{"dp_type": "Dataset", "free_text": "Bathymetry"}
[{"awards": "1929991 Pettit, Erin C", "bounds_geometry": ["POLYGON((-108 -74.5,-107.6 -74.5,-107.2 -74.5,-106.8 -74.5,-106.4 -74.5,-106 -74.5,-105.6 -74.5,-105.2 -74.5,-104.8 -74.5,-104.4 -74.5,-104 -74.5,-104 -74.6,-104 -74.7,-104 -74.8,-104 -74.9,-104 -75,-104 -75.1,-104 -75.2,-104 -75.3,-104 -75.4,-104 -75.5,-104.4 -75.5,-104.8 -75.5,-105.2 -75.5,-105.6 -75.5,-106 -75.5,-106.4 -75.5,-106.8 -75.5,-107.2 -75.5,-107.6 -75.5,-108 -75.5,-108 -75.4,-108 -75.3,-108 -75.2,-108 -75.1,-108 -75,-108 -74.9,-108 -74.8,-108 -74.7,-108 -74.6,-108 -74.5))"], "date_created": "Thu, 23 Dec 2021 00:00:00 GMT", "description": "This data set includes two grounding-line products of Thwaites Glacier and a series of offshore pinning points for 2014 and 2019/20. The grounding lines where delineated manually from height above flotation calculations using the bathymetry model from Jordan et al. (2020), the REMA digital surface elevation model (Howat et al., 2019) for the 2014 product and ICESat-2 surface altimetry data (Smith et al., 2019) for the 2019/20 product. More details about the processing, corrections and uncertainties can be found in our publication. We would appreciate if users who think the grounding-line products are useful for your own research would cite our manuscript.", "east": -104.0, "geometry": ["POINT(-106 -75)"], "keywords": "Amundsen Sea Embayment; Antarctica; Cryosphere; Glaciology; Grounding Line; Ice Shelf; Thwaites Glacier", "locations": "Thwaites Glacier; Amundsen Sea Embayment; Thwaites Glacier; Antarctica; Antarctica", "north": -74.5, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Wild, Christian; Alley, Karen; Muto, Atsu; Truffer, Martin; Scambos, Ted; Pettit, Erin", "project_titles": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment", "projects": [{"proj_uid": "p0010162", "repository": "USAP-DC", "title": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -75.5, "title": "Thwaites Glacier grounding lines for 2014 and 2019/20 from height above flotation", "uid": "601499", "west": -108.0}, {"awards": "1745043 Simkins, Lauren; 1246353 Anderson, John; 1745055 Stearns, Leigh", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Wed, 10 Nov 2021 00:00:00 GMT", "description": "The dataset here allows exploration of the causes and significance of Antarctic grounding-line sinuosity by coupling observations of contemporary Antarctic grounding lines and paleo-grounding lines expressed as ice-marginal landforms on the Ross Sea continental shelf. Modern grounding lines are derived from the MEaSUREs Version 2 Differential Satellite Radar Interferometry dataset with spatial resolutions of 25-120 m spanning February 1992 to December 2014 (Rignot et al., 2016; Mouginot et al., 2017). The boundaries of individual grounding lines representative of individual glacial catchments (n=664) were delineated by the inflection points of the shear strain rate, \u03b5xy (c.f Van der Veen et al., 2011). Sinuosity was calculated as the ratio of the true length, orthogonal to ice-flow direction, of the grounding lines and the straight line length between end-points and in units of km/km. Raster data were extracted at 1-km points along each grounding line; the mean was calculated for each grounding line and merged in a table with sinuosity data. A dataset of 6,275 paleo-grounding lines expressed as ice-marginal landforms on the deglaciated western Ross Sea continental shelf are used in this study, originally published by Simkins et al., 2018. The ice-marginal landforms were mapped from multibeam echo sounder data that was collected onboard the RVIB Nathaniel B. Palmer (NBP) 15-02 cruise using a Kongsberg EM122 operating in dual swath mode at 12 kHz frequency with 30-60% swath overlap (Cruise DOI: 10.7284/901477). The resulting bathymetry data was gridded at 20-40 m with decimeter vertical elevation resolution depending on water depth and sea-state. Sinuosity is calculated as a ratio of true (mapped) landform length, measured in the across paleo-ice flow direction at the crest of the landform, to the straight line distance between the mapped landform endpoints and in units of km/km. \r\n\r\nTo compare modern and paleo-grounding lines, we use a consistent length scale by segmenting the grounding lines into 2-km sections for the two datasets (modern, n=12,966; paleo, n=5,832), even though this eliminates grounding lines that are less than 2-km long and thus results in 1 modern and 3,873 paleo-grounding lines removed. The full-length and 2-km segmented groundings lines are provided as shapefiles \"InSAR_groundinglines_full\" and \"InSAR_groundinglines_2km\", the paleo-grounding lines are provided as shapefiles \"RossSea_icemarginal_full\" and \"RossSea_icemarginal_2km\", and points marking modern grounding lines retreat from repeat InSAR surveys are provided as shapefile \"InSAR_retreat_points\", all stored together in a geodatabase named \"Antarctic_groundinglines.gbd\". Additional grounding line metrics, including length, sinuosity, bed roughness, and bed slope for modern and paleo-grounding lines, and height-above-buoyancy gradient, ice-flow velocity, presence of pinning points and ice shelves are provided for modern grounding lines. \r\n\r\nThe published dataset was compiled and analyzed in the article \"Controls on circum-Antarctic grounding-line sinuosity \" by Simkins, L.M., Stearns, L.A., and Riverman, K.L, which will be submitted to a peer-review journal in November 2021.\r\n\r\nReferences\r\nMouginot, J., B. Scheuchl, and E. Rignot. 2017. MEaSUREs Antarctic Boundaries for IPY 2007-2009 from Satellite Radar, Version 2. [Indicate subset used]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. \r\n\r\nRignot, E., J. Mouginot, and B. Scheuchl. 2016. MEaSUREs Antarctic Grounding Line from Differential Satellite Radar Interferometry, Version 2. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. \r\n\r\nSimkins, L. M., Greenwood, S. L., \u0026 Anderson, J. B. (2018). Diagnosing ice sheet grounding line stability from landform morphology. The Cryosphere, 12(8), 2707-2726.\r\n\r\nVan der Veen, C. J., J. C. Plummer, \u0026 L. A. Stearns. (2011). Controls on the recent speed up of Jakobshavn Isbr\u00e6, West Greenland. Journal of Glaciology, 57(204), 770-782", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Bathymetry/Topography; Bed Roughness; Bed Slope; Cryosphere; Glaciers/Ice Sheet; Pinning Points", "locations": "Antarctica; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "Simkins, Lauren; Stearns, Leigh; Riverman, Kiya", "project_titles": "Collaborative Research: Topographic controls on Antarctic Ice Sheet grounding line retreat - integrating models and observations; Evidence for Paleo Ice Stream Collapse in the Western Ross Sea since the Last Glacial Maximum.", "projects": [{"proj_uid": "p0010269", "repository": "USAP-DC", "title": "Collaborative Research: Topographic controls on Antarctic Ice Sheet grounding line retreat - integrating models and observations"}, {"proj_uid": "p0000395", "repository": "USAP-DC", "title": "Evidence for Paleo Ice Stream Collapse in the Western Ross Sea since the Last Glacial Maximum."}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Circum-Antarctic grounding-line sinuosity", "uid": "601484", "west": -180.0}, {"awards": "1745043 Simkins, Lauren; 1246353 Anderson, John; 1745055 Stearns, Leigh", "bounds_geometry": ["POLYGON((174 -75,174.4 -75,174.8 -75,175.2 -75,175.6 -75,176 -75,176.4 -75,176.8 -75,177.2 -75,177.6 -75,178 -75,178 -75.2,178 -75.4,178 -75.6,178 -75.8,178 -76,178 -76.2,178 -76.4,178 -76.6,178 -76.8,178 -77,177.6 -77,177.2 -77,176.8 -77,176.4 -77,176 -77,175.6 -77,175.2 -77,174.8 -77,174.4 -77,174 -77,174 -76.8,174 -76.6,174 -76.4,174 -76.2,174 -76,174 -75.8,174 -75.6,174 -75.4,174 -75.2,174 -75))"], "date_created": "Mon, 04 Oct 2021 00:00:00 GMT", "description": "Bathymetry from multibeam echo sounding data in Pennell Trough, Ross Sea, Antarctica was collected onboard the RVIB Nathaniel B. Palmer (NBP) 15-02 cruise using a Kongsberg EM122 operating in dual swath mode at 12 kHz frequency with a 1\u00b0\u00d71\u00b0 beam width, swath angular coverage set to 62\u00b0\u00d762\u00b0, and 30-60% overlap between survey lines. All raw, ping-edited geophysical data collected on NBP15-02 can be accessed using the Marine Geoscience Data System (Cruise DOI: 10.7284/901477). The bathymetry dataset here is gridded at 20-m resolution with a water depth-dependent vertical resolution on the order of decimeters. Two shapefiles are provided for ice-marginal landforms and meltwater landforms observable in the bathymetry data. The purpose of collecting the bathymetry data on cruise NBP15-02 was to better understand the glacial history of the Ross Sea, and the dataset, inclusive of bathymetry data and shapefiles of glacial landforms, from Pennell Trough are used to understand impacts on subglacial channel morphology and organization during the deglaciation of the region following the Last Glacial Maximum. The published dataset was used and analyzed in the article \"Topographic controls on channelized meltwater in the subglacial environment\" by Simkins, L.M., Greenwood, S.L., Munevar Garcia, S., Eareckson, E.A., Anderson, J.B., and Prothro, L.O, which was published in Geophysical Research Letters in 2021 (DOI: 10.1029/2021GL094678).", "east": 178.0, "geometry": ["POINT(176 -76)"], "keywords": "Antarctica; Bathymetry; Bathymetry/Topography; Cryosphere; Geomorphology; Geomorphology; Glacial History; Glaciers/Ice Sheet; Marine Geoscience; NBP1502; Pennell Trough; Ross Sea; R/V Nathaniel B. Palmer", "locations": "Ross Sea; Pennell Trough; Antarctica", "north": -75.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "Greenwood, Sarah; Munevar Garcia, Santiago; Eareckson, Elizabeth; Anderson, John; Prothro, Lindsay; Simkins, Lauren", "project_titles": "Collaborative Research: Topographic controls on Antarctic Ice Sheet grounding line retreat - integrating models and observations; Evidence for Paleo Ice Stream Collapse in the Western Ross Sea since the Last Glacial Maximum.", "projects": [{"proj_uid": "p0010269", "repository": "USAP-DC", "title": "Collaborative Research: Topographic controls on Antarctic Ice Sheet grounding line retreat - integrating models and observations"}, {"proj_uid": "p0000395", "repository": "USAP-DC", "title": "Evidence for Paleo Ice Stream Collapse in the Western Ross Sea since the Last Glacial Maximum."}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Pennell Trough, Ross Sea bathymetry and glacial landforms", "uid": "601474", "west": 174.0}, {"awards": "1443677 Padman, Laurence; 9896041 Padman, Laurence", "bounds_geometry": ["POLYGON((-180 -40.231,-144 -40.231,-108 -40.231,-72 -40.231,-36 -40.231,0 -40.231,36 -40.231,72 -40.231,108 -40.231,144 -40.231,180 -40.231,180 -45.2079,180 -50.1848,180 -55.1617,180 -60.1386,180 -65.1155,180 -70.0924,180 -75.0693,180 -80.0462,180 -85.0231,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.0231,-180 -80.0462,-180 -75.0693,-180 -70.0924,-180 -65.1155,-180 -60.1386,-180 -55.1617,-180 -50.1848,-180 -45.2079,-180 -40.231))"], "date_created": "Thu, 19 Dec 2019 00:00:00 GMT", "description": "CATS2008 is a regional inverse barotropic tide model for the circum-Antarctic ocean on a 4 km grid. The model domain includes ocean cavities under the floating ice shelves. The coastline is based on the MODIS MOA [Scambos et al., 2007; Remote Sensing of Environment] feature identification files, adjusted to match ICESat-derived grounding lines for the Ross and Filchner-Ronne ice shelves and Interferometric Synthetic Aperture Radar (InSAR) grounding lines. The water depth map for open water is based on the 2007 release update to Smith and Sandwell [1997; Science]. Adjustments to this map have been made in various regions, including the open continental shelf in front of the Larsen-C Ice Shelf which has been blended with GEBCO bathymetry.\r\n\nModel type: Tides only; Inverse (data assimilation); barotropic (no vertical variation of currents). \nGrid: 4-km uniform polar stereographic (centered at 71 degrees S, 70 degrees W) \nConstituents: M2, S2, N2, K2, K1, O1, P1, Q1, Mf, Mm. \nUnits: z (sea surface height; meters); u,v (currents; cm/s); U,V (transports; m2/s). \nCoordinates: Currents (u, v) and depth-integrated transports (U, V) are given as East (u, U) and North (v, V) components. \nCitation: \"\u2026 an update to the inverse model described by Padman et al. [2002].\" \n\nSee CATS2008_README.pdf for further details.\r", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cryosphere; Inverse Modeling; Model Data; Ocean Currents; Sea Surface; Tide Model; Tides", "locations": "Sea Surface; Antarctica", "north": -40.231, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Howard, Susan L.; Padman, Laurence; Erofeeva, Svetlana", "project_titles": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE); Ocean Tides around Antarctica and in the Southern Ocean", "projects": [{"proj_uid": "p0010035", "repository": "USAP-DC", "title": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)"}, {"proj_uid": "p0010116", "repository": "USAP-DC", "title": "Ocean Tides around Antarctica and in the Southern Ocean"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "CATS2008: Circum-Antarctic Tidal Simulation version 2008", "uid": "601235", "west": -180.0}, {"awards": "1565576 Pettit, Erin", "bounds_geometry": ["POLYGON((-62.2 -65.5,-62.12 -65.5,-62.04 -65.5,-61.96 -65.5,-61.88 -65.5,-61.8 -65.5,-61.72 -65.5,-61.64 -65.5,-61.56 -65.5,-61.48 -65.5,-61.4 -65.5,-61.4 -65.53,-61.4 -65.56,-61.4 -65.59,-61.4 -65.62,-61.4 -65.65,-61.4 -65.68,-61.4 -65.71,-61.4 -65.74,-61.4 -65.77,-61.4 -65.8,-61.48 -65.8,-61.56 -65.8,-61.64 -65.8,-61.72 -65.8,-61.8 -65.8,-61.88 -65.8,-61.96 -65.8,-62.04 -65.8,-62.12 -65.8,-62.2 -65.8,-62.2 -65.77,-62.2 -65.74,-62.2 -65.71,-62.2 -65.68,-62.2 -65.65,-62.2 -65.62,-62.2 -65.59,-62.2 -65.56,-62.2 -65.53,-62.2 -65.5))"], "date_created": "Wed, 20 Dec 2017 00:00:00 GMT", "description": "A terrestrial radar interferometer was set up at a location overlooking a remnant of the Larsen B iceshelf and the adjacent fast ice. Images were acquired every 4 minutes with a Gamma Portable Radar Interferometer - 2. Data include images from two antennas, to allow the generation of interferometric DEMs, as well as line-of-sight displacement fields between consecutive images. The archived data are single-look complex (SLC) images, together with parameter files.", "east": -61.4, "geometry": ["POINT(-61.8 -65.65)"], "keywords": "Antarctica; Antarctic Peninsula; Bathymetry/Topography; Cryosphere; Glaciers/Ice Sheet; Glaciology; Navigation; Radar; Radar Interferometer", "locations": "Antarctic Peninsula; Antarctica", "north": -65.5, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Integrated System Science", "persons": "Truffer, Martin", "project_titles": "RAPID: Observing the Disintegration of the Scar Inlet Ice Shelf", "projects": [{"proj_uid": "p0000274", "repository": "USAP-DC", "title": "RAPID: Observing the Disintegration of the Scar Inlet Ice Shelf"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.8, "title": "Scar Inlet Terrestrial Radar Interferometry", "uid": "601078", "west": -62.2}, {"awards": "0636724 Blankenship, Donald", "bounds_geometry": ["POLYGON((-120 -75,-117 -75,-114 -75,-111 -75,-108 -75,-105 -75,-102 -75,-99 -75,-96 -75,-93 -75,-90 -75,-90 -75.5,-90 -76,-90 -76.5,-90 -77,-90 -77.5,-90 -78,-90 -78.5,-90 -79,-90 -79.5,-90 -80,-93 -80,-96 -80,-99 -80,-102 -80,-105 -80,-108 -80,-111 -80,-114 -80,-117 -80,-120 -80,-120 -79.5,-120 -79,-120 -78.5,-120 -78,-120 -77.5,-120 -77,-120 -76.5,-120 -76,-120 -75.5,-120 -75))"], "date_created": "Mon, 21 May 2012 00:00:00 GMT", "description": "This data set contains subglacial water flow paths beneath Thwaites Glacier, West Antarctica, interpreted from ice thickness and bed elevation measurements collected between 7 December 2004 and 31 January 2005 by the Airborne Geophysical Survey of the Amundsen Embayment (AGASEA) expedition. Data consist of an ASCII text file with geographical coordinates, hydraulic head, and bed and surface elevations, and a corresponding .pdf map.\n\nData are available via FTP.", "east": -90.0, "geometry": ["POINT(-105 -77.5)"], "keywords": "AGASEA; Airborne Radar; Antarctica; Bathymetry/Topography; Cryosphere; Flow Paths; Glaciers/Ice Sheet; Glaciology; Thwaites Glacier", "locations": "Thwaites Glacier; Antarctica", "north": -75.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Carter, Sasha P.; Young, Duncan A.; Blankenship, Donald D.", "project_titles": "Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "projects": [{"proj_uid": "p0000174", "repository": "USAP-DC", "title": "Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "Subglacial water flow paths under Thwaites Glacier, West Antarctica", "uid": "609518", "west": -120.0}, {"awards": "0636724 Blankenship, Donald", "bounds_geometry": ["POLYGON((-125 -73,-121.5 -73,-118 -73,-114.5 -73,-111 -73,-107.5 -73,-104 -73,-100.5 -73,-97 -73,-93.5 -73,-90 -73,-90 -74,-90 -75,-90 -76,-90 -77,-90 -78,-90 -79,-90 -80,-90 -81,-90 -82,-90 -83,-93.5 -83,-97 -83,-100.5 -83,-104 -83,-107.5 -83,-111 -83,-114.5 -83,-118 -83,-121.5 -83,-125 -83,-125 -82,-125 -81,-125 -80,-125 -79,-125 -78,-125 -77,-125 -76,-125 -75,-125 -74,-125 -73))"], "date_created": "Thu, 03 May 2012 00:00:00 GMT", "description": "This data set contains line-based radar-derived ice thickness and bed elevation data, collected as part of the Airborne Geophysical Survey of the Amundsen Embayment (AGASEA) expedition, which took place over Thwaites Glacier in West Antarctica from 2004 to 2005. The data set includes ice thickness, ice sheet bed elevation, and ice sheet surface elevation, derived from ice-penetrating radar and aircraft GPS positions. The data are spaced on a 15 km by 15 km grid over the entire catchment of the glacier, and sampled at approximately 15 meters along track. Most of the radar data used for this dataset has been processed using a 1-D focusing algorithm, to reduce the along track resolution to tens of meters, to improve boundary conditions for ice sheet models. \n\nData are available via FTP in space-delimited ASCII format.", "east": -90.0, "geometry": ["POINT(-107.5 -78)"], "keywords": "AGASEA; Airborne Radar; Amundsen Sea Embayment; Antarctica; Bathymetry/Topography; Cryosphere; Glaciers/Ice Sheet; Glaciology; Ice Thickness", "locations": "Amundsen Sea Embayment; Antarctica", "north": -73.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Blankenship, Donald D.; Young, Duncan A.; Holt, John W.; Kempf, Scott D.", "project_titles": "Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "projects": [{"proj_uid": "p0000174", "repository": "USAP-DC", "title": "Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -83.0, "title": "AGASEA Ice Thickness Profile Data from the Amundsen Sea Embayment, Antarctica", "uid": "609517", "west": -125.0}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POLYGON((-70 -63,-68.5 -63,-67 -63,-65.5 -63,-64 -63,-62.5 -63,-61 -63,-59.5 -63,-58 -63,-56.5 -63,-55 -63,-55 -63.7,-55 -64.4,-55 -65.1,-55 -65.8,-55 -66.5,-55 -67.2,-55 -67.9,-55 -68.6,-55 -69.3,-55 -70,-56.5 -70,-58 -70,-59.5 -70,-61 -70,-62.5 -70,-64 -70,-65.5 -70,-67 -70,-68.5 -70,-70 -70,-70 -69.3,-70 -68.6,-70 -67.9,-70 -67.2,-70 -66.5,-70 -65.8,-70 -65.1,-70 -64.4,-70 -63.7,-70 -63))"], "date_created": "Mon, 30 Apr 2012 00:00:00 GMT", "description": "This data set provides a 100 meter resolution surface topography Digital Elevation Model (DEM) of the Antarctic Peninsula. The DEM is based on Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) data.", "east": -55.0, "geometry": ["POINT(-62.5 -66.5)"], "keywords": "Antarctica; Antarctic Peninsula; ASTER; Bathymetry/Topography; Cryosphere; Digital Elevation Model (DEM); Glaciers/Ice Sheet; Solid Earth", "locations": "Antarctic Peninsula; Antarctica", "north": -63.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Cook, Allison", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -70.0, "title": "Antarctic Peninsula 100 m Digital Elevation Model Derived from ASTER GDEM", "uid": "609516", "west": -70.0}, {"awards": "0337567 Jacobel, Robert", "bounds_geometry": ["POLYGON((130 -78,133 -78,136 -78,139 -78,142 -78,145 -78,148 -78,151 -78,154 -78,157 -78,160 -78,160 -79.2,160 -80.4,160 -81.6,160 -82.8,160 -84,160 -85.2,160 -86.4,160 -87.6,160 -88.8,160 -90,157 -90,154 -90,151 -90,148 -90,145 -90,142 -90,139 -90,136 -90,133 -90,130 -90,130 -88.8,130 -87.6,130 -86.4,130 -85.2,130 -84,130 -82.8,130 -81.6,130 -80.4,130 -79.2,130 -78))"], "date_created": "Wed, 20 Oct 2010 00:00:00 GMT", "description": "This data set contains ice penetrating radar data from the US-International Trans-Antarctic Science Expedition (ITASE) Traverse, from Taylor Dome to South Pole recorded by the St. Olaf College deep radar system. Parameters include latitude, longitude, distance along profile (m), ice thickness pick (m), surface elevation (m), and bed echo power (relative units) from the approximately 1800 km traverse recorded during the 2006-2007 and 2007-2008 Antarctic field seasons (austral summer). The traverse has been broken into three segments, which are shown on three maps provided with the data. A sample radar profile covering approximately 120 km of the traverse near Titan Dome is also provided.\n\nData are available via FTP as ASCII text files (.txt). Profile location maps and sample profile sections are available as Joint Photographic Experts Group (.jpg) image files.", "east": 160.0, "geometry": ["POINT(145 -84)"], "keywords": "Antarctica; Bathymetry/Topography; Cryosphere; Glaciers/Ice Sheet; Glaciology; Ice Thickness; ITASE; South Pole; Taylor Dome", "locations": "South Pole; Taylor Dome; Antarctica", "north": -78.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Jacobel, Robert", "project_titles": "Collaborative Research: Is Ice Stream C Restarting? Glaciological Investigations of the \u0027Bulge\u0027 and the Trunk of Ice Stream C, West Antartica", "projects": [{"proj_uid": "p0000192", "repository": "USAP-DC", "title": "Collaborative Research: Is Ice Stream C Restarting? Glaciological Investigations of the \u0027Bulge\u0027 and the Trunk of Ice Stream C, West Antartica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -90.0, "title": "Radar Studies of Internal Stratigraphy and Bed Topography along the US ITASE-II Traverse", "uid": "609475", "west": 130.0}, {"awards": "0440666 Waddington, Edwin", "bounds_geometry": ["POINT(-111.816667 -79.416667)", "POINT(158.716667 -77.783333)"], "date_created": "Sun, 20 Jun 2010 00:00:00 GMT", "description": "This data set contains radar internal layer and ice sheet topography data for two sites in Antarctica, along with associated model results from two studies. This project used geophysical inverse theory and a 2.5 D flowband ice-flow forward model to extract robust transient accumulation patterns from multiple deeper layers. Histories of divide migration, or the movement of the ice sheet and ice-surface evolution are also provided. The data used to solve the inverse problem, and the model solutions are provided. Internal layers, modern ice-surface velocities, and modern ice-sheet geometry at Taylor Mouth are available, as well as the pattern of accumulation inferred by Waddington et al. (2007).\n\nData are available via FTP in Matlab (.mat) format. Supporting information is available as text files (.rtf and .txt).", "east": 158.716667, "geometry": ["POINT(-111.816667 -79.416667)", "POINT(158.716667 -77.783333)"], "keywords": "Antarctica; Bathymetry/Topography; Cryosphere; Glaciers/Ice Sheet; Glaciology; WAIS divide; WAIS Divide Ice Core", "locations": "WAIS divide; Antarctica", "north": -77.783333, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Waddington, Edwin D.; Koutnik, Michelle", "project_titles": "Histories of accumulation, thickness and WAIS Divide location from radar layers using a new inverse approach", "projects": [{"proj_uid": "p0000018", "repository": "USAP-DC", "title": "Histories of accumulation, thickness and WAIS Divide location from radar layers using a new inverse approach"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.416667, "title": "Histories of Accumulation, Thickness, and WAIS Divide Location, Antarctica", "uid": "609473", "west": -111.816667}, {"awards": "0230197 Holt, John; 0636724 Blankenship, Donald", "bounds_geometry": ["POLYGON((-130 -75,-126.5 -75,-123 -75,-119.5 -75,-116 -75,-112.5 -75,-109 -75,-105.5 -75,-102 -75,-98.5 -75,-95 -75,-95 -75.5,-95 -76,-95 -76.5,-95 -77,-95 -77.5,-95 -78,-95 -78.5,-95 -79,-95 -79.5,-95 -80,-98.5 -80,-102 -80,-105.5 -80,-109 -80,-112.5 -80,-116 -80,-119.5 -80,-123 -80,-126.5 -80,-130 -80,-130 -79.5,-130 -79,-130 -78.5,-130 -78,-130 -77.5,-130 -77,-130 -76.5,-130 -76,-130 -75.5,-130 -75))"], "date_created": "Tue, 01 Jan 2008 00:00:00 GMT", "description": "This data set includes airborne altimetry collected over the catchment and main trunk of Thwaites Glacier, one of Antarctica\u0027s most active ice streams. The airborne altimetry comprises 35,000 line-kilometers sampled at 20 meters along track. The full dataset has an internal error of \u00b120 cm; a primary subset has an error of \u00b18 cm. We find a +20 cm bias with Geoscience Laser Altimeter System data over a flat interior region. These data will serve as an additional temporal reference for the evolution of Thwaites Glacier surface, as well as aid the construction of future high resolution Digital Elevation Models (DEM). Line data are available in space-delimited ASCII format and are available via FTP.", "east": -95.0, "geometry": ["POINT(-112.5 -77.5)"], "keywords": "AGASEA; Airborne Altimetry; Antarctica; Bathymetry/Topography; Cryosphere; Glaciers/Ice Sheet; Glaciology; Thwaites Glacier", "locations": "Thwaites Glacier; Antarctica", "north": -75.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Young, Duncan A.; Kempf, Scott D.; Blankenship, Donald D.; Holt, John W.; Morse, David L.", "project_titles": "Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "projects": [{"proj_uid": "p0000174", "repository": "USAP-DC", "title": "Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "Airborne Laser Altimetry of the Thwaites Glacier Catchment, West Antarctica", "uid": "609334", "west": -130.0}, {"awards": "0230197 Holt, John", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Mon, 01 Jan 2007 00:00:00 GMT", "description": "This data set includes a nested model, that starts at low resolution for the whole Antarctic Ice Sheet, and then embeds higher resolution data at limited domains. There are at least three levels of nesting: whole, regional, and specific ice streams. Investigators focused on the Thwaites Glacier and the Pine Island Glacier. The model was produced using data from (Holt et al. 2006) and (Vaughan et al. 2006). Data are in Network Common Data Form (NetCDF) format and are available via FTP.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Amundsen Sea Embayment; Antarctica; Bathymetry/Topography; Cryosphere; Glaciers/Ice Sheet; Glaciology", "locations": "Amundsen Sea Embayment; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Fastook, James L.", "project_titles": "Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA)", "projects": [{"proj_uid": "p0000243", "repository": "USAP-DC", "title": "Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Amundsen Sea Sector Data Set", "uid": "609312", "west": -180.0}, {"awards": "0230197 Holt, John", "bounds_geometry": ["POLYGON((-134.9 -71.7,-129.86 -71.7,-124.82 -71.7,-119.78 -71.7,-114.74 -71.7,-109.7 -71.7,-104.66 -71.7,-99.62 -71.7,-94.58 -71.7,-89.54 -71.7,-84.5 -71.7,-84.5 -72.7,-84.5 -73.7,-84.5 -74.7,-84.5 -75.7,-84.5 -76.7,-84.5 -77.7,-84.5 -78.7,-84.5 -79.7,-84.5 -80.7,-84.5 -81.7,-89.54 -81.7,-94.58 -81.7,-99.62 -81.7,-104.66 -81.7,-109.7 -81.7,-114.74 -81.7,-119.78 -81.7,-124.82 -81.7,-129.86 -81.7,-134.9 -81.7,-134.9 -80.7,-134.9 -79.7,-134.9 -78.7,-134.9 -77.7,-134.9 -76.7,-134.9 -75.7,-134.9 -74.7,-134.9 -73.7,-134.9 -72.7,-134.9 -71.7))"], "date_created": "Wed, 25 Oct 2006 00:00:00 GMT", "description": "This data set includes 5 km gridded data from the Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA) conducted during the 2004-2005 austral summer. Investigators derived maps of the ice sheet surface and subglacial topography, which covers the entire catchments of both the Thwaites Glacier and the Pine Islands Glacier, from airborne survey systems mounted on a Twin Otter aircraft. The surveys had sufficient density to identify critical ice dynamic transitions within the Amundsen Sea Embayment (ASE). \n\nThe ASE is the only major drainage to exhibit significant elevation change over the period of available satellite observations. Modeling of the Western Antarctic Ice Sheet (WAIS) deglaciation pinpointed the Pine Island Glacier and the Thwaites Glacier, which comprise a major portion of the ASE, as the most vulnerable features of the WAIS. Present knowledge of the ice thickness and subglacial boundary conditions in the ASE are insufficient to understand its evolution or its sensitivity to climatic change, and it is not yet determined whether these changes are evidence of ongoing deglaciation or simply a fluctuation that does not threaten the equilibrium of the ice sheet. This research will support the efforts of a community of United States and international researchers to assess the present and predict the future behavior of the ice sheet in the ASE. \n\nThese data are available via FTP.", "east": -84.5, "geometry": ["POINT(-109.7 -76.7)"], "keywords": "AGASEA; Airborne Radar; Amundsen Sea Embayment; Antarctica; Bathymetry/Topography; Cryosphere; Glaciers/Ice Sheet; Glaciology; Solid Earth", "locations": "Amundsen Sea Embayment; Antarctica", "north": -71.7, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Holt, John W.; Blankenship, Donald D.; Morse, David L.; Vaughan, David G.; Corr, Hugh F. J.; Young, Duncan A.", "project_titles": "Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA)", "projects": [{"proj_uid": "p0000243", "repository": "USAP-DC", "title": "Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -81.7, "title": "Subglacial Topography: Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica", "uid": "609292", "west": -134.9}, {"awards": "0088035 Arcone, Steven", "bounds_geometry": ["POLYGON((-135 -75,-130.5 -75,-126 -75,-121.5 -75,-117 -75,-112.5 -75,-108 -75,-103.5 -75,-99 -75,-94.5 -75,-90 -75,-90 -76.5,-90 -78,-90 -79.5,-90 -81,-90 -82.5,-90 -84,-90 -85.5,-90 -87,-90 -88.5,-90 -90,-94.5 -90,-99 -90,-103.5 -90,-108 -90,-112.5 -90,-117 -90,-121.5 -90,-126 -90,-130.5 -90,-135 -90,-135 -88.5,-135 -87,-135 -85.5,-135 -84,-135 -82.5,-135 -81,-135 -79.5,-135 -78,-135 -76.5,-135 -75))"], "date_created": "Sun, 01 May 2005 00:00:00 GMT", "description": "This data set includes data from radar profiles that were recorded between core sites during the November-December seasons for 1999-2002. Data were collected using an ice-penetrating radar to survey the ice sheet. Ice thickness data are available for a portion of the West Antarctic Ice Sheet. This study is part of the U.S. participation in the International Trans-Antarctic Scientific Expedition (US ITASE). Elevation data are available in Excel and Microsoft Access database format.", "east": -90.0, "geometry": ["POINT(-112.5 -82.5)"], "keywords": "Airborne Radar; Antarctica; Bathymetry/Topography; Cryosphere; Glaciers/Ice Sheet; Glaciology; ITASE; Radar; WAIS", "locations": "WAIS; Antarctica", "north": -75.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Arcone, Steven", "project_titles": "High Resolution Radar Profiling of the Snow and Ice Stratigraphy beneath the ITASE Traverses, West Antarctic Ice Sheet", "projects": [{"proj_uid": "p0000146", "repository": "USAP-DC", "title": "High Resolution Radar Profiling of the Snow and Ice Stratigraphy beneath the ITASE Traverses, West Antarctic Ice Sheet"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "US International Trans-Antarctic Scientific Expedition 400 MHz Subsurface Radar Profiles", "uid": "609254", "west": -135.0}, {"awards": "8919147 Elliot, David", "bounds_geometry": ["POLYGON((-134 -80,-131 -80,-128 -80,-125 -80,-122 -80,-119 -80,-116 -80,-113 -80,-110 -80,-107 -80,-104 -80,-104 -80.4,-104 -80.8,-104 -81.2,-104 -81.6,-104 -82,-104 -82.4,-104 -82.8,-104 -83.2,-104 -83.6,-104 -84,-107 -84,-110 -84,-113 -84,-116 -84,-119 -84,-122 -84,-125 -84,-128 -84,-131 -84,-134 -84,-134 -83.6,-134 -83.2,-134 -82.8,-134 -82.4,-134 -82,-134 -81.6,-134 -81.2,-134 -80.8,-134 -80.4,-134 -80))"], "date_created": "Wed, 17 Mar 2004 00:00:00 GMT", "description": "Ice surface elevation and ice thickness data are available for a\nportion of the West Antarctic Ice Sheet. The investigators utilized a\nlaser altimeter and ice-penetrating radar mounted to a Twin Otter\naircraft to survey the ice sheet. Ice surface elevations and ice\nthickness data, derived from laser altimetry and radar sounding\nresults, are available in ASCII format via ftp.\n\nThese data are a result of the Corridor Aerogeophysics of the\nSoutheastern Ross Transect Zone (CASERTZ) experiments of the 1990s.\nThe CASERTZ geophysical surveys were aimed at understanding geological\ncontrols on ice streams of the West Antarctic Ice Sheet, ultimately to\nhelp assess the potential for ice sheet collapse. Blankenship et\nal. (2001) used ice surface elevations and ice thicknesses (reported\nhere) to calculate driving stresses across the ice sheet and thus to identify regions of rapid basal movement by ice streams.", "east": -104.0, "geometry": ["POINT(-119 -82)"], "keywords": "Antarctica; Bathymetry/Topography; Cryosphere; Glaciers/Ice Sheet; Glaciology; Ross Embayment; West Antarctica", "locations": "Ross Embayment; West Antarctica; Antarctica", "north": -80.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Blankenship, Donald D.; Finn, C. A.; Morse, David L.; Peters, M. E.; Kempf, Scott D.; Hodge, S. M.; Behrendt, J. C.; Brozena, J. M.; Studinger, Michael S.; Bell, Robin", "project_titles": "Corridor Aerogeophysics of the Southeastern Ross Transect Zone (CASERTZ), Antarctica", "projects": [{"proj_uid": "p0000056", "repository": "USAP-DC", "title": "Corridor Aerogeophysics of the Southeastern Ross Transect Zone (CASERTZ), Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.0, "title": "Ice Thickness and Surface Elevation, Southeastern Ross Embayment, West Antarctica", "uid": "609099", "west": -134.0}, {"awards": "0338151 Raymond, Charles", "bounds_geometry": ["POLYGON((-157 -71,-154.9 -71,-152.8 -71,-150.7 -71,-148.6 -71,-146.5 -71,-144.4 -71,-142.3 -71,-140.2 -71,-138.1 -71,-136 -71,-136 -71.9,-136 -72.8,-136 -73.7,-136 -74.6,-136 -75.5,-136 -76.4,-136 -77.3,-136 -78.2,-136 -79.1,-136 -80,-138.1 -80,-140.2 -80,-142.3 -80,-144.4 -80,-146.5 -80,-148.6 -80,-150.7 -80,-152.8 -80,-154.9 -80,-157 -80,-157 -79.1,-157 -78.2,-157 -77.3,-157 -76.4,-157 -75.5,-157 -74.6,-157 -73.7,-157 -72.8,-157 -71.9,-157 -71))"], "date_created": "Wed, 10 Dec 2003 00:00:00 GMT", "description": "This data set provides surface elevation and ice thickness data for a portion of the Marie Byrd Land sector of West Antarctica, including the Ford Ranges, the Sulzberger Ice Shelf, much of the Edward VII Peninsula, and the Shirase Coast region of the eastern Ross Ice Shelf. The investigators used radar sounding and laser altimetry from a Twin Otter aircraft flying at varying altitudes, at least 300 m above the surface, at an air speed of about 130 knots. Surveys were accomplished with 64 flights in December 1998 and January 1999. This research was funded by the National Science Foundation (NSF) contract NSF OPP 9615281.", "east": -136.0, "geometry": ["POINT(-146.5 -75.5)"], "keywords": "Airborne Radar; Airplane; Antarctica; Bathymetry/Topography; Cryosphere; Glaciers/Ice Sheet; Marie Byrd Land", "locations": "Marie Byrd Land; Antarctica", "north": -71.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Luyendyk, Bruce P.; Wilson, Douglas S.", "project_titles": "Glaciological Characteristics of the Ross/Amundsen Sea Ice-flow Divide Deduced by a New Analysis of Ice-penetrating Radar Data", "projects": [{"proj_uid": "p0000017", "repository": "USAP-DC", "title": "Glaciological Characteristics of the Ross/Amundsen Sea Ice-flow Divide Deduced by a New Analysis of Ice-penetrating Radar Data"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "Surface Elevation and Ice Thickness, Western Marie Byrd Land, Antarctica", "uid": "609119", "west": -157.0}, {"awards": "9615347 Conway, Howard", "bounds_geometry": ["POLYGON((-161.5307 -79.3539,-161.3584 -79.3539,-161.1861 -79.3539,-161.0138 -79.3539,-160.8415 -79.3539,-160.6692 -79.3539,-160.4969 -79.3539,-160.3246 -79.3539,-160.1523 -79.3539,-159.98 -79.3539,-159.8077 -79.3539,-159.8077 -79.37757,-159.8077 -79.40124,-159.8077 -79.42491,-159.8077 -79.44858,-159.8077 -79.47225,-159.8077 -79.49592,-159.8077 -79.51959,-159.8077 -79.54326,-159.8077 -79.56693,-159.8077 -79.5906,-159.98 -79.5906,-160.1523 -79.5906,-160.3246 -79.5906,-160.4969 -79.5906,-160.6692 -79.5906,-160.8415 -79.5906,-161.0138 -79.5906,-161.1861 -79.5906,-161.3584 -79.5906,-161.5307 -79.5906,-161.5307 -79.56693,-161.5307 -79.54326,-161.5307 -79.51959,-161.5307 -79.49592,-161.5307 -79.47225,-161.5307 -79.44858,-161.5307 -79.42491,-161.5307 -79.40124,-161.5307 -79.37757,-161.5307 -79.3539))"], "date_created": "Fri, 23 May 2003 00:00:00 GMT", "description": "This data set consists of bedrock and surface elevation readings taken by ground penetrating radar and Global Positioning System (GPS) on Roosevelt Island, an ice dome within the Ross Ice Shelf. Locations were validated by GPS readings of poles set in the surface snow. The data was collected between November and December, 1997.\n\nData are available via ftp, and are provided in a text file with an accompanying file that provides GPS locations. Surface and bedrock elevations are given in meters above WGS84.", "east": -159.8077, "geometry": ["POINT(-160.6692 -79.47225)"], "keywords": "Antarctica; Bathymetry/Topography; Cryosphere; Glaciers/Ice Sheet; Glaciology; Ground Penetrating Radar; Roosevelt Island; Solid Earth", "locations": "Roosevelt Island; Antarctica", "north": -79.3539, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Conway, Howard", "project_titles": "Radar Investigations of Former Shear Margins: Roosevelt Island and Ice Stream C", "projects": [{"proj_uid": "p0000164", "repository": "USAP-DC", "title": "Radar Investigations of Former Shear Margins: Roosevelt Island and Ice Stream C"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.5906, "title": "Roosevelt Island Bedrock and Surface Elevations", "uid": "609140", "west": -161.5307}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Thwaites Glacier grounding lines for 2014 and 2019/20 from height above flotation
|
1929991 |
2021-12-23 | Wild, Christian; Alley, Karen; Muto, Atsu; Truffer, Martin; Scambos, Ted; Pettit, Erin |
NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment |
This data set includes two grounding-line products of Thwaites Glacier and a series of offshore pinning points for 2014 and 2019/20. The grounding lines where delineated manually from height above flotation calculations using the bathymetry model from Jordan et al. (2020), the REMA digital surface elevation model (Howat et al., 2019) for the 2014 product and ICESat-2 surface altimetry data (Smith et al., 2019) for the 2019/20 product. More details about the processing, corrections and uncertainties can be found in our publication. We would appreciate if users who think the grounding-line products are useful for your own research would cite our manuscript. | ["POLYGON((-108 -74.5,-107.6 -74.5,-107.2 -74.5,-106.8 -74.5,-106.4 -74.5,-106 -74.5,-105.6 -74.5,-105.2 -74.5,-104.8 -74.5,-104.4 -74.5,-104 -74.5,-104 -74.6,-104 -74.7,-104 -74.8,-104 -74.9,-104 -75,-104 -75.1,-104 -75.2,-104 -75.3,-104 -75.4,-104 -75.5,-104.4 -75.5,-104.8 -75.5,-105.2 -75.5,-105.6 -75.5,-106 -75.5,-106.4 -75.5,-106.8 -75.5,-107.2 -75.5,-107.6 -75.5,-108 -75.5,-108 -75.4,-108 -75.3,-108 -75.2,-108 -75.1,-108 -75,-108 -74.9,-108 -74.8,-108 -74.7,-108 -74.6,-108 -74.5))"] | ["POINT(-106 -75)"] | false | false |
Circum-Antarctic grounding-line sinuosity
|
1745043 1246353 1745055 |
2021-11-10 | Simkins, Lauren; Stearns, Leigh; Riverman, Kiya |
Collaborative Research: Topographic controls on Antarctic Ice Sheet grounding line retreat - integrating models and observations Evidence for Paleo Ice Stream Collapse in the Western Ross Sea since the Last Glacial Maximum. |
The dataset here allows exploration of the causes and significance of Antarctic grounding-line sinuosity by coupling observations of contemporary Antarctic grounding lines and paleo-grounding lines expressed as ice-marginal landforms on the Ross Sea continental shelf. Modern grounding lines are derived from the MEaSUREs Version 2 Differential Satellite Radar Interferometry dataset with spatial resolutions of 25-120 m spanning February 1992 to December 2014 (Rignot et al., 2016; Mouginot et al., 2017). The boundaries of individual grounding lines representative of individual glacial catchments (n=664) were delineated by the inflection points of the shear strain rate, εxy (c.f Van der Veen et al., 2011). Sinuosity was calculated as the ratio of the true length, orthogonal to ice-flow direction, of the grounding lines and the straight line length between end-points and in units of km/km. Raster data were extracted at 1-km points along each grounding line; the mean was calculated for each grounding line and merged in a table with sinuosity data. A dataset of 6,275 paleo-grounding lines expressed as ice-marginal landforms on the deglaciated western Ross Sea continental shelf are used in this study, originally published by Simkins et al., 2018. The ice-marginal landforms were mapped from multibeam echo sounder data that was collected onboard the RVIB Nathaniel B. Palmer (NBP) 15-02 cruise using a Kongsberg EM122 operating in dual swath mode at 12 kHz frequency with 30-60% swath overlap (Cruise DOI: 10.7284/901477). The resulting bathymetry data was gridded at 20-40 m with decimeter vertical elevation resolution depending on water depth and sea-state. Sinuosity is calculated as a ratio of true (mapped) landform length, measured in the across paleo-ice flow direction at the crest of the landform, to the straight line distance between the mapped landform endpoints and in units of km/km. To compare modern and paleo-grounding lines, we use a consistent length scale by segmenting the grounding lines into 2-km sections for the two datasets (modern, n=12,966; paleo, n=5,832), even though this eliminates grounding lines that are less than 2-km long and thus results in 1 modern and 3,873 paleo-grounding lines removed. The full-length and 2-km segmented groundings lines are provided as shapefiles "InSAR_groundinglines_full" and "InSAR_groundinglines_2km", the paleo-grounding lines are provided as shapefiles "RossSea_icemarginal_full" and "RossSea_icemarginal_2km", and points marking modern grounding lines retreat from repeat InSAR surveys are provided as shapefile "InSAR_retreat_points", all stored together in a geodatabase named "Antarctic_groundinglines.gbd". Additional grounding line metrics, including length, sinuosity, bed roughness, and bed slope for modern and paleo-grounding lines, and height-above-buoyancy gradient, ice-flow velocity, presence of pinning points and ice shelves are provided for modern grounding lines. The published dataset was compiled and analyzed in the article "Controls on circum-Antarctic grounding-line sinuosity " by Simkins, L.M., Stearns, L.A., and Riverman, K.L, which will be submitted to a peer-review journal in November 2021. References Mouginot, J., B. Scheuchl, and E. Rignot. 2017. MEaSUREs Antarctic Boundaries for IPY 2007-2009 from Satellite Radar, Version 2. [Indicate subset used]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. Rignot, E., J. Mouginot, and B. Scheuchl. 2016. MEaSUREs Antarctic Grounding Line from Differential Satellite Radar Interferometry, Version 2. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. Simkins, L. M., Greenwood, S. L., & Anderson, J. B. (2018). Diagnosing ice sheet grounding line stability from landform morphology. The Cryosphere, 12(8), 2707-2726. Van der Veen, C. J., J. C. Plummer, & L. A. Stearns. (2011). Controls on the recent speed up of Jakobshavn Isbræ, West Greenland. Journal of Glaciology, 57(204), 770-782 | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Pennell Trough, Ross Sea bathymetry and glacial landforms
|
1745043 1246353 1745055 |
2021-10-04 | Greenwood, Sarah; Munevar Garcia, Santiago; Eareckson, Elizabeth; Anderson, John; Prothro, Lindsay; Simkins, Lauren |
Collaborative Research: Topographic controls on Antarctic Ice Sheet grounding line retreat - integrating models and observations Evidence for Paleo Ice Stream Collapse in the Western Ross Sea since the Last Glacial Maximum. |
Bathymetry from multibeam echo sounding data in Pennell Trough, Ross Sea, Antarctica was collected onboard the RVIB Nathaniel B. Palmer (NBP) 15-02 cruise using a Kongsberg EM122 operating in dual swath mode at 12 kHz frequency with a 1°×1° beam width, swath angular coverage set to 62°×62°, and 30-60% overlap between survey lines. All raw, ping-edited geophysical data collected on NBP15-02 can be accessed using the Marine Geoscience Data System (Cruise DOI: 10.7284/901477). The bathymetry dataset here is gridded at 20-m resolution with a water depth-dependent vertical resolution on the order of decimeters. Two shapefiles are provided for ice-marginal landforms and meltwater landforms observable in the bathymetry data. The purpose of collecting the bathymetry data on cruise NBP15-02 was to better understand the glacial history of the Ross Sea, and the dataset, inclusive of bathymetry data and shapefiles of glacial landforms, from Pennell Trough are used to understand impacts on subglacial channel morphology and organization during the deglaciation of the region following the Last Glacial Maximum. The published dataset was used and analyzed in the article "Topographic controls on channelized meltwater in the subglacial environment" by Simkins, L.M., Greenwood, S.L., Munevar Garcia, S., Eareckson, E.A., Anderson, J.B., and Prothro, L.O, which was published in Geophysical Research Letters in 2021 (DOI: 10.1029/2021GL094678). | ["POLYGON((174 -75,174.4 -75,174.8 -75,175.2 -75,175.6 -75,176 -75,176.4 -75,176.8 -75,177.2 -75,177.6 -75,178 -75,178 -75.2,178 -75.4,178 -75.6,178 -75.8,178 -76,178 -76.2,178 -76.4,178 -76.6,178 -76.8,178 -77,177.6 -77,177.2 -77,176.8 -77,176.4 -77,176 -77,175.6 -77,175.2 -77,174.8 -77,174.4 -77,174 -77,174 -76.8,174 -76.6,174 -76.4,174 -76.2,174 -76,174 -75.8,174 -75.6,174 -75.4,174 -75.2,174 -75))"] | ["POINT(176 -76)"] | false | false |
CATS2008: Circum-Antarctic Tidal Simulation version 2008
|
1443677 9896041 |
2019-12-19 | Howard, Susan L.; Padman, Laurence; Erofeeva, Svetlana |
Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE) Ocean Tides around Antarctica and in the Southern Ocean |
CATS2008 is a regional inverse barotropic tide model for the circum-Antarctic ocean on a 4 km grid. The model domain includes ocean cavities under the floating ice shelves. The coastline is based on the MODIS MOA [Scambos et al., 2007; Remote Sensing of Environment] feature identification files, adjusted to match ICESat-derived grounding lines for the Ross and Filchner-Ronne ice shelves and Interferometric Synthetic Aperture Radar (InSAR) grounding lines. The water depth map for open water is based on the 2007 release update to Smith and Sandwell [1997; Science]. Adjustments to this map have been made in various regions, including the open continental shelf in front of the Larsen-C Ice Shelf which has been blended with GEBCO bathymetry. Model type: Tides only; Inverse (data assimilation); barotropic (no vertical variation of currents). Grid: 4-km uniform polar stereographic (centered at 71 degrees S, 70 degrees W) Constituents: M2, S2, N2, K2, K1, O1, P1, Q1, Mf, Mm. Units: z (sea surface height; meters); u,v (currents; cm/s); U,V (transports; m2/s). Coordinates: Currents (u, v) and depth-integrated transports (U, V) are given as East (u, U) and North (v, V) components. Citation: "… an update to the inverse model described by Padman et al. [2002]." See CATS2008_README.pdf for further details. | ["POLYGON((-180 -40.231,-144 -40.231,-108 -40.231,-72 -40.231,-36 -40.231,0 -40.231,36 -40.231,72 -40.231,108 -40.231,144 -40.231,180 -40.231,180 -45.2079,180 -50.1848,180 -55.1617,180 -60.1386,180 -65.1155,180 -70.0924,180 -75.0693,180 -80.0462,180 -85.0231,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.0231,-180 -80.0462,-180 -75.0693,-180 -70.0924,-180 -65.1155,-180 -60.1386,-180 -55.1617,-180 -50.1848,-180 -45.2079,-180 -40.231))"] | ["POINT(0 -89.999)"] | false | false |
Scar Inlet Terrestrial Radar Interferometry
|
1565576 |
2017-12-20 | Truffer, Martin |
RAPID: Observing the Disintegration of the Scar Inlet Ice Shelf |
A terrestrial radar interferometer was set up at a location overlooking a remnant of the Larsen B iceshelf and the adjacent fast ice. Images were acquired every 4 minutes with a Gamma Portable Radar Interferometer - 2. Data include images from two antennas, to allow the generation of interferometric DEMs, as well as line-of-sight displacement fields between consecutive images. The archived data are single-look complex (SLC) images, together with parameter files. | ["POLYGON((-62.2 -65.5,-62.12 -65.5,-62.04 -65.5,-61.96 -65.5,-61.88 -65.5,-61.8 -65.5,-61.72 -65.5,-61.64 -65.5,-61.56 -65.5,-61.48 -65.5,-61.4 -65.5,-61.4 -65.53,-61.4 -65.56,-61.4 -65.59,-61.4 -65.62,-61.4 -65.65,-61.4 -65.68,-61.4 -65.71,-61.4 -65.74,-61.4 -65.77,-61.4 -65.8,-61.48 -65.8,-61.56 -65.8,-61.64 -65.8,-61.72 -65.8,-61.8 -65.8,-61.88 -65.8,-61.96 -65.8,-62.04 -65.8,-62.12 -65.8,-62.2 -65.8,-62.2 -65.77,-62.2 -65.74,-62.2 -65.71,-62.2 -65.68,-62.2 -65.65,-62.2 -65.62,-62.2 -65.59,-62.2 -65.56,-62.2 -65.53,-62.2 -65.5))"] | ["POINT(-61.8 -65.65)"] | false | false |
Subglacial water flow paths under Thwaites Glacier, West Antarctica
|
0636724 |
2012-05-21 | Carter, Sasha P.; Young, Duncan A.; Blankenship, Donald D. |
Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System |
This data set contains subglacial water flow paths beneath Thwaites Glacier, West Antarctica, interpreted from ice thickness and bed elevation measurements collected between 7 December 2004 and 31 January 2005 by the Airborne Geophysical Survey of the Amundsen Embayment (AGASEA) expedition. Data consist of an ASCII text file with geographical coordinates, hydraulic head, and bed and surface elevations, and a corresponding .pdf map. Data are available via FTP. | ["POLYGON((-120 -75,-117 -75,-114 -75,-111 -75,-108 -75,-105 -75,-102 -75,-99 -75,-96 -75,-93 -75,-90 -75,-90 -75.5,-90 -76,-90 -76.5,-90 -77,-90 -77.5,-90 -78,-90 -78.5,-90 -79,-90 -79.5,-90 -80,-93 -80,-96 -80,-99 -80,-102 -80,-105 -80,-108 -80,-111 -80,-114 -80,-117 -80,-120 -80,-120 -79.5,-120 -79,-120 -78.5,-120 -78,-120 -77.5,-120 -77,-120 -76.5,-120 -76,-120 -75.5,-120 -75))"] | ["POINT(-105 -77.5)"] | false | false |
AGASEA Ice Thickness Profile Data from the Amundsen Sea Embayment, Antarctica
|
0636724 |
2012-05-03 | Blankenship, Donald D.; Young, Duncan A.; Holt, John W.; Kempf, Scott D. |
Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System |
This data set contains line-based radar-derived ice thickness and bed elevation data, collected as part of the Airborne Geophysical Survey of the Amundsen Embayment (AGASEA) expedition, which took place over Thwaites Glacier in West Antarctica from 2004 to 2005. The data set includes ice thickness, ice sheet bed elevation, and ice sheet surface elevation, derived from ice-penetrating radar and aircraft GPS positions. The data are spaced on a 15 km by 15 km grid over the entire catchment of the glacier, and sampled at approximately 15 meters along track. Most of the radar data used for this dataset has been processed using a 1-D focusing algorithm, to reduce the along track resolution to tens of meters, to improve boundary conditions for ice sheet models. Data are available via FTP in space-delimited ASCII format. | ["POLYGON((-125 -73,-121.5 -73,-118 -73,-114.5 -73,-111 -73,-107.5 -73,-104 -73,-100.5 -73,-97 -73,-93.5 -73,-90 -73,-90 -74,-90 -75,-90 -76,-90 -77,-90 -78,-90 -79,-90 -80,-90 -81,-90 -82,-90 -83,-93.5 -83,-97 -83,-100.5 -83,-104 -83,-107.5 -83,-111 -83,-114.5 -83,-118 -83,-121.5 -83,-125 -83,-125 -82,-125 -81,-125 -80,-125 -79,-125 -78,-125 -77,-125 -76,-125 -75,-125 -74,-125 -73))"] | ["POINT(-107.5 -78)"] | false | false |
Antarctic Peninsula 100 m Digital Elevation Model Derived from ASTER GDEM
|
None | 2012-04-30 | Cook, Allison | No project link provided | This data set provides a 100 meter resolution surface topography Digital Elevation Model (DEM) of the Antarctic Peninsula. The DEM is based on Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) data. | ["POLYGON((-70 -63,-68.5 -63,-67 -63,-65.5 -63,-64 -63,-62.5 -63,-61 -63,-59.5 -63,-58 -63,-56.5 -63,-55 -63,-55 -63.7,-55 -64.4,-55 -65.1,-55 -65.8,-55 -66.5,-55 -67.2,-55 -67.9,-55 -68.6,-55 -69.3,-55 -70,-56.5 -70,-58 -70,-59.5 -70,-61 -70,-62.5 -70,-64 -70,-65.5 -70,-67 -70,-68.5 -70,-70 -70,-70 -69.3,-70 -68.6,-70 -67.9,-70 -67.2,-70 -66.5,-70 -65.8,-70 -65.1,-70 -64.4,-70 -63.7,-70 -63))"] | ["POINT(-62.5 -66.5)"] | false | false |
Radar Studies of Internal Stratigraphy and Bed Topography along the US ITASE-II Traverse
|
0337567 |
2010-10-20 | Jacobel, Robert |
Collaborative Research: Is Ice Stream C Restarting? Glaciological Investigations of the 'Bulge' and the Trunk of Ice Stream C, West Antartica |
This data set contains ice penetrating radar data from the US-International Trans-Antarctic Science Expedition (ITASE) Traverse, from Taylor Dome to South Pole recorded by the St. Olaf College deep radar system. Parameters include latitude, longitude, distance along profile (m), ice thickness pick (m), surface elevation (m), and bed echo power (relative units) from the approximately 1800 km traverse recorded during the 2006-2007 and 2007-2008 Antarctic field seasons (austral summer). The traverse has been broken into three segments, which are shown on three maps provided with the data. A sample radar profile covering approximately 120 km of the traverse near Titan Dome is also provided. Data are available via FTP as ASCII text files (.txt). Profile location maps and sample profile sections are available as Joint Photographic Experts Group (.jpg) image files. | ["POLYGON((130 -78,133 -78,136 -78,139 -78,142 -78,145 -78,148 -78,151 -78,154 -78,157 -78,160 -78,160 -79.2,160 -80.4,160 -81.6,160 -82.8,160 -84,160 -85.2,160 -86.4,160 -87.6,160 -88.8,160 -90,157 -90,154 -90,151 -90,148 -90,145 -90,142 -90,139 -90,136 -90,133 -90,130 -90,130 -88.8,130 -87.6,130 -86.4,130 -85.2,130 -84,130 -82.8,130 -81.6,130 -80.4,130 -79.2,130 -78))"] | ["POINT(145 -84)"] | false | false |
Histories of Accumulation, Thickness, and WAIS Divide Location, Antarctica
|
0440666 |
2010-06-20 | Waddington, Edwin D.; Koutnik, Michelle |
Histories of accumulation, thickness and WAIS Divide location from radar layers using a new inverse approach |
This data set contains radar internal layer and ice sheet topography data for two sites in Antarctica, along with associated model results from two studies. This project used geophysical inverse theory and a 2.5 D flowband ice-flow forward model to extract robust transient accumulation patterns from multiple deeper layers. Histories of divide migration, or the movement of the ice sheet and ice-surface evolution are also provided. The data used to solve the inverse problem, and the model solutions are provided. Internal layers, modern ice-surface velocities, and modern ice-sheet geometry at Taylor Mouth are available, as well as the pattern of accumulation inferred by Waddington et al. (2007). Data are available via FTP in Matlab (.mat) format. Supporting information is available as text files (.rtf and .txt). | ["POINT(-111.816667 -79.416667)", "POINT(158.716667 -77.783333)"] | ["POINT(-111.816667 -79.416667)", "POINT(158.716667 -77.783333)"] | false | false |
Airborne Laser Altimetry of the Thwaites Glacier Catchment, West Antarctica
|
0230197 0636724 |
2008-01-01 | Young, Duncan A.; Kempf, Scott D.; Blankenship, Donald D.; Holt, John W.; Morse, David L. |
Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System |
This data set includes airborne altimetry collected over the catchment and main trunk of Thwaites Glacier, one of Antarctica's most active ice streams. The airborne altimetry comprises 35,000 line-kilometers sampled at 20 meters along track. The full dataset has an internal error of ±20 cm; a primary subset has an error of ±8 cm. We find a +20 cm bias with Geoscience Laser Altimeter System data over a flat interior region. These data will serve as an additional temporal reference for the evolution of Thwaites Glacier surface, as well as aid the construction of future high resolution Digital Elevation Models (DEM). Line data are available in space-delimited ASCII format and are available via FTP. | ["POLYGON((-130 -75,-126.5 -75,-123 -75,-119.5 -75,-116 -75,-112.5 -75,-109 -75,-105.5 -75,-102 -75,-98.5 -75,-95 -75,-95 -75.5,-95 -76,-95 -76.5,-95 -77,-95 -77.5,-95 -78,-95 -78.5,-95 -79,-95 -79.5,-95 -80,-98.5 -80,-102 -80,-105.5 -80,-109 -80,-112.5 -80,-116 -80,-119.5 -80,-123 -80,-126.5 -80,-130 -80,-130 -79.5,-130 -79,-130 -78.5,-130 -78,-130 -77.5,-130 -77,-130 -76.5,-130 -76,-130 -75.5,-130 -75))"] | ["POINT(-112.5 -77.5)"] | false | false |
Amundsen Sea Sector Data Set
|
0230197 |
2007-01-01 | Fastook, James L. |
Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA) |
This data set includes a nested model, that starts at low resolution for the whole Antarctic Ice Sheet, and then embeds higher resolution data at limited domains. There are at least three levels of nesting: whole, regional, and specific ice streams. Investigators focused on the Thwaites Glacier and the Pine Island Glacier. The model was produced using data from (Holt et al. 2006) and (Vaughan et al. 2006). Data are in Network Common Data Form (NetCDF) format and are available via FTP. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Subglacial Topography: Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica
|
0230197 |
2006-10-25 | Holt, John W.; Blankenship, Donald D.; Morse, David L.; Vaughan, David G.; Corr, Hugh F. J.; Young, Duncan A. |
Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA) |
This data set includes 5 km gridded data from the Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA) conducted during the 2004-2005 austral summer. Investigators derived maps of the ice sheet surface and subglacial topography, which covers the entire catchments of both the Thwaites Glacier and the Pine Islands Glacier, from airborne survey systems mounted on a Twin Otter aircraft. The surveys had sufficient density to identify critical ice dynamic transitions within the Amundsen Sea Embayment (ASE). The ASE is the only major drainage to exhibit significant elevation change over the period of available satellite observations. Modeling of the Western Antarctic Ice Sheet (WAIS) deglaciation pinpointed the Pine Island Glacier and the Thwaites Glacier, which comprise a major portion of the ASE, as the most vulnerable features of the WAIS. Present knowledge of the ice thickness and subglacial boundary conditions in the ASE are insufficient to understand its evolution or its sensitivity to climatic change, and it is not yet determined whether these changes are evidence of ongoing deglaciation or simply a fluctuation that does not threaten the equilibrium of the ice sheet. This research will support the efforts of a community of United States and international researchers to assess the present and predict the future behavior of the ice sheet in the ASE. These data are available via FTP. | ["POLYGON((-134.9 -71.7,-129.86 -71.7,-124.82 -71.7,-119.78 -71.7,-114.74 -71.7,-109.7 -71.7,-104.66 -71.7,-99.62 -71.7,-94.58 -71.7,-89.54 -71.7,-84.5 -71.7,-84.5 -72.7,-84.5 -73.7,-84.5 -74.7,-84.5 -75.7,-84.5 -76.7,-84.5 -77.7,-84.5 -78.7,-84.5 -79.7,-84.5 -80.7,-84.5 -81.7,-89.54 -81.7,-94.58 -81.7,-99.62 -81.7,-104.66 -81.7,-109.7 -81.7,-114.74 -81.7,-119.78 -81.7,-124.82 -81.7,-129.86 -81.7,-134.9 -81.7,-134.9 -80.7,-134.9 -79.7,-134.9 -78.7,-134.9 -77.7,-134.9 -76.7,-134.9 -75.7,-134.9 -74.7,-134.9 -73.7,-134.9 -72.7,-134.9 -71.7))"] | ["POINT(-109.7 -76.7)"] | false | false |
US International Trans-Antarctic Scientific Expedition 400 MHz Subsurface Radar Profiles
|
0088035 |
2005-05-01 | Arcone, Steven |
High Resolution Radar Profiling of the Snow and Ice Stratigraphy beneath the ITASE Traverses, West Antarctic Ice Sheet |
This data set includes data from radar profiles that were recorded between core sites during the November-December seasons for 1999-2002. Data were collected using an ice-penetrating radar to survey the ice sheet. Ice thickness data are available for a portion of the West Antarctic Ice Sheet. This study is part of the U.S. participation in the International Trans-Antarctic Scientific Expedition (US ITASE). Elevation data are available in Excel and Microsoft Access database format. | ["POLYGON((-135 -75,-130.5 -75,-126 -75,-121.5 -75,-117 -75,-112.5 -75,-108 -75,-103.5 -75,-99 -75,-94.5 -75,-90 -75,-90 -76.5,-90 -78,-90 -79.5,-90 -81,-90 -82.5,-90 -84,-90 -85.5,-90 -87,-90 -88.5,-90 -90,-94.5 -90,-99 -90,-103.5 -90,-108 -90,-112.5 -90,-117 -90,-121.5 -90,-126 -90,-130.5 -90,-135 -90,-135 -88.5,-135 -87,-135 -85.5,-135 -84,-135 -82.5,-135 -81,-135 -79.5,-135 -78,-135 -76.5,-135 -75))"] | ["POINT(-112.5 -82.5)"] | false | false |
Ice Thickness and Surface Elevation, Southeastern Ross Embayment, West Antarctica
|
8919147 |
2004-03-17 | Blankenship, Donald D.; Finn, C. A.; Morse, David L.; Peters, M. E.; Kempf, Scott D.; Hodge, S. M.; Behrendt, J. C.; Brozena, J. M.; Studinger, Michael S.; Bell, Robin |
Corridor Aerogeophysics of the Southeastern Ross Transect Zone (CASERTZ), Antarctica |
Ice surface elevation and ice thickness data are available for a portion of the West Antarctic Ice Sheet. The investigators utilized a laser altimeter and ice-penetrating radar mounted to a Twin Otter aircraft to survey the ice sheet. Ice surface elevations and ice thickness data, derived from laser altimetry and radar sounding results, are available in ASCII format via ftp. These data are a result of the Corridor Aerogeophysics of the Southeastern Ross Transect Zone (CASERTZ) experiments of the 1990s. The CASERTZ geophysical surveys were aimed at understanding geological controls on ice streams of the West Antarctic Ice Sheet, ultimately to help assess the potential for ice sheet collapse. Blankenship et al. (2001) used ice surface elevations and ice thicknesses (reported here) to calculate driving stresses across the ice sheet and thus to identify regions of rapid basal movement by ice streams. | ["POLYGON((-134 -80,-131 -80,-128 -80,-125 -80,-122 -80,-119 -80,-116 -80,-113 -80,-110 -80,-107 -80,-104 -80,-104 -80.4,-104 -80.8,-104 -81.2,-104 -81.6,-104 -82,-104 -82.4,-104 -82.8,-104 -83.2,-104 -83.6,-104 -84,-107 -84,-110 -84,-113 -84,-116 -84,-119 -84,-122 -84,-125 -84,-128 -84,-131 -84,-134 -84,-134 -83.6,-134 -83.2,-134 -82.8,-134 -82.4,-134 -82,-134 -81.6,-134 -81.2,-134 -80.8,-134 -80.4,-134 -80))"] | ["POINT(-119 -82)"] | false | false |
Surface Elevation and Ice Thickness, Western Marie Byrd Land, Antarctica
|
0338151 |
2003-12-10 | Luyendyk, Bruce P.; Wilson, Douglas S. |
Glaciological Characteristics of the Ross/Amundsen Sea Ice-flow Divide Deduced by a New Analysis of Ice-penetrating Radar Data |
This data set provides surface elevation and ice thickness data for a portion of the Marie Byrd Land sector of West Antarctica, including the Ford Ranges, the Sulzberger Ice Shelf, much of the Edward VII Peninsula, and the Shirase Coast region of the eastern Ross Ice Shelf. The investigators used radar sounding and laser altimetry from a Twin Otter aircraft flying at varying altitudes, at least 300 m above the surface, at an air speed of about 130 knots. Surveys were accomplished with 64 flights in December 1998 and January 1999. This research was funded by the National Science Foundation (NSF) contract NSF OPP 9615281. | ["POLYGON((-157 -71,-154.9 -71,-152.8 -71,-150.7 -71,-148.6 -71,-146.5 -71,-144.4 -71,-142.3 -71,-140.2 -71,-138.1 -71,-136 -71,-136 -71.9,-136 -72.8,-136 -73.7,-136 -74.6,-136 -75.5,-136 -76.4,-136 -77.3,-136 -78.2,-136 -79.1,-136 -80,-138.1 -80,-140.2 -80,-142.3 -80,-144.4 -80,-146.5 -80,-148.6 -80,-150.7 -80,-152.8 -80,-154.9 -80,-157 -80,-157 -79.1,-157 -78.2,-157 -77.3,-157 -76.4,-157 -75.5,-157 -74.6,-157 -73.7,-157 -72.8,-157 -71.9,-157 -71))"] | ["POINT(-146.5 -75.5)"] | false | false |
Roosevelt Island Bedrock and Surface Elevations
|
9615347 |
2003-05-23 | Conway, Howard |
Radar Investigations of Former Shear Margins: Roosevelt Island and Ice Stream C |
This data set consists of bedrock and surface elevation readings taken by ground penetrating radar and Global Positioning System (GPS) on Roosevelt Island, an ice dome within the Ross Ice Shelf. Locations were validated by GPS readings of poles set in the surface snow. The data was collected between November and December, 1997. Data are available via ftp, and are provided in a text file with an accompanying file that provides GPS locations. Surface and bedrock elevations are given in meters above WGS84. | ["POLYGON((-161.5307 -79.3539,-161.3584 -79.3539,-161.1861 -79.3539,-161.0138 -79.3539,-160.8415 -79.3539,-160.6692 -79.3539,-160.4969 -79.3539,-160.3246 -79.3539,-160.1523 -79.3539,-159.98 -79.3539,-159.8077 -79.3539,-159.8077 -79.37757,-159.8077 -79.40124,-159.8077 -79.42491,-159.8077 -79.44858,-159.8077 -79.47225,-159.8077 -79.49592,-159.8077 -79.51959,-159.8077 -79.54326,-159.8077 -79.56693,-159.8077 -79.5906,-159.98 -79.5906,-160.1523 -79.5906,-160.3246 -79.5906,-160.4969 -79.5906,-160.6692 -79.5906,-160.8415 -79.5906,-161.0138 -79.5906,-161.1861 -79.5906,-161.3584 -79.5906,-161.5307 -79.5906,-161.5307 -79.56693,-161.5307 -79.54326,-161.5307 -79.51959,-161.5307 -79.49592,-161.5307 -79.47225,-161.5307 -79.44858,-161.5307 -79.42491,-161.5307 -79.40124,-161.5307 -79.37757,-161.5307 -79.3539))"] | ["POINT(-160.6692 -79.47225)"] | false | false |