{"dp_type": "Project", "free_text": "Porosity"}
[{"awards": "1643961 Anandakrishnan, Sridhar", "bounds_geometry": "POLYGON((-80 -83,-79.8 -83,-79.6 -83,-79.4 -83,-79.2 -83,-79 -83,-78.8 -83,-78.6 -83,-78.4 -83,-78.2 -83,-78 -83,-78 -83.2,-78 -83.4,-78 -83.6,-78 -83.8,-78 -84,-78 -84.2,-78 -84.4,-78 -84.6,-78 -84.8,-78 -85,-78.2 -85,-78.4 -85,-78.6 -85,-78.8 -85,-79 -85,-79.2 -85,-79.4 -85,-79.6 -85,-79.8 -85,-80 -85,-80 -84.8,-80 -84.6,-80 -84.4,-80 -84.2,-80 -84,-80 -83.8,-80 -83.6,-80 -83.4,-80 -83.2,-80 -83))", "dataset_titles": "Icequake Catalog from Rutford Ice Stream, West Antarctica, January 2019; Rutford Ice Stream short period data", "datasets": [{"dataset_uid": "601932", "doi": "10.15784/601932", "keywords": "Antarctica; Cryosphere; Grounding Line; Icequakes; Passive Seismic; QuakeMigrate; Rutford Ice Stream; Seismic Event Detection; Seismology", "people": "Anandakrishnan, Sridhar; Alley, Richard; Lee, Ian R.J.", "repository": "USAP-DC", "science_program": null, "title": "Icequake Catalog from Rutford Ice Stream, West Antarctica, January 2019", "url": "https://www.usap-dc.org/view/dataset/601932"}, {"dataset_uid": "200336", "doi": "https://doi.org/10.7914/SN/5B_2018", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Rutford Ice Stream short period data", "url": "http://fdsn.adc1.iris.edu/networks/detail/5B_2018/"}], "date_created": "Wed, 16 Nov 2022 00:00:00 GMT", "description": "Anandakrishnan/1643961 This award supports a project to study conditions under the Rutford Ice Stream, a large glacier that flows from the interior of the West Antarctic Ice Sheet to the Filchner Ronne Ice Shelf and then on to the ocean. The speed and volume of ice delivered to the ocean by this and similar glaciers is central to the question of sea-level change in the coming decades: if the volume of ice carried by Rutford to the ocean increases, then it will contribute to a rise in sea level. Numerical models of glacier flow that are used to forecast future conditions must include a component that accounts for the sliding of the ice over its bed. The sliding process is poorly modeled because of lack of detailed information about the bottom of glaciers, leading to increased uncertainty in the ice-flow models. Data from this project will provide such information. During this project, in collaboration with researchers at the British Antarctic Survey, a detailed survey of the properties of the bed of Rutford Ice Stream will be carried out. These surveys include using seismic instruments (which are sensitive to naturally occurring earthquakes within glaciers--called icequakes) to monitor the distribution of those icequakes at the bed. The locations, size, and timing of icequakes are controlled by the properties of the bed such as porosity, water pressure, and stress. As part of this project, a hole will be drilled to the bed of the glacier to monitor water pressures and to extract a sample of the basal material. By comparing the pressure variations with icequake production, the properties of the basal material over a large area can be better determined. Those results will aid in the application of numerical models by informing their description of the sliding process. This award requires field work in Antarctica. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -78.0, "geometry": "POINT(-79 -84)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; Seismicity; Ice Dynamic; Rutford Ice Stream", "locations": "Rutford Ice Stream", "north": -83.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Anandakrishnan, Sridhar", "platforms": null, "repo": "USAP-DC", "repositories": "IRIS; USAP-DC", "science_programs": null, "south": -85.0, "title": "Rutford Ice Stream Cooperative Research Program with British Antarctic Survey", "uid": "p0010392", "west": -80.0}, {"awards": "1739027 Tulaczyk, Slawek", "bounds_geometry": "POLYGON((-125 -73,-122.1 -73,-119.2 -73,-116.3 -73,-113.4 -73,-110.5 -73,-107.6 -73,-104.7 -73,-101.8 -73,-98.9 -73,-96 -73,-96 -73.7,-96 -74.4,-96 -75.1,-96 -75.8,-96 -76.5,-96 -77.2,-96 -77.9,-96 -78.6,-96 -79.3,-96 -80,-98.9 -80,-101.8 -80,-104.7 -80,-107.6 -80,-110.5 -80,-113.4 -80,-116.3 -80,-119.2 -80,-122.1 -80,-125 -80,-125 -79.3,-125 -78.6,-125 -77.9,-125 -77.2,-125 -76.5,-125 -75.8,-125 -75.1,-125 -74.4,-125 -73.7,-125 -73))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 24 Jun 2021 00:00:00 GMT", "description": "This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Collapse of the West Antarctic Ice Sheet (WAIS) could raise the global sea level by about 5 meters (16 feet) and the scientific community considers it the most significant risk for coastal environments and cities. The risk arises from the deep, marine setting of WAIS. Although scientists have been aware of the precarious setting of this ice sheet since the early 1970s, it is only now that the flow of ice in several large drainage basins is undergoing dynamic change consistent with a potentially irreversible disintegration. Understanding WAIS stability and enabling more accurate prediction of sea-level rise through computer simulation are two of the key objectives facing the polar science community today. This project will directly address both objectives by: (1) using state-of-the-art technologies to observe rapidly deforming parts of Thwaites Glacier that may have significant control over the future evolution of WAIS, and (2) using these new observations to improve ice-sheet models used to predict future sea-level rise. This project brings together a multidisciplinary team of UK and US scientists. This international collaboration will result in new understanding of natural processes that may lead to the collapse of the WAIS and will boost infrastructure for research and education by creating a multidisciplinary network of scientists. This team will mentor three postdoctoral researchers, train four Ph.D. students and integrate undergraduate students in this research project. The project will test the overarching hypothesis that shear-margin dynamics may exert powerful control on the future evolution of ice flow in Thwaites Drainage Basin. To test the hypothesis, the team will set up an ice observatory at two sites on the eastern shear margin of Thwaites Glacier. The team argues that weak topographic control makes this shear margin susceptible to outward migration and, possibly, sudden jumps in response to the drawdown of inland ice when the grounding line of Thwaites retreats. The ice observatory is designed to produce new and comprehensive constraints on englacial properties, including ice deformation rates, ice crystal fabric, ice viscosity, ice temperature, ice water content and basal melt rates. The ice observatory will also establish basal conditions, including thickness and porosity of the till layer and the deeper marine sediments, if any. Furthermore, the team will develop new knowledge with an emphasis on physical processes, including direct assessment of the spatial and temporal scales on which these processes operate. Seismic surveys will be carried out in 2D and 3D using wireless geophones. A network of broadband seismometers will identify icequakes produced by crevassing and basal sliding. Autonomous radar systems with phased arrays will produce sequential images of rapidly deforming internal layers in 3D while potentially also revealing the geometry of a basal water system. Datasets will be incorporated into numerical models developed on different spatial scales. One will focus specifically on shear-margin dynamics, the other on how shear-margin dynamics can influence ice flow in the whole drainage basin. Upon completion, the project aims to have confirmed whether the eastern shear margin of Thwaites Glacier can migrate rapidly, as hypothesized, and if so what the impacts will be in terms of sea-level rise in this century and beyond. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -96.0, "geometry": "POINT(-110.5 -76.5)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; GLACIER MOTION/ICE SHEET MOTION; Thwaites Glacier; USAP-DC; USA/NSF; Magmatic Volatiles; AMD; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE; ICE SHEETS; Amd/Us", "locations": "Thwaites Glacier", "north": -73.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Instrumentation and Support; Antarctic Glaciology", "paleo_time": null, "persons": "Tulaczyk, Slawek", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": "Thwaites (ITGC)", "south": -80.0, "title": "NSF-NERC: Thwaites Interdisciplinary Margin Evolution (TIME): The Role of Shear Margin Dynamics in the Future Evolution of the Thwaites Drainage Basin", "uid": "p0010199", "west": -125.0}, {"awards": "1935438 McCarthy, Christine", "bounds_geometry": null, "dataset_titles": "Code for Phase-sensitive radar as a tool for measuring firn compaction; Mechanical and Grain Size Data from Constant Stress Uniaxial Compaction Experiments on Synthetic Firn", "datasets": [{"dataset_uid": "200510", "doi": "10.5281/zenodo.5090283", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Code for Phase-sensitive radar as a tool for measuring firn compaction", "url": "https://zenodo.org/records/5090283"}, {"dataset_uid": "601937", "doi": "10.15784/601937", "keywords": "Antarctica; Cryosphere; Firn; Firn Density", "people": "Skarbek, Rob; Houdyshell, Kris; McCarthy, Christine M.", "repository": "USAP-DC", "science_program": null, "title": "Mechanical and Grain Size Data from Constant Stress Uniaxial Compaction Experiments on Synthetic Firn", "url": "https://www.usap-dc.org/view/dataset/601937"}], "date_created": "Thu, 03 Jun 2021 00:00:00 GMT", "description": "The ice sheets of Antarctica and Greenland are losing mass and contributing to accelerating global sea-level rise. Satellite altimetry provides precise measurement of ice-sheet volume change, but computing ice-sheet mass change\u2014the quantity relevant for estimating the ice sheet\u2019s sea-level contribution\u2014requires knowing the density of the ice sheet. The density near the ice-sheet surface also affects age estimates of air bubbles recovered in ice cores, which are a key source of information on past climate changes. Ice-sheet density is primarily controlled by the rate at which firn (snow that has persisted for a year or more on ice sheets) compacts into ice, but there is currently no widely accepted theory of how this compaction occurs. The goal of this project is thus to advance understanding of how firn densifies. The team will conduct laboratory experiments and analyze ice-penetrating radar and ice-core data from Antarctica. A key desired outcome of the project is a new model of firn densification that can be used to improve satellite-based altimetry measurements of present-day ice-sheet change and reconstructions of past climate changes from ice cores. This project will combine laboratory experiments, numerical modeling, and geophysical techniques to determine the rheology of firn as it compacts to form ice. The team will use two methods to measure firn compaction: (1) lab-based experiments and (2) analysis of ice-core and radar data. For the lab-based work, the team will conduct a suite of compaction experiments on synthetic firn samples under uni-axial strain and constant temperature and axial stress. They will also measure the grain-size evolution. By running a large number of experiments (\u003e 25), the team will constrain key parameters that determine how firn compaction rate depends on density, temperature, grain size, and axial stress. The experiments will be conducted in a table-top apparatus at temperatures as low as -40 degrees C and axial stresses up to 4 MPa. For the field-data-based component, the team will analyze ice-core and ice-penetrating radar data to produce the first coincident set of radar-derived firn compaction rates, borehole temperatures, firn densities, and firn grain sizes. Results from lab and field data will be tied together using a numerical firn compaction model. This model is formulated using conservation of mass, momentum, and energy, along with an explicit description of firn rheology and grain-size evolution. Constraints on firn rheology will be incorporated into this model and the team will use it to examine fundamental questions about how changes in the climate affect firn density. This is a crucial unknown that contributes significant measurement uncertainty in estimates of past and present climate change. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "AMD; LABORATORY; USA/NSF; COMPUTERS; USAP-DC; FIRN; Antarctic Ice Sheet; Amd/Us", "locations": "Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Arctic Natural Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "McCarthy, Christine M.; Kingslake, Jonathan", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "Zenodo", "repositories": "USAP-DC; Zenodo", "science_programs": null, "south": null, "title": "Understanding Firn Rheology Through Laboratory Compaction Experiments and Radar Data", "uid": "p0010185", "west": null}, {"awards": "1543453 Lyons, W. Berry; 1543347 Rosenheim, Brad; 1543405 Leventer, Amy; 1543441 Fricker, Helen; 1543396 Christner, Brent; 1543537 Priscu, John", "bounds_geometry": "POLYGON((-163.611 -84.33543,-162.200034 -84.33543,-160.789068 -84.33543,-159.378102 -84.33543,-157.967136 -84.33543,-156.55617 -84.33543,-155.145204 -84.33543,-153.734238 -84.33543,-152.323272 -84.33543,-150.912306 -84.33543,-149.50134 -84.33543,-149.50134 -84.3659157,-149.50134 -84.3964014,-149.50134 -84.4268871,-149.50134 -84.4573728,-149.50134 -84.4878585,-149.50134 -84.5183442,-149.50134 -84.5488299,-149.50134 -84.5793156,-149.50134 -84.6098013,-149.50134 -84.640287,-150.912306 -84.640287,-152.323272 -84.640287,-153.734238 -84.640287,-155.145204 -84.640287,-156.55617 -84.640287,-157.967136 -84.640287,-159.378102 -84.640287,-160.789068 -84.640287,-162.200034 -84.640287,-163.611 -84.640287,-163.611 -84.6098013,-163.611 -84.5793156,-163.611 -84.5488299,-163.611 -84.5183442,-163.611 -84.4878585,-163.611 -84.4573728,-163.611 -84.4268871,-163.611 -84.3964014,-163.611 -84.3659157,-163.611 -84.33543))", "dataset_titles": "Antarctica - PI Continuous - GZ01-WIS_GroundingZone_01 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - GZ13-WIS_GroundingZone_13 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA02-WIS_LAKES_02 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA06-WIS_LAKES_06 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA07-WIS_LAKES_07 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA09-WIS_LAKES_09 P.S. - GPS/GNSS Observations Dataset; Bistatic Radar Sounding of Whillans Ice Stream, Antarctica and Store Glacier, Greenland; CTD data from Mercer Subglacial Lake and access borehole; Discrete bulk sediment properties data from Mercer Subglacial Lake; Isotopic data from Whillans Ice Stream grounding zone, West Antarctica; Mercer Subglacial Lake radiocarbon and stable isotope data ; Mercer Subglacial Lake (SLM) microbial composition: 16S rRNA genes (Sequence Read Archive; BioProject: PRJNA790995); Mercer Subglacial Lake (SLM) noble gas and isotopic data; Mercer Subglacial Lake water column viral metagenomic sequencing; Salsa sediment cores; Sediment porewater properties data from Mercer Subglacial Lake; Water column biogeochemical data from Mercer Subglacial Lake", "datasets": [{"dataset_uid": "601664", "doi": "10.15784/601664", "keywords": "Antarctica; Gas; Geochemistry; Glacier; Glaciology; Mercer Subglacial Lake; Methane; SALSA; Sediment Core; West Antarctic Ice Sheet", "people": "Science Team, SALSA; Dore, John; Michaud, Alexander; Skidmore, Mark; Tranter, Martyn; Steigmeyer, August", "repository": "USAP-DC", "science_program": null, "title": "Sediment porewater properties data from Mercer Subglacial Lake", "url": "https://www.usap-dc.org/view/dataset/601664"}, {"dataset_uid": "601661", "doi": "10.15784/601661", "keywords": "Antarctica; Carbon; Glacier; Glaciers/ice Sheet; Glaciers/Ice Sheet; Iron; Mercer Subglacial Lake; Mineralogy; Particle Size; Physical Properties; SALSA; Sediment Core; Sulfur; West Antarctic Ice Sheet", "people": "Tranter, Martyn; Skidmore, Mark; Hawkings, Jon; Science Team, SALSA; Campbell, Timothy; Dore, John; Michaud, Alexander; Venturelli, Ryan A", "repository": "USAP-DC", "science_program": null, "title": "Discrete bulk sediment properties data from Mercer Subglacial Lake", "url": "https://www.usap-dc.org/view/dataset/601661"}, {"dataset_uid": "601657", "doi": "10.15784/601657", "keywords": "Antarctica; Conductivity; CTD; Depth; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hot Water Drill; Mercer Subglacial Lake; Physical Properties; SALSA; Subglacial Lake; Temperature", "people": "Rosenheim, Brad; Priscu, John; Dore, John; Leventer, Amy", "repository": "USAP-DC", "science_program": null, "title": "CTD data from Mercer Subglacial Lake and access borehole", "url": "https://www.usap-dc.org/view/dataset/601657"}, {"dataset_uid": "601360", "doi": "10.15784/601360", "keywords": "Antarctica; Radiocarbon; Sediment; Whillans Ice Stream", "people": "Venturelli, Ryan A", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Isotopic data from Whillans Ice Stream grounding zone, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/601360"}, {"dataset_uid": "200282", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Mercer Subglacial Lake (SLM) microbial composition: 16S rRNA genes (Sequence Read Archive; BioProject: PRJNA790995)", "url": "https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA790995"}, {"dataset_uid": "200212", "doi": "10.7283/PT0Q-JB95", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - GZ01-WIS_GroundingZone_01 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/PT0Q-JB95"}, {"dataset_uid": "601498", "doi": "10.15784/601498", "keywords": "Antarctica; Mercer Subglacial Lake; Noble Gas", "people": "Lyons, W. Berry; Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "Mercer Subglacial Lake (SLM) noble gas and isotopic data", "url": "https://www.usap-dc.org/view/dataset/601498"}, {"dataset_uid": "200214", "doi": "10.7283/YW8Z-TK03", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA02-WIS_LAKES_02 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/YW8Z-TK03"}, {"dataset_uid": "200215", "doi": "10.7283/C503-KS23", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA06-WIS_LAKES_06 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/C503-KS23"}, {"dataset_uid": "200216", "doi": "10.7283/F8NH-CV04", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA07-WIS_LAKES_07 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/F8NH-CV04"}, {"dataset_uid": "200217", "doi": "10.7283/3JMY-Y504", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA09-WIS_LAKES_09 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/3JMY-Y504"}, {"dataset_uid": "200246", "doi": "", "keywords": null, "people": null, "repository": "OSU-MGR", "science_program": null, "title": "Salsa sediment cores", "url": "https://osu-mgr.org"}, {"dataset_uid": "200213", "doi": "10.7283/F7BB-JH05", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - GZ13-WIS_GroundingZone_13 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/F7BB-JH05"}, {"dataset_uid": "601472", "doi": "10.15784/601472", "keywords": "Antarctica; Bistatic Radar; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS Data; Greenland; Lake Whillans; Radar; Store Glacier; Whillans Ice Stream; WISSARD", "people": "Peters, Sean; Bienert, Nicole; Schroeder, Dustin; Siegfried, Matthew; MacKie, Emma; Dawson, Eliza; Christoffersen, Poul", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Bistatic Radar Sounding of Whillans Ice Stream, Antarctica and Store Glacier, Greenland", "url": "https://www.usap-dc.org/view/dataset/601472"}, {"dataset_uid": "601672", "doi": "10.15784/601672", "keywords": "Antarctica; Isotope; Mercer Subglacial Lake; Radiocarbon; Subglacial Lake", "people": "Venturelli, Ryan; Rosenheim, Brad", "repository": "USAP-DC", "science_program": null, "title": "Mercer Subglacial Lake radiocarbon and stable isotope data ", "url": "https://www.usap-dc.org/view/dataset/601672"}, {"dataset_uid": "200342", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Mercer Subglacial Lake water column viral metagenomic sequencing", "url": "https://www.ncbi.nlm.nih.gov/biosample/32811410"}, {"dataset_uid": "601663", "doi": "10.15784/601663", "keywords": "Antarctica; Carbon; Cell Counts; Geochemistry; Glacier; Glaciers/ice Sheet; Glaciers/Ice Sheet; Mercer Subglacial Lake; Microbes; Nutrients; SALSA; Stable Isotopes; Trace Elements; West Antarctic Ice Sheet", "people": "Science Team, SALSA; Dore, John; Skidmore, Mark; Hawkings, Jon; Steigmeyer, August; Li, Wei; Barker, Joel; Tranter, Martyn; Priscu, John", "repository": "USAP-DC", "science_program": null, "title": "Water column biogeochemical data from Mercer Subglacial Lake", "url": "https://www.usap-dc.org/view/dataset/601663"}], "date_created": "Thu, 16 Jul 2020 00:00:00 GMT", "description": "The Antarctic subglacial environment remains one of the least explored regions on Earth. This project will examine the physical and biological characteristics of Subglacial Lake Mercer, a lake that lies 1200m beneath the West Antarctic Ice Sheet. This study will address key questions relating to the stability of the ice sheet, the subglacial hydrological system, and the deep-cold subglacial biosphere. The education and outreach component aims to widely disseminate results to the scientific community and to the general public through short films, a blog, and a website. Subglacial Lake Mercer is one of the larger hydrologically active lakes in the southern basin of the Whillans Ice Plain, West Antarctica. It receives about 25 percent of its water from East Antarctica with the remainder originating from West Antarctica, is influenced by drain/fill cycles in a lake immediately upstream (Subglacial Lake Conway), and lies about 100 km upstream of the present grounding line of the Ross Ice Shelf. This site will yield information on the history of the Whillans and Mercer Ice Streams, and on grounding line migration. The integrated study will include direct sampling of basal ice, water, and sediment from the lake in concert with surface geophysical surveys over a three-year period to define the hydrological connectivity among lakes on the Whillans Ice Plain and their flow paths to the sea. The geophysical surveys will furnish information on subglacial hydrology, aid the site selection for hot-water drilling, and provide spatial context for interpreting findings. The hot-water-drilled boreholes will be used to collect basal ice samples, provide access for direct measurement of subglacial physical, chemical, and biological conditions in the water column and sediments, and to explore the subglacial water cavities using a remotely operated vehicle equipped with sensors, cameras, and sampling equipment. Data collected from this study will address the overarching hypothesis \"Contemporary biodiversity and carbon cycling in hydrologically-active subglacial environments associated with the Mercer and Whillans ice streams are regulated by the mineralization and cycling of relict marine organic matter and through interactions among ice, rock, water, and sediments\". The project will be undertaken by a collaborative team of scientists, with expertise in microbiology, biogeochemistry, hydrology, geophysics, glaciology, marine geology, paleoceanography, and science communication.", "east": -149.50134, "geometry": "POINT(-156.55617 -84.4878585)", "instruments": null, "is_usap_dc": true, "keywords": "SEDIMENTS; Antarctica; ISOTOPES; Subglacial Lake; USAP-DC; VIRUSES; PALEOCLIMATE RECONSTRUCTIONS; BACTERIA/ARCHAEA; LABORATORY; Radiocarbon; Whillans Ice Stream; AMD; SALSA; ECOSYSTEM FUNCTIONS; RADIOCARBON; FIELD INVESTIGATION; ICE MOTION; Mercer Ice Stream; Amd/Us; USA/NSF; GLACIERS/ICE SHEETS", "locations": "Antarctica; Mercer Ice Stream; Whillans Ice Stream", "north": -84.33543, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Instrumentation and Support; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Rosenheim, Brad; Fricker, Helen; Priscu, John; Leventer, Amy; Dore, John; Lyons, W. Berry; Christner, Brent", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "GenBank; NCBI GenBank; OSU-MGR; UNAVCO; USAP-DC", "science_programs": null, "south": -84.640287, "title": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments", "uid": "p0010119", "west": -163.611}, {"awards": "1551195 Burdige, David", "bounds_geometry": "POLYGON((-71 -64,-70.1 -64,-69.2 -64,-68.3 -64,-67.4 -64,-66.5 -64,-65.6 -64,-64.7 -64,-63.8 -64,-62.9 -64,-62 -64,-62 -64.4,-62 -64.8,-62 -65.2,-62 -65.6,-62 -66,-62 -66.4,-62 -66.8,-62 -67.2,-62 -67.6,-62 -68,-62.9 -68,-63.8 -68,-64.7 -68,-65.6 -68,-66.5 -68,-67.4 -68,-68.3 -68,-69.2 -68,-70.1 -68,-71 -68,-71 -67.6,-71 -67.2,-71 -66.8,-71 -66.4,-71 -66,-71 -65.6,-71 -65.2,-71 -64.8,-71 -64.4,-71 -64))", "dataset_titles": "Expedition data of NBP1601; Project: Organic Carbon Oxidation and Iron Remobilization by West Antarctic Shelf Sediments", "datasets": [{"dataset_uid": "002665", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1601", "url": "https://www.rvdata.us/search/cruise/NBP1601"}, {"dataset_uid": "200148", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Project: Organic Carbon Oxidation and Iron Remobilization by West Antarctic Shelf Sediments", "url": "https://www.bco-dmo.org/project/806864"}], "date_created": "Tue, 16 Jun 2020 00:00:00 GMT", "description": "General Statement: The continental shelf region west of the Antarctic Peninsula has recently undergone dramatic changes and ecosystem shifts, and the community of organisms that live in, or feed off, the sea floor sediments is being impacted by species invasions from the north. Previous studies of these sediments indicate that this community may consume much more of the regional productivity than previously estimated, suggesting that sediments are a rich and important component of this ecosystem and one that may be ripe for dramatic change. Furthermore, under richer sediment conditions, iron is mobilized and released back to the water column. Since productivity in this ecosystem is thought to be limited by the availability of iron, increased rates of iron release from these sediments could stimulate productivity and promote greater overall ecosystem change. In this research, a variety of sites across the shelf region will be sampled to accurately evaluate the role of sediments in consuming ecosystem productivity and to estimate the current level of iron release from the sediments. This project will provide a baseline set of sediment results that will present a more complete picture of the west Antarctic shelf ecosystem, will allow for comparison with water column measurements and for evaluation of the fundamental workings of this important ecosystem. This is particularly important since high latitude systems may be vulnerable to the effects of climate fluctuations. Both graduate and undergraduate students will be trained. Presentations will be made at scientific meetings, at other universities, and at outreach events. A project web site will present key results to the public and explain how this new information improves understanding of Antarctic ecosystems. Technical Description of Project: In order to determine the role of sediments within the west Antarctic shelf ecosystem, this project will determine the rates of sediment organic matter oxidation at a variety of sites across the Palmer Long Term Ecosystem Research (LTER) study region. To estimate the rates of release of iron and manganese from the sediments, these same sites will be sampled for detailed vertical distributions of the concentrations of these metals both in the porewaters and in important mineral phases. Since sediment sampling will be done at LTER sites, the sediment data can be correlated with the rich productivity data set from the LTER. In detail, the project: a) will determine the rates of oxygen consumption, organic carbon oxidation, nutrient release, and iron mobilization by shelf sediments west of the Antarctic Peninsula; b) will investigate the vertical distribution of diagenetic reactions within the sediments; and c) will assess the regional importance of these sediment rates. Sediment cores will be used to determine sediment-water fluxes of dissolved oxygen, total carbon dioxide, nutrients, and the vertical distributions of these dissolved compounds, as well as iron and manganese in the pore waters. Bulk sediment properties of porosity, organic carbon and nitrogen content, carbonate content, biogenic silica content, and multiple species of solid-phase iron, manganese, and sulfur species will also be determined. These measurements will allow determination of total organic carbon oxidation and denitrification rates, and the proportion of aerobic versus anaerobic respiration at each site. Sediment diagenetic modeling will link the processes of organic matter oxidation to metal mobilization. Pore water and solid phase iron and manganese distributions will be used to model iron diagenesis in these sediments and to estimate the iron flux from the sediments to the overlying waters. Finally, the overall regional average and distribution of the sediment processes will be compared with the distributions of seasonally averaged chlorophyll biomass and productivity.", "east": -62.0, "geometry": "POINT(-66.5 -66)", "instruments": null, "is_usap_dc": true, "keywords": "BIOGEOCHEMICAL CYCLES; Iron Remobilization; R/V NBP; NBP1601; SEDIMENT CHEMISTRY; USAP-DC; West Antarctic Shelf", "locations": "West Antarctic Shelf", "north": -64.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Burdige, David; Christensen, John", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "BCO-DMO; R2R", "science_programs": null, "south": -68.0, "title": "Organic carbon oxidation and iron remobilization by West Antarctic shelf sediments ", "uid": "p0010108", "west": -71.0}, {"awards": "1341585 Sorlien, Christopher", "bounds_geometry": "POLYGON((-180 -73.33,-179.1 -73.33,-178.2 -73.33,-177.3 -73.33,-176.4 -73.33,-175.5 -73.33,-174.6 -73.33,-173.7 -73.33,-172.8 -73.33,-171.9 -73.33,-171 -73.33,-171 -73.864,-171 -74.398,-171 -74.932,-171 -75.466,-171 -76,-171 -76.534,-171 -77.068,-171 -77.602,-171 -78.136,-171 -78.67,-171.9 -78.67,-172.8 -78.67,-173.7 -78.67,-174.6 -78.67,-175.5 -78.67,-176.4 -78.67,-177.3 -78.67,-178.2 -78.67,-179.1 -78.67,180 -78.67,178.5 -78.67,177 -78.67,175.5 -78.67,174 -78.67,172.5 -78.67,171 -78.67,169.5 -78.67,168 -78.67,166.5 -78.67,165 -78.67,165 -78.136,165 -77.602,165 -77.068,165 -76.534,165 -76,165 -75.466,165 -74.932,165 -74.398,165 -73.864,165 -73.33,166.5 -73.33,168 -73.33,169.5 -73.33,171 -73.33,172.5 -73.33,174 -73.33,175.5 -73.33,177 -73.33,178.5 -73.33,-180 -73.33))", "dataset_titles": "Ross Sea unconformities digital grids in depth and two-way time", "datasets": [{"dataset_uid": "601098", "doi": "10.15784/601098", "keywords": "Antarctica; Continental Margin; Geology/Geophysics - Other; Marine Geoscience; Miocene; Oligocene; Seismic Reflection", "people": "Sorlien, Christopher; Wilson, Douglas S.", "repository": "USAP-DC", "science_program": null, "title": "Ross Sea unconformities digital grids in depth and two-way time", "url": "https://www.usap-dc.org/view/dataset/601098"}], "date_created": "Fri, 25 May 2018 00:00:00 GMT", "description": "Intellectual Merit: This project will produce a new compilation of Ross Sea seismic stratigraphy, including new interpretations, that can be used to provide boundary conditions on the tectonic and glacial evolution of West Antarctica and the Ross Sea. The principal goals include compilation of, and interpretation of, all available existing seismic reflection data for the Western Ross Sea, coupled with geophysical modeling to produce paleo-bathymetric reconstructions for the entire 800 km-wide Ross Sea. Specific tasks will include: extending existing work on mapping travel time to reflectors, identifying relations in the seismic data that indicate subsidence through sea level, constructing velocity models for converting travel time to thickness, and using the velocity models to estimate density and porosity of sediments for backstripping analysis. Modeling/backstripping efforts will be used to constrain past bathymetry. Digital interpretations and stratigraphic grids will be provided as supplements to publications. In that way the results of this study can be used in thermal subsidence modeling and restoration of eroded rock to other parts of Ross Embayment and Marie Byrd Land by others. Digital products may be provided in advance of publication to modelers in a way that will not hurt publication chances. Broader impacts: The results of this work will be important for paleo-geographic reconstructions of Antarctica and will therefore be of use to a broad range of researchers, particularly those working in the Ross Sea region. The digital products can be used to test models for the past fluctuations of West Antarctic ice sheets, and in planning for future sediment drilling projects. Two undergraduates to be chosen from applicants will be involved in summer internships held at the University of Rhode Island. Outreach will also include a new website and one or more Wikipedia entries related to Ross Sea sub-sea floor characteristics. The project includes an international collaboration with Dr. Chiara Sauli and others at Instituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS) in Italy.", "east": -171.0, "geometry": "POINT(177 -76)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": -73.33, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Sorlien, Christopher; Luyendyk, Bruce P.", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.67, "title": "Subsidence, Tilting, Sedimentation, and Oligocene-middle Miocene paleo-depth of Ross Sea", "uid": "p0000271", "west": 165.0}, {"awards": "0539578 Alley, Richard; 0539232 Cuffey, Kurt", "bounds_geometry": "POINT(112.083 -79.467)", "dataset_titles": "Grain Size Full Population Dataset from WDC06A Core; Temperature Profile of the West Antarctic Ice Sheet Divide Deep Borehole; Temperature Reconstruction at the West Antarctic Ice Sheet Divide; Updated (2017) bubble number-density, size, shape, and modeled paleoclimate data; WAIS Divide Ice Core Vertical Thin Section Low-resolution Digital Imagery; WAIS Divide Surface and Snow-pit Data, 2009-2013; WDC 06A Mean Grain Size Data", "datasets": [{"dataset_uid": "601079", "doi": "10.15784/601079", "keywords": "Antarctica; Atmosphere; AWS; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Meteorology; Physical Properties; Snow Pit; Temperature; WAIS Divide; WAIS Divide Ice Core; Weatherstation", "people": "Alley, Richard; Fegyveresi, John", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Surface and Snow-pit Data, 2009-2013", "url": "https://www.usap-dc.org/view/dataset/601079"}, {"dataset_uid": "609656", "doi": "10.7265/N5MC8X08", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Grain Size; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Cravens, Eric D.; Fitzpatrick, Joan", "repository": "USAP-DC", "science_program": null, "title": "WDC 06A Mean Grain Size Data", "url": "https://www.usap-dc.org/view/dataset/609656"}, {"dataset_uid": "609550", "doi": "10.7265/N5V69GJW", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Temperature; WAIS Divide; WAIS Divide Ice Core", "people": "Clow, Gary D.; Cuffey, Kurt M.", "repository": "USAP-DC", "science_program": null, "title": "Temperature Profile of the West Antarctic Ice Sheet Divide Deep Borehole", "url": "https://www.usap-dc.org/view/dataset/609550"}, {"dataset_uid": "609655", "doi": "10.7265/N5VX0DG0", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Grain Size; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Cravens, Eric D.; Fitzpatrick, Joan", "repository": "USAP-DC", "science_program": null, "title": "Grain Size Full Population Dataset from WDC06A Core", "url": "https://www.usap-dc.org/view/dataset/609655"}, {"dataset_uid": "600377", "doi": "10.15784/600377", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Nitrogen; Paleoclimate; Temperature; WAIS Divide; WAIS Divide Ice Core", "people": "Cuffey, Kurt M.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Temperature Reconstruction at the West Antarctic Ice Sheet Divide", "url": "https://www.usap-dc.org/view/dataset/600377"}, {"dataset_uid": "601224", "doi": "10.15784/601224", "keywords": "Antarctic; Antarctica; Bubble Number Density; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Records; NSF-ICF Microtome and Photography Stage; Paleoclimate; Physical Properties; Snow/ice; Snow/Ice; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Alley, Richard; Voigt, Donald E.; Fitzpatrick, Joan; Spencer, Matthew; Fegyveresi, John", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Updated (2017) bubble number-density, size, shape, and modeled paleoclimate data", "url": "https://www.usap-dc.org/view/dataset/601224"}, {"dataset_uid": "609654", "doi": "10.7265/N5GM858X", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Photo/video; Photo/Video; Thin Sections; WAIS Divide; WAIS Divide Ice Core", "people": "Cravens, Eric D.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Vertical Thin Section Low-resolution Digital Imagery", "url": "https://www.usap-dc.org/view/dataset/609654"}], "date_created": "Thu, 12 Jan 2017 00:00:00 GMT", "description": "0539578\u003cbr/\u003eAlley \u003cbr/\u003eThis award supports a five-year collaborative project to study the physical-properties of the planned deep ice core and the temperature of the ice in the divide region of the West Antarctic Ice Sheet. The intellectual merit of the proposed research is to provide fundamental information on the state of the ice sheet, to validate the integrity of the climate record, to help reconstruct the climate record, and to understand the flow state and history of the ice sheet. This information will initially be supplied to other investigators and then to the public and to appropriate databases, and will be published in the refereed scientific literature. The objectives of the proposed research are to aid in dating of the core through counting of annual layers, to identify any exceptionally warm intervals in the past through counting of melt layers, to learn as much as possible about the flow state and history of the ice through measurement of size, shape and arrangements of bubbles, clathrate inclusions, grains and their c-axes, to identify any flow disturbances through these indicators, and to learn the history of snow accumulation and temperature from analyses of bubbles and borehole temperatures combined with flow modeling and use of data from other collaborators. These results will then be synthesized and communicated. Failure to examine cores can lead to erroneous identification of flow features as climate changes, so careful examination is required. Independent reconstruction of accumulation rate provides important data on climate change, and improves confidence in interpretation of other climate indicators. Borehole temperatures are useful recorders of temperature history. Flow state and history are important in understanding climate history and potential contribution of ice to sea-level change. By contributing to all of these and additional issues, the proposed research will be of considerable value. The broader impacts of the research include making available to the public improved knowledge on societally central questions involving abrupt climate change and sea-level rise. The project will also contribute to the education of advanced students, will utilize results in education of introductory students, and will make vigorous efforts in outreach, informal science education, and supplying information to policy-makers as requested, thus contributing to a more-informed society.", "east": 112.083, "geometry": "POINT(112.083 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERA; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": true, "keywords": "LABORATORY; WAIS Divide; Ice Core; Temperature Profiles; FIELD SURVEYS; Bubble Number Density; GROUND-BASED OBSERVATIONS; Wais Divide-project", "locations": "WAIS Divide", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Fitzpatrick, Joan; Alley, Richard; Fegyveresi, John; Clow, Gary D.; Cuffey, Kurt M.; Cravens, Eric D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Collaborative Research: Physical Properties of the WAIS Divide Deep Core", "uid": "p0000038", "west": 112.083}, {"awards": "1043740 Lenczewski, Melissa", "bounds_geometry": "POLYGON((165 -77.5,165.3 -77.5,165.6 -77.5,165.9 -77.5,166.2 -77.5,166.5 -77.5,166.8 -77.5,167.1 -77.5,167.4 -77.5,167.7 -77.5,168 -77.5,168 -77.6,168 -77.7,168 -77.8,168 -77.9,168 -78,168 -78.1,168 -78.2,168 -78.3,168 -78.4,168 -78.5,167.7 -78.5,167.4 -78.5,167.1 -78.5,166.8 -78.5,166.5 -78.5,166.2 -78.5,165.9 -78.5,165.6 -78.5,165.3 -78.5,165 -78.5,165 -78.4,165 -78.3,165 -78.2,165 -78.1,165 -78,165 -77.9,165 -77.8,165 -77.7,165 -77.6,165 -77.5))", "dataset_titles": "Fate of Drilling Fluids during the South McMurdo Sound Project (SMS) of the Antarctic Geological Drilling Program (ANDRILL)", "datasets": [{"dataset_uid": "600129", "doi": "10.15784/600129", "keywords": "Andrill; Antarctica; Chemistry:fluid; Chemistry:Fluid; Chemistry:rock; Chemistry:Rock; Drilling Fluid; Geochemistry; McMurdo; Ross Sea; Sediment Core", "people": "Lenczewski, Melissa", "repository": "USAP-DC", "science_program": "ANDRILL", "title": "Fate of Drilling Fluids during the South McMurdo Sound Project (SMS) of the Antarctic Geological Drilling Program (ANDRILL)", "url": "https://www.usap-dc.org/view/dataset/600129"}], "date_created": "Mon, 27 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: The PI proposes to utilize computer models used by hydrogeologists to establish the fate and transport of contamination and determine the extent of drilling fluid contamination in the ANDRILL SMS core. For these models, previously collected logs of lithology, porosity, fracture density, fracture type, fracture orientation, drilling fluid loss, drilling fluid characteristics and temperature will be used as input parameters. In addition, biodegradation and sorption constants for the drilling fluid will be determined and incorporated into the models. Samples of drilling fluids used during coring as well as the return fluids were collected at the drill site using standard microbiological sampling techniques. Fluids will be tested at in situ temperatures under aerobic and anaerobic conditions to determine biodegradation constants. Sorption will be determined between the drilling fluids and core samples using standard isotherm methods. Geochemical and microbial fingerprints of the fluids and the changes during biodegradation will determine the potential impact of the drilling fluids on the isolated microbial communities and the geochemistry within various subsurface lithologic units beneath the southern McMurdo Sound in Antarctica. The results of this study could potentially provide guidelines on developing less detrimental methods for future exploration, if deemed necessary through this research. Broader impacts: This proposed project will train a graduate student. The methods developed for analyses of samples in this project will serve as a guide for future studies of similar interest and will improve the understanding of ecological impacts of geologic drilling in Antarctica. The results of this study will be used as a reference for comparison with future studies examining newly developed, and improved, sample collection methods in future exploratory drilling projects in pristine environments. The PI is new to Antarctic research.", "east": 168.0, "geometry": "POINT(166.5 -78)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Lenczewski, Melissa", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ANDRILL", "south": -78.5, "title": "Fate of Drilling Fluids during the South McMurdo Sound Project (SMS) of the Antarctic Geological Drilling Program (ANDRILL)", "uid": "p0000468", "west": 165.0}, {"awards": "1043313 Spencer, Matthew; 1043528 Alley, Richard", "bounds_geometry": "POINT(112.1166 -79.4666)", "dataset_titles": "Average Annual Layer Thickness of the WAIS Divide Ice Core from Visual Stratigraphy; C-axis Fabric from Physical Properties Samples of the WAIS Divide Ice Core; Updated (2017) bubble number-density, size, shape, and modeled paleoclimate data; WAIS Divide 580m Bubble and Grain Hybrid Data; WAIS Divide Surface and Snow-pit Data, 2009-2013", "datasets": [{"dataset_uid": "609603", "doi": "10.7265/N53J39X3", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Spencer, Matthew", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Average Annual Layer Thickness of the WAIS Divide Ice Core from Visual Stratigraphy", "url": "https://www.usap-dc.org/view/dataset/609603"}, {"dataset_uid": "601079", "doi": "10.15784/601079", "keywords": "Antarctica; Atmosphere; AWS; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Meteorology; Physical Properties; Snow Pit; Temperature; WAIS Divide; WAIS Divide Ice Core; Weatherstation", "people": "Alley, Richard; Fegyveresi, John", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Surface and Snow-pit Data, 2009-2013", "url": "https://www.usap-dc.org/view/dataset/601079"}, {"dataset_uid": "601087", "doi": "10.15784/601087", "keywords": "Air Bubbles; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Strain; Physical Ice Properties; Snow/ice; Snow/Ice; Strain", "people": "Fegyveresi, John; Alley, Richard", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide 580m Bubble and Grain Hybrid Data", "url": "https://www.usap-dc.org/view/dataset/601087"}, {"dataset_uid": "609605", "doi": "10.7265/N5W093VM", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "people": "Alley, Richard; Voigt, Donald E.; Fitzpatrick, Joan", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "C-axis Fabric from Physical Properties Samples of the WAIS Divide Ice Core", "url": "https://www.usap-dc.org/view/dataset/609605"}, {"dataset_uid": "601224", "doi": "10.15784/601224", "keywords": "Antarctic; Antarctica; Bubble Number Density; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Records; NSF-ICF Microtome and Photography Stage; Paleoclimate; Physical Properties; Snow/ice; Snow/Ice; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Alley, Richard; Voigt, Donald E.; Fitzpatrick, Joan; Spencer, Matthew; Fegyveresi, John", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Updated (2017) bubble number-density, size, shape, and modeled paleoclimate data", "url": "https://www.usap-dc.org/view/dataset/601224"}], "date_created": "Tue, 19 Jun 2012 00:00:00 GMT", "description": "1043528/Alley This award supports a project to complete the physical-properties studies of the WAIS Divide deep ice core, now being collected in West Antarctica. Ongoing work funded by NSF, under a grant that is ending, has produced visible stratigraphy dating, inspection of the core for any melt layers, volcanic horizons, flow disturbances or other features, analysis of bubble number-densities allowing reconstruction of a two-millennial cooling trend in the latter Holocene at the site, characterization of other bubble characteristics (size, etc.), density studies, characterization of snow-surface changes at the site, preliminary c-axis studies, and more. The current proposal seeks to complete this work, once the rest of the core is recovered. The intellectual merit of the proposed activity starts with quality assurance for the core, by visual detection of any evidence of flow disturbances that would disrupt the integrity of the climate record. Inspection will also reveal any melt layers, volcanic horizons, etc. Annual-layer dating will be conducted; thus far, the visible strata have not been as useful as some other indicators, but the possibility (based on experience in Greenland) that visible examination will allow detection of thinner annual layers than other techniques motivates the effort. Bubble number-density will be used to reconstruct temperature changes through the rest of the bubbly part of the core, providing important paleoclimatic data for earlier parts of the Holocene. Coordinated interpretation of c-axis fabrics, grain sizes and shapes, and bubble characteristics will be used to learn about the history of ice flow, the processes of ice flow, and the softness of the ice for additional deformation. Analysis of surface data already collected will improve interpretation of the layering of the core. It is possible that the annual-layer dating will not be sufficiently successful, and that the core will be undisturbed with no melt layers; if so, then these efforts will not yield major publications. However, success of the other efforts should produce improved understanding of the history and stability of the ice sheet, and key processes controlling these, and the quality assurance provided by the visual examination is important for the project as a whole. The broader impacts of the proposed activity include education of a PhD student and multiple undergraduates, and research opportunities for a junior faculty member at an undergraduate institution. The proposed activity will help support an especially vigorous education and outreach effort providing undergraduate instruction for over 1000 students per year, reaching thousands more citizens and many policymakers, and preparing educational materials used at many levels.", "east": 112.1166, "geometry": "POINT(112.1166 -79.4666)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e VISUAL OBSERVATIONS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ACFA; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Antarctic; Antarctica; Annual Layer Thickness; Ice Core; Visual Observations; Bubble; LABORATORY; Bubble Density; FIELD INVESTIGATION; Physical Properties; Stratigraphy; Climate Record; Annual Layers; Ice Fabric; C-axis; Model; WAIS Divide; GROUND-BASED OBSERVATIONS; FIELD SURVEYS; Melt Layers; Wais Divide-project; Not provided", "locations": "WAIS Divide; Antarctica; Antarctic", "north": -79.4666, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Spencer, Matthew; Alley, Richard; Fitzpatrick, Joan; Voigt, Donald E.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.4666, "title": "Collaborative Research: Continued Study of Physical Properties of the WAIS Divide Deep Core", "uid": "p0000027", "west": 112.1166}, {"awards": "0538097 Anandakrishnan, Sridhar", "bounds_geometry": "POLYGON((140 -89.8,144 -89.8,148 -89.8,152 -89.8,156 -89.8,160 -89.8,164 -89.8,168 -89.8,172 -89.8,176 -89.8,180 -89.8,180 -89.82,180 -89.84,180 -89.86,180 -89.88,180 -89.9,180 -89.92,180 -89.94,180 -89.96,180 -89.98,180 -90,176 -90,172 -90,168 -90,164 -90,160 -90,156 -90,152 -90,148 -90,144 -90,140 -90,140 -89.98,140 -89.96,140 -89.94,140 -89.92,140 -89.9,140 -89.88,140 -89.86,140 -89.84,140 -89.82,140 -89.8))", "dataset_titles": "IRIS Data Management Center (DMC) holds the full resolution seismic data. Keyword: POLELAKE. Dataset ID: 10-019; seismic data. Keyword: POLELAKE. Dataset ID: 10-019", "datasets": [{"dataset_uid": "001466", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IRIS Data Management Center (DMC) holds the full resolution seismic data. Keyword: POLELAKE. Dataset ID: 10-019", "url": "http://www.iris.edu/dms/dmc"}, {"dataset_uid": "000102", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "seismic data. Keyword: POLELAKE. Dataset ID: 10-019", "url": "http://ds.iris.edu/ds/nodes/dmc/"}], "date_created": "Wed, 08 Sep 2010 00:00:00 GMT", "description": "0538097\u003cbr/\u003eAnandakrishnan\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to intensively study a subglacial Antarctic lake near the geographic South Pole using seismic and radar methods. These ground-based experiments are better suited to determine the presence of water and its thickness than are airborne methods. We hypothesize that there are two end-member explanations for this feature: either the lake is thawed, but freezing on (and likely to have been freezing on through much of the current interglacial period), or it is a frozen, relict lake for which the high basal radar reflectivity is due to intergranular water in a permafrost-like layer beneath the ice. The seismic experiment we propose is ideally suited to examine these alternatives. Intermediate cases of, e.g., a thawed saturated sedimentary base or a smooth crystalline basement layer would also be resolved by this experiment. Seismic reflections are sensitive to changes in acoustic impedance which is strongly variable with fluid content, porosity, and lithology. Water has low density relative to most rocks and low seismic velocity (and nil shear wave velocity) relative to both ice and rock. Thus, discriminating between subglacial water and subglacial rock is a task ideally suited to the seismic reflection technique. This project has significant impacts outside the directly affected fields of Antarctic glaciology and geology. The lake (either thawed or sediments with thin liquid layers around the matrix particles) will have the potential for harboring novel life forms. The experiment has the potential for expanding our information about the newest frontier in life on Earth. The collaboration between PIs in the seismic community and the marine acoustics community will foster cross-disciplinary pollination of ideas, techniques, and tools. In addition to traditional seismic techniques, new methods of data analysis that have been developed by acousticians will be applied to this problem as an independent measure of lake properties. We will train students who will have a wider view of seismology than would be possible in a traditional ocean acoustics or traditional geoscience seismology program of study.", "east": 180.0, "geometry": "POINT(160 -89.9)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e SEISMIC REFLECTION PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS", "is_usap_dc": false, "keywords": "Antarctica; South Pole; Porosity; Not provided; Seismic; Lithology; FIELD INVESTIGATION; Subglacial; Subglacial Lake; FIELD SURVEYS; LABORATORY; Fluid Content; Acoustic Impedance", "locations": "Antarctica; South Pole", "north": -89.8, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Anandakrishnan, Sridhar; Holland, Charles", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": -90.0, "title": "Characterization of Lake Amundsen-Scott, S. Pole: A Ground Geophysical Program", "uid": "p0000693", "west": 140.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rutford Ice Stream Cooperative Research Program with British Antarctic Survey
|
1643961 |
2022-11-16 | Anandakrishnan, Sridhar |
|
Anandakrishnan/1643961 This award supports a project to study conditions under the Rutford Ice Stream, a large glacier that flows from the interior of the West Antarctic Ice Sheet to the Filchner Ronne Ice Shelf and then on to the ocean. The speed and volume of ice delivered to the ocean by this and similar glaciers is central to the question of sea-level change in the coming decades: if the volume of ice carried by Rutford to the ocean increases, then it will contribute to a rise in sea level. Numerical models of glacier flow that are used to forecast future conditions must include a component that accounts for the sliding of the ice over its bed. The sliding process is poorly modeled because of lack of detailed information about the bottom of glaciers, leading to increased uncertainty in the ice-flow models. Data from this project will provide such information. During this project, in collaboration with researchers at the British Antarctic Survey, a detailed survey of the properties of the bed of Rutford Ice Stream will be carried out. These surveys include using seismic instruments (which are sensitive to naturally occurring earthquakes within glaciers--called icequakes) to monitor the distribution of those icequakes at the bed. The locations, size, and timing of icequakes are controlled by the properties of the bed such as porosity, water pressure, and stress. As part of this project, a hole will be drilled to the bed of the glacier to monitor water pressures and to extract a sample of the basal material. By comparing the pressure variations with icequake production, the properties of the basal material over a large area can be better determined. Those results will aid in the application of numerical models by informing their description of the sliding process. This award requires field work in Antarctica. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-80 -83,-79.8 -83,-79.6 -83,-79.4 -83,-79.2 -83,-79 -83,-78.8 -83,-78.6 -83,-78.4 -83,-78.2 -83,-78 -83,-78 -83.2,-78 -83.4,-78 -83.6,-78 -83.8,-78 -84,-78 -84.2,-78 -84.4,-78 -84.6,-78 -84.8,-78 -85,-78.2 -85,-78.4 -85,-78.6 -85,-78.8 -85,-79 -85,-79.2 -85,-79.4 -85,-79.6 -85,-79.8 -85,-80 -85,-80 -84.8,-80 -84.6,-80 -84.4,-80 -84.2,-80 -84,-80 -83.8,-80 -83.6,-80 -83.4,-80 -83.2,-80 -83)) | POINT(-79 -84) | false | false | |||||
NSF-NERC: Thwaites Interdisciplinary Margin Evolution (TIME): The Role of Shear Margin Dynamics in the Future Evolution of the Thwaites Drainage Basin
|
1739027 |
2021-06-24 | Tulaczyk, Slawek | No dataset link provided | This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Collapse of the West Antarctic Ice Sheet (WAIS) could raise the global sea level by about 5 meters (16 feet) and the scientific community considers it the most significant risk for coastal environments and cities. The risk arises from the deep, marine setting of WAIS. Although scientists have been aware of the precarious setting of this ice sheet since the early 1970s, it is only now that the flow of ice in several large drainage basins is undergoing dynamic change consistent with a potentially irreversible disintegration. Understanding WAIS stability and enabling more accurate prediction of sea-level rise through computer simulation are two of the key objectives facing the polar science community today. This project will directly address both objectives by: (1) using state-of-the-art technologies to observe rapidly deforming parts of Thwaites Glacier that may have significant control over the future evolution of WAIS, and (2) using these new observations to improve ice-sheet models used to predict future sea-level rise. This project brings together a multidisciplinary team of UK and US scientists. This international collaboration will result in new understanding of natural processes that may lead to the collapse of the WAIS and will boost infrastructure for research and education by creating a multidisciplinary network of scientists. This team will mentor three postdoctoral researchers, train four Ph.D. students and integrate undergraduate students in this research project. The project will test the overarching hypothesis that shear-margin dynamics may exert powerful control on the future evolution of ice flow in Thwaites Drainage Basin. To test the hypothesis, the team will set up an ice observatory at two sites on the eastern shear margin of Thwaites Glacier. The team argues that weak topographic control makes this shear margin susceptible to outward migration and, possibly, sudden jumps in response to the drawdown of inland ice when the grounding line of Thwaites retreats. The ice observatory is designed to produce new and comprehensive constraints on englacial properties, including ice deformation rates, ice crystal fabric, ice viscosity, ice temperature, ice water content and basal melt rates. The ice observatory will also establish basal conditions, including thickness and porosity of the till layer and the deeper marine sediments, if any. Furthermore, the team will develop new knowledge with an emphasis on physical processes, including direct assessment of the spatial and temporal scales on which these processes operate. Seismic surveys will be carried out in 2D and 3D using wireless geophones. A network of broadband seismometers will identify icequakes produced by crevassing and basal sliding. Autonomous radar systems with phased arrays will produce sequential images of rapidly deforming internal layers in 3D while potentially also revealing the geometry of a basal water system. Datasets will be incorporated into numerical models developed on different spatial scales. One will focus specifically on shear-margin dynamics, the other on how shear-margin dynamics can influence ice flow in the whole drainage basin. Upon completion, the project aims to have confirmed whether the eastern shear margin of Thwaites Glacier can migrate rapidly, as hypothesized, and if so what the impacts will be in terms of sea-level rise in this century and beyond. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-125 -73,-122.1 -73,-119.2 -73,-116.3 -73,-113.4 -73,-110.5 -73,-107.6 -73,-104.7 -73,-101.8 -73,-98.9 -73,-96 -73,-96 -73.7,-96 -74.4,-96 -75.1,-96 -75.8,-96 -76.5,-96 -77.2,-96 -77.9,-96 -78.6,-96 -79.3,-96 -80,-98.9 -80,-101.8 -80,-104.7 -80,-107.6 -80,-110.5 -80,-113.4 -80,-116.3 -80,-119.2 -80,-122.1 -80,-125 -80,-125 -79.3,-125 -78.6,-125 -77.9,-125 -77.2,-125 -76.5,-125 -75.8,-125 -75.1,-125 -74.4,-125 -73.7,-125 -73)) | POINT(-110.5 -76.5) | false | false | |||||
Understanding Firn Rheology Through Laboratory Compaction Experiments and Radar Data
|
1935438 |
2021-06-03 | McCarthy, Christine M.; Kingslake, Jonathan |
|
The ice sheets of Antarctica and Greenland are losing mass and contributing to accelerating global sea-level rise. Satellite altimetry provides precise measurement of ice-sheet volume change, but computing ice-sheet mass change—the quantity relevant for estimating the ice sheet’s sea-level contribution—requires knowing the density of the ice sheet. The density near the ice-sheet surface also affects age estimates of air bubbles recovered in ice cores, which are a key source of information on past climate changes. Ice-sheet density is primarily controlled by the rate at which firn (snow that has persisted for a year or more on ice sheets) compacts into ice, but there is currently no widely accepted theory of how this compaction occurs. The goal of this project is thus to advance understanding of how firn densifies. The team will conduct laboratory experiments and analyze ice-penetrating radar and ice-core data from Antarctica. A key desired outcome of the project is a new model of firn densification that can be used to improve satellite-based altimetry measurements of present-day ice-sheet change and reconstructions of past climate changes from ice cores. This project will combine laboratory experiments, numerical modeling, and geophysical techniques to determine the rheology of firn as it compacts to form ice. The team will use two methods to measure firn compaction: (1) lab-based experiments and (2) analysis of ice-core and radar data. For the lab-based work, the team will conduct a suite of compaction experiments on synthetic firn samples under uni-axial strain and constant temperature and axial stress. They will also measure the grain-size evolution. By running a large number of experiments (> 25), the team will constrain key parameters that determine how firn compaction rate depends on density, temperature, grain size, and axial stress. The experiments will be conducted in a table-top apparatus at temperatures as low as -40 degrees C and axial stresses up to 4 MPa. For the field-data-based component, the team will analyze ice-core and ice-penetrating radar data to produce the first coincident set of radar-derived firn compaction rates, borehole temperatures, firn densities, and firn grain sizes. Results from lab and field data will be tied together using a numerical firn compaction model. This model is formulated using conservation of mass, momentum, and energy, along with an explicit description of firn rheology and grain-size evolution. Constraints on firn rheology will be incorporated into this model and the team will use it to examine fundamental questions about how changes in the climate affect firn density. This is a crucial unknown that contributes significant measurement uncertainty in estimates of past and present climate change. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | |||||
Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments
|
1543453 1543347 1543405 1543441 1543396 1543537 |
2020-07-16 | Rosenheim, Brad; Fricker, Helen; Priscu, John; Leventer, Amy; Dore, John; Lyons, W. Berry; Christner, Brent | The Antarctic subglacial environment remains one of the least explored regions on Earth. This project will examine the physical and biological characteristics of Subglacial Lake Mercer, a lake that lies 1200m beneath the West Antarctic Ice Sheet. This study will address key questions relating to the stability of the ice sheet, the subglacial hydrological system, and the deep-cold subglacial biosphere. The education and outreach component aims to widely disseminate results to the scientific community and to the general public through short films, a blog, and a website. Subglacial Lake Mercer is one of the larger hydrologically active lakes in the southern basin of the Whillans Ice Plain, West Antarctica. It receives about 25 percent of its water from East Antarctica with the remainder originating from West Antarctica, is influenced by drain/fill cycles in a lake immediately upstream (Subglacial Lake Conway), and lies about 100 km upstream of the present grounding line of the Ross Ice Shelf. This site will yield information on the history of the Whillans and Mercer Ice Streams, and on grounding line migration. The integrated study will include direct sampling of basal ice, water, and sediment from the lake in concert with surface geophysical surveys over a three-year period to define the hydrological connectivity among lakes on the Whillans Ice Plain and their flow paths to the sea. The geophysical surveys will furnish information on subglacial hydrology, aid the site selection for hot-water drilling, and provide spatial context for interpreting findings. The hot-water-drilled boreholes will be used to collect basal ice samples, provide access for direct measurement of subglacial physical, chemical, and biological conditions in the water column and sediments, and to explore the subglacial water cavities using a remotely operated vehicle equipped with sensors, cameras, and sampling equipment. Data collected from this study will address the overarching hypothesis "Contemporary biodiversity and carbon cycling in hydrologically-active subglacial environments associated with the Mercer and Whillans ice streams are regulated by the mineralization and cycling of relict marine organic matter and through interactions among ice, rock, water, and sediments". The project will be undertaken by a collaborative team of scientists, with expertise in microbiology, biogeochemistry, hydrology, geophysics, glaciology, marine geology, paleoceanography, and science communication. | POLYGON((-163.611 -84.33543,-162.200034 -84.33543,-160.789068 -84.33543,-159.378102 -84.33543,-157.967136 -84.33543,-156.55617 -84.33543,-155.145204 -84.33543,-153.734238 -84.33543,-152.323272 -84.33543,-150.912306 -84.33543,-149.50134 -84.33543,-149.50134 -84.3659157,-149.50134 -84.3964014,-149.50134 -84.4268871,-149.50134 -84.4573728,-149.50134 -84.4878585,-149.50134 -84.5183442,-149.50134 -84.5488299,-149.50134 -84.5793156,-149.50134 -84.6098013,-149.50134 -84.640287,-150.912306 -84.640287,-152.323272 -84.640287,-153.734238 -84.640287,-155.145204 -84.640287,-156.55617 -84.640287,-157.967136 -84.640287,-159.378102 -84.640287,-160.789068 -84.640287,-162.200034 -84.640287,-163.611 -84.640287,-163.611 -84.6098013,-163.611 -84.5793156,-163.611 -84.5488299,-163.611 -84.5183442,-163.611 -84.4878585,-163.611 -84.4573728,-163.611 -84.4268871,-163.611 -84.3964014,-163.611 -84.3659157,-163.611 -84.33543)) | POINT(-156.55617 -84.4878585) | false | false | ||||||
Organic carbon oxidation and iron remobilization by West Antarctic shelf sediments
|
1551195 |
2020-06-16 | Burdige, David; Christensen, John |
|
General Statement: The continental shelf region west of the Antarctic Peninsula has recently undergone dramatic changes and ecosystem shifts, and the community of organisms that live in, or feed off, the sea floor sediments is being impacted by species invasions from the north. Previous studies of these sediments indicate that this community may consume much more of the regional productivity than previously estimated, suggesting that sediments are a rich and important component of this ecosystem and one that may be ripe for dramatic change. Furthermore, under richer sediment conditions, iron is mobilized and released back to the water column. Since productivity in this ecosystem is thought to be limited by the availability of iron, increased rates of iron release from these sediments could stimulate productivity and promote greater overall ecosystem change. In this research, a variety of sites across the shelf region will be sampled to accurately evaluate the role of sediments in consuming ecosystem productivity and to estimate the current level of iron release from the sediments. This project will provide a baseline set of sediment results that will present a more complete picture of the west Antarctic shelf ecosystem, will allow for comparison with water column measurements and for evaluation of the fundamental workings of this important ecosystem. This is particularly important since high latitude systems may be vulnerable to the effects of climate fluctuations. Both graduate and undergraduate students will be trained. Presentations will be made at scientific meetings, at other universities, and at outreach events. A project web site will present key results to the public and explain how this new information improves understanding of Antarctic ecosystems. Technical Description of Project: In order to determine the role of sediments within the west Antarctic shelf ecosystem, this project will determine the rates of sediment organic matter oxidation at a variety of sites across the Palmer Long Term Ecosystem Research (LTER) study region. To estimate the rates of release of iron and manganese from the sediments, these same sites will be sampled for detailed vertical distributions of the concentrations of these metals both in the porewaters and in important mineral phases. Since sediment sampling will be done at LTER sites, the sediment data can be correlated with the rich productivity data set from the LTER. In detail, the project: a) will determine the rates of oxygen consumption, organic carbon oxidation, nutrient release, and iron mobilization by shelf sediments west of the Antarctic Peninsula; b) will investigate the vertical distribution of diagenetic reactions within the sediments; and c) will assess the regional importance of these sediment rates. Sediment cores will be used to determine sediment-water fluxes of dissolved oxygen, total carbon dioxide, nutrients, and the vertical distributions of these dissolved compounds, as well as iron and manganese in the pore waters. Bulk sediment properties of porosity, organic carbon and nitrogen content, carbonate content, biogenic silica content, and multiple species of solid-phase iron, manganese, and sulfur species will also be determined. These measurements will allow determination of total organic carbon oxidation and denitrification rates, and the proportion of aerobic versus anaerobic respiration at each site. Sediment diagenetic modeling will link the processes of organic matter oxidation to metal mobilization. Pore water and solid phase iron and manganese distributions will be used to model iron diagenesis in these sediments and to estimate the iron flux from the sediments to the overlying waters. Finally, the overall regional average and distribution of the sediment processes will be compared with the distributions of seasonally averaged chlorophyll biomass and productivity. | POLYGON((-71 -64,-70.1 -64,-69.2 -64,-68.3 -64,-67.4 -64,-66.5 -64,-65.6 -64,-64.7 -64,-63.8 -64,-62.9 -64,-62 -64,-62 -64.4,-62 -64.8,-62 -65.2,-62 -65.6,-62 -66,-62 -66.4,-62 -66.8,-62 -67.2,-62 -67.6,-62 -68,-62.9 -68,-63.8 -68,-64.7 -68,-65.6 -68,-66.5 -68,-67.4 -68,-68.3 -68,-69.2 -68,-70.1 -68,-71 -68,-71 -67.6,-71 -67.2,-71 -66.8,-71 -66.4,-71 -66,-71 -65.6,-71 -65.2,-71 -64.8,-71 -64.4,-71 -64)) | POINT(-66.5 -66) | false | false | |||||
Subsidence, Tilting, Sedimentation, and Oligocene-middle Miocene paleo-depth of Ross Sea
|
1341585 |
2018-05-25 | Sorlien, Christopher; Luyendyk, Bruce P. |
|
Intellectual Merit: This project will produce a new compilation of Ross Sea seismic stratigraphy, including new interpretations, that can be used to provide boundary conditions on the tectonic and glacial evolution of West Antarctica and the Ross Sea. The principal goals include compilation of, and interpretation of, all available existing seismic reflection data for the Western Ross Sea, coupled with geophysical modeling to produce paleo-bathymetric reconstructions for the entire 800 km-wide Ross Sea. Specific tasks will include: extending existing work on mapping travel time to reflectors, identifying relations in the seismic data that indicate subsidence through sea level, constructing velocity models for converting travel time to thickness, and using the velocity models to estimate density and porosity of sediments for backstripping analysis. Modeling/backstripping efforts will be used to constrain past bathymetry. Digital interpretations and stratigraphic grids will be provided as supplements to publications. In that way the results of this study can be used in thermal subsidence modeling and restoration of eroded rock to other parts of Ross Embayment and Marie Byrd Land by others. Digital products may be provided in advance of publication to modelers in a way that will not hurt publication chances. Broader impacts: The results of this work will be important for paleo-geographic reconstructions of Antarctica and will therefore be of use to a broad range of researchers, particularly those working in the Ross Sea region. The digital products can be used to test models for the past fluctuations of West Antarctic ice sheets, and in planning for future sediment drilling projects. Two undergraduates to be chosen from applicants will be involved in summer internships held at the University of Rhode Island. Outreach will also include a new website and one or more Wikipedia entries related to Ross Sea sub-sea floor characteristics. The project includes an international collaboration with Dr. Chiara Sauli and others at Instituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS) in Italy. | POLYGON((-180 -73.33,-179.1 -73.33,-178.2 -73.33,-177.3 -73.33,-176.4 -73.33,-175.5 -73.33,-174.6 -73.33,-173.7 -73.33,-172.8 -73.33,-171.9 -73.33,-171 -73.33,-171 -73.864,-171 -74.398,-171 -74.932,-171 -75.466,-171 -76,-171 -76.534,-171 -77.068,-171 -77.602,-171 -78.136,-171 -78.67,-171.9 -78.67,-172.8 -78.67,-173.7 -78.67,-174.6 -78.67,-175.5 -78.67,-176.4 -78.67,-177.3 -78.67,-178.2 -78.67,-179.1 -78.67,180 -78.67,178.5 -78.67,177 -78.67,175.5 -78.67,174 -78.67,172.5 -78.67,171 -78.67,169.5 -78.67,168 -78.67,166.5 -78.67,165 -78.67,165 -78.136,165 -77.602,165 -77.068,165 -76.534,165 -76,165 -75.466,165 -74.932,165 -74.398,165 -73.864,165 -73.33,166.5 -73.33,168 -73.33,169.5 -73.33,171 -73.33,172.5 -73.33,174 -73.33,175.5 -73.33,177 -73.33,178.5 -73.33,-180 -73.33)) | POINT(177 -76) | false | false | |||||
Collaborative Research: Physical Properties of the WAIS Divide Deep Core
|
0539578 0539232 |
2017-01-12 | Fitzpatrick, Joan; Alley, Richard; Fegyveresi, John; Clow, Gary D.; Cuffey, Kurt M.; Cravens, Eric D. | 0539578<br/>Alley <br/>This award supports a five-year collaborative project to study the physical-properties of the planned deep ice core and the temperature of the ice in the divide region of the West Antarctic Ice Sheet. The intellectual merit of the proposed research is to provide fundamental information on the state of the ice sheet, to validate the integrity of the climate record, to help reconstruct the climate record, and to understand the flow state and history of the ice sheet. This information will initially be supplied to other investigators and then to the public and to appropriate databases, and will be published in the refereed scientific literature. The objectives of the proposed research are to aid in dating of the core through counting of annual layers, to identify any exceptionally warm intervals in the past through counting of melt layers, to learn as much as possible about the flow state and history of the ice through measurement of size, shape and arrangements of bubbles, clathrate inclusions, grains and their c-axes, to identify any flow disturbances through these indicators, and to learn the history of snow accumulation and temperature from analyses of bubbles and borehole temperatures combined with flow modeling and use of data from other collaborators. These results will then be synthesized and communicated. Failure to examine cores can lead to erroneous identification of flow features as climate changes, so careful examination is required. Independent reconstruction of accumulation rate provides important data on climate change, and improves confidence in interpretation of other climate indicators. Borehole temperatures are useful recorders of temperature history. Flow state and history are important in understanding climate history and potential contribution of ice to sea-level change. By contributing to all of these and additional issues, the proposed research will be of considerable value. The broader impacts of the research include making available to the public improved knowledge on societally central questions involving abrupt climate change and sea-level rise. The project will also contribute to the education of advanced students, will utilize results in education of introductory students, and will make vigorous efforts in outreach, informal science education, and supplying information to policy-makers as requested, thus contributing to a more-informed society. | POINT(112.083 -79.467) | POINT(112.083 -79.467) | false | false | ||||||
Fate of Drilling Fluids during the South McMurdo Sound Project (SMS) of the Antarctic Geological Drilling Program (ANDRILL)
|
1043740 |
2014-01-27 | Lenczewski, Melissa |
|
Intellectual Merit: The PI proposes to utilize computer models used by hydrogeologists to establish the fate and transport of contamination and determine the extent of drilling fluid contamination in the ANDRILL SMS core. For these models, previously collected logs of lithology, porosity, fracture density, fracture type, fracture orientation, drilling fluid loss, drilling fluid characteristics and temperature will be used as input parameters. In addition, biodegradation and sorption constants for the drilling fluid will be determined and incorporated into the models. Samples of drilling fluids used during coring as well as the return fluids were collected at the drill site using standard microbiological sampling techniques. Fluids will be tested at in situ temperatures under aerobic and anaerobic conditions to determine biodegradation constants. Sorption will be determined between the drilling fluids and core samples using standard isotherm methods. Geochemical and microbial fingerprints of the fluids and the changes during biodegradation will determine the potential impact of the drilling fluids on the isolated microbial communities and the geochemistry within various subsurface lithologic units beneath the southern McMurdo Sound in Antarctica. The results of this study could potentially provide guidelines on developing less detrimental methods for future exploration, if deemed necessary through this research. Broader impacts: This proposed project will train a graduate student. The methods developed for analyses of samples in this project will serve as a guide for future studies of similar interest and will improve the understanding of ecological impacts of geologic drilling in Antarctica. The results of this study will be used as a reference for comparison with future studies examining newly developed, and improved, sample collection methods in future exploratory drilling projects in pristine environments. The PI is new to Antarctic research. | POLYGON((165 -77.5,165.3 -77.5,165.6 -77.5,165.9 -77.5,166.2 -77.5,166.5 -77.5,166.8 -77.5,167.1 -77.5,167.4 -77.5,167.7 -77.5,168 -77.5,168 -77.6,168 -77.7,168 -77.8,168 -77.9,168 -78,168 -78.1,168 -78.2,168 -78.3,168 -78.4,168 -78.5,167.7 -78.5,167.4 -78.5,167.1 -78.5,166.8 -78.5,166.5 -78.5,166.2 -78.5,165.9 -78.5,165.6 -78.5,165.3 -78.5,165 -78.5,165 -78.4,165 -78.3,165 -78.2,165 -78.1,165 -78,165 -77.9,165 -77.8,165 -77.7,165 -77.6,165 -77.5)) | POINT(166.5 -78) | false | false | |||||
Collaborative Research: Continued Study of Physical Properties of the WAIS Divide Deep Core
|
1043313 1043528 |
2012-06-19 | Spencer, Matthew; Alley, Richard; Fitzpatrick, Joan; Voigt, Donald E. | 1043528/Alley This award supports a project to complete the physical-properties studies of the WAIS Divide deep ice core, now being collected in West Antarctica. Ongoing work funded by NSF, under a grant that is ending, has produced visible stratigraphy dating, inspection of the core for any melt layers, volcanic horizons, flow disturbances or other features, analysis of bubble number-densities allowing reconstruction of a two-millennial cooling trend in the latter Holocene at the site, characterization of other bubble characteristics (size, etc.), density studies, characterization of snow-surface changes at the site, preliminary c-axis studies, and more. The current proposal seeks to complete this work, once the rest of the core is recovered. The intellectual merit of the proposed activity starts with quality assurance for the core, by visual detection of any evidence of flow disturbances that would disrupt the integrity of the climate record. Inspection will also reveal any melt layers, volcanic horizons, etc. Annual-layer dating will be conducted; thus far, the visible strata have not been as useful as some other indicators, but the possibility (based on experience in Greenland) that visible examination will allow detection of thinner annual layers than other techniques motivates the effort. Bubble number-density will be used to reconstruct temperature changes through the rest of the bubbly part of the core, providing important paleoclimatic data for earlier parts of the Holocene. Coordinated interpretation of c-axis fabrics, grain sizes and shapes, and bubble characteristics will be used to learn about the history of ice flow, the processes of ice flow, and the softness of the ice for additional deformation. Analysis of surface data already collected will improve interpretation of the layering of the core. It is possible that the annual-layer dating will not be sufficiently successful, and that the core will be undisturbed with no melt layers; if so, then these efforts will not yield major publications. However, success of the other efforts should produce improved understanding of the history and stability of the ice sheet, and key processes controlling these, and the quality assurance provided by the visual examination is important for the project as a whole. The broader impacts of the proposed activity include education of a PhD student and multiple undergraduates, and research opportunities for a junior faculty member at an undergraduate institution. The proposed activity will help support an especially vigorous education and outreach effort providing undergraduate instruction for over 1000 students per year, reaching thousands more citizens and many policymakers, and preparing educational materials used at many levels. | POINT(112.1166 -79.4666) | POINT(112.1166 -79.4666) | false | false | ||||||
Characterization of Lake Amundsen-Scott, S. Pole: A Ground Geophysical Program
|
0538097 |
2010-09-08 | Anandakrishnan, Sridhar; Holland, Charles |
|
0538097<br/>Anandakrishnan<br/><br/>This award supports a project to intensively study a subglacial Antarctic lake near the geographic South Pole using seismic and radar methods. These ground-based experiments are better suited to determine the presence of water and its thickness than are airborne methods. We hypothesize that there are two end-member explanations for this feature: either the lake is thawed, but freezing on (and likely to have been freezing on through much of the current interglacial period), or it is a frozen, relict lake for which the high basal radar reflectivity is due to intergranular water in a permafrost-like layer beneath the ice. The seismic experiment we propose is ideally suited to examine these alternatives. Intermediate cases of, e.g., a thawed saturated sedimentary base or a smooth crystalline basement layer would also be resolved by this experiment. Seismic reflections are sensitive to changes in acoustic impedance which is strongly variable with fluid content, porosity, and lithology. Water has low density relative to most rocks and low seismic velocity (and nil shear wave velocity) relative to both ice and rock. Thus, discriminating between subglacial water and subglacial rock is a task ideally suited to the seismic reflection technique. This project has significant impacts outside the directly affected fields of Antarctic glaciology and geology. The lake (either thawed or sediments with thin liquid layers around the matrix particles) will have the potential for harboring novel life forms. The experiment has the potential for expanding our information about the newest frontier in life on Earth. The collaboration between PIs in the seismic community and the marine acoustics community will foster cross-disciplinary pollination of ideas, techniques, and tools. In addition to traditional seismic techniques, new methods of data analysis that have been developed by acousticians will be applied to this problem as an independent measure of lake properties. We will train students who will have a wider view of seismology than would be possible in a traditional ocean acoustics or traditional geoscience seismology program of study. | POLYGON((140 -89.8,144 -89.8,148 -89.8,152 -89.8,156 -89.8,160 -89.8,164 -89.8,168 -89.8,172 -89.8,176 -89.8,180 -89.8,180 -89.82,180 -89.84,180 -89.86,180 -89.88,180 -89.9,180 -89.92,180 -89.94,180 -89.96,180 -89.98,180 -90,176 -90,172 -90,168 -90,164 -90,160 -90,156 -90,152 -90,148 -90,144 -90,140 -90,140 -89.98,140 -89.96,140 -89.94,140 -89.92,140 -89.9,140 -89.88,140 -89.86,140 -89.84,140 -89.82,140 -89.8)) | POINT(160 -89.9) | false | false |