean", "locations": "Antarctica; Southern Ocean", "north": -64.78, "nsf_funding_programs": null, "persons": "McClintock, James; Amsler, Charles", "project_titles": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula; Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing", "projects": [{"proj_uid": "p0000475", "repository": "USAP-DC", "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula"}, {"proj_uid": "p0010016", "repository": "USAP-DC", "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.82, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula", "uid": "600046", "west": -64.15}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Underwater transect videos used for 2020 and 2023 community analyses
|
1848887 |
2024-06-04 | Amsler, Charles |
Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica |
This dataset consists of underwater videos of transects along the benthos at 4 sites between the Joubin Islands and the Wawermans isalnds. These were used for community analyses of the benthic communities in combination with 2019 videos in dataset 601610 (https://doi.org/10.15784/601610 ). | ["POLYGON((-64.36985 -64.77195,-64.3181783 -64.77195,-64.2665066 -64.77195,-64.2148349 -64.77195,-64.1631632 -64.77195,-64.1114915 -64.77195,-64.0598198 -64.77195,-64.0081481 -64.77195,-63.9564764 -64.77195,-63.9048047 -64.77195,-63.853133 -64.77195,-63.853133 -64.78477170000001,-63.853133 -64.7975934,-63.853133 -64.8104151,-63.853133 -64.8232368,-63.853133 -64.83605850000001,-63.853133 -64.8488802,-63.853133 -64.8617019,-63.853133 -64.8745236,-63.853133 -64.88734529999999,-63.853133 -64.900167,-63.9048047 -64.900167,-63.9564764 -64.900167,-64.0081481 -64.900167,-64.0598198 -64.900167,-64.1114915 -64.900167,-64.1631632 -64.900167,-64.2148349 -64.900167,-64.2665066 -64.900167,-64.3181783 -64.900167,-64.36985 -64.900167,-64.36985 -64.88734529999999,-64.36985 -64.8745236,-64.36985 -64.8617019,-64.36985 -64.8488802,-64.36985 -64.83605850000001,-64.36985 -64.8232368,-64.36985 -64.8104151,-64.36985 -64.7975934,-64.36985 -64.78477170000001,-64.36985 -64.77195))"] | ["POINT(-64.1114915 -64.83605850000001)"] | false | false |
Feeding of Gondogeneia antarctica maintained under ambient and low pH treatments
|
1848887 |
2024-05-24 | Amsler, Charles |
Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica |
Feeding bioassay data from experiments testing consumption of untreated, palatable red macroalgal disks (Palmaria decipiens) by the amphipod Gondogeneia antarctica treated under ambient (pH 8.1), near future (7.7), and distant future (7.3) pH levels for 55 days. | ["POINT(-64 -64)"] | ["POINT(-64 -64)"] | false | false |
Palatability of Palmaria decipiens thallus from ambient and low pH treatments
|
1848887 |
2024-05-24 | Amsler, Charles |
Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica |
Feeding bioassay data from experiments testing the palatability to an amphipod (Gondogeneia antarctica) thallus disks from the red alga, Palmaria decipiens treated under ambient (pH 8.1), near future (7.7), and distant future (7.3) pH levels for 18 days. | ["POINT(-64 -64)"] | ["POINT(-64 -64)"] | false | false |
Palatability of Desmarestia menziesii extracts from ambient and low pH treatments
|
1848887 |
2024-05-22 | Amsler, Charles |
Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica |
Feeding bioassay data from experiments testing the palatability to an amphipod (Gondogeneia antarctica) of half-natural concentration extracts of the brown alga Desmarestia menziesii treated under ambient (pH 8.1), near future (7.7), and distant future (7.3) pH levels for 52 days. | ["POINT(-64 -64)"] | ["POINT(-64 -64)"] | false | false |
2020 and 2023 Underwater video transect community analysis data
|
1744550 1848887 |
2024-05-16 | Amsler, Charles |
Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica |
File presents summary of image analysis of 956 screen grabs derived from 17 diver video transects of marine communities at 4 sites (A-D) along the Antarctic Peninsula surveyed in 2020 (sites B & C only) and 2023. The coordinates for these sites are in USAP-DC dataset 601330 (https://doi.org/10.15784/601330 ) and published in Amsler et al. 2003 (https://doi.org/10.1525/elementa.2023.00020). | ["POLYGON((-64.36985 -64.77195,-64.3181783 -64.77195,-64.2665066 -64.77195,-64.2148349 -64.77195,-64.1631632 -64.77195,-64.1114915 -64.77195,-64.0598198 -64.77195,-64.0081481 -64.77195,-63.9564764 -64.77195,-63.9048047 -64.77195,-63.853133 -64.77195,-63.853133 -64.78477170000001,-63.853133 -64.7975934,-63.853133 -64.8104151,-63.853133 -64.8232368,-63.853133 -64.83605850000001,-63.853133 -64.8488802,-63.853133 -64.8617019,-63.853133 -64.8745236,-63.853133 -64.88734529999999,-63.853133 -64.900167,-63.9048047 -64.900167,-63.9564764 -64.900167,-64.0081481 -64.900167,-64.0598198 -64.900167,-64.1114915 -64.900167,-64.1631632 -64.900167,-64.2148349 -64.900167,-64.2665066 -64.900167,-64.3181783 -64.900167,-64.36985 -64.900167,-64.36985 -64.88734529999999,-64.36985 -64.8745236,-64.36985 -64.8617019,-64.36985 -64.8488802,-64.36985 -64.83605850000001,-64.36985 -64.8232368,-64.36985 -64.8104151,-64.36985 -64.7975934,-64.36985 -64.78477170000001,-64.36985 -64.77195))"] | ["POINT(-64.1114915 -64.83605850000001)"] | false | false |
Amphipod counts from 2020 ocean acidification experiment
|
1848887 |
2023-06-22 | Amsler, Charles |
Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica |
These data are counts of amphipods that had been maintained under ambient pH (8.0 to 8.1) and experimental pH levels of 7.7 (potential end-of-century ocean acidification conditions) and 7.3 (potential next-century conditions). The amphipods were collected from the brown macroalga Desmarestia menziesii and placed into experimental containers (5-gallon buckets) for 5-6 weeks (experimental period significantly shortened by COVID complications). D. menziesii was also present in the buckets and the density of amphipods on the macroalgae was the same as it was in the field collections. The dataset includes counts of amphipods in the initial conditions and at the end of the experiment from the three pH levels. | ["POLYGON((-64.06 -64.76,-64.059 -64.76,-64.058 -64.76,-64.057 -64.76,-64.056 -64.76,-64.055 -64.76,-64.054 -64.76,-64.053 -64.76,-64.05199999999999 -64.76,-64.051 -64.76,-64.05 -64.76,-64.05 -64.76100000000001,-64.05 -64.762,-64.05 -64.763,-64.05 -64.764,-64.05 -64.765,-64.05 -64.766,-64.05 -64.767,-64.05 -64.768,-64.05 -64.76899999999999,-64.05 -64.77,-64.051 -64.77,-64.05199999999999 -64.77,-64.053 -64.77,-64.054 -64.77,-64.055 -64.77,-64.056 -64.77,-64.057 -64.77,-64.058 -64.77,-64.059 -64.77,-64.06 -64.77,-64.06 -64.76899999999999,-64.06 -64.768,-64.06 -64.767,-64.06 -64.766,-64.06 -64.765,-64.06 -64.764,-64.06 -64.763,-64.06 -64.762,-64.06 -64.76100000000001,-64.06 -64.76))"] | ["POINT(-64.055 -64.765)"] | false | false |
2023 daily seawater carbonate chemistry
|
1848887 |
2023-06-22 | Amsler, Charles |
Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica |
["POLYGON((-64.06 -64.76,-64.058 -64.76,-64.056 -64.76,-64.054 -64.76,-64.052 -64.76,-64.05000000000001 -64.76,-64.048 -64.76,-64.046 -64.76,-64.04400000000001 -64.76,-64.042 -64.76,-64.04 -64.76,-64.04 -64.76100000000001,-64.04 -64.762,-64.04 -64.763,-64.04 -64.764,-64.04 -64.765,-64.04 -64.766,-64.04 -64.767,-64.04 -64.768,-64.04 -64.76899999999999,-64.04 -64.77,-64.042 -64.77,-64.04400000000001 -64.77,-64.046 -64.77,-64.048 -64.77,-64.05000000000001 -64.77,-64.052 -64.77,-64.054 -64.77,-64.056 -64.77,-64.058 -64.77,-64.06 -64.77,-64.06 -64.76899999999999,-64.06 -64.768,-64.06 -64.767,-64.06 -64.766,-64.06 -64.765,-64.06 -64.764,-64.06 -64.763,-64.06 -64.762,-64.06 -64.76100000000001,-64.06 -64.76))"] | ["POINT(-64.05000000000001 -64.765)"] | false | false | |
2020 daily seawater carbonate chemistry
|
1848887 |
2023-06-22 | Amsler, Charles |
Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica |
Results of daily monitoring of carbonate chemistry parameters in experimental containers (buckets). | ["POLYGON((-64.06 -64.76,-64.058 -64.76,-64.056 -64.76,-64.054 -64.76,-64.052 -64.76,-64.05000000000001 -64.76,-64.048 -64.76,-64.046 -64.76,-64.04400000000001 -64.76,-64.042 -64.76,-64.04 -64.76,-64.04 -64.76100000000001,-64.04 -64.762,-64.04 -64.763,-64.04 -64.764,-64.04 -64.765,-64.04 -64.766,-64.04 -64.767,-64.04 -64.768,-64.04 -64.76899999999999,-64.04 -64.77,-64.042 -64.77,-64.04400000000001 -64.77,-64.046 -64.77,-64.048 -64.77,-64.05000000000001 -64.77,-64.052 -64.77,-64.054 -64.77,-64.056 -64.77,-64.058 -64.77,-64.06 -64.77,-64.06 -64.76899999999999,-64.06 -64.768,-64.06 -64.767,-64.06 -64.766,-64.06 -64.765,-64.06 -64.764,-64.06 -64.763,-64.06 -64.762,-64.06 -64.76100000000001,-64.06 -64.76))"] | ["POINT(-64.05000000000001 -64.765)"] | false | false |
Processed CurrentMeter Data from the Ross Sea near Antarctica acquired during the Nathaniel B. Palmer expedition NBP0801
|
0542456 0538148 |
2020-06-25 | Huber, Bruce; Gordon, Arnold |
Collaborative Research: Do Crustacean Zooplankton Play a Pivotal Role in Structuring Heterotrophic Plankton Communities in the Ross Sea? Cape Adare Long-term Mooring (CALM) |
This data set was acquired with a CurrentMeter during Nathaniel B. Palmer expedition NBP0801 conducted in 2008 (Chief Scientist: Dr. David Caron; Investigator(s): Dr. Bruce Huber and Dr. Arnold Gordon). These data files are of Matlab Binary format and include Current Measurement, Salinity, and Temperature data and were processed after data collection. Data were acquired as part of the project(s): Cape Adare Long-term Mooring (CALM) and Collaborative Research:Do crustacean zooplankton play a pivotal role in structuring heterotrophic plankton communities., and funding was provided by NSF grant(s): ANT05-38148 and ANT05-42456. | ["POLYGON((169 -70.5,169.4 -70.5,169.8 -70.5,170.2 -70.5,170.6 -70.5,171 -70.5,171.4 -70.5,171.8 -70.5,172.2 -70.5,172.6 -70.5,173 -70.5,173 -70.65,173 -70.8,173 -70.95,173 -71.1,173 -71.25,173 -71.4,173 -71.55,173 -71.7,173 -71.85,173 -72,172.6 -72,172.2 -72,171.8 -72,171.4 -72,171 -72,170.6 -72,170.2 -72,169.8 -72,169.4 -72,169 -72,169 -71.85,169 -71.7,169 -71.55,169 -71.4,169 -71.25,169 -71.1,169 -70.95,169 -70.8,169 -70.65,169 -70.5))"] | ["POINT(171 -71.25)"] | false | false |
Southern Ocean Diatom Taphonomy and Paleoproductivity: A Laboratory Study of Silica Degradation and Export
|
1043690 |
2014-01-01 | Haji-Sheikh, Michael; Scherer, Reed Paul |
Southern Ocean Diatom Taphonomy and Paleoproductivity: A Laboratory Study of Silica Degradation and Export |
Intellectual Merit: Diatom abundance in sediment cores is typically used as a proxy for paleo primary productivity. This record is complicated by variable preservation, with most loss occurring in the water column via dissolution and zooplankton grazing. This study will investigate preservational biases via a series of controlled experiments to create proxies of original productivity based on morphological changes associated with diatom dissolution and fracture. The PIs will utilize fresh diatoms from culture. Specific objectives include: (1) Linking changes in diatom morphology to availability of dissolved silica and other physical and chemical parameters; (2) Documenting the dissolution process under controlled conditions; (3) Assessment of changes in morphology and diatom surface roughness with increased dissolution; (4) Documenting the physical effects of grazing and fecal pellet formation on diatom fragmentation and dissolution; and (5) Analyzing the impact of diatom dissolution on silica and carbon export. These objectives will be achieved by growing Southern Ocean diatom species in the laboratory under differing physical and chemical conditions; controlled serial dissolution experiments on cultured diatoms; analysis of the dissolution process by imaging frustules under scanning electron microscopy (SEM) and with micro-analysis of surface texture by atomic force microscopy (AFM); making the cultures available to krill and other live zooplankton crustaceans in order to analyze the specific effects of grazing and pelletization on diatom morphology; and comparing experimental results with natural plankton, sediment trap material, and selected Holocene, Pleistocene and Pliocene sediment core material. Broader impacts: This work will contribute to understanding of the use of diatom abundance as an indicator of paleoproductivity. The proposed experiments are multi-disciplinary in nature. Importantly, the project was designed, and the proposal largely written, by a Ph.D. candidate. The research proposed here will lead to peer-reviewed publications and provide a base for future studies over the course of an extremely promising scientific career. The project will also support an undergraduate research student at NIU. The PI is heavily involved in science outreach, including classroom visits, museum events and webinars related to evolution and climate change, and is active with NSF-funded outreach activities linked to the ANDRILL and WISSARD programs. He will continue these efforts with this project. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Do Crustacean Zooplankton Play a Pivotal Role in Structuring Heterotrophic Plankton Communities in the Ross Sea?
|
0542111 |
2011-01-01 | Lonsdale, Darcy |
Collaborative Research: Do Crustacean Zooplankton Play a Pivotal Role in Structuring Heterotrophic Plankton Communities in the Ross Sea? |
Recent studies of marine ecosystems show conflicting evidence for trophic cascades, and in particular the relative strength of the crustacean zooplankton-phytoplankton link. The Ross Sea is a natural laboratory for investigating this apparent conflict. It is a site of seasonally high abundances of phytoplankton, characterized by regions of distinct phytoplankton taxa; the southcentral polynya is strongly dominated by the colony-forming prymnesiophyte Phaeocystis antarctica, while coastal regions of this sea are typically dominated by diatoms or flagellate species. Recent studies indicate that, while the south-central polynya exhibits a massive phytoplankton bloom, the poor food quality of P. antarctica for many crustacean zooplankton prevents direct utilization of much of this phytoplankton bloom. Rather, evidence suggests that indirect utilization of this production may be the primary mechanism by which carbon and energy become available to those higher trophic levels. Specifically, we hypothesized that nano- and microzooplankton constitute an important food source for crustacean zooplankton (largely copepods and juvenile euphausiids) during the summer period in the Ross Sea where the phytoplankton assemblage is dominated by the prymnesiophyte. In turn, we also hypothesize that predation by copepods (and other Crustacea) controls and structures the species composition of these protistan assemblages. We occupied stations in the south-central Ross Sea Polynya (RSP) and Terra Nova Bay (TNB) during austral summer to test these hypotheses. We hypothesized that the diatom species that dominate the phytoplankton assemblage in TNB constitute a direct source of nutrition to herbivorous/omnivorous zooplankton (relative to the situation in the south-central RSP). That is, the contribution of heterotrophic protists to crustacean diets will be reduced in TNB. Our research addressed fundamental gaps in our knowledge of food web structure and trophic cascades. | ["POINT(-166.287 -76.5799)"] | ["POINT(-166.287 -76.5799)"] | false | false |
The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula
|
0442857 |
2010-01-01 | Baker, Bill |
Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing |
Mesoherbivores, and specifically amphipods, are a conspicuous and dominant component of the macroalgal community in Antarctica. Despite their high abundance, the functional ecology, and particularly the trophic relationships of Antarctic amphipods are poorly understood. This project will evaluate the importance of mesograzers (small invertebrate predators approximately 1 to 25 mm in body length) in western Antarctic Peninsula marine communities. This will be accomplished by examining the role of mesoherbivores in structuring macroalgal communities and by elucidating the ecological interactions of mesograzers with a dominant group of benthic macroinvertebrates, the marine sponges. Moreover, chemical studies will be conducted to gain a more thorough understanding of the chemical defenses that Antarctic Peninsula sponges direct towards crustacean mesograzers. Three sets of questions will be addressed concerning the importance of mesograzers, and amphipods in particular, in nearshore habitats of the western Antarctic Peninsula. First, the hypothesis that mesoherbivory is particularly heavy in western Antarctic Peninsula marine communities and has an important influence on algal community structure will be addressed. Initial studies will document which species of amphipods feed in whole or part on microalgae and macroalgae, the incidence and distribution of filamentous endophytes in dominant macroalgae, comparative night time patterns of amphipod abundances on macrophytes, and the role of chemical mediation in these relationships. Second, the broad hypothesis that mesograzers in general, and amphipods in particular, interact with and prey upon sponges to a greater extent than heretofore recognized in Antarctic communities will be tested. The functional basis of these associations will be considered by examining whether the sponges are used as prey, and if so, whether there is evidence that some sponges produce secondary metabolites that show efficacy against mesograzers such as amphipods. Third, the researchers will test the hypotheses that: 1) Antarctic algae and invertebrates biosynthesize secondary metabolites that deter feeding by amphipod predators; and 2) pigments found in three Antarctic sponges are tryptophan catabolites produced as defenses against crustacean predators that impact molting. Evaluation of these hypotheses will be based on isolation and characterization of the specific anti-feeding metabolites, on biosynthetic studies to establish the metabolic origin of the pigments, and on bioassays to establish the chemical defense roles of both groups of compounds. A variety of educational activities will be a major component of this project. Opportunities will be made to support graduate and undergraduate research, both through NSF programs as well as home university-based programs including a number of funded programs that enhance the representation of minorities in the sciences. Through their proven and highly successful interactive web program, the investigators will continue to involve a large numbers of teachers, K-12 students, and other members of the community at large in their scientific endeavors in Antarctica. Moreover, they will actively participate in outreach efforts by presenting numerous talks on their research to school and community groups. | ["POLYGON((-65 -63,-64.8 -63,-64.6 -63,-64.4 -63,-64.2 -63,-64 -63,-63.8 -63,-63.6 -63,-63.4 -63,-63.2 -63,-63 -63,-63 -63.2,-63 -63.4,-63 -63.6,-63 -63.8,-63 -64,-63 -64.2,-63 -64.4,-63 -64.6,-63 -64.8,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.8,-65 -64.6,-65 -64.4,-65 -64.2,-65 -64,-65 -63.8,-65 -63.6,-65 -63.4,-65 -63.2,-65 -63))"] | ["POINT(-64 -64)"] | false | false |
The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula
|
0442769 |
2010-01-01 | McClintock, James; Amsler, Charles |
Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing |
Mesoherbivores, and specifically amphipods, are a conspicuous and dominant component of the macroalgal community in Antarctica. Despite their high abundance, the functional ecology, and particularly the trophic relationships of Antarctic amphipods are poorly understood. This project will evaluate the importance of mesograzers (small invertebrate predators approximately 1 to 25 mm in body length) in western Antarctic Peninsula marine communities. This will be accomplished by examining the role of mesoherbivores in structuring macroalgal communities and by elucidating the ecological interactions of mesograzers with a dominant group of benthic macroinvertebrates, the marine sponges. Moreover, chemical studies will be conducted to gain a more thorough understanding of the chemical defenses that Antarctic Peninsula sponges direct towards crustacean mesograzers. Three sets of questions will be addressed concerning the importance of mesograzers, and amphipods in particular, in nearshore habitats of the western Antarctic Peninsula. First, the hypothesis that mesoherbivory is particularly heavy in western Antarctic Peninsula marine communities and has an important influence on algal community structure will be addressed. Initial studies will document which species of amphipods feed in whole or part on microalgae and macroalgae, the incidence and distribution of filamentous endophytes in dominant macroalgae, comparative night time patterns of amphipod abundances on macrophytes, and the role of chemical mediation in these relationships. Second, the broad hypothesis that mesograzers in general, and amphipods in particular, interact with and prey upon sponges to a greater extent than heretofore recognized in Antarctic communities will be tested. The functional basis of these associations will be considered by examining whether the sponges are used as prey, and if so, whether there is evidence that some sponges produce secondary metabolites that show efficacy against mesograzers such as amphipods. Third, the researchers will test the hypotheses that: 1) Antarctic algae and invertebrates biosynthesize secondary metabolites that deter feeding by amphipod predators; and 2) pigments found in three Antarctic sponges are tryptophan catabolites produced as defenses against crustacean predators that impact molting. Evaluation of these hypotheses will be based on isolation and characterization of the specific anti-feeding metabolites, on biosynthetic studies to establish the metabolic origin of the pigments, and on bioassays to establish the chemical defense roles of both groups of compounds. A variety of educational activities will be a major component of this project. Opportunities will be made to support graduate and undergraduate research, both through NSF programs as well as home university-based programs including a number of funded programs that enhance the representation of minorities in the sciences. Through their proven and highly successful interactive web program, the investigators will continue to involve a large numbers of teachers, K-12 students, and other members of the community at large in their scientific endeavors in Antarctica. Moreover, they will actively participate in outreach efforts by presenting numerous talks on their research to school and community groups. | ["POLYGON((-64.15 -64.78,-64.132 -64.78,-64.114 -64.78,-64.096 -64.78,-64.078 -64.78,-64.06 -64.78,-64.042 -64.78,-64.024 -64.78,-64.006 -64.78,-63.988 -64.78,-63.97 -64.78,-63.97 -64.784,-63.97 -64.788,-63.97 -64.792,-63.97 -64.796,-63.97 -64.8,-63.97 -64.804,-63.97 -64.808,-63.97 -64.812,-63.97 -64.816,-63.97 -64.82,-63.988 -64.82,-64.006 -64.82,-64.024 -64.82,-64.042 -64.82,-64.06 -64.82,-64.078 -64.82,-64.096 -64.82,-64.114 -64.82,-64.132 -64.82,-64.15 -64.82,-64.15 -64.816,-64.15 -64.812,-64.15 -64.808,-64.15 -64.804,-64.15 -64.8,-64.15 -64.796,-64.15 -64.792,-64.15 -64.788,-64.15 -64.784,-64.15 -64.78))"] | ["POINT(-64.06 -64.8)"] | false | false |