{"dp_type": "Project", "free_text": "HUMIDITY SENSORS"}
[{"awards": "1245663 Lazzara, Matthew; 1245737 Cassano, John", "bounds_geometry": "POLYGON((161.714 -77.522,162.6077 -77.522,163.5014 -77.522,164.3951 -77.522,165.2888 -77.522,166.1825 -77.522,167.0762 -77.522,167.9699 -77.522,168.8636 -77.522,169.7573 -77.522,170.651 -77.522,170.651 -77.6702,170.651 -77.8184,170.651 -77.9666,170.651 -78.1148,170.651 -78.263,170.651 -78.4112,170.651 -78.5594,170.651 -78.7076,170.651 -78.8558,170.651 -79.004,169.7573 -79.004,168.8636 -79.004,167.9699 -79.004,167.0762 -79.004,166.1825 -79.004,165.2888 -79.004,164.3951 -79.004,163.5014 -79.004,162.6077 -79.004,161.714 -79.004,161.714 -78.8558,161.714 -78.7076,161.714 -78.5594,161.714 -78.4112,161.714 -78.263,161.714 -78.1148,161.714 -77.9666,161.714 -77.8184,161.714 -77.6702,161.714 -77.522))", "dataset_titles": "SUMO unmanned aerial system (UAS) atmospheric data", "datasets": [{"dataset_uid": "601054", "doi": "10.15784/601054", "keywords": "Antarctica; Atmosphere; Meteorology; Navigation; UAS", "people": "Cassano, John", "repository": "USAP-DC", "science_program": null, "title": "SUMO unmanned aerial system (UAS) atmospheric data", "url": "https://www.usap-dc.org/view/dataset/601054"}], "date_created": "Wed, 22 Nov 2017 00:00:00 GMT", "description": "The Antarctic Automatic Weather Station (AAWS) network, first commenced in 1978, is the most extensive ground meteorological network in the Antarctic, approaching its 30th year at several of its installations. Its prime focus as a long term observational record is to measure the near surface weather and climatology of the Antarctic atmosphere. AWS sites measure air-temperature, pressure, wind speed and direction at a nominal surface height of 3m. Other parameters such as relative humidity and snow accumulation may also be measured. Observational data from the AWS are collected via the DCS Argos system aboard either NOAA or MetOp polar orbiting satellites and thus made available in near real time to operational and synoptic weather forecasters. The surface observations from the AAWS network are important records for recent climate change and meteorological processes. The surface observations from the AAWS network are also used operationally, and in the planning of field work. The surface observations from the AAWS network have been used to check on satellite and remote sensing observations.", "east": 170.651, "geometry": "POINT(166.1825 -78.263)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e GAUGES \u003e ADG; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e BAROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HUMIDITY SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e SNOWPACK TEMPERATURE PROBE; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e RADIO \u003e ARGOS", "is_usap_dc": true, "keywords": "Automated Weather Station; Antarctica; AWS; FIXED OBSERVATION STATIONS", "locations": "Antarctica", "north": -77.522, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew; Cassano, John; Costanza, Carol", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.004, "title": "Collaborative Research: Antarctic Automatic Weather Station Program 2013-2017", "uid": "p0000363", "west": 161.714}, {"awards": "0539232 Cuffey, Kurt; 0539578 Alley, Richard", "bounds_geometry": "POINT(112.083 -79.467)", "dataset_titles": "Grain Size Full Population Dataset from WDC06A Core; Temperature Profile of the West Antarctic Ice Sheet Divide Deep Borehole; Temperature Reconstruction at the West Antarctic Ice Sheet Divide; Updated (2017) bubble number-density, size, shape, and modeled paleoclimate data; WAIS Divide Ice Core Vertical Thin Section Low-resolution Digital Imagery; WAIS Divide Surface and Snow-pit Data, 2009-2013; WDC 06A Mean Grain Size Data", "datasets": [{"dataset_uid": "609654", "doi": "10.7265/N5GM858X", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Photo/video; Photo/Video; Thin Sections; WAIS Divide; WAIS Divide Ice Core", "people": "Cravens, Eric D.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Vertical Thin Section Low-resolution Digital Imagery", "url": "https://www.usap-dc.org/view/dataset/609654"}, {"dataset_uid": "609655", "doi": "10.7265/N5VX0DG0", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Grain Size; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Fitzpatrick, Joan; Cravens, Eric D.", "repository": "USAP-DC", "science_program": null, "title": "Grain Size Full Population Dataset from WDC06A Core", "url": "https://www.usap-dc.org/view/dataset/609655"}, {"dataset_uid": "601079", "doi": "10.15784/601079", "keywords": "Antarctica; Atmosphere; AWS; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Meteorology; Physical Properties; Snow Pit; Temperature; WAIS Divide; WAIS Divide Ice Core; Weatherstation", "people": "Fegyveresi, John; Alley, Richard", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Surface and Snow-pit Data, 2009-2013", "url": "https://www.usap-dc.org/view/dataset/601079"}, {"dataset_uid": "609656", "doi": "10.7265/N5MC8X08", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Grain Size; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Cravens, Eric D.; Fitzpatrick, Joan", "repository": "USAP-DC", "science_program": null, "title": "WDC 06A Mean Grain Size Data", "url": "https://www.usap-dc.org/view/dataset/609656"}, {"dataset_uid": "609550", "doi": "10.7265/N5V69GJW", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Temperature; WAIS Divide; WAIS Divide Ice Core", "people": "Cuffey, Kurt M.; Clow, Gary D.", "repository": "USAP-DC", "science_program": null, "title": "Temperature Profile of the West Antarctic Ice Sheet Divide Deep Borehole", "url": "https://www.usap-dc.org/view/dataset/609550"}, {"dataset_uid": "600377", "doi": "10.15784/600377", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Nitrogen; Paleoclimate; Temperature; WAIS Divide; WAIS Divide Ice Core", "people": "Cuffey, Kurt M.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Temperature Reconstruction at the West Antarctic Ice Sheet Divide", "url": "https://www.usap-dc.org/view/dataset/600377"}, {"dataset_uid": "601224", "doi": "10.15784/601224", "keywords": "Antarctic; Antarctica; Bubble Number Density; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Records; NSF-ICF Microtome and Photography Stage; Paleoclimate; Physical Properties; Snow/ice; Snow/Ice; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Voigt, Donald E.; Fitzpatrick, Joan; Spencer, Matthew; Alley, Richard; Fegyveresi, John", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Updated (2017) bubble number-density, size, shape, and modeled paleoclimate data", "url": "https://www.usap-dc.org/view/dataset/601224"}], "date_created": "Thu, 12 Jan 2017 00:00:00 GMT", "description": "0539578\u003cbr/\u003eAlley \u003cbr/\u003eThis award supports a five-year collaborative project to study the physical-properties of the planned deep ice core and the temperature of the ice in the divide region of the West Antarctic Ice Sheet. The intellectual merit of the proposed research is to provide fundamental information on the state of the ice sheet, to validate the integrity of the climate record, to help reconstruct the climate record, and to understand the flow state and history of the ice sheet. This information will initially be supplied to other investigators and then to the public and to appropriate databases, and will be published in the refereed scientific literature. The objectives of the proposed research are to aid in dating of the core through counting of annual layers, to identify any exceptionally warm intervals in the past through counting of melt layers, to learn as much as possible about the flow state and history of the ice through measurement of size, shape and arrangements of bubbles, clathrate inclusions, grains and their c-axes, to identify any flow disturbances through these indicators, and to learn the history of snow accumulation and temperature from analyses of bubbles and borehole temperatures combined with flow modeling and use of data from other collaborators. These results will then be synthesized and communicated. Failure to examine cores can lead to erroneous identification of flow features as climate changes, so careful examination is required. Independent reconstruction of accumulation rate provides important data on climate change, and improves confidence in interpretation of other climate indicators. Borehole temperatures are useful recorders of temperature history. Flow state and history are important in understanding climate history and potential contribution of ice to sea-level change. By contributing to all of these and additional issues, the proposed research will be of considerable value. The broader impacts of the research include making available to the public improved knowledge on societally central questions involving abrupt climate change and sea-level rise. The project will also contribute to the education of advanced students, will utilize results in education of introductory students, and will make vigorous efforts in outreach, informal science education, and supplying information to policy-makers as requested, thus contributing to a more-informed society.", "east": 112.083, "geometry": "POINT(112.083 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERA; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": true, "keywords": "LABORATORY; WAIS Divide; Ice Core; Temperature Profiles; FIELD SURVEYS; Bubble Number Density; GROUND-BASED OBSERVATIONS; Wais Divide-project", "locations": "WAIS Divide", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Fitzpatrick, Joan; Alley, Richard; Fegyveresi, John; Clow, Gary D.; Cuffey, Kurt M.; Cravens, Eric D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Collaborative Research: Physical Properties of the WAIS Divide Deep Core", "uid": "p0000038", "west": 112.083}, {"awards": "0838817 Kyle, Philip", "bounds_geometry": "POLYGON((167 -77.3,167.05 -77.3,167.1 -77.3,167.15 -77.3,167.2 -77.3,167.25 -77.3,167.3 -77.3,167.35 -77.3,167.4 -77.3,167.45 -77.3,167.5 -77.3,167.5 -77.34,167.5 -77.38,167.5 -77.42,167.5 -77.46,167.5 -77.5,167.5 -77.54,167.5 -77.58,167.5 -77.62,167.5 -77.66,167.5 -77.7,167.45 -77.7,167.4 -77.7,167.35 -77.7,167.3 -77.7,167.25 -77.7,167.2 -77.7,167.15 -77.7,167.1 -77.7,167.05 -77.7,167 -77.7,167 -77.66,167 -77.62,167 -77.58,167 -77.54,167 -77.5,167 -77.46,167 -77.42,167 -77.38,167 -77.34,167 -77.3))", "dataset_titles": "Mount Erebus Volcano Observatory III (MEVO III): Conduit Processes and Surveillance", "datasets": [{"dataset_uid": "600153", "doi": "10.15784/600153", "keywords": "Antarctica; Cable Observatory; Intracontinental Magmatism; IntraContinental Magmatism; MEVO; Mount Erebus; Photo/video; Photo/Video; Ross Sea; Solid Earth; Volcano", "people": "Kyle, Philip", "repository": "USAP-DC", "science_program": "MEVO", "title": "Mount Erebus Volcano Observatory III (MEVO III): Conduit Processes and Surveillance", "url": "https://www.usap-dc.org/view/dataset/600153"}], "date_created": "Thu, 23 Jun 2016 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Mount Erebus is Antarctica?s most active volcano that has been in a persistent state of activity for at least the last 35 years. It has a unique geochemistry among the Earth\u0027s active volcanoes and is also unique in hosting a persistent convecting lake(s) of anorthclase phonolite magma in its summit crater. The relative simplicity of the magmatic system, consistency of activity, and accessibility of close-range observation make Erebus attractive as a target for extensive studies. Although the Erebus\u0027 seismicity and eruptive activity and processes are becoming increasingly well understood over years of research, there is a near total lack of understanding its deeper magmatic system. The primary goal of this proposal is to continue supporting the Mt. Erebus Volcano Observatory (MEVO III) improving our current understanding of the Erebus eruptive and non-eruptive magmatic system using an integrated approach from geophysical, geochemical and remote sensing observations. This goal can be grouped into the following fundamental research objectives: (a) to sustain year-round surveillance of on-going volcanic activity primarily using geophysical observatories; (b) to understand processes within the convecting conduit which feeds the persistent lava lakes; and (c) to understand the impact of Erebus eruptive activity upon the Antarctic environment. Continued reliance on students provides a broader impact to this proposed research and firmly grounds this effort in its educational mission.", "east": 167.5, "geometry": "POINT(167.25 -77.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS", "is_usap_dc": true, "keywords": "Ice Caves; USAP-DC; Amd/Us; Distributed Temperature Sensing; FIELD SURVEYS; Not provided; AMD; Optical Fiber", "locations": null, "north": -77.3, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kyle, Philip; Curtis, Aaron; Rotman, Holly", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "MEVO", "south": -77.7, "title": "Mount Erebus Volcano Observatory III (MEVO III): Conduit Processes and Surveillance", "uid": "p0000488", "west": 167.0}, {"awards": "1043217 Zagorodnov, Victor", "bounds_geometry": null, "dataset_titles": "Fiber-Optic Distributed Temperature Sensing at Windless Bight", "datasets": [{"dataset_uid": "609604", "doi": "10.7265/N5V122QS", "keywords": "Antarctica; Ice Shelf; McMurdo Sound; Mooring; Oceans; Physical Oceanography; Ross Ice Shelf; Southern Ocean", "people": "Tyler, Scott W.; Holland, David; Zagorodnov, Victor", "repository": "USAP-DC", "science_program": null, "title": "Fiber-Optic Distributed Temperature Sensing at Windless Bight", "url": "https://www.usap-dc.org/view/dataset/609604"}], "date_created": "Tue, 05 May 2015 00:00:00 GMT", "description": "Abstract Researchers will explore the use of a distributed temperature sensing monitoring system (DTS), using fiber-optical (FO) technology, as the basis of a sustainable, sub-ice cavity sensing array. FO cable systems, such as may be deployed through a hot-water drilled hole through an ice shelf, passing through the underlying cavity to the sea floor, are capable of measuring temperatures down fiber at 1 meter intervals, and at time frequencies as high as 15 seconds. DTS FO systems operate via optical time domain reflectometry along the fiber waveguide using inelastic backscatter of coherent laser light as a probe beam in the FO environment. The introduction of new technologies to the harsh environmental conditions of the Antarctic are often associated with high risk. However, the potential rewards of this approach (e.g. multiyear capability, minimal submerged mechanical or electrical components that may fail, relative simplicity of deployment and measurement principle, yet yielding distributed real time and spatial observation) are attractive enough to conduct a pilot project at a field-ready location (McMurdo). Current indications are that the instability of some of the world\u0027s largest ice sheets located around the Antarctic and Greenland may be caused by the presence of warming, deep ocean waters, shoaling over continental shelves, and melting the underside of floating ice shelves. Additional knowledge of the temporal and spatial variability of the temperature fields underneath terminal ice shelves, such as those draining the West Antarctic Ice Sheet, are needed to accurately project future global climate effects on ice-shelf ocean interactions, and in order to inform societal and technological aspects of adaption to changing sea-level.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e TEMPERATURE LOGGERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS", "is_usap_dc": true, "keywords": "GROUND STATIONS; Not provided; Conservative Temperature; MOORINGS; Ice Shelf Temperature; Ocean Temperature", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Zagorodnov, Victor; Holland, David; Tyler, Scott W.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED \u003e MOORINGS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Application of Distributed Temperature Sensors (DTS) for Antarctic Ice Shelves and Cavities", "uid": "p0000183", "west": null}, {"awards": "1146554 Rack, Frank", "bounds_geometry": "POLYGON((153.694 -77.89028,155.025433 -77.89028,156.356866 -77.89028,157.688299 -77.89028,159.019732 -77.89028,160.351165 -77.89028,161.682598 -77.89028,163.014031 -77.89028,164.345464 -77.89028,165.676897 -77.89028,167.00833 -77.89028,167.00833 -78.525252,167.00833 -79.160224,167.00833 -79.795196,167.00833 -80.430168,167.00833 -81.06514,167.00833 -81.700112,167.00833 -82.335084,167.00833 -82.970056,167.00833 -83.605028,167.00833 -84.24,165.676897 -84.24,164.345464 -84.24,163.014031 -84.24,161.682598 -84.24,160.351165 -84.24,159.019732 -84.24,157.688299 -84.24,156.356866 -84.24,155.025433 -84.24,153.694 -84.24,153.694 -83.605028,153.694 -82.970056,153.694 -82.335084,153.694 -81.700112,153.694 -81.06514,153.694 -80.430168,153.694 -79.795196,153.694 -79.160224,153.694 -78.525252,153.694 -77.89028))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 27 Apr 2015 00:00:00 GMT", "description": "This award provides support for \"EAGER: Handbook of Hot Water Drill System (HWDS) Design Considerations and Best Practices\" from the Antarctic Integrated System Science within the Office of Polar Programs. More and more science projects are proposing to use hot-water drilling systems (HWDS) to rapidly and/or cleanly access glacial and subglacial systems. To date the hot-water drill systems have been developed in isolation, and no attempt has been made to gather information about the different systems in one place. This proposal requests funds to document existing HWDS, and to then assess the design, testing, and development of a hot-water drill system that will be integrated with the evolving over-ice traverse capability of the USAP program. Intellectual Merit: A working handbook of best practices for hot-water drill design systems, including safety considerations, is long overdue, and will 1) provide suggestions for optimizing current systems; 2) contribute in the very near term to already funded projects such as WISSARD (Whillans Ice Stream Subglacial Access and Research Drilling); and 3) fit the long-term needs of the Antarctic science community who have identified rapid and clean access to glacial and subglaical environments as a top priority for the next decades. The collected information will be used for community education and training, will discuss potential design and operational trade-offs, and will identify ways to optimize the capabilities of an integrated USAP traverse and HWDS infrastructure. EAGER funding for this project is warranted because such a handbook has not been tried before, and needs to be shown to be doable prior to larger investments in such compilations. It fits the AISS (Antarctic Integrated System Science) program as an optimized HWDS will meet the needs of many different Antarctic research disciplines including biology, geology, glaciology, and oceanography. Broader Impacts: The proposed work is being done on behalf of the Antarctic research community, and will seek to capture the knowledge of experienced hot-water drill engineers who are nearing retirement, and to educate the next generation of hot-water drillers and engineers. The PI indicates he will work with the owners of such systems both within the US and abroad. Identification of best practices in hot-water drilling will save several different Antarctic research communities significant time, effort, and funding in the future.", "east": 167.00833, "geometry": "POINT(160.351165 -81.06514)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e GRAVITY CORER; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE TRANSDUCERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e NISKIN BOTTLES; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e FSI; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": false, "keywords": "Hot Water Drill; Subglacial Lake; Ross Ice Shelf; West Antarctic Ice Sheet; FIELD SURVEYS; TRAVERSE; Clean Access Drilling; Drilling Parameters; FIELD INVESTIGATION; DRILLING PLATFORMS; Not provided; Antarctica; WISSARD; Whillans Ice Stream; FIXED OBSERVATION STATIONS", "locations": "Antarctica; West Antarctic Ice Sheet; Whillans Ice Stream; Ross Ice Shelf", "north": -77.89028, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Rack, Frank", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; LAND-BASED PLATFORMS \u003e VEHICLES \u003e TRAVERSE; Not provided; WATER-BASED PLATFORMS \u003e FIXED PLATFORMS \u003e SURFACE \u003e DRILLING PLATFORMS", "repositories": null, "science_programs": null, "south": -84.24, "title": "EAGER: Handbook of Hot Water Drill System (HWDS) Design Considerations and Best Practices.", "uid": "p0000729", "west": 153.694}, {"awards": "0732906 Nowicki, Sophie; 0732730 Truffer, Martin; 0732804 McPhee, Miles; 0732869 Holland, David", "bounds_geometry": "POINT(-100.728 -75.0427)", "dataset_titles": "Automatic Weather Station Pine Island Glacier; Borehole Temperatures at Pine Island Glacier, Antarctica; Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica", "datasets": [{"dataset_uid": "609627", "doi": "10.7265/N5T151MV", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Pine Island Glacier; Temperature", "people": "Stanton, Timothy; Truffer, Martin", "repository": "USAP-DC", "science_program": null, "title": "Borehole Temperatures at Pine Island Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609627"}, {"dataset_uid": "600072", "doi": "10.15784/600072", "keywords": "Antarctica; Atmosphere; McMurdo; Meteorology; Oceans; Ross Island; Southern Ocean", "people": "McPhee, Miles G.", "repository": "USAP-DC", "science_program": null, "title": "Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica", "url": "https://www.usap-dc.org/view/dataset/600072"}, {"dataset_uid": "601216", "doi": "10.15784/601216", "keywords": "Antarctica; Atmosphere; Automated Weather Station; Flux; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Meteorology; Pine Island Glacier; Weather Station Data", "people": "Holland, David; Mojica Moncada, Jhon F.", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Automatic Weather Station Pine Island Glacier", "url": "https://www.usap-dc.org/view/dataset/601216"}], "date_created": "Tue, 30 Dec 2014 00:00:00 GMT", "description": "Collaborative With: McPhee 0732804, Holland 0732869, Truffer 0732730, Stanton 0732926, Anandakrishnan 0732844 \u003cbr/\u003eTitle: Collaborative Research: IPY: Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica\u003cbr/\u003e\u003cbr/\u003eThe Office of Polar Programs, Antarctic Integrated and System Science Program has made this award to support an interdisciplinary study of the effects of the ocean on the stability of glacial ice in the most dynamic region the West Antarctic Ice Sheet, namely the Pine Island Glacier in the Amundsen Sea Embayment. The collaborative project builds on the knowledge gained by the highly successful West Antarctic Ice Sheet program and is being jointly sponsored with NASA. Recent observations indicate a significant ice loss, equivalent to 10% of the ongoing increase in sea-level rise, in this region. These changes are largest along the coast and propagate rapidly inland, indicating the critical impact of the ocean on ice sheet stability in the region. While a broad range of remote sensing and ground-based instrumentation is available to characterize changes of the ice surface and internal structure (deformation, ice motion, melt) and the shape of the underlying sediment and rock bed, instrumentation has yet to be successfully deployed for observing boundary layer processes of the ocean cavity which underlies the floating ice shelf and where rapid melting is apparently occurring. Innovative, mini ocean sensors that can be lowered through boreholes in the ice shelf (about 500 m thick) will be developed and deployed to automatically provide ocean profiling information over at least three years. Their data will be transmitted through a conducting cable frozen in the borehole to the surface where it will be further transmitted via satellite to a laboratory in the US. Geophysical and remote sensing methods (seismic, GPS, altimetry, stereo imaging, radar profiling) will be applied to map the geometry of the ice shelf, the shape of the sub ice-shelf cavity, the ice surface geometry and deformations within the glacial ice. To integrate the seismic, glaciological and oceanographic observations, a new 3-dimensional coupled ice-ocean model is being developed which will be the first of its kind. NASA is supporting satellite based research and the deployment of a robotic-camera system to explore the environment in the ocean cavity underlying the ice shelf and NSF is supporting all other aspects of this study. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: This project is motivated by the potential societal impacts of rapid sea level rise and should result in critically needed improvements in characterizing and predicting the behavior of coupled ocean-ice systems. It is a contribution to the International Polar Year and was endorsed by the International Council for Science as a component of the \"Multidisciplinary Study of the Amundsen Sea Embayment\" proposal #258 of the honeycomb of endorsed IPY activities. The research involves substantial international partnerships with the British Antarctic Survey and the University of Bristol in the UK. The investigators will partner with the previously funded \"Polar Palooza\" education and outreach program in addition to undertaking a diverse set of outreach activities of their own. Eight graduate students and one undergraduate as well as one post doc will be integrated into this research project.", "east": -100.728, "geometry": "POINT(-100.728 -75.0427)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e SEISMIC REFLECTION PROFILERS", "is_usap_dc": true, "keywords": "West Antarctica; Seismic; LABORATORY; Amundsen Sea; Ocean-Ice Interaction; Remote Sensing; COMPUTERS; FIELD SURVEYS; LANDSAT-8; FIELD INVESTIGATION; Ocean Profiling; AUVS; Sea Level Rise; Stability; Not provided; Deformation; SATELLITES; Ice Movement; GROUND-BASED OBSERVATIONS; Ice Temperature; International Polar Year; Borehole", "locations": "West Antarctica; Amundsen Sea", "north": -75.0427, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Truffer, Martin; Stanton, Timothy; Bindschadler, Robert; Behar, Alberto; Nowicki, Sophie; Anandakrishnan, Sridhar; Holland, David; McPhee, Miles G.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e LANDSAT \u003e LANDSAT-8; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES; WATER-BASED PLATFORMS \u003e UNCREWED VEHICLES \u003e SUBSURFACE \u003e AUVS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.0427, "title": "Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica", "uid": "p0000043", "west": -100.728}, {"awards": "9615420 Kamb, Barclay", "bounds_geometry": "POINT(-136.404633 -82.39955)", "dataset_titles": "Temperature of the West Antarctic Ice Sheet; Videos of Basal Ice in Boreholes on the Kamb Ice Stream in West Antarctica", "datasets": [{"dataset_uid": "609528", "doi": "10.7265/N5028PFH", "keywords": "Antarctica; Borehole Video; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Kamb Ice Stream; Photo/video; Photo/Video", "people": "Engelhardt, Hermann", "repository": "USAP-DC", "science_program": null, "title": "Videos of Basal Ice in Boreholes on the Kamb Ice Stream in West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609528"}, {"dataset_uid": "609537", "doi": "10.7265/N5PN93J8", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Temperature", "people": "Engelhardt, Hermann", "repository": "USAP-DC", "science_program": null, "title": "Temperature of the West Antarctic Ice Sheet", "url": "https://www.usap-dc.org/view/dataset/609537"}], "date_created": "Thu, 14 Feb 2013 00:00:00 GMT", "description": "This award is for support for a four year program to study the basal conditions of ice stream D using techniques previously applied to ice stream B. The objective is to determine whether the physical conditions and processes to be observed by borehole geophysics at the base of this large ice stream are consistent with what has been observed at ice stream B and to point to a common basal mechanism of ice streaming. This project includes a comparison between two parts of ice stream D, an upstream reach where flow velocities are modest (about 80 meters/year) and a downstream reach of high velocity (about 400 meters/year). The comparison will help to reveal what physical variable or combination of variables is mainly responsible for the streaming flow. The variables to be monitmred by borehole observation include basal water pressure, basal sliding velocity, flow properties and sedimentological characteristics of subglacial till if present, ice temperature profile including basal water transport velocity, connection time to the basal water system, basal melting rate and others.", "east": -136.404633, "geometry": "POINT(-136.404633 -82.39955)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": true, "keywords": "Raymond Ridge; Kamb Ice Stream; Engelhardt Ridge; Basal Ice; Unicorn; Alley Ice Stream; Borehole Video; Basal Freeze-on; Ice Stream Flow; Basal Freezing; West Antarctic Ice Sheet Instability; GROUND-BASED OBSERVATIONS; Whillans Ice Stream; Basal Debris; Simple Dome; Basal Water; Bindschadler Ice Stream; West Antarctic Ice Sheet", "locations": "Kamb Ice Stream; Alley Ice Stream; Bindschadler Ice Stream; Engelhardt Ridge; Raymond Ridge; Simple Dome; Unicorn; West Antarctic Ice Sheet; Whillans Ice Stream", "north": -82.39955, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Kamb, Barclay; Engelhardt, Hermann", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.39955, "title": "Basal Conditions of Ice Stream D and Related Borehole Studies of Antarctic Ice Stream Mechanics", "uid": "p0000181", "west": -136.404633}, {"awards": "0538674 Winebrenner, Dale; 0537752 Creyts, Timothy", "bounds_geometry": null, "dataset_titles": "Millennially Averaged Accumulation Rates for Lake Vostok; Modeled Radar Attenuation Rate Profile at the Vostok 5G Ice Core Site, Antarctica", "datasets": [{"dataset_uid": "609501", "doi": "10.7265/N59K485D", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Lake Vostok; Radar Attenuation Rate; Vostok Ice Core", "people": "Matsuoka, Kenichi; Macgregor, Joseph A.; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "Modeled Radar Attenuation Rate Profile at the Vostok 5G Ice Core Site, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609501"}, {"dataset_uid": "609500", "doi": "10.7265/N5F769HV", "keywords": "Accumulation Rate; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Lake Vostok", "people": "Waddington, Edwin D.; Matsuoka, Kenichi; Macgregor, Joseph A.; Winebrenner, Dale; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "Millennially Averaged Accumulation Rates for Lake Vostok", "url": "https://www.usap-dc.org/view/dataset/609500"}], "date_created": "Thu, 09 Aug 2012 00:00:00 GMT", "description": "0538674\u003cbr/\u003eMatsuoka\u003cbr/\u003eThis award supports a project to evaluate radio-echo intensities in the available SOAR ice-penetrating radar data along grids covering Lake Vostok, and along four regional tracks from Ridge B toward the lake. The project has two objectives; first, it will examine the upper surface of the lake and reflectors hypothesized to be a boundary between the meteoric and accreted ice. They will provide crucial knowledge on the dynamic evolution of the lake. Second, this project will examine a poorly understood echo-free zone within the deep ice in central East Antarctica. This zone may consist of distorted stagnant ice, while its upper boundary may be a shear zone. The SOAR radar data provide a unique resource to examine spatiotemporal water circulation patterns that should be understood in order to select the best direct-sampling strategy to the lake. The Vostok ice core provides a unique opportunity to do this work. First, the path effects, i.e. propagation loss and birefringence, will be derived at the ice-core site using ice temperature, chemistry, and fabric data. Second, lateral variations of the propagation loss will be estimated by tracking chemistry associated with radar-detected isochronous layers, and by inferring temperatures from an ice-flow model that can replicate those layers. Ice-fabric patterns will be inferred from anisotropy in the reflectivity at about 100 radar-track cross-over sites. In terms of broader impacts, a graduate student will be trained to interpret the radar data in the light of radar theory and glaciological context of Lake Vostok and summer workshops for K-12 teachers will be provided in Seattle and New York. This project will contribute to ongoing efforts to study Lake Vostok and will complement the site selection for a North Vostok ice core, which has been proposed by Russia and France as an IPY program.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LASERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e RADAR ALTIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS", "is_usap_dc": true, "keywords": "Airborne Radar Sounding; DHC-6; Salinity; Lake Vostok; Antarctic Ice Sheet; Modeling; FIELD SURVEYS; Model Output; Accumulation Rate; MODELS; Numerical Model; Ice Sheet; Not provided; Hydrostatic; Aerogeophysical; Subglacial; Attenuation Rate; Radar; FIELD INVESTIGATION; Model; Circulation; LABORATORY", "locations": "Lake Vostok; Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Matsuoka, Kenichi; Winebrenner, Dale; Creyts, Timothy; Macgregor, Joseph A.; Studinger, Michael S.; Waddington, Edwin D.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e MODELS \u003e MODELS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Deciphering the Deep Ice and the Ice-water Interface over Lake Vostok Using Existing Radar Data", "uid": "p0000090", "west": null}, {"awards": "0537532 Liston, Glen; 0538422 Hamilton, Gordon; 0538103 Scambos, Ted; 0538416 McConnell, Joseph; 0963924 Steig, Eric; 0538495 Albert, Mary", "bounds_geometry": "POLYGON((-180 -72.01667,-161.74667 -72.01667,-143.49334 -72.01667,-125.24001 -72.01667,-106.98668 -72.01667,-88.73335 -72.01667,-70.48002 -72.01667,-52.22669 -72.01667,-33.97336 -72.01667,-15.72003 -72.01667,2.5333 -72.01667,2.5333 -73.815003,2.5333 -75.613336,2.5333 -77.411669,2.5333 -79.210002,2.5333 -81.008335,2.5333 -82.806668,2.5333 -84.605001,2.5333 -86.403334,2.5333 -88.201667,2.5333 -90,-15.72003 -90,-33.97336 -90,-52.22669 -90,-70.48002 -90,-88.73335 -90,-106.98668 -90,-125.24001 -90,-143.49334 -90,-161.74667 -90,180 -90,162.25333 -90,144.50666 -90,126.75999 -90,109.01332 -90,91.26665 -90,73.51998 -90,55.77331 -90,38.02664 -90,20.27997 -90,2.5333 -90,2.5333 -88.201667,2.5333 -86.403334,2.5333 -84.605001,2.5333 -82.806668,2.5333 -81.008335,2.5333 -79.210002,2.5333 -77.411669,2.5333 -75.613336,2.5333 -73.815003,2.5333 -72.01667,20.27997 -72.01667,38.02664 -72.01667,55.77331 -72.01667,73.51998 -72.01667,91.26665 -72.01667,109.01332 -72.01667,126.75999 -72.01667,144.50666 -72.01667,162.25333 -72.01667,-180 -72.01667))", "dataset_titles": "Ice Core Chemistry from the Norwegian-U.S. Scientific Traverse of East Antarctica, IPY 2007-2009; Norwegian-U.S. Scientific Traverse of East Antarctica; This data set contains data from the publication Steig et al., Nature Geoscience, vol. 6, pages 372\u00e2\u20ac\u201c375 (doi:10.1038/ngeo1778), which includes isotope data from the Norway-US traverse in East Antarctica.", "datasets": [{"dataset_uid": "001305", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "This data set contains data from the publication Steig et al., Nature Geoscience, vol. 6, pages 372\u00e2\u20ac\u201c375 (doi:10.1038/ngeo1778), which includes isotope data from the Norway-US traverse in East Antarctica.", "url": "http://nsidc.org/data/nsidc-0536.html"}, {"dataset_uid": "609520", "doi": "10.7265/N5H41PC9", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; East Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Chemistry from the Norwegian-U.S. Scientific Traverse of East Antarctica, IPY 2007-2009", "url": "https://www.usap-dc.org/view/dataset/609520"}, {"dataset_uid": "000112", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Norwegian-U.S. Scientific Traverse of East Antarctica", "url": "http://traverse.npolar.no/"}], "date_created": "Wed, 23 Feb 2011 00:00:00 GMT", "description": "This award supports a project of scientific investigations along two overland traverses in East Antarctica: one going from the Norwegian Troll Station (72deg. S, 2deg. E) to the United States South Pole Station (90deg. S, 0deg. E) in 2007-2008; and a return traverse starting at South Pole Station and ending at Troll Station by a different route in 2008-2009. The project will investigate climate change in East Antarctica, with the goals of understanding climate variability in Dronning Maud Land of East Antarctica on time scales of years to centuries and determining the surface and net mass balance of the ice sheet in this sector to understand its impact on sea level. The project will also investigate the impact of atmospheric and oceanic variability and human activities on the chemical composition of firn and ice in the region, and will revisit areas and sites first explored by traverses in the 1960\u0027s, for detection of possible changes and to establish benchmark datasets for future research efforts. In terms of broader impacts, the results of this study will add to understanding of climate variability in East Antarctica and its contribution to global sea level change. The project includes international exchange of graduate students between the institutions involved and international education of undergraduate students through classes taught by the PI\u0027s at UNIS in Svalbard. It involves extensive outreach to the general public both in Scandinavia and North America through the press, television, science museums, children\u0027s literature, and web sites. Active knowledge sharing and collaboration between pioneers in Antarctic glaciology from Norway and the US, with the international group of scientists and students involved in this project, provide a unique opportunity to explore the changes that half a century have made in climate proxies from East Antarctica, scientific tools, and the culture and people of science. The project is relevant to the International Polar Year (IPY) since it is a genuine collaboration between nations: the scientists involved have complementary expertise, and the logistics involved relies on assets unique to each nation. It is truly an endeavor that neither nation could accomplish alone. This project is a part of the Trans- Antarctic Scientific Traverse Expeditions Ice Divide of East Antarctica (TASTE-IDEA) which is also part of IPY.", "east": 2.5333, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PHOTOMETERS \u003e SPECTROPHOTOMETERS", "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; East Antarctic Plateau; FIXED OBSERVATION STATIONS; Glaciology; LABORATORY; FIELD SURVEYS; Permeability; Ice Core; Climate Variability; Firn; Accumulation Rate; Mass Balance; Snow; Gravity; Ice Sheet; GROUND-BASED OBSERVATIONS; Traverse; Not provided; Antarctic; Ice Core Chemistry; Antarctica; Density", "locations": "Antarctica; Antarctic; East Antarctic Plateau", "north": -72.01667, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Courville, Zoe; Bell, Eric; Liston, Glen; Scambos, Ted; Hamilton, Gordon S.; McConnell, Joseph; Albert, Mary R.; Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "NSIDC", "repositories": "NSIDC; Project website; USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Norwegian-United States IPY Scientific Traverse: Climate Variability and Glaciology in East Antarctica", "uid": "p0000095", "west": 2.5333}, {"awards": "0538657 Severinghaus, Jeffrey", "bounds_geometry": null, "dataset_titles": "Borehole Temperature Measurement in WDC05A in January 2008 and January 2009; d15N and d18O of air in the WAIS Divide ice core; Low-res d15N and d18O of O2 in the WAIS Divide 06A Deep Core; Ultra-High Resolution LA-ICP-MS Results: DO-21 Rapid Warming Event; WAIS Divide d18Oatm and Siple Dome/WAIS Divide composite and individual delta epsilon LAND", "datasets": [{"dataset_uid": "601041", "doi": "10.15784/601041", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Gas; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; WAIS Divide Ice Core", "people": "Severinghaus, Jeffrey P.; Seltzer, Alan", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide d18Oatm and Siple Dome/WAIS Divide composite and individual delta epsilon LAND", "url": "https://www.usap-dc.org/view/dataset/601041"}, {"dataset_uid": "609660", "doi": "10.7265/N5S46PWD", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Low-res d15N and d18O of O2 in the WAIS Divide 06A Deep Core", "url": "https://www.usap-dc.org/view/dataset/609660"}, {"dataset_uid": "609637", "doi": "10.7265/N5B27S7S", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Temperature; WAIS Divide; WAIS Divide Ice Core", "people": "Severinghaus, Jeffrey P.; Orsi, Anais J.", "repository": "USAP-DC", "science_program": null, "title": "Borehole Temperature Measurement in WDC05A in January 2008 and January 2009", "url": "https://www.usap-dc.org/view/dataset/609637"}, {"dataset_uid": "609635", "doi": "10.7265/N51J97PS", "keywords": "Arctic; Geochemistry; GISP; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate", "people": "Mayewski, Paul A.; Haines, Skylar; Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": null, "title": "Ultra-High Resolution LA-ICP-MS Results: DO-21 Rapid Warming Event", "url": "https://www.usap-dc.org/view/dataset/609635"}, {"dataset_uid": "601747", "doi": "10.15784/601747", "keywords": "Antarctica; Delta 15N; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Gas Records; Ice Core Records; Isotope; Nitrogen; Nitrogen Isotopes; Oxygen; Oxygen Isotope; Snow/ice; Snow/Ice; WAIS; WAIS Divide", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "d15N and d18O of air in the WAIS Divide ice core", "url": "https://www.usap-dc.org/view/dataset/601747"}], "date_created": "Thu, 08 Jul 2010 00:00:00 GMT", "description": "0538657\u003cbr/\u003eSeveringhaus\u003cbr/\u003eThis award supports a project to develop high-resolution (20-yr) nitrogen and oxygen isotope records on trapped gases in the WAIS Divide ice core (Antarctica), with a comparison record for chronological purposes in the GISP2 (Greenland) ice core. The main scientific objective is to provide an independent temperature-change record for the past 100,000 years in West Antarctica that is not subject to the uncertainty inherent in ice isotopes (18O and deuterium), the classical paleothermometer. Nitrogen isotopes (Delta 15N) in air bubbles in glacial ice record rapid surface temperature change because of thermal fractionation of air in the porous firn layer, and this isotopic anomaly is recorded in bubbles as the firn becomes ice. Using this gas-based temperature-change record, in combination with methane data as interpolar stratigraphic markers, the proposed work will define the precise relative timing of abrupt warming in Greenland and abrupt cooling at the WAIS Divide site during the millennial-scale climatic oscillations of Marine Isotopic Stage 3 (30-70 kyr BP) and the last glacial termination. The nitrogen isotope record also provides constraints on past firn thickness, which inform temperature and accumulation rate histories from the ice core. A search for possible solar-related cycles will be conducted with the WAIS Divide Holocene (Delta 15N.) Oxygen isotopes of O2 (Delta 18Oatm) are obtained as a byproduct of the (Delta 15N) measurement. The gas-isotopic records will enhance the value of other atmospheric gas measurements in WAIS Divide, which are expected to be of unprecedented quality. The high-resolution (Delta 18Oatm) records will provide chronological control for use by the international ice coring community and for surface glacier ice dating. Education of a graduate student, and training of a staff member in the laboratory, will contribute to the nation\u0027s human resource base. Outreach activities in the context of the International Polar Year will be enhanced. International collaboration is planned with the laboratory of LSCE, University of Paris.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e LA-ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Borehole Temperature; LABORATORY; Depth; Not provided; GROUND-BASED OBSERVATIONS; Wais Divide-project; Ice Core; WAIS Divide", "locations": "WAIS Divide", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Haines, Skylar; Mayewski, Paul A.; Orsi, Anais J.; Kurbatov, Andrei V.; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate", "uid": "p0000036", "west": null}, {"awards": "0338008 Wemple, Beverley", "bounds_geometry": null, "dataset_titles": "Laboratory Studies of Isotopic Exchange in Snow; Snow Accumulation and Snow Melt in a Mixed Northern Hardwood-Conifer Forest", "datasets": [{"dataset_uid": "609445", "doi": "10.7265/N51834DX", "keywords": "Atmosphere; Chemistry:ice; Chemistry:Ice; Snow/ice; Snow/Ice; Snow Sublimation Rate", "people": "Neumann, Thomas A.", "repository": "USAP-DC", "science_program": null, "title": "Laboratory Studies of Isotopic Exchange in Snow", "url": "https://www.usap-dc.org/view/dataset/609445"}, {"dataset_uid": "609441", "doi": "10.7265/N54X55R2", "keywords": "Snow/ice; Snow/Ice", "people": "Wemple, Beverley C.", "repository": "USAP-DC", "science_program": null, "title": "Snow Accumulation and Snow Melt in a Mixed Northern Hardwood-Conifer Forest", "url": "https://www.usap-dc.org/view/dataset/609441"}], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "This award supports a project to develop a quantitative understanding of the processes active in isotopic exchange between snow/firn and water vapor, which is of paramount importance to ice core interpretation. Carefully controlled laboratory studies will be conducted at a variety of temperatures to empirically measure the mass transfer coefficient (the rate at which water moves from the solid to the vapor phase) for sublimating snow and to determine the time scale for isotopic equilibration between water vapor and ice. In addition the isotopic fractionation coefficient for vapor derived from sublimating ice will be determined and the results will be used to update existing models of mass transfer and isotopic evolution in firn. It is well known that water vapor moves through firn due to diffusion, free convection and forced convection. Although vapor movement through variably-saturated firn due to these processes has been modeled, because of a lack of laboratory data the mass transfer coefficient had to be estimated. Field studies have documented the magnitudes of post-depositional changes, but field studies do not permit rigorous analysis of the relative importance of the many processes which are likely to act in natural snow packs. The results of these laboratory investigations will be broadly applicable to a number of studies and will allow for improvement of existing physically-based models of post-depositional isotopic change, isotopic diffusion in firn, and vapor motion in firn. A major component of this project will be the design and fabrication of the necessary, novel experimental apparatus, which will be facilitated by existing technical expertise, cold room facilities, and laboratory equipment at CRREL. This project is a necessary step toward a quantitative understanding of the isotopic effects of water vapor movement in firn. The proposed work has broader impacts in several different areas. The modeling results will be applicable to a wide range of studies of water in the polar environment, including studies of wind-blown or drifting snow. The proposed collaborative study will partially support a Dartmouth graduate student for three years. This project will also provide support for a young first-time NSF investigator at the University of Vermont. Undergraduate students from Dartmouth will be involved in the research through the Women in Science Project and undergraduate students at the University of Vermont will be supported through the Research Experiences for Undergraduates program. The principal investigators and graduate student will continue their tradition of k-12 school outreach by giving science lessons and talks in local schools each year. Research results will be disseminated through scientific conferences, journal publications, and institutional seminars.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e SNOW TUBE; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HYGROMETERS \u003e HYGROMETERS", "is_usap_dc": true, "keywords": "Snow Accumulation; Snow Chemistry; Snow Melt; Snowfall; Snow Water Equivalent; LABORATORY; Seasonal Snow Cover; Not provided; Snow; Sublimation Rate; FIELD SURVEYS; FIELD INVESTIGATION", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Neumann, Thomas A.; Wemple, Beverley C.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Laboratory Studies of Isotopic Exchange in Snow and Firn", "uid": "p0000132", "west": null}, {"awards": "0440509 Battle, Mark; 0440498 White, James; 0440759 Sowers, Todd; 0440602 Saltzman, Eric; 0440701 Severinghaus, Jeffrey; 0440615 Brook, Edward J.", "bounds_geometry": "POINT(-112.085 -79.467)", "dataset_titles": "Gases in Firn Air and Shallow Ice at the WAIS Drilling Site, Antarctica; Ice Core Air Carbonyl Sulfide Measurements - SPRESSO Ice Core; Methane Isotopes from the WAIS Divide Ice Core; Surface Temperature Reconstruction from Borehole Temperature Measurement in WDC05A; WAIS ice core Methane Data, Carbon Dioxide Data", "datasets": [{"dataset_uid": "609493", "doi": "10.7265/N5319SV3", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph; Taylor, Kendrick C.; Sowers, Todd A.; Mitchell, Logan E; Brook, Edward J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS ice core Methane Data, Carbon Dioxide Data", "url": "https://www.usap-dc.org/view/dataset/609493"}, {"dataset_uid": "609638", "doi": "10.7265/N56971HF", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Temperature; WAIS Divide; WAIS Divide Ice Core", "people": "Severinghaus, Jeffrey P.; Orsi, Anais J.", "repository": "USAP-DC", "science_program": null, "title": "Surface Temperature Reconstruction from Borehole Temperature Measurement in WDC05A", "url": "https://www.usap-dc.org/view/dataset/609638"}, {"dataset_uid": "609412", "doi": "10.7265/N5251G40", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; WAIS Divide; WAIS Divide Ice Core", "people": "Saltzman, Eric", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Gases in Firn Air and Shallow Ice at the WAIS Drilling Site, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609412"}, {"dataset_uid": "601357", "doi": "10.15784/601357", "keywords": "Antarctica; Atmospheric Gases; Gas Measurement; Ice Core; Ice Core Gas Records; Trace Gases", "people": "Aydin, Murat; Saltzman, Eric", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - SPRESSO Ice Core", "url": "https://www.usap-dc.org/view/dataset/601357"}, {"dataset_uid": "609435", "doi": "10.7265/N5J67DW0", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Methane; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Sowers, Todd A.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Methane Isotopes from the WAIS Divide Ice Core", "url": "https://www.usap-dc.org/view/dataset/609435"}], "date_created": "Tue, 03 Feb 2009 00:00:00 GMT", "description": "This award supports a project to measure the elemental and isotopic composition of firn air and occluded air in shallow boreholes and ice cores from the WAIS Divide site, the location of a deep ice-coring program planned for 2006-07 and subsequent seasons. The three primary objectives are: 1) to establish the nature of firn air movement and trapping at the site to aid interpretations of gas data from the deep core; 2) to expand the suite of atmospheric trace gas species that can be measured in ice and replicate existing records of other species; and 3) to inter-calibrate all collaborating labs to insure that compositional and isotopic data sets are inter-comparable. The program will be initiated with a shallow drilling program during the 05/06 field season which will recover two 300+m cores and firn air samples. The ice core and firn air will provide more than 700 years of atmospheric history that will be used to address a number of important questions related to atmospheric change over this time period. The research team consists of six US laboratories that also plan to participate in the deep core program. This collaborative research program has a number of advantages. First, the scientists will be able to coordinate sample allocation a priori to maximize the resolution and overlap of records of interrelated species. Second, sample registration will be exact, allowing direct comparison of all records. Third, a coherent data set will be produced at the same time and all PI.s will participate in interpreting and publishing the results. This will insure that the best possible understanding of gas records at the WAIS Divide site will be achieved, and that all work necessary to interpret the deep core is conducted in a timely fashion. The collaborative structure created by the proposal will encourage sharing of techniques, equipment, and ideas between the laboratories. The research will identify impacts of various industrial/agricultural activities and help to distinguish them from natural variations, and will include species for which there are no long records of anthropogenic impact. The work will also help to predict future atmospheric loadings. The project will contribute to training scientists at several levels, including seven undergraduates, two graduate students and one post doctoral fellow.", "east": -112.085, "geometry": "POINT(-112.085 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GC-MS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e SPECTROMETERS \u003e SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e FLASKS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": true, "keywords": "Ice Core Chemistry; WAIS Divide; Firn; LABORATORY; Ice Core; Firn Air Isotope Measurements; Shallow Firn Air; FIELD INVESTIGATION; Ice Core Gas Records; GROUND-BASED OBSERVATIONS; Firn Isotopes; Wais Divide-project; Gas Data; Polar Firn Air; Not provided; Trace Gas Species; Trapped Gases; West Antarctic Ice Sheet; Deep Core; Ice Sheet; Gas; Firn Air Isotopes; FIELD SURVEYS; Air Samples; Atmospheric Gases; Isotope; Cores; Atmosphere; Ice Core Data; Surface Temperatures; Firn Air; Borehole; Antarctica", "locations": "West Antarctic Ice Sheet; Antarctica; WAIS Divide", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Battle, Mark; Mischler, John; Saltzman, Eric; Aydin, Murat; White, James; Brook, Edward J.; Orsi, Anais J.; Severinghaus, Jeffrey P.; Sowers, Todd A.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site", "uid": "p0000368", "west": -112.085}, {"awards": "0228052 Kreutz, Karl", "bounds_geometry": "POLYGON((161.0434 -77.3002,161.241645 -77.3002,161.43989 -77.3002,161.638135 -77.3002,161.83638 -77.3002,162.034625 -77.3002,162.23287 -77.3002,162.431115 -77.3002,162.62936 -77.3002,162.827605 -77.3002,163.02585 -77.3002,163.02585 -77.3784846,163.02585 -77.4567692,163.02585 -77.5350538,163.02585 -77.6133384,163.02585 -77.691623,163.02585 -77.7699076,163.02585 -77.8481922,163.02585 -77.9264768,163.02585 -78.0047614,163.02585 -78.083046,162.827605 -78.083046,162.62936 -78.083046,162.431115 -78.083046,162.23287 -78.083046,162.034625 -78.083046,161.83638 -78.083046,161.638135 -78.083046,161.43989 -78.083046,161.241645 -78.083046,161.0434 -78.083046,161.0434 -78.0047614,161.0434 -77.9264768,161.0434 -77.8481922,161.0434 -77.7699076,161.0434 -77.691623,161.0434 -77.6133384,161.0434 -77.5350538,161.0434 -77.4567692,161.0434 -77.3784846,161.0434 -77.3002))", "dataset_titles": "Late Holocene Climate Variability, Dry Valleys, Antarctica", "datasets": [{"dataset_uid": "609399", "doi": "10.7265/N5FF3Q92", "keywords": "Antarctica; Borehole Temperature; Chemistry:ice; Chemistry:Ice; Dry Valleys; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Mass Balance; Paleoclimate; Physical Properties", "people": "Mayewski, Paul A.; Kreutz, Karl", "repository": "USAP-DC", "science_program": null, "title": "Late Holocene Climate Variability, Dry Valleys, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609399"}], "date_created": "Tue, 21 Oct 2008 00:00:00 GMT", "description": "This award supports a project to collect and develop high-resolution ice core records from the Dry Valleys region of Antarctica, and provide interpretations of interannual to decadal-scale climate variability during the last 2000 years (late Holocene). The project will test hypotheses related to ocean/atmosphere teleconnections (e.g., El Nino Southern Oscillation, Antarctic Oscillation) that may be responsible for major late Holocene climate events such as the Little Ice Age in the Southern Hemisphere. Conceptual and quantitative models of these processes in the Dry Valleys during the late Holocene are critical for understanding recent climate changes, and represent the main scientific merit of the project. We plan to collect intermediate-length ice cores (100-200m) at four sites along transects in Taylor Valley and Wright Valley, and analyze each core at high resolution for stable isotopes (d18O, dD), major ions (Na+, Mg2+, Ca2+, K+, NH4+, Cl-, NO3-, SO42-, MSA), and trace elements (Al, Fe, S, Sr, B). A suite of statistical techniques will be applied to the multivariate glaciochemical dataset to identify chemical associations and to calibrate the time-series records with available instrumental data. Broader impacts of the project include: 1) contributions to several ongoing interdisciplinary Antarctic research programs; 2) graduate and undergraduate student involvement in field, laboratory, and data interpretation activities; 3) use of project data and ideas in several UMaine courses and outreach activities; and 4) data dissemination through peer-reviewed publications, UMaine and other paleoclimate data archive websites, and presentations at national and international meetings.", "east": 163.02585, "geometry": "POINT(162.034625 -77.691623)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MC-ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HUMIDITY SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS", "is_usap_dc": true, "keywords": "Holocene; Climate Research; AWS Climate Data; Paleoclimate; Climate Variation; Dry Valleys; Wright Valley; Little Ice Age; Stable Isotopes; Glaciochemical; Ice Core; FIELD INVESTIGATION; Enso; Antarctic Oscillation; Climate; GPS; El Nino-Southern Oscillation; LABORATORY; Not provided; Climate Change; Ice Core Records; Antarctica; Taylor Valley; FIELD SURVEYS; Variability", "locations": "Antarctica; Dry Valleys; Taylor Valley; Wright Valley", "north": -77.3002, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Kreutz, Karl; Arcone, Steven; Mayewski, Paul A.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.083046, "title": "Dry Valleys Late Holocene Climate Variability", "uid": "p0000155", "west": 161.0434}, {"awards": "0229546 MacAyeal, Douglas", "bounds_geometry": "POINT(-178 -78)", "dataset_titles": "collection of nascent rift images and description of station deployment; Continuous GPS (static) Data from the Ross Ice Shelf, Antarctica; Giant Icebergs of the Ross Sea, in situ Drift and Weather Measurements, Antarctica; Iceberg Firn Temperatures, Antarctica; Iceberg Harmonic Tremor, Seismometer Data, Antarctica; Iceberg Satellite imagery from stations and ice shelves (full data link not provided); Iceberg Tiltmeter Measurements, Antarctica; Ice Shelf Rift Time-Lapse Photography, Antarctica; Incorporated Research Institutions for Seismology; Nascent Iceberg Webcam Images available during the deployment period; Ross Ice Shelf Firn Temperature, Antarctica; The files contain a short header (number of data samples, sample rate, start time, stop time, channel title)The time series data then follow the header above.; This site mirrors the NSIDC website archive.", "datasets": [{"dataset_uid": "609352", "doi": "10.7265/N5M61H55", "keywords": "Glaciology; Iceberg; Oceans; Ross Ice Shelf; Sea Ice; Snow/ice; Snow/Ice; Southern Ocean; Temperature", "people": "MacAyeal, Douglas; Sergienko, Olga; Thom, Jonathan", "repository": "USAP-DC", "science_program": null, "title": "Iceberg Firn Temperatures, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609352"}, {"dataset_uid": "609353", "doi": "10.7265/N5GF0RFF", "keywords": "Glaciology; Iceberg; Oceans; Ross Ice Shelf; Sea Ice; Southern Ocean; Tiltmeter", "people": "MacAyeal, Douglas; Kim, Young-Jin; Bliss, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Iceberg Tiltmeter Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609353"}, {"dataset_uid": "609351", "doi": "10.7265/N5QV3JGV", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Photo/video; Photo/Video; Ross Ice Shelf", "people": "MacAyeal, Douglas; Brunt, Kelly", "repository": "USAP-DC", "science_program": null, "title": "Ice Shelf Rift Time-Lapse Photography, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609351"}, {"dataset_uid": "609350", "doi": "10.7265/N5VM496K", "keywords": "AWS; Glaciology; GPS; Iceberg; Meteorology; Oceans; Ross Sea; Sea Ice; Southern Ocean; Weatherstation", "people": "Aster, Richard; Bassis, Jeremy; MacAyeal, Douglas; Okal, Emile", "repository": "USAP-DC", "science_program": null, "title": "Giant Icebergs of the Ross Sea, in situ Drift and Weather Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609350"}, {"dataset_uid": "609349", "doi": "10.7265/N5445JD6", "keywords": "Geology/Geophysics - Other; Glaciology; Iceberg; Oceans; Ross Sea; Sea Ice; Seismometer; Southern Ocean", "people": "Aster, Richard; MacAyeal, Douglas; Okal, Emile; Bassis, Jeremy", "repository": "USAP-DC", "science_program": null, "title": "Iceberg Harmonic Tremor, Seismometer Data, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609349"}, {"dataset_uid": "002504", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Nascent Iceberg Webcam Images available during the deployment period", "url": "https://amrc.ssec.wisc.edu/data/iceberg.html"}, {"dataset_uid": "001685", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Incorporated Research Institutions for Seismology", "url": "http://www.iris.edu/data/sources.htm"}, {"dataset_uid": "609347", "doi": "10.7265/N57W694M", "keywords": "Antarctica; Geodesy; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ross Ice Shelf; Southern Ocean", "people": "King, Matthew; Brunt, Kelly; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Continuous GPS (static) Data from the Ross Ice Shelf, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609347"}, {"dataset_uid": "001684", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "This site mirrors the NSIDC website archive.", "url": "http://uwamrc.ssec.wisc.edu/"}, {"dataset_uid": "001639", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "collection of nascent rift images and description of station deployment", "url": "http://thistle.org/nascent/index.shtml"}, {"dataset_uid": "001598", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "The files contain a short header (number of data samples, sample rate, start time, stop time, channel title)The time series data then follow the header above.", "url": "http://nsidc.org"}, {"dataset_uid": "609354", "doi": "10.7265/N5BP00Q3", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ross Ice Shelf; Snow/ice; Snow/Ice; Temperature", "people": "MacAyeal, Douglas; Scambos, Ted; Muto, Atsu; Sergienko, Olga", "repository": "USAP-DC", "science_program": null, "title": "Ross Ice Shelf Firn Temperature, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609354"}, {"dataset_uid": "002568", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Iceberg Satellite imagery from stations and ice shelves (full data link not provided)", "url": "http://amrc.ssec.wisc.edu/"}], "date_created": "Fri, 19 Sep 2008 00:00:00 GMT", "description": "This award supports the study of the drift and break-up of Earth\u0027s largest icebergs, which were recently released into the Ross Sea of Antarctica as a result of calving from the Ross Ice Shelf. The scientific goals of the study are to determine the physics of iceberg motion within the dynamic context of ocean currents, winds, and sea ice, which determine the forces that drive iceberg motion, and the relationship between the iceberg and geographically and topographically determined pinning points on which the iceberg can ground. In addition, the processes by which icebergs influence the local environments (e.g., sea ice conditions near Antarctica, access to penguin rookeries, air-sea heat exchange and upwelling at iceberg margins, nutrient fluxes) will be studied. The processes by which icebergs generate globally far-reaching ocean acoustic signals that are detected within the global seismic (earthquake) sensing networks will also be studied. A featured element of the scientific research activity will be a field effort to deploy automatic weather stations, seismometer arrays and GPS-tracking stations on several of the largest icebergs presently adrift, or about to be adrift, in the Ross Sea. Data generated and relayed via satellite to home institutions in the Midwest will motivate theoretical analysis and computer simulation; and will be archived on an \"iceberg\" website (http://amrc.ssec.wisc.edu/amrc/iceberg.html) for access by scientists and the general public. At the most broad level, the study is justified by the fact that icebergs released by the Antarctic ice sheet represent the largest movements of fresh water within the natural environment (e.g., several of the icebergs to be studied, B15, C19 and others calved since 2000 CE, represent over 6000 cubic kilometers of fresh water-an amount roughly equivalent to 100 years of the flow of the Nile River). A better understanding of the impact of iceberg drift through the environment, and particularly the impact on ocean stratification and mixing, is essential to the understanding of the abrupt global climate changes witnessed by proxy during the ice age and of concern under conditions of future greenhouse warming. On a more specific level, the study will generate a knowledge base useful for the better management of Antarctic logistical resources (e.g., the shipping lanes to McMurdo Station) that can occasionally be influenced by adverse effects icebergs have on sea ice conditions.", "east": -178.0, "geometry": "POINT(-178 -78)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HUMIDITY SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e MMS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e TEMPERATURE LOGGERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e TEMPERATURE PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS", "is_usap_dc": true, "keywords": "SEISMOLOGICAL STATIONS; Pressure; AWS; Velocity Measurements; Firn Temperature Measurements; Ice Velocity; Seismology; Ice Sheet Elevation; Harmonic Tremor; Ice Shelf Temperature; Wind Speed; Iceberg; Ice Surface Elevation; Non-Volcanic Tremor; Not provided; Antarctic; Iceberg Tremor; Solar Radiation; Antarctic Ice Sheet; Ross Ice Shelf; Elevation; GPS; Temperature Profiles; Ice Shelf Rift Camera; GROUND STATIONS; Latitude; GROUND-BASED OBSERVATIONS; Ice Shelf Weather; FIELD INVESTIGATION; ARWS; Surface Elevation; Ice Shelf Flow; Antarctica; FIELD SURVEYS; Camera; Seismometer; Iceberg Weather (aws); Ice Movement; Photo; Wind Direction; Iceberg Snow Accumulation; Tremor And Slow Slip Events; AWS Climate Data; Location; Iceberg Drift; Iceberg Collisions; Iceberg Tilt; Atmospheric Pressure; Iceberg Seismicity; Firn Temperature", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; Ross Ice Shelf", "north": -78.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Okal, Emile; Aster, Richard; Bassis, Jeremy; Kim, Young-Jin; Bliss, Andrew; Sergienko, Olga; Thom, Jonathan; Scambos, Ted; Muto, Atsu; Brunt, Kelly; King, Matthew; Parker, Tim; Okal, Marianne; Cathles, Mac; MacAyeal, Douglas", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e ARWS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS; Not provided; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "AMRDC; IRIS; NSIDC; Project website; USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research of Earth\u0027s Largest Icebergs", "uid": "p0000117", "west": -178.0}, {"awards": "0233823 Fountain, Andrew; 0230338 Hallet, Bernard", "bounds_geometry": "POLYGON((162.132 -77.73,162.1495 -77.73,162.167 -77.73,162.1845 -77.73,162.202 -77.73,162.2195 -77.73,162.237 -77.73,162.2545 -77.73,162.272 -77.73,162.2895 -77.73,162.307 -77.73,162.307 -77.7303,162.307 -77.7306,162.307 -77.7309,162.307 -77.7312,162.307 -77.7315,162.307 -77.7318,162.307 -77.7321,162.307 -77.7324,162.307 -77.7327,162.307 -77.733,162.2895 -77.733,162.272 -77.733,162.2545 -77.733,162.237 -77.733,162.2195 -77.733,162.202 -77.733,162.1845 -77.733,162.167 -77.733,162.1495 -77.733,162.132 -77.733,162.132 -77.7327,162.132 -77.7324,162.132 -77.7321,162.132 -77.7318,162.132 -77.7315,162.132 -77.7312,162.132 -77.7309,162.132 -77.7306,162.132 -77.7303,162.132 -77.73))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 02 Jul 2008 00:00:00 GMT", "description": "This award supports a comprehensive study of land-based polar ice cliffs. Through field measurements, modeling, and remote sensing, the physics underlying the formation of ice cliffs at the margin of Taylor Glacier in the McMurdo Dry Valleys will be investigated. At three sites, measurements of ice deformation and temperature fields near the cliff face will be combined with existing energy balance data to quantify ice-cliff evolution over one full seasonal cycle. In addition, a small seismic network will monitor local \"ice quakes\" associated with calving events. Numerical modeling, validated by the field data, will enable determination of the sensitivity of ice cliff evolution to environmental variables. There are both local and global motivations for studying the ice cliffs of Taylor Glacier. On a global scale, this work will provide insight into the fundamental processes of calving and glacier terminus A better grasp of ice cliff processes will also improve boundary conditions required for predicting glaciers\u0027 response to climate change. Locally, the Taylor Glacier is an important component of the McMurdo Dry Valleys landscape and the results of this study will aid in defining ecologically-important sources of glacial meltwater and will lead to a better understanding of moraine formation at polar ice cliffs. This study will help launch the career of a female scientist, will support one graduate student, and provide experiential learning experiences for two undergraduates. The post-doctoral researcher will also use this research in the curriculum of a wilderness science experiential education program for high school girls.", "east": 162.307, "geometry": "POINT(162.2195 -77.7315)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOCOUPLES \u003e THERMOCOUPLES; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e SURVEYING TOOLS", "is_usap_dc": false, "keywords": "SEISMOLOGICAL STATIONS; Ice Quakes; Ice Cliffs; Not provided; Taylor Glacier; FIELD SURVEYS; Remote Sensing; GROUND-BASED OBSERVATIONS; Modeling; Ice Deformation; Glacial Meltwater; FIELD INVESTIGATION; McMurdo Dry Valleys", "locations": "McMurdo Dry Valleys; Taylor Glacier", "north": -77.73, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Pettit, Erin; Hallet, Bernard; Fountain, Andrew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS; Not provided", "repositories": null, "science_programs": null, "south": -77.733, "title": "Collaborative Research: Mechanics of Dry-Land Calving of Ice Cliffs", "uid": "p0000721", "west": 162.132}, {"awards": "0540915 Scambos, Ted", "bounds_geometry": "POLYGON((-57.9857 -48.444,-55.95557 -48.444,-53.92544 -48.444,-51.89531 -48.444,-49.86518 -48.444,-47.83505 -48.444,-45.80492 -48.444,-43.77479 -48.444,-41.74466 -48.444,-39.71453 -48.444,-37.6844 -48.444,-37.6844 -50.12802,-37.6844 -51.81204,-37.6844 -53.49606,-37.6844 -55.18008,-37.6844 -56.8641,-37.6844 -58.54812,-37.6844 -60.23214,-37.6844 -61.91616,-37.6844 -63.60018,-37.6844 -65.2842,-39.71453 -65.2842,-41.74466 -65.2842,-43.77479 -65.2842,-45.80492 -65.2842,-47.83505 -65.2842,-49.86518 -65.2842,-51.89531 -65.2842,-53.92544 -65.2842,-55.95557 -65.2842,-57.9857 -65.2842,-57.9857 -63.60018,-57.9857 -61.91616,-57.9857 -60.23214,-57.9857 -58.54812,-57.9857 -56.8641,-57.9857 -55.18008,-57.9857 -53.49606,-57.9857 -51.81204,-57.9857 -50.12802,-57.9857 -48.444))", "dataset_titles": "Atlas of the Cryosphere - View dynamic maps of snow, sea ice, glaciers, ice sheets, permafrost, and more.; Climate, Drift, and Image Data from Antarctic Icebergs A22A and UK211, 2006-2007; MODIS Mosaic of Antarctica (MOA)", "datasets": [{"dataset_uid": "000190", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "MODIS Mosaic of Antarctica (MOA)", "url": "http://nsidc.org/data/nsidc-0280.html"}, {"dataset_uid": "609466", "doi": "10.7265/N5N014GW", "keywords": "Ablation; Atmosphere; Glaciology; GPS; Meteorology; Oceans; Photo/video; Photo/Video; Sea Ice; Southern Ocean; Temperature", "people": "Thom, Jonathan; Yermolin, Yevgeny; Scambos, Ted; Bohlander, Jennifer; Bauer, Rob", "repository": "USAP-DC", "science_program": null, "title": "Climate, Drift, and Image Data from Antarctic Icebergs A22A and UK211, 2006-2007", "url": "https://www.usap-dc.org/view/dataset/609466"}, {"dataset_uid": "000189", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Atlas of the Cryosphere - View dynamic maps of snow, sea ice, glaciers, ice sheets, permafrost, and more.", "url": "http://nsidc.org/MMS/atlas/cryosphere_atlas_north.html"}], "date_created": "Thu, 16 Aug 2007 00:00:00 GMT", "description": "This award supports a small grant for exploratory research to study the processes that contribute to the melting and break-up of tabular polar icebergs as they drift north. This work will enable the participation of a group of U.S. scientists in this international project which is collaborative with the Instituto Antartico Argentino. The field team will place weather instruments, firn sensors, and a video camera on the iceberg to measure the processes that affect it as it drifts north. In contrast to icebergs in other sectors of Antarctica, icebergs in the northwestern Weddell Sea drift northward along relatively predictable paths, and reach climate and ocean conditions that lead to break-up within a few years. The timing of this study is critical due to the anticipated presence of iceberg A43A, which broke off the Ronne Ice Shelf in February 2000 and which is expected to be accessible from Marambio Station in early 2006. It has recently been recognized that the end stages of break-up of these icebergs can imitate the rapid disintegrations due to melt ponding and surface fracturing observed for the Larsen A and Larsen B ice shelves. However, in some cases, basal melting may play a significant role in shelf break-up. Resolving the processes (surface ponding/ fracturing versus basal melt) and observing other processes of iceberg drift and break up in-situ are of high scientific interest. An understanding of the mechanisms that lead to the distintegration of icebergs as they drift north may enable scientists to use icebergs as proxies for understanding the processes that could cause ice shelves to disintegrate in a warming climate. A broader impact would thus be an ability to predict ice shelf disintegration in a warming world. Glacier mass balance and ice shelf stability are of critical importance to sea level change, which also has broader societal relevance.", "east": -37.6844, "geometry": "POINT(-47.83505 -56.8641)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ICE AUGERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SNOW DENSITY CUTTER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e MODIS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e MMS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS", "is_usap_dc": true, "keywords": "Air Temperature; Weddell Sea; Edge-Wasting; Ice Shelf Meltwater; TERRA; Antarctic; GPS; Iceberg; Ice Breakup; South Atlantic Ocean; AQUA; Tabular; Photo; Not provided; Icetrek; HELICOPTER; Antarctica", "locations": "Antarctic; Weddell Sea; Antarctica; South Atlantic Ocean", "north": -48.444, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Scambos, Ted; Bohlander, Jennifer; Bauer, Rob; Yermolin, Yevgeny; Thom, Jonathan", "platforms": "AIR-BASED PLATFORMS \u003e ROTORCRAFT/HELICOPTER \u003e HELICOPTER; Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e AQUA; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e TERRA; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "NSIDC", "repositories": "NSIDC; USAP-DC", "science_programs": null, "south": -65.2842, "title": "Investigating Iceberg Evolution During Drift and Break-Up: A Proxy for Climate-Related Changes in Antarctic Ice Shelves", "uid": "p0000003", "west": -57.9857}, {"awards": "0229573 Mayewski, Paul", "bounds_geometry": null, "dataset_titles": "Antarctic Mean Annual Temperature Map", "datasets": [{"dataset_uid": "609318", "doi": "10.7265/N51C1TTV", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Temperature", "people": "Dixon, Daniel A.", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Mean Annual Temperature Map", "url": "https://www.usap-dc.org/view/dataset/609318"}], "date_created": "Wed, 04 Apr 2007 00:00:00 GMT", "description": "This award supports a science management office for a pilot ice-core drilling and analysis program to test the feasibility of obtaining well-dated, high-resolution isotope and chemistry records from East Antarctica. Shallow ice cores will be obtained from two locations: 1) ~100 km from South Pole towards the Pole of Inaccessibility, as an extension of the Byrd Station-to-South Pole ITASE traverse [International Trans Antarctic Scientific Expedition]; 2) at Taylor Dome, near the original deep coring site, and (3) possibly at AGO 3 and AGO 4 as part of a logistics traverse to these sites. All of the cores collected will be sampled at very high resolution (~1/2 cm) and analyzed for major ions. Results from this calibration work, along with those from another project that is analyzing stable isotopes will be used to help plan a program of larger scope, with the objective of mapping the spatial expression of climate variability in East Antarctica. Funds are also provided to organize a community workshop for coordination of the second phase of US ITASE and for one workshop per year for two years dedicated to writing and preparation of scientific papers from phase one of US ITASE. In addition, route selection activities for the follow-on traverse activities in East Antarctica will be conducted using satellite image mapping. A summary document will be produced and made available to the community to help with planning of related field programs (e.g. deep ice radar, firn radar profiling, atmospheric chemistry, ice coring, snow surface properties for satellite observations, ice surface elevation and mass balance).", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOCOUPLES \u003e THERMOCOUPLES; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS", "is_usap_dc": true, "keywords": "Antarctic Ice Sheet; West Antarctica; FIELD INVESTIGATION; West Antarctic Ice Sheet; Antarctic; Temperature; East Antarctic Plateau; FIELD SURVEYS; Antarctica; Not provided", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; West Antarctica; West Antarctic Ice Sheet; East Antarctic Plateau", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Dixon, Daniel A.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "A Science Management Office for the U. S. Component of the International Trans Antarctic Expedition (US ITASE SMO)A Collaborative Pgrm of Research from S. Pole to N. Victoria Land", "uid": "p0000199", "west": null}, {"awards": "0125276 Albert, Mary; 0125570 Scambos, Ted", "bounds_geometry": null, "dataset_titles": "Access AGDC data online by navigating to Data Sets. Data sets are arranged by Principal Investigators. Access data that are combined into multiple data sets, or compiled products.; AWS Data: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation; GPR and GPS Data: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation; Snow and Firn Permeability: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation; The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.", "datasets": [{"dataset_uid": "609283", "doi": "10.7265/N5K935F3", "keywords": "Antarctica; Atmosphere; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Meteorology; Snow/ice; Snow/Ice", "people": "Scambos, Ted; Fahnestock, Mark; Bauer, Rob; Haran, Terry", "repository": "USAP-DC", "science_program": null, "title": "AWS Data: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "url": "https://www.usap-dc.org/view/dataset/609283"}, {"dataset_uid": "001669", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Access AGDC data online by navigating to Data Sets. Data sets are arranged by Principal Investigators. Access data that are combined into multiple data sets, or compiled products.", "url": "http://nsidc.org/data/agdc_investigators.html"}, {"dataset_uid": "001343", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.", "url": "https://nsidc.org/data/agdc/"}, {"dataset_uid": "609282", "doi": "10.7265/N5Q23X5F", "keywords": "Antarctica; East Antarctic Plateau; Glaciology; GPR; GPS; Navigation; Paleoclimate; Snow/ice; Snow/Ice", "people": "Scambos, Ted; Bauer, Rob", "repository": "USAP-DC", "science_program": null, "title": "GPR and GPS Data: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation", "url": "https://www.usap-dc.org/view/dataset/609282"}, {"dataset_uid": "609299", "doi": "10.7265/N5639MPD", "keywords": "Antarctica; East Antarctic Plateau; Glaciology; Physical Properties; Snow/ice; Snow/Ice", "people": "Albert, Mary R.; Cathles, Mac; Courville, Zoe", "repository": "USAP-DC", "science_program": null, "title": "Snow and Firn Permeability: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation", "url": "https://www.usap-dc.org/view/dataset/609299"}], "date_created": "Wed, 04 Jan 2006 00:00:00 GMT", "description": "This award supports a program of field surveys of an area within the large, well-developed megadune field southeast of Vostok station. The objectives are to determine the physical characteristics of the firn across the dunes, including typical climate indicators such as stable isotopes and major chemical species, and to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. Field study will consist of surface snowpit and shallow core sampling, ground penetrating radar (GPR) profiling, GPS topographic and ice motion surveys, AWS installation, accumulation/ ablation measurements, subsurface temperature, and firn permeability studies. Field work in two successive seasons is proposed. Continent-wide remote sensing studies of the dunes will be continued, using the new group of instruments that are now, or will shortly be available (e.g., MODIS, MISR, GLAS, AMSR). The earlier study of topographic, passive microwave, and SAR characteristics will be extended, with the intent of determining the relationships of dune amplitude and wavelength to climate parameters, and further development of models of dune formation. Diffusion, ventilation, and vapor transport processes within the dune firn will be modeled as well. A robust program of outreach is planned and reporting to inform both the public and scientists of the fundamental in-situ and remote sensing characteristics of these uniquely Antarctic features will be an important part of the work. Because of their extreme nature, their broad extent, and their potential impact on the climate record, it is important to improve our current understanding of these. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on past terrestrial climate, or to processes active on other planets. Megadunes are likely to represent an end-member in firn diagenesis, and as such, may have much to teach us about the processes involved.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ICE AUGERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e SNOWPACK TEMPERATURE PROBE; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e PERMEAMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e AIR PERMEAMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e RADIO \u003e ARGOS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e WIND PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e DENSIOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e GAUGES \u003e BALANCE", "is_usap_dc": true, "keywords": "Internal Layering; ICESAT; Vapor-Redeposition; Antarctic; Wind Speed; FIELD INVESTIGATION; Surface Morphology; Antarctica; GROUND-BASED OBSERVATIONS; ARWS; Polar Firn Air; Microstructure; Gas Diffusivity; WEATHER STATIONS; Surface Temperatures; RADARSAT-2; Ice Core; Wind Direction; AWS; Ice Sheet; Snow Pit; Dunefields; Climate Record; Megadunes; GROUND STATIONS; METEOROLOGICAL STATIONS; Antarctic Ice Sheet; Density; Atmospheric Pressure; Firn Permeability; FIELD SURVEYS; Radar; Permeability; Field Survey; Firn Temperature Measurements; Snow Megadunes; Thermal Conductivity; LANDSAT; Firn; Ice Core Interpretation; East Antarctic Plateau; Not provided; Surface Winds; Sublimation; Snow Density; Ice Climate Record; Glaciology; Snow Permeability; Air Temperature; Paleoenvironment; Automated Weather Station", "locations": "Antarctica; Antarctic Ice Sheet; Antarctic; East Antarctic Plateau", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Courville, Zoe; Cathles, Mac; Scambos, Ted; Bauer, Rob; Fahnestock, Mark; Haran, Terry; Shuman, Christopher A.; Albert, Mary R.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e ARWS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e METEOROLOGICAL STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e WEATHER STATIONS; Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e ICE, CLOUD AND LAND ELEVATION SATELLITE (ICESAT) \u003e ICESAT; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e LANDSAT \u003e LANDSAT; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e RADARSAT \u003e RADARSAT-2", "repo": "USAP-DC", "repositories": "NSIDC; USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "uid": "p0000587", "west": null}, {"awards": "9419128 Stearns, Charles", "bounds_geometry": null, "dataset_titles": "Three-Hourly Antarctic Automatic Weather Station Data, 1980-2000", "datasets": [{"dataset_uid": "609111", "doi": "", "keywords": "Antarctica; Atmosphere; AWS; Weatherstation", "people": "Lazzara, Matthew; Stearns, Charles R.; Weidner, George A.; Keller, Linda M.", "repository": "USAP-DC", "science_program": null, "title": "Three-Hourly Antarctic Automatic Weather Station Data, 1980-2000", "url": "https://www.usap-dc.org/view/dataset/609111"}], "date_created": "Mon, 18 Aug 2003 00:00:00 GMT", "description": "9419128 Stearns This is a project to maintain and augment as necessary, the network of nearly fifty automatic weather stations established on the Antarctic continent and on several surrounding islands. These weather stations measure surface wind, pressure, temperature, humidity, and in some instances other atmospheric variables, such as snow accumulation and incident solar radiation, and report these via satellite to a number of ground stations. The data are used for operational weather forecasting in support of the United States Antarctic program, for climatological records, and for research purposes. The AWS network, which began as a small-scale program in 1980, has been extremely reliable and has proven indispensable for both forecasting and research purposes. ***", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e BAROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HUMIDITY SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS", "is_usap_dc": true, "keywords": "Surface Temperature Measurements; USAP-DC; Atmospheric Pressure; Automated Weather Station; Surface Winds; Near-Surface Air Temperatures; Surface Wind Speed Measurements; Atmospheric Humidity Measurements; AWS; Not provided; Snow Temperature; Surface Temperatures; Antarctica; Snow Temperature Measurements", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew; Stearns, Charles R.; Weidner, George A.; Keller, Linda M.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Continuation for the Antarctic Automatic Weather Station Climate Program 1995-1998", "uid": "p0000151", "west": null}, {"awards": "9526601 Albert, Mary", "bounds_geometry": null, "dataset_titles": "Snow and Firn Temperature and Permeability Measurements from Siple Dome, Antarctica", "datasets": [{"dataset_uid": "609100", "doi": "10.7265/N5S46PVZ", "keywords": "Antarctica; Glaciology; Permeability; Siple Dome; Siple Dome Ice Core; Snow/ice; Snow/Ice; Temperature", "people": "Albert, Mary R.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Snow and Firn Temperature and Permeability Measurements from Siple Dome, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609100"}], "date_created": "Sat, 01 Dec 2001 00:00:00 GMT", "description": "This award supports a project to examine the physical processes that affect the manner in which heat, vapor and chemical species in air are incorporated into snow and polar firn. The processes include advection, diffusion, and the effects of solar radiation penetration into the snow. An understanding of these processes is important because they control the rate at which reactive and non-reactive chemical species in the atmosphere become incorporated into the snow, firn, and polar ice, and thus will affect interpretation of polar ice core data. Currently, the interpretation of polar ice core data assumes that diffusion controls the rate at which chemical species are incorporated into firn. This project will determine whether ventilation, or advection of the species by air movement in the firn, and radiation penetration processes have a significant effect. Field studies at the two West Antarctic ice sheet deep drilling sites will be conducted to determine the spatial and temporal extent for key parameters, and boundary conditions needed to model the advection, conduction, and radiation transmission/absorption processes. An existing multidimensional numerical model is being expanded to simulate the processes and to serve as the basis for ongoing and future work in transport and distribution of reactive chemical species.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e PERMEAMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS", "is_usap_dc": true, "keywords": "Glaciology; Antarctica; Snow Permeability; Firn Permeability; USAP-DC; GROUND-BASED OBSERVATIONS; Not provided; GROUND STATIONS; Snow Properties; Snow Temperature; Siple Dome; Firn Temperature", "locations": "Antarctica; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Albert, Mary R.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Near-Surface Processes Affecting Gas Exchange: West Antarctic Ice Sheet", "uid": "p0000061", "west": null}, {"awards": "9725305 Severinghaus, Jeffrey", "bounds_geometry": null, "dataset_titles": "Firn Air Isotope and Temperature Measurements from Siple Dome and South Pole", "datasets": [{"dataset_uid": "609098", "doi": "10.7265/N51N7Z2P", "keywords": "Antarctica; Atmosphere; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciology; Isotope; Paleoclimate; Siple Dome; Snow/ice; Snow/Ice; South Pole; Temperature", "people": "Severinghaus, Jeffrey P.; Battle, Mark; Grachev, Alexi", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Firn Air Isotope and Temperature Measurements from Siple Dome and South Pole", "url": "https://www.usap-dc.org/view/dataset/609098"}], "date_created": "Mon, 01 Jan 2001 00:00:00 GMT", "description": "9725305 Severinghaus This award supports a project to develop and apply a new technique for quantifying temperature changes in the past based on the thermodynamic principle of thermal diffusion, in which gas mixtures in a temperature gradient become fractionated. Air in polar firn is fractionated by temperature gradients induced by abrupt climate change, and a record of this air is preserved in bubbles in the ice. The magnitude of the abrupt temperature change, the precise relative timing, and an estimate of the absolute temperature change can be determined. By providing a gas-phase stratigraphic marker of temperature change, the phasing of methane (with decadal precision) and hence widespread climate change (relative to local polar temperature changes) can be determined (across five abrupt warming events during the last glacial period).", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e FLASKS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": true, "keywords": "Isotopic History; GROUND STATIONS; Thermal Diffusion; Firn Temperature Measurements; Not provided; Oxygen Isotope; Trapped Air Bubbles; Shallow Firn Air; Firn Air Isotope Measurements; Seasonal Temperature Gradients; Mass Spectrometry; GROUND-BASED OBSERVATIONS; Thermal Fractionation; Polar Firn Air; Isotopic Anomalies; Xenon; Atmospheric Gases; Argon Isotopes; Siple Dome; Krypton; Nitrogen Isotopes; Seasonal Temperature Changes; Antarctica; Ice Core Gas Records; Firn Air Isotopes; Mass Spectrometer; South Pole; Firn Isotopes; Borehole", "locations": "Antarctica; Siple Dome; South Pole", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Battle, Mark; Grachev, Alexi; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Thermal Fractionation of Firn Air and the Ice Core Record of Abrupt Interstadial Climate Change", "uid": "p0000160", "west": null}, {"awards": "0636873 Lazzara, Matthew", "bounds_geometry": "POLYGON((-71 85,-65.8 85,-60.6 85,-55.4 85,-50.2 85,-45 85,-39.8 85,-34.6 85,-29.4 85,-24.2 85,-19 85,-19 82.5,-19 80,-19 77.5,-19 75,-19 72.5,-19 70,-19 67.5,-19 65,-19 62.5,-19 60,-24.2 60,-29.4 60,-34.6 60,-39.8 60,-45 60,-50.2 60,-55.4 60,-60.6 60,-65.8 60,-71 60,-71 62.5,-71 65,-71 67.5,-71 70,-71 72.5,-71 75,-71 77.5,-71 80,-71 82.5,-71 85))", "dataset_titles": "Access data.", "datasets": [{"dataset_uid": "001302", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access data.", "url": "ftp://amrc.ssec.wisc.edu"}], "date_created": "Thu, 01 Jan 1970 00:00:00 GMT", "description": "This is a three-year project to maintain and augment as necessary, the network of approximately fifty automatic weather stations established on the antarctic continent and on several surrounding islands. These weather stations measure surface wind, pressure, temperature, humidity, and in some instances other atmospheric variables, such as snow accumulation and incident solar radiation, and report these via satellite to a number of ground stations. The data are used for operational weather forecasting in support of the United States Antarctic program, for global forecasting through the WMO Global Telecommunications System, for climatological records, and for research purposes. The AWS network, which began as a small-scale program in 1980, has been extremely reliable and has proven indispensable for both forecasting and research purposes.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e GAUGES \u003e ADG; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e BAROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HUMIDITY SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e SNOWPACK TEMPERATURE PROBE; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e RADIO \u003e ARGOS", "is_usap_dc": false, "keywords": "Automated Weather Station; FIXED OBSERVATION STATIONS; Antarctica; AWS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew; Costanza, Carol", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS", "repo": "AMRDC", "repositories": "AMRDC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Antarctic Automatic Weather Station Program: 2007-2010", "uid": "p0000284", "west": -180.0}, {"awards": "0838834 Lazzara, Matthew", "bounds_geometry": "POLYGON((-180 -62.83,-144 -62.83,-108 -62.83,-72 -62.83,-36 -62.83,0 -62.83,36 -62.83,72 -62.83,108 -62.83,144 -62.83,180 -62.83,180 -65.547,180 -68.264,180 -70.981,180 -73.698,180 -76.415,180 -79.132,180 -81.849,180 -84.566,180 -87.283,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.283,-180 -84.566,-180 -81.849,-180 -79.132,-180 -76.415,-180 -73.698,-180 -70.981,-180 -68.264,-180 -65.547,-180 -62.83))", "dataset_titles": "Access all real-time datasets; Access Antarctic Composite Images.; Access Antarctic Synoptic and METAR Observations.; Access McMurdo Radiosonde Observations; Access South Pole Radiosonde Observations; Archived METAR observational data; We have observations from three ships near Antarctica, the R/V Polar Duke the R/V Nathaniel B. Palmer and the R/V Laurence M. Gould. Data from 23 August 1993 are available via ftp and the files are updated with the most recent observations every 7-10 days as we receive the information. The AMRC has been archiving general ship and buoy observational data for the Antarctic and surrounding regions since 2 December 1998.", "datasets": [{"dataset_uid": "001382", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Antarctic Synoptic and METAR Observations.", "url": "ftp://amrc.ssec.wisc.edu"}, {"dataset_uid": "001386", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Archived METAR observational data", "url": "ftp://amrc.ssec.wisc.edu/archive/"}, {"dataset_uid": "001285", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Antarctic Composite Images.", "url": "http://amrc.ssec.wisc.edu/data/view-data.php?action=list\u0026amp;amp;product=satellite/composite"}, {"dataset_uid": "001300", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access all real-time datasets", "url": "http://amrc.ssec.wisc.edu/"}, {"dataset_uid": "001288", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access South Pole Radiosonde Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/southpole/radiosonde/"}, {"dataset_uid": "001299", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Antarctic Synoptic and METAR Observations.", "url": "ftp://amrc.ssec.wisc.edu/"}, {"dataset_uid": "001289", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access McMurdo Radiosonde Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/mcmurdo/radiosonde/"}, {"dataset_uid": "001290", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "We have observations from three ships near Antarctica, the R/V Polar Duke the R/V Nathaniel B. Palmer and the R/V Laurence M. Gould. Data from 23 August 1993 are available via ftp and the files are updated with the most recent observations every 7-10 days as we receive the information. The AMRC has been archiving general ship and buoy observational data for the Antarctic and surrounding regions since 2 December 1998.", "url": "ftp://amrc.ssec.wisc.edu/pub/shipobs/"}], "date_created": "Thu, 01 Jan 1970 00:00:00 GMT", "description": "Abstract\u003cbr/\u003e\u003cbr/\u003eThe Antarctic Meteorological Research Center (AMRC), located at the University of Wisconsin, Madison, serves several communities by maintaining and extending the stewardship of meteorological data pertinent to the Antarctic continent, its surrounding islands, ice sheets and ice margins and the adjacent Southern Ocean. This data will continue to be made freely available to interested researchers and the general public. Activities of particular interest for the current award include the development of an enhanced data portal to provide improved data and analysis tools to the research community, and to continue to add to the evolution of the Antarctic-Internet Data Distribution system, which is meant to overcome the costly and generally low bandwidth internet connectivity to and from the Antarctic continent. Operational forecasting for logistical activities in the Antarctic, as well as active Antarctic meteorological research programs, are clearly in need of a dependable, steady flow of meteorological observations, model output, and related data in what must be a collaborative environment in order to overcome the otherwise distributed nature of Antarctic meteorological and climatological observations.\u003cbr/\u003e\u003cbr/\u003eAMRC interaction with the public through answering e-mail questions, giving informal public lectures and presentations to K-12 education institutions through visits to schools will help to raise science literacy with regards to meteorology and of the Antarctic and polar regions. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\"This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\"", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e AVHRR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e GOES I-M IMAGER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e OLS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e VISSR; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e BAROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e WET BULB THERMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADIOSONDES; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e AMSU-A; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e AVHRR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e HIRS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e HIRS/2; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e MSU; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e TOVS", "is_usap_dc": false, "keywords": "Shortwave Composite Satellite Images; Radiosonde Data; Antarctic; Noaa Hrpt Raw Data; Synoptic Data; Water Vapor Composite Satellite Images; SATELLITES; Satellite Imagery; Infrared Imagery; NOAA POES; Visible Composite Satellite Images; BUOYS; Antarctica; Ship/buoy Data; FIXED OBSERVATION STATIONS; Longwave Composite Satellite Images; Not provided; COASTAL STATIONS; Metar Weather Observations", "locations": "Antarctic; Antarctica", "north": -62.83, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew; Costanza, Carol", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e COASTAL STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e POLAR ORBITING ENVIRONMENTAL SATELLITES (POES) \u003e NOAA POES; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED \u003e BUOYS", "repo": "AMRDC", "repositories": "AMRDC", "science_programs": null, "south": -90.0, "title": "Antarctic Meteorological Research Center (2009-2011)", "uid": "p0000264", "west": -180.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Collaborative Research: Antarctic Automatic Weather Station Program 2013-2017
|
1245663 1245737 |
2017-11-22 | Lazzara, Matthew; Cassano, John; Costanza, Carol |
|
The Antarctic Automatic Weather Station (AAWS) network, first commenced in 1978, is the most extensive ground meteorological network in the Antarctic, approaching its 30th year at several of its installations. Its prime focus as a long term observational record is to measure the near surface weather and climatology of the Antarctic atmosphere. AWS sites measure air-temperature, pressure, wind speed and direction at a nominal surface height of 3m. Other parameters such as relative humidity and snow accumulation may also be measured. Observational data from the AWS are collected via the DCS Argos system aboard either NOAA or MetOp polar orbiting satellites and thus made available in near real time to operational and synoptic weather forecasters. The surface observations from the AAWS network are important records for recent climate change and meteorological processes. The surface observations from the AAWS network are also used operationally, and in the planning of field work. The surface observations from the AAWS network have been used to check on satellite and remote sensing observations. | POLYGON((161.714 -77.522,162.6077 -77.522,163.5014 -77.522,164.3951 -77.522,165.2888 -77.522,166.1825 -77.522,167.0762 -77.522,167.9699 -77.522,168.8636 -77.522,169.7573 -77.522,170.651 -77.522,170.651 -77.6702,170.651 -77.8184,170.651 -77.9666,170.651 -78.1148,170.651 -78.263,170.651 -78.4112,170.651 -78.5594,170.651 -78.7076,170.651 -78.8558,170.651 -79.004,169.7573 -79.004,168.8636 -79.004,167.9699 -79.004,167.0762 -79.004,166.1825 -79.004,165.2888 -79.004,164.3951 -79.004,163.5014 -79.004,162.6077 -79.004,161.714 -79.004,161.714 -78.8558,161.714 -78.7076,161.714 -78.5594,161.714 -78.4112,161.714 -78.263,161.714 -78.1148,161.714 -77.9666,161.714 -77.8184,161.714 -77.6702,161.714 -77.522)) | POINT(166.1825 -78.263) | false | false | |||||||
Collaborative Research: Physical Properties of the WAIS Divide Deep Core
|
0539232 0539578 |
2017-01-12 | Fitzpatrick, Joan; Alley, Richard; Fegyveresi, John; Clow, Gary D.; Cuffey, Kurt M.; Cravens, Eric D. | 0539578<br/>Alley <br/>This award supports a five-year collaborative project to study the physical-properties of the planned deep ice core and the temperature of the ice in the divide region of the West Antarctic Ice Sheet. The intellectual merit of the proposed research is to provide fundamental information on the state of the ice sheet, to validate the integrity of the climate record, to help reconstruct the climate record, and to understand the flow state and history of the ice sheet. This information will initially be supplied to other investigators and then to the public and to appropriate databases, and will be published in the refereed scientific literature. The objectives of the proposed research are to aid in dating of the core through counting of annual layers, to identify any exceptionally warm intervals in the past through counting of melt layers, to learn as much as possible about the flow state and history of the ice through measurement of size, shape and arrangements of bubbles, clathrate inclusions, grains and their c-axes, to identify any flow disturbances through these indicators, and to learn the history of snow accumulation and temperature from analyses of bubbles and borehole temperatures combined with flow modeling and use of data from other collaborators. These results will then be synthesized and communicated. Failure to examine cores can lead to erroneous identification of flow features as climate changes, so careful examination is required. Independent reconstruction of accumulation rate provides important data on climate change, and improves confidence in interpretation of other climate indicators. Borehole temperatures are useful recorders of temperature history. Flow state and history are important in understanding climate history and potential contribution of ice to sea-level change. By contributing to all of these and additional issues, the proposed research will be of considerable value. The broader impacts of the research include making available to the public improved knowledge on societally central questions involving abrupt climate change and sea-level rise. The project will also contribute to the education of advanced students, will utilize results in education of introductory students, and will make vigorous efforts in outreach, informal science education, and supplying information to policy-makers as requested, thus contributing to a more-informed society. | POINT(112.083 -79.467) | POINT(112.083 -79.467) | false | false | ||||||||
Mount Erebus Volcano Observatory III (MEVO III): Conduit Processes and Surveillance
|
0838817 |
2016-06-23 | Kyle, Philip; Curtis, Aaron; Rotman, Holly |
|
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Mount Erebus is Antarctica?s most active volcano that has been in a persistent state of activity for at least the last 35 years. It has a unique geochemistry among the Earth's active volcanoes and is also unique in hosting a persistent convecting lake(s) of anorthclase phonolite magma in its summit crater. The relative simplicity of the magmatic system, consistency of activity, and accessibility of close-range observation make Erebus attractive as a target for extensive studies. Although the Erebus' seismicity and eruptive activity and processes are becoming increasingly well understood over years of research, there is a near total lack of understanding its deeper magmatic system. The primary goal of this proposal is to continue supporting the Mt. Erebus Volcano Observatory (MEVO III) improving our current understanding of the Erebus eruptive and non-eruptive magmatic system using an integrated approach from geophysical, geochemical and remote sensing observations. This goal can be grouped into the following fundamental research objectives: (a) to sustain year-round surveillance of on-going volcanic activity primarily using geophysical observatories; (b) to understand processes within the convecting conduit which feeds the persistent lava lakes; and (c) to understand the impact of Erebus eruptive activity upon the Antarctic environment. Continued reliance on students provides a broader impact to this proposed research and firmly grounds this effort in its educational mission. | POLYGON((167 -77.3,167.05 -77.3,167.1 -77.3,167.15 -77.3,167.2 -77.3,167.25 -77.3,167.3 -77.3,167.35 -77.3,167.4 -77.3,167.45 -77.3,167.5 -77.3,167.5 -77.34,167.5 -77.38,167.5 -77.42,167.5 -77.46,167.5 -77.5,167.5 -77.54,167.5 -77.58,167.5 -77.62,167.5 -77.66,167.5 -77.7,167.45 -77.7,167.4 -77.7,167.35 -77.7,167.3 -77.7,167.25 -77.7,167.2 -77.7,167.15 -77.7,167.1 -77.7,167.05 -77.7,167 -77.7,167 -77.66,167 -77.62,167 -77.58,167 -77.54,167 -77.5,167 -77.46,167 -77.42,167 -77.38,167 -77.34,167 -77.3)) | POINT(167.25 -77.5) | false | false | |||||||
Collaborative Research: Application of Distributed Temperature Sensors (DTS) for Antarctic Ice Shelves and Cavities
|
1043217 |
2015-05-05 | Zagorodnov, Victor; Holland, David; Tyler, Scott W. |
|
Abstract Researchers will explore the use of a distributed temperature sensing monitoring system (DTS), using fiber-optical (FO) technology, as the basis of a sustainable, sub-ice cavity sensing array. FO cable systems, such as may be deployed through a hot-water drilled hole through an ice shelf, passing through the underlying cavity to the sea floor, are capable of measuring temperatures down fiber at 1 meter intervals, and at time frequencies as high as 15 seconds. DTS FO systems operate via optical time domain reflectometry along the fiber waveguide using inelastic backscatter of coherent laser light as a probe beam in the FO environment. The introduction of new technologies to the harsh environmental conditions of the Antarctic are often associated with high risk. However, the potential rewards of this approach (e.g. multiyear capability, minimal submerged mechanical or electrical components that may fail, relative simplicity of deployment and measurement principle, yet yielding distributed real time and spatial observation) are attractive enough to conduct a pilot project at a field-ready location (McMurdo). Current indications are that the instability of some of the world's largest ice sheets located around the Antarctic and Greenland may be caused by the presence of warming, deep ocean waters, shoaling over continental shelves, and melting the underside of floating ice shelves. Additional knowledge of the temporal and spatial variability of the temperature fields underneath terminal ice shelves, such as those draining the West Antarctic Ice Sheet, are needed to accurately project future global climate effects on ice-shelf ocean interactions, and in order to inform societal and technological aspects of adaption to changing sea-level. | None | None | false | false | |||||||
EAGER: Handbook of Hot Water Drill System (HWDS) Design Considerations and Best Practices.
|
1146554 |
2015-04-27 | Rack, Frank | No dataset link provided | This award provides support for "EAGER: Handbook of Hot Water Drill System (HWDS) Design Considerations and Best Practices" from the Antarctic Integrated System Science within the Office of Polar Programs. More and more science projects are proposing to use hot-water drilling systems (HWDS) to rapidly and/or cleanly access glacial and subglacial systems. To date the hot-water drill systems have been developed in isolation, and no attempt has been made to gather information about the different systems in one place. This proposal requests funds to document existing HWDS, and to then assess the design, testing, and development of a hot-water drill system that will be integrated with the evolving over-ice traverse capability of the USAP program. Intellectual Merit: A working handbook of best practices for hot-water drill design systems, including safety considerations, is long overdue, and will 1) provide suggestions for optimizing current systems; 2) contribute in the very near term to already funded projects such as WISSARD (Whillans Ice Stream Subglacial Access and Research Drilling); and 3) fit the long-term needs of the Antarctic science community who have identified rapid and clean access to glacial and subglaical environments as a top priority for the next decades. The collected information will be used for community education and training, will discuss potential design and operational trade-offs, and will identify ways to optimize the capabilities of an integrated USAP traverse and HWDS infrastructure. EAGER funding for this project is warranted because such a handbook has not been tried before, and needs to be shown to be doable prior to larger investments in such compilations. It fits the AISS (Antarctic Integrated System Science) program as an optimized HWDS will meet the needs of many different Antarctic research disciplines including biology, geology, glaciology, and oceanography. Broader Impacts: The proposed work is being done on behalf of the Antarctic research community, and will seek to capture the knowledge of experienced hot-water drill engineers who are nearing retirement, and to educate the next generation of hot-water drillers and engineers. The PI indicates he will work with the owners of such systems both within the US and abroad. Identification of best practices in hot-water drilling will save several different Antarctic research communities significant time, effort, and funding in the future. | POLYGON((153.694 -77.89028,155.025433 -77.89028,156.356866 -77.89028,157.688299 -77.89028,159.019732 -77.89028,160.351165 -77.89028,161.682598 -77.89028,163.014031 -77.89028,164.345464 -77.89028,165.676897 -77.89028,167.00833 -77.89028,167.00833 -78.525252,167.00833 -79.160224,167.00833 -79.795196,167.00833 -80.430168,167.00833 -81.06514,167.00833 -81.700112,167.00833 -82.335084,167.00833 -82.970056,167.00833 -83.605028,167.00833 -84.24,165.676897 -84.24,164.345464 -84.24,163.014031 -84.24,161.682598 -84.24,160.351165 -84.24,159.019732 -84.24,157.688299 -84.24,156.356866 -84.24,155.025433 -84.24,153.694 -84.24,153.694 -83.605028,153.694 -82.970056,153.694 -82.335084,153.694 -81.700112,153.694 -81.06514,153.694 -80.430168,153.694 -79.795196,153.694 -79.160224,153.694 -78.525252,153.694 -77.89028)) | POINT(160.351165 -81.06514) | false | false | |||||||
Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica
|
0732906 0732730 0732804 0732869 |
2014-12-30 | Truffer, Martin; Stanton, Timothy; Bindschadler, Robert; Behar, Alberto; Nowicki, Sophie; Anandakrishnan, Sridhar; Holland, David; McPhee, Miles G. |
|
Collaborative With: McPhee 0732804, Holland 0732869, Truffer 0732730, Stanton 0732926, Anandakrishnan 0732844 <br/>Title: Collaborative Research: IPY: Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica<br/><br/>The Office of Polar Programs, Antarctic Integrated and System Science Program has made this award to support an interdisciplinary study of the effects of the ocean on the stability of glacial ice in the most dynamic region the West Antarctic Ice Sheet, namely the Pine Island Glacier in the Amundsen Sea Embayment. The collaborative project builds on the knowledge gained by the highly successful West Antarctic Ice Sheet program and is being jointly sponsored with NASA. Recent observations indicate a significant ice loss, equivalent to 10% of the ongoing increase in sea-level rise, in this region. These changes are largest along the coast and propagate rapidly inland, indicating the critical impact of the ocean on ice sheet stability in the region. While a broad range of remote sensing and ground-based instrumentation is available to characterize changes of the ice surface and internal structure (deformation, ice motion, melt) and the shape of the underlying sediment and rock bed, instrumentation has yet to be successfully deployed for observing boundary layer processes of the ocean cavity which underlies the floating ice shelf and where rapid melting is apparently occurring. Innovative, mini ocean sensors that can be lowered through boreholes in the ice shelf (about 500 m thick) will be developed and deployed to automatically provide ocean profiling information over at least three years. Their data will be transmitted through a conducting cable frozen in the borehole to the surface where it will be further transmitted via satellite to a laboratory in the US. Geophysical and remote sensing methods (seismic, GPS, altimetry, stereo imaging, radar profiling) will be applied to map the geometry of the ice shelf, the shape of the sub ice-shelf cavity, the ice surface geometry and deformations within the glacial ice. To integrate the seismic, glaciological and oceanographic observations, a new 3-dimensional coupled ice-ocean model is being developed which will be the first of its kind. NASA is supporting satellite based research and the deployment of a robotic-camera system to explore the environment in the ocean cavity underlying the ice shelf and NSF is supporting all other aspects of this study. <br/><br/>Broader impacts: This project is motivated by the potential societal impacts of rapid sea level rise and should result in critically needed improvements in characterizing and predicting the behavior of coupled ocean-ice systems. It is a contribution to the International Polar Year and was endorsed by the International Council for Science as a component of the "Multidisciplinary Study of the Amundsen Sea Embayment" proposal #258 of the honeycomb of endorsed IPY activities. The research involves substantial international partnerships with the British Antarctic Survey and the University of Bristol in the UK. The investigators will partner with the previously funded "Polar Palooza" education and outreach program in addition to undertaking a diverse set of outreach activities of their own. Eight graduate students and one undergraduate as well as one post doc will be integrated into this research project. | POINT(-100.728 -75.0427) | POINT(-100.728 -75.0427) | false | false | |||||||
Basal Conditions of Ice Stream D and Related Borehole Studies of Antarctic Ice Stream Mechanics
|
9615420 |
2013-02-14 | Kamb, Barclay; Engelhardt, Hermann |
|
This award is for support for a four year program to study the basal conditions of ice stream D using techniques previously applied to ice stream B. The objective is to determine whether the physical conditions and processes to be observed by borehole geophysics at the base of this large ice stream are consistent with what has been observed at ice stream B and to point to a common basal mechanism of ice streaming. This project includes a comparison between two parts of ice stream D, an upstream reach where flow velocities are modest (about 80 meters/year) and a downstream reach of high velocity (about 400 meters/year). The comparison will help to reveal what physical variable or combination of variables is mainly responsible for the streaming flow. The variables to be monitmred by borehole observation include basal water pressure, basal sliding velocity, flow properties and sedimentological characteristics of subglacial till if present, ice temperature profile including basal water transport velocity, connection time to the basal water system, basal melting rate and others. | POINT(-136.404633 -82.39955) | POINT(-136.404633 -82.39955) | false | false | |||||||
Collaborative Research: Deciphering the Deep Ice and the Ice-water Interface over Lake Vostok Using Existing Radar Data
|
0538674 0537752 |
2012-08-09 | Matsuoka, Kenichi; Winebrenner, Dale; Creyts, Timothy; Macgregor, Joseph A.; Studinger, Michael S.; Waddington, Edwin D. |
|
0538674<br/>Matsuoka<br/>This award supports a project to evaluate radio-echo intensities in the available SOAR ice-penetrating radar data along grids covering Lake Vostok, and along four regional tracks from Ridge B toward the lake. The project has two objectives; first, it will examine the upper surface of the lake and reflectors hypothesized to be a boundary between the meteoric and accreted ice. They will provide crucial knowledge on the dynamic evolution of the lake. Second, this project will examine a poorly understood echo-free zone within the deep ice in central East Antarctica. This zone may consist of distorted stagnant ice, while its upper boundary may be a shear zone. The SOAR radar data provide a unique resource to examine spatiotemporal water circulation patterns that should be understood in order to select the best direct-sampling strategy to the lake. The Vostok ice core provides a unique opportunity to do this work. First, the path effects, i.e. propagation loss and birefringence, will be derived at the ice-core site using ice temperature, chemistry, and fabric data. Second, lateral variations of the propagation loss will be estimated by tracking chemistry associated with radar-detected isochronous layers, and by inferring temperatures from an ice-flow model that can replicate those layers. Ice-fabric patterns will be inferred from anisotropy in the reflectivity at about 100 radar-track cross-over sites. In terms of broader impacts, a graduate student will be trained to interpret the radar data in the light of radar theory and glaciological context of Lake Vostok and summer workshops for K-12 teachers will be provided in Seattle and New York. This project will contribute to ongoing efforts to study Lake Vostok and will complement the site selection for a North Vostok ice core, which has been proposed by Russia and France as an IPY program. | None | None | false | false | |||||||
Collaborative Research: Norwegian-United States IPY Scientific Traverse: Climate Variability and Glaciology in East Antarctica
|
0537532 0538422 0538103 0538416 0963924 0538495 |
2011-02-23 | Courville, Zoe; Bell, Eric; Liston, Glen; Scambos, Ted; Hamilton, Gordon S.; McConnell, Joseph; Albert, Mary R.; Steig, Eric J. | This award supports a project of scientific investigations along two overland traverses in East Antarctica: one going from the Norwegian Troll Station (72deg. S, 2deg. E) to the United States South Pole Station (90deg. S, 0deg. E) in 2007-2008; and a return traverse starting at South Pole Station and ending at Troll Station by a different route in 2008-2009. The project will investigate climate change in East Antarctica, with the goals of understanding climate variability in Dronning Maud Land of East Antarctica on time scales of years to centuries and determining the surface and net mass balance of the ice sheet in this sector to understand its impact on sea level. The project will also investigate the impact of atmospheric and oceanic variability and human activities on the chemical composition of firn and ice in the region, and will revisit areas and sites first explored by traverses in the 1960's, for detection of possible changes and to establish benchmark datasets for future research efforts. In terms of broader impacts, the results of this study will add to understanding of climate variability in East Antarctica and its contribution to global sea level change. The project includes international exchange of graduate students between the institutions involved and international education of undergraduate students through classes taught by the PI's at UNIS in Svalbard. It involves extensive outreach to the general public both in Scandinavia and North America through the press, television, science museums, children's literature, and web sites. Active knowledge sharing and collaboration between pioneers in Antarctic glaciology from Norway and the US, with the international group of scientists and students involved in this project, provide a unique opportunity to explore the changes that half a century have made in climate proxies from East Antarctica, scientific tools, and the culture and people of science. The project is relevant to the International Polar Year (IPY) since it is a genuine collaboration between nations: the scientists involved have complementary expertise, and the logistics involved relies on assets unique to each nation. It is truly an endeavor that neither nation could accomplish alone. This project is a part of the Trans- Antarctic Scientific Traverse Expeditions Ice Divide of East Antarctica (TASTE-IDEA) which is also part of IPY. | POLYGON((-180 -72.01667,-161.74667 -72.01667,-143.49334 -72.01667,-125.24001 -72.01667,-106.98668 -72.01667,-88.73335 -72.01667,-70.48002 -72.01667,-52.22669 -72.01667,-33.97336 -72.01667,-15.72003 -72.01667,2.5333 -72.01667,2.5333 -73.815003,2.5333 -75.613336,2.5333 -77.411669,2.5333 -79.210002,2.5333 -81.008335,2.5333 -82.806668,2.5333 -84.605001,2.5333 -86.403334,2.5333 -88.201667,2.5333 -90,-15.72003 -90,-33.97336 -90,-52.22669 -90,-70.48002 -90,-88.73335 -90,-106.98668 -90,-125.24001 -90,-143.49334 -90,-161.74667 -90,180 -90,162.25333 -90,144.50666 -90,126.75999 -90,109.01332 -90,91.26665 -90,73.51998 -90,55.77331 -90,38.02664 -90,20.27997 -90,2.5333 -90,2.5333 -88.201667,2.5333 -86.403334,2.5333 -84.605001,2.5333 -82.806668,2.5333 -81.008335,2.5333 -79.210002,2.5333 -77.411669,2.5333 -75.613336,2.5333 -73.815003,2.5333 -72.01667,20.27997 -72.01667,38.02664 -72.01667,55.77331 -72.01667,73.51998 -72.01667,91.26665 -72.01667,109.01332 -72.01667,126.75999 -72.01667,144.50666 -72.01667,162.25333 -72.01667,-180 -72.01667)) | POINT(0 -89.999) | false | false | ||||||||
Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate
|
0538657 |
2010-07-08 | Haines, Skylar; Mayewski, Paul A.; Orsi, Anais J.; Kurbatov, Andrei V.; Severinghaus, Jeffrey P. | 0538657<br/>Severinghaus<br/>This award supports a project to develop high-resolution (20-yr) nitrogen and oxygen isotope records on trapped gases in the WAIS Divide ice core (Antarctica), with a comparison record for chronological purposes in the GISP2 (Greenland) ice core. The main scientific objective is to provide an independent temperature-change record for the past 100,000 years in West Antarctica that is not subject to the uncertainty inherent in ice isotopes (18O and deuterium), the classical paleothermometer. Nitrogen isotopes (Delta 15N) in air bubbles in glacial ice record rapid surface temperature change because of thermal fractionation of air in the porous firn layer, and this isotopic anomaly is recorded in bubbles as the firn becomes ice. Using this gas-based temperature-change record, in combination with methane data as interpolar stratigraphic markers, the proposed work will define the precise relative timing of abrupt warming in Greenland and abrupt cooling at the WAIS Divide site during the millennial-scale climatic oscillations of Marine Isotopic Stage 3 (30-70 kyr BP) and the last glacial termination. The nitrogen isotope record also provides constraints on past firn thickness, which inform temperature and accumulation rate histories from the ice core. A search for possible solar-related cycles will be conducted with the WAIS Divide Holocene (Delta 15N.) Oxygen isotopes of O2 (Delta 18Oatm) are obtained as a byproduct of the (Delta 15N) measurement. The gas-isotopic records will enhance the value of other atmospheric gas measurements in WAIS Divide, which are expected to be of unprecedented quality. The high-resolution (Delta 18Oatm) records will provide chronological control for use by the international ice coring community and for surface glacier ice dating. Education of a graduate student, and training of a staff member in the laboratory, will contribute to the nation's human resource base. Outreach activities in the context of the International Polar Year will be enhanced. International collaboration is planned with the laboratory of LSCE, University of Paris. | None | None | false | false | ||||||||
Collaborative Research: Laboratory Studies of Isotopic Exchange in Snow and Firn
|
0338008 |
2010-01-01 | Neumann, Thomas A.; Wemple, Beverley C. |
|
This award supports a project to develop a quantitative understanding of the processes active in isotopic exchange between snow/firn and water vapor, which is of paramount importance to ice core interpretation. Carefully controlled laboratory studies will be conducted at a variety of temperatures to empirically measure the mass transfer coefficient (the rate at which water moves from the solid to the vapor phase) for sublimating snow and to determine the time scale for isotopic equilibration between water vapor and ice. In addition the isotopic fractionation coefficient for vapor derived from sublimating ice will be determined and the results will be used to update existing models of mass transfer and isotopic evolution in firn. It is well known that water vapor moves through firn due to diffusion, free convection and forced convection. Although vapor movement through variably-saturated firn due to these processes has been modeled, because of a lack of laboratory data the mass transfer coefficient had to be estimated. Field studies have documented the magnitudes of post-depositional changes, but field studies do not permit rigorous analysis of the relative importance of the many processes which are likely to act in natural snow packs. The results of these laboratory investigations will be broadly applicable to a number of studies and will allow for improvement of existing physically-based models of post-depositional isotopic change, isotopic diffusion in firn, and vapor motion in firn. A major component of this project will be the design and fabrication of the necessary, novel experimental apparatus, which will be facilitated by existing technical expertise, cold room facilities, and laboratory equipment at CRREL. This project is a necessary step toward a quantitative understanding of the isotopic effects of water vapor movement in firn. The proposed work has broader impacts in several different areas. The modeling results will be applicable to a wide range of studies of water in the polar environment, including studies of wind-blown or drifting snow. The proposed collaborative study will partially support a Dartmouth graduate student for three years. This project will also provide support for a young first-time NSF investigator at the University of Vermont. Undergraduate students from Dartmouth will be involved in the research through the Women in Science Project and undergraduate students at the University of Vermont will be supported through the Research Experiences for Undergraduates program. The principal investigators and graduate student will continue their tradition of k-12 school outreach by giving science lessons and talks in local schools each year. Research results will be disseminated through scientific conferences, journal publications, and institutional seminars. | None | None | false | false | |||||||
Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site
|
0440509 0440498 0440759 0440602 0440701 0440615 |
2009-02-03 | Battle, Mark; Mischler, John; Saltzman, Eric; Aydin, Murat; White, James; Brook, Edward J.; Orsi, Anais J.; Severinghaus, Jeffrey P.; Sowers, Todd A. | This award supports a project to measure the elemental and isotopic composition of firn air and occluded air in shallow boreholes and ice cores from the WAIS Divide site, the location of a deep ice-coring program planned for 2006-07 and subsequent seasons. The three primary objectives are: 1) to establish the nature of firn air movement and trapping at the site to aid interpretations of gas data from the deep core; 2) to expand the suite of atmospheric trace gas species that can be measured in ice and replicate existing records of other species; and 3) to inter-calibrate all collaborating labs to insure that compositional and isotopic data sets are inter-comparable. The program will be initiated with a shallow drilling program during the 05/06 field season which will recover two 300+m cores and firn air samples. The ice core and firn air will provide more than 700 years of atmospheric history that will be used to address a number of important questions related to atmospheric change over this time period. The research team consists of six US laboratories that also plan to participate in the deep core program. This collaborative research program has a number of advantages. First, the scientists will be able to coordinate sample allocation a priori to maximize the resolution and overlap of records of interrelated species. Second, sample registration will be exact, allowing direct comparison of all records. Third, a coherent data set will be produced at the same time and all PI.s will participate in interpreting and publishing the results. This will insure that the best possible understanding of gas records at the WAIS Divide site will be achieved, and that all work necessary to interpret the deep core is conducted in a timely fashion. The collaborative structure created by the proposal will encourage sharing of techniques, equipment, and ideas between the laboratories. The research will identify impacts of various industrial/agricultural activities and help to distinguish them from natural variations, and will include species for which there are no long records of anthropogenic impact. The work will also help to predict future atmospheric loadings. The project will contribute to training scientists at several levels, including seven undergraduates, two graduate students and one post doctoral fellow. | POINT(-112.085 -79.467) | POINT(-112.085 -79.467) | false | false | ||||||||
Dry Valleys Late Holocene Climate Variability
|
0228052 |
2008-10-21 | Kreutz, Karl; Arcone, Steven; Mayewski, Paul A. |
|
This award supports a project to collect and develop high-resolution ice core records from the Dry Valleys region of Antarctica, and provide interpretations of interannual to decadal-scale climate variability during the last 2000 years (late Holocene). The project will test hypotheses related to ocean/atmosphere teleconnections (e.g., El Nino Southern Oscillation, Antarctic Oscillation) that may be responsible for major late Holocene climate events such as the Little Ice Age in the Southern Hemisphere. Conceptual and quantitative models of these processes in the Dry Valleys during the late Holocene are critical for understanding recent climate changes, and represent the main scientific merit of the project. We plan to collect intermediate-length ice cores (100-200m) at four sites along transects in Taylor Valley and Wright Valley, and analyze each core at high resolution for stable isotopes (d18O, dD), major ions (Na+, Mg2+, Ca2+, K+, NH4+, Cl-, NO3-, SO42-, MSA), and trace elements (Al, Fe, S, Sr, B). A suite of statistical techniques will be applied to the multivariate glaciochemical dataset to identify chemical associations and to calibrate the time-series records with available instrumental data. Broader impacts of the project include: 1) contributions to several ongoing interdisciplinary Antarctic research programs; 2) graduate and undergraduate student involvement in field, laboratory, and data interpretation activities; 3) use of project data and ideas in several UMaine courses and outreach activities; and 4) data dissemination through peer-reviewed publications, UMaine and other paleoclimate data archive websites, and presentations at national and international meetings. | POLYGON((161.0434 -77.3002,161.241645 -77.3002,161.43989 -77.3002,161.638135 -77.3002,161.83638 -77.3002,162.034625 -77.3002,162.23287 -77.3002,162.431115 -77.3002,162.62936 -77.3002,162.827605 -77.3002,163.02585 -77.3002,163.02585 -77.3784846,163.02585 -77.4567692,163.02585 -77.5350538,163.02585 -77.6133384,163.02585 -77.691623,163.02585 -77.7699076,163.02585 -77.8481922,163.02585 -77.9264768,163.02585 -78.0047614,163.02585 -78.083046,162.827605 -78.083046,162.62936 -78.083046,162.431115 -78.083046,162.23287 -78.083046,162.034625 -78.083046,161.83638 -78.083046,161.638135 -78.083046,161.43989 -78.083046,161.241645 -78.083046,161.0434 -78.083046,161.0434 -78.0047614,161.0434 -77.9264768,161.0434 -77.8481922,161.0434 -77.7699076,161.0434 -77.691623,161.0434 -77.6133384,161.0434 -77.5350538,161.0434 -77.4567692,161.0434 -77.3784846,161.0434 -77.3002)) | POINT(162.034625 -77.691623) | false | false | |||||||
Collaborative Research of Earth's Largest Icebergs
|
0229546 |
2008-09-19 | Okal, Emile; Aster, Richard; Bassis, Jeremy; Kim, Young-Jin; Bliss, Andrew; Sergienko, Olga; Thom, Jonathan; Scambos, Ted; Muto, Atsu; Brunt, Kelly; King, Matthew; Parker, Tim; Okal, Marianne; Cathles, Mac; MacAyeal, Douglas | This award supports the study of the drift and break-up of Earth's largest icebergs, which were recently released into the Ross Sea of Antarctica as a result of calving from the Ross Ice Shelf. The scientific goals of the study are to determine the physics of iceberg motion within the dynamic context of ocean currents, winds, and sea ice, which determine the forces that drive iceberg motion, and the relationship between the iceberg and geographically and topographically determined pinning points on which the iceberg can ground. In addition, the processes by which icebergs influence the local environments (e.g., sea ice conditions near Antarctica, access to penguin rookeries, air-sea heat exchange and upwelling at iceberg margins, nutrient fluxes) will be studied. The processes by which icebergs generate globally far-reaching ocean acoustic signals that are detected within the global seismic (earthquake) sensing networks will also be studied. A featured element of the scientific research activity will be a field effort to deploy automatic weather stations, seismometer arrays and GPS-tracking stations on several of the largest icebergs presently adrift, or about to be adrift, in the Ross Sea. Data generated and relayed via satellite to home institutions in the Midwest will motivate theoretical analysis and computer simulation; and will be archived on an "iceberg" website (http://amrc.ssec.wisc.edu/amrc/iceberg.html) for access by scientists and the general public. At the most broad level, the study is justified by the fact that icebergs released by the Antarctic ice sheet represent the largest movements of fresh water within the natural environment (e.g., several of the icebergs to be studied, B15, C19 and others calved since 2000 CE, represent over 6000 cubic kilometers of fresh water-an amount roughly equivalent to 100 years of the flow of the Nile River). A better understanding of the impact of iceberg drift through the environment, and particularly the impact on ocean stratification and mixing, is essential to the understanding of the abrupt global climate changes witnessed by proxy during the ice age and of concern under conditions of future greenhouse warming. On a more specific level, the study will generate a knowledge base useful for the better management of Antarctic logistical resources (e.g., the shipping lanes to McMurdo Station) that can occasionally be influenced by adverse effects icebergs have on sea ice conditions. | POINT(-178 -78) | POINT(-178 -78) | false | false | ||||||||
Collaborative Research: Mechanics of Dry-Land Calving of Ice Cliffs
|
0233823 0230338 |
2008-07-02 | Pettit, Erin; Hallet, Bernard; Fountain, Andrew | No dataset link provided | This award supports a comprehensive study of land-based polar ice cliffs. Through field measurements, modeling, and remote sensing, the physics underlying the formation of ice cliffs at the margin of Taylor Glacier in the McMurdo Dry Valleys will be investigated. At three sites, measurements of ice deformation and temperature fields near the cliff face will be combined with existing energy balance data to quantify ice-cliff evolution over one full seasonal cycle. In addition, a small seismic network will monitor local "ice quakes" associated with calving events. Numerical modeling, validated by the field data, will enable determination of the sensitivity of ice cliff evolution to environmental variables. There are both local and global motivations for studying the ice cliffs of Taylor Glacier. On a global scale, this work will provide insight into the fundamental processes of calving and glacier terminus A better grasp of ice cliff processes will also improve boundary conditions required for predicting glaciers' response to climate change. Locally, the Taylor Glacier is an important component of the McMurdo Dry Valleys landscape and the results of this study will aid in defining ecologically-important sources of glacial meltwater and will lead to a better understanding of moraine formation at polar ice cliffs. This study will help launch the career of a female scientist, will support one graduate student, and provide experiential learning experiences for two undergraduates. The post-doctoral researcher will also use this research in the curriculum of a wilderness science experiential education program for high school girls. | POLYGON((162.132 -77.73,162.1495 -77.73,162.167 -77.73,162.1845 -77.73,162.202 -77.73,162.2195 -77.73,162.237 -77.73,162.2545 -77.73,162.272 -77.73,162.2895 -77.73,162.307 -77.73,162.307 -77.7303,162.307 -77.7306,162.307 -77.7309,162.307 -77.7312,162.307 -77.7315,162.307 -77.7318,162.307 -77.7321,162.307 -77.7324,162.307 -77.7327,162.307 -77.733,162.2895 -77.733,162.272 -77.733,162.2545 -77.733,162.237 -77.733,162.2195 -77.733,162.202 -77.733,162.1845 -77.733,162.167 -77.733,162.1495 -77.733,162.132 -77.733,162.132 -77.7327,162.132 -77.7324,162.132 -77.7321,162.132 -77.7318,162.132 -77.7315,162.132 -77.7312,162.132 -77.7309,162.132 -77.7306,162.132 -77.7303,162.132 -77.73)) | POINT(162.2195 -77.7315) | false | false | |||||||
Investigating Iceberg Evolution During Drift and Break-Up: A Proxy for Climate-Related Changes in Antarctic Ice Shelves
|
0540915 |
2007-08-16 | Scambos, Ted; Bohlander, Jennifer; Bauer, Rob; Yermolin, Yevgeny; Thom, Jonathan | This award supports a small grant for exploratory research to study the processes that contribute to the melting and break-up of tabular polar icebergs as they drift north. This work will enable the participation of a group of U.S. scientists in this international project which is collaborative with the Instituto Antartico Argentino. The field team will place weather instruments, firn sensors, and a video camera on the iceberg to measure the processes that affect it as it drifts north. In contrast to icebergs in other sectors of Antarctica, icebergs in the northwestern Weddell Sea drift northward along relatively predictable paths, and reach climate and ocean conditions that lead to break-up within a few years. The timing of this study is critical due to the anticipated presence of iceberg A43A, which broke off the Ronne Ice Shelf in February 2000 and which is expected to be accessible from Marambio Station in early 2006. It has recently been recognized that the end stages of break-up of these icebergs can imitate the rapid disintegrations due to melt ponding and surface fracturing observed for the Larsen A and Larsen B ice shelves. However, in some cases, basal melting may play a significant role in shelf break-up. Resolving the processes (surface ponding/ fracturing versus basal melt) and observing other processes of iceberg drift and break up in-situ are of high scientific interest. An understanding of the mechanisms that lead to the distintegration of icebergs as they drift north may enable scientists to use icebergs as proxies for understanding the processes that could cause ice shelves to disintegrate in a warming climate. A broader impact would thus be an ability to predict ice shelf disintegration in a warming world. Glacier mass balance and ice shelf stability are of critical importance to sea level change, which also has broader societal relevance. | POLYGON((-57.9857 -48.444,-55.95557 -48.444,-53.92544 -48.444,-51.89531 -48.444,-49.86518 -48.444,-47.83505 -48.444,-45.80492 -48.444,-43.77479 -48.444,-41.74466 -48.444,-39.71453 -48.444,-37.6844 -48.444,-37.6844 -50.12802,-37.6844 -51.81204,-37.6844 -53.49606,-37.6844 -55.18008,-37.6844 -56.8641,-37.6844 -58.54812,-37.6844 -60.23214,-37.6844 -61.91616,-37.6844 -63.60018,-37.6844 -65.2842,-39.71453 -65.2842,-41.74466 -65.2842,-43.77479 -65.2842,-45.80492 -65.2842,-47.83505 -65.2842,-49.86518 -65.2842,-51.89531 -65.2842,-53.92544 -65.2842,-55.95557 -65.2842,-57.9857 -65.2842,-57.9857 -63.60018,-57.9857 -61.91616,-57.9857 -60.23214,-57.9857 -58.54812,-57.9857 -56.8641,-57.9857 -55.18008,-57.9857 -53.49606,-57.9857 -51.81204,-57.9857 -50.12802,-57.9857 -48.444)) | POINT(-47.83505 -56.8641) | false | false | ||||||||
A Science Management Office for the U. S. Component of the International Trans Antarctic Expedition (US ITASE SMO)A Collaborative Pgrm of Research from S. Pole to N. Victoria Land
|
0229573 |
2007-04-04 | Dixon, Daniel A. |
|
This award supports a science management office for a pilot ice-core drilling and analysis program to test the feasibility of obtaining well-dated, high-resolution isotope and chemistry records from East Antarctica. Shallow ice cores will be obtained from two locations: 1) ~100 km from South Pole towards the Pole of Inaccessibility, as an extension of the Byrd Station-to-South Pole ITASE traverse [International Trans Antarctic Scientific Expedition]; 2) at Taylor Dome, near the original deep coring site, and (3) possibly at AGO 3 and AGO 4 as part of a logistics traverse to these sites. All of the cores collected will be sampled at very high resolution (~1/2 cm) and analyzed for major ions. Results from this calibration work, along with those from another project that is analyzing stable isotopes will be used to help plan a program of larger scope, with the objective of mapping the spatial expression of climate variability in East Antarctica. Funds are also provided to organize a community workshop for coordination of the second phase of US ITASE and for one workshop per year for two years dedicated to writing and preparation of scientific papers from phase one of US ITASE. In addition, route selection activities for the follow-on traverse activities in East Antarctica will be conducted using satellite image mapping. A summary document will be produced and made available to the community to help with planning of related field programs (e.g. deep ice radar, firn radar profiling, atmospheric chemistry, ice coring, snow surface properties for satellite observations, ice surface elevation and mass balance). | None | None | false | false | |||||||
Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation
|
0125276 0125570 |
2006-01-04 | Courville, Zoe; Cathles, Mac; Scambos, Ted; Bauer, Rob; Fahnestock, Mark; Haran, Terry; Shuman, Christopher A.; Albert, Mary R. | This award supports a program of field surveys of an area within the large, well-developed megadune field southeast of Vostok station. The objectives are to determine the physical characteristics of the firn across the dunes, including typical climate indicators such as stable isotopes and major chemical species, and to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. Field study will consist of surface snowpit and shallow core sampling, ground penetrating radar (GPR) profiling, GPS topographic and ice motion surveys, AWS installation, accumulation/ ablation measurements, subsurface temperature, and firn permeability studies. Field work in two successive seasons is proposed. Continent-wide remote sensing studies of the dunes will be continued, using the new group of instruments that are now, or will shortly be available (e.g., MODIS, MISR, GLAS, AMSR). The earlier study of topographic, passive microwave, and SAR characteristics will be extended, with the intent of determining the relationships of dune amplitude and wavelength to climate parameters, and further development of models of dune formation. Diffusion, ventilation, and vapor transport processes within the dune firn will be modeled as well. A robust program of outreach is planned and reporting to inform both the public and scientists of the fundamental in-situ and remote sensing characteristics of these uniquely Antarctic features will be an important part of the work. Because of their extreme nature, their broad extent, and their potential impact on the climate record, it is important to improve our current understanding of these. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on past terrestrial climate, or to processes active on other planets. Megadunes are likely to represent an end-member in firn diagenesis, and as such, may have much to teach us about the processes involved. | None | None | false | false | ||||||||
Continuation for the Antarctic Automatic Weather Station Climate Program 1995-1998
|
9419128 |
2003-08-18 | Lazzara, Matthew; Stearns, Charles R.; Weidner, George A.; Keller, Linda M. |
|
9419128 Stearns This is a project to maintain and augment as necessary, the network of nearly fifty automatic weather stations established on the Antarctic continent and on several surrounding islands. These weather stations measure surface wind, pressure, temperature, humidity, and in some instances other atmospheric variables, such as snow accumulation and incident solar radiation, and report these via satellite to a number of ground stations. The data are used for operational weather forecasting in support of the United States Antarctic program, for climatological records, and for research purposes. The AWS network, which began as a small-scale program in 1980, has been extremely reliable and has proven indispensable for both forecasting and research purposes. *** | None | None | false | false | |||||||
Near-Surface Processes Affecting Gas Exchange: West Antarctic Ice Sheet
|
9526601 |
2001-12-01 | Albert, Mary R. |
|
This award supports a project to examine the physical processes that affect the manner in which heat, vapor and chemical species in air are incorporated into snow and polar firn. The processes include advection, diffusion, and the effects of solar radiation penetration into the snow. An understanding of these processes is important because they control the rate at which reactive and non-reactive chemical species in the atmosphere become incorporated into the snow, firn, and polar ice, and thus will affect interpretation of polar ice core data. Currently, the interpretation of polar ice core data assumes that diffusion controls the rate at which chemical species are incorporated into firn. This project will determine whether ventilation, or advection of the species by air movement in the firn, and radiation penetration processes have a significant effect. Field studies at the two West Antarctic ice sheet deep drilling sites will be conducted to determine the spatial and temporal extent for key parameters, and boundary conditions needed to model the advection, conduction, and radiation transmission/absorption processes. An existing multidimensional numerical model is being expanded to simulate the processes and to serve as the basis for ongoing and future work in transport and distribution of reactive chemical species. | None | None | false | false | |||||||
Thermal Fractionation of Firn Air and the Ice Core Record of Abrupt Interstadial Climate Change
|
9725305 |
2001-01-01 | Battle, Mark; Grachev, Alexi; Severinghaus, Jeffrey P. |
|
9725305 Severinghaus This award supports a project to develop and apply a new technique for quantifying temperature changes in the past based on the thermodynamic principle of thermal diffusion, in which gas mixtures in a temperature gradient become fractionated. Air in polar firn is fractionated by temperature gradients induced by abrupt climate change, and a record of this air is preserved in bubbles in the ice. The magnitude of the abrupt temperature change, the precise relative timing, and an estimate of the absolute temperature change can be determined. By providing a gas-phase stratigraphic marker of temperature change, the phasing of methane (with decadal precision) and hence widespread climate change (relative to local polar temperature changes) can be determined (across five abrupt warming events during the last glacial period). | None | None | false | false | |||||||
Collaborative Research: Antarctic Automatic Weather Station Program: 2007-2010
|
0636873 |
1970-01-01 | Lazzara, Matthew; Costanza, Carol |
|
This is a three-year project to maintain and augment as necessary, the network of approximately fifty automatic weather stations established on the antarctic continent and on several surrounding islands. These weather stations measure surface wind, pressure, temperature, humidity, and in some instances other atmospheric variables, such as snow accumulation and incident solar radiation, and report these via satellite to a number of ground stations. The data are used for operational weather forecasting in support of the United States Antarctic program, for global forecasting through the WMO Global Telecommunications System, for climatological records, and for research purposes. The AWS network, which began as a small-scale program in 1980, has been extremely reliable and has proven indispensable for both forecasting and research purposes. | POLYGON((-71 85,-65.8 85,-60.6 85,-55.4 85,-50.2 85,-45 85,-39.8 85,-34.6 85,-29.4 85,-24.2 85,-19 85,-19 82.5,-19 80,-19 77.5,-19 75,-19 72.5,-19 70,-19 67.5,-19 65,-19 62.5,-19 60,-24.2 60,-29.4 60,-34.6 60,-39.8 60,-45 60,-50.2 60,-55.4 60,-60.6 60,-65.8 60,-71 60,-71 62.5,-71 65,-71 67.5,-71 70,-71 72.5,-71 75,-71 77.5,-71 80,-71 82.5,-71 85)) | POINT(0 -89.999) | false | false | |||||||
Antarctic Meteorological Research Center (2009-2011)
|
0838834 |
1970-01-01 | Lazzara, Matthew; Costanza, Carol | Abstract<br/><br/>The Antarctic Meteorological Research Center (AMRC), located at the University of Wisconsin, Madison, serves several communities by maintaining and extending the stewardship of meteorological data pertinent to the Antarctic continent, its surrounding islands, ice sheets and ice margins and the adjacent Southern Ocean. This data will continue to be made freely available to interested researchers and the general public. Activities of particular interest for the current award include the development of an enhanced data portal to provide improved data and analysis tools to the research community, and to continue to add to the evolution of the Antarctic-Internet Data Distribution system, which is meant to overcome the costly and generally low bandwidth internet connectivity to and from the Antarctic continent. Operational forecasting for logistical activities in the Antarctic, as well as active Antarctic meteorological research programs, are clearly in need of a dependable, steady flow of meteorological observations, model output, and related data in what must be a collaborative environment in order to overcome the otherwise distributed nature of Antarctic meteorological and climatological observations.<br/><br/>AMRC interaction with the public through answering e-mail questions, giving informal public lectures and presentations to K-12 education institutions through visits to schools will help to raise science literacy with regards to meteorology and of the Antarctic and polar regions. <br/><br/><br/><br/>"This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5)." | POLYGON((-180 -62.83,-144 -62.83,-108 -62.83,-72 -62.83,-36 -62.83,0 -62.83,36 -62.83,72 -62.83,108 -62.83,144 -62.83,180 -62.83,180 -65.547,180 -68.264,180 -70.981,180 -73.698,180 -76.415,180 -79.132,180 -81.849,180 -84.566,180 -87.283,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.283,-180 -84.566,-180 -81.849,-180 -79.132,-180 -76.415,-180 -73.698,-180 -70.981,-180 -68.264,-180 -65.547,-180 -62.83)) | POINT(0 -89.999) | false | false |