{"dp_type": "Dataset", "free_text": "Breeding Success"}
[{"awards": "1840058 Jenouvrier, Stephanie", "bounds_geometry": ["POINT(140.017 -66.66)"], "date_created": "Mon, 16 Sep 2024 00:00:00 GMT", "description": "Climate change can influence populations of monogamous species by affecting pair-bond dynamics. This study examined the impact of climate on widowhood and divorce, and the subsequent effects on individual vital rates and life-history outcomes over 54 years in a snow petrel (Pagodroma nivea) population. We found that environmental conditions can affect pair-bond dynamics both directly and indirectly. Divorce was adaptive, occurring more frequently after breeding failure and leading to improved breeding success. Divorce probabilities also increased under severe climatic conditions, regardless of prior breeding success, supporting the ``Habitat-mediated\u201d mechanisms. Generally, pair-bond disruptions reduced subsequent vital rates and lifetime outcomes. Climate forecasts from an Atmosphere-Ocean General Circulation Model projected increased male widowhood rates due to decreased sea ice negatively affecting female survival, despite considerable uncertainty. These findings highlight the importance of environmentally induced changes in demographic and pair-bond disruption rates as crucial factors shaping demographic responses to climate change. \r\n\u003cbr/\u003e", "east": 140.017, "geometry": ["POINT(140.017 -66.66)"], "keywords": "Antarctica; Climate Change; Cryosphere; Ile des Petrels, Pointe Geologie Archipelago (66\u25e640\u2032 S, 140\u25e601\u2032 106 E), Terre Adelie, Antarctica.", "locations": "Antarctica; Ile des Petrels, Pointe Geologie Archipelago (66\u25e640\u2032 S, 140\u25e601\u2032 106 E), Terre Adelie, Antarctica.", "north": -66.66, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "jenouvrier, stephanie", "project_titles": "Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics", "projects": [{"proj_uid": "p0010090", "repository": "USAP-DC", "title": "Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -66.66, "title": "Impact of Climate Change on Pair-Bond Dynamics of Snow Petrels (Pagodroma nivea)", "uid": "601832", "west": 140.017}, {"awards": "1951500 Jenouvrier, Stephanie", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Tue, 27 Feb 2024 00:00:00 GMT", "description": "1. Differences among individuals within a population are ubiquitous. Those differences are known to affect the entire life cycle with important consequences for all demographic rates and outcomes. One source of among-individual phenotypic variation that has received little attention from a demographic perspective is animal personality, which is defined as consistent and heritable behavioral differences between individuals. While many studies have shown that individual variation in individual personality can generate individual differences in survival and reproductive rates, the impact of personality on all demographic rates and outcomes remains to be assessed empirically.\r\n\r\n\t2. Here, we used a unique, long-term, dataset coupling demography and personality of wandering albatross (Diomedea exulans) in the Crozet Archipelago and a comprehensive analysis based on a suite of approaches (capture-mark-recapture statistical models, Markov chains models and structured matrix population models). We assessed the effect of boldness on annual demographic rates (survival, breeding probability, breeding success), life-history out-comes (life expectancy, lifetime reproductive outcome, occupancy times), and an integrative demographic outcome (population growth rate).\r\n\r\n\t3. We found that boldness had little impact on female demographic rates, but was very likely associated with lower breeding probabilities in males. By integrating the effects of boldness over the entire life cycle, we found that bolder males had slightly lower lifetime reproductive success compared to shyer males. Indeed, bolder males spent a greater proportion of their lifetime as non-breeders, which suggests longer inter-breeding intervals due to higher reproductive allocation.\r\n\r\n\t4. Our results reveal that the link between boldness and demography is more complex than anticipated by the pace-of-life literature and highlight the importance of considering the entire life cycle with a comprehensive approach when assessing the role of personality on individual performance and demography.\r\n", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cryosphere; Demography; Sub-Antarctic", "locations": "Sub-Antarctic; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Joanie, Van de Walle; Jenouvrier, Stephanie", "project_titles": "NSFGEO-NERC: Integrating Individual Personality Differences in the Evolutionary Ecology of a Seabird in the Rapidly Changing Polar Environment", "projects": [{"proj_uid": "p0010283", "repository": "USAP-DC", "title": "NSFGEO-NERC: Integrating Individual Personality Differences in the Evolutionary Ecology of a Seabird in the Rapidly Changing Polar Environment"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "The impact of boldness on demographic rates and lifehistory outcomes in the wandering albatross", "uid": "601770", "west": -180.0}, {"awards": "1840058 Jenouvrier, Stephanie", "bounds_geometry": null, "date_created": "Fri, 04 Feb 2022 00:00:00 GMT", "description": "Many animals form long-term monogamous pair-bonds, and the disruption of a pair-bond (through either divorce or widowhood) can have significant consequences for individual vital rates (survival, breeding, and breeding success probabilities) and life-history outcomes (lifetime reproductive success, life expectancy). Here, we investigated the causes and consequences of pair-bond disruption in wandering albatross (Diomedea exulans). State-of-the-art statistical and mathematical approaches were developed to estimate divorce and widowhood rates and their impacts on vital rates and life-history outcomes. In this population, females incur a higher mortality rate due to incidental fishery bycatch, hence the population is male-skewed. Therefore, we first posited that males show higher widowhood rates negatively correlated with fishing effort, and females have higher divorce rates because they have more mating opportunities. Furthermore, we expected that divorce can be an adaptive strategy, whereby individuals improve breeding success by breeding with a new partner of better quality. Finally, we posited that pair-bond disruptions can reduce survival and breeding probabilities due to the cost of remating processes, with important consequences for life-history outcomes. As expected, we show that males have higher widowhood rates than females and females have higher divorce rates in this male-skewed population. However, no correlation was found between fishing effort and male widowhood. Secondly, contrary to our expectation, we found that divorce is likely non-adaptive in this population. We propose that divorce in this population is caused by an intruder who outcompetes the original partner in line with the \"forced divorce\" hypothesis. Furthermore, we found a 16.7% and 18.0% reduction in lifetime reproductive success (LRS) only for divorced and widowed males, respectively, due to missing breeding seasons after a pair-bond disruption. Finally, we found that divorced individuals are more likely to divorce again, but whether this is related to specific individual characteristics remains an important area of investigation. \r\n\r\nDescription of data processing:\r\nThis file includes: (1) observation events data; (2) E-surge GEPAT (Generator of pattern of elementary matrices) code for fitting MULTIEVENT-CAPTURE-MARK-RECAPTURE (MECMR) models; and (3) pair-bond status and breeding success data to perform all the analysis described in Sun et al. (2022, Ecological Monographs) ", "east": null, "geometry": null, "keywords": "Antarctica; Biota; Wandering Albatross", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Jenouvrier, Stephanie; Sun, Ruijiao; Barbraud, Christophe; Delord, Karine", "project_titles": "Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics", "projects": [{"proj_uid": "p0010090", "repository": "USAP-DC", "title": "Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Causes and consequences of pair-bond disruption in a sex-skewed population of a long-lived monogamous seabird: the wandering Albatross", "uid": "601518", "west": null}, {"awards": "1744794 Jenouvrier, Stephanie", "bounds_geometry": null, "date_created": "Mon, 24 Jan 2022 00:00:00 GMT", "description": "In a fast-changing world, polar ecosystems are threatened by climate variability.\r\nUnderstanding the roles of fine-scale processes, and linear and nonlinear effects of climate factors on the demography of polar species is crucial for anticipating the future state of these fragile ecosystems. While the effects of sea ice on polar marine top predators are increasingly being studied, little is known about the impacts of landfast ice (LFI) on this species community. Based on a unique 39-year time series of satellite imagery and in situ meteorological conditions and on the world\u2019s longest dataset of emperor penguin (Aptenodytes forsteri) breeding parameters, we studied the effects of fine-scale variability of LFI andweather conditions on this species\u2019 reproductive success. We found that longer distances to the LFI edge (i.e. foraging areas) negatively affected the overall breeding success but also the fledging success. Climate window analyses suggested that chick mortality was particularly sensitive\r\nto LFI variability between August and November. Snowfall in May also affected hatching success. Given the sensitivity of LFI to storms and changes in wind direction, important future repercussions on the breeding habitat of emperor penguins are to be expected in the context of climate change.\r\n\r\nThese files contain the code and data from this manuscript. ", "east": null, "geometry": null, "keywords": "Antarctica; Breeding Success; Emperor Penguin; Fast Sea Ice", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Jenouvrier, Stephanie; Labrousse, Sara", "project_titles": "A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins", "projects": [{"proj_uid": "p0010447", "repository": "USAP-DC", "title": "A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins"}, {"proj_uid": "p0010229", "repository": "USAP-DC", "title": "A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Landfast ice: a major driver of reproductive success in a polar seabird", "uid": "601513", "west": null}, {"awards": "0439200 Dugger, Katie; 0439759 Ballard, Grant; 0944141 Ballard, Grant; 0944411 Ainley, David; 0440643 Ainley, David; 1543541 Ainley, David; 1543498 Ballard, Grant; 1543459 Dugger, Katie; 1935901 Dugger, Katie; 0944358 Dugger, Katie; 1935870 Ballard, Grant", "bounds_geometry": ["POINT(166 -77)"], "date_created": "Wed, 12 May 2021 00:00:00 GMT", "description": "This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. ", "east": 166.0, "geometry": ["POINT(166 -77)"], "keywords": "Adelie Penguin; Antarctica; Biota; Demography; Mark-Recapture; Monitoring; Penguin; Ross Island", "locations": "Antarctica; Ross Island", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Ballard, Grant", "project_titles": "A Full Lifecycle Approach to Understanding Ad\u00e9lie Penguin Response to Changing Pack Ice Conditions in the Ross Sea.; COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels; COLLABORATIVE: Geographic Structure of Adelie Penguin Colonies - Demography of Population Change; Population Growth at the Southern Extreme: Effects of Early Life Conditions on Adelie penguin Individuals and Colonies", "projects": [{"proj_uid": "p0010177", "repository": "USAP-DC", "title": "A Full Lifecycle Approach to Understanding Ad\u00e9lie Penguin Response to Changing Pack Ice Conditions in the Ross Sea."}, {"proj_uid": "p0010179", "repository": "USAP-DC", "title": "Population Growth at the Southern Extreme: Effects of Early Life Conditions on Adelie penguin Individuals and Colonies"}, {"proj_uid": "p0000068", "repository": "USAP-DC", "title": "COLLABORATIVE: Geographic Structure of Adelie Penguin Colonies - Demography of Population Change"}, {"proj_uid": "p0000318", "repository": "USAP-DC", "title": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "uid": "601444", "west": 166.0}, {"awards": "1543498 Ballard, Grant; 0944141 Ballard, Grant; 1543459 Dugger, Katie; 0439759 Ballard, Grant; 1543541 Ainley, David", "bounds_geometry": ["POINT(166 -77)"], "date_created": "Tue, 11 May 2021 00:00:00 GMT", "description": "This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. ", "east": 166.0, "geometry": ["POINT(166 -77)"], "keywords": "Adelie Penguin; Antarctica; Biota; Demography; Penguin; Ross Sea; Seabirds", "locations": "Antarctica; Ross Sea", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Instrumentation and Support; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Ballard, Grant", "project_titles": "A Full Lifecycle Approach to Understanding Ad\u00e9lie Penguin Response to Changing Pack Ice Conditions in the Ross Sea.; COLLABORATIVE: Geographic Structure of Adelie Penguin Colonies - Demography of Population Change", "projects": [{"proj_uid": "p0000068", "repository": "USAP-DC", "title": "COLLABORATIVE: Geographic Structure of Adelie Penguin Colonies - Demography of Population Change"}, {"proj_uid": "p0010177", "repository": "USAP-DC", "title": "A Full Lifecycle Approach to Understanding Ad\u00e9lie Penguin Response to Changing Pack Ice Conditions in the Ross Sea."}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Adelie penguin banding data 1994-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "uid": "601443", "west": 166.0}, {"awards": "1246407 Jenouvrier, Stephanie", "bounds_geometry": ["POLYGON((68.5 -48.5,68.725 -48.5,68.95 -48.5,69.175 -48.5,69.4 -48.5,69.625 -48.5,69.85 -48.5,70.075 -48.5,70.3 -48.5,70.525 -48.5,70.75 -48.5,70.75 -48.65,70.75 -48.8,70.75 -48.95,70.75 -49.1,70.75 -49.25,70.75 -49.4,70.75 -49.55,70.75 -49.7,70.75 -49.85,70.75 -50,70.525 -50,70.3 -50,70.075 -50,69.85 -50,69.625 -50,69.4 -50,69.175 -50,68.95 -50,68.725 -50,68.5 -50,68.5 -49.85,68.5 -49.7,68.5 -49.55,68.5 -49.4,68.5 -49.25,68.5 -49.1,68.5 -48.95,68.5 -48.8,68.5 -48.65,68.5 -48.5))"], "date_created": "Mon, 03 Dec 2018 00:00:00 GMT", "description": "1. Studies of the mechanisms underlying climate-induced population changes are critically needed to better understand and accurately predict population responses to climate change. Long-lived migratory species might be particularly vulnerable to climate change as they are constrained by different climate conditions and energetic requirements during the breeding and non-breeding seasons. Yet, most studies primarily focus on the breeding season of these species life cycle. Environmental conditions experienced in the non-breeding season may have downstream effects on the other stages of the annual life cycle. Not investigating such effects may potentially lead to erroneous inferences about population dynamics.\r\n2. Combining demographic and tracking data collected between 2006 and 2013 at Kerguelen Island on a long-lived migratory seabird, the Black-Browed Albatross (Thalassarche melanophris), we investigated the links between sea surface temperature during the non-breeding season and behavioural and phenological traits (at-sea behaviour and migratory schedules) while accounting for different responses between birds of different sex and reproductive status (previously failed or successful breeders). We then explored whether variation in the foraging behaviour and timing of spring migration influenced subsequent reproductive performance.\r\n3. Our results showed that foraging activity and migratory schedules varied by both sex and reproductive status suggesting different energetic requirements and constraints among individuals. Higher sea surface temperatures during late winter, assumed to reflect poor winter conditions, were associated with an earlier departure from the wintering grounds and an extended pre-breeding period. However, an earlier spring migration and an earlier return to Kerguelen grounds were associated with a lower breeding success.\r\n4. Our results highlighted that behaviour during some periods of the non-breeding season, particularly towards the end of the wintering period and the pre-breeding period, had a significant effect on the subsequent reproductive success. Therefore caution needs to be given to all stages of the annual cycle when predicting the influence of climate on population dynamics.", "east": 70.75, "geometry": ["POINT(69.625 -49.25)"], "keywords": "Albatross; Animal Behavior Observation; Antarctica; Biota; Birds; Black-Browed Albatross (thalassarche Melanophris); Field Investigations; Foraging; Kerguelen Island; Ocean Island/plateau; Ocean Island/Plateau; Southern Ocean", "locations": "Kerguelen Island; Antarctica; Southern Ocean", "north": -48.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Jenouvrier, Stephanie", "project_titles": "Linking Foraging Behaviors to Demography to understand Albatrosses Population Responses to Climate Change", "projects": [{"proj_uid": "p0010002", "repository": "USAP-DC", "title": "Linking Foraging Behaviors to Demography to understand Albatrosses Population Responses to Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -50.0, "title": "Linking oceanographic conditions, migratory schedules and foraging behaviour during the non-breeding season to reproductive performance in a long-lived seabird", "uid": "601140", "west": 68.5}, {"awards": "0439759 Ballard, Grant", "bounds_geometry": ["POINT(166 -77)"], "date_created": "Tue, 19 May 2009 00:00:00 GMT", "description": "This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. ", "east": 166.0, "geometry": ["POINT(166 -77)"], "keywords": null, "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Ballard, Grant", "project_titles": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels", "projects": [{"proj_uid": "p0000318", "repository": "USAP-DC", "title": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Adelie penguin weighbridge data 1994-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "uid": "600014", "west": 166.0}, {"awards": "0439759 Ballard, Grant", "bounds_geometry": ["POINT(166 -77)"], "date_created": "Tue, 19 May 2009 00:00:00 GMT", "description": "This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. ", "east": 166.0, "geometry": ["POINT(166 -77)"], "keywords": null, "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Ballard, Grant", "project_titles": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels", "projects": [{"proj_uid": "p0000318", "repository": "USAP-DC", "title": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Daily weather observations 1996-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "uid": "600015", "west": 166.0}, {"awards": "0439759 Ballard, Grant", "bounds_geometry": ["POINT(166 -77)"], "date_created": "Tue, 19 May 2009 00:00:00 GMT", "description": "This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. ", "east": 166.0, "geometry": ["POINT(166 -77)"], "keywords": null, "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Ballard, Grant", "project_titles": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels", "projects": [{"proj_uid": "p0000318", "repository": "USAP-DC", "title": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Adelie penguin dive data 1999-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "uid": "600013", "west": 166.0}, {"awards": "0439759 Ballard, Grant", "bounds_geometry": ["POINT(166 -77)"], "date_created": "Tue, 19 May 2009 00:00:00 GMT", "description": "This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. ", "east": 166.0, "geometry": ["POINT(166 -77)"], "keywords": null, "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Ballard, Grant", "project_titles": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels", "projects": [{"proj_uid": "p0000318", "repository": "USAP-DC", "title": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Adelie penguin banding data 1994-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "uid": "600005", "west": 166.0}, {"awards": "0439759 Ballard, Grant", "bounds_geometry": ["POINT(166 -77)"], "date_created": "Tue, 19 May 2009 00:00:00 GMT", "description": "This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. ", "east": 166.0, "geometry": ["POINT(166 -77)"], "keywords": null, "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Ballard, Grant", "project_titles": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels", "projects": [{"proj_uid": "p0000318", "repository": "USAP-DC", "title": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Adelie penguin chick measurements 1996 - 2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "uid": "600006", "west": 166.0}, {"awards": "0439759 Ballard, Grant", "bounds_geometry": ["POINT(166 -77)"], "date_created": "Tue, 19 May 2009 00:00:00 GMT", "description": "This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. ", "east": 166.0, "geometry": ["POINT(166 -77)"], "keywords": "Biota", "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Ballard, Grant", "project_titles": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels", "projects": [{"proj_uid": "p0000318", "repository": "USAP-DC", "title": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Adelie penguin chick counts 1997-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "uid": "600007", "west": 166.0}, {"awards": "0439759 Ballard, Grant", "bounds_geometry": ["POINT(166 -77)"], "date_created": "Tue, 19 May 2009 00:00:00 GMT", "description": "This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. ", "east": 166.0, "geometry": ["POINT(166 -77)"], "keywords": null, "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Ballard, Grant", "project_titles": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels", "projects": [{"proj_uid": "p0000318", "repository": "USAP-DC", "title": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Adelie penguin diet data 1996 - 2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "uid": "600008", "west": 166.0}, {"awards": "0439759 Ballard, Grant", "bounds_geometry": ["POINT(166 -77)"], "date_created": "Tue, 19 May 2009 00:00:00 GMT", "description": "This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. ", "east": 166.0, "geometry": ["POINT(166 -77)"], "keywords": null, "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Ballard, Grant", "project_titles": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels", "projects": [{"proj_uid": "p0000318", "repository": "USAP-DC", "title": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Adelie penguin Geolocation Sensor data 2003-2007 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "uid": "600009", "west": 166.0}, {"awards": "0439759 Ballard, Grant", "bounds_geometry": ["POINT(166 -77)"], "date_created": "Tue, 19 May 2009 00:00:00 GMT", "description": "This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. ", "east": 166.0, "geometry": ["POINT(166 -77)"], "keywords": null, "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Ballard, Grant", "project_titles": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels", "projects": [{"proj_uid": "p0000318", "repository": "USAP-DC", "title": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Adelie penguin satellite position data 2000-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "uid": "600012", "west": 166.0}, {"awards": "0439759 Ballard, Grant", "bounds_geometry": ["POINT(166 -77)"], "date_created": "Tue, 19 May 2009 00:00:00 GMT", "description": "This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. ", "east": 166.0, "geometry": ["POINT(166 -77)"], "keywords": "Biota; Oceans", "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Ballard, Grant", "project_titles": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels", "projects": [{"proj_uid": "p0000318", "repository": "USAP-DC", "title": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Leopard Seal counts 1997-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "uid": "600010", "west": 166.0}, {"awards": "0439759 Ballard, Grant", "bounds_geometry": ["POINT(166 -77)"], "date_created": "Tue, 19 May 2009 00:00:00 GMT", "description": "This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. ", "east": 166.0, "geometry": ["POINT(166 -77)"], "keywords": null, "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Ballard, Grant", "project_titles": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels", "projects": [{"proj_uid": "p0000318", "repository": "USAP-DC", "title": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Adelie penguin resighting data 1997-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "uid": "600011", "west": 166.0}, {"awards": "0230069 Naveen, Ron", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "The Antarctic Site Inventory Project has collected biological data and site-descriptive information in the Antarctic Peninsula region since 1994. This research effort has provided data on those sites which are visited by tourists on shipboard expeditions in the region. The aim is to obtain data on the population status of several key species of Antarctic seabirds, which might be affected by the cumulative impact resulting from visits to the sites. This project will continue the effort by focusing on two heavily-visited Antarctic Peninsula sites: Paulet Island, in the northwestern Weddell Sea and Petermann Island, in the Lemaire Channel near Anvers Island. These sites were selected because both rank among the ten most visited sites in Antarctica each year in terms of numbers of visitors and zodiac landings; both are diverse in species composition, and both are sensitive to potential environmental disruptions from visitors. These data collected focus on two important biological parameters for penguins and blue-eyed shags: (1) breeding population size (number of occupied nests) and (2) breeding success (number of chicks per occupied nests). A long-term data program will be supported, with studies at the two sites over a five-year period. The main focus will be at Petermann Island, selected for intensive study due to its visitor status and location in the region near Palmer Station. This will allow for comparative data with the Palmer Long Term Ecological Research program. Demographic data will be collected in accordance with Standard Methods established by the Convention for the Conservation of Antarctic Marine Living Resources Ecosystem Monitoring Program and thus will be comparable with similar data sets being collected by other international Antarctic Treaty nation research programs. While separating human-induced change from change resulting from a combination of environmental factors will be difficult, this work will provide a first step to identify potential impacts. These long-term data sets will contribute to a better understanding of biological processes in the entire region and will contribute valuable information to be used by the Antarctic Treaty Parties as they address issues in environmental stewardship in Antarctica.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Biota; Penguin; Petermann Island", "locations": "Petermann Island; Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Naveen, Ronald", "project_titles": "Long-term Data Collection at Select Antarctic Peninsula Visitor Sites", "projects": [{"proj_uid": "p0000122", "repository": "USAP-DC", "title": "Long-term Data Collection at Select Antarctic Peninsula Visitor Sites"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Long-term Data Collection at Select Antarctic Peninsula Visitor Sites", "uid": "600032", "west": -180.0}, {"awards": "0229638 Ponganis, Paul", "bounds_geometry": ["POLYGON((163 -77,163.4 -77,163.8 -77,164.2 -77,164.6 -77,165 -77,165.4 -77,165.8 -77,166.2 -77,166.6 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.6 -78,166.2 -78,165.8 -78,165.4 -78,165 -78,164.6 -78,164.2 -78,163.8 -78,163.4 -78,163 -78,163 -77.9,163 -77.8,163 -77.7,163 -77.6,163 -77.5,163 -77.4,163 -77.3,163 -77.2,163 -77.1,163 -77))"], "date_created": "Tue, 01 Jan 2008 00:00:00 GMT", "description": "The emperor penguin, Aptenodytes forsteri, is the premier avian diver and a top predator in the Antarctic ecosystem. The routine occurrence of 500-m diver during foraging trips to sea is both a physiological and behavior enigma. The objectives of this project address how and why emperors dive as deep and long as they do. The project examines four major topics in the diving biology of emperor penguins: pressure tolerance, oxygen store management, end-organ tolerance of diving hypoxemia/ischemia, and deep-dive foraging behavior. These subjects are relevant to the role of the emperor as a top predator in the Antarctic ecosystem, and to critical concepts in diving physiology, including decompression sickness, nitrogen narcosis, shallow water blackout, hypoxemic tolerance, and extension of aerobic dive time. The following hypotheses will be tested: 1) Prevention of nitrogen narcosis and decompression sickness in emperor penguins is achieved by inhibition of pulmonary gas exchange at depth. 2) Shallow water black out does not occur because of greater cerebral hypoxemic tolerance, and, in deep dives, because of resumption of pulmonary gas exchange during final ascent. 3) The rate of depletion of the blood oxygen store is a function of depth of dive and heart rate. 4) The aerobic dive limit (ADL) reflects the onset of lactate accumulation in locomotory muscle, not total depletion of all oxygen stores. 5) Elevation of tissue antioxidant capacity and free-radical scavenging enzyme activities protect against the routine ischemia/reperfusion which occur during diving. 6) During deep dives, the Antarctic silverfish, Pleuorogramma antarcticum, is the primary prey item for emperors. In addition to evaluation of the hypotheses below, the project has broader impacts in several areas such as partnership with foreign and national institutes and organizations (e.g., the National Institute of Polar Research of Japan, Centro de Investigacioines del Noroeste of Mexico, National Geographic, the University of Texas Southwestern Medical Center, and Sea World). Participation in National Geographic television documentaries will provide unique educational opportunities for the general public; development of state-of-the-art technology (e.g., blood oxygen electrode recorders, blood samplers, and miniaturized digital cameras) will lay the groundwork for future research by this group and others; and the effects of the B15 iceberg on breeding success of emperor penguins will continue to be evaluated with population censuses during planned fieldwork at several Ross Sea emperor penguin colonies.", "east": 167.0, "geometry": ["POINT(165 -77.5)"], "keywords": "Antarctica; Biota; Oceans; Penguin; Southern Ocean", "locations": "Southern Ocean; Antarctica", "north": -77.0, "nsf_funding_programs": null, "persons": "Ponganis, Paul", "project_titles": "Diving Physiology and Behavior of Emperor Penguins", "projects": [{"proj_uid": "p0000239", "repository": "USAP-DC", "title": "Diving Physiology and Behavior of Emperor Penguins"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Diving Physiology and Behavior of Emperor Penguins", "uid": "600031", "west": 163.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Impact of Climate Change on Pair-Bond Dynamics of Snow Petrels (Pagodroma nivea)
|
1840058 |
2024-09-16 | jenouvrier, stephanie |
Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics |
Climate change can influence populations of monogamous species by affecting pair-bond dynamics. This study examined the impact of climate on widowhood and divorce, and the subsequent effects on individual vital rates and life-history outcomes over 54 years in a snow petrel (Pagodroma nivea) population. We found that environmental conditions can affect pair-bond dynamics both directly and indirectly. Divorce was adaptive, occurring more frequently after breeding failure and leading to improved breeding success. Divorce probabilities also increased under severe climatic conditions, regardless of prior breeding success, supporting the ``Habitat-mediated” mechanisms. Generally, pair-bond disruptions reduced subsequent vital rates and lifetime outcomes. Climate forecasts from an Atmosphere-Ocean General Circulation Model projected increased male widowhood rates due to decreased sea ice negatively affecting female survival, despite considerable uncertainty. These findings highlight the importance of environmentally induced changes in demographic and pair-bond disruption rates as crucial factors shaping demographic responses to climate change. <br/> | ["POINT(140.017 -66.66)"] | ["POINT(140.017 -66.66)"] | false | false |
The impact of boldness on demographic rates and lifehistory outcomes in the wandering albatross
|
1951500 |
2024-02-27 | Joanie, Van de Walle; Jenouvrier, Stephanie |
NSFGEO-NERC: Integrating Individual Personality Differences in the Evolutionary Ecology of a Seabird in the Rapidly Changing Polar Environment |
1. Differences among individuals within a population are ubiquitous. Those differences are known to affect the entire life cycle with important consequences for all demographic rates and outcomes. One source of among-individual phenotypic variation that has received little attention from a demographic perspective is animal personality, which is defined as consistent and heritable behavioral differences between individuals. While many studies have shown that individual variation in individual personality can generate individual differences in survival and reproductive rates, the impact of personality on all demographic rates and outcomes remains to be assessed empirically. 2. Here, we used a unique, long-term, dataset coupling demography and personality of wandering albatross (Diomedea exulans) in the Crozet Archipelago and a comprehensive analysis based on a suite of approaches (capture-mark-recapture statistical models, Markov chains models and structured matrix population models). We assessed the effect of boldness on annual demographic rates (survival, breeding probability, breeding success), life-history out-comes (life expectancy, lifetime reproductive outcome, occupancy times), and an integrative demographic outcome (population growth rate). 3. We found that boldness had little impact on female demographic rates, but was very likely associated with lower breeding probabilities in males. By integrating the effects of boldness over the entire life cycle, we found that bolder males had slightly lower lifetime reproductive success compared to shyer males. Indeed, bolder males spent a greater proportion of their lifetime as non-breeders, which suggests longer inter-breeding intervals due to higher reproductive allocation. 4. Our results reveal that the link between boldness and demography is more complex than anticipated by the pace-of-life literature and highlight the importance of considering the entire life cycle with a comprehensive approach when assessing the role of personality on individual performance and demography. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Causes and consequences of pair-bond disruption in a sex-skewed population of a long-lived monogamous seabird: the wandering Albatross
|
1840058 |
2022-02-04 | Jenouvrier, Stephanie; Sun, Ruijiao; Barbraud, Christophe; Delord, Karine |
Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics |
Many animals form long-term monogamous pair-bonds, and the disruption of a pair-bond (through either divorce or widowhood) can have significant consequences for individual vital rates (survival, breeding, and breeding success probabilities) and life-history outcomes (lifetime reproductive success, life expectancy). Here, we investigated the causes and consequences of pair-bond disruption in wandering albatross (Diomedea exulans). State-of-the-art statistical and mathematical approaches were developed to estimate divorce and widowhood rates and their impacts on vital rates and life-history outcomes. In this population, females incur a higher mortality rate due to incidental fishery bycatch, hence the population is male-skewed. Therefore, we first posited that males show higher widowhood rates negatively correlated with fishing effort, and females have higher divorce rates because they have more mating opportunities. Furthermore, we expected that divorce can be an adaptive strategy, whereby individuals improve breeding success by breeding with a new partner of better quality. Finally, we posited that pair-bond disruptions can reduce survival and breeding probabilities due to the cost of remating processes, with important consequences for life-history outcomes. As expected, we show that males have higher widowhood rates than females and females have higher divorce rates in this male-skewed population. However, no correlation was found between fishing effort and male widowhood. Secondly, contrary to our expectation, we found that divorce is likely non-adaptive in this population. We propose that divorce in this population is caused by an intruder who outcompetes the original partner in line with the "forced divorce" hypothesis. Furthermore, we found a 16.7% and 18.0% reduction in lifetime reproductive success (LRS) only for divorced and widowed males, respectively, due to missing breeding seasons after a pair-bond disruption. Finally, we found that divorced individuals are more likely to divorce again, but whether this is related to specific individual characteristics remains an important area of investigation. Description of data processing: This file includes: (1) observation events data; (2) E-surge GEPAT (Generator of pattern of elementary matrices) code for fitting MULTIEVENT-CAPTURE-MARK-RECAPTURE (MECMR) models; and (3) pair-bond status and breeding success data to perform all the analysis described in Sun et al. (2022, Ecological Monographs) | [] | [] | false | false |
Landfast ice: a major driver of reproductive success in a polar seabird
|
1744794 |
2022-01-24 | Jenouvrier, Stephanie; Labrousse, Sara |
A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins |
In a fast-changing world, polar ecosystems are threatened by climate variability. Understanding the roles of fine-scale processes, and linear and nonlinear effects of climate factors on the demography of polar species is crucial for anticipating the future state of these fragile ecosystems. While the effects of sea ice on polar marine top predators are increasingly being studied, little is known about the impacts of landfast ice (LFI) on this species community. Based on a unique 39-year time series of satellite imagery and in situ meteorological conditions and on the world’s longest dataset of emperor penguin (Aptenodytes forsteri) breeding parameters, we studied the effects of fine-scale variability of LFI andweather conditions on this species’ reproductive success. We found that longer distances to the LFI edge (i.e. foraging areas) negatively affected the overall breeding success but also the fledging success. Climate window analyses suggested that chick mortality was particularly sensitive to LFI variability between August and November. Snowfall in May also affected hatching success. Given the sensitivity of LFI to storms and changes in wind direction, important future repercussions on the breeding habitat of emperor penguins are to be expected in the context of climate change. These files contain the code and data from this manuscript. | [] | [] | false | false |
Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science
|
0439200 0439759 0944141 0944411 0440643 1543541 1543498 1543459 1935901 0944358 1935870 |
2021-05-12 | Ballard, Grant |
A Full Lifecycle Approach to Understanding Adélie Penguin Response to Changing Pack Ice Conditions in the Ross Sea. Population Growth at the Southern Extreme: Effects of Early Life Conditions on Adelie penguin Individuals and Colonies COLLABORATIVE: Geographic Structure of Adelie Penguin Colonies - Demography of Population Change COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels |
This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. | ["POINT(166 -77)"] | ["POINT(166 -77)"] | false | false |
Adelie penguin banding data 1994-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science
|
1543498 0944141 1543459 0439759 1543541 |
2021-05-11 | Ballard, Grant |
COLLABORATIVE: Geographic Structure of Adelie Penguin Colonies - Demography of Population Change A Full Lifecycle Approach to Understanding Adélie Penguin Response to Changing Pack Ice Conditions in the Ross Sea. |
This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. | ["POINT(166 -77)"] | ["POINT(166 -77)"] | false | false |
Linking oceanographic conditions, migratory schedules and foraging behaviour during the non-breeding season to reproductive performance in a long-lived seabird
|
1246407 |
2018-12-03 | Jenouvrier, Stephanie |
Linking Foraging Behaviors to Demography to understand Albatrosses Population Responses to Climate Change |
1. Studies of the mechanisms underlying climate-induced population changes are critically needed to better understand and accurately predict population responses to climate change. Long-lived migratory species might be particularly vulnerable to climate change as they are constrained by different climate conditions and energetic requirements during the breeding and non-breeding seasons. Yet, most studies primarily focus on the breeding season of these species life cycle. Environmental conditions experienced in the non-breeding season may have downstream effects on the other stages of the annual life cycle. Not investigating such effects may potentially lead to erroneous inferences about population dynamics. 2. Combining demographic and tracking data collected between 2006 and 2013 at Kerguelen Island on a long-lived migratory seabird, the Black-Browed Albatross (Thalassarche melanophris), we investigated the links between sea surface temperature during the non-breeding season and behavioural and phenological traits (at-sea behaviour and migratory schedules) while accounting for different responses between birds of different sex and reproductive status (previously failed or successful breeders). We then explored whether variation in the foraging behaviour and timing of spring migration influenced subsequent reproductive performance. 3. Our results showed that foraging activity and migratory schedules varied by both sex and reproductive status suggesting different energetic requirements and constraints among individuals. Higher sea surface temperatures during late winter, assumed to reflect poor winter conditions, were associated with an earlier departure from the wintering grounds and an extended pre-breeding period. However, an earlier spring migration and an earlier return to Kerguelen grounds were associated with a lower breeding success. 4. Our results highlighted that behaviour during some periods of the non-breeding season, particularly towards the end of the wintering period and the pre-breeding period, had a significant effect on the subsequent reproductive success. Therefore caution needs to be given to all stages of the annual cycle when predicting the influence of climate on population dynamics. | ["POLYGON((68.5 -48.5,68.725 -48.5,68.95 -48.5,69.175 -48.5,69.4 -48.5,69.625 -48.5,69.85 -48.5,70.075 -48.5,70.3 -48.5,70.525 -48.5,70.75 -48.5,70.75 -48.65,70.75 -48.8,70.75 -48.95,70.75 -49.1,70.75 -49.25,70.75 -49.4,70.75 -49.55,70.75 -49.7,70.75 -49.85,70.75 -50,70.525 -50,70.3 -50,70.075 -50,69.85 -50,69.625 -50,69.4 -50,69.175 -50,68.95 -50,68.725 -50,68.5 -50,68.5 -49.85,68.5 -49.7,68.5 -49.55,68.5 -49.4,68.5 -49.25,68.5 -49.1,68.5 -48.95,68.5 -48.8,68.5 -48.65,68.5 -48.5))"] | ["POINT(69.625 -49.25)"] | false | false |
Adelie penguin weighbridge data 1994-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science
|
0439759 |
2009-05-19 | Ballard, Grant |
COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels |
This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. | ["POINT(166 -77)"] | ["POINT(166 -77)"] | false | false |
Daily weather observations 1996-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science
|
0439759 |
2009-05-19 | Ballard, Grant |
COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels |
This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. | ["POINT(166 -77)"] | ["POINT(166 -77)"] | false | false |
Adelie penguin dive data 1999-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science
|
0439759 |
2009-05-19 | Ballard, Grant |
COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels |
This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. | ["POINT(166 -77)"] | ["POINT(166 -77)"] | false | false |
Adelie penguin banding data 1994-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science
|
0439759 |
2009-05-19 | Ballard, Grant |
COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels |
This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. | ["POINT(166 -77)"] | ["POINT(166 -77)"] | false | false |
Adelie penguin chick measurements 1996 - 2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science
|
0439759 |
2009-05-19 | Ballard, Grant |
COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels |
This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. | ["POINT(166 -77)"] | ["POINT(166 -77)"] | false | false |
Adelie penguin chick counts 1997-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science
|
0439759 |
2009-05-19 | Ballard, Grant |
COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels |
This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. | ["POINT(166 -77)"] | ["POINT(166 -77)"] | false | false |
Adelie penguin diet data 1996 - 2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science
|
0439759 |
2009-05-19 | Ballard, Grant |
COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels |
This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. | ["POINT(166 -77)"] | ["POINT(166 -77)"] | false | false |
Adelie penguin Geolocation Sensor data 2003-2007 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science
|
0439759 |
2009-05-19 | Ballard, Grant |
COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels |
This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. | ["POINT(166 -77)"] | ["POINT(166 -77)"] | false | false |
Adelie penguin satellite position data 2000-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science
|
0439759 |
2009-05-19 | Ballard, Grant |
COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels |
This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. | ["POINT(166 -77)"] | ["POINT(166 -77)"] | false | false |
Leopard Seal counts 1997-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science
|
0439759 |
2009-05-19 | Ballard, Grant |
COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels |
This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. | ["POINT(166 -77)"] | ["POINT(166 -77)"] | false | false |
Adelie penguin resighting data 1997-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science
|
0439759 |
2009-05-19 | Ballard, Grant |
COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels |
This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. | ["POINT(166 -77)"] | ["POINT(166 -77)"] | false | false |
Long-term Data Collection at Select Antarctic Peninsula Visitor Sites
|
0230069 |
2009-01-01 | Naveen, Ronald |
Long-term Data Collection at Select Antarctic Peninsula Visitor Sites |
The Antarctic Site Inventory Project has collected biological data and site-descriptive information in the Antarctic Peninsula region since 1994. This research effort has provided data on those sites which are visited by tourists on shipboard expeditions in the region. The aim is to obtain data on the population status of several key species of Antarctic seabirds, which might be affected by the cumulative impact resulting from visits to the sites. This project will continue the effort by focusing on two heavily-visited Antarctic Peninsula sites: Paulet Island, in the northwestern Weddell Sea and Petermann Island, in the Lemaire Channel near Anvers Island. These sites were selected because both rank among the ten most visited sites in Antarctica each year in terms of numbers of visitors and zodiac landings; both are diverse in species composition, and both are sensitive to potential environmental disruptions from visitors. These data collected focus on two important biological parameters for penguins and blue-eyed shags: (1) breeding population size (number of occupied nests) and (2) breeding success (number of chicks per occupied nests). A long-term data program will be supported, with studies at the two sites over a five-year period. The main focus will be at Petermann Island, selected for intensive study due to its visitor status and location in the region near Palmer Station. This will allow for comparative data with the Palmer Long Term Ecological Research program. Demographic data will be collected in accordance with Standard Methods established by the Convention for the Conservation of Antarctic Marine Living Resources Ecosystem Monitoring Program and thus will be comparable with similar data sets being collected by other international Antarctic Treaty nation research programs. While separating human-induced change from change resulting from a combination of environmental factors will be difficult, this work will provide a first step to identify potential impacts. These long-term data sets will contribute to a better understanding of biological processes in the entire region and will contribute valuable information to be used by the Antarctic Treaty Parties as they address issues in environmental stewardship in Antarctica. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Diving Physiology and Behavior of Emperor Penguins
|
0229638 |
2008-01-01 | Ponganis, Paul |
Diving Physiology and Behavior of Emperor Penguins |
The emperor penguin, Aptenodytes forsteri, is the premier avian diver and a top predator in the Antarctic ecosystem. The routine occurrence of 500-m diver during foraging trips to sea is both a physiological and behavior enigma. The objectives of this project address how and why emperors dive as deep and long as they do. The project examines four major topics in the diving biology of emperor penguins: pressure tolerance, oxygen store management, end-organ tolerance of diving hypoxemia/ischemia, and deep-dive foraging behavior. These subjects are relevant to the role of the emperor as a top predator in the Antarctic ecosystem, and to critical concepts in diving physiology, including decompression sickness, nitrogen narcosis, shallow water blackout, hypoxemic tolerance, and extension of aerobic dive time. The following hypotheses will be tested: 1) Prevention of nitrogen narcosis and decompression sickness in emperor penguins is achieved by inhibition of pulmonary gas exchange at depth. 2) Shallow water black out does not occur because of greater cerebral hypoxemic tolerance, and, in deep dives, because of resumption of pulmonary gas exchange during final ascent. 3) The rate of depletion of the blood oxygen store is a function of depth of dive and heart rate. 4) The aerobic dive limit (ADL) reflects the onset of lactate accumulation in locomotory muscle, not total depletion of all oxygen stores. 5) Elevation of tissue antioxidant capacity and free-radical scavenging enzyme activities protect against the routine ischemia/reperfusion which occur during diving. 6) During deep dives, the Antarctic silverfish, Pleuorogramma antarcticum, is the primary prey item for emperors. In addition to evaluation of the hypotheses below, the project has broader impacts in several areas such as partnership with foreign and national institutes and organizations (e.g., the National Institute of Polar Research of Japan, Centro de Investigacioines del Noroeste of Mexico, National Geographic, the University of Texas Southwestern Medical Center, and Sea World). Participation in National Geographic television documentaries will provide unique educational opportunities for the general public; development of state-of-the-art technology (e.g., blood oxygen electrode recorders, blood samplers, and miniaturized digital cameras) will lay the groundwork for future research by this group and others; and the effects of the B15 iceberg on breeding success of emperor penguins will continue to be evaluated with population censuses during planned fieldwork at several Ross Sea emperor penguin colonies. | ["POLYGON((163 -77,163.4 -77,163.8 -77,164.2 -77,164.6 -77,165 -77,165.4 -77,165.8 -77,166.2 -77,166.6 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.6 -78,166.2 -78,165.8 -78,165.4 -78,165 -78,164.6 -78,164.2 -78,163.8 -78,163.4 -78,163 -78,163 -77.9,163 -77.8,163 -77.7,163 -77.6,163 -77.5,163 -77.4,163 -77.3,163 -77.2,163 -77.1,163 -77))"] | ["POINT(165 -77.5)"] | false | false |