{"dp_type": "Project", "free_text": "PLANTS"}
[{"awards": "2301026 Amsler, Charles", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Thu, 16 May 2024 00:00:00 GMT", "description": "General abstract\u003cbr/\u003e\u003cbr/\u003eMost organisms alternate between life stages that vary in the number and arrangement of their chromosomes, in the number of cells they possess, and in the environmental conditions in which they are best adapted to live. Much of what we understand about these alternations comes from organisms like animals and land plants in which one of the two stages dominates the life cycle with the other small and short-lived. However, across the tree of life there are countless examples of organisms in which both stages are of long duration, multicellular, or both. These life cycles challenge common ideas used to explain ecological and evolutionary patterns we see in nature. Macroalgae (seaweeds) display a wide range of life cycle types and consequently are excellent models to test and expand ideas about how life cycles evolve. Undersea forests of seaweeds with a variety of life cycle types dominate the shallow waters of the western Antarctic Peninsula where they are ecologically important and, for most of the species, at the southern end of their geographic range. Using existing samples from previous expeditions to Antarctica, the investigators are uniquely positioned to test and expand knowledge of life cycle evolution and how this intersects with reproductive mode variation. This project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the public. The project will support a postdoctoral scholar as well as a faculty member new to US Antarctic research. The investigators will take advantage of an existing program to include high school or undergraduate students in the work which will also expand mentorship experience for the postdoc. All team members will contribute by writing for blogs produced by professional societies for the public. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eTechnical abstract\u003cbr/\u003e\u003cbr/\u003eExisting macroalgal taxa samples from across a latitudinal gradient in the western Antarctic Peninsula will be used to explore patterns of genetic diversity from the center to the southern latitudinal limits of their range. Not only will genetic diversity be documented for an understudied and critical group of Antarctic organisms, but how it changes with latitude, compounded by high levels of endemism, will be explored. This will be accomplished by (i) characterization of latitudinal gradients in genetic diversity of many species and (ii) determination of the reproductive system of five focal foundation species. At present, there are few genetic data for macroalgae, dominant primary producers in coastal ecosystems around the world. This gap is particularly acute along Antarctic coastlines that are experiencing rapid climate change. Furthermore, Antarctica is isolated by the Southern Ocean, decreasing the likelihood of regular migration from other land masses. Latitudinal reproductive system patterns are predicted to be largely driven by recolonization events that increase with latitude due to changes in iceberg scour and sea ice coverage. Thus, Antarctica is the best place to understand what processes underlie reproductive mode variation in populations that are isolated, including many endemic taxa, while simultaneously extending our knowledge about how marginal environments converge with complex life cycles.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "MACROALGAE (SEAWEEDS); Antarctic Peninsula", "locations": "Antarctic Peninsula", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Amsler, Charles; Krueger-Hadfield, Stacy", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "Historical and Contemporary Drivers of Macroalgal Reproductive System Variation along the Western Antarctic Peninsula", "uid": "p0010460", "west": null}, {"awards": "2012365 Johnston, David; 2012444 Cimino, Megan; 2012247 Groff, Dulcinea", "bounds_geometry": "POLYGON((-65 -64.5,-64.8 -64.5,-64.6 -64.5,-64.4 -64.5,-64.2 -64.5,-64 -64.5,-63.8 -64.5,-63.6 -64.5,-63.4 -64.5,-63.2 -64.5,-63 -64.5,-63 -64.55,-63 -64.6,-63 -64.65,-63 -64.7,-63 -64.75,-63 -64.8,-63 -64.85,-63 -64.9,-63 -64.95,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.95,-65 -64.9,-65 -64.85,-65 -64.8,-65 -64.75,-65 -64.7,-65 -64.65,-65 -64.6,-65 -64.55,-65 -64.5))", "dataset_titles": null, "datasets": null, "date_created": "Sun, 24 Jul 2022 00:00:00 GMT", "description": "This award is funded in whole or part under the American Rescue Plan Act of 2021 (Public Law 117-2). \r\nPart I: Non-technical description: \r\nAdlie penguin colonies are declining and disappearing from the western Antarctic Peninsula. However, not all colonies in a certain area decline or disappear at the same rate. This research project will evaluate the influence of terrestrial surface properties on Adlie penguin colonies, leveraging five decades of research on seabirds near Palmer Station where an Adlie colony on Litchfield Island became extinct in 2007 while other colonies nearby are still present. The researchers will combine information obtained from remote sensing, UAS (Unoccupied Aircraft System, or drones) high-resolution maps, reconstruction of past moss banks and modeling with machine learning tools to define suitable penguin and peatbank moss habitats and explore the influence of microclimate on their distributions. In particular, the researchers are asking if guano from penguin colonies could act as fertilizers of moss banks in the presence of localized wind patters that can carry airborne nitrogen to the mosses. Modeling will relate penguin and peatbank moss spatial patterns to environmental variables and provide a greater understanding of how continued environmental change could impact these communities. The project allows for documentation of terrestrial Antarctic ecosystems in support of seabirds and provisioning of such information to the broader science community that seeks to study penguins, educating graduate and undergraduate students and a post-doctoral researcher. The research team includes two young women as Principal Investigators, one of them from an under-represented ethnic minority, first time Antarctic Principal Investigator, from an EPSCoR state (Wyoming), broadening participation in Antarctic research. Researchers will serve as student mentors through the Duke Bass Connections program entitled Biogeographic Assessment of Antarctic Coastal Habitats. This program supports an interdisciplinary team of graduate and undergraduate students collaborating with project faculty and experts on cutting-edge research bridging the classroom and the real world.\r\n\r\nPart II: Technical description: \r\nThis research aims to understand the changes at the microclimate scale (meters) by analyzing present and past Adlie penguin colonies and moss peatbanks in islands around Palmer Station in the western Antarctic Peninsula interlinked systems that are typically considered in isolation. By integrating in situ and remote data, this project will synthesize the drivers of biogeomorphology on small islands of the Antarctic Peninsula, a region of rapid change where plants and animals often co-occur and animal presence often determines the habitation of plants. A multi-disciplinary approach combine field measurements, remote sensing, UAS (Unoccupied Aircraft Systems) maps, paleoecology and modeling with machine learning to define suitable habitats and the influence of microclimates on penguin and peatbank distributions. The link between the two aspects of this study, peatbanks and penguins, is the potential source of nutrients for peat mosses from penguin guano. Peatbank and penguin distribution will be modeled and all models will be validated using in situ information from moss samples that will identify mechanistic processes. This project leverages 5 decades of seabird research in the area and high-definition remote sensing provided by the Polar Geospatial center to study the microclimate of Litchfield Island where an Adlie colony became extinct in 2007 when other colonies nearby are still present. The research team includes two early career women as Principal Investigators, one of them from an under-represented ethnic minority, first time Antarctic Principal Investigator, from an EPSCoR state (Wyoming). Researchers will serve as mentors for students through the Duke Bass Connections program entitled Biogeogrpahic Assessment of Antarctic Coastal Habitats which bridges the classroom and the real world.\r\n\r\nThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -63.0, "geometry": "POINT(-64 -64.75)", "instruments": null, "is_usap_dc": true, "keywords": "Palmer Station; Antarctic Peninsula; COASTAL; STABLE ISOTOPES; TOPOGRAPHIC EFFECTS; PALEOCLIMATE RECONSTRUCTIONS; MACROFOSSILS; PLANTS; PENGUINS; ISOTOPES; VISIBLE IMAGERY; RADIOCARBON; Anvers Island", "locations": "Antarctic Peninsula; Anvers Island; Palmer Station", "north": -64.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Groff, Dulcinea; Cimino, Megan; Johnston, David", "platforms": null, "repositories": null, "science_programs": null, "south": -65.0, "title": "Collaborative Research: Common Environmental Drivers Determine the Occupation Chronology of Ad\u00e9lie Penguins and Moss Peatbanks on the Western Antarctic Peninsula", "uid": "p0010354", "west": -65.0}, {"awards": "1932876 Ball, Becky", "bounds_geometry": "POLYGON((-59.666116 -62.15,-59.5128377 -62.15,-59.3595594 -62.15,-59.2062811 -62.15,-59.0530028 -62.15,-58.8997245 -62.15,-58.7464462 -62.15,-58.5931679 -62.15,-58.4398896 -62.15,-58.2866113 -62.15,-58.133333 -62.15,-58.133333 -62.1731502,-58.133333 -62.1963004,-58.133333 -62.2194506,-58.133333 -62.2426008,-58.133333 -62.265751,-58.133333 -62.2889012,-58.133333 -62.3120514,-58.133333 -62.3352016,-58.133333 -62.3583518,-58.133333 -62.381502,-58.2866113 -62.381502,-58.4398896 -62.381502,-58.5931679 -62.381502,-58.7464462 -62.381502,-58.8997245 -62.381502,-59.0530028 -62.381502,-59.2062811 -62.381502,-59.3595594 -62.381502,-59.5128377 -62.381502,-59.666116 -62.381502,-59.666116 -62.3583518,-59.666116 -62.3352016,-59.666116 -62.3120514,-59.666116 -62.2889012,-59.666116 -62.265751,-59.666116 -62.2426008,-59.666116 -62.2194506,-59.666116 -62.1963004,-59.666116 -62.1731502,-59.666116 -62.15))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 14 Apr 2022 00:00:00 GMT", "description": "Part I: Non-technical summary\u003cbr/\u003eThe Antarctic Peninsula warmed very rapidly in the late part of the 20th century, much faster than the global average, and this warming is predicted to resume and continue over the rest of the 21st century. One consequence of this rapid warming is the melting and subsequent retreat of glaciers, leading to an increase in newly-exposed land on the Peninsula that was previously covered with ice. Once new terrain is exposed, the process of ecological succession begins, with the arrival of early-colonizing plants, such as moss and lichens, and soil organisms - a process commonly referred to as the \u201cgreening\u201d of Antarctica. Early stages of succession will be an increasingly common feature on the Antarctic Peninsula, but the mechanisms by which they occur on the Antarctic continent is not well understood. Once the plants have established on the newly-exposed soil, they can change many important properties, such as water dynamics, nutrient recycling, soil development, and habitat for microscopic organisms, which will ultimately determine the structure and functioning of the future ecosystem as it develops. These relationships between vegetation, soil, and the associated microorganisms, referred to as \u201cplant-soil\u201d interactions, are something we know virtually nothing about. This project will be the first to make a comprehensive study of how the type of colonizing plant, and the expansion of those plants from climate change, will influence terrestrial ecosystems in Antarctica. Understanding these processes is critical to understanding how the greening Antarctica is occurring and how soil communities and processes are influenced by these expanding plant communities. Through this work the research team, will also be intensively training undergraduate and graduate students, including training of students from underrepresented groups and collaborative training of students from Chile and the US. Additionally, the research groups will continue their focus on scientific outreach with K-12 schools and the general public to expand awareness of the effects of climate change in Antarctica.\u003cbr/\u003e\u003cbr/\u003ePart II: Technical summary\u003cbr/\u003eIn this study, the researchers will use surveys across succession sites along the Antarctic Peninsula and Scotia Arc as well as a manipulative field experiment at glacier succession sites to test how species-specific plant functional traits impact soil properties and associated microbial and invertebrate communities in a greening Antarctica. In doing so, they will pursue three integrated aims to understand how Antarctic plant functional traits alter their soil environment and soil communities during succession after glacial retreat. AIM 1) Characterize six fundamental plant functional traits (thermal conductivity, water holding capacity, albedo, decomposability, tissue nutrient content, and secondary chemistry) among diverse Antarctica flora; AIM 2) Measure the relative effects of fundamental plant functional traits on soil physical properties and soil biogeochemistry across glacial succession gradients in Antarctica; and AIM 3) Measure the relative effects of fundamental plant functional traits on soil microbial and invertebrate communities across glacial succession gradients in Antarctica. They will explore how early-colonizing plants, especially mosses and lichens, alter soil physical, biogeochemical, and biological components, potentially impacting later patterns of succession. The researhcers will use intensive surveys of plant-soil interactions across succession sites and a manipulative transplant experiment in the South Shetland Islands, Antarctica to address their aims. The investigators will collect data on plant functional traits and their effects on soil physical properties, biogeochemistry, biotic abundance, and microbial metagenomics. The data collected will be the first comprehensive measures of the relative importance of plant functional types during glacial retreat and vegetative expansion from climate change in Antarctica, aiding our understanding of how plant functional group diversity and abundance are changing in a greening Antarctica.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -58.133333, "geometry": "POINT(-58.8997245 -62.265751)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; FIELD SURVEYS; ECOLOGICAL DYNAMICS; USA/NSF; SOIL CHEMISTRY; 25 De Mayo/King George Island; Antarctic Peninsula; PLANTS; Amd/Us; FUNGI; ANIMALS/INVERTEBRATES; USAP-DC; TERRESTRIAL ECOSYSTEMS; BACTERIA/ARCHAEA", "locations": "25 De Mayo/King George Island; Antarctic Peninsula", "north": -62.15, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ball, Becky", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -62.381502, "title": "Collaborative Research: Exploring the Functional Role of Antarctic Plants during Terrestrial Succession", "uid": "p0010315", "west": -59.666116}, {"awards": "1341429 Ball, Becky", "bounds_geometry": "POLYGON((-68.205783 -60.706633,-65.9444531 -60.706633,-63.6831232 -60.706633,-61.4217933 -60.706633,-59.1604634 -60.706633,-56.8991335 -60.706633,-54.6378036 -60.706633,-52.3764737 -60.706633,-50.1151438 -60.706633,-47.8538139 -60.706633,-45.592484 -60.706633,-45.592484 -62.1204014,-45.592484 -63.5341698,-45.592484 -64.9479382,-45.592484 -66.3617066,-45.592484 -67.775475,-45.592484 -69.1892434,-45.592484 -70.6030118,-45.592484 -72.0167802,-45.592484 -73.4305486,-45.592484 -74.844317,-47.8538139 -74.844317,-50.1151438 -74.844317,-52.3764737 -74.844317,-54.6378036 -74.844317,-56.8991335 -74.844317,-59.1604634 -74.844317,-61.4217933 -74.844317,-63.6831232 -74.844317,-65.9444531 -74.844317,-68.205783 -74.844317,-68.205783 -73.4305486,-68.205783 -72.0167802,-68.205783 -70.6030118,-68.205783 -69.1892434,-68.205783 -67.775475,-68.205783 -66.3617066,-68.205783 -64.9479382,-68.205783 -63.5341698,-68.205783 -62.1204014,-68.205783 -60.706633))", "dataset_titles": "Climatic and environmental constraints on aboveground-belowground linkages and diversity across a latitudinal gradient in Antarctica", "datasets": [{"dataset_uid": "200289", "doi": "", "keywords": null, "people": null, "repository": "OSF - Center for Open Science", "science_program": null, "title": "Climatic and environmental constraints on aboveground-belowground linkages and diversity across a latitudinal gradient in Antarctica", "url": "https://osf.io/8xfrc/"}], "date_created": "Thu, 14 Apr 2022 00:00:00 GMT", "description": "The Antarctic Peninsula is experiencing rapid environmental changes, which will influence the community of organisms that live there. However, we know very little about the microscopic organisms living in the soil in this region. Soil biology (including bacteria, fungi, and invertebrates) are responsible for many important processes that sustain ecosystems, such as nutrient recycling. Without understanding the environmental conditions that influence soil biodiversity along the Antarctic Peninsula, our ability to predict the consequences of global change is strongly limited. This project will identify the soil community at many sites along the Antarctic Peninsula to discover how the community changes with environmental conditions from north to south. The project will also identify how the soil community at each site differs under different types of plants. Understanding more about the ways in which plant cover and climate conditions influence soil biodiversity will allow predictions of how communities will respond to future changes such as climate warming and invasive plant species. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. The investigators will engage with outreach to K-12 students and the general public both directly and through a blog and will participate in workshops for K-12 teachers. Additionally, the project will provide the opportunity for many undergraduate and graduate students of diverse backgrounds to be trained in interdisciplinary research.\u003cbr/\u003e\u003cbr/\u003eThe investigators will determine the nature and strength of plant-soil linkages in influencing soil community composition and diversity over a latitudinal gradient of environmental and climatic conditions. The goals are to (1) increase our understanding of current biogeography and diversity by providing in-depth knowledge of soil community composition and complexity as it relates to environmental and climatic characteristics; and (2) determine the nature of aboveground-belowground community linkages over varying spatial scales. The team will identify the composition and diversity of soil communities under key habitat types (grass, moss, algae, etc.). Microbial communities (bacteria, fungi, archaea) will be investigated using pyrosequencing for community composition analysis and metagenomic sequencing to identify functional capabilities. Invertebrates (nematodes, tardigrades, rotifers, microarthropods) will be extracted and identified to the lowest possible taxonomic level. Soil chemistry (pH, nutrient content, soil moisture, etc.) and climate conditions will be measured to determine the relationship between soil communities and physical and chemical properties. Structural equation modeling will be used to identify aboveground-belowground linkage pathways and quantify link strengths under varying environmental conditions.", "east": -45.592484, "geometry": "POINT(-56.8991335 -67.775475)", "instruments": null, "is_usap_dc": true, "keywords": "FUNGI; FIELD INVESTIGATION; AMD; Amd/Us; TERRESTRIAL ECOSYSTEMS; USA/NSF; ANIMALS/INVERTEBRATES; SOIL CHEMISTRY; BACTERIA/ARCHAEA; Antarctic Peninsula; ECOSYSTEM FUNCTIONS; USAP-DC", "locations": "Antarctic Peninsula", "north": -60.706633, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ball, Becky; Van Horn, David", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "OSF - Center for Open Science", "repositories": "OSF - Center for Open Science", "science_programs": null, "south": -74.844317, "title": "Collaborative Research: Climatic and Environmental Constraints on Aboveground-Belowground Linkages and Diversity across a Latitudinal Gradient in Antarctica", "uid": "p0010314", "west": -68.205783}, {"awards": "1443557 Isbell, John", "bounds_geometry": "POLYGON((-180 -85,-177.1 -85,-174.2 -85,-171.3 -85,-168.4 -85,-165.5 -85,-162.6 -85,-159.7 -85,-156.8 -85,-153.9 -85,-151 -85,-151 -85.2,-151 -85.4,-151 -85.6,-151 -85.8,-151 -86,-151 -86.2,-151 -86.4,-151 -86.6,-151 -86.8,-151 -87,-153.9 -87,-156.8 -87,-159.7 -87,-162.6 -87,-165.5 -87,-168.4 -87,-171.3 -87,-174.2 -87,-177.1 -87,180 -87,179 -87,178 -87,177 -87,176 -87,175 -87,174 -87,173 -87,172 -87,171 -87,170 -87,170 -86.8,170 -86.6,170 -86.4,170 -86.2,170 -86,170 -85.8,170 -85.6,170 -85.4,170 -85.2,170 -85,171 -85,172 -85,173 -85,174 -85,175 -85,176 -85,177 -85,178 -85,179 -85,-180 -85))", "dataset_titles": "A LITHOFACIES ANALYSIS OF A SOUTH POLAR GLACIATION IN THE EARLY PERMIAN: PAGODA FORMATION, SHACKLETON GLACIER REGION, ANTARCTICA; A new stratigraphic framework built on U-Pb single-zircon TIMS agesand implications for the timing ofthe penultimate icehouse (Paran\u00e1 Basin, Brazil); Constraining late Paleozoic ice extent in the Paganzo Basin of western Argentina utilizing U-Pb detrital zircon geochronology for the lower Paganzo Group strata; Coupled stratigraphic and U-Pb zircon age constraints on the late Paleozoic icehouse-to-greenhouse turnover in south-central Gondwana; Isotopes to ice: Constraining provenance of glacial deposits and ice centers in west-central Gondwana; Late Permian soil-forming paleoenvironments on Gondwana: A review; Provenance of late Paleozoic glacial/post-glacial deposits in the eastern Chaco-Paran\u00e1 Basin, Uruguay and southernmost Paran\u00e1 Basin, Brazil; Supplemental material: Nitrogen-fixing symbiosis inferred from stable isotope analysis of fossil tree rings from the Oligocene of Ethiopia; When does large woody debris influence ancient rivers? Dendrochronology\r\napplications in the Permian and Triassic, Antarctica", "datasets": [{"dataset_uid": "200270", "doi": "10.1016/j.jsames.2020.102989", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Provenance of late Paleozoic glacial/post-glacial deposits in the eastern Chaco-Paran\u00e1 Basin, Uruguay and southernmost Paran\u00e1 Basin, Brazil", "url": "https://www.sciencedirect.com/science/article/pii/S0895981120305320#mmc1"}, {"dataset_uid": "200273", "doi": "10.1016/j.palaeo.2018.04.020", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Isotopes to ice: Constraining provenance of glacial deposits and ice centers in west-central Gondwana", "url": "https://www.sciencedirect.com/science/article/abs/pii/S0031018217309008?via%3Dihub"}, {"dataset_uid": "200272", "doi": "10.1016/j.jsames.2020.102899", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Constraining late Paleozoic ice extent in the Paganzo Basin of western Argentina utilizing U-Pb detrital zircon geochronology for the lower Paganzo Group strata", "url": "https://www.sciencedirect.com/science/article/pii/S0895981120304429?via%3Dihub#mmc1"}, {"dataset_uid": "200271", "doi": "10.1016/j.palaeo.2019.109544", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "When does large woody debris influence ancient rivers? Dendrochronology\r\napplications in the Permian and Triassic, Antarctica", "url": "https://www.sciencedirect.com/science/article/abs/pii/S0031018219304006?via%3Dihub"}, {"dataset_uid": "200274", "doi": "10.1130/G39213.1", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Supplemental material: Nitrogen-fixing symbiosis inferred from stable isotope analysis of fossil tree rings from the Oligocene of Ethiopia", "url": "https://pubs.geoscienceworld.org/gsa/geology/article-standard/45/8/687/207623/Nitrogen-fixing-symbiosis-inferred-from-stable"}, {"dataset_uid": "200269", "doi": "10.1130/G46740.1", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Coupled stratigraphic and U-Pb zircon age constraints on the late Paleozoic icehouse-to-greenhouse turnover in south-central Gondwana", "url": "https://gsapubs.figshare.com/articles/journal_contribution/Supplemental_material_Coupled_stratigraphic_and_U-Pb_zircon_age_constraints_on_the_late_Paleozoic_icehouse-to-greenhouse_turnover_in_south-central_Gondwana/12542069"}, {"dataset_uid": "200268", "doi": "10.1130/B31775.1.", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "A new stratigraphic framework built on U-Pb single-zircon TIMS agesand implications for the timing ofthe penultimate icehouse (Paran\u00e1 Basin, Brazil)", "url": "https://gsapubs.figshare.com/articles/journal_contribution/Supplemental_material_A_new_stratigraphic_framework_built_on_U-Pb_single-zircon_TIMS_ages_and_implications_for_the_timing_of_the_penultimate_icehouse_Paran_Basin_Brazil_/12535916"}, {"dataset_uid": "200267", "doi": "10.1016/j.palaeo.2021.110762", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Late Permian soil-forming paleoenvironments on Gondwana: A review", "url": "https://www.sciencedirect.com/science/article/abs/pii/S0031018221005472?via%3Dihub"}, {"dataset_uid": "200266", "doi": "10.2110/jsr.2021.004", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "A LITHOFACIES ANALYSIS OF A SOUTH POLAR GLACIATION IN THE EARLY PERMIAN: PAGODA FORMATION, SHACKLETON GLACIER REGION, ANTARCTICA", "url": "https://www.sepm.org/publications"}], "date_created": "Fri, 31 Dec 2021 00:00:00 GMT", "description": "The research focus of this collaborative proposal was to collect fossil plants, fossil wood, stratigraphic, sedimentologic, paleosol, and geochemical data from plants and the rocks that contain them in order to reconstruct the extent of the Gondwana glaciation in the Shackleton Glacier (SHK) area, the invasion and subsequent flourishing of life following glacial retreat, changes to the physical environment, and the eventual recovery of plant life after the Late Permian biotic events. Only in Antarctica does a complete polar-to-near-polar succession occur across this climatic and biologic transition. The SHK is an important one as it is one of the few regions in the world where the Permian-Triassic boundary (PTB) is exposed within terrestrial rocks. In addition, outcrops in the SHK area extend from the glacigenic deposits of the Upper Carboniferous-Lower Permian through to the Upper Triassic and thus record ecosystems and the plants that inhabited them from the Gondwana icehouse into the Late Permian-Early Triassic greenhouse and into presumed \"full recovery\" of floras from the PTB extinctions in the Late Triassic.\r\n\r\nThe project encompassed a multidisciplinary plan that used various types of paleobotanical expertise, integrated with detailed sedimentology, stratigraphy, and geochemistry, in order to reconstruct Permian-Triassic plant communities and their paleoenvironments. This interdisciplinary approach is a powerful tool to uncover details of Antarctica\u2019s complex late Paleozoic and Mesozoic environmental, climatic, and biotic history which included: 1) glaciation/deglaciation, 2) development and evolution of a post-glacial landscape and biota, 3) environmental and biotic change associated with the end-Permian mass extinction events, 4) earliest ecosystems in the Triassic, 5) greenhouse conditions in the Triassic, 6) full \u2019recovery\u2019 of floras and ecosystems by the Late Triassic, and, through all of these events, 7) development and changes in a foreland basin system. Three interrelated focus areas, each delimited by distinct hypotheses and action strategies, provided the framework to trace floral diversity and environmental evolution after the retreat of glaciers through to the Late Triassic. Antarctica is the only place on Earth that includes extensive outcrops of high-paleolatitude terrestrial rocks, combined with widespread and well-preserved plant fossils, and that spans this crucial time.\r\n\r\nThe research and broader impacts of this proposal were integrated into action strategies that have been successful in the past. Compression floras were collected (constrained by stratigraphy) both quantitatively and qualitatively in order to obtain biodiversity and abundance data, and as a data source for paleoecological analysis. Even in formations where megafossils were unknown (e.g., Lower Permian), fossil wood is present so that anatomy and geochemistry of tree rings were examined. Standard sedimentologic and stratigraphic analyses were performed, as well as paleosol analyses, including mineralogic and major- and trace-element geochemistry. Collections will also be made for U-Pb zircon geochronology to better constrain geologic and biotic events.\r\n\r\nThe Broader Impacts of the project involved education and outreach initiatives that included women and under-represented groups in the excitement of Antarctic earth sciences: 1) Continuing successful public outreach, teaching, and mentoring of women and under-represented students in Antarctic research; 2) Participation in workshops for under-represented groups via the Expanding Your Horizons Program in Kansas, the TRIO program (KU), and the STELAR summer workshop (UWM) for high-school students. 3) Outreach via the KU Natural History Museum; 4) Exploring Antarctic geosciences through continued presentations to pre K-12 school groups, and field and lab activities at UWM, as well as links from McMurdo Station and satellite conferences from the field with K-12 science classes in Wisconsin and Illinois.", "east": 170.0, "geometry": "POINT(-170.5 -86)", "instruments": null, "is_usap_dc": true, "keywords": "Shackleton Glacier; SEDIMENTARY ROCKS; GLACIATION", "locations": "Shackleton Glacier", "north": -85.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Isbell, John", "platforms": null, "repo": "Publication", "repositories": "Publication", "science_programs": null, "south": -87.0, "title": "Collaborative Research: Permian and Triassic Icehouse to Greenhouse Paleoenvironments and Paleobotany in the Shackleton Glacier Area, Antarctica", "uid": "p0010287", "west": -151.0}, {"awards": "1643871 van Gestel, Natasja; 1947562 van Gestel, Natasja", "bounds_geometry": "POLYGON((-65 -64.5,-64.8 -64.5,-64.6 -64.5,-64.4 -64.5,-64.2 -64.5,-64 -64.5,-63.8 -64.5,-63.6 -64.5,-63.4 -64.5,-63.2 -64.5,-63 -64.5,-63 -64.55,-63 -64.6,-63 -64.65,-63 -64.7,-63 -64.75,-63 -64.8,-63 -64.85,-63 -64.9,-63 -64.95,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.95,-65 -64.9,-65 -64.85,-65 -64.8,-65 -64.75,-65 -64.7,-65 -64.65,-65 -64.6,-65 -64.55,-65 -64.5))", "dataset_titles": null, "datasets": null, "date_created": "Sat, 21 Aug 2021 00:00:00 GMT", "description": "Responses of the carbon balance of terrestrial ecosystems to warming will feed back to the pace of climate change, but the size and direction of this feedback are poorly constrained. Least known are the effects of warming on carbon losses from soil, and clarifying the major microbial controls is an important research frontier. This study uses a series of experiments and observations to investigate microbial, including autotrophic taxa, and plant controls of net ecosystem productivity in response to warming in intact ecosystems. Field warming is achieved using open-top chambers paired with control plots, arrayed along a productivity gradient. Along this gradient incoming and outgoing carbon fluxes will be measured at the ecosystem-level. The goal is to tie warming-induced shifts in net ecosystem carbon balance to warming effects on soil microbes and plants. The field study will be supplemented with lab temperature incubations. Because soil microbes dominate biogeochemical cycles in Antarctica, a major focus of this study is to determine warming responses of bacteria, fungi and archaea. This is achieved using a cutting-edge stable isotope technique, quantitative stable isotope probing (qSIP) developed by the proposing research team, that can identify the taxa that are active and involved in processing new carbon. This technique can identify individual microbial taxa that are actively participating in biogeochemical cycling of nutrients (through combined use of 18O-water and 13C-bicarbonate) and thus can be distinguished from those that are simply present (cold-preserved). The study further assesses photosynthetic uptake of carbon by the vegetation and their sensitivity to warming. Results will advance research in climate change, plant and soil microbial ecology, and ecosystem modeling.", "east": -63.0, "geometry": "POINT(-64 -64.75)", "instruments": null, "is_usap_dc": true, "keywords": "Palmer Station; TERRESTRIAL ECOSYSTEMS; USA/NSF; AMD; Amd/Us; USAP-DC; FIELD SURVEYS", "locations": "Palmer Station", "north": -64.5, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science", "paleo_time": null, "persons": "van Gestel, Natasja", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -65.0, "title": "Antarctica as a Model System for Responses of Terrestrial Carbon Balance to Warming", "uid": "p0010251", "west": -65.0}, {"awards": "1908399 Bizimis, Michael; 1908548 Feakins, Sarah", "bounds_geometry": "POLYGON((74.787 -67.27617,74.816483 -67.27617,74.845966 -67.27617,74.875449 -67.27617,74.904932 -67.27617,74.934415 -67.27617,74.963898 -67.27617,74.993381 -67.27617,75.022864 -67.27617,75.052347 -67.27617,75.08183 -67.27617,75.08183 -67.31817,75.08183 -67.36017,75.08183 -67.40217,75.08183 -67.44417,75.08183 -67.48617,75.08183 -67.52817,75.08183 -67.57017,75.08183 -67.61217,75.08183 -67.65417,75.08183 -67.69617,75.052347 -67.69617,75.022864 -67.69617,74.993381 -67.69617,74.963898 -67.69617,74.934415 -67.69617,74.904932 -67.69617,74.875449 -67.69617,74.845966 -67.69617,74.816483 -67.69617,74.787 -67.69617,74.787 -67.65417,74.787 -67.61217,74.787 -67.57017,74.787 -67.52817,74.787 -67.48617,74.787 -67.44417,74.787 -67.40217,74.787 -67.36017,74.787 -67.31817,74.787 -67.27617))", "dataset_titles": "Ejtibbett/EOTproxymodel: Proxy Model Comparison for the Eocene-Oligocene Transition [Computational Notebook]; Paleoceanography and biomarker data from the Antarctic Peninsula over the past 37-3 million years; Prydz Bay East Antarctica, biomarkers and pollen, 36-33 million years; Sabrina Coast East Antarctica, Pollen and Biomarker Data from 59-38 million years ago; Southern High Latitude Temperature Proxies from the Late Eocene and Early Oligocene [Dataset]", "datasets": [{"dataset_uid": "200317", "doi": "10.25921/n9kg-yw91", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Paleoceanography and biomarker data from the Antarctic Peninsula over the past 37-3 million years", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/35613"}, {"dataset_uid": "200335", "doi": "10.5281/zenodo.7254536", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Southern High Latitude Temperature Proxies from the Late Eocene and Early Oligocene [Dataset]", "url": "https://zenodo.org/record/7254536#.Y2BLgOTMI2w"}, {"dataset_uid": "200206", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Prydz Bay East Antarctica, biomarkers and pollen, 36-33 million years", "url": "https://www.ncdc.noaa.gov/paleo-search/study/32052"}, {"dataset_uid": "200259", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Sabrina Coast East Antarctica, Pollen and Biomarker Data from 59-38 million years ago", "url": "https://www.ncdc.noaa.gov/paleo/study/34772"}, {"dataset_uid": "200334", "doi": "10.5281/zenodo.7254786", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Ejtibbett/EOTproxymodel: Proxy Model Comparison for the Eocene-Oligocene Transition [Computational Notebook]", "url": "https://zenodo.org/record/7254786#.Y2BLAeTMI2w"}], "date_created": "Sat, 05 Dec 2020 00:00:00 GMT", "description": "The East Antarctic Ice Sheet holds the largest volume of freshwater on the planet, in total enough to raise sea level by almost two hundred feet. Even minor adjustments in the volume of ice stored have major implications for coastlines and climates around the world. The question motivating this project is how did the ice grow to cover the continent over thirty million years ago when Antarctica changed from a warmer environment to an ice-covered southern continent? The seafloor of Prydz Bay, a major drainage basin of the East Antarctic Ice Sheet (EAIS), has been drilled previously to recover sediments dating from millions of years prior to and across the time when inception of continental ice sheets occurred in Antarctica. The last remnants of plant material found as \u0027biomarkers\u0027 in the ocean sediments record the chemical signatures of rain and snowfall that fed the plants and later the expanding glaciers. Sediment carried by glaciers was also deposited on the seafloor and can be analyzed to discover how glaciers flowed across the landscape. Here, the researchers will identify precipitation changes that result from, and drive, ice sheet growth. This study will gather data and further analyze samples from the seafloor sediment archives of the International Ocean Discovery Program\u0027s (IODP) core repositories. Ultimately these findings can help inform temperature-precipitation-ice linkages within climate and ice sheet models. The project will support the training of three female, early career scientists (PhD \u0026 MS students, and research technician) and both PIs and the PhD student will continue their engagement with broadening participation efforts (e.g., Women in Science and Engineering Program; local chapters of Society for the advancement of Native Americans and Chicanos in Science and other access programs) to recruit undergraduate student participants from underrepresented minorities at both campuses and from local community colleges. Antarctic earth science education materials will be assisted by professional illustrations to be open access and used in public education and communication efforts to engage local communities in Los Angeles CA and Columbia SC. \u003cbr/\u003e\u003cbr/\u003eThe researchers at the University of Southern California and the University of South Carolina will together study the penultimate moment of the early Cenozoic greenhouse climate state: the ~4 million years of global cooling that culminated in the Eocene/Oligocene transition (~34 Ma). Significant gaps remain in the understanding of the conditions that preceded ice expansion on Antarctica. In particular, the supply of raw material for ice sheets (i.e., moisture) and the timing, frequency, and duration of precursor glaciations is poorly constrained. This collaborative proposal combines organic and inorganic proxies to examine how Antarctic hydroclimate changed during the greenhouse to icehouse transition. The central hypothesis is that the hydrological cycle weakened as cooling proceeded. Plant-wax hydrogen and carbon isotopes (hydroclimate proxies) and Hf-Nd isotopes of lithogenous and hydrogenous sediments (mechanical weathering proxies) respond strongly and rapidly to precipitation and glacial advance. This detailed and sensitive combined approach will test whether there were hidden glaciations (and/or warm events) that punctuated the pre-icehouse interval. Studies will be conducted on Prydz Bay marine sediment cores in a depositional area for products of weathering and erosion that were (and are) transported through Lambert Graben from the center of Antarctica. The project will yield proxy information about the presence of plants and the hydroclimate of Antarctica and the timing of glacial advance, and is expected to show drying associated with cooling and ice-sheet growth. The dual approach will untangle climate signals from changes in fluvial versus glacial erosion of plant biomarkers. This proposal is potentially transformative because the combination of organic and inorganic proxies can reveal rapid transitions in aridity and glacial expansion, that may have been missed in slower-response proxies and more distal archives. The research is significant as hydroclimate seems to be a key player in the temperature-cryosphere hysteresis.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 75.08183, "geometry": "POINT(74.934415 -67.48617)", "instruments": null, "is_usap_dc": true, "keywords": "MICROFOSSILS; Prydz Bay; PALEOCLIMATE RECONSTRUCTIONS; Sabrina Coast; DROUGHT/PRECIPITATION RECONSTRUCTION; ISOTOPES; AIR TEMPERATURE RECONSTRUCTION", "locations": "Prydz Bay; Sabrina Coast", "north": -67.27617, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Feakins, Sarah; Scher, Howard", "platforms": null, "repo": "NCEI", "repositories": "NCEI; Zenodo", "science_programs": null, "south": -67.69617, "title": "Collaborative Research: Organic and Inorganic Geochemical Investigation of Hydrologic Change in East Antarctica in the 4 Million Years Before Full Glaciation", "uid": "p0010143", "west": 74.787}, {"awards": "1341500 Ryberg, Patricia", "bounds_geometry": null, "dataset_titles": "Images of Fossil Plants of Antarctica", "datasets": [{"dataset_uid": "601066", "doi": "10.15784/601066", "keywords": "Antarctica; Biota; Fossil; Sample/collection Description; Sample/Collection Description; Transantarctic Mountains", "people": "Ryberg, Patricia", "repository": "USAP-DC", "science_program": null, "title": "Images of Fossil Plants of Antarctica", "url": "https://www.usap-dc.org/view/dataset/601066"}], "date_created": "Fri, 09 Oct 2020 00:00:00 GMT", "description": "This project will involve examination of Glossopteridales, fossil plants from Upper Permian deposits, in samples from the central Transantarctic Mountains and Southern Victoria Land, Antarctica. The glossopterids are an important fossil group because they are possible ancestors to the flowering plants. Permian sedimentary rocks (295-270 Ma before present) are important because they record a time of rapid biotic change, as the Late Paleozoic Age ended and the Mesozoic greenhouse environment began. The proposed research will rely entirely on specimens collected during recent field excursions to the central Transantarctic Mountains (CTM; 2010?2011) and southern Victoria Land (SVL; 2012?2013). Only a few of the specimens have been studied, but already have yielded anatomically well-preserved glossopterids with a complete pollen cone, which has never been found before. Additionally, several seed-bearing structures, which have never before been observed in Antarctica, have been found in both CTM and SVL. The project will allow comparison of whole-plant fossil glossopterids from the CTM with other paleo-latitudes, and will document the floral diversity within and between two depositional basins (CTM \u0026 SVL) during a time of global change, with the overall goal of linking environmental changes with fossil morphology. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThe Broader Impacts of this project will include mentoring undergraduates in research projects, at an institution with a substantial minority enrollment. Public outreach will focus on involving middle/high school students through the ?Expanding Your Horizons? programs in Kansas and Missouri, as well as interactive presentations at schools in the Kansas City Area. The lead PI is an early-career scientist at an institution that serves minorities.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; AMD; PLANTS; Victoria Land Basin; Transantarctic Mountains; Amd/Us; USA/NSF; Fossils; SEDIMENTS; FIELD INVESTIGATION; USAP-DC", "locations": "Antarctica; Transantarctic Mountains; Victoria Land Basin", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Ryberg, Patricia", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "RUI: Antarctic Paleobotany: Permian Floral Characteristics in a Sedimentary Setting", "uid": "p0010134", "west": null}, {"awards": "1341464 Robinson, Rebecca; 1341432 Brzezinski, Mark", "bounds_geometry": "POLYGON((-175 -54,-174 -54,-173 -54,-172 -54,-171 -54,-170 -54,-169 -54,-168 -54,-167 -54,-166 -54,-165 -54,-165 -55.3,-165 -56.6,-165 -57.9,-165 -59.2,-165 -60.5,-165 -61.8,-165 -63.1,-165 -64.4,-165 -65.7,-165 -67,-166 -67,-167 -67,-168 -67,-169 -67,-170 -67,-171 -67,-172 -67,-173 -67,-174 -67,-175 -67,-175 -65.7,-175 -64.4,-175 -63.1,-175 -61.8,-175 -60.5,-175 -59.2,-175 -57.9,-175 -56.6,-175 -55.3,-175 -54))", "dataset_titles": "Diatom assemblage counts from NBP17-02 shipboard carboy experiments; Dissolved nutrient profiles from along 170\u00b0W between 67 and 54\u00b0S; Expedition Data of NBP1702; Particle composition measurements from along 170\u00b0W between 67-54\u00b0S; Particulate silicon and nitrogen concentrations and isotopic composition measurements in McLane pump profiles from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean; Silicon concentration and isotopic composition measurements in pore waters and sediments from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean; Surface Southern Ocean community growouts to evaluate the diatom bound N isotope proxy", "datasets": [{"dataset_uid": "200126", "doi": "10.7284/907211", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP1702", "url": "https://www.rvdata.us/search/cruise/NBP1702"}, {"dataset_uid": "601562", "doi": "10.15784/601562", "keywords": "Antarctica; Biogenic Silica; Chemistry:sediment; Chemistry:Sediment; Lithogenic Silica; Marine Geoscience; NBP1702; Pore Water Biogeochemistry; Sediment; Silicon Cycle; Silicon Stable Isotope; Southern Ocean", "people": "Closset, Ivia; Brzezinski, Mark; Jones, Janice L.", "repository": "USAP-DC", "science_program": null, "title": "Silicon concentration and isotopic composition measurements in pore waters and sediments from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean", "url": "https://www.usap-dc.org/view/dataset/601562"}, {"dataset_uid": "601523", "doi": "10.15784/601523", "keywords": "Antarctica; Biota; Carboy Growouts; Diatom; Diatom Assemblage Data; NBP1702; Oceans; R/v Nathaniel B. Palmer; Southern Ocean; Southern Ocean Summer", "people": "Jones, Colin; Robinson, Rebecca ; Riesselman, Christina; Robinson, Rebecca", "repository": "USAP-DC", "science_program": null, "title": "Diatom assemblage counts from NBP17-02 shipboard carboy experiments", "url": "https://www.usap-dc.org/view/dataset/601523"}, {"dataset_uid": "601522", "doi": "10.15784/601522", "keywords": "Antarctica; Nitrogen Isotopes; Oceans; Paleoproxies; Southern Ocean", "people": "Robinson, Rebecca ; Kelly, Roger; Closset, Ivia; Riesselman, Christina; Brzezinski, Mark; Jones, Colin; Robinson, Rebecca", "repository": "USAP-DC", "science_program": null, "title": "Surface Southern Ocean community growouts to evaluate the diatom bound N isotope proxy", "url": "https://www.usap-dc.org/view/dataset/601522"}, {"dataset_uid": "601576", "doi": "10.15784/601576", "keywords": "Antarctica; Biogenic Silica; Chemistry:sediment; Chemistry:Sediment; Diatom; Diatom Bound; Lithogenic Silica; Marine Geoscience; NBP1702; Nitrogen Isotopes; Silicon Cycle; Silicon Stable Isotope; Southern Ocean", "people": "Closset, Ivia; Brzezinski, Mark; Robinson, Rebecca; Jones, Janice L.", "repository": "USAP-DC", "science_program": null, "title": " Particulate silicon and nitrogen concentrations and isotopic composition measurements in McLane pump profiles from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean", "url": "https://www.usap-dc.org/view/dataset/601576"}, {"dataset_uid": "601276", "doi": "10.15784/601276", "keywords": "Antarctica; Biogenic Silica; Nitrogen Isotopes; Southern Ocean", "people": "Robinson, Rebecca; Brzezinski, Mark", "repository": "USAP-DC", "science_program": null, "title": "Particle composition measurements from along 170\u00b0W between 67-54\u00b0S", "url": "https://www.usap-dc.org/view/dataset/601276"}, {"dataset_uid": "601269", "doi": "10.15784/601269", "keywords": "Antarctica; Chlorophyll; Southern Ocean", "people": "Brzezinski, Mark; Robinson, Rebecca", "repository": "USAP-DC", "science_program": null, "title": "Dissolved nutrient profiles from along 170\u00b0W between 67 and 54\u00b0S", "url": "https://www.usap-dc.org/view/dataset/601269"}], "date_created": "Wed, 26 Feb 2020 00:00:00 GMT", "description": "The rise in atmospheric carbon dioxide concentrations and associated climate changes make understanding the role of the ocean in large scale carbon cycle a priority. Geologic samples allow exploration of potential mechanisms for carbon dioxide drawdown during glacial periods through the use of geochemical proxies. Nitrogen and silicon isotope signatures from fossil diatoms (microscopic plants) are used to investigate changes in the physical supply and biological demand for nutrients (like nitrogen and silicon and carbon) in the Southern Ocean. The project will evaluate the use the nitrogen and silicon isotope proxies through a series of laboratory experiments and Southern Ocean field sampling. The results will provide quantification of real relationships between nitrogen and silicon isotopes and nutrient usage in the Southern Ocean and allow exploration of the role of other factors, including biological diversity, ice cover, and mixing, in altering the chemical signatures recorded by diatoms. Seafloor sediment samples will be used to evaluate how well the signal created in the water column is recorded by fossil diatoms buried in the seafloor. Improving the nutrient isotope proxies will allow for a more quantitative understanding of the role of polar biology in regulating natural variation in atmospheric carbon dioxide. The project will also result in the training of a graduate student and development of outreach materials targeting a broad popular audience.\r\n\r\nThis project seeks to test the fidelity of the diatom nitrogen and silicon isotope proxies, two commonly used paleoceanographic tools for investigating the role of the Southern Ocean biological pump in regulating atmospheric CO2 concentrations on glacial-interglacial timescales. Existing ground-truthing data, including culture experiments, surface sediment data and downcore reconstructions, all suggest that nutrient utilization is the primary driver of isotopic variation in the Southern Ocean. However, strong contribution of interspecific variation is implied by recent culture results. Moreover, field and laboratory studies present some contradictory results in terms of the relative importance of interspecific variation and of inferred post-depositional alteration of the nutrient isotope signals. Here, a first order test of the N and Si diatom nutrient isotope paleo-proxies, involving water column dissolved and particulate sampling and laboratory culturing of field-isolates, is proposed. Southern Ocean water, biomass, live diatoms and fossil diatom sampling will be conducted to investigate species and assemblage related variability in diatom nitrogen and silicon isotopes and their relationship to surface nutrient fields and early diagenesis. Access to fresh materials produced in an analogous environmental context to the sediments of primary interest is critical for making robust paleoceanographic reconstructions. Field sampling will occur along 175\u00b0W, transecting the Antarctic Circumpolar Current from the subtropics to the marginal ice edge. Collection of water, sinking/suspended particles and multi-core samples from 13 stations and 3 shipboard incubation experiments will be used to test four proposed hypotheses that together evaluate the significance of existing culture results and seek to allow the best use of diatom nutrient isotope proxies in evaluating the biological pump.", "east": -165.0, "geometry": "POINT(-170 -60.5)", "instruments": null, "is_usap_dc": true, "keywords": "Southern Ocean; AMD; NITROGEN ISOTOPES; R/V NBP; NSF/USA; NUTRIENTS; USAP-DC; Amd/Us", "locations": "Southern Ocean", "north": -54.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Robinson, Rebecca; Brzezinski, Mark", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -67.0, "title": "Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump", "uid": "p0010083", "west": -175.0}, {"awards": "0947821 Ashworth, Allan", "bounds_geometry": "POLYGON((-180 -85.095235,-145.3719418 -85.095235,-110.7438836 -85.095235,-76.1158254 -85.095235,-41.4877672 -85.095235,-6.859709 -85.095235,27.7683492 -85.095235,62.3964074 -85.095235,97.0244656 -85.095235,131.6525238 -85.095235,166.280582 -85.095235,166.280582 -85.0996451,166.280582 -85.1040552,166.280582 -85.1084653,166.280582 -85.1128754,166.280582 -85.1172855,166.280582 -85.1216956,166.280582 -85.1261057,166.280582 -85.1305158,166.280582 -85.1349259,166.280582 -85.139336,131.6525238 -85.139336,97.0244656 -85.139336,62.3964074 -85.139336,27.7683492 -85.139336,-6.859709 -85.139336,-41.4877672 -85.139336,-76.1158254 -85.139336,-110.7438836 -85.139336,-145.3719418 -85.139336,180 -85.139336,178.6280582 -85.139336,177.2561164 -85.139336,175.8841746 -85.139336,174.5122328 -85.139336,173.140291 -85.139336,171.7683492 -85.139336,170.3964074 -85.139336,169.0244656 -85.139336,167.6525238 -85.139336,166.280582 -85.139336,166.280582 -85.1349259,166.280582 -85.1305158,166.280582 -85.1261057,166.280582 -85.1216956,166.280582 -85.1172855,166.280582 -85.1128754,166.280582 -85.1084653,166.280582 -85.1040552,166.280582 -85.0996451,166.280582 -85.095235,167.6525238 -85.095235,169.0244656 -85.095235,170.3964074 -85.095235,171.7683492 -85.095235,173.140291 -85.095235,174.5122328 -85.095235,175.8841746 -85.095235,177.2561164 -85.095235,178.6280582 -85.095235,-180 -85.095235))", "dataset_titles": "Neogene Paleoecology of the Beardmore Glacier Region", "datasets": [{"dataset_uid": "600387", "doi": "10.15784/600387", "keywords": "Antarctica; Beardmore Glacier; Biota; Fossil; GPS; Oliver Bluffs; Paleoclimate; Sample/collection Description; Sample/Collection Description; Seeds; Solid Earth; Transantarctic Mountains", "people": "Ashworth, Allan", "repository": "USAP-DC", "science_program": null, "title": "Neogene Paleoecology of the Beardmore Glacier Region", "url": "https://www.usap-dc.org/view/dataset/600387"}], "date_created": "Thu, 12 Jan 2017 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe primary goal of this project is to sample two beds in the Meyer Desert Formation, which are known to be especially fossiliferous containing plants, insects, other arthropods, freshwater mollusks, and fish. There is a possibility that the teeth and bones of a small marsupial could also be found. Previous studies have demonstrated that these horizons contain unique fossil assemblages that provide information used to reconstruct paleoenvironments and paleoclimate. The fossils represent organisms previously not found in Antarctica and consequently their study will lead to the development of new hypotheses concerning southern hemisphere biogeography. The new discoveries will also increase knowledge of paleoenvironments and paleoclimates as well as biogeographic relationships of the biota of the southern hemisphere. For some organisms, such as Nothofagus (Southern Beech) or the trechine groundbeetle, fossils would confirm that Antarctica was inhabited as part of Gondwana. For other fossils, such as the cyclorrhaphan fly or freshwater mollusks not expected to have inhabited Antarctica, the discoveries will require a reassessment of phylogenetic interpretations and a reinvestigation of the role of Antarctica in the evolutionary history of those organisms. The new fossil-based knowledge will require integration with interpretations from cladistics and molecular genetics to develop more comprehensive phylogenetic hypotheses for a range of organisms.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThe discovery of fossils in Antarctica and implications for climate change has proven to be popular with the media. This attention will help disseminate the results of this study. Before the field season, the PI will work with local media and with area schools to set up field interviews and web casts from Antarctica. The project will also involve the training of a graduate student in the field and in the follow up studies of the fossils in the laboratory.", "east": 166.280582, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -85.095235, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Ashworth, Allan", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.139336, "title": "Neogene Paleoecology of the Beardmore Glacier Region", "uid": "p0000424", "west": 166.280582}, {"awards": "0943935 Isbell, John; 0943934 Taylor, Edith", "bounds_geometry": null, "dataset_titles": "Portal to search geologic sample collections, Polar Rock Repository, Byrd Polar Research Center, The Ohio State University; Portal to search paleobotanical collections, Biodiversity Institute, University of Kansas", "datasets": [{"dataset_uid": "001377", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Portal to search geologic sample collections, Polar Rock Repository, Byrd Polar Research Center, The Ohio State University", "url": "http://research.bpcrc.osu.edu/rr/"}, {"dataset_uid": "001402", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Portal to search paleobotanical collections, Biodiversity Institute, University of Kansas", "url": "http://biodiversity.ku.edu/paleobotany/collections/collections-search"}, {"dataset_uid": "002567", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Portal to search paleobotanical collections, Biodiversity Institute, University of Kansas", "url": "http://biodiversity.ku.edu/paleobotany/collections/collections-search"}], "date_created": "Tue, 23 Sep 2014 00:00:00 GMT", "description": "Intellectual Merit:\u003cbr/\u003eThe focus of this proposal is to collect fossil plants and palynomorphs from Permian-Triassic (P-T) rocks of the central Transantarctic Mountains (CTM), together with detailed data on sedimentologic and paleoecologic depositional environments. Fossil plants are important climate proxies that offer a unique window into the past, and the CTM fossils are an important source of data on the ways that plants responded to a strongly seasonal, polar light regime during a time of global change. The proposed project uses paleobotanical expertise, integrated with detailed sedimentology and stratigraphy, to reconstruct Permian-Triassic plant communities and their paleoenvironments. This interdisciplinary approach could uncover details of Antarctica?s complex late Paleozoic and Mesozoic environmental and climatic history which included: 1) deglaciation, 2) development and evolution of a post-glacial landscape and biota, 3) environmental and biotic change associated with the end-Permian mass extinction, 4) environmental recovery in the earliest Triassic, 5) strong, possible runaway Triassic greenhouse, and 6) widespread orogenesis and development of a foreland basin system. The PIs will collect compression floras both quantitatively and qualitatively to obtain biodiversity and abundance data. Since silicified wood is also present, the PIs will analyze tree rings and growth in a warm, high-latitude environment for which there is no modern analogue. Fossil plants from the CTM can provide biological and environmental information to: 1) interpret paleoclimate when Gondwana moved from icehouse to greenhouse conditions; 2) trace floral evolution across the P-T boundary; 3) reconstruct Antarctic plant life; 4) further understanding of plant adaptations to high latitudes. The Intellectual Merit of the research includes: 1) tracing floral evolution after the retreat of glaciers; 2) examining floral composition and diversity across the PTB; and 3) obtaining data on the recovery of these ecosystems in the Early Triassic, as well as changes in floral cover and diversity in the Early-Middle Triassic. Antarctica is the only place on Earth that includes extensive outcrops of terrestrial rocks, combined with widespread and well-preserved plant fossils, which spans this crucial time period.\u003cbr/\u003e\u003cbr/\u003eBroader impacts:\u003cbr/\u003eThe broader impacts include public outreach; teaching, and mentoring of women and underrepresented students; mentoring graduate student, postdoctoral, and new faculty women; development of an inquiry-based workshop on Antarctic paleoclimate with the Division of Education, KU Natural History Museum; continuing support of workshops for middle school girls in science via the Expanding Your Horizons Program, Emporia State University, and the TRIO program, KU; exploring Antarctic geosciences through video/computer links from McMurdo Station and satellite phone conferences from the field with K-12 science classes in Wisconsin and Kansas, and through participation in the NSF Research Experiences for Teachers program at the University of Wisconsin.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "FIELD SURVEYS; LABORATORY; Transanatarctic Basin; Paleobotany; Fossil Plants; FIELD INVESTIGATION; Sedimentology; Late Paleozoic Ice Age; Not provided; Central Transantarctic Mountains; Beardmore Glacier", "locations": "Transanatarctic Basin; Central Transantarctic Mountains; Beardmore Glacier", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Instrumentation and Support; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN; PHANEROZOIC \u003e MESOZOIC \u003e TRIASSIC; PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN; PHANEROZOIC \u003e MESOZOIC \u003e TRIASSIC", "persons": "Isbell, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "PRR", "repositories": "PI website; PRR", "science_programs": null, "south": null, "title": "Collaborative Research: Antarctic Ecosystems across the Permian-Triassic Boundary: Integrating Paleobotany, Sedimentology, and Paleoecology", "uid": "p0000372", "west": null}, {"awards": "0944532 Isbell, John; 0944662 Elliot, David", "bounds_geometry": "POLYGON((158.9 -83,159.583 -83,160.266 -83,160.949 -83,161.632 -83,162.315 -83,162.998 -83,163.681 -83,164.364 -83,165.047 -83,165.73 -83,165.73 -83.21,165.73 -83.42,165.73 -83.63,165.73 -83.84,165.73 -84.05,165.73 -84.26,165.73 -84.47,165.73 -84.68,165.73 -84.89,165.73 -85.1,165.047 -85.1,164.364 -85.1,163.681 -85.1,162.998 -85.1,162.315 -85.1,161.632 -85.1,160.949 -85.1,160.266 -85.1,159.583 -85.1,158.9 -85.1,158.9 -84.89,158.9 -84.68,158.9 -84.47,158.9 -84.26,158.9 -84.05,158.9 -83.84,158.9 -83.63,158.9 -83.42,158.9 -83.21,158.9 -83))", "dataset_titles": "Rock Samples (full data link not provided)", "datasets": [{"dataset_uid": "000171", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Rock Samples (full data link not provided)", "url": "http://bprc.osu.edu/rr/"}], "date_created": "Thu, 05 Dec 2013 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe goal of this project is to address relationships between foreland basins and their tectonic settings by combining detrital zircon isotope characteristics and sedimentological data. To accomplish this goal the PIs will develop a detailed geochronology and analyze Hf- and O-isotopes of detrital zircons in sandstones of the Devonian Taylor Group and the Permian-Triassic Victoria Group. These data will allow them to better determine provenance and basin fill, and to understand the nature of the now ice covered source regions in East and West Antarctica. The PIs will document possible unexposed/unknown crustal terrains in West Antarctica, investigate sub-glacial terrains of East Antarctica that were exposed to erosion during Devonian to Triassic time, and determine the evolving provenance and tectonic history of the Devonian to Triassic Gondwana basins in the central Transantarctic Mountains. Detrital zircon data will be interpreted in the context of fluvial dispersal/drainage patterns, sandstone petrology, and sequence stratigraphy. This interpretation will identify source terrains and evolving sediment provenances. Paleocurrent analysis and sequence stratigraphy will determine the timing and nature of changing tectonic conditions associated with development of the depositional basins and document the tectonic history of the Antarctic sector of Gondwana. Results from this study will answer questions about the Panthalassan margin of Gondwana, the Antarctic craton, and the Beacon depositional basin and their respective roles in global tectonics and the geologic and biotic history of Antarctica. The Beacon basin and adjacent uplands played an important role in the development and demise of Gondwanan glaciation through modification of polar climates, development of peat-forming mires, colonization of the landscape by plants, and were a migration route for Mesozoic vertebrates into Antarctica. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis proposal includes support for two graduate students who will participate in the fieldwork, and also support for other students to participate in laboratory studies. Results of the research will be incorporated in classroom teaching at the undergraduate and graduate levels and will help train the next generation of field geologists. Interactions with K-12 science classes will be achieved by video/computer conferencing and satellite phone connections from Antarctica. Another outreach effort is the developing cooperation between the Byrd Polar Research Center and the Center of Science and Industry in Columbus.", "east": 165.73, "geometry": "POINT(162.315 -84.05)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e XRF", "is_usap_dc": true, "keywords": "Not provided; LABORATORY", "locations": null, "north": -83.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Elliot, David; Isbell, John", "platforms": "Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "PRR", "repositories": "PRR", "science_programs": null, "south": -85.1, "title": "Collaborative Research:Application of Detrital Zircon Isotope Characteristics and Sandstone Analysis of Beacon Strata to the Tectonic Evolution of the Antarctic Sector of Gondwana", "uid": "p0000312", "west": 158.9}, {"awards": "0636218 Gillies, John", "bounds_geometry": "POLYGON((161.85075 -77.37241,161.990843 -77.37241,162.130936 -77.37241,162.271029 -77.37241,162.411122 -77.37241,162.551215 -77.37241,162.691308 -77.37241,162.831401 -77.37241,162.971494 -77.37241,163.111587 -77.37241,163.25168 -77.37241,163.25168 -77.395964,163.25168 -77.419518,163.25168 -77.443072,163.25168 -77.466626,163.25168 -77.49018000000001,163.25168 -77.513734,163.25168 -77.537288,163.25168 -77.56084200000001,163.25168 -77.584396,163.25168 -77.60795,163.111587 -77.60795,162.971494 -77.60795,162.831401 -77.60795,162.691308 -77.60795,162.551215 -77.60795,162.411122 -77.60795,162.271029 -77.60795,162.130936 -77.60795,161.990843 -77.60795,161.85075 -77.60795,161.85075 -77.584396,161.85075 -77.56084200000001,161.85075 -77.537288,161.85075 -77.513734,161.85075 -77.49018000000001,161.85075 -77.466626,161.85075 -77.443072,161.85075 -77.419518,161.85075 -77.395964,161.85075 -77.37241))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 05 Jun 2012 00:00:00 GMT", "description": "This project characterizes wind-driven sediment transport in the McMurdo Dry Valleys of \u003cbr/\u003eAntarctica during both winter and summer periods. Wind is the primary sculptor of\u003cbr/\u003eterrain in this region and winter measurements, which have never been undertaken, are\u003cbr/\u003eessential for determining the frequency and magnitude of transport events. The projects\u003cbr/\u003egoal is to determine if the existing landforms represent relics from past climate regimes\u003cbr/\u003eor contemporary processes. The project involves two major activities: (1) dynamic and\u003cbr/\u003etime-integrated measurements of sand transport to characterize the seasonal behavior,\u003cbr/\u003efrequency, and magnitude at four sites and (2) detailed surveying of an unusual\u003cbr/\u003ewind-formed surface feature, the gravel megaripples found in the Wright Valley. In\u003cbr/\u003eaddition to interpreting Dry Valleys geomorphology, these data will provide a more\u003cbr/\u003equantitative assessment of wind-aided distribution of nutrients, plants, and animals to\u003cbr/\u003eterrestrial and aquatic ecosystems throughout the Dry Valleys. This research will also\u003cbr/\u003eprovide quantitative information on the effects of extreme cold and low humidity on\u003cbr/\u003etransport thresholds and rates, which can be applied to cold desert environments of the\u003cbr/\u003eArctic, Antarctic, and Mars.", "east": 163.25168, "geometry": "POINT(162.551215 -77.49018)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": -77.37241, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Gillies, John", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -77.60795, "title": "Dynamics of Aeolian Processes in the McMurdo Dry Valleys, Antarctica", "uid": "p0000739", "west": 161.85075}, {"awards": "1048343 Warny, Sophie", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Palynological samples list", "datasets": [{"dataset_uid": "601151", "doi": "10.15784/601151", "keywords": "Antarctica; Glaciology; Marine Geoscience; Marine Sediments; Microscope; Microscopy; Paleoclimate; Pollen", "people": "Warny, Sophie", "repository": "USAP-DC", "science_program": null, "title": "Palynological samples list", "url": "https://www.usap-dc.org/view/dataset/601151"}], "date_created": "Sat, 10 Dec 2011 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe PI proposes a high-resolution paleoenvironmental study of pollen, spore, fresh-water algae, and dinoflagellate cyst assemblages to investigate the palynological record of sudden warming events in the Antarctic as recorded by the ANDRILL SMS drill core and terrestrial sections. These data will be used to derive causal mechanisms for these rapid climate events. Terrestrial samples will be obtained at various altitudes in the Dry Valleys region. The pollen and spores will provide data on atmospheric conditions, while the algae will provide data on sea-surface conditions. These data will help identify the triggers for sudden climatic shifts. If they are caused by changes in oceanic currents, a signal will be visible in the dinocyst assemblages first as currents influence their distribution. Conversely, if these shifts are triggered by atmospheric factors, then the shifts will first affect plants and be visible in the pollen record.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThe PI proposes a suite of activities to bring field-based climate change research to a broader audience. The PI will advise a diverse group of students and educators. The palynological data collected as part of this research will be utilized, in part, to develop new lectures on Antarctic palynology and these new lectures will be made available via a collaboration with the LSU HHMI program. In addition, the PI will direct three Louisiana middle-school teachers as they pursue a Masters of Natural Science for science educators. These teachers will help the PI develop a professional development program for science teachers. Community-based activities will be organized to raise science awareness and alert students and the public of opportunities in science.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "MICROFOSSILS; NOT APPLICABLE", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Warny, Sophie", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WISSARD; ANDRILL; SHALDRIL", "south": -75.0, "title": "CAREER: Deciphering Antarctic Climate Variability during the Temperate/Polar Transition and Improving Climate Change Literacy in Louisiana through a Companion Outreach Program", "uid": "p0000311", "west": -180.0}, {"awards": "0636747 Warny, Sophie", "bounds_geometry": "POINT(-54.44917 -63.86)", "dataset_titles": null, "datasets": null, "date_created": "Wed, 26 Aug 2009 00:00:00 GMT", "description": "Abstract\u003cbr/\u003eThis project studies microfossils of plants and algae to understand climate during the earliest glaciations of Antarctica. The microfossils are from marine sediment cores collected by the 2006 SHALDRIL campaign to the Antarctic Peninsula. The work will offer constraints on sea surface temperature, ocean salinity, and terrestrial vegetation to help answer questions such as: What were conditions like on the Antarctic Peninsula during the initial formation of Antarctica\u0027s ice sheets? How rapidly did the ice sheets grow? Was their growth driven by global factors such as low atmospheric CO2 or local events like opening of the Drake Passage? \u003cbr/\u003e\u003cbr/\u003eThe broader impacts include postdoctoral fellow research and outreach via a museum exhibit and a web-based activity book for children.", "east": -54.44917, "geometry": "POINT(-54.44917 -63.86)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -63.86, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Warny, Sophie", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -63.86, "title": "Past Environmental Conditions on the Antarctic Peninsula: a Palynological Characterization of In-situ Sediments recovered during the 2006 SHALDRIL campaign", "uid": "p0000484", "west": -54.44917}, {"awards": "0338260 Chin, Yu-Ping; 0338342 Foreman, Christine", "bounds_geometry": "POINT(166.167 -77.55)", "dataset_titles": "Biogeochemistry of Dissolved Organic Matter in Pony Lake, Ross Island", "datasets": [{"dataset_uid": "600168", "doi": "10.15784/600168", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Critical Zone; Ross Island; Sample/collection Description; Sample/Collection Description; Water Samples", "people": "Foreman, Christine; Chin, Yu-Ping", "repository": "USAP-DC", "science_program": null, "title": "Biogeochemistry of Dissolved Organic Matter in Pony Lake, Ross Island", "url": "https://www.usap-dc.org/view/dataset/600168"}], "date_created": "Mon, 16 Mar 2009 00:00:00 GMT", "description": "Dissolved organic matter (DOM) is a significant chemical component in aquatic systems because it acts as an important carbon source for microorganisms, absorbs harmful radiation in sunlight, is able to complex metals, and can participate in important biogeochemical reactions. This study will investigate the biogeochemical cycling of DOM in a small coastal Antarctic pond, Pony Lake, located on Cape Royds, Ross Island. Because there are no higher plants present at this site all of the DOM in this lake is derived from microorganisms. Thus, Pony Lake is an ideal site to study the effect of physical, chemical, and microbial processes on the composition and character of the DOM pool. Finally, Pony Lake is also an ideal site to collect an International Humic Substances Society (IHSS) fulvic acid standard. Unlike other IHSS standards, this standard will not contain DOM components derived from higher land plants. To better understand the role of physical influences, the project will study the changes in the DOM pool as the lake evolves from ice-covered to ice-free conditions during the summer, as well as the relationship of DOM to the observed turnover of dominant microbial communities in the lake. Scientists will also monitor changes in microbial abundance, diversity, and productivity that may occur during the ice to open-water transition period. This research will provide much needed information regarding the relationship between microbial diversity and DOM biogeochemistry. Middle school science students will be active participants in this project through the Internet, while scientists are in the field, and in the lab.", "east": 166.167, "geometry": "POINT(166.167 -77.55)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided; FIELD SURVEYS", "locations": null, "north": -77.55, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Foreman, Christine; Chin, Yu-Ping", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.55, "title": "Collaborative Research: Biogeochemistry of Dissolved Organic Matter in Pony Lake, Ross Island", "uid": "p0000548", "west": 166.167}, {"awards": "0337656 Lee, Richard", "bounds_geometry": "POLYGON((-64.1 -64.75,-64.085 -64.75,-64.07 -64.75,-64.055 -64.75,-64.04 -64.75,-64.025 -64.75,-64.01 -64.75,-63.995 -64.75,-63.98 -64.75,-63.965 -64.75,-63.95 -64.75,-63.95 -64.757,-63.95 -64.764,-63.95 -64.771,-63.95 -64.778,-63.95 -64.785,-63.95 -64.792,-63.95 -64.799,-63.95 -64.806,-63.95 -64.813,-63.95 -64.82,-63.965 -64.82,-63.98 -64.82,-63.995 -64.82,-64.01 -64.82,-64.025 -64.82,-64.04 -64.82,-64.055 -64.82,-64.07 -64.82,-64.085 -64.82,-64.1 -64.82,-64.1 -64.813,-64.1 -64.806,-64.1 -64.799,-64.1 -64.792,-64.1 -64.785,-64.1 -64.778,-64.1 -64.771,-64.1 -64.764,-64.1 -64.757,-64.1 -64.75))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 06 Jun 2008 00:00:00 GMT", "description": "Polar terrestrial environments are often described as deserts, where water availability is recognized as one of the most important limits on the distribution of terrestrial organisms. In addition, prolonged low winter temperatures threaten survival, and summer temperatures challenge organisms with extensive diel variations and rapid transitions from freezing to desiccating conditions. Global warming has further impacted the extreme thermal and hydric conditions experienced by Antarctic terrestrial plant and arthropod communities, especially as a result of glacial retreat along the Antarctic Peninsula. This research will focus on thermal and hydric adaptations in the terrestrial midge, Belgica antarctica, the largest and most southerly holometabolous insect living in this challenging and changing environment. \u003cbr/\u003eOverwintering midge larvae encased in the frozen substrate must endure desert-like conditions for more than 300 days since free water is biologically unavailable as ice. During the summer, larvae may be immersed in melt water or outwash from penguin colonies and seal wallows, in addition to saltwater splash. Alternatively, the larvae may be subjected to extended periods of desiccation as their microhabitats dry out. Due to their small size, relative immobility and the patchiness of suitable microhabitats, larvae may thus be subjected to stresses that include desiccation, hypo- or hyperosmotic conditions, high salinity exposure, and anoxia for extended periods. Research efforts will focus in three areas relevant to the stress tolerance mechanisms operating in these midges:(1) obtaining a detailed characterization of microclimatic conditions experienced by B. antarctica, especially those related to thermal and hydric diversity, both seasonally and among microhabitat types in the vicinity of Palmer Station, Antarctica; (2) examining the effects of extreme fluctuations in water availability and effects on physiological and molecular responses - to determine if midge larvae utilize the mechanism of cryoprotective dehydration for winter survival, and if genes encoding heat shock proteins and other genes are upregulated in larval responses to dehydration and rehydration; (3) investigating the dietary transmission of cryoprotectants from plant to insect host, which will test the hypothesis that midge larvae acquire increased resistance to desiccation and temperature stress by acquiring cryoprotectants from their host plants. \u003cbr/\u003eThis project will provide outreach to both elementary and secondary educators and their students. The team will include a teacher who will benefit professionally by full participation in the research, and will also assist in providing outreach to other teachers and their students. From Palmer Station, the field team will communicate daily research progress by e-mail supplemented with digital pictures with teachers and their elementary students to stimulate interest in an Antarctic biology and scientific research. These efforts will be supplemented with presentations at local schools and national teacher meetings, and by publishing hands-on, inquiry-based articles related to cryobiology and polar biology in education journals. Furthermore, the principal investigators will maintain major commitments to training graduate students and postdoctoral scholars, as well as undergraduate students by providing extended research experience that includes publication of scientific papers and presentations at national meetings.", "east": -63.95, "geometry": "POINT(-64.025 -64.785)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -64.75, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Denlinger, David; Lee, Richard", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -64.82, "title": "Physiological and Molecular Mechanisms of Stress Tolerance in a Polar Insect", "uid": "p0000742", "west": -64.1}, {"awards": "0230469 Wise, Sherwood", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 31 Jul 2007 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports the development of a standardized diatom image catalog or database. Diatoms are considered by many to be the most important microfossil group used today in the study of Antarctic Cenozoic marine deposits south of the Polar Front, from the near shore to deep sea. These microfossils, with walls of silica called frustules, are produced by single-celled plants (algae of the Class Bacillariophyceae) in a great variety of forms. Consequently, they have great biostratigraphic importance in the Southern Ocean and elsewhere for determining the age of marine sediments. Also, paleoclimatic and paleoceanographic studies increasingly rely on fossil diatom data. Changing biogeographic distributions of given taxa indicate shifting paleoecological conditions and provide evidence of the surface productivity and temperatures of ancient oceans. The generality of conclusions, though, is limited by variation in species concepts among workers. The broad research community relies, directly or indirectly, on the accurate identification of diatom species. Current technology can be used to greatly improve upon the standard references that have been used in making these identifications.\u003cbr/\u003e\u003cbr/\u003eThis project will develop an interactive digital-image catalog of modern and Cenozoic fossil diatoms of the Southern Ocean called \"DiatomWare\" for use by specialists and educators as an aid in rapid, accurate, and consistent species identification. As such, this will be a researcher\u0027s resource. It will be especially useful where it is not possible to maintain standard library resources such as onboard research vessels or at remote stations such as McMurdo Station. Major Antarctic geological drilling initiatives such as the new SHALDRIL project and the pending ANDRILL project will benefit from this product because they will rely heavily on diatom biostratigraphy to achieve their research objectives. The DiatomWare image database will be modeled on NannoWare, which was released in October 2002 on CD-ROM as a publication of the International Nannoplankton Association. BugCam will be adapted and modified as necessary to run the DiatomWare database, which can then be run from desktop or laptop computers. Images and text for the database will be scanned from the literature or captured in digital form from light or scanning electron microscopes.\u003cbr/\u003e\u003cbr/\u003eThe software interface will include a number of data fields that can be accessed by the click of a mouse button. Primary information will be the images and descriptions of the holotypes. In addition, representative images of paratypes or hypotypes will be included whenever possible in plain transmitted, differential interference contrast light and, when available, as drawings and SEM images. Also included will be a 35-word or less English diagnosis (\"mini-description\"), the biostratigraphic range in terms of zones and linear time, bibliographic references, lists of species considered junior synonyms, and similar species. The list of similar species will be cross-referenced with their respective image files to enable quick access for direct visual comparison on the viewing screen. Multiple images can be brought to the viewing screen simultaneously, and a zoom feature will permit image examination at a wide range of magnifications. Buttons will allow range charts, a bibliography, and key public-domain publications from the literature to be called up from within the program. The DiatomWare/BugCam package will be distributed at a nominal cost through a major nonprofit society via CD-ROM and free to Internet users on the Worldwide Web. Quality control measures will include critical review of the finalized database by a network of qualified specialists. The completed database will include descriptions and images of between 350 and 400 species, including fossil as well as modern forms that have no fossil record.\u003cbr/\u003e\u003cbr/\u003eThe development of the proposed diatom image database will be important to all research fields that depend on accurate biostratigraphic dating and paleoenvironmental interpretation of Antarctic marine sediments and plankton. The database will also serve as a valuable teaching tool for micropaleontology students and their professors, will provide a rapid means of keying down species for micropaleontologists of varying experience and background, and will promote a uniformity of taxonomic concepts since it will be developed and continuously updated with the advice of a community of nannofossil fossil experts. Broad use of the database is anticipated since it will be widely available through the Internet and on CD-ROM for use on personal computers that do not require large amounts of memory, costly specialized programs, or additional hardware.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Wise, Sherwood", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "DiatomWare: An Interactive Digital Image Catalog for Antarctic Cenozoic Diatoms", "uid": "p0000062", "west": null}, {"awards": "0003844 Case, Judd", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG0309", "datasets": [{"dataset_uid": "001683", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0309"}, {"dataset_uid": "002676", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0309", "url": "https://www.rvdata.us/search/cruise/LMG0309"}], "date_created": "Wed, 28 Mar 2007 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research project between the Saint Mary\u0027s College of California, the South Dakota School of Mines and technology, and the Argentine Antarctic Institute (Instituto Antartico Argentino or IAA) to investigate the Late Mesozoic vertebrate paleontology of the James Ross Basin in the Antarctic Peninsula region. The Campanian through the Maastrichtian ages (80 to 65 million years ago) is an important time interval concerning vertebrate biogeography (i.e. dispersals and separations due to moving landmasses) and evolution between Antarctica and other Southern Hemisphere continents (including India, i.e. Gondwana). Moreover, the dispersal of terrestrial vertebrates (i.e. dinosaurs and marsupial mammals) from North America to Antarctica and beyond (e.g. Australia) via Patagonia and the Antarctic Peninsula, as well as the dispersal of modern birds from Antarctica northward are important unresolved questions in paleontology. These dispersal events include vertebrates not only in the terrestrial realms, but also in marine settings. Both widely distributed and localized marine reptile species have been identified in Antarctica, creating questions concerning their dispersal in conjunction with the terrestrial animals.\u003cbr/\u003e\u003cbr/\u003eThe Antarctic Peninsula and Patagonia represent the western-most portion of the Weddellian Paleobiogeographic Province, a region that extends from Patagonia through the Antarctic Peninsula and western Antarctica to Australia and New Zealand. Within this province lie the dispersal routes for interchanges of vertebrates between South America and: 1) Madagascar and India, and 2) Australia. As the result of previous work by the principal investigators, it is postulated that an isthmus between more northern South America and the Antarctic craton has served to bring typical North American dinosaurs, such as hadrosaurs (duck-billed dinosaurs) and presumably marsupials traveling overland, while marine reptiles swam along coastal waters, to Antarctica in the latest Cretaceous. Finally, this region has served as the cradle for the evolution, if not the origin, for groups of modern birds, and evolution of a suite of typical southern hemisphere plants.\u003cbr/\u003e\u003cbr/\u003eIn order to confirm and expand upon these hypotheses, investigations into the latest Cretaceous deposits of the James Ross Basin, Antarctica Peninsula must be continued. The Cape Lamb and Sandwich Bluff geological units, of the Lopez de Bertodano Formation in the James Ross Basin along the eastern Antarctic Peninsula, exhibit a mixture of marine and terrestrial deposits. The following vertebrates have been recovered from these sedimentary deposits during previous field seasons: plesiosaur and mosasaur marine reptiles; plant eating dinosaurs; a meat eating dinosaur; and a variety of modern bird groups, including shorebirds, wading birds and lagoonal birds.\u003cbr/\u003e\u003cbr/\u003eThis project will undertake new fieldwork to recover new specimens in order to test biogeographic and evolutionary hypotheses concerning Late Cretaceous vertebrates in Gondwana. Fieldwork is planned in January 2002 and 2003 to explore the eastern slopes of Cape Lamb, Sandwich Bluff and False Island Point on Vega Island, and the Santa Marta Cove area of James Ross Island.\u003cbr/\u003e\u003cbr/\u003eThis research will result in important new insights about the evolution and geographic dispersal of several vertebrate species. The results are important to understanding the development and evolution of life on Earth.\u003cbr/\u003e\u003cbr/\u003eThis is a collaborative research project with Argentinean scientists from the IAA and it continues a productive collaboration that began in 1995. In addition, collaboration with vertebrate paleontologists from the Museo de La Plata, both in the field and at our respective institutions in Argentina and in the United States, will continue.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "Not provided; R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e MESOZOIC \u003e CRETACEOUS", "persons": "Case, Judd; Blake, Daniel", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Evolution and Biogeography of Late Cretaceous Vertebrates from the James Ross Basin, Antarctic Peninsula", "uid": "p0000129", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Historical and Contemporary Drivers of Macroalgal Reproductive System Variation along the Western Antarctic Peninsula
|
2301026 |
2024-05-16 | Amsler, Charles; Krueger-Hadfield, Stacy | No dataset link provided | General abstract<br/><br/>Most organisms alternate between life stages that vary in the number and arrangement of their chromosomes, in the number of cells they possess, and in the environmental conditions in which they are best adapted to live. Much of what we understand about these alternations comes from organisms like animals and land plants in which one of the two stages dominates the life cycle with the other small and short-lived. However, across the tree of life there are countless examples of organisms in which both stages are of long duration, multicellular, or both. These life cycles challenge common ideas used to explain ecological and evolutionary patterns we see in nature. Macroalgae (seaweeds) display a wide range of life cycle types and consequently are excellent models to test and expand ideas about how life cycles evolve. Undersea forests of seaweeds with a variety of life cycle types dominate the shallow waters of the western Antarctic Peninsula where they are ecologically important and, for most of the species, at the southern end of their geographic range. Using existing samples from previous expeditions to Antarctica, the investigators are uniquely positioned to test and expand knowledge of life cycle evolution and how this intersects with reproductive mode variation. This project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the public. The project will support a postdoctoral scholar as well as a faculty member new to US Antarctic research. The investigators will take advantage of an existing program to include high school or undergraduate students in the work which will also expand mentorship experience for the postdoc. All team members will contribute by writing for blogs produced by professional societies for the public. <br/><br/><br/>Technical abstract<br/><br/>Existing macroalgal taxa samples from across a latitudinal gradient in the western Antarctic Peninsula will be used to explore patterns of genetic diversity from the center to the southern latitudinal limits of their range. Not only will genetic diversity be documented for an understudied and critical group of Antarctic organisms, but how it changes with latitude, compounded by high levels of endemism, will be explored. This will be accomplished by (i) characterization of latitudinal gradients in genetic diversity of many species and (ii) determination of the reproductive system of five focal foundation species. At present, there are few genetic data for macroalgae, dominant primary producers in coastal ecosystems around the world. This gap is particularly acute along Antarctic coastlines that are experiencing rapid climate change. Furthermore, Antarctica is isolated by the Southern Ocean, decreasing the likelihood of regular migration from other land masses. Latitudinal reproductive system patterns are predicted to be largely driven by recolonization events that increase with latitude due to changes in iceberg scour and sea ice coverage. Thus, Antarctica is the best place to understand what processes underlie reproductive mode variation in populations that are isolated, including many endemic taxa, while simultaneously extending our knowledge about how marginal environments converge with complex life cycles.<br/><br/>This award reflects NSF''s statutory mission and has been deemed worthy of support through evaluation using the Foundation''s intellectual merit and broader impacts review criteria. | None | None | false | false | |||||
Collaborative Research: Common Environmental Drivers Determine the Occupation Chronology of Adélie Penguins and Moss Peatbanks on the Western Antarctic Peninsula
|
2012365 2012444 2012247 |
2022-07-24 | Groff, Dulcinea; Cimino, Megan; Johnston, David | No dataset link provided | This award is funded in whole or part under the American Rescue Plan Act of 2021 (Public Law 117-2). Part I: Non-technical description: Adlie penguin colonies are declining and disappearing from the western Antarctic Peninsula. However, not all colonies in a certain area decline or disappear at the same rate. This research project will evaluate the influence of terrestrial surface properties on Adlie penguin colonies, leveraging five decades of research on seabirds near Palmer Station where an Adlie colony on Litchfield Island became extinct in 2007 while other colonies nearby are still present. The researchers will combine information obtained from remote sensing, UAS (Unoccupied Aircraft System, or drones) high-resolution maps, reconstruction of past moss banks and modeling with machine learning tools to define suitable penguin and peatbank moss habitats and explore the influence of microclimate on their distributions. In particular, the researchers are asking if guano from penguin colonies could act as fertilizers of moss banks in the presence of localized wind patters that can carry airborne nitrogen to the mosses. Modeling will relate penguin and peatbank moss spatial patterns to environmental variables and provide a greater understanding of how continued environmental change could impact these communities. The project allows for documentation of terrestrial Antarctic ecosystems in support of seabirds and provisioning of such information to the broader science community that seeks to study penguins, educating graduate and undergraduate students and a post-doctoral researcher. The research team includes two young women as Principal Investigators, one of them from an under-represented ethnic minority, first time Antarctic Principal Investigator, from an EPSCoR state (Wyoming), broadening participation in Antarctic research. Researchers will serve as student mentors through the Duke Bass Connections program entitled Biogeographic Assessment of Antarctic Coastal Habitats. This program supports an interdisciplinary team of graduate and undergraduate students collaborating with project faculty and experts on cutting-edge research bridging the classroom and the real world. Part II: Technical description: This research aims to understand the changes at the microclimate scale (meters) by analyzing present and past Adlie penguin colonies and moss peatbanks in islands around Palmer Station in the western Antarctic Peninsula interlinked systems that are typically considered in isolation. By integrating in situ and remote data, this project will synthesize the drivers of biogeomorphology on small islands of the Antarctic Peninsula, a region of rapid change where plants and animals often co-occur and animal presence often determines the habitation of plants. A multi-disciplinary approach combine field measurements, remote sensing, UAS (Unoccupied Aircraft Systems) maps, paleoecology and modeling with machine learning to define suitable habitats and the influence of microclimates on penguin and peatbank distributions. The link between the two aspects of this study, peatbanks and penguins, is the potential source of nutrients for peat mosses from penguin guano. Peatbank and penguin distribution will be modeled and all models will be validated using in situ information from moss samples that will identify mechanistic processes. This project leverages 5 decades of seabird research in the area and high-definition remote sensing provided by the Polar Geospatial center to study the microclimate of Litchfield Island where an Adlie colony became extinct in 2007 when other colonies nearby are still present. The research team includes two early career women as Principal Investigators, one of them from an under-represented ethnic minority, first time Antarctic Principal Investigator, from an EPSCoR state (Wyoming). Researchers will serve as mentors for students through the Duke Bass Connections program entitled Biogeogrpahic Assessment of Antarctic Coastal Habitats which bridges the classroom and the real world. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-65 -64.5,-64.8 -64.5,-64.6 -64.5,-64.4 -64.5,-64.2 -64.5,-64 -64.5,-63.8 -64.5,-63.6 -64.5,-63.4 -64.5,-63.2 -64.5,-63 -64.5,-63 -64.55,-63 -64.6,-63 -64.65,-63 -64.7,-63 -64.75,-63 -64.8,-63 -64.85,-63 -64.9,-63 -64.95,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.95,-65 -64.9,-65 -64.85,-65 -64.8,-65 -64.75,-65 -64.7,-65 -64.65,-65 -64.6,-65 -64.55,-65 -64.5)) | POINT(-64 -64.75) | false | false | |||||
Collaborative Research: Exploring the Functional Role of Antarctic Plants during Terrestrial Succession
|
1932876 |
2022-04-14 | Ball, Becky | No dataset link provided | Part I: Non-technical summary<br/>The Antarctic Peninsula warmed very rapidly in the late part of the 20th century, much faster than the global average, and this warming is predicted to resume and continue over the rest of the 21st century. One consequence of this rapid warming is the melting and subsequent retreat of glaciers, leading to an increase in newly-exposed land on the Peninsula that was previously covered with ice. Once new terrain is exposed, the process of ecological succession begins, with the arrival of early-colonizing plants, such as moss and lichens, and soil organisms - a process commonly referred to as the “greening” of Antarctica. Early stages of succession will be an increasingly common feature on the Antarctic Peninsula, but the mechanisms by which they occur on the Antarctic continent is not well understood. Once the plants have established on the newly-exposed soil, they can change many important properties, such as water dynamics, nutrient recycling, soil development, and habitat for microscopic organisms, which will ultimately determine the structure and functioning of the future ecosystem as it develops. These relationships between vegetation, soil, and the associated microorganisms, referred to as “plant-soil” interactions, are something we know virtually nothing about. This project will be the first to make a comprehensive study of how the type of colonizing plant, and the expansion of those plants from climate change, will influence terrestrial ecosystems in Antarctica. Understanding these processes is critical to understanding how the greening Antarctica is occurring and how soil communities and processes are influenced by these expanding plant communities. Through this work the research team, will also be intensively training undergraduate and graduate students, including training of students from underrepresented groups and collaborative training of students from Chile and the US. Additionally, the research groups will continue their focus on scientific outreach with K-12 schools and the general public to expand awareness of the effects of climate change in Antarctica.<br/><br/>Part II: Technical summary<br/>In this study, the researchers will use surveys across succession sites along the Antarctic Peninsula and Scotia Arc as well as a manipulative field experiment at glacier succession sites to test how species-specific plant functional traits impact soil properties and associated microbial and invertebrate communities in a greening Antarctica. In doing so, they will pursue three integrated aims to understand how Antarctic plant functional traits alter their soil environment and soil communities during succession after glacial retreat. AIM 1) Characterize six fundamental plant functional traits (thermal conductivity, water holding capacity, albedo, decomposability, tissue nutrient content, and secondary chemistry) among diverse Antarctica flora; AIM 2) Measure the relative effects of fundamental plant functional traits on soil physical properties and soil biogeochemistry across glacial succession gradients in Antarctica; and AIM 3) Measure the relative effects of fundamental plant functional traits on soil microbial and invertebrate communities across glacial succession gradients in Antarctica. They will explore how early-colonizing plants, especially mosses and lichens, alter soil physical, biogeochemical, and biological components, potentially impacting later patterns of succession. The researhcers will use intensive surveys of plant-soil interactions across succession sites and a manipulative transplant experiment in the South Shetland Islands, Antarctica to address their aims. The investigators will collect data on plant functional traits and their effects on soil physical properties, biogeochemistry, biotic abundance, and microbial metagenomics. The data collected will be the first comprehensive measures of the relative importance of plant functional types during glacial retreat and vegetative expansion from climate change in Antarctica, aiding our understanding of how plant functional group diversity and abundance are changing in a greening Antarctica.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-59.666116 -62.15,-59.5128377 -62.15,-59.3595594 -62.15,-59.2062811 -62.15,-59.0530028 -62.15,-58.8997245 -62.15,-58.7464462 -62.15,-58.5931679 -62.15,-58.4398896 -62.15,-58.2866113 -62.15,-58.133333 -62.15,-58.133333 -62.1731502,-58.133333 -62.1963004,-58.133333 -62.2194506,-58.133333 -62.2426008,-58.133333 -62.265751,-58.133333 -62.2889012,-58.133333 -62.3120514,-58.133333 -62.3352016,-58.133333 -62.3583518,-58.133333 -62.381502,-58.2866113 -62.381502,-58.4398896 -62.381502,-58.5931679 -62.381502,-58.7464462 -62.381502,-58.8997245 -62.381502,-59.0530028 -62.381502,-59.2062811 -62.381502,-59.3595594 -62.381502,-59.5128377 -62.381502,-59.666116 -62.381502,-59.666116 -62.3583518,-59.666116 -62.3352016,-59.666116 -62.3120514,-59.666116 -62.2889012,-59.666116 -62.265751,-59.666116 -62.2426008,-59.666116 -62.2194506,-59.666116 -62.1963004,-59.666116 -62.1731502,-59.666116 -62.15)) | POINT(-58.8997245 -62.265751) | false | false | |||||
Collaborative Research: Climatic and Environmental Constraints on Aboveground-Belowground Linkages and Diversity across a Latitudinal Gradient in Antarctica
|
1341429 |
2022-04-14 | Ball, Becky; Van Horn, David |
|
The Antarctic Peninsula is experiencing rapid environmental changes, which will influence the community of organisms that live there. However, we know very little about the microscopic organisms living in the soil in this region. Soil biology (including bacteria, fungi, and invertebrates) are responsible for many important processes that sustain ecosystems, such as nutrient recycling. Without understanding the environmental conditions that influence soil biodiversity along the Antarctic Peninsula, our ability to predict the consequences of global change is strongly limited. This project will identify the soil community at many sites along the Antarctic Peninsula to discover how the community changes with environmental conditions from north to south. The project will also identify how the soil community at each site differs under different types of plants. Understanding more about the ways in which plant cover and climate conditions influence soil biodiversity will allow predictions of how communities will respond to future changes such as climate warming and invasive plant species. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. The investigators will engage with outreach to K-12 students and the general public both directly and through a blog and will participate in workshops for K-12 teachers. Additionally, the project will provide the opportunity for many undergraduate and graduate students of diverse backgrounds to be trained in interdisciplinary research.<br/><br/>The investigators will determine the nature and strength of plant-soil linkages in influencing soil community composition and diversity over a latitudinal gradient of environmental and climatic conditions. The goals are to (1) increase our understanding of current biogeography and diversity by providing in-depth knowledge of soil community composition and complexity as it relates to environmental and climatic characteristics; and (2) determine the nature of aboveground-belowground community linkages over varying spatial scales. The team will identify the composition and diversity of soil communities under key habitat types (grass, moss, algae, etc.). Microbial communities (bacteria, fungi, archaea) will be investigated using pyrosequencing for community composition analysis and metagenomic sequencing to identify functional capabilities. Invertebrates (nematodes, tardigrades, rotifers, microarthropods) will be extracted and identified to the lowest possible taxonomic level. Soil chemistry (pH, nutrient content, soil moisture, etc.) and climate conditions will be measured to determine the relationship between soil communities and physical and chemical properties. Structural equation modeling will be used to identify aboveground-belowground linkage pathways and quantify link strengths under varying environmental conditions. | POLYGON((-68.205783 -60.706633,-65.9444531 -60.706633,-63.6831232 -60.706633,-61.4217933 -60.706633,-59.1604634 -60.706633,-56.8991335 -60.706633,-54.6378036 -60.706633,-52.3764737 -60.706633,-50.1151438 -60.706633,-47.8538139 -60.706633,-45.592484 -60.706633,-45.592484 -62.1204014,-45.592484 -63.5341698,-45.592484 -64.9479382,-45.592484 -66.3617066,-45.592484 -67.775475,-45.592484 -69.1892434,-45.592484 -70.6030118,-45.592484 -72.0167802,-45.592484 -73.4305486,-45.592484 -74.844317,-47.8538139 -74.844317,-50.1151438 -74.844317,-52.3764737 -74.844317,-54.6378036 -74.844317,-56.8991335 -74.844317,-59.1604634 -74.844317,-61.4217933 -74.844317,-63.6831232 -74.844317,-65.9444531 -74.844317,-68.205783 -74.844317,-68.205783 -73.4305486,-68.205783 -72.0167802,-68.205783 -70.6030118,-68.205783 -69.1892434,-68.205783 -67.775475,-68.205783 -66.3617066,-68.205783 -64.9479382,-68.205783 -63.5341698,-68.205783 -62.1204014,-68.205783 -60.706633)) | POINT(-56.8991335 -67.775475) | false | false | |||||
Collaborative Research: Permian and Triassic Icehouse to Greenhouse Paleoenvironments and Paleobotany in the Shackleton Glacier Area, Antarctica
|
1443557 |
2021-12-31 | Isbell, John | The research focus of this collaborative proposal was to collect fossil plants, fossil wood, stratigraphic, sedimentologic, paleosol, and geochemical data from plants and the rocks that contain them in order to reconstruct the extent of the Gondwana glaciation in the Shackleton Glacier (SHK) area, the invasion and subsequent flourishing of life following glacial retreat, changes to the physical environment, and the eventual recovery of plant life after the Late Permian biotic events. Only in Antarctica does a complete polar-to-near-polar succession occur across this climatic and biologic transition. The SHK is an important one as it is one of the few regions in the world where the Permian-Triassic boundary (PTB) is exposed within terrestrial rocks. In addition, outcrops in the SHK area extend from the glacigenic deposits of the Upper Carboniferous-Lower Permian through to the Upper Triassic and thus record ecosystems and the plants that inhabited them from the Gondwana icehouse into the Late Permian-Early Triassic greenhouse and into presumed "full recovery" of floras from the PTB extinctions in the Late Triassic. The project encompassed a multidisciplinary plan that used various types of paleobotanical expertise, integrated with detailed sedimentology, stratigraphy, and geochemistry, in order to reconstruct Permian-Triassic plant communities and their paleoenvironments. This interdisciplinary approach is a powerful tool to uncover details of Antarctica’s complex late Paleozoic and Mesozoic environmental, climatic, and biotic history which included: 1) glaciation/deglaciation, 2) development and evolution of a post-glacial landscape and biota, 3) environmental and biotic change associated with the end-Permian mass extinction events, 4) earliest ecosystems in the Triassic, 5) greenhouse conditions in the Triassic, 6) full ’recovery’ of floras and ecosystems by the Late Triassic, and, through all of these events, 7) development and changes in a foreland basin system. Three interrelated focus areas, each delimited by distinct hypotheses and action strategies, provided the framework to trace floral diversity and environmental evolution after the retreat of glaciers through to the Late Triassic. Antarctica is the only place on Earth that includes extensive outcrops of high-paleolatitude terrestrial rocks, combined with widespread and well-preserved plant fossils, and that spans this crucial time. The research and broader impacts of this proposal were integrated into action strategies that have been successful in the past. Compression floras were collected (constrained by stratigraphy) both quantitatively and qualitatively in order to obtain biodiversity and abundance data, and as a data source for paleoecological analysis. Even in formations where megafossils were unknown (e.g., Lower Permian), fossil wood is present so that anatomy and geochemistry of tree rings were examined. Standard sedimentologic and stratigraphic analyses were performed, as well as paleosol analyses, including mineralogic and major- and trace-element geochemistry. Collections will also be made for U-Pb zircon geochronology to better constrain geologic and biotic events. The Broader Impacts of the project involved education and outreach initiatives that included women and under-represented groups in the excitement of Antarctic earth sciences: 1) Continuing successful public outreach, teaching, and mentoring of women and under-represented students in Antarctic research; 2) Participation in workshops for under-represented groups via the Expanding Your Horizons Program in Kansas, the TRIO program (KU), and the STELAR summer workshop (UWM) for high-school students. 3) Outreach via the KU Natural History Museum; 4) Exploring Antarctic geosciences through continued presentations to pre K-12 school groups, and field and lab activities at UWM, as well as links from McMurdo Station and satellite conferences from the field with K-12 science classes in Wisconsin and Illinois. | POLYGON((-180 -85,-177.1 -85,-174.2 -85,-171.3 -85,-168.4 -85,-165.5 -85,-162.6 -85,-159.7 -85,-156.8 -85,-153.9 -85,-151 -85,-151 -85.2,-151 -85.4,-151 -85.6,-151 -85.8,-151 -86,-151 -86.2,-151 -86.4,-151 -86.6,-151 -86.8,-151 -87,-153.9 -87,-156.8 -87,-159.7 -87,-162.6 -87,-165.5 -87,-168.4 -87,-171.3 -87,-174.2 -87,-177.1 -87,180 -87,179 -87,178 -87,177 -87,176 -87,175 -87,174 -87,173 -87,172 -87,171 -87,170 -87,170 -86.8,170 -86.6,170 -86.4,170 -86.2,170 -86,170 -85.8,170 -85.6,170 -85.4,170 -85.2,170 -85,171 -85,172 -85,173 -85,174 -85,175 -85,176 -85,177 -85,178 -85,179 -85,-180 -85)) | POINT(-170.5 -86) | false | false | ||||||
Antarctica as a Model System for Responses of Terrestrial Carbon Balance to Warming
|
1643871 1947562 |
2021-08-21 | van Gestel, Natasja | No dataset link provided | Responses of the carbon balance of terrestrial ecosystems to warming will feed back to the pace of climate change, but the size and direction of this feedback are poorly constrained. Least known are the effects of warming on carbon losses from soil, and clarifying the major microbial controls is an important research frontier. This study uses a series of experiments and observations to investigate microbial, including autotrophic taxa, and plant controls of net ecosystem productivity in response to warming in intact ecosystems. Field warming is achieved using open-top chambers paired with control plots, arrayed along a productivity gradient. Along this gradient incoming and outgoing carbon fluxes will be measured at the ecosystem-level. The goal is to tie warming-induced shifts in net ecosystem carbon balance to warming effects on soil microbes and plants. The field study will be supplemented with lab temperature incubations. Because soil microbes dominate biogeochemical cycles in Antarctica, a major focus of this study is to determine warming responses of bacteria, fungi and archaea. This is achieved using a cutting-edge stable isotope technique, quantitative stable isotope probing (qSIP) developed by the proposing research team, that can identify the taxa that are active and involved in processing new carbon. This technique can identify individual microbial taxa that are actively participating in biogeochemical cycling of nutrients (through combined use of 18O-water and 13C-bicarbonate) and thus can be distinguished from those that are simply present (cold-preserved). The study further assesses photosynthetic uptake of carbon by the vegetation and their sensitivity to warming. Results will advance research in climate change, plant and soil microbial ecology, and ecosystem modeling. | POLYGON((-65 -64.5,-64.8 -64.5,-64.6 -64.5,-64.4 -64.5,-64.2 -64.5,-64 -64.5,-63.8 -64.5,-63.6 -64.5,-63.4 -64.5,-63.2 -64.5,-63 -64.5,-63 -64.55,-63 -64.6,-63 -64.65,-63 -64.7,-63 -64.75,-63 -64.8,-63 -64.85,-63 -64.9,-63 -64.95,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.95,-65 -64.9,-65 -64.85,-65 -64.8,-65 -64.75,-65 -64.7,-65 -64.65,-65 -64.6,-65 -64.55,-65 -64.5)) | POINT(-64 -64.75) | false | false | |||||
Collaborative Research: Organic and Inorganic Geochemical Investigation of Hydrologic Change in East Antarctica in the 4 Million Years Before Full Glaciation
|
1908399 1908548 |
2020-12-05 | Feakins, Sarah; Scher, Howard | The East Antarctic Ice Sheet holds the largest volume of freshwater on the planet, in total enough to raise sea level by almost two hundred feet. Even minor adjustments in the volume of ice stored have major implications for coastlines and climates around the world. The question motivating this project is how did the ice grow to cover the continent over thirty million years ago when Antarctica changed from a warmer environment to an ice-covered southern continent? The seafloor of Prydz Bay, a major drainage basin of the East Antarctic Ice Sheet (EAIS), has been drilled previously to recover sediments dating from millions of years prior to and across the time when inception of continental ice sheets occurred in Antarctica. The last remnants of plant material found as 'biomarkers' in the ocean sediments record the chemical signatures of rain and snowfall that fed the plants and later the expanding glaciers. Sediment carried by glaciers was also deposited on the seafloor and can be analyzed to discover how glaciers flowed across the landscape. Here, the researchers will identify precipitation changes that result from, and drive, ice sheet growth. This study will gather data and further analyze samples from the seafloor sediment archives of the International Ocean Discovery Program's (IODP) core repositories. Ultimately these findings can help inform temperature-precipitation-ice linkages within climate and ice sheet models. The project will support the training of three female, early career scientists (PhD & MS students, and research technician) and both PIs and the PhD student will continue their engagement with broadening participation efforts (e.g., Women in Science and Engineering Program; local chapters of Society for the advancement of Native Americans and Chicanos in Science and other access programs) to recruit undergraduate student participants from underrepresented minorities at both campuses and from local community colleges. Antarctic earth science education materials will be assisted by professional illustrations to be open access and used in public education and communication efforts to engage local communities in Los Angeles CA and Columbia SC. <br/><br/>The researchers at the University of Southern California and the University of South Carolina will together study the penultimate moment of the early Cenozoic greenhouse climate state: the ~4 million years of global cooling that culminated in the Eocene/Oligocene transition (~34 Ma). Significant gaps remain in the understanding of the conditions that preceded ice expansion on Antarctica. In particular, the supply of raw material for ice sheets (i.e., moisture) and the timing, frequency, and duration of precursor glaciations is poorly constrained. This collaborative proposal combines organic and inorganic proxies to examine how Antarctic hydroclimate changed during the greenhouse to icehouse transition. The central hypothesis is that the hydrological cycle weakened as cooling proceeded. Plant-wax hydrogen and carbon isotopes (hydroclimate proxies) and Hf-Nd isotopes of lithogenous and hydrogenous sediments (mechanical weathering proxies) respond strongly and rapidly to precipitation and glacial advance. This detailed and sensitive combined approach will test whether there were hidden glaciations (and/or warm events) that punctuated the pre-icehouse interval. Studies will be conducted on Prydz Bay marine sediment cores in a depositional area for products of weathering and erosion that were (and are) transported through Lambert Graben from the center of Antarctica. The project will yield proxy information about the presence of plants and the hydroclimate of Antarctica and the timing of glacial advance, and is expected to show drying associated with cooling and ice-sheet growth. The dual approach will untangle climate signals from changes in fluvial versus glacial erosion of plant biomarkers. This proposal is potentially transformative because the combination of organic and inorganic proxies can reveal rapid transitions in aridity and glacial expansion, that may have been missed in slower-response proxies and more distal archives. The research is significant as hydroclimate seems to be a key player in the temperature-cryosphere hysteresis.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((74.787 -67.27617,74.816483 -67.27617,74.845966 -67.27617,74.875449 -67.27617,74.904932 -67.27617,74.934415 -67.27617,74.963898 -67.27617,74.993381 -67.27617,75.022864 -67.27617,75.052347 -67.27617,75.08183 -67.27617,75.08183 -67.31817,75.08183 -67.36017,75.08183 -67.40217,75.08183 -67.44417,75.08183 -67.48617,75.08183 -67.52817,75.08183 -67.57017,75.08183 -67.61217,75.08183 -67.65417,75.08183 -67.69617,75.052347 -67.69617,75.022864 -67.69617,74.993381 -67.69617,74.963898 -67.69617,74.934415 -67.69617,74.904932 -67.69617,74.875449 -67.69617,74.845966 -67.69617,74.816483 -67.69617,74.787 -67.69617,74.787 -67.65417,74.787 -67.61217,74.787 -67.57017,74.787 -67.52817,74.787 -67.48617,74.787 -67.44417,74.787 -67.40217,74.787 -67.36017,74.787 -67.31817,74.787 -67.27617)) | POINT(74.934415 -67.48617) | false | false | ||||||
RUI: Antarctic Paleobotany: Permian Floral Characteristics in a Sedimentary Setting
|
1341500 |
2020-10-09 | Ryberg, Patricia |
|
This project will involve examination of Glossopteridales, fossil plants from Upper Permian deposits, in samples from the central Transantarctic Mountains and Southern Victoria Land, Antarctica. The glossopterids are an important fossil group because they are possible ancestors to the flowering plants. Permian sedimentary rocks (295-270 Ma before present) are important because they record a time of rapid biotic change, as the Late Paleozoic Age ended and the Mesozoic greenhouse environment began. The proposed research will rely entirely on specimens collected during recent field excursions to the central Transantarctic Mountains (CTM; 2010?2011) and southern Victoria Land (SVL; 2012?2013). Only a few of the specimens have been studied, but already have yielded anatomically well-preserved glossopterids with a complete pollen cone, which has never been found before. Additionally, several seed-bearing structures, which have never before been observed in Antarctica, have been found in both CTM and SVL. The project will allow comparison of whole-plant fossil glossopterids from the CTM with other paleo-latitudes, and will document the floral diversity within and between two depositional basins (CTM & SVL) during a time of global change, with the overall goal of linking environmental changes with fossil morphology. <br/><br/>Broader impacts: <br/>The Broader Impacts of this project will include mentoring undergraduates in research projects, at an institution with a substantial minority enrollment. Public outreach will focus on involving middle/high school students through the ?Expanding Your Horizons? programs in Kansas and Missouri, as well as interactive presentations at schools in the Kansas City Area. The lead PI is an early-career scientist at an institution that serves minorities. | None | None | false | false | |||||
Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump
|
1341464 1341432 |
2020-02-26 | Robinson, Rebecca; Brzezinski, Mark | The rise in atmospheric carbon dioxide concentrations and associated climate changes make understanding the role of the ocean in large scale carbon cycle a priority. Geologic samples allow exploration of potential mechanisms for carbon dioxide drawdown during glacial periods through the use of geochemical proxies. Nitrogen and silicon isotope signatures from fossil diatoms (microscopic plants) are used to investigate changes in the physical supply and biological demand for nutrients (like nitrogen and silicon and carbon) in the Southern Ocean. The project will evaluate the use the nitrogen and silicon isotope proxies through a series of laboratory experiments and Southern Ocean field sampling. The results will provide quantification of real relationships between nitrogen and silicon isotopes and nutrient usage in the Southern Ocean and allow exploration of the role of other factors, including biological diversity, ice cover, and mixing, in altering the chemical signatures recorded by diatoms. Seafloor sediment samples will be used to evaluate how well the signal created in the water column is recorded by fossil diatoms buried in the seafloor. Improving the nutrient isotope proxies will allow for a more quantitative understanding of the role of polar biology in regulating natural variation in atmospheric carbon dioxide. The project will also result in the training of a graduate student and development of outreach materials targeting a broad popular audience. This project seeks to test the fidelity of the diatom nitrogen and silicon isotope proxies, two commonly used paleoceanographic tools for investigating the role of the Southern Ocean biological pump in regulating atmospheric CO2 concentrations on glacial-interglacial timescales. Existing ground-truthing data, including culture experiments, surface sediment data and downcore reconstructions, all suggest that nutrient utilization is the primary driver of isotopic variation in the Southern Ocean. However, strong contribution of interspecific variation is implied by recent culture results. Moreover, field and laboratory studies present some contradictory results in terms of the relative importance of interspecific variation and of inferred post-depositional alteration of the nutrient isotope signals. Here, a first order test of the N and Si diatom nutrient isotope paleo-proxies, involving water column dissolved and particulate sampling and laboratory culturing of field-isolates, is proposed. Southern Ocean water, biomass, live diatoms and fossil diatom sampling will be conducted to investigate species and assemblage related variability in diatom nitrogen and silicon isotopes and their relationship to surface nutrient fields and early diagenesis. Access to fresh materials produced in an analogous environmental context to the sediments of primary interest is critical for making robust paleoceanographic reconstructions. Field sampling will occur along 175°W, transecting the Antarctic Circumpolar Current from the subtropics to the marginal ice edge. Collection of water, sinking/suspended particles and multi-core samples from 13 stations and 3 shipboard incubation experiments will be used to test four proposed hypotheses that together evaluate the significance of existing culture results and seek to allow the best use of diatom nutrient isotope proxies in evaluating the biological pump. | POLYGON((-175 -54,-174 -54,-173 -54,-172 -54,-171 -54,-170 -54,-169 -54,-168 -54,-167 -54,-166 -54,-165 -54,-165 -55.3,-165 -56.6,-165 -57.9,-165 -59.2,-165 -60.5,-165 -61.8,-165 -63.1,-165 -64.4,-165 -65.7,-165 -67,-166 -67,-167 -67,-168 -67,-169 -67,-170 -67,-171 -67,-172 -67,-173 -67,-174 -67,-175 -67,-175 -65.7,-175 -64.4,-175 -63.1,-175 -61.8,-175 -60.5,-175 -59.2,-175 -57.9,-175 -56.6,-175 -55.3,-175 -54)) | POINT(-170 -60.5) | false | false | ||||||
Neogene Paleoecology of the Beardmore Glacier Region
|
0947821 |
2017-01-12 | Ashworth, Allan |
|
Intellectual Merit: <br/>The primary goal of this project is to sample two beds in the Meyer Desert Formation, which are known to be especially fossiliferous containing plants, insects, other arthropods, freshwater mollusks, and fish. There is a possibility that the teeth and bones of a small marsupial could also be found. Previous studies have demonstrated that these horizons contain unique fossil assemblages that provide information used to reconstruct paleoenvironments and paleoclimate. The fossils represent organisms previously not found in Antarctica and consequently their study will lead to the development of new hypotheses concerning southern hemisphere biogeography. The new discoveries will also increase knowledge of paleoenvironments and paleoclimates as well as biogeographic relationships of the biota of the southern hemisphere. For some organisms, such as Nothofagus (Southern Beech) or the trechine groundbeetle, fossils would confirm that Antarctica was inhabited as part of Gondwana. For other fossils, such as the cyclorrhaphan fly or freshwater mollusks not expected to have inhabited Antarctica, the discoveries will require a reassessment of phylogenetic interpretations and a reinvestigation of the role of Antarctica in the evolutionary history of those organisms. The new fossil-based knowledge will require integration with interpretations from cladistics and molecular genetics to develop more comprehensive phylogenetic hypotheses for a range of organisms.<br/><br/>Broader impacts: <br/>The discovery of fossils in Antarctica and implications for climate change has proven to be popular with the media. This attention will help disseminate the results of this study. Before the field season, the PI will work with local media and with area schools to set up field interviews and web casts from Antarctica. The project will also involve the training of a graduate student in the field and in the follow up studies of the fossils in the laboratory. | POLYGON((-180 -85.095235,-145.3719418 -85.095235,-110.7438836 -85.095235,-76.1158254 -85.095235,-41.4877672 -85.095235,-6.859709 -85.095235,27.7683492 -85.095235,62.3964074 -85.095235,97.0244656 -85.095235,131.6525238 -85.095235,166.280582 -85.095235,166.280582 -85.0996451,166.280582 -85.1040552,166.280582 -85.1084653,166.280582 -85.1128754,166.280582 -85.1172855,166.280582 -85.1216956,166.280582 -85.1261057,166.280582 -85.1305158,166.280582 -85.1349259,166.280582 -85.139336,131.6525238 -85.139336,97.0244656 -85.139336,62.3964074 -85.139336,27.7683492 -85.139336,-6.859709 -85.139336,-41.4877672 -85.139336,-76.1158254 -85.139336,-110.7438836 -85.139336,-145.3719418 -85.139336,180 -85.139336,178.6280582 -85.139336,177.2561164 -85.139336,175.8841746 -85.139336,174.5122328 -85.139336,173.140291 -85.139336,171.7683492 -85.139336,170.3964074 -85.139336,169.0244656 -85.139336,167.6525238 -85.139336,166.280582 -85.139336,166.280582 -85.1349259,166.280582 -85.1305158,166.280582 -85.1261057,166.280582 -85.1216956,166.280582 -85.1172855,166.280582 -85.1128754,166.280582 -85.1084653,166.280582 -85.1040552,166.280582 -85.0996451,166.280582 -85.095235,167.6525238 -85.095235,169.0244656 -85.095235,170.3964074 -85.095235,171.7683492 -85.095235,173.140291 -85.095235,174.5122328 -85.095235,175.8841746 -85.095235,177.2561164 -85.095235,178.6280582 -85.095235,-180 -85.095235)) | POINT(0 -89.999) | false | false | |||||
Collaborative Research: Antarctic Ecosystems across the Permian-Triassic Boundary: Integrating Paleobotany, Sedimentology, and Paleoecology
|
0943935 0943934 |
2014-09-23 | Isbell, John | Intellectual Merit:<br/>The focus of this proposal is to collect fossil plants and palynomorphs from Permian-Triassic (P-T) rocks of the central Transantarctic Mountains (CTM), together with detailed data on sedimentologic and paleoecologic depositional environments. Fossil plants are important climate proxies that offer a unique window into the past, and the CTM fossils are an important source of data on the ways that plants responded to a strongly seasonal, polar light regime during a time of global change. The proposed project uses paleobotanical expertise, integrated with detailed sedimentology and stratigraphy, to reconstruct Permian-Triassic plant communities and their paleoenvironments. This interdisciplinary approach could uncover details of Antarctica?s complex late Paleozoic and Mesozoic environmental and climatic history which included: 1) deglaciation, 2) development and evolution of a post-glacial landscape and biota, 3) environmental and biotic change associated with the end-Permian mass extinction, 4) environmental recovery in the earliest Triassic, 5) strong, possible runaway Triassic greenhouse, and 6) widespread orogenesis and development of a foreland basin system. The PIs will collect compression floras both quantitatively and qualitatively to obtain biodiversity and abundance data. Since silicified wood is also present, the PIs will analyze tree rings and growth in a warm, high-latitude environment for which there is no modern analogue. Fossil plants from the CTM can provide biological and environmental information to: 1) interpret paleoclimate when Gondwana moved from icehouse to greenhouse conditions; 2) trace floral evolution across the P-T boundary; 3) reconstruct Antarctic plant life; 4) further understanding of plant adaptations to high latitudes. The Intellectual Merit of the research includes: 1) tracing floral evolution after the retreat of glaciers; 2) examining floral composition and diversity across the PTB; and 3) obtaining data on the recovery of these ecosystems in the Early Triassic, as well as changes in floral cover and diversity in the Early-Middle Triassic. Antarctica is the only place on Earth that includes extensive outcrops of terrestrial rocks, combined with widespread and well-preserved plant fossils, which spans this crucial time period.<br/><br/>Broader impacts:<br/>The broader impacts include public outreach; teaching, and mentoring of women and underrepresented students; mentoring graduate student, postdoctoral, and new faculty women; development of an inquiry-based workshop on Antarctic paleoclimate with the Division of Education, KU Natural History Museum; continuing support of workshops for middle school girls in science via the Expanding Your Horizons Program, Emporia State University, and the TRIO program, KU; exploring Antarctic geosciences through video/computer links from McMurdo Station and satellite phone conferences from the field with K-12 science classes in Wisconsin and Kansas, and through participation in the NSF Research Experiences for Teachers program at the University of Wisconsin. | None | None | false | false | ||||||
Collaborative Research:Application of Detrital Zircon Isotope Characteristics and Sandstone Analysis of Beacon Strata to the Tectonic Evolution of the Antarctic Sector of Gondwana
|
0944532 0944662 |
2013-12-05 | Elliot, David; Isbell, John |
|
Intellectual Merit: <br/>The goal of this project is to address relationships between foreland basins and their tectonic settings by combining detrital zircon isotope characteristics and sedimentological data. To accomplish this goal the PIs will develop a detailed geochronology and analyze Hf- and O-isotopes of detrital zircons in sandstones of the Devonian Taylor Group and the Permian-Triassic Victoria Group. These data will allow them to better determine provenance and basin fill, and to understand the nature of the now ice covered source regions in East and West Antarctica. The PIs will document possible unexposed/unknown crustal terrains in West Antarctica, investigate sub-glacial terrains of East Antarctica that were exposed to erosion during Devonian to Triassic time, and determine the evolving provenance and tectonic history of the Devonian to Triassic Gondwana basins in the central Transantarctic Mountains. Detrital zircon data will be interpreted in the context of fluvial dispersal/drainage patterns, sandstone petrology, and sequence stratigraphy. This interpretation will identify source terrains and evolving sediment provenances. Paleocurrent analysis and sequence stratigraphy will determine the timing and nature of changing tectonic conditions associated with development of the depositional basins and document the tectonic history of the Antarctic sector of Gondwana. Results from this study will answer questions about the Panthalassan margin of Gondwana, the Antarctic craton, and the Beacon depositional basin and their respective roles in global tectonics and the geologic and biotic history of Antarctica. The Beacon basin and adjacent uplands played an important role in the development and demise of Gondwanan glaciation through modification of polar climates, development of peat-forming mires, colonization of the landscape by plants, and were a migration route for Mesozoic vertebrates into Antarctica. <br/><br/>Broader impacts: <br/>This proposal includes support for two graduate students who will participate in the fieldwork, and also support for other students to participate in laboratory studies. Results of the research will be incorporated in classroom teaching at the undergraduate and graduate levels and will help train the next generation of field geologists. Interactions with K-12 science classes will be achieved by video/computer conferencing and satellite phone connections from Antarctica. Another outreach effort is the developing cooperation between the Byrd Polar Research Center and the Center of Science and Industry in Columbus. | POLYGON((158.9 -83,159.583 -83,160.266 -83,160.949 -83,161.632 -83,162.315 -83,162.998 -83,163.681 -83,164.364 -83,165.047 -83,165.73 -83,165.73 -83.21,165.73 -83.42,165.73 -83.63,165.73 -83.84,165.73 -84.05,165.73 -84.26,165.73 -84.47,165.73 -84.68,165.73 -84.89,165.73 -85.1,165.047 -85.1,164.364 -85.1,163.681 -85.1,162.998 -85.1,162.315 -85.1,161.632 -85.1,160.949 -85.1,160.266 -85.1,159.583 -85.1,158.9 -85.1,158.9 -84.89,158.9 -84.68,158.9 -84.47,158.9 -84.26,158.9 -84.05,158.9 -83.84,158.9 -83.63,158.9 -83.42,158.9 -83.21,158.9 -83)) | POINT(162.315 -84.05) | false | false | |||||
Dynamics of Aeolian Processes in the McMurdo Dry Valleys, Antarctica
|
0636218 |
2012-06-05 | Gillies, John | No dataset link provided | This project characterizes wind-driven sediment transport in the McMurdo Dry Valleys of <br/>Antarctica during both winter and summer periods. Wind is the primary sculptor of<br/>terrain in this region and winter measurements, which have never been undertaken, are<br/>essential for determining the frequency and magnitude of transport events. The projects<br/>goal is to determine if the existing landforms represent relics from past climate regimes<br/>or contemporary processes. The project involves two major activities: (1) dynamic and<br/>time-integrated measurements of sand transport to characterize the seasonal behavior,<br/>frequency, and magnitude at four sites and (2) detailed surveying of an unusual<br/>wind-formed surface feature, the gravel megaripples found in the Wright Valley. In<br/>addition to interpreting Dry Valleys geomorphology, these data will provide a more<br/>quantitative assessment of wind-aided distribution of nutrients, plants, and animals to<br/>terrestrial and aquatic ecosystems throughout the Dry Valleys. This research will also<br/>provide quantitative information on the effects of extreme cold and low humidity on<br/>transport thresholds and rates, which can be applied to cold desert environments of the<br/>Arctic, Antarctic, and Mars. | POLYGON((161.85075 -77.37241,161.990843 -77.37241,162.130936 -77.37241,162.271029 -77.37241,162.411122 -77.37241,162.551215 -77.37241,162.691308 -77.37241,162.831401 -77.37241,162.971494 -77.37241,163.111587 -77.37241,163.25168 -77.37241,163.25168 -77.395964,163.25168 -77.419518,163.25168 -77.443072,163.25168 -77.466626,163.25168 -77.49018000000001,163.25168 -77.513734,163.25168 -77.537288,163.25168 -77.56084200000001,163.25168 -77.584396,163.25168 -77.60795,163.111587 -77.60795,162.971494 -77.60795,162.831401 -77.60795,162.691308 -77.60795,162.551215 -77.60795,162.411122 -77.60795,162.271029 -77.60795,162.130936 -77.60795,161.990843 -77.60795,161.85075 -77.60795,161.85075 -77.584396,161.85075 -77.56084200000001,161.85075 -77.537288,161.85075 -77.513734,161.85075 -77.49018000000001,161.85075 -77.466626,161.85075 -77.443072,161.85075 -77.419518,161.85075 -77.395964,161.85075 -77.37241)) | POINT(162.551215 -77.49018) | false | false | |||||
CAREER: Deciphering Antarctic Climate Variability during the Temperate/Polar Transition and Improving Climate Change Literacy in Louisiana through a Companion Outreach Program
|
1048343 |
2011-12-10 | Warny, Sophie |
|
Intellectual Merit: <br/>The PI proposes a high-resolution paleoenvironmental study of pollen, spore, fresh-water algae, and dinoflagellate cyst assemblages to investigate the palynological record of sudden warming events in the Antarctic as recorded by the ANDRILL SMS drill core and terrestrial sections. These data will be used to derive causal mechanisms for these rapid climate events. Terrestrial samples will be obtained at various altitudes in the Dry Valleys region. The pollen and spores will provide data on atmospheric conditions, while the algae will provide data on sea-surface conditions. These data will help identify the triggers for sudden climatic shifts. If they are caused by changes in oceanic currents, a signal will be visible in the dinocyst assemblages first as currents influence their distribution. Conversely, if these shifts are triggered by atmospheric factors, then the shifts will first affect plants and be visible in the pollen record.<br/><br/>Broader impacts: <br/>The PI proposes a suite of activities to bring field-based climate change research to a broader audience. The PI will advise a diverse group of students and educators. The palynological data collected as part of this research will be utilized, in part, to develop new lectures on Antarctic palynology and these new lectures will be made available via a collaboration with the LSU HHMI program. In addition, the PI will direct three Louisiana middle-school teachers as they pursue a Masters of Natural Science for science educators. These teachers will help the PI develop a professional development program for science teachers. Community-based activities will be organized to raise science awareness and alert students and the public of opportunities in science. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||
Past Environmental Conditions on the Antarctic Peninsula: a Palynological Characterization of In-situ Sediments recovered during the 2006 SHALDRIL campaign
|
0636747 |
2009-08-26 | Warny, Sophie | No dataset link provided | Abstract<br/>This project studies microfossils of plants and algae to understand climate during the earliest glaciations of Antarctica. The microfossils are from marine sediment cores collected by the 2006 SHALDRIL campaign to the Antarctic Peninsula. The work will offer constraints on sea surface temperature, ocean salinity, and terrestrial vegetation to help answer questions such as: What were conditions like on the Antarctic Peninsula during the initial formation of Antarctica's ice sheets? How rapidly did the ice sheets grow? Was their growth driven by global factors such as low atmospheric CO2 or local events like opening of the Drake Passage? <br/><br/>The broader impacts include postdoctoral fellow research and outreach via a museum exhibit and a web-based activity book for children. | POINT(-54.44917 -63.86) | POINT(-54.44917 -63.86) | false | false | |||||
Collaborative Research: Biogeochemistry of Dissolved Organic Matter in Pony Lake, Ross Island
|
0338260 0338342 |
2009-03-16 | Foreman, Christine; Chin, Yu-Ping |
|
Dissolved organic matter (DOM) is a significant chemical component in aquatic systems because it acts as an important carbon source for microorganisms, absorbs harmful radiation in sunlight, is able to complex metals, and can participate in important biogeochemical reactions. This study will investigate the biogeochemical cycling of DOM in a small coastal Antarctic pond, Pony Lake, located on Cape Royds, Ross Island. Because there are no higher plants present at this site all of the DOM in this lake is derived from microorganisms. Thus, Pony Lake is an ideal site to study the effect of physical, chemical, and microbial processes on the composition and character of the DOM pool. Finally, Pony Lake is also an ideal site to collect an International Humic Substances Society (IHSS) fulvic acid standard. Unlike other IHSS standards, this standard will not contain DOM components derived from higher land plants. To better understand the role of physical influences, the project will study the changes in the DOM pool as the lake evolves from ice-covered to ice-free conditions during the summer, as well as the relationship of DOM to the observed turnover of dominant microbial communities in the lake. Scientists will also monitor changes in microbial abundance, diversity, and productivity that may occur during the ice to open-water transition period. This research will provide much needed information regarding the relationship between microbial diversity and DOM biogeochemistry. Middle school science students will be active participants in this project through the Internet, while scientists are in the field, and in the lab. | POINT(166.167 -77.55) | POINT(166.167 -77.55) | false | false | |||||
Physiological and Molecular Mechanisms of Stress Tolerance in a Polar Insect
|
0337656 |
2008-06-06 | Denlinger, David; Lee, Richard | No dataset link provided | Polar terrestrial environments are often described as deserts, where water availability is recognized as one of the most important limits on the distribution of terrestrial organisms. In addition, prolonged low winter temperatures threaten survival, and summer temperatures challenge organisms with extensive diel variations and rapid transitions from freezing to desiccating conditions. Global warming has further impacted the extreme thermal and hydric conditions experienced by Antarctic terrestrial plant and arthropod communities, especially as a result of glacial retreat along the Antarctic Peninsula. This research will focus on thermal and hydric adaptations in the terrestrial midge, Belgica antarctica, the largest and most southerly holometabolous insect living in this challenging and changing environment. <br/>Overwintering midge larvae encased in the frozen substrate must endure desert-like conditions for more than 300 days since free water is biologically unavailable as ice. During the summer, larvae may be immersed in melt water or outwash from penguin colonies and seal wallows, in addition to saltwater splash. Alternatively, the larvae may be subjected to extended periods of desiccation as their microhabitats dry out. Due to their small size, relative immobility and the patchiness of suitable microhabitats, larvae may thus be subjected to stresses that include desiccation, hypo- or hyperosmotic conditions, high salinity exposure, and anoxia for extended periods. Research efforts will focus in three areas relevant to the stress tolerance mechanisms operating in these midges:(1) obtaining a detailed characterization of microclimatic conditions experienced by B. antarctica, especially those related to thermal and hydric diversity, both seasonally and among microhabitat types in the vicinity of Palmer Station, Antarctica; (2) examining the effects of extreme fluctuations in water availability and effects on physiological and molecular responses - to determine if midge larvae utilize the mechanism of cryoprotective dehydration for winter survival, and if genes encoding heat shock proteins and other genes are upregulated in larval responses to dehydration and rehydration; (3) investigating the dietary transmission of cryoprotectants from plant to insect host, which will test the hypothesis that midge larvae acquire increased resistance to desiccation and temperature stress by acquiring cryoprotectants from their host plants. <br/>This project will provide outreach to both elementary and secondary educators and their students. The team will include a teacher who will benefit professionally by full participation in the research, and will also assist in providing outreach to other teachers and their students. From Palmer Station, the field team will communicate daily research progress by e-mail supplemented with digital pictures with teachers and their elementary students to stimulate interest in an Antarctic biology and scientific research. These efforts will be supplemented with presentations at local schools and national teacher meetings, and by publishing hands-on, inquiry-based articles related to cryobiology and polar biology in education journals. Furthermore, the principal investigators will maintain major commitments to training graduate students and postdoctoral scholars, as well as undergraduate students by providing extended research experience that includes publication of scientific papers and presentations at national meetings. | POLYGON((-64.1 -64.75,-64.085 -64.75,-64.07 -64.75,-64.055 -64.75,-64.04 -64.75,-64.025 -64.75,-64.01 -64.75,-63.995 -64.75,-63.98 -64.75,-63.965 -64.75,-63.95 -64.75,-63.95 -64.757,-63.95 -64.764,-63.95 -64.771,-63.95 -64.778,-63.95 -64.785,-63.95 -64.792,-63.95 -64.799,-63.95 -64.806,-63.95 -64.813,-63.95 -64.82,-63.965 -64.82,-63.98 -64.82,-63.995 -64.82,-64.01 -64.82,-64.025 -64.82,-64.04 -64.82,-64.055 -64.82,-64.07 -64.82,-64.085 -64.82,-64.1 -64.82,-64.1 -64.813,-64.1 -64.806,-64.1 -64.799,-64.1 -64.792,-64.1 -64.785,-64.1 -64.778,-64.1 -64.771,-64.1 -64.764,-64.1 -64.757,-64.1 -64.75)) | POINT(-64.025 -64.785) | false | false | |||||
DiatomWare: An Interactive Digital Image Catalog for Antarctic Cenozoic Diatoms
|
0230469 |
2007-07-31 | Wise, Sherwood | No dataset link provided | This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports the development of a standardized diatom image catalog or database. Diatoms are considered by many to be the most important microfossil group used today in the study of Antarctic Cenozoic marine deposits south of the Polar Front, from the near shore to deep sea. These microfossils, with walls of silica called frustules, are produced by single-celled plants (algae of the Class Bacillariophyceae) in a great variety of forms. Consequently, they have great biostratigraphic importance in the Southern Ocean and elsewhere for determining the age of marine sediments. Also, paleoclimatic and paleoceanographic studies increasingly rely on fossil diatom data. Changing biogeographic distributions of given taxa indicate shifting paleoecological conditions and provide evidence of the surface productivity and temperatures of ancient oceans. The generality of conclusions, though, is limited by variation in species concepts among workers. The broad research community relies, directly or indirectly, on the accurate identification of diatom species. Current technology can be used to greatly improve upon the standard references that have been used in making these identifications.<br/><br/>This project will develop an interactive digital-image catalog of modern and Cenozoic fossil diatoms of the Southern Ocean called "DiatomWare" for use by specialists and educators as an aid in rapid, accurate, and consistent species identification. As such, this will be a researcher's resource. It will be especially useful where it is not possible to maintain standard library resources such as onboard research vessels or at remote stations such as McMurdo Station. Major Antarctic geological drilling initiatives such as the new SHALDRIL project and the pending ANDRILL project will benefit from this product because they will rely heavily on diatom biostratigraphy to achieve their research objectives. The DiatomWare image database will be modeled on NannoWare, which was released in October 2002 on CD-ROM as a publication of the International Nannoplankton Association. BugCam will be adapted and modified as necessary to run the DiatomWare database, which can then be run from desktop or laptop computers. Images and text for the database will be scanned from the literature or captured in digital form from light or scanning electron microscopes.<br/><br/>The software interface will include a number of data fields that can be accessed by the click of a mouse button. Primary information will be the images and descriptions of the holotypes. In addition, representative images of paratypes or hypotypes will be included whenever possible in plain transmitted, differential interference contrast light and, when available, as drawings and SEM images. Also included will be a 35-word or less English diagnosis ("mini-description"), the biostratigraphic range in terms of zones and linear time, bibliographic references, lists of species considered junior synonyms, and similar species. The list of similar species will be cross-referenced with their respective image files to enable quick access for direct visual comparison on the viewing screen. Multiple images can be brought to the viewing screen simultaneously, and a zoom feature will permit image examination at a wide range of magnifications. Buttons will allow range charts, a bibliography, and key public-domain publications from the literature to be called up from within the program. The DiatomWare/BugCam package will be distributed at a nominal cost through a major nonprofit society via CD-ROM and free to Internet users on the Worldwide Web. Quality control measures will include critical review of the finalized database by a network of qualified specialists. The completed database will include descriptions and images of between 350 and 400 species, including fossil as well as modern forms that have no fossil record.<br/><br/>The development of the proposed diatom image database will be important to all research fields that depend on accurate biostratigraphic dating and paleoenvironmental interpretation of Antarctic marine sediments and plankton. The database will also serve as a valuable teaching tool for micropaleontology students and their professors, will provide a rapid means of keying down species for micropaleontologists of varying experience and background, and will promote a uniformity of taxonomic concepts since it will be developed and continuously updated with the advice of a community of nannofossil fossil experts. Broad use of the database is anticipated since it will be widely available through the Internet and on CD-ROM for use on personal computers that do not require large amounts of memory, costly specialized programs, or additional hardware. | None | None | false | false | |||||
Collaborative Research: Evolution and Biogeography of Late Cretaceous Vertebrates from the James Ross Basin, Antarctic Peninsula
|
0003844 |
2007-03-28 | Case, Judd; Blake, Daniel |
|
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research project between the Saint Mary's College of California, the South Dakota School of Mines and technology, and the Argentine Antarctic Institute (Instituto Antartico Argentino or IAA) to investigate the Late Mesozoic vertebrate paleontology of the James Ross Basin in the Antarctic Peninsula region. The Campanian through the Maastrichtian ages (80 to 65 million years ago) is an important time interval concerning vertebrate biogeography (i.e. dispersals and separations due to moving landmasses) and evolution between Antarctica and other Southern Hemisphere continents (including India, i.e. Gondwana). Moreover, the dispersal of terrestrial vertebrates (i.e. dinosaurs and marsupial mammals) from North America to Antarctica and beyond (e.g. Australia) via Patagonia and the Antarctic Peninsula, as well as the dispersal of modern birds from Antarctica northward are important unresolved questions in paleontology. These dispersal events include vertebrates not only in the terrestrial realms, but also in marine settings. Both widely distributed and localized marine reptile species have been identified in Antarctica, creating questions concerning their dispersal in conjunction with the terrestrial animals.<br/><br/>The Antarctic Peninsula and Patagonia represent the western-most portion of the Weddellian Paleobiogeographic Province, a region that extends from Patagonia through the Antarctic Peninsula and western Antarctica to Australia and New Zealand. Within this province lie the dispersal routes for interchanges of vertebrates between South America and: 1) Madagascar and India, and 2) Australia. As the result of previous work by the principal investigators, it is postulated that an isthmus between more northern South America and the Antarctic craton has served to bring typical North American dinosaurs, such as hadrosaurs (duck-billed dinosaurs) and presumably marsupials traveling overland, while marine reptiles swam along coastal waters, to Antarctica in the latest Cretaceous. Finally, this region has served as the cradle for the evolution, if not the origin, for groups of modern birds, and evolution of a suite of typical southern hemisphere plants.<br/><br/>In order to confirm and expand upon these hypotheses, investigations into the latest Cretaceous deposits of the James Ross Basin, Antarctica Peninsula must be continued. The Cape Lamb and Sandwich Bluff geological units, of the Lopez de Bertodano Formation in the James Ross Basin along the eastern Antarctic Peninsula, exhibit a mixture of marine and terrestrial deposits. The following vertebrates have been recovered from these sedimentary deposits during previous field seasons: plesiosaur and mosasaur marine reptiles; plant eating dinosaurs; a meat eating dinosaur; and a variety of modern bird groups, including shorebirds, wading birds and lagoonal birds.<br/><br/>This project will undertake new fieldwork to recover new specimens in order to test biogeographic and evolutionary hypotheses concerning Late Cretaceous vertebrates in Gondwana. Fieldwork is planned in January 2002 and 2003 to explore the eastern slopes of Cape Lamb, Sandwich Bluff and False Island Point on Vega Island, and the Santa Marta Cove area of James Ross Island.<br/><br/>This research will result in important new insights about the evolution and geographic dispersal of several vertebrate species. The results are important to understanding the development and evolution of life on Earth.<br/><br/>This is a collaborative research project with Argentinean scientists from the IAA and it continues a productive collaboration that began in 1995. In addition, collaboration with vertebrate paleontologists from the Museo de La Plata, both in the field and at our respective institutions in Argentina and in the United States, will continue. | None | None | false | false |