{"dp_type": "Project", "free_text": "Ice Microphysics"}
[{"awards": "0335330 Waddington, Edwin", "bounds_geometry": "POLYGON((-60 83,-55.8 83,-51.6 83,-47.4 83,-43.2 83,-39 83,-34.8 83,-30.6 83,-26.4 83,-22.2 83,-18 83,-18 80.5,-18 78,-18 75.5,-18 73,-18 70.5,-18 68,-18 65.5,-18 63,-18 60.5,-18 58,-22.2 58,-26.4 58,-30.6 58,-34.8 58,-39 58,-43.2 58,-47.4 58,-51.6 58,-55.8 58,-60 58,-60 60.5,-60 63,-60 65.5,-60 68,-60 70.5,-60 73,-60 75.5,-60 78,-60 80.5,-60 83))", "dataset_titles": "Borehole Optical Stratigraphy Modeling, Antarctica", "datasets": [{"dataset_uid": "609468", "doi": "10.7265/N5H70CR5", "keywords": "Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Modeling Code", "people": "Hawley, Robert L.; Smith, Ben; Waddington, Edwin D.; Fudge, T. J.", "repository": "USAP-DC", "science_program": null, "title": "Borehole Optical Stratigraphy Modeling, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609468"}], "date_created": "Thu, 01 Apr 2010 00:00:00 GMT", "description": "This award supports a study of the physical nature and environmental origin of optical features (light and dark zones) observed by video in boreholes in polar ice. These features appear to include an annual signal, as well as longer period signals. Borehole logs exist from a previous project, and in this lab-based project the interpretation of these logs will be improved. The origin of the features is of broad interest to the ice-core community. If some components relate to changes in the depositional environment beyond seasonality, important climatic cycles may be seen. If some components relate to post-depositional reworking, insights will be gained into the physical processes that change snow and firn, and the implications for interpretation of the chemical record in terms of paleoclimate. In order to exploit these features to best advantage in future ice-core and climate-change research, the two principal objectives of this project are to determine what physically causes the optical differences that we see and to determine the environmental processes that give rise to these physical differences. In the laboratory at NICL the conditions of a log of a borehole wall will be re-created as closely as possible by running the borehole video camera along sections of ice core, making an optical log of light reflected from the core. Combinations of physical variables that are correlated with optical features will be identified. A radiative-transfer model will be used to aid in the interpretation of these measurements, and to determine the optimum configuration for an improved future logging tool. An attempt will be made to determine the origin of the features. Two broad possibilities exist: 1) temporal changes in the depositional environment, and 2) post-depositional reworking. This project represents an important step toward a new way of learning about paleoclimate with borehole optical methods. Broader impacts include enhancing the infrastructure for research and education, since this instrument will complement high-resolution continuous-melter chemistry techniques and provide a rapid way to log physical variables using optical features as a proxy for climate signals. Since no core is required for this method, it can be used in rapidly drilled access holes or where core quality is poor. This project will support a graduate student who will carry out this project under the direction of the Principal Investigator. K-12 education will be enhanced through an ongoing collaboration with a science and math teacher from a local middle school. International collaboration will be expanded through work on this project with colleagues at the Norwegian Polar Institute and broad dissemination of results will occur through a project website for the general public.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS", "is_usap_dc": true, "keywords": "Ice; Stratigraphy; Optical; Glaciers; Polar Ice; Ice Microphysics; Snow; Firn; Climate Change; LABORATORY; Snow Stratigraphy; Borehole", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Smith, Ben; Waddington, Edwin D.; Hawley, Robert L.; Fudge, T. J.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Borehole Optical Stratigraphy: Ice Microphysics, Climate Change, and the Optical Properties of Firn", "uid": "p0000016", "west": -180.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Borehole Optical Stratigraphy: Ice Microphysics, Climate Change, and the Optical Properties of Firn
|
0335330 |
2010-04-01 | Smith, Ben; Waddington, Edwin D.; Hawley, Robert L.; Fudge, T. J. |
|
This award supports a study of the physical nature and environmental origin of optical features (light and dark zones) observed by video in boreholes in polar ice. These features appear to include an annual signal, as well as longer period signals. Borehole logs exist from a previous project, and in this lab-based project the interpretation of these logs will be improved. The origin of the features is of broad interest to the ice-core community. If some components relate to changes in the depositional environment beyond seasonality, important climatic cycles may be seen. If some components relate to post-depositional reworking, insights will be gained into the physical processes that change snow and firn, and the implications for interpretation of the chemical record in terms of paleoclimate. In order to exploit these features to best advantage in future ice-core and climate-change research, the two principal objectives of this project are to determine what physically causes the optical differences that we see and to determine the environmental processes that give rise to these physical differences. In the laboratory at NICL the conditions of a log of a borehole wall will be re-created as closely as possible by running the borehole video camera along sections of ice core, making an optical log of light reflected from the core. Combinations of physical variables that are correlated with optical features will be identified. A radiative-transfer model will be used to aid in the interpretation of these measurements, and to determine the optimum configuration for an improved future logging tool. An attempt will be made to determine the origin of the features. Two broad possibilities exist: 1) temporal changes in the depositional environment, and 2) post-depositional reworking. This project represents an important step toward a new way of learning about paleoclimate with borehole optical methods. Broader impacts include enhancing the infrastructure for research and education, since this instrument will complement high-resolution continuous-melter chemistry techniques and provide a rapid way to log physical variables using optical features as a proxy for climate signals. Since no core is required for this method, it can be used in rapidly drilled access holes or where core quality is poor. This project will support a graduate student who will carry out this project under the direction of the Principal Investigator. K-12 education will be enhanced through an ongoing collaboration with a science and math teacher from a local middle school. International collaboration will be expanded through work on this project with colleagues at the Norwegian Polar Institute and broad dissemination of results will occur through a project website for the general public. | POLYGON((-60 83,-55.8 83,-51.6 83,-47.4 83,-43.2 83,-39 83,-34.8 83,-30.6 83,-26.4 83,-22.2 83,-18 83,-18 80.5,-18 78,-18 75.5,-18 73,-18 70.5,-18 68,-18 65.5,-18 63,-18 60.5,-18 58,-22.2 58,-26.4 58,-30.6 58,-34.8 58,-39 58,-43.2 58,-47.4 58,-51.6 58,-55.8 58,-60 58,-60 60.5,-60 63,-60 65.5,-60 68,-60 70.5,-60 73,-60 75.5,-60 78,-60 80.5,-60 83)) | POINT(0 -89.999) | false | false |