{"dp_type": "Project", "free_text": "WATER TEMPERATURE"}
[{"awards": "2001646 Chereskin, Teresa; 1542902 Chereskin, Teresa", "bounds_geometry": "POLYGON((-68 -54,-66.7 -54,-65.4 -54,-64.1 -54,-62.8 -54,-61.5 -54,-60.2 -54,-58.9 -54,-57.6 -54,-56.3 -54,-55 -54,-55 -55,-55 -56,-55 -57,-55 -58,-55 -59,-55 -60,-55 -61,-55 -62,-55 -63,-55 -64,-56.3 -64,-57.6 -64,-58.9 -64,-60.2 -64,-61.5 -64,-62.8 -64,-64.1 -64,-65.4 -64,-66.7 -64,-68 -64,-68 -63,-68 -62,-68 -61,-68 -60,-68 -59,-68 -58,-68 -57,-68 -56,-68 -55,-68 -54))", "dataset_titles": "Joint Archive for shipboard ADCP data; World Ocean Database", "datasets": [{"dataset_uid": "200355", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "World Ocean Database", "url": "https://www.nodc.noaa.gov/OC5/SELECT/dbsearch/dbsearch.html"}, {"dataset_uid": "200354", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Joint Archive for shipboard ADCP data", "url": "https://uhslc.soest.hawaii.edu/sadcp/"}], "date_created": "Fri, 03 Mar 2023 00:00:00 GMT", "description": "The Antarctic Circumpolar Current (ACC) is the largest current on the planet, flowing west to east around Antarctica, forming a barrier that separates warmer waters to the north from colder waters to the south. Ocean eddies (like atmospheric storms) break through the ACC barrier, transferring heat across the ACC towards Antarctica. When warmer ocean waters intrude onto the Antarctic continental shelves, they contribute to glacial melt and ice shelf retreat. Over the past several decades, the Southern Ocean has warmed and winds have increased due to climate change. Somewhat surprisingly the ACC, though pushed by faster winds, has not accelerated; a faster current would present a stronger barrier to heat transfer. Instead, ocean eddies have increased. These eddies are concentrated at 6-7 \"hot spots\". Drake Passage is one of these hot spots. As the narrowest land gap on the entire circumpolar path of the ACC, Drake Passsage is an ideal monitoring spot. However, it is also one of the windiest and roughest stretches of water on the globe. The only ship that crosses Drake Passage year-round is the USAP supply vessel for Palmer Station, making it a unique platform to monitor the currents and temperature with a minimum of personnel and resources. The Drake Passage time series of upper ocean currents and temperature is now in its 24th year. The upper ocean temperature measurements have found significant warming in Drake Passage. The upper ocean current measurements have confirmed that the ACC has remained steady on average but have also revealed a complicated filamented current structure. Combining temperature and current measurements has provided a better understanding of heat transfer across the ACC by eddies. The time series has also provided valuable ground-truth for satellite measurements and for numerical model predictions looking at the entire ACC. Our studies are focused on examining low-frequency variability - seasonal, interannual, and decadal - in order to provide baselines from which to evaluate and interpret physical and biogeochemical changes occurring in the Southern Ocean. \r\n", "east": -55.0, "geometry": "POINT(-61.5 -59)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": true, "keywords": "R/V LMG; Drake Passage; WATER TEMPERATURE; Antarctic Circumpolar Current; Heat Flux", "locations": "Drake Passage", "north": -54.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Chereskin, Teresa; Sprintall, Janet", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "NCEI", "repositories": "NCEI", "science_programs": null, "south": -64.0, "title": "High Resolution Underway Air-Sea Observations in Drake Passage for Climate Science", "uid": "p0010409", "west": -68.0}, {"awards": "1644118 Dunbar, Robert", "bounds_geometry": "POLYGON((-108 -73,-107.3 -73,-106.6 -73,-105.9 -73,-105.2 -73,-104.5 -73,-103.8 -73,-103.1 -73,-102.4 -73,-101.7 -73,-101 -73,-101 -73.3,-101 -73.6,-101 -73.9,-101 -74.2,-101 -74.5,-101 -74.8,-101 -75.1,-101 -75.4,-101 -75.7,-101 -76,-101.7 -76,-102.4 -76,-103.1 -76,-103.8 -76,-104.5 -76,-105.2 -76,-105.9 -76,-106.6 -76,-107.3 -76,-108 -76,-108 -75.7,-108 -75.4,-108 -75.1,-108 -74.8,-108 -74.5,-108 -74.2,-108 -73.9,-108 -73.6,-108 -73.3,-108 -73))", "dataset_titles": "Antarctic Seawater d18O isotope data from SE Amundsen Sea: 2000, 2007, 2009, 2019, 2020", "datasets": [{"dataset_uid": "601611", "doi": "10.15784/601611", "keywords": "Amundsen Sea; Antarctica; Chemistry:Water; CTD; D18O; NBP0001; NBP0702; NBP0901; NBP1901; NBP2002; Oceans; Oxygen Isotope; R/v Nathaniel B. Palmer; Seawater Isotope; Southern Ocean", "people": "Hennig, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Seawater d18O isotope data from SE Amundsen Sea: 2000, 2007, 2009, 2019, 2020", "url": "https://www.usap-dc.org/view/dataset/601611"}], "date_created": "Wed, 21 Sep 2022 00:00:00 GMT", "description": "Estimating Antarctic ice sheet growth or loss is important to predicting future sea level rise. Such estimates rely on field measurements or remotely sensed based observations of the ice sheet surface, ice margins, and or ice shelves. This work examines the introduction of freshwater into the ocean to surrounding Antarctica to track meltwater from continental ice. Polar ice is depleted in two stable isotopes, 18O and D, deuterium, relative to Southern Ocean seawater and precipitation. Measurements of seawater isotopic composition in conjunction with precise observations of seawater temperature and salinity, will permit discrimination of freshwater derived from melting glacial ice from that derived from regional precipitation or sea ice melt.\u003cbr/\u003e\u003cbr/\u003eThis research describes an accepted method for determining rates and locations of meltwater entering the oceans from polar ice sheets. As isotopic and salinity perturbations are cumulative in many Antarctic coastal seas, the method allows for the detection of any marked acceleration in meltwater introduction in specific regions, using samples collected and analyzed over a period of years to decades. Impact of the project derives from use of an independent method capable of constraining knowledge about current ice sheet melt rates, their stability and potential impact on sea level rise. The project allows for sample collection taken from foreign vessels of opportunity sailing in Antarctic waters, and subsequent sharing and interpretation of data. Research partners include the U.S., Korea, China, New Zealand, the United Kingdom, and Germany. Participating collaborators will collect seawater samples for isotopic and salinity analysis at Stanford University. USAP cruises will concentrate on sampling the Ross Sea, and the West Antarctic. The work plan includes interpretation of isotopic data using box model and mixing curve analyses as well as using isotope enabled ROMS (Regional Ocean Modeling System) models. The broader impacts of the research will include development of an educational module that illustrates the scientific method and how ocean observations help society understand how Earth is changing.", "east": -101.0, "geometry": "POINT(-104.5 -74.5)", "instruments": null, "is_usap_dc": true, "keywords": "Stable Isotopes; WATER TEMPERATURE; SALINITY; Oxygen Isotope; Meltwater Inventory; Pine Island Bay; OCEAN CHEMISTRY", "locations": "Pine Island Bay", "north": -73.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Dunbar, Robert", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.0, "title": "Estimation of Antarctic Ice Melt using Stable Isotopic Analyses of Seawater", "uid": "p0010380", "west": -108.0}, {"awards": "2147045 Learman, Deric", "bounds_geometry": "POLYGON((-180 -60,-168 -60,-156 -60,-144 -60,-132 -60,-120 -60,-108 -60,-96 -60,-84 -60,-72 -60,-60 -60,-60 -62,-60 -64,-60 -66,-60 -68,-60 -70,-60 -72,-60 -74,-60 -76,-60 -78,-60 -80,-72 -80,-84 -80,-96 -80,-108 -80,-120 -80,-132 -80,-144 -80,-156 -80,-168 -80,180 -80,171 -80,162 -80,153 -80,144 -80,135 -80,126 -80,117 -80,108 -80,99 -80,90 -80,90 -78,90 -76,90 -74,90 -72,90 -70,90 -68,90 -66,90 -64,90 -62,90 -60,99 -60,108 -60,117 -60,126 -60,135 -60,144 -60,153 -60,162 -60,171 -60,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 30 Aug 2022 00:00:00 GMT", "description": "Microbes in Antarctic surface marine sediments have an important role in degrading organic matter and releasing nutrients to the ocean. Organic matter degradation is at the center of the carbon cycle in the ocean, providing valuable information on nutrient recycling, food availability to animals and carbon dioxide release to the atmosphere. The functionality of these microbes has been inferred by their genomics, however these methods only address the possible function, not their actual rates. In this project the PIs plan to combine genomics methods with cellular estimates of enzyme abundance and activity as a way to determine the rates of carbon degradation. This project aims to sample in several regions of Antarctica to provide a large-scale picture of the processes under study and understand the importance of microbial community composition and environmental factors, such as primary productivity, have on microbial activity. The proposed work will combine research tools such as metagenomics, meta-transcriptomics, and metabolomics coupled with chemical data and enzyme assays to establish degradation of organic matter in Antarctic sediments. This project benefits NSFs goals of understanding the adaptation of Antarctic organisms to the cold and isolated environment, critical to predict effects of climate change to polar organisms, as well as contribute to our knowledge of how Antarctic organisms have adapted to this environment. Society will benefit from this project by education of 2 graduate students, undergraduates and K-12 students as well as increase public literacy through short videos production shared in YouTube.\r\n\r\nThe PIs propose to advance understanding of polar microbial community function, by measuring enzyme and gene function of complex organic matter degradation in several ocean regions, providing a circum-Antarctic description of sediment processes. Two hypotheses are proposed. The first hypothesis states that many genes for the degradation of complex organic matter will be shared in sediments throughout a sampling transect and that where variations in gene content occur, it will reflect differences in the quantity and quality of organic matter, not regional variability. The second hypothesis states that a fraction of gene transcripts for organic matter degradation will not result in measurable enzyme activity due to post-translational modification or rapid degradation of the enzymes. The PIs will analyze sediment cores already collected in a 2020 cruise to the western Antarctic Peninsula with the additional request of participating in a cruise in 2023 to East Antarctica. The PIs will analyze sediments for metagenomics, meta-transcriptomics, and metabolomics coupled with geochemical data and enzyme assays to establish microbial degradation of complex organic matter in Antarctic sediments. Organic carbon concentrations and content in sediments will be measured with \u03b413C, \u03b415N, TOC porewater fluorescence in bulk organic carbon. Combined with determination of geographical variability as well as dependence on carbon sources, results from this study could provide the basis for new hypotheses on how climate variability, with increased water temperature, affects geochemistry in the Southern Ocean.", "east": 90.0, "geometry": "POINT(-165 -70)", "instruments": null, "is_usap_dc": true, "keywords": "BENTHIC; ECOSYSTEM FUNCTIONS; Weddell Sea; Antarctic Peninsula; SEDIMENT CHEMISTRY; R/V NBP", "locations": "Antarctic Peninsula; Weddell Sea", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Learman, Deric", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repositories": null, "science_programs": null, "south": -80.0, "title": "Collaborative Research: ANT LIA: Connecting Metagenome Potential to Microbial Function: Investigating Microbial Degradation of Complex Organic Matter Antarctic Benthic Sediments", "uid": "p0010373", "west": -60.0}, {"awards": "1745018 Fraser, William; 1744884 Oliver, Matthew; 1745011 Klinck, John; 1745023 Hennon, Tyler; 1745081 Bernard, Kim; 1745009 Kohut, Josh", "bounds_geometry": "POLYGON((-75 -60,-73 -60,-71 -60,-69 -60,-67 -60,-65 -60,-63 -60,-61 -60,-59 -60,-57 -60,-55 -60,-55 -61,-55 -62,-55 -63,-55 -64,-55 -65,-55 -66,-55 -67,-55 -68,-55 -69,-55 -70,-57 -70,-59 -70,-61 -70,-63 -70,-65 -70,-67 -70,-69 -70,-71 -70,-73 -70,-75 -70,-75 -69,-75 -68,-75 -67,-75 -66,-75 -65,-75 -64,-75 -63,-75 -62,-75 -61,-75 -60))", "dataset_titles": "Antarctic ACROBAT data; CTD Data from IFCB Sampling; Finite Time Lyapunov Exponent Results, Calculated from High Frequency Radar Observed Surface Currents; High Frequency Radar, Palmer Deep; IFCB Image Data; Relative Particle Density; SWARM AMLR moorings - acoustic data; SWARM Glider Data near Palmer Deep; WAP model float data; Winds from Joubin and Wauwerman Islands", "datasets": [{"dataset_uid": "200394", "doi": "10.26008/1912/bco-dmo.917926.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Relative Particle Density", "url": "https://www.bco-dmo.org/dataset/917926"}, {"dataset_uid": "200395", "doi": "10.26008/1912/bco-dmo.872729.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "SWARM AMLR moorings - acoustic data", "url": "https://www.bco-dmo.org/dataset/872729"}, {"dataset_uid": "200390", "doi": "10.26008/1912/bco-dmo.865030.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "CTD Data from IFCB Sampling", "url": "https://www.bco-dmo.org/dataset/865030"}, {"dataset_uid": "200396", "doi": "10.26008/1912/bco-dmo.867442.2", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "WAP model float data", "url": "https://www.bco-dmo.org/dataset/867442"}, {"dataset_uid": "200397", "doi": "10.26008/1912/bco-dmo.865098.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Winds from Joubin and Wauwerman Islands", "url": "https://www.bco-dmo.org/dataset/865098"}, {"dataset_uid": "200398", "doi": "", "keywords": null, "people": null, "repository": "IOOS Glider DAAC", "science_program": null, "title": "SWARM Glider Data near Palmer Deep", "url": "https://gliders.ioos.us/erddap/search/index.html?page=1\u0026itemsPerPage=1000\u0026searchFor=swarm"}, {"dataset_uid": "200391", "doi": "10.26008/1912/bco-dmo.917914.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Finite Time Lyapunov Exponent Results, Calculated from High Frequency Radar Observed Surface Currents", "url": "https://www.bco-dmo.org/dataset/917914"}, {"dataset_uid": "200393", "doi": "10.26008/1912/bco-dmo.865002.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "IFCB Image Data", "url": "https://www.bco-dmo.org/dataset/865002"}, {"dataset_uid": "200389", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Antarctic ACROBAT data", "url": "https://www.bco-dmo.org/dataset/916046"}, {"dataset_uid": "200392", "doi": "10.26008/1912/bco-dmo.917884.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "High Frequency Radar, Palmer Deep", "url": "https://www.bco-dmo.org/dataset/917884"}], "date_created": "Tue, 05 Jul 2022 00:00:00 GMT", "description": "Undersea canyons play disproportionately important roles as oceanic biological hotspots and are critical for our understanding of many coastal ecosystems. Canyon-associated biological hotspots have persisted for thousands of years Along the Western Antarctic Peninsula, despite significant climate variability. Observations of currents over Palmer Deep canyon, a representative hotspot along the Western Antarctic Peninsula, indicate that surface phytoplankton blooms enter and exit the local hotspot on scales of ~1-2 days. This time of residence is in conflict with the prevailing idea that canyon associated hotspots are primarily maintained by phytoplankton that are locally grown in association with these features by the upwelling of deep waters rich with nutrients that fuel the phytoplankton growth. Instead, the implication is that horizontal ocean circulation is likely more important to maintaining these biological hotspots than local upwelling through its physical concentrating effects. This project seeks to better resolve the factors that create and maintain focused areas of biological activity at canyons along the Western Antarctic Peninsula and create local foraging areas for marine mammals and birds. The project focus is in the analysis of the ocean transport and concentration mechanisms that sustain these biological hotspots, connecting oceanography to phytoplankton and krill, up through the food web to one of the resident predators, penguins. In addition, the research will engage with teachers from school districts serving underrepresented and underserved students by integrating the instructors and their students completely with the science team. Students will conduct their own research with the same data over the same time as researchers on the project. Revealing the fundamental mechanisms that sustain these known hotspots will significantly advance our understanding of the observed connection between submarine canyons and persistent penguin population hotspots over ecological time, and provide a new model for how Antarctic hotspots function.\u003cbr/\u003e \u003cbr/\u003e \u003cbr/\u003eTo understand the physical mechanisms that support persistent hotspots along the Western Antarctic Peninsula (WAP), this project will integrate a modeling and field program that will target the processes responsible for transporting and concentrating phytoplankton and krill biomass to known penguin foraging locations. Within the Palmer Deep canyon, a representative hotspot, the team will deploy a High Frequency Radar (HFR) coastal surface current mapping network, uniquely equipped to identify the eddies and frontal regions that concentrate phytoplankton and krill. The field program, centered on surface features identified by the HFR, will include (i) a coordinated fleet of gliders to survey hydrography, chlorophyll fluorescence, optical backscatter, and active acoustics at the scale of the targeted convergent features; (ii) precise penguin tracking with GPS-linked satellite telemetry and time-depth recorders (TDRs); (iii) and weekly small boat surveys that adaptively target and track convergent features to measure phytoplankton, krill, and hydrography. A high resolution physical model will generalize our field measurements to other known hotspots along the WAP through simulation and determine which physical mechanisms lead to the maintenance of these hotspots. The project will also engage educators, students, and members of the general public in Antarctic research and data analysis with an education program that will advance teaching and learning as well as broadening participation of under-represented groups. This engagement includes professional development workshops, live connections to the public and classrooms, student research symposia, and program evaluation. Together the integrated research and engagement will advance our understanding of the role regional transport pathways and local depth dependent concentrating physical mechanisms play in sustaining these biological hotspots.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -55.0, "geometry": "POINT(-65 -65)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CONDUCTIVITY SENSORS \u003e CONDUCTIVITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e RADIATION SENSORS", "is_usap_dc": true, "keywords": "MOORED; WATER TEMPERATURE; CONDUCTIVITY; FLUORESCENCE; UNCREWED VEHICLES; Palmer Station; PHOTOSYNTHETICALLY ACTIVE RADIATION; PELAGIC; OCEAN MIXED LAYER; SURFACE; SALINITY; WATER PRESSURE; LIVING ORGANISM; MODELS; ACOUSTIC SCATTERING", "locations": "Palmer Station", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Instrumentation and Support; Antarctic Organisms and Ecosystems", "paleo_time": "NOT APPLICABLE", "persons": "Bernard, Kim; Oliver, Matthew; Kohut, Josh; Fraser, William; Klinck, John M.; Statcewich, Hank", "platforms": "LIVING ORGANISM-BASED PLATFORMS \u003e LIVING ORGANISM; OTHER \u003e MODELS; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED; WATER-BASED PLATFORMS \u003e UNCREWED VEHICLES; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE", "repo": "BCO-DMO", "repositories": "BCO-DMO; IOOS Glider DAAC", "science_programs": null, "south": -70.0, "title": "Collaborative Research: Physical Mechanisms Driving Food Web Focusing in Antarctic Biological Hotspots", "uid": "p0010346", "west": -75.0}, {"awards": "1744958 Wei, Yong; 1744759 Dunham, Eric; 1744856 Bromirski, Peter", "bounds_geometry": null, "dataset_titles": "Data for: Ocean Surface Gravity Wave Excitation of Flexural Gravity and Extensional Lamb Waves in Ice Shelves; Simulation of flexural-gravity wave response of Antarctic ice shelves to tsunami and infragravity waves", "datasets": [{"dataset_uid": "200323", "doi": "10.25740/qy001dt7463", "keywords": null, "people": null, "repository": "Stanford Digital Repository", "science_program": null, "title": "Data for: Ocean Surface Gravity Wave Excitation of Flexural Gravity and Extensional Lamb Waves in Ice Shelves", "url": "https://doi.org/10.25740/qy001dt7463"}, {"dataset_uid": "601561", "doi": "10.15784/601561", "keywords": "Amundsen Sea; Antarctica; Glaciology", "people": "Dunham, Eric; Tazhimbetov, Nurbek; Almquist, Martin", "repository": "USAP-DC", "science_program": null, "title": "Simulation of flexural-gravity wave response of Antarctic ice shelves to tsunami and infragravity waves", "url": "https://www.usap-dc.org/view/dataset/601561"}], "date_created": "Mon, 16 May 2022 00:00:00 GMT", "description": "Understanding and being able to more reliably forecast ice mass loss from Antarctica is a critical research priority for Antarctic Science. Massive ice shelves buttress marine terminating glaciers, slowing the rate that land ice reaches the sea and, in turn, restraining the rate of sea level rise. To date, most work has focused on the destabilizing impacts of warmer air and water temperatures, resulting in melting that thins and weakens ice shelves. However, recent findings indicate that sea ice does not protect ice shelves from wave impacts as much as previously thought, which has raised the possibility that tsunamis and other ocean waves could affect shelf stability. This project will assess the potential for increased shelf fracturing from the impact of tsunamis and from heightened wave activity due to climate-driven changes in storm patterns and reduced sea-ice extent by developing models to investigate how wave impacts damage ice shelves. The modeling effort will allow for regional comparisons between large and small ice shelves, and provide an evaluation of the impacts of changing climate and storm patterns on ice shelves, ice sheets, glaciers, and, ultimately, sea level rise. This project will train graduate students in mathematical modeling and interdisciplinary approaches to Earth and ocean sciences.\u003cbr/\u003e\u003cbr/\u003eThis project takes a four-pronged approach to estimating the impact of vibrations on ice shelves at the grounding zone due to tsunamis, very long period, infragravity, and storm-driven waves. First, the team will use high-resolution tsunami modeling to investigate the response of ice shelves along the West Antarctic coast to waves originating in different regions of the Pacific Ocean. Second, it will compare the response to wave impacts on grounding zones of narrow and wide ice shelves. Third, it will assess the exposure risk due to storm forcing through a reanalysis of weather and wave model data; and, finally, the team will model the propagation of ocean-wave-induced vibrations in the ice from the shelf front to and across the grounding zone. In combination, this project aims to identify locations along the Antarctic coast that are subject to enhanced, bathymetrically-focused, long-period ocean-wave impacts. Linkages between wave impacts and climate arise from potential changes in sea-ice extent in front of shelves, and changes in the magnitude, frequency, and tracks of storms. Understanding the effects of ocean waves and climate on ice-shelf integrity is critical to anticipate their contribution to the amplitude and timing of sea-level rise. Wave-driven reductions in ice-shelf stability may enhance shelf fragmentation and iceberg calving, reducing ice shelf buttressing and eventually accelerating sea-level rise.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "COMPUTERS; AMD; Amd/Us; SEA ICE; Amundsen Sea; USAP-DC; USA/NSF; MODELS", "locations": "Amundsen Sea", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Integrated System Science", "paleo_time": null, "persons": "Dunham, Eric", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e MODELS \u003e MODELS", "repo": "Stanford Digital Repository", "repositories": "Stanford Digital Repository; USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Do Ocean Wave Impacts Pose a Hazard to the Stability of West Antarctic Ice Shelves?", "uid": "p0010320", "west": null}, {"awards": "1643285 Joughin, Ian; 1643174 Padman, Laurence", "bounds_geometry": "POLYGON((-104 -73,-102.2 -73,-100.4 -73,-98.6 -73,-96.8 -73,-95 -73,-93.2 -73,-91.4 -73,-89.6 -73,-87.8 -73,-86 -73,-86 -73.8,-86 -74.6,-86 -75.4,-86 -76.2,-86 -77,-86 -77.8,-86 -78.6,-86 -79.4,-86 -80.2,-86 -81,-87.8 -81,-89.6 -81,-91.4 -81,-93.2 -81,-95 -81,-96.8 -81,-98.6 -81,-100.4 -81,-102.2 -81,-104 -81,-104 -80.2,-104 -79.4,-104 -78.6,-104 -77.8,-104 -77,-104 -76.2,-104 -75.4,-104 -74.6,-104 -73.8,-104 -73))", "dataset_titles": "Beta Version of Plume Model; Data associated with Ice-Shelf Retreat Drives Recent Pine Island Glacier Speedup and Ocean-Induced Melt Volume Directly Paces Ice Loss from Pine Island Glacier; icepack; Pine Island Basin Scale Model", "datasets": [{"dataset_uid": "200313", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Beta Version of Plume Model", "url": "https://github.com/icepack/plumes"}, {"dataset_uid": "200315", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Pine Island Basin Scale Model", "url": "https://github.com/fastice/icesheetModels"}, {"dataset_uid": "200314", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "icepack", "url": "https://github.com/icepack/icepack"}, {"dataset_uid": "200290", "doi": "http://hdl.handle.net/1773/46687", "keywords": null, "people": null, "repository": "Uni. Washington ResearchWorks Archive", "science_program": null, "title": "Data associated with Ice-Shelf Retreat Drives Recent Pine Island Glacier Speedup and Ocean-Induced Melt Volume Directly Paces Ice Loss from Pine Island Glacier", "url": "https://doi.org/10.6069/2MZZ-6B61"}], "date_created": "Fri, 13 May 2022 00:00:00 GMT", "description": "Overview: Several recent studies indicate continuing and increasing ice loss from the Amundsen Sea region of West Antarctica (chiefly Pine Island and Thwaites glaciers). This loss is initiated by thinning of the floating ice shelves by basal melting driven by circulation of relatively warm ocean water under the ice shelves. This thinning triggers ice-dynamics related feedbacks, which leads to loss of ice from the grounded ice sheet. Models suggest that, even though long-term committed ice loss might be governed by ice dynamics, the magnitude of ocean-driven melting at the base of the ice shelves plays a critical role in controlling the rate of ice loss. These conclusions, however, are based on simple parameterized models for melt rate that do not take into account how ocean circulation will change in future as large-scale climate forcing changes, and as the ice shelves thin and retreat through both excess melting and accelerated ice flow. Given that present global climate models struggle to resolve the modern ocean state close to the ice shelves around Antarctica, their projections of future impacts on basal melting and time scale of ice loss have large uncertainties.\r\nThis project is aimed at reducing these uncertainties though two approaches: (i) assessing, for a given ocean state, how the melt rates will change as ice-shelf cavities evolve through melting and grounding-line retreat, and (ii) improving understanding of the sensitivity of melt rates beneath the Pine Island and Thwaites ice shelves to changes in ocean state on the Amundsen Sea continental shelf. These studies will provide more realistic bounds on ice loss and sea level rise, and lay the groundwork for development of future fully-coupled ice sheet-ocean simulations.\r\nIntellectual Merit: Rather than pursue a strategy of using fully coupled models, this project adopts a simpler semi-coupled approach to understand the sensitivity of ice-shelf melting to future forcing. Specifically, the project focuses on using regional ocean circulation models to understand current and future patterns of melting in ice-shelf cavities. The project\u2019s preliminary stage will focus on developing high-resolution ice-shelf cavity-circulation models driven by modern observed regional ocean state and validated with current patterns of melt inferred from satellite observations. Next, an ice-flow model will be used to estimate the future grounding line at various stages of retreat. Using these results, an iterative process with the ocean-circulation and ice-flow models will be applied to determine melt rates at each stage of grounding line retreat. These results will help assess whether more physically constrained melt-rate estimates substantially alter the hypothesis that unstable collapse of the Amundsen Sea sector of West Antarctica is underway. Further, by multiple simulations with modified open-ocean boundary conditions, this study will provide a better understanding of the sensitivity of melt to future changes in regional forcing. For example, what is the sensitivity of melt to changes in Circumpolar Deep Water temperature and to changes in the thermocline height driven be changes in wind forcing? Finally, several semi-coupled ice-ocean simulations will be used to investigate the influence of the ocean-circulation driven distribution of melt over the next several decades. These simulations will provide a much-improved understanding of the linkages between far-field ocean forcing, cavity circulation and melting, and ice-sheet response.\r\nBroader Impacts: Planning within the current large range of uncertainty in future sea level change leads to high social and economic costs for governments and businesses worldwide. Thus, our project to reduce sea-level rise uncertainty has strong societal as well as scientific interest. The findings and methods will be applicable to ice shelf cavities in other parts of Antarctica and northern Greenland, and will set the stage for future studies with fully coupled models as computational resources improve. This interdisciplinary work combines expertise of glaciologists and oceanographers, and will contribute to the education of new researchers in this field, with participation of graduate students and postdocs. Through several outreach activities, team members will help make the public aware of the dramatic changes occurring in Antarctica along with the likely consequences.\r\n\r\nThis proposal does not require fieldwork in the Antarctic.\r\n", "east": -86.0, "geometry": "POINT(-95 -77)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIER MOTION/ICE SHEET MOTION; USA/NSF; ICE SHEETS; AMD; USAP-DC; MODELS; Amd/Us; Pine Island Glacier", "locations": "Pine Island Glacier", "north": -73.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science", "paleo_time": null, "persons": "Joughin, Ian; Dutrieux, Pierre; Padman, Laurence; Springer, Scott", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repo": "GitHub", "repositories": "GitHub; Uni. Washington ResearchWorks Archive", "science_programs": null, "south": -81.0, "title": "Collaborative Research: Modeling ice-ocean interaction for the rapidly evolving ice shelf cavities of Pine Island and Thwaites glaciers, Antarctica ", "uid": "p0010318", "west": -104.0}, {"awards": "2139051 Guitard, Michelle", "bounds_geometry": "POLYGON((-45 -57,-44.3 -57,-43.6 -57,-42.9 -57,-42.2 -57,-41.5 -57,-40.8 -57,-40.1 -57,-39.4 -57,-38.7 -57,-38 -57,-38 -57.5,-38 -58,-38 -58.5,-38 -59,-38 -59.5,-38 -60,-38 -60.5,-38 -61,-38 -61.5,-38 -62,-38.7 -62,-39.4 -62,-40.1 -62,-40.8 -62,-41.5 -62,-42.2 -62,-42.9 -62,-43.6 -62,-44.3 -62,-45 -62,-45 -61.5,-45 -61,-45 -60.5,-45 -60,-45 -59.5,-45 -59,-45 -58.5,-45 -58,-45 -57.5,-45 -57))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 05 Nov 2021 00:00:00 GMT", "description": "The Mid-Pleistocene Transition (MPT; ~1.25\u20130.7 Ma) marks the shift from glacial-interglacial cycles paced by obliquity (~41 kyr cycles) to those paced by eccentricity (~100-kyr cycles). This transition occurred despite little variation in Earth\u2019s orbital parameters, suggesting a role for internal climate feedbacks. The MPT was accompanied by decreasing atmospheric pCO2, increasing deep ocean carbon storage, and changes in deep water formation and distribution, all of which are linked to Antarctic margin atmosphere-ice-ocean interactions. However, Pleistocene records that document such interactions are rarely preserved on the shelf due to repeated Antarctic Ice Sheet (AIS) advance; instead, they are preserved in deep Southern Ocean basins. This project takes advantage of the excellent preservation and recovery of continuous Pleistocene sediment sequences collected from the Scotia Sea during International Ocean Discovery Program Expedition 382 to test the following hypotheses: 1) Southern Ocean upper ocean temperatures vary on orbital timescales during the early to middle Pleistocene (2.6\u20130.7 Ma), and 2) Southern Ocean temperatures co-vary with AIS advance/retreat cycles. Paleotemperatures will be reconstructed using the TetraEther indeX of tetraethers containing 86 carbons (TEX86), a proxy that utilizes marine archaeal biomarkers. The Scotia Sea TEX86-based paleotemperature record will be compared to records of AIS variability, including ice rafted debris. Expedition 382 records will be compared to orbitally paced climatic time series and the benthic oxygen isotope record of global ice volume and bottom water temperature to determine if a correlation exists between upper ocean temperature, AIS retreat/advance, and orbital climate forcing. ", "east": -38.0, "geometry": "POINT(-41.5 -59.5)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; SEA SURFACE TEMPERATURE; USAP-DC; USA/NSF; LABORATORY; AMD; Scotia Sea", "locations": "Scotia Sea", "north": -57.0, "nsf_funding_programs": "Post Doc/Travel", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Michelle, Guitard", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -62.0, "title": "Investigating the influence of ocean temperature on Antarctic Ice Sheet evolution during the early to middle Pleistocene ", "uid": "p0010275", "west": -45.0}, {"awards": "1644196 Cziko, Paul", "bounds_geometry": "POLYGON((163.47 -77.14,163.803 -77.14,164.136 -77.14,164.469 -77.14,164.802 -77.14,165.135 -77.14,165.468 -77.14,165.801 -77.14,166.134 -77.14,166.467 -77.14,166.8 -77.14,166.8 -77.216,166.8 -77.292,166.8 -77.368,166.8 -77.444,166.8 -77.52,166.8 -77.596,166.8 -77.672,166.8 -77.748,166.8 -77.824,166.8 -77.9,166.467 -77.9,166.134 -77.9,165.801 -77.9,165.468 -77.9,165.135 -77.9,164.802 -77.9,164.469 -77.9,164.136 -77.9,163.803 -77.9,163.47 -77.9,163.47 -77.824,163.47 -77.748,163.47 -77.672,163.47 -77.596,163.47 -77.52,163.47 -77.444,163.47 -77.368,163.47 -77.292,163.47 -77.216,163.47 -77.14))", "dataset_titles": "High-resolution nearshore benthic seawater temperature from around McMurdo Sound, Antarctica (2017-2019); Long-Term broadband underwater acoustic recordings from McMurdo Sound, Antarctica (2017-2019); Long-term underwater images from around a single mooring site in McMurdo Sound, Antarctica (2017-2019)", "datasets": [{"dataset_uid": "601416", "doi": "10.15784/601416", "keywords": "Antarctica; Bioacoustics; Biota; Hydroacoustics; Killer Whales; Leptonychotes Weddellii; McMurdo Sound; Oceans; Orcinus Orca; Sea Ice; Weddell Seal; Whales", "people": "Cziko, Paul", "repository": "USAP-DC", "science_program": null, "title": "Long-Term broadband underwater acoustic recordings from McMurdo Sound, Antarctica (2017-2019)", "url": "https://www.usap-dc.org/view/dataset/601416"}, {"dataset_uid": "601420", "doi": "10.15784/601420", "keywords": "Antarctica; Benthic Ecology; CTD; Depth; McMurdo Sound; Oceanography; Oceans; Physical Oceanography; Pressure; Salinity; Seawater Measurements; Seawater Temperature; Supercooling; Tides", "people": "Cziko, Paul", "repository": "USAP-DC", "science_program": null, "title": "High-resolution nearshore benthic seawater temperature from around McMurdo Sound, Antarctica (2017-2019)", "url": "https://www.usap-dc.org/view/dataset/601420"}, {"dataset_uid": "601417", "doi": "10.15784/601417", "keywords": "Antarctica; Benthic Ecology; Benthic Invertebrates; Biota; McMurdo Sound; Notothenioid; Notothenioid Fishes; Photo/video; Photo/Video; Rocky Reef Community; Soft-Bottom Community; Timelaps Images", "people": "Cziko, Paul", "repository": "USAP-DC", "science_program": null, "title": "Long-term underwater images from around a single mooring site in McMurdo Sound, Antarctica (2017-2019)", "url": "https://www.usap-dc.org/view/dataset/601417"}], "date_created": "Tue, 15 Dec 2020 00:00:00 GMT", "description": "Notothenioid fishes live in the world\u0027s coldest marine waters surrounding Antarctica and have evolved strategies to avoid freezing. Past studies have shown that most Antarctic notothenioids produce special antifreeze proteins that prevent the growth of ice crystals that enter the body. While these proteins help prevent individuals from being killed by growing ice crystals, it is unclear how these fish avoid the accumulation of these small ice crystals inside their tissues over time. This project will observe how ice crystal accumulation relates to the harshness of a fish\u0027s environment within different habitats of McMurdo Sound, Antarctica. The researchers collected fishes and ocean observations at different field sites that cover a range of habitat severity in terms of temperature and iciness. The researchers installed an underwater ocean observatory near McMurdo Station (The McMurdo Oceanographic Observatory, MOO; Nov. 2017 - Nov. 2019) which included a conductivity-temperature-depth sensor (CTD), a high-definition video/still image camera and a research quality hydrophone. The observatory produced oceanographic data, time-lapse images of the immediate environs, and a high-resolution hydroacoustic dataset from the entire deployment. Seawater temperature data loggers were also deployed at other shallow, nearshore sites around McMurdo Sound to provide context and assessment of environmental conditions experienced by the fishes. ", "east": 166.8, "geometry": "POINT(165.135 -77.52)", "instruments": null, "is_usap_dc": true, "keywords": "Benthic Ecology; ANIMALS/VERTEBRATES; USA/NSF; OCEAN TEMPERATURE; USAP-DC; MAMMALS; FIELD INVESTIGATION; Amd/Us; McMurdo Sound; FISH; AMD", "locations": "McMurdo Sound", "north": -77.14, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Cziko, Paul; DeVries, Arthur", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes", "uid": "p0010147", "west": 163.47}, {"awards": "1043623 Miller, Scott", "bounds_geometry": "POLYGON((117.5 -47,120.35 -47,123.2 -47,126.05 -47,128.9 -47,131.75 -47,134.6 -47,137.45 -47,140.3 -47,143.15 -47,146 -47,146 -49.04,146 -51.08,146 -53.12,146 -55.16,146 -57.2,146 -59.24,146 -61.28,146 -63.32,146 -65.36,146 -67.4,143.15 -67.4,140.3 -67.4,137.45 -67.4,134.6 -67.4,131.75 -67.4,128.9 -67.4,126.05 -67.4,123.2 -67.4,120.35 -67.4,117.5 -67.4,117.5 -65.36,117.5 -63.32,117.5 -61.28,117.5 -59.24,117.5 -57.2,117.5 -55.16,117.5 -53.12,117.5 -51.08,117.5 -49.04,117.5 -47))", "dataset_titles": "Eddy covariance air-sea momentum, heat, and carbon dioxide fluxes in the Southern Ocean from the N.B. Palmer cruise NBP1210; Eddy covariance air-sea momentum, heat, and carbon dioxide fluxes in the Southern Ocean from the N.B. Palmer cruise NBP1402; Expedition Data", "datasets": [{"dataset_uid": "601309", "doi": "10.15784/601309", "keywords": "Air-Sea Flux; Air Temperature; Amundsen Sea; Antarctica; Antarctic Peninsula; Atmosphere; CO2; Flux; Meteorology; NBP1210; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Southern Ocean; Water Temperature; Wind Direction; Wind Speed", "people": "Butterworth, Brian; Miller, Scott", "repository": "USAP-DC", "science_program": null, "title": "Eddy covariance air-sea momentum, heat, and carbon dioxide fluxes in the Southern Ocean from the N.B. Palmer cruise NBP1210", "url": "https://www.usap-dc.org/view/dataset/601309"}, {"dataset_uid": "001414", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1402"}, {"dataset_uid": "001427", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1210"}, {"dataset_uid": "601308", "doi": null, "keywords": "Air-Sea Flux; Air Temperature; Antarctica; Atmosphere; CO2; CO2 Concentrations; East Antarctica; Flux; Meteorology; NBP1402; Oceans; Relative Humidity; Salinity; Totten Glacier; Water Measurements; Water Temperature; Weather Station Data; Wind Direction; Wind Speed", "people": "Butterworth, Brian; Miller, Scott", "repository": "USAP-DC", "science_program": null, "title": "Eddy covariance air-sea momentum, heat, and carbon dioxide fluxes in the Southern Ocean from the N.B. Palmer cruise NBP1402", "url": "https://www.usap-dc.org/view/dataset/601308"}], "date_created": "Fri, 09 Oct 2020 00:00:00 GMT", "description": "Accurate parameterizations of the air-sea fluxes of CO2 into the Southern Ocean, in particular at high wind velocity, are needed to better assess how projections of global climate warming in a windier world could affect the ocean carbon uptake, and alter the ocean heat budget at high latitudes. \u003cbr/\u003e\u003cbr/\u003eAir-sea fluxes of momentum, sensible and latent heat (water vapor) and carbon dioxide (CO2) are to be measured continuously underway on cruises using micrometeorological eddy covariance techniques adapted to ship-board use. The measured gas transfer velocity (K) is then to be related to other parameters known to affect air-sea-fluxes.\u003cbr/\u003e\u003cbr/\u003eA stated goal of this work is the collection of a set of direct air-sea flux measurements at high wind speeds, conditions where parameterization of the relationship of gas exchange to wind-speed remains contentious. The studies will be carried out at sites in the Southern Ocean using the USAP RV Nathaniel B Palmer as measurment platform. Co-located pCO2 data, to be used in the overall analysis and enabling internal consistency checks, are being collected from existing underway systems aboard the USAP research vessel under other NSF awards.", "east": 146.0, "geometry": "POINT(131.75 -57.2)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "HEAT FLUX; DISSOLVED GASES; Antarctica; USAP-DC; NOT APPLICABLE", "locations": "Antarctica", "north": -47.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Miller, Scott", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -67.4, "title": "Air-Sea Fluxes of Momentum, Heat, and Carbon Dioxide at High Wind Speeds in the Southern Ocean", "uid": "p0010137", "west": 117.5}, {"awards": "1142158 Cheng, Chi-Hing; 0231006 DeVries, Arthur", "bounds_geometry": "POLYGON((163 -76.5,163.5 -76.5,164 -76.5,164.5 -76.5,165 -76.5,165.5 -76.5,166 -76.5,166.5 -76.5,167 -76.5,167.5 -76.5,168 -76.5,168 -76.63,168 -76.76,168 -76.89,168 -77.02,168 -77.15,168 -77.28,168 -77.41,168 -77.54,168 -77.67,168 -77.8,167.5 -77.8,167 -77.8,166.5 -77.8,166 -77.8,165.5 -77.8,165 -77.8,164.5 -77.8,164 -77.8,163.5 -77.8,163 -77.8,163 -77.67,163 -77.54,163 -77.41,163 -77.28,163 -77.15,163 -77.02,163 -76.89,163 -76.76,163 -76.63,163 -76.5))", "dataset_titles": "High-resolution benthic seawater temperature record 1999-2012 (25-40m depth) from near intake jetty at McMurdo Station, Antarctica; Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)", "datasets": [{"dataset_uid": "601275", "doi": null, "keywords": "Antarctica; Benthic; McMurdo Sound; Mcmurdo Station; Oceans; Physical Oceanography; Temperature Probe; Water Temperature", "people": "Devries, Arthur; Cziko, Paul; Cheng, Chi-Hing", "repository": "USAP-DC", "science_program": null, "title": "High-resolution benthic seawater temperature record 1999-2012 (25-40m depth) from near intake jetty at McMurdo Station, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601275"}, {"dataset_uid": "601811", "doi": null, "keywords": "Antarctica; Bellingshausen Sea; Cryosphere; Southern Ocean", "people": "Desvignes, Thomas; Corso, Andrew; Hilton, Eric; Steinberg, Deborah; McDowell, Jan; Cheng, Chi-Hing; Biesack, Ellen", "repository": "USAP-DC", "science_program": "LTER", "title": "Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)", "url": "https://www.usap-dc.org/view/dataset/601811"}], "date_created": "Wed, 08 Apr 2020 00:00:00 GMT", "description": "Antarctic notothenioid fishes exhibit two adaptive traits to survive in frigid temperatures. The first of these is the production of anti-freeze proteins in their blood and tissues. The second is a system-wide ability to perform cellular and physiological functions at extremely cold temperatures.The proposal goals are to show how Antarctic fishes use these characteristics to avoid freezing, and which additional genes are turned on, or suppressed in order for these fishes to maintain normal physiological function in extreme cold temperatures. Progressively colder habitats are encountered in the high latitude McMurdo Sound and Ross Shelf region, along with somewhat milder near?shore water environments in the Western Antarctic Peninsula (WAP). By quantifying the extent of ice crystals invading and lodging in the spleen, the percentage of McMurdo Sound fish during austral summer (Oct-Feb) will be compared to the WAP intertidal fish during austral winter (Jul-Sep) to demonstrate their capability and extent of freeze avoidance. Resistance to ice entry in surface epithelia (e.g. skin, gill and intestinal lining) is another expression of the adaptation of these fish to otherwise lethally freezing conditions.\u003cbr/\u003e\u003cbr/\u003eThe adaptive nature of a uniquely characteristic polar genome will be explored by the study of the transcriptome (the set of expressed RNA transcripts that constitutes the precursor to set of proteins expressed by an entire genome). Three notothenioid species (E.maclovinus, D. Mawsoni and C. aceratus) will be analysed to document evolutionary genetic changes (both gain and loss) shaped by life under extreme chronic cold. A differential gene expression (DGE) study will be carried out on these different species to evaluate evolutionary modification of tissue-wide response to heat challenges. The transcriptomes and other sequencing libraries will contribute to de novo ice-fish genome sequencing efforts.", "east": 168.0, "geometry": "POINT(165.5 -77.15)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD", "is_usap_dc": true, "keywords": "McMurdo Sound; MARINE ECOSYSTEMS; Water Temperature; AQUATIC SCIENCES; OCEAN TEMPERATURE; FIELD INVESTIGATION; USAP-DC", "locations": "McMurdo Sound", "north": -76.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Cheng, Chi-Hing; Devries, Arthur", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.8, "title": "Antarctic Notothenioid Fish Freeze Avoidance and Genome-wide Evolution for Life in the Cold", "uid": "p0010091", "west": 163.0}, {"awards": "1443420 Dodd, Justin", "bounds_geometry": "POLYGON((167.07 -77.87,167.073 -77.87,167.076 -77.87,167.079 -77.87,167.082 -77.87,167.085 -77.87,167.088 -77.87,167.091 -77.87,167.094 -77.87,167.097 -77.87,167.1 -77.87,167.1 -77.873,167.1 -77.876,167.1 -77.879,167.1 -77.882,167.1 -77.885,167.1 -77.888,167.1 -77.891,167.1 -77.894,167.1 -77.897,167.1 -77.9,167.097 -77.9,167.094 -77.9,167.091 -77.9,167.088 -77.9,167.085 -77.9,167.082 -77.9,167.079 -77.9,167.076 -77.9,167.073 -77.9,167.07 -77.9,167.07 -77.897,167.07 -77.894,167.07 -77.891,167.07 -77.888,167.07 -77.885,167.07 -77.882,167.07 -77.879,167.07 -77.876,167.07 -77.873,167.07 -77.87))", "dataset_titles": "Diatom Oxygen Isotope Evidence of Pliocene (~4.68 to 3.44 Ma) Antarctic Ice Sheet Dynamics and Ross Sea Paleoceanography", "datasets": [{"dataset_uid": "601220", "doi": "10.15784/601220", "keywords": "And-1B; Andrill; Antarctica; Chemistry:sediment; Chemistry:Sediment; Delta 18O; Diatom; Mass Spectrometer; Oxygen Isotope; Paleoclimate; Pliocene; Sediment; Wais Project; West Antarctic Ice Sheet", "people": "Dodd, Justin; Abbott, Tirzah", "repository": "USAP-DC", "science_program": "ANDRILL", "title": "Diatom Oxygen Isotope Evidence of Pliocene (~4.68 to 3.44 Ma) Antarctic Ice Sheet Dynamics and Ross Sea Paleoceanography", "url": "https://www.usap-dc.org/view/dataset/601220"}], "date_created": "Tue, 06 Aug 2019 00:00:00 GMT", "description": "Abstract\u003cbr/\u003eDuring the Early Pliocene, 4.8 to 3.4 million years ago, warmer-than-present global temperatures resulted in a retreat of the Ross Ice Shelf and West Antarctic Ice Sheet. Understanding changes in ocean dynamics during times of reduced ice volume and increased temperatures in the geologic past will improve the predictive models for these conditions. The primary goal of the proposed research is to develop a new oxygen isotope record of Pliocene oceanographic conditions near the Antarctic continent. Oxygen isotope values from the carbonate tests of benthic foraminifera have become the global standard for paleo-oceanographic studies, but foraminifera are sparse in high-latitude sediment cores. This research will instead make use of oxygen isotope measurements from diatom silica preserved in a marine sediment core from the Ross Sea. The project is the first attempt at using this method and will advance understanding of global ocean dynamics and ice sheet-ocean interactions during the Pliocene. The project will foster the professional development of two early-career scientists and serve as training for graduate and undergraduate student researchers. The PIs will use this project to introduce High School students to polar/oceanographic research, as well as stable isotope geochemistry. Collaboration with teachers via NSTA and Polar Educators International will ensure the implementation of excellent STEM learning activities and curricula for younger students. \u003cbr/\u003e\u003cbr/\u003eTechnical Description\u003cbr/\u003eThis project will produce a high-resolution oxygen isotope record from well-dated diatom rich sediments that have been cross-correlated with global benthic foraminifera oxygen isotope records. Diatom silica frustules deposited during the Early Pliocene and recovered by the ANDRILL Project (AND-1B) provide ideal material for this objective. Diatomite unites in the AND-1B core are nearly pure, with little evidence of opal formation. A diatom oxygen isotope record from this core offers the potential to constrain lingering uncertainties about Ross Sea and Southern Ocean paleoceanography and Antarctic Ice Sheet history during a time of high atmospheric carbon dioxide concentrations. Specifically, oxygen isotope variations will be used to constrain changes in the water temperature and/or freshwater flux in the Pliocene Ross Sea. Diatom species data from the AND-1B core have been used to infer variations in the extent and duration of seasonal sea ice coverage, sea surface temperatures, and mid-water advection onto the continental shelf. However, the diatom oxygen isotope record will provide the first direct measure of water/oxygen isotope values at the Antarctic continental margin during the Pliocene.", "east": 167.1, "geometry": "POINT(167.085 -77.885)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "OXYGEN ISOTOPES; USAP-DC; Antarctica; NOT APPLICABLE", "locations": "Antarctica", "north": -77.87, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Dodd, Justin; Scherer, Reed Paul; Warnock, Jonathan", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ANDRILL", "south": -77.9, "title": "Diatom and Oxygen Isotope Evidence of Pliocene Antarctic Ice Sheet Dynamics and Ross Sea Paleoceanography", "uid": "p0010042", "west": 167.07}, {"awards": "1245766 Waller, Rhian", "bounds_geometry": "POINT(-63.0796667 -61.5157)", "dataset_titles": "Expedition Data; Log Sheets of coral samples for LMG1509", "datasets": [{"dataset_uid": "601160", "doi": "10.15784/601160", "keywords": "Antarctica; Antarctic Peninsula; Biota; Corals; CTD; LMG1509; Oceans; Otter Trawl; R/v Laurence M. Gould; Sample/collection Description; Sample/Collection Description; Sample Location; Southern Ocean", "people": "Waller, Rhian", "repository": "USAP-DC", "science_program": null, "title": "Log Sheets of coral samples for LMG1509", "url": "https://www.usap-dc.org/view/dataset/601160"}, {"dataset_uid": "001378", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1509"}], "date_created": "Thu, 07 Mar 2019 00:00:00 GMT", "description": "The Western Antarctic Peninsula is experiencing climate change at one of the fastest rates of anywhere around the globe. Accelerated climate change is likely to affect the many benthic marine invertebrates that live within narrow temperature windows along the Antarctic Continental Shelf in presently unidentified ways. At present however, there are few data on the physiological consequences of climate change on the sensitive larval stages of cold-water corals, and none on species living in thermal extremes such as polar waters. This project will collect the larvae of the non-seasonal, brooding scleractinian Flabellum impensum to be used in a month-long climate change experiment at Palmer Station. Multidisciplinary techniques will be used to examine larval development and cellular stress using a combination of electron microscopy, flow cytometry, and Inductively Coupled Plasma Mass Spectometry. Data from this project will form the first systematic study of the larval stages of polar cold-water corals, and how these stages are affected by temperature stress at the cellular and developmental level. \u003cbr/\u003e\u003cbr/\u003eCold-water corals have been shown to be important ecosystem engineers, providing habitat for thousands of associated species, including many that are of commercial importance. Understanding how the larvae of these corals react to warming trends seen today in our oceans will allow researchers to predict future changes in important benthic communities around the globe. Associated education and outreach include: 1) Increasing student participation in polar research by involving postdoctoral and undergraduate students in the field and research program; ii) promotion of K-12 teaching and learning programs by providing information via a research website, Twitter, and in-school talks in the local area; iii) making the data collected available to the wider research community via peer reviewed published literature and iv) reaching a larger public audience through such venues as interviews in the popular media, You Tube and other popular media outlets, and local talks to the general public.", "east": -63.0796667, "geometry": "POINT(-63.0796667 -61.5157)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e TRAWLS/NETS \u003e OTTER TRAWL", "is_usap_dc": true, "keywords": "AQUATIC SCIENCES; ANIMALS/INVERTEBRATES; R/V LMG; Southern Ocean; USAP-DC; WATER TEMPERATURE", "locations": "Southern Ocean", "north": -61.5157, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Waller, Rhian; Jay, Lunden", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -61.5157, "title": "Cold Corals in Hot Water - Investigating the Physiological Responses of Antarctic Coral Larvae to Climate change Stress", "uid": "p0010017", "west": -63.0796667}, {"awards": "1245879 Nitsche, Frank O.", "bounds_geometry": null, "dataset_titles": "NBP1503 data collected during field expedition", "datasets": [{"dataset_uid": "200001", "doi": "10.7284/901478", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1503 data collected during field expedition", "url": "https://www.rvdata.us/search/cruise/NBP1503"}], "date_created": "Sun, 30 Jul 2017 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThis project will determine the potential vulnerability of key ice streams to incursions of warmer ocean water onto the continental shelf and if this mechanism could already explain any of the observed thinning of the ice sheet. It will provide important constrains on ice dynamic of the investigated section of the EAIS, and thus will be critical for future ice sheet models and provide mechanisms for EAIS contributions to past sea level high-stand. The PI proposes to investigate four key ice stream systems on the continental shelf between ~90\u00c2\u00b0E and 160\u00c2\u00b0E. They will use multibeam bathymetry to identify if and where cross-shelf troughs exist to help determine whether these troughs could provide potential pathways for warmer ocean water. Furthermore, detailed analysis of morphological features of these troughs could provide information on past ice dynamic, maximum extent, and flow direction of related paleo ice streams. The PIs will also conduct water column measurements along these troughs and on the continental slope to determine whether warmer ocean water could enter the shelf in the near future, or if such water has already entered any troughs, and thus might be causing the observed thinning of some ice streams.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis project includes the participation and support of undergraduate and graduate students in field work and data analysis. The possible involvement of a PolarTREC teacher and the Earth2Class teachers program will reach out to K-12 students.", "east": 134.6, "geometry": "POINT(125.05 -64.5)", "instruments": null, "is_usap_dc": true, "keywords": "WATER TEMPERATURE; Polar; SALINITY; Antarctica; Southern Ocean; R/V NBP; BATHYMETRY", "locations": "Polar; Antarctica; Southern Ocean", "north": -63.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Nitsche, Frank O.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -66.0, "title": "Vulnerability of East Antarctic Ice Streams to warm Ocean Water Incursions", "uid": "p0000394", "west": 115.5}, {"awards": "1246387 Guo, Weifu", "bounds_geometry": "POLYGON((-79.9183333 35.441666667,-55.16316667 35.441666667,-30.40800004 35.441666667,-5.65283341 35.441666667,19.10233322 35.441666667,43.85749985 35.441666667,68.61266648 35.441666667,93.36783311 35.441666667,118.12299974 35.441666667,142.87816637 35.441666667,167.633333 35.441666667,167.633333 25.9255333333,167.633333 16.4093999996,167.633333 6.8932666659,167.633333 -2.6228666678,167.633333 -12.1390000015,167.633333 -21.6551333352,167.633333 -31.1712666689,167.633333 -40.6874000026,167.633333 -50.2035333363,167.633333 -59.71966667,142.87816637 -59.71966667,118.12299974 -59.71966667,93.36783311 -59.71966667,68.61266648 -59.71966667,43.85749985 -59.71966667,19.10233322 -59.71966667,-5.65283341 -59.71966667,-30.40800004 -59.71966667,-55.16316667 -59.71966667,-79.9183333 -59.71966667,-79.9183333 -50.2035333363,-79.9183333 -40.6874000026,-79.9183333 -31.1712666689,-79.9183333 -21.6551333352,-79.9183333 -12.1390000015,-79.9183333 -2.6228666678,-79.9183333 6.8932666659,-79.9183333 16.4093999996,-79.9183333 25.9255333333,-79.9183333 35.441666667))", "dataset_titles": "Clumped isotope composition of modern cold water corals", "datasets": [{"dataset_uid": "000205", "doi": "", "keywords": null, "people": null, "repository": "EarthChem", "science_program": null, "title": "Clumped isotope composition of modern cold water corals", "url": "http://www.earthchem.org/"}], "date_created": "Fri, 07 Jul 2017 00:00:00 GMT", "description": "This proposed research aims to produce high resolution, precise and accurate records of deep water temperatures in the Drake Passage over the past ~40,000 years, by applying the newly developed carbonate clumped isotope thermometer to a unique collection of modern and fossil deep-sea corals, and thus advance the understanding of the role of the Southern Ocean in modulating global climate. In addition, this study will provide further evaluation on the potential of this new thermometer to derive accurate estimates of past ocean temperatures from deep-sea coral skeletons. Funding will support an early-career junior scientist and a graduate student. \u003cbr/\u003e\u003cbr/\u003eDespite its crucial role in modulating global climate, rates and amplitudes of environmental changes in the Southern Ocean are often difficult to constrain. In particular, the knowledge about the deep water temperatures in the Southern Ocean during the last glacial cycle is extremely limited. This results both from the lack of well-dated climate archives for the deep Southern Ocean and from the fact that most existing temperature proxies (e.g. del18O and Mg/Ca of foraminifera and corals) suffer from the biological \u0027vital effects\u0027. The latter is especially problematic; it causes substantial challenges in interpreting these geochemical proxies and can lead to biases equivalent to tens of degrees in temperature estimates. Recent development of carbonate clumped isotope thermometer, holds new promises for reconstructing deep water temperatures in the Southern Ocean, since calibration studies of this thermometer in deep-sea corals suggest it is largely free of vital effects. This proposed research seeks to refine the calibration of carbonate clumped isotope thermometer in deep-sea corals at low temperatures, improve the experimental methods to obtain high precision in temperature estimates, and then apply this thermometer to a unique collection of modern and fossil deep-sea corals collected from the Drake Passage during two recent Office of Polar Programs (OPP)-funded cruises, that have already been dated by radiocarbon and U-series methods. By combining the reconstructed temperatures with the radiocarbon and U-Th ages for these deep-sea corals, this study will explore the relationships between these temperature changes and global climate changes.", "east": 167.633333, "geometry": "POINT(43.85749985 -12.1390000015)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": 35.441666667, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Guo, Weifu", "platforms": "Not provided", "repo": "EarthChem", "repositories": "EarthChem", "science_programs": null, "south": -59.71966667, "title": "Reconstruction of Deep-Water Temperatures in the Drake Passage Over the Last Glacial Cycle: Application of Carbonate Clumped Isotope Thermometer to Absolutely-Dated Deep-Sea Corals", "uid": "p0000389", "west": -79.9183333}, {"awards": "1041022 McClintock, James", "bounds_geometry": "POLYGON((-79 -60,-76.4 -60,-73.8 -60,-71.2 -60,-68.6 -60,-66 -60,-63.4 -60,-60.8 -60,-58.2 -60,-55.6 -60,-53 -60,-53 -61,-53 -62,-53 -63,-53 -64,-53 -65,-53 -66,-53 -67,-53 -68,-53 -69,-53 -70,-55.6 -70,-58.2 -70,-60.8 -70,-63.4 -70,-66 -70,-68.6 -70,-71.2 -70,-73.8 -70,-76.4 -70,-79 -70,-79 -69,-79 -68,-79 -67,-79 -66,-79 -65,-79 -64,-79 -63,-79 -62,-79 -61,-79 -60))", "dataset_titles": "Data from Schram et al. 2017 MEPS; Response time data for snails escaping from predatory sea stars; The effects of ocean acidification and rising sea surface temperatures on shallow-water benthic organisms in Antarctica", "datasets": [{"dataset_uid": "601162", "doi": "10.15784/601162", "keywords": "Antarctica; Benthos; Biota; Oceans; Snail; Southern Ocean; Visual Observations", "people": "Schram, Julie; Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Response time data for snails escaping from predatory sea stars", "url": "https://www.usap-dc.org/view/dataset/601162"}, {"dataset_uid": "600122", "doi": "10.15784/600122", "keywords": "Antarctic Peninsula; Biota; Oceans; Southern Ocean", "people": "McClintock, James; Amsler, Charles; Angus, Robert", "repository": "USAP-DC", "science_program": null, "title": "The effects of ocean acidification and rising sea surface temperatures on shallow-water benthic organisms in Antarctica", "url": "https://www.usap-dc.org/view/dataset/600122"}, {"dataset_uid": "601062", "doi": "10.15784/601062", "keywords": "Antarctica; Antarctic Peninsula; Biota; Chemistry:fluid; Chemistry:Fluid; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Schram, Julie; Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Data from Schram et al. 2017 MEPS", "url": "https://www.usap-dc.org/view/dataset/601062"}], "date_created": "Fri, 22 May 2015 00:00:00 GMT", "description": "The research will investigate the individual and combined effects of rising ocean acidification and sea surface temperatures on shallow-water calcified benthic organisms in western Antarctic Peninsular (WAP) marine communities. The Southern Ocean is predicted to become undersaturated in terms of both aragonite and calcite within 50 and 100 years, respectively, challenging calcification processes. Adding to the problem, antarctic calcified benthic marine organisms are more vulnerable to ocean acidification than temperate and tropical species because they are generally weakly calcified. Many antarctic organisms are essentially stenothermal, and those in the West Antarctic Peninsula are being subjected to rising seawater temperatures. The project employs both single-species and multi-species level approaches to evaluating the impacts of rising ocean acidification and seawater temperature on representative calcified and non-calcified macroalgae, on calcified and non-calcified mesograzers, and on a calcified macro-grazer, all of which are important ecological players in the rich benthic communities. Multi-species analysis will focus on the diverse assemblage of amphipods and mesogastropods that are associated with dominant macroalgae that collectively play a key role in community dynamics along the WAP. The project will support undergraduate research, both through NSF programs, as well as home university-based programs, some designed to enhance the representation of minorities in the sciences. The principal investigators also will support and foster graduate education through mentoring of graduate students. Through their highly successful UAB IN ANTARCTICA interactive web program, they will continue to involve large numbers of teachers, K-12 students, and other members of the community at large in their scientific endeavors in Antarctica.", "east": -53.0, "geometry": "POINT(-66 -65)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Angus, Robert; Amsler, Charles; McClintock, James", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "The effects of ocean acidification and rising sea surface temperatures on shallow-water benthic organisms in Antarctica", "uid": "p0000426", "west": -79.0}, {"awards": "0437887 Sidell, Bruce", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis; Expedition Data; Expedition data of LMG0705; Expedition data of LMG0706", "datasets": [{"dataset_uid": "002713", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0706", "url": "https://www.rvdata.us/search/cruise/LMG0706"}, {"dataset_uid": "002712", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0705", "url": "https://www.rvdata.us/search/cruise/LMG0705"}, {"dataset_uid": "600039", "doi": "10.15784/600039", "keywords": "Biota; Oceans; Pot; Sample/collection Description; Sample/Collection Description; Southern Ocean; Trawl", "people": "Sidell, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis", "url": "https://www.usap-dc.org/view/dataset/600039"}, {"dataset_uid": "001534", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0705"}], "date_created": "Sun, 06 Dec 2009 00:00:00 GMT", "description": "The polar ocean presently surrounding Antarctica is the coldest, most thermally stable marine environment on earth. Because oxygen solubility in seawater is inversely proportional to temperature, the cold Antarctic seas are an exceptionally oxygen-rich aquatic habitat. Eight families of a single perciform suborder, the Notothenioidei, dominate the present fish fauna surrounding Antarctica. Notothenioids account for approximately 35% of fish species and 90% of fish biomass south of the Antarctic Polar Front. Radiation of closely related notothenioid species thus has occurred rapidly and under a very unusual set of conditions: relative oceanographic isolation from other faunas due to circumpolar currents and deep ocean trenches surrounding the continent, chronically, severely cold water temperatures, very high oxygen availability, very low levels of niche competition in a Southern Ocean depauperate of species subsequent to a dramatic crash in species diversity of fishes that occurred sometime between the mid-Tertiary and present. These features make Antarctic notothenioid fishes an uniquely attractive group for the study of physiological and biochemical adaptations to cold body temperature. \u003cbr/\u003eFew distinctive features of Antarctic fishes are as unique as the pattern of expression of oxygen-binding proteins in one notothenioid family, the Channichthyidae (Antarctic icefishes). All channichthyid icefishes lack the circulating oxygen-binding protein, hemoglobin (Hb); the intracellular oxygen-binding protein, myoglobin (Mb) is not uniformly expressed in species of this family. Both proteins are normally considered essential for adequate delivery of oxygen to aerobically poised tissues of animals. To compensate for the absence of Hb, icefishes have developed large hearts, rapidly circulate a large blood volume and possess elaborate vasculature of larger lumenal diameter than is seen in red-blooded fishes. Loss of Mb expression in oxidative muscles correlates with dramatic elevation in density of mitochondria within the cell, although each individual organelle is less densely packed with respiratory proteins. \u003cbr/\u003eWithin the framework of oxygen movement, the adaptive significance of greater vascular density and mitochondrial populations is understandable but mechanisms underlying development of these characteristics remain unknown. The answer may lie in another major function of both Hb and Mb, degradation of the ubiquitous bioactive compound, nitric oxide (NO). The research will test the hypothesis that loss of hemoprotein expression in icefishes has resulted in an increase in levels of NO that mediate modification of vascular systems and expansion of mitochondrial populations in oxidative tissues. The objectives of the proposal are to quantify the vascular density of retinas in +Hb and -Hb notothenioid species, to characterize NOS isoforms and catalytic activity in retina and cardiac muscle of Antarctic notothenioid fishes, to evaluate level of expression of downstream factors implicated in angiogenesis (in retinal tissue) and mitochondrial biogenesis (in cardiac muscle), and to determine whether inhibition of NOS in vivo results in regression of angiogenic and mitochondrial biogenic responses in icefishes. Broader impacts range from basic biology, through training of young scientists, to enhanced understanding of clinically relevant biomedical processes.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS", "is_usap_dc": true, "keywords": "R/V LMG; Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Sidell, Bruce", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis.", "uid": "p0000527", "west": -180.0}, {"awards": "0538630 Severinghaus, Jeffrey", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 01 Apr 2009 00:00:00 GMT", "description": "0538630\u003cbr/\u003eSeveringhaus\u003cbr/\u003eThis award supports a project to produce the first record of Kr/N2 in the paleo-atmosphere as measured in air bubbles trapped in ice cores. These measurements may be indicative of past variations in mean ocean temperature. Knowing the mean ocean temperature in the past will give insight into past variations in deep ocean temperature, which remain poorly understood. Deep ocean temperature variations are important for understanding the mechanisms of climate change. Krypton is highly soluble in water, and its solubility varies with temperature, with higher solubilities at colder water temperatures. A colder ocean during the last glacial period would therefore hold more krypton than today\u0027s ocean. Because the total amount of krypton in the ocean-atmosphere system is constant, the increase in the krypton inventory in the glacial ocean should cause a resultant decrease in the atmospheric inventory of krypton. The primary goal of this work is to develop the use of Kr/N2 as an indicator of paleo-oceanic mean temperature. This will involve improving the analytical technique for the Kr/N2 measurement itself, and measuring the Kr/N2 in air bubbles in ice from the last glacial maximum (LGM) and the late Holocene in the Vostok and GISP2 ice cores. This provides an estimate of LGM mean ocean temperature change, and allows for a comparison between previous estimates of deep ocean temperature during the LGM. The Vostok ice core is ideal for this purpose because of the absence of melt layers, which compromise the krypton and xenon signal. Another goal is to improve precision on the Xe/N2 measurement, which could serve as a second, independent proxy of ocean temperature change. A mean ocean temperature time series during this transition may help to explain these observations. Additionally, the proposed work will measure the Kr/N2 from marine isotope stage (MIS) 3 in the GISP2 ice core. Knowing the past ocean temperature during MIS 3 will help to constrain sea level estimates during this time period. The broader impacts of the proposed work: are that it will provide the first estimate of the extent and timing of mean ocean temperature change in the past. This will help to constrain previously proposed mechanisms of climate change involving large changes in deep ocean temperature. This project will also support the education of a graduate student. The PI gives interviews and talks to the media and public about climate change, and the work will enhance these outreach activities. Finally, the work will occur during the International Polar Year (IPY), and will underscore the unique importance of the polar regions for understanding the global atmosphere and ocean system.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Paleoatmospheric Krypton and Xenon Abundances from Trapped Air in Polar Ice as Indicators of Past Mean Ocean Temperature", "uid": "p0000553", "west": null}, {"awards": "0436190 Eastman, Joseph", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes", "datasets": [{"dataset_uid": "600038", "doi": "10.15784/600038", "keywords": "Biota; NBP0404; Oceans; R/v Nathaniel B. Palmer; Southern Ocean", "people": "Eastman, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes", "url": "https://www.usap-dc.org/view/dataset/600038"}], "date_created": "Mon, 30 Mar 2009 00:00:00 GMT", "description": "Patterns of biodiversity, as revealed by basic research in organismal biology, may be derived from ecological and evolutionary processes expressed in unique settings, such as Antarctica. The polar regions and their faunas are commanding increased attention as declining species diversity, environmental change, commercial fisheries, and resource management are now being viewed in a global context. Commercial fishing is known to have a direct and pervasive effect on marine biodiversity, and occurs in the Southern Ocean as far south as the Ross Sea. \u003cbr/\u003eThe nature of fish biodiversity in the Antarctic is different than in all other ocean shelf areas. Waters of the Antarctic continental shelf are ice covered for most of the year and water temperatures are nearly constant at -1.5 C. In these waters components of the phyletically derived Antarctic clade of Notothenioids dominate fish diversity. In some regions, including the southwestern Ross Sea, Notothenioids are overwhelmingly dominant in terms of number of species, abundance, and biomass. Such dominance by a single taxonomic group is unique among shelf faunas of the world. In the absence of competition from a taxonomically diverse fauna, Notothenioids underwent a habitat or depth related diversification keyed to the utilization of unfilled niches in the water column, especially pelagic or partially pelagic zooplanktivory and piscivory. This has been accomplished in the absence of a swim bladder for buoyancy control. They also may form a special type of adaptive radiation known as a species flock, which is an assemblage of a disproportionately high number of related species that have evolved rapidly within a defined area where most species are endemic. Diversification in buoyancy is the hallmark of the notothenioid radiation. Buoyancy is the feature of notothenioid biology that determines whether a species lives on the substrate, in the water column or both. Buoyancy also influences other key aspects of life history including swimming, feeding and reproduction and thus has implications for the role of the species in the ecosystem. \u003cbr/\u003eWith similarities to classic evolutionary hot spots, the Antarctic shelf and its Notothenioid radiation merit further exploration. The 2004 \"International Collaborative Expedition to collect and study Fish Indigenous to Sub-Antarctic Habitats,\" or, \"ICEFISH,\" provided a platform for collection of notothenioid fishes from sub-Antarctic waters between South America and Africa, which will be examined in this project. This study will determine buoyancy for samples of all notothenioid species captured during the ICEFISH cruise. This essential aspect of the biology is known for only 19% of the notothenioid fauna. Also, the gross and microscopic anatomy of brains and sense organs of the phyletically basal families Bovichtidae, Eleginopidae, and of the non-Antarctic species of the primarily Antarctic family Nototheniidae will be examined. The fish biodiversity and endemicity in poorly known localities along the ICEFISH cruise track, seamounts and deep trenches will be quantified. Broader impacts include improved information for comprehending and conserving biodiversity, a scientific and societal priority.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Eastman, Joseph", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes", "uid": "p0000106", "west": -180.0}, {"awards": "0238281 Marsh, Adam", "bounds_geometry": "POLYGON((163 -77,163.4 -77,163.8 -77,164.2 -77,164.6 -77,165 -77,165.4 -77,165.8 -77,166.2 -77,166.6 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.6 -78,166.2 -78,165.8 -78,165.4 -78,165 -78,164.6 -78,164.2 -78,163.8 -78,163.4 -78,163 -78,163 -77.9,163 -77.8,163 -77.7,163 -77.6,163 -77.5,163 -77.4,163 -77.3,163 -77.2,163 -77.1,163 -77))", "dataset_titles": "Marine Invertebrates of McMurdo Sound", "datasets": [{"dataset_uid": "600034", "doi": "10.15784/600034", "keywords": "Antarctica; Biota; McMurdo Sound; Oceans; Photo/video; Photo/Video; Southern Ocean", "people": "Marsh, Adam G.", "repository": "USAP-DC", "science_program": null, "title": "Marine Invertebrates of McMurdo Sound", "url": "https://www.usap-dc.org/view/dataset/600034"}], "date_created": "Mon, 09 Jun 2008 00:00:00 GMT", "description": "Although the cold ocean ecosystems comprise seventy-two percent of the biosphere on Earth by volume, they remain sparsely inhabited and relatively unexploited, particularly in terms of metazoan phyla. Consequently, the few animals that can exist at this border of intracellular freezing represent ideal systems for exploring genomic-level processes of environmental adaptations. Understanding life at a margin of the biosphere is likely to convey significant insights into the essential genomic processes necessary for survival under intense selection pressures. This study of adaptive mechanisms in genomic networks focuses on an experimental system that faces a formidable challenge for viability at low water temperatures: embryonic development at sea water temperatures of -1.8 o C in two Antarctic echinoderms, the sea star Odontaster validus and the sea urchin Sterechinus neumayeri. The project strategy will quantify temperature effects on gene expression and protein turnover networks during early development using a Bayesian network analysis to identify clusters of genes and proteins whose expression levels are associated in fixed, synergistic interactions. Ultimately, there is a simple question to be addressed: Is it more or less difficult (complex) for an embryo to develop in an extreme environment? To answer this question, the research plan will decipher network topologies and subnet structuring to uncover gene connectivity patterns associated with embryo development in this polar environment. This is the new area of Environmental Genomics that the PI will explore by expanding his research experience into computational network analyses. Overall, there is a significant need for integrative biologists in the future development of environmental sciences, particularly for the application of genomic-scale technologies to answer ecological-scale questions. The educational goals of this CAREER proposal are focused at two levels in terms of interesting young students in the developing field of environmental genomics: 1) increasing the racial diversity of the scientists attracted to environmental research, and 2) increasing the awareness of career opportunities within environmental research.\u003cbr/\u003eThese educational objectives are incorporated into the research plan to engage students with the excitement of working in an extreme environment such as Antarctica and to interest them in the insights that genome-level research can reveal about how organisms are adapted to specific habitats. Working in a remote, extreme environment such as Antarctica is always a challenge. However, the adventurous nature of the work can be utilized to establish educational and outreach components of high interest to both undergraduate students and the public in general. The proposed plan will bring the experience of working in Antarctica to a larger audience through several means. These include the following: the project theme of environmental genomics will be incorporated into a new Bioinformatics curriculum currently being developed at the University of Delaware; an intern program will be implemented to involved minority undergraduate students in summer research in the United States and then to bring the students to Antarctica to participate in the research; and a K-12 education program will bring the excitement of working in Antarctica to the classrooms of thousands of children (U.S. and international) through a program produced with the Marine Science Public Education Office at the University of Delaware.", "east": 167.0, "geometry": "POINT(165 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS", "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Marsh, Adam G.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "CAREER: Genomic Networks for Cold-Adaptation in Embryos of Polar Marine Invertebrates", "uid": "p0000240", "west": 163.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
High Resolution Underway Air-Sea Observations in Drake Passage for Climate Science
|
2001646 1542902 |
2023-03-03 | Chereskin, Teresa; Sprintall, Janet |
|
The Antarctic Circumpolar Current (ACC) is the largest current on the planet, flowing west to east around Antarctica, forming a barrier that separates warmer waters to the north from colder waters to the south. Ocean eddies (like atmospheric storms) break through the ACC barrier, transferring heat across the ACC towards Antarctica. When warmer ocean waters intrude onto the Antarctic continental shelves, they contribute to glacial melt and ice shelf retreat. Over the past several decades, the Southern Ocean has warmed and winds have increased due to climate change. Somewhat surprisingly the ACC, though pushed by faster winds, has not accelerated; a faster current would present a stronger barrier to heat transfer. Instead, ocean eddies have increased. These eddies are concentrated at 6-7 "hot spots". Drake Passage is one of these hot spots. As the narrowest land gap on the entire circumpolar path of the ACC, Drake Passsage is an ideal monitoring spot. However, it is also one of the windiest and roughest stretches of water on the globe. The only ship that crosses Drake Passage year-round is the USAP supply vessel for Palmer Station, making it a unique platform to monitor the currents and temperature with a minimum of personnel and resources. The Drake Passage time series of upper ocean currents and temperature is now in its 24th year. The upper ocean temperature measurements have found significant warming in Drake Passage. The upper ocean current measurements have confirmed that the ACC has remained steady on average but have also revealed a complicated filamented current structure. Combining temperature and current measurements has provided a better understanding of heat transfer across the ACC by eddies. The time series has also provided valuable ground-truth for satellite measurements and for numerical model predictions looking at the entire ACC. Our studies are focused on examining low-frequency variability - seasonal, interannual, and decadal - in order to provide baselines from which to evaluate and interpret physical and biogeochemical changes occurring in the Southern Ocean. | POLYGON((-68 -54,-66.7 -54,-65.4 -54,-64.1 -54,-62.8 -54,-61.5 -54,-60.2 -54,-58.9 -54,-57.6 -54,-56.3 -54,-55 -54,-55 -55,-55 -56,-55 -57,-55 -58,-55 -59,-55 -60,-55 -61,-55 -62,-55 -63,-55 -64,-56.3 -64,-57.6 -64,-58.9 -64,-60.2 -64,-61.5 -64,-62.8 -64,-64.1 -64,-65.4 -64,-66.7 -64,-68 -64,-68 -63,-68 -62,-68 -61,-68 -60,-68 -59,-68 -58,-68 -57,-68 -56,-68 -55,-68 -54)) | POINT(-61.5 -59) | false | false | |||||||||||||||||||||
Estimation of Antarctic Ice Melt using Stable Isotopic Analyses of Seawater
|
1644118 |
2022-09-21 | Dunbar, Robert |
|
Estimating Antarctic ice sheet growth or loss is important to predicting future sea level rise. Such estimates rely on field measurements or remotely sensed based observations of the ice sheet surface, ice margins, and or ice shelves. This work examines the introduction of freshwater into the ocean to surrounding Antarctica to track meltwater from continental ice. Polar ice is depleted in two stable isotopes, 18O and D, deuterium, relative to Southern Ocean seawater and precipitation. Measurements of seawater isotopic composition in conjunction with precise observations of seawater temperature and salinity, will permit discrimination of freshwater derived from melting glacial ice from that derived from regional precipitation or sea ice melt.<br/><br/>This research describes an accepted method for determining rates and locations of meltwater entering the oceans from polar ice sheets. As isotopic and salinity perturbations are cumulative in many Antarctic coastal seas, the method allows for the detection of any marked acceleration in meltwater introduction in specific regions, using samples collected and analyzed over a period of years to decades. Impact of the project derives from use of an independent method capable of constraining knowledge about current ice sheet melt rates, their stability and potential impact on sea level rise. The project allows for sample collection taken from foreign vessels of opportunity sailing in Antarctic waters, and subsequent sharing and interpretation of data. Research partners include the U.S., Korea, China, New Zealand, the United Kingdom, and Germany. Participating collaborators will collect seawater samples for isotopic and salinity analysis at Stanford University. USAP cruises will concentrate on sampling the Ross Sea, and the West Antarctic. The work plan includes interpretation of isotopic data using box model and mixing curve analyses as well as using isotope enabled ROMS (Regional Ocean Modeling System) models. The broader impacts of the research will include development of an educational module that illustrates the scientific method and how ocean observations help society understand how Earth is changing. | POLYGON((-108 -73,-107.3 -73,-106.6 -73,-105.9 -73,-105.2 -73,-104.5 -73,-103.8 -73,-103.1 -73,-102.4 -73,-101.7 -73,-101 -73,-101 -73.3,-101 -73.6,-101 -73.9,-101 -74.2,-101 -74.5,-101 -74.8,-101 -75.1,-101 -75.4,-101 -75.7,-101 -76,-101.7 -76,-102.4 -76,-103.1 -76,-103.8 -76,-104.5 -76,-105.2 -76,-105.9 -76,-106.6 -76,-107.3 -76,-108 -76,-108 -75.7,-108 -75.4,-108 -75.1,-108 -74.8,-108 -74.5,-108 -74.2,-108 -73.9,-108 -73.6,-108 -73.3,-108 -73)) | POINT(-104.5 -74.5) | false | false | |||||||||||||||||||||
Collaborative Research: ANT LIA: Connecting Metagenome Potential to Microbial Function: Investigating Microbial Degradation of Complex Organic Matter Antarctic Benthic Sediments
|
2147045 |
2022-08-30 | Learman, Deric | No dataset link provided | Microbes in Antarctic surface marine sediments have an important role in degrading organic matter and releasing nutrients to the ocean. Organic matter degradation is at the center of the carbon cycle in the ocean, providing valuable information on nutrient recycling, food availability to animals and carbon dioxide release to the atmosphere. The functionality of these microbes has been inferred by their genomics, however these methods only address the possible function, not their actual rates. In this project the PIs plan to combine genomics methods with cellular estimates of enzyme abundance and activity as a way to determine the rates of carbon degradation. This project aims to sample in several regions of Antarctica to provide a large-scale picture of the processes under study and understand the importance of microbial community composition and environmental factors, such as primary productivity, have on microbial activity. The proposed work will combine research tools such as metagenomics, meta-transcriptomics, and metabolomics coupled with chemical data and enzyme assays to establish degradation of organic matter in Antarctic sediments. This project benefits NSFs goals of understanding the adaptation of Antarctic organisms to the cold and isolated environment, critical to predict effects of climate change to polar organisms, as well as contribute to our knowledge of how Antarctic organisms have adapted to this environment. Society will benefit from this project by education of 2 graduate students, undergraduates and K-12 students as well as increase public literacy through short videos production shared in YouTube. The PIs propose to advance understanding of polar microbial community function, by measuring enzyme and gene function of complex organic matter degradation in several ocean regions, providing a circum-Antarctic description of sediment processes. Two hypotheses are proposed. The first hypothesis states that many genes for the degradation of complex organic matter will be shared in sediments throughout a sampling transect and that where variations in gene content occur, it will reflect differences in the quantity and quality of organic matter, not regional variability. The second hypothesis states that a fraction of gene transcripts for organic matter degradation will not result in measurable enzyme activity due to post-translational modification or rapid degradation of the enzymes. The PIs will analyze sediment cores already collected in a 2020 cruise to the western Antarctic Peninsula with the additional request of participating in a cruise in 2023 to East Antarctica. The PIs will analyze sediments for metagenomics, meta-transcriptomics, and metabolomics coupled with geochemical data and enzyme assays to establish microbial degradation of complex organic matter in Antarctic sediments. Organic carbon concentrations and content in sediments will be measured with δ13C, δ15N, TOC porewater fluorescence in bulk organic carbon. Combined with determination of geographical variability as well as dependence on carbon sources, results from this study could provide the basis for new hypotheses on how climate variability, with increased water temperature, affects geochemistry in the Southern Ocean. | POLYGON((-180 -60,-168 -60,-156 -60,-144 -60,-132 -60,-120 -60,-108 -60,-96 -60,-84 -60,-72 -60,-60 -60,-60 -62,-60 -64,-60 -66,-60 -68,-60 -70,-60 -72,-60 -74,-60 -76,-60 -78,-60 -80,-72 -80,-84 -80,-96 -80,-108 -80,-120 -80,-132 -80,-144 -80,-156 -80,-168 -80,180 -80,171 -80,162 -80,153 -80,144 -80,135 -80,126 -80,117 -80,108 -80,99 -80,90 -80,90 -78,90 -76,90 -74,90 -72,90 -70,90 -68,90 -66,90 -64,90 -62,90 -60,99 -60,108 -60,117 -60,126 -60,135 -60,144 -60,153 -60,162 -60,171 -60,-180 -60)) | POINT(-165 -70) | false | false | |||||||||||||||||||||
Collaborative Research: Physical Mechanisms Driving Food Web Focusing in Antarctic Biological Hotspots
|
1745018 1744884 1745011 1745023 1745081 1745009 |
2022-07-05 | Bernard, Kim; Oliver, Matthew; Kohut, Josh; Fraser, William; Klinck, John M.; Statcewich, Hank |
|
Undersea canyons play disproportionately important roles as oceanic biological hotspots and are critical for our understanding of many coastal ecosystems. Canyon-associated biological hotspots have persisted for thousands of years Along the Western Antarctic Peninsula, despite significant climate variability. Observations of currents over Palmer Deep canyon, a representative hotspot along the Western Antarctic Peninsula, indicate that surface phytoplankton blooms enter and exit the local hotspot on scales of ~1-2 days. This time of residence is in conflict with the prevailing idea that canyon associated hotspots are primarily maintained by phytoplankton that are locally grown in association with these features by the upwelling of deep waters rich with nutrients that fuel the phytoplankton growth. Instead, the implication is that horizontal ocean circulation is likely more important to maintaining these biological hotspots than local upwelling through its physical concentrating effects. This project seeks to better resolve the factors that create and maintain focused areas of biological activity at canyons along the Western Antarctic Peninsula and create local foraging areas for marine mammals and birds. The project focus is in the analysis of the ocean transport and concentration mechanisms that sustain these biological hotspots, connecting oceanography to phytoplankton and krill, up through the food web to one of the resident predators, penguins. In addition, the research will engage with teachers from school districts serving underrepresented and underserved students by integrating the instructors and their students completely with the science team. Students will conduct their own research with the same data over the same time as researchers on the project. Revealing the fundamental mechanisms that sustain these known hotspots will significantly advance our understanding of the observed connection between submarine canyons and persistent penguin population hotspots over ecological time, and provide a new model for how Antarctic hotspots function.<br/> <br/> <br/>To understand the physical mechanisms that support persistent hotspots along the Western Antarctic Peninsula (WAP), this project will integrate a modeling and field program that will target the processes responsible for transporting and concentrating phytoplankton and krill biomass to known penguin foraging locations. Within the Palmer Deep canyon, a representative hotspot, the team will deploy a High Frequency Radar (HFR) coastal surface current mapping network, uniquely equipped to identify the eddies and frontal regions that concentrate phytoplankton and krill. The field program, centered on surface features identified by the HFR, will include (i) a coordinated fleet of gliders to survey hydrography, chlorophyll fluorescence, optical backscatter, and active acoustics at the scale of the targeted convergent features; (ii) precise penguin tracking with GPS-linked satellite telemetry and time-depth recorders (TDRs); (iii) and weekly small boat surveys that adaptively target and track convergent features to measure phytoplankton, krill, and hydrography. A high resolution physical model will generalize our field measurements to other known hotspots along the WAP through simulation and determine which physical mechanisms lead to the maintenance of these hotspots. The project will also engage educators, students, and members of the general public in Antarctic research and data analysis with an education program that will advance teaching and learning as well as broadening participation of under-represented groups. This engagement includes professional development workshops, live connections to the public and classrooms, student research symposia, and program evaluation. Together the integrated research and engagement will advance our understanding of the role regional transport pathways and local depth dependent concentrating physical mechanisms play in sustaining these biological hotspots.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-75 -60,-73 -60,-71 -60,-69 -60,-67 -60,-65 -60,-63 -60,-61 -60,-59 -60,-57 -60,-55 -60,-55 -61,-55 -62,-55 -63,-55 -64,-55 -65,-55 -66,-55 -67,-55 -68,-55 -69,-55 -70,-57 -70,-59 -70,-61 -70,-63 -70,-65 -70,-67 -70,-69 -70,-71 -70,-73 -70,-75 -70,-75 -69,-75 -68,-75 -67,-75 -66,-75 -65,-75 -64,-75 -63,-75 -62,-75 -61,-75 -60)) | POINT(-65 -65) | false | false | |||||||||||||||||||||
Collaborative Research: Do Ocean Wave Impacts Pose a Hazard to the Stability of West Antarctic Ice Shelves?
|
1744958 1744759 1744856 |
2022-05-16 | Dunham, Eric | Understanding and being able to more reliably forecast ice mass loss from Antarctica is a critical research priority for Antarctic Science. Massive ice shelves buttress marine terminating glaciers, slowing the rate that land ice reaches the sea and, in turn, restraining the rate of sea level rise. To date, most work has focused on the destabilizing impacts of warmer air and water temperatures, resulting in melting that thins and weakens ice shelves. However, recent findings indicate that sea ice does not protect ice shelves from wave impacts as much as previously thought, which has raised the possibility that tsunamis and other ocean waves could affect shelf stability. This project will assess the potential for increased shelf fracturing from the impact of tsunamis and from heightened wave activity due to climate-driven changes in storm patterns and reduced sea-ice extent by developing models to investigate how wave impacts damage ice shelves. The modeling effort will allow for regional comparisons between large and small ice shelves, and provide an evaluation of the impacts of changing climate and storm patterns on ice shelves, ice sheets, glaciers, and, ultimately, sea level rise. This project will train graduate students in mathematical modeling and interdisciplinary approaches to Earth and ocean sciences.<br/><br/>This project takes a four-pronged approach to estimating the impact of vibrations on ice shelves at the grounding zone due to tsunamis, very long period, infragravity, and storm-driven waves. First, the team will use high-resolution tsunami modeling to investigate the response of ice shelves along the West Antarctic coast to waves originating in different regions of the Pacific Ocean. Second, it will compare the response to wave impacts on grounding zones of narrow and wide ice shelves. Third, it will assess the exposure risk due to storm forcing through a reanalysis of weather and wave model data; and, finally, the team will model the propagation of ocean-wave-induced vibrations in the ice from the shelf front to and across the grounding zone. In combination, this project aims to identify locations along the Antarctic coast that are subject to enhanced, bathymetrically-focused, long-period ocean-wave impacts. Linkages between wave impacts and climate arise from potential changes in sea-ice extent in front of shelves, and changes in the magnitude, frequency, and tracks of storms. Understanding the effects of ocean waves and climate on ice-shelf integrity is critical to anticipate their contribution to the amplitude and timing of sea-level rise. Wave-driven reductions in ice-shelf stability may enhance shelf fragmentation and iceberg calving, reducing ice shelf buttressing and eventually accelerating sea-level rise.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | ||||||||||||||||||||||
Collaborative Research: Modeling ice-ocean interaction for the rapidly evolving ice shelf cavities of Pine Island and Thwaites glaciers, Antarctica
|
1643285 1643174 |
2022-05-13 | Joughin, Ian; Dutrieux, Pierre; Padman, Laurence; Springer, Scott |
|
Overview: Several recent studies indicate continuing and increasing ice loss from the Amundsen Sea region of West Antarctica (chiefly Pine Island and Thwaites glaciers). This loss is initiated by thinning of the floating ice shelves by basal melting driven by circulation of relatively warm ocean water under the ice shelves. This thinning triggers ice-dynamics related feedbacks, which leads to loss of ice from the grounded ice sheet. Models suggest that, even though long-term committed ice loss might be governed by ice dynamics, the magnitude of ocean-driven melting at the base of the ice shelves plays a critical role in controlling the rate of ice loss. These conclusions, however, are based on simple parameterized models for melt rate that do not take into account how ocean circulation will change in future as large-scale climate forcing changes, and as the ice shelves thin and retreat through both excess melting and accelerated ice flow. Given that present global climate models struggle to resolve the modern ocean state close to the ice shelves around Antarctica, their projections of future impacts on basal melting and time scale of ice loss have large uncertainties. This project is aimed at reducing these uncertainties though two approaches: (i) assessing, for a given ocean state, how the melt rates will change as ice-shelf cavities evolve through melting and grounding-line retreat, and (ii) improving understanding of the sensitivity of melt rates beneath the Pine Island and Thwaites ice shelves to changes in ocean state on the Amundsen Sea continental shelf. These studies will provide more realistic bounds on ice loss and sea level rise, and lay the groundwork for development of future fully-coupled ice sheet-ocean simulations. Intellectual Merit: Rather than pursue a strategy of using fully coupled models, this project adopts a simpler semi-coupled approach to understand the sensitivity of ice-shelf melting to future forcing. Specifically, the project focuses on using regional ocean circulation models to understand current and future patterns of melting in ice-shelf cavities. The project’s preliminary stage will focus on developing high-resolution ice-shelf cavity-circulation models driven by modern observed regional ocean state and validated with current patterns of melt inferred from satellite observations. Next, an ice-flow model will be used to estimate the future grounding line at various stages of retreat. Using these results, an iterative process with the ocean-circulation and ice-flow models will be applied to determine melt rates at each stage of grounding line retreat. These results will help assess whether more physically constrained melt-rate estimates substantially alter the hypothesis that unstable collapse of the Amundsen Sea sector of West Antarctica is underway. Further, by multiple simulations with modified open-ocean boundary conditions, this study will provide a better understanding of the sensitivity of melt to future changes in regional forcing. For example, what is the sensitivity of melt to changes in Circumpolar Deep Water temperature and to changes in the thermocline height driven be changes in wind forcing? Finally, several semi-coupled ice-ocean simulations will be used to investigate the influence of the ocean-circulation driven distribution of melt over the next several decades. These simulations will provide a much-improved understanding of the linkages between far-field ocean forcing, cavity circulation and melting, and ice-sheet response. Broader Impacts: Planning within the current large range of uncertainty in future sea level change leads to high social and economic costs for governments and businesses worldwide. Thus, our project to reduce sea-level rise uncertainty has strong societal as well as scientific interest. The findings and methods will be applicable to ice shelf cavities in other parts of Antarctica and northern Greenland, and will set the stage for future studies with fully coupled models as computational resources improve. This interdisciplinary work combines expertise of glaciologists and oceanographers, and will contribute to the education of new researchers in this field, with participation of graduate students and postdocs. Through several outreach activities, team members will help make the public aware of the dramatic changes occurring in Antarctica along with the likely consequences. This proposal does not require fieldwork in the Antarctic. | POLYGON((-104 -73,-102.2 -73,-100.4 -73,-98.6 -73,-96.8 -73,-95 -73,-93.2 -73,-91.4 -73,-89.6 -73,-87.8 -73,-86 -73,-86 -73.8,-86 -74.6,-86 -75.4,-86 -76.2,-86 -77,-86 -77.8,-86 -78.6,-86 -79.4,-86 -80.2,-86 -81,-87.8 -81,-89.6 -81,-91.4 -81,-93.2 -81,-95 -81,-96.8 -81,-98.6 -81,-100.4 -81,-102.2 -81,-104 -81,-104 -80.2,-104 -79.4,-104 -78.6,-104 -77.8,-104 -77,-104 -76.2,-104 -75.4,-104 -74.6,-104 -73.8,-104 -73)) | POINT(-95 -77) | false | false | |||||||||||||||||||||
Investigating the influence of ocean temperature on Antarctic Ice Sheet evolution during the early to middle Pleistocene
|
2139051 |
2021-11-05 | Michelle, Guitard | No dataset link provided | The Mid-Pleistocene Transition (MPT; ~1.25–0.7 Ma) marks the shift from glacial-interglacial cycles paced by obliquity (~41 kyr cycles) to those paced by eccentricity (~100-kyr cycles). This transition occurred despite little variation in Earth’s orbital parameters, suggesting a role for internal climate feedbacks. The MPT was accompanied by decreasing atmospheric pCO2, increasing deep ocean carbon storage, and changes in deep water formation and distribution, all of which are linked to Antarctic margin atmosphere-ice-ocean interactions. However, Pleistocene records that document such interactions are rarely preserved on the shelf due to repeated Antarctic Ice Sheet (AIS) advance; instead, they are preserved in deep Southern Ocean basins. This project takes advantage of the excellent preservation and recovery of continuous Pleistocene sediment sequences collected from the Scotia Sea during International Ocean Discovery Program Expedition 382 to test the following hypotheses: 1) Southern Ocean upper ocean temperatures vary on orbital timescales during the early to middle Pleistocene (2.6–0.7 Ma), and 2) Southern Ocean temperatures co-vary with AIS advance/retreat cycles. Paleotemperatures will be reconstructed using the TetraEther indeX of tetraethers containing 86 carbons (TEX86), a proxy that utilizes marine archaeal biomarkers. The Scotia Sea TEX86-based paleotemperature record will be compared to records of AIS variability, including ice rafted debris. Expedition 382 records will be compared to orbitally paced climatic time series and the benthic oxygen isotope record of global ice volume and bottom water temperature to determine if a correlation exists between upper ocean temperature, AIS retreat/advance, and orbital climate forcing. | POLYGON((-45 -57,-44.3 -57,-43.6 -57,-42.9 -57,-42.2 -57,-41.5 -57,-40.8 -57,-40.1 -57,-39.4 -57,-38.7 -57,-38 -57,-38 -57.5,-38 -58,-38 -58.5,-38 -59,-38 -59.5,-38 -60,-38 -60.5,-38 -61,-38 -61.5,-38 -62,-38.7 -62,-39.4 -62,-40.1 -62,-40.8 -62,-41.5 -62,-42.2 -62,-42.9 -62,-43.6 -62,-44.3 -62,-45 -62,-45 -61.5,-45 -61,-45 -60.5,-45 -60,-45 -59.5,-45 -59,-45 -58.5,-45 -58,-45 -57.5,-45 -57)) | POINT(-41.5 -59.5) | false | false | |||||||||||||||||||||
Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes
|
1644196 |
2020-12-15 | Cziko, Paul; DeVries, Arthur | Notothenioid fishes live in the world's coldest marine waters surrounding Antarctica and have evolved strategies to avoid freezing. Past studies have shown that most Antarctic notothenioids produce special antifreeze proteins that prevent the growth of ice crystals that enter the body. While these proteins help prevent individuals from being killed by growing ice crystals, it is unclear how these fish avoid the accumulation of these small ice crystals inside their tissues over time. This project will observe how ice crystal accumulation relates to the harshness of a fish's environment within different habitats of McMurdo Sound, Antarctica. The researchers collected fishes and ocean observations at different field sites that cover a range of habitat severity in terms of temperature and iciness. The researchers installed an underwater ocean observatory near McMurdo Station (The McMurdo Oceanographic Observatory, MOO; Nov. 2017 - Nov. 2019) which included a conductivity-temperature-depth sensor (CTD), a high-definition video/still image camera and a research quality hydrophone. The observatory produced oceanographic data, time-lapse images of the immediate environs, and a high-resolution hydroacoustic dataset from the entire deployment. Seawater temperature data loggers were also deployed at other shallow, nearshore sites around McMurdo Sound to provide context and assessment of environmental conditions experienced by the fishes. | POLYGON((163.47 -77.14,163.803 -77.14,164.136 -77.14,164.469 -77.14,164.802 -77.14,165.135 -77.14,165.468 -77.14,165.801 -77.14,166.134 -77.14,166.467 -77.14,166.8 -77.14,166.8 -77.216,166.8 -77.292,166.8 -77.368,166.8 -77.444,166.8 -77.52,166.8 -77.596,166.8 -77.672,166.8 -77.748,166.8 -77.824,166.8 -77.9,166.467 -77.9,166.134 -77.9,165.801 -77.9,165.468 -77.9,165.135 -77.9,164.802 -77.9,164.469 -77.9,164.136 -77.9,163.803 -77.9,163.47 -77.9,163.47 -77.824,163.47 -77.748,163.47 -77.672,163.47 -77.596,163.47 -77.52,163.47 -77.444,163.47 -77.368,163.47 -77.292,163.47 -77.216,163.47 -77.14)) | POINT(165.135 -77.52) | false | false | ||||||||||||||||||||||
Air-Sea Fluxes of Momentum, Heat, and Carbon Dioxide at High Wind Speeds in the Southern Ocean
|
1043623 |
2020-10-09 | Miller, Scott | Accurate parameterizations of the air-sea fluxes of CO2 into the Southern Ocean, in particular at high wind velocity, are needed to better assess how projections of global climate warming in a windier world could affect the ocean carbon uptake, and alter the ocean heat budget at high latitudes. <br/><br/>Air-sea fluxes of momentum, sensible and latent heat (water vapor) and carbon dioxide (CO2) are to be measured continuously underway on cruises using micrometeorological eddy covariance techniques adapted to ship-board use. The measured gas transfer velocity (K) is then to be related to other parameters known to affect air-sea-fluxes.<br/><br/>A stated goal of this work is the collection of a set of direct air-sea flux measurements at high wind speeds, conditions where parameterization of the relationship of gas exchange to wind-speed remains contentious. The studies will be carried out at sites in the Southern Ocean using the USAP RV Nathaniel B Palmer as measurment platform. Co-located pCO2 data, to be used in the overall analysis and enabling internal consistency checks, are being collected from existing underway systems aboard the USAP research vessel under other NSF awards. | POLYGON((117.5 -47,120.35 -47,123.2 -47,126.05 -47,128.9 -47,131.75 -47,134.6 -47,137.45 -47,140.3 -47,143.15 -47,146 -47,146 -49.04,146 -51.08,146 -53.12,146 -55.16,146 -57.2,146 -59.24,146 -61.28,146 -63.32,146 -65.36,146 -67.4,143.15 -67.4,140.3 -67.4,137.45 -67.4,134.6 -67.4,131.75 -67.4,128.9 -67.4,126.05 -67.4,123.2 -67.4,120.35 -67.4,117.5 -67.4,117.5 -65.36,117.5 -63.32,117.5 -61.28,117.5 -59.24,117.5 -57.2,117.5 -55.16,117.5 -53.12,117.5 -51.08,117.5 -49.04,117.5 -47)) | POINT(131.75 -57.2) | false | false | ||||||||||||||||||||||
Antarctic Notothenioid Fish Freeze Avoidance and Genome-wide Evolution for Life in the Cold
|
1142158 0231006 |
2020-04-08 | Cheng, Chi-Hing; Devries, Arthur | Antarctic notothenioid fishes exhibit two adaptive traits to survive in frigid temperatures. The first of these is the production of anti-freeze proteins in their blood and tissues. The second is a system-wide ability to perform cellular and physiological functions at extremely cold temperatures.The proposal goals are to show how Antarctic fishes use these characteristics to avoid freezing, and which additional genes are turned on, or suppressed in order for these fishes to maintain normal physiological function in extreme cold temperatures. Progressively colder habitats are encountered in the high latitude McMurdo Sound and Ross Shelf region, along with somewhat milder near?shore water environments in the Western Antarctic Peninsula (WAP). By quantifying the extent of ice crystals invading and lodging in the spleen, the percentage of McMurdo Sound fish during austral summer (Oct-Feb) will be compared to the WAP intertidal fish during austral winter (Jul-Sep) to demonstrate their capability and extent of freeze avoidance. Resistance to ice entry in surface epithelia (e.g. skin, gill and intestinal lining) is another expression of the adaptation of these fish to otherwise lethally freezing conditions.<br/><br/>The adaptive nature of a uniquely characteristic polar genome will be explored by the study of the transcriptome (the set of expressed RNA transcripts that constitutes the precursor to set of proteins expressed by an entire genome). Three notothenioid species (E.maclovinus, D. Mawsoni and C. aceratus) will be analysed to document evolutionary genetic changes (both gain and loss) shaped by life under extreme chronic cold. A differential gene expression (DGE) study will be carried out on these different species to evaluate evolutionary modification of tissue-wide response to heat challenges. The transcriptomes and other sequencing libraries will contribute to de novo ice-fish genome sequencing efforts. | POLYGON((163 -76.5,163.5 -76.5,164 -76.5,164.5 -76.5,165 -76.5,165.5 -76.5,166 -76.5,166.5 -76.5,167 -76.5,167.5 -76.5,168 -76.5,168 -76.63,168 -76.76,168 -76.89,168 -77.02,168 -77.15,168 -77.28,168 -77.41,168 -77.54,168 -77.67,168 -77.8,167.5 -77.8,167 -77.8,166.5 -77.8,166 -77.8,165.5 -77.8,165 -77.8,164.5 -77.8,164 -77.8,163.5 -77.8,163 -77.8,163 -77.67,163 -77.54,163 -77.41,163 -77.28,163 -77.15,163 -77.02,163 -76.89,163 -76.76,163 -76.63,163 -76.5)) | POINT(165.5 -77.15) | false | false | ||||||||||||||||||||||
Diatom and Oxygen Isotope Evidence of Pliocene Antarctic Ice Sheet Dynamics and Ross Sea Paleoceanography
|
1443420 |
2019-08-06 | Dodd, Justin; Scherer, Reed Paul; Warnock, Jonathan |
|
Abstract<br/>During the Early Pliocene, 4.8 to 3.4 million years ago, warmer-than-present global temperatures resulted in a retreat of the Ross Ice Shelf and West Antarctic Ice Sheet. Understanding changes in ocean dynamics during times of reduced ice volume and increased temperatures in the geologic past will improve the predictive models for these conditions. The primary goal of the proposed research is to develop a new oxygen isotope record of Pliocene oceanographic conditions near the Antarctic continent. Oxygen isotope values from the carbonate tests of benthic foraminifera have become the global standard for paleo-oceanographic studies, but foraminifera are sparse in high-latitude sediment cores. This research will instead make use of oxygen isotope measurements from diatom silica preserved in a marine sediment core from the Ross Sea. The project is the first attempt at using this method and will advance understanding of global ocean dynamics and ice sheet-ocean interactions during the Pliocene. The project will foster the professional development of two early-career scientists and serve as training for graduate and undergraduate student researchers. The PIs will use this project to introduce High School students to polar/oceanographic research, as well as stable isotope geochemistry. Collaboration with teachers via NSTA and Polar Educators International will ensure the implementation of excellent STEM learning activities and curricula for younger students. <br/><br/>Technical Description<br/>This project will produce a high-resolution oxygen isotope record from well-dated diatom rich sediments that have been cross-correlated with global benthic foraminifera oxygen isotope records. Diatom silica frustules deposited during the Early Pliocene and recovered by the ANDRILL Project (AND-1B) provide ideal material for this objective. Diatomite unites in the AND-1B core are nearly pure, with little evidence of opal formation. A diatom oxygen isotope record from this core offers the potential to constrain lingering uncertainties about Ross Sea and Southern Ocean paleoceanography and Antarctic Ice Sheet history during a time of high atmospheric carbon dioxide concentrations. Specifically, oxygen isotope variations will be used to constrain changes in the water temperature and/or freshwater flux in the Pliocene Ross Sea. Diatom species data from the AND-1B core have been used to infer variations in the extent and duration of seasonal sea ice coverage, sea surface temperatures, and mid-water advection onto the continental shelf. However, the diatom oxygen isotope record will provide the first direct measure of water/oxygen isotope values at the Antarctic continental margin during the Pliocene. | POLYGON((167.07 -77.87,167.073 -77.87,167.076 -77.87,167.079 -77.87,167.082 -77.87,167.085 -77.87,167.088 -77.87,167.091 -77.87,167.094 -77.87,167.097 -77.87,167.1 -77.87,167.1 -77.873,167.1 -77.876,167.1 -77.879,167.1 -77.882,167.1 -77.885,167.1 -77.888,167.1 -77.891,167.1 -77.894,167.1 -77.897,167.1 -77.9,167.097 -77.9,167.094 -77.9,167.091 -77.9,167.088 -77.9,167.085 -77.9,167.082 -77.9,167.079 -77.9,167.076 -77.9,167.073 -77.9,167.07 -77.9,167.07 -77.897,167.07 -77.894,167.07 -77.891,167.07 -77.888,167.07 -77.885,167.07 -77.882,167.07 -77.879,167.07 -77.876,167.07 -77.873,167.07 -77.87)) | POINT(167.085 -77.885) | false | false | |||||||||||||||||||||
Cold Corals in Hot Water - Investigating the Physiological Responses of Antarctic Coral Larvae to Climate change Stress
|
1245766 |
2019-03-07 | Waller, Rhian; Jay, Lunden |
|
The Western Antarctic Peninsula is experiencing climate change at one of the fastest rates of anywhere around the globe. Accelerated climate change is likely to affect the many benthic marine invertebrates that live within narrow temperature windows along the Antarctic Continental Shelf in presently unidentified ways. At present however, there are few data on the physiological consequences of climate change on the sensitive larval stages of cold-water corals, and none on species living in thermal extremes such as polar waters. This project will collect the larvae of the non-seasonal, brooding scleractinian Flabellum impensum to be used in a month-long climate change experiment at Palmer Station. Multidisciplinary techniques will be used to examine larval development and cellular stress using a combination of electron microscopy, flow cytometry, and Inductively Coupled Plasma Mass Spectometry. Data from this project will form the first systematic study of the larval stages of polar cold-water corals, and how these stages are affected by temperature stress at the cellular and developmental level. <br/><br/>Cold-water corals have been shown to be important ecosystem engineers, providing habitat for thousands of associated species, including many that are of commercial importance. Understanding how the larvae of these corals react to warming trends seen today in our oceans will allow researchers to predict future changes in important benthic communities around the globe. Associated education and outreach include: 1) Increasing student participation in polar research by involving postdoctoral and undergraduate students in the field and research program; ii) promotion of K-12 teaching and learning programs by providing information via a research website, Twitter, and in-school talks in the local area; iii) making the data collected available to the wider research community via peer reviewed published literature and iv) reaching a larger public audience through such venues as interviews in the popular media, You Tube and other popular media outlets, and local talks to the general public. | POINT(-63.0796667 -61.5157) | POINT(-63.0796667 -61.5157) | false | false | |||||||||||||||||||||
Vulnerability of East Antarctic Ice Streams to warm Ocean Water Incursions
|
1245879 |
2017-07-30 | Nitsche, Frank O. |
|
Intellectual Merit: <br/>This project will determine the potential vulnerability of key ice streams to incursions of warmer ocean water onto the continental shelf and if this mechanism could already explain any of the observed thinning of the ice sheet. It will provide important constrains on ice dynamic of the investigated section of the EAIS, and thus will be critical for future ice sheet models and provide mechanisms for EAIS contributions to past sea level high-stand. The PI proposes to investigate four key ice stream systems on the continental shelf between ~90°E and 160°E. They will use multibeam bathymetry to identify if and where cross-shelf troughs exist to help determine whether these troughs could provide potential pathways for warmer ocean water. Furthermore, detailed analysis of morphological features of these troughs could provide information on past ice dynamic, maximum extent, and flow direction of related paleo ice streams. The PIs will also conduct water column measurements along these troughs and on the continental slope to determine whether warmer ocean water could enter the shelf in the near future, or if such water has already entered any troughs, and thus might be causing the observed thinning of some ice streams.<br/><br/>Broader impacts: <br/>This project includes the participation and support of undergraduate and graduate students in field work and data analysis. The possible involvement of a PolarTREC teacher and the Earth2Class teachers program will reach out to K-12 students. | None | POINT(125.05 -64.5) | false | false | |||||||||||||||||||||
Reconstruction of Deep-Water Temperatures in the Drake Passage Over the Last Glacial Cycle: Application of Carbonate Clumped Isotope Thermometer to Absolutely-Dated Deep-Sea Corals
|
1246387 |
2017-07-07 | Guo, Weifu |
|
This proposed research aims to produce high resolution, precise and accurate records of deep water temperatures in the Drake Passage over the past ~40,000 years, by applying the newly developed carbonate clumped isotope thermometer to a unique collection of modern and fossil deep-sea corals, and thus advance the understanding of the role of the Southern Ocean in modulating global climate. In addition, this study will provide further evaluation on the potential of this new thermometer to derive accurate estimates of past ocean temperatures from deep-sea coral skeletons. Funding will support an early-career junior scientist and a graduate student. <br/><br/>Despite its crucial role in modulating global climate, rates and amplitudes of environmental changes in the Southern Ocean are often difficult to constrain. In particular, the knowledge about the deep water temperatures in the Southern Ocean during the last glacial cycle is extremely limited. This results both from the lack of well-dated climate archives for the deep Southern Ocean and from the fact that most existing temperature proxies (e.g. del18O and Mg/Ca of foraminifera and corals) suffer from the biological 'vital effects'. The latter is especially problematic; it causes substantial challenges in interpreting these geochemical proxies and can lead to biases equivalent to tens of degrees in temperature estimates. Recent development of carbonate clumped isotope thermometer, holds new promises for reconstructing deep water temperatures in the Southern Ocean, since calibration studies of this thermometer in deep-sea corals suggest it is largely free of vital effects. This proposed research seeks to refine the calibration of carbonate clumped isotope thermometer in deep-sea corals at low temperatures, improve the experimental methods to obtain high precision in temperature estimates, and then apply this thermometer to a unique collection of modern and fossil deep-sea corals collected from the Drake Passage during two recent Office of Polar Programs (OPP)-funded cruises, that have already been dated by radiocarbon and U-series methods. By combining the reconstructed temperatures with the radiocarbon and U-Th ages for these deep-sea corals, this study will explore the relationships between these temperature changes and global climate changes. | POLYGON((-79.9183333 35.441666667,-55.16316667 35.441666667,-30.40800004 35.441666667,-5.65283341 35.441666667,19.10233322 35.441666667,43.85749985 35.441666667,68.61266648 35.441666667,93.36783311 35.441666667,118.12299974 35.441666667,142.87816637 35.441666667,167.633333 35.441666667,167.633333 25.9255333333,167.633333 16.4093999996,167.633333 6.8932666659,167.633333 -2.6228666678,167.633333 -12.1390000015,167.633333 -21.6551333352,167.633333 -31.1712666689,167.633333 -40.6874000026,167.633333 -50.2035333363,167.633333 -59.71966667,142.87816637 -59.71966667,118.12299974 -59.71966667,93.36783311 -59.71966667,68.61266648 -59.71966667,43.85749985 -59.71966667,19.10233322 -59.71966667,-5.65283341 -59.71966667,-30.40800004 -59.71966667,-55.16316667 -59.71966667,-79.9183333 -59.71966667,-79.9183333 -50.2035333363,-79.9183333 -40.6874000026,-79.9183333 -31.1712666689,-79.9183333 -21.6551333352,-79.9183333 -12.1390000015,-79.9183333 -2.6228666678,-79.9183333 6.8932666659,-79.9183333 16.4093999996,-79.9183333 25.9255333333,-79.9183333 35.441666667)) | POINT(43.85749985 -12.1390000015) | false | false | |||||||||||||||||||||
The effects of ocean acidification and rising sea surface temperatures on shallow-water benthic organisms in Antarctica
|
1041022 |
2015-05-22 | Angus, Robert; Amsler, Charles; McClintock, James | The research will investigate the individual and combined effects of rising ocean acidification and sea surface temperatures on shallow-water calcified benthic organisms in western Antarctic Peninsular (WAP) marine communities. The Southern Ocean is predicted to become undersaturated in terms of both aragonite and calcite within 50 and 100 years, respectively, challenging calcification processes. Adding to the problem, antarctic calcified benthic marine organisms are more vulnerable to ocean acidification than temperate and tropical species because they are generally weakly calcified. Many antarctic organisms are essentially stenothermal, and those in the West Antarctic Peninsula are being subjected to rising seawater temperatures. The project employs both single-species and multi-species level approaches to evaluating the impacts of rising ocean acidification and seawater temperature on representative calcified and non-calcified macroalgae, on calcified and non-calcified mesograzers, and on a calcified macro-grazer, all of which are important ecological players in the rich benthic communities. Multi-species analysis will focus on the diverse assemblage of amphipods and mesogastropods that are associated with dominant macroalgae that collectively play a key role in community dynamics along the WAP. The project will support undergraduate research, both through NSF programs, as well as home university-based programs, some designed to enhance the representation of minorities in the sciences. The principal investigators also will support and foster graduate education through mentoring of graduate students. Through their highly successful UAB IN ANTARCTICA interactive web program, they will continue to involve large numbers of teachers, K-12 students, and other members of the community at large in their scientific endeavors in Antarctica. | POLYGON((-79 -60,-76.4 -60,-73.8 -60,-71.2 -60,-68.6 -60,-66 -60,-63.4 -60,-60.8 -60,-58.2 -60,-55.6 -60,-53 -60,-53 -61,-53 -62,-53 -63,-53 -64,-53 -65,-53 -66,-53 -67,-53 -68,-53 -69,-53 -70,-55.6 -70,-58.2 -70,-60.8 -70,-63.4 -70,-66 -70,-68.6 -70,-71.2 -70,-73.8 -70,-76.4 -70,-79 -70,-79 -69,-79 -68,-79 -67,-79 -66,-79 -65,-79 -64,-79 -63,-79 -62,-79 -61,-79 -60)) | POINT(-66 -65) | false | false | ||||||||||||||||||||||
Collaborative Research: Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis.
|
0437887 |
2009-12-06 | Sidell, Bruce | The polar ocean presently surrounding Antarctica is the coldest, most thermally stable marine environment on earth. Because oxygen solubility in seawater is inversely proportional to temperature, the cold Antarctic seas are an exceptionally oxygen-rich aquatic habitat. Eight families of a single perciform suborder, the Notothenioidei, dominate the present fish fauna surrounding Antarctica. Notothenioids account for approximately 35% of fish species and 90% of fish biomass south of the Antarctic Polar Front. Radiation of closely related notothenioid species thus has occurred rapidly and under a very unusual set of conditions: relative oceanographic isolation from other faunas due to circumpolar currents and deep ocean trenches surrounding the continent, chronically, severely cold water temperatures, very high oxygen availability, very low levels of niche competition in a Southern Ocean depauperate of species subsequent to a dramatic crash in species diversity of fishes that occurred sometime between the mid-Tertiary and present. These features make Antarctic notothenioid fishes an uniquely attractive group for the study of physiological and biochemical adaptations to cold body temperature. <br/>Few distinctive features of Antarctic fishes are as unique as the pattern of expression of oxygen-binding proteins in one notothenioid family, the Channichthyidae (Antarctic icefishes). All channichthyid icefishes lack the circulating oxygen-binding protein, hemoglobin (Hb); the intracellular oxygen-binding protein, myoglobin (Mb) is not uniformly expressed in species of this family. Both proteins are normally considered essential for adequate delivery of oxygen to aerobically poised tissues of animals. To compensate for the absence of Hb, icefishes have developed large hearts, rapidly circulate a large blood volume and possess elaborate vasculature of larger lumenal diameter than is seen in red-blooded fishes. Loss of Mb expression in oxidative muscles correlates with dramatic elevation in density of mitochondria within the cell, although each individual organelle is less densely packed with respiratory proteins. <br/>Within the framework of oxygen movement, the adaptive significance of greater vascular density and mitochondrial populations is understandable but mechanisms underlying development of these characteristics remain unknown. The answer may lie in another major function of both Hb and Mb, degradation of the ubiquitous bioactive compound, nitric oxide (NO). The research will test the hypothesis that loss of hemoprotein expression in icefishes has resulted in an increase in levels of NO that mediate modification of vascular systems and expansion of mitochondrial populations in oxidative tissues. The objectives of the proposal are to quantify the vascular density of retinas in +Hb and -Hb notothenioid species, to characterize NOS isoforms and catalytic activity in retina and cardiac muscle of Antarctic notothenioid fishes, to evaluate level of expression of downstream factors implicated in angiogenesis (in retinal tissue) and mitochondrial biogenesis (in cardiac muscle), and to determine whether inhibition of NOS in vivo results in regression of angiogenic and mitochondrial biogenic responses in icefishes. Broader impacts range from basic biology, through training of young scientists, to enhanced understanding of clinically relevant biomedical processes. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||||||||||||||||||
Paleoatmospheric Krypton and Xenon Abundances from Trapped Air in Polar Ice as Indicators of Past Mean Ocean Temperature
|
0538630 |
2009-04-01 | Severinghaus, Jeffrey P. | No dataset link provided | 0538630<br/>Severinghaus<br/>This award supports a project to produce the first record of Kr/N2 in the paleo-atmosphere as measured in air bubbles trapped in ice cores. These measurements may be indicative of past variations in mean ocean temperature. Knowing the mean ocean temperature in the past will give insight into past variations in deep ocean temperature, which remain poorly understood. Deep ocean temperature variations are important for understanding the mechanisms of climate change. Krypton is highly soluble in water, and its solubility varies with temperature, with higher solubilities at colder water temperatures. A colder ocean during the last glacial period would therefore hold more krypton than today's ocean. Because the total amount of krypton in the ocean-atmosphere system is constant, the increase in the krypton inventory in the glacial ocean should cause a resultant decrease in the atmospheric inventory of krypton. The primary goal of this work is to develop the use of Kr/N2 as an indicator of paleo-oceanic mean temperature. This will involve improving the analytical technique for the Kr/N2 measurement itself, and measuring the Kr/N2 in air bubbles in ice from the last glacial maximum (LGM) and the late Holocene in the Vostok and GISP2 ice cores. This provides an estimate of LGM mean ocean temperature change, and allows for a comparison between previous estimates of deep ocean temperature during the LGM. The Vostok ice core is ideal for this purpose because of the absence of melt layers, which compromise the krypton and xenon signal. Another goal is to improve precision on the Xe/N2 measurement, which could serve as a second, independent proxy of ocean temperature change. A mean ocean temperature time series during this transition may help to explain these observations. Additionally, the proposed work will measure the Kr/N2 from marine isotope stage (MIS) 3 in the GISP2 ice core. Knowing the past ocean temperature during MIS 3 will help to constrain sea level estimates during this time period. The broader impacts of the proposed work: are that it will provide the first estimate of the extent and timing of mean ocean temperature change in the past. This will help to constrain previously proposed mechanisms of climate change involving large changes in deep ocean temperature. This project will also support the education of a graduate student. The PI gives interviews and talks to the media and public about climate change, and the work will enhance these outreach activities. Finally, the work will occur during the International Polar Year (IPY), and will underscore the unique importance of the polar regions for understanding the global atmosphere and ocean system. | None | None | false | false | |||||||||||||||||||||
Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes
|
0436190 |
2009-03-30 | Eastman, Joseph |
|
Patterns of biodiversity, as revealed by basic research in organismal biology, may be derived from ecological and evolutionary processes expressed in unique settings, such as Antarctica. The polar regions and their faunas are commanding increased attention as declining species diversity, environmental change, commercial fisheries, and resource management are now being viewed in a global context. Commercial fishing is known to have a direct and pervasive effect on marine biodiversity, and occurs in the Southern Ocean as far south as the Ross Sea. <br/>The nature of fish biodiversity in the Antarctic is different than in all other ocean shelf areas. Waters of the Antarctic continental shelf are ice covered for most of the year and water temperatures are nearly constant at -1.5 C. In these waters components of the phyletically derived Antarctic clade of Notothenioids dominate fish diversity. In some regions, including the southwestern Ross Sea, Notothenioids are overwhelmingly dominant in terms of number of species, abundance, and biomass. Such dominance by a single taxonomic group is unique among shelf faunas of the world. In the absence of competition from a taxonomically diverse fauna, Notothenioids underwent a habitat or depth related diversification keyed to the utilization of unfilled niches in the water column, especially pelagic or partially pelagic zooplanktivory and piscivory. This has been accomplished in the absence of a swim bladder for buoyancy control. They also may form a special type of adaptive radiation known as a species flock, which is an assemblage of a disproportionately high number of related species that have evolved rapidly within a defined area where most species are endemic. Diversification in buoyancy is the hallmark of the notothenioid radiation. Buoyancy is the feature of notothenioid biology that determines whether a species lives on the substrate, in the water column or both. Buoyancy also influences other key aspects of life history including swimming, feeding and reproduction and thus has implications for the role of the species in the ecosystem. <br/>With similarities to classic evolutionary hot spots, the Antarctic shelf and its Notothenioid radiation merit further exploration. The 2004 "International Collaborative Expedition to collect and study Fish Indigenous to Sub-Antarctic Habitats," or, "ICEFISH," provided a platform for collection of notothenioid fishes from sub-Antarctic waters between South America and Africa, which will be examined in this project. This study will determine buoyancy for samples of all notothenioid species captured during the ICEFISH cruise. This essential aspect of the biology is known for only 19% of the notothenioid fauna. Also, the gross and microscopic anatomy of brains and sense organs of the phyletically basal families Bovichtidae, Eleginopidae, and of the non-Antarctic species of the primarily Antarctic family Nototheniidae will be examined. The fish biodiversity and endemicity in poorly known localities along the ICEFISH cruise track, seamounts and deep trenches will be quantified. Broader impacts include improved information for comprehending and conserving biodiversity, a scientific and societal priority. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||||||||||||
CAREER: Genomic Networks for Cold-Adaptation in Embryos of Polar Marine Invertebrates
|
0238281 |
2008-06-09 | Marsh, Adam G. |
|
Although the cold ocean ecosystems comprise seventy-two percent of the biosphere on Earth by volume, they remain sparsely inhabited and relatively unexploited, particularly in terms of metazoan phyla. Consequently, the few animals that can exist at this border of intracellular freezing represent ideal systems for exploring genomic-level processes of environmental adaptations. Understanding life at a margin of the biosphere is likely to convey significant insights into the essential genomic processes necessary for survival under intense selection pressures. This study of adaptive mechanisms in genomic networks focuses on an experimental system that faces a formidable challenge for viability at low water temperatures: embryonic development at sea water temperatures of -1.8 o C in two Antarctic echinoderms, the sea star Odontaster validus and the sea urchin Sterechinus neumayeri. The project strategy will quantify temperature effects on gene expression and protein turnover networks during early development using a Bayesian network analysis to identify clusters of genes and proteins whose expression levels are associated in fixed, synergistic interactions. Ultimately, there is a simple question to be addressed: Is it more or less difficult (complex) for an embryo to develop in an extreme environment? To answer this question, the research plan will decipher network topologies and subnet structuring to uncover gene connectivity patterns associated with embryo development in this polar environment. This is the new area of Environmental Genomics that the PI will explore by expanding his research experience into computational network analyses. Overall, there is a significant need for integrative biologists in the future development of environmental sciences, particularly for the application of genomic-scale technologies to answer ecological-scale questions. The educational goals of this CAREER proposal are focused at two levels in terms of interesting young students in the developing field of environmental genomics: 1) increasing the racial diversity of the scientists attracted to environmental research, and 2) increasing the awareness of career opportunities within environmental research.<br/>These educational objectives are incorporated into the research plan to engage students with the excitement of working in an extreme environment such as Antarctica and to interest them in the insights that genome-level research can reveal about how organisms are adapted to specific habitats. Working in a remote, extreme environment such as Antarctica is always a challenge. However, the adventurous nature of the work can be utilized to establish educational and outreach components of high interest to both undergraduate students and the public in general. The proposed plan will bring the experience of working in Antarctica to a larger audience through several means. These include the following: the project theme of environmental genomics will be incorporated into a new Bioinformatics curriculum currently being developed at the University of Delaware; an intern program will be implemented to involved minority undergraduate students in summer research in the United States and then to bring the students to Antarctica to participate in the research; and a K-12 education program will bring the excitement of working in Antarctica to the classrooms of thousands of children (U.S. and international) through a program produced with the Marine Science Public Education Office at the University of Delaware. | POLYGON((163 -77,163.4 -77,163.8 -77,164.2 -77,164.6 -77,165 -77,165.4 -77,165.8 -77,166.2 -77,166.6 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.6 -78,166.2 -78,165.8 -78,165.4 -78,165 -78,164.6 -78,164.2 -78,163.8 -78,163.4 -78,163 -78,163 -77.9,163 -77.8,163 -77.7,163 -77.6,163 -77.5,163 -77.4,163 -77.3,163 -77.2,163 -77.1,163 -77)) | POINT(165 -77.5) | false | false |