{"dp_type": "Project", "free_text": "Lithology"}
[{"awards": "1643494 Saal, Alberto", "bounds_geometry": "POLYGON((-68.074 -57.345,-66.6033 -57.345,-65.1326 -57.345,-63.6619 -57.345,-62.1912 -57.345,-60.7205 -57.345,-59.2498 -57.345,-57.7791 -57.345,-56.3084 -57.345,-54.8377 -57.345,-53.367 -57.345,-53.367 -58.12517,-53.367 -58.90534,-53.367 -59.68551,-53.367 -60.46568,-53.367 -61.24585,-53.367 -62.02602,-53.367 -62.80619,-53.367 -63.58636,-53.367 -64.36653,-53.367 -65.1467,-54.8377 -65.1467,-56.3084 -65.1467,-57.7791 -65.1467,-59.2498 -65.1467,-60.7205 -65.1467,-62.1912 -65.1467,-63.6619 -65.1467,-65.1326 -65.1467,-66.6033 -65.1467,-68.074 -65.1467,-68.074 -64.36653,-68.074 -63.58636,-68.074 -62.80619,-68.074 -62.02602,-68.074 -61.24585,-68.074 -60.46568,-68.074 -59.68551,-68.074 -58.90534,-68.074 -58.12517,-68.074 -57.345))", "dataset_titles": "Major, trace elements contents and radiogenic isotopes of erupted lavas Antarctic Peninsula and Phoenix Ridge", "datasets": [{"dataset_uid": "601519", "doi": "10.15784/601519", "keywords": "Antarctica; Antarctic Peninsula; Chemical Composition; Chemistry:rock; Chemistry:Rock; Geochemistry; Isotope Data; Trace Elements", "people": "Saal, Alberto", "repository": "USAP-DC", "science_program": null, "title": "Major, trace elements contents and radiogenic isotopes of erupted lavas Antarctic Peninsula and Phoenix Ridge", "url": "https://www.usap-dc.org/view/dataset/601519"}], "date_created": "Tue, 22 Jun 2021 00:00:00 GMT", "description": "The Earth\u0027s mantle influences the movement of tectonic plates and volcanism on the surface. One way to understand the composition and nature of the Earth\u0027s mantle is by studying the chemistry of basalts, which originate by volcanic eruptions of partially melting mantle rocks. This study will establish the budget and distribution of volatile elements (hydrogen, carbon, fluorine, chlorine, sulfur) in volcanic basalts to better understand the composition of the Earth\u0027s interior. Volatiles influence mantle melting, magma crystallization, magma migration and volcanic eruptions. Their abundances and spatial distribution provide important constraints on models of mantle flow and temperature. Moreover, volatiles are key constituents of the Earth\u0027s atmosphere and oceans. Establishing the cycles of volatiles between the Earth\u0027s interior and surface is of fundamental importance to understand the long-term evolution of our planet. This project supports a graduate student and research scientist at Brown University. It promotes the collaboration with geochemists from eleven institutions representing six different countries: USA, Germany, United Kingdom, Argentina, South Korea and Japan, and utilizes several NSF-funded USA analytical facilities. Communication of results will occur through: 1) peer-reviewed journals, presentations at conferences and invited university lectures, 2) hands-on science learning activities for local elementary and high school classes, and 3) outreach to the general audience through public lectures. Over the last 60 years of funded research, the Antarctic Peninsula and nearby ocean ridges have been extensively investigated providing information on the origin of the magmatism, and the composition, structure, temperature and evolution of the lithospheric and asthenospheric mantle. Diverse hypotheses have been proposed for the origin of the magmatism in the Antarctic Peninsula, from flux melting of the mantle wedge during devolatilization of the subducted Phoenix plate, to adiabatic decompression melting of a carbonated and hydrous asthenosphere, to melting of a volatile-rich metasomatized subcontinental lithospheric mantle. All proposed hypotheses invoke the role of volatiles. Surprisingly, data on the volatile contents of basalts and mantle from this region are non-existent. This is a significant omission from the geochemical data set, given the important role volatile elements play in the generation and composition of magmas and their sources. The focus of our research is to examine the regional variations in volatile contents (C, H, F, S, Cl) in geochemically well-characterized Pliocene-recent basalts from the Antarctic Peninsula and Phoenix ridge. Our goal is to establish the budget and distribution of volatiles in the mantle to understand 1) the processes responsible for the generation of chemically diverse basalts in close spatial and temporal proximity and 2) the nature (lithology, composition and temperature) of the heterogeneous mantle source beneath the Antarctic Peninsula and Phoenix ridge.", "east": -53.367, "geometry": "POINT(-60.7205 -61.24585)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctic Peninsula; USA/NSF; USAP-DC; TRACE ELEMENTS; MAJOR ELEMENTS; Amd/Us; LABORATORY; ROCKS/MINERALS/CRYSTALS; Magmatic Volatiles; AMD", "locations": "Antarctic Peninsula", "north": -57.345, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Saal, Alberto", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.1467, "title": "Magmatic Volatiles, Unraveling the Reservoirs and Processes of the Volcanism in the Antarctic Peninsula", "uid": "p0010196", "west": -68.074}, {"awards": "2001714 Muto, Atsuhiro; 2002346 Tinto, Kirsteen", "bounds_geometry": "POLYGON((-115 -70,-113 -70,-111 -70,-109 -70,-107 -70,-105 -70,-103 -70,-101 -70,-99 -70,-97 -70,-95 -70,-95 -70.8,-95 -71.6,-95 -72.4,-95 -73.2,-95 -74,-95 -74.8,-95 -75.6,-95 -76.4,-95 -77.2,-95 -78,-97 -78,-99 -78,-101 -78,-103 -78,-105 -78,-107 -78,-109 -78,-111 -78,-113 -78,-115 -78,-115 -77.2,-115 -76.4,-115 -75.6,-115 -74.8,-115 -74,-115 -73.2,-115 -72.4,-115 -71.6,-115 -70.8,-115 -70))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 02 Mar 2021 00:00:00 GMT", "description": "Predictions of future changes of the Antarctic ice sheet are essential for understanding changes in the global sea level expected for the coming centuries. These predictions rely on models of ice-sheet flow that in turn rely on knowledge of the physical conditions of the Antarctic continent beneath the ice. Exploration of Antarctica by land, sea, and air has advanced our understanding of the geological material under the Antarctic ice sheet, but this information has not yet been fully integrated into ice-sheet models. This project will take advantage of existing data from decades of US and international investment in geophysical surveys to create a new understanding of the geology underlying the Amundsen Sea and the adjacent areas of the West Antarctic Ice Sheet\u2014a portion of Antarctica that is considered particularly vulnerable to collapse. A series of new datasets called \u201cBed Classes\u201d will be developed that will translate the geological properties of the Antarctic continent in ways that can be incorporated into ice-sheet models. This project will develop a new regional geologic/tectonic framework for the Amundsen Sea Embayment and its ice catchments using extensive marine and airborne geophysical data together with ground-based onshore geophysical and geological constraints to delineate sedimentary basins, bedrock ridges, faults, and volcanic structures. Using this new geologic interpretation of the region, several key issues regarding the geologic influence on ice-sheet stability will be addressed: whether the regional heat flow is dominated by localization along the faults or lithology; the role of geology on the sources, sinks, and flow-paths of subglacial water; the distribution of sediments that determine bed-character variability; and the extent of geologic control on the current Thwaites Glacier grounding line. The impact of improved geological knowledge on ice-sheet models will be tested with the development of a set of \u201cBed Class\u201d grids to capture these new insights for use in the models. Bed Classes will be tested within the Parallel Ice Sheet Model framework with initial experiments to identify the sensitivity of model simulations to geological parameterizations. Through a series of workshops with ice-sheet modelers, the Bed Classes will be refined and made accessible to the broader modelling community. This work aims to ensure that the Bed-Class concept can be applied more broadly to ice-sheet models working in different geographic areas and on different timescales. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -95.0, "geometry": "POINT(-105 -74)", "instruments": null, "is_usap_dc": true, "keywords": "Amundsen Sea; COMPUTERS; GRAVITY ANOMALIES; Amd/Us; GLACIERS/ICE SHEETS; AMD; USA/NSF; USAP-DC", "locations": "Amundsen Sea", "north": -70.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Earth Sciences; Antarctic Integrated System Science", "paleo_time": null, "persons": "Tinto, Kirsty; Bell, Robin; Porter, David; Muto, Atsu", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS", "repositories": null, "science_programs": null, "south": -78.0, "title": "Collaborative Research: Building Geologically Informed Bed Classes to Improve Projections of Ice Sheet Change", "uid": "p0010164", "west": -115.0}, {"awards": "1644197 Simms, Alexander", "bounds_geometry": "POLYGON((-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-60 -61,-59 -61,-58 -61,-57 -61,-56 -61,-55 -61,-55 -61.4,-55 -61.8,-55 -62.2,-55 -62.6,-55 -63,-55 -63.4,-55 -63.8,-55 -64.2,-55 -64.6,-55 -65,-56 -65,-57 -65,-58 -65,-59 -65,-60 -65,-61 -65,-62 -65,-63 -65,-64 -65,-65 -65,-65 -64.6,-65 -64.2,-65 -63.8,-65 -63.4,-65 -63,-65 -62.6,-65 -62.2,-65 -61.8,-65 -61.4,-65 -61))", "dataset_titles": "Electron Microprobe Analysis of feldspar separates from rock and sediment OSL samples from Joinville and Livingston Island Beaches; Granulometry of Joinville and Livingston Island beaches; Ground-Penetrating Radar data from Livingston Island in the Antarctic Peninsula; Ground Penetrating Radar Profiles from Beaches on Joinville Island, Antarctic Peninsula; Joinville and Livingston Islands - rock and sediment OSL ages; OSL data - Joinville and Livingston Islands - Raw data; Radiocarbon Ages from Beaches on Joinville Island, Antarctic Peninsula", "datasets": [{"dataset_uid": "601634", "doi": "10.15784/601634", "keywords": "Antarctica; Joinville Island; Raised Beaches; Sea Level", "people": "Simms, Alexander", "repository": "USAP-DC", "science_program": null, "title": "Radiocarbon Ages from Beaches on Joinville Island, Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601634"}, {"dataset_uid": "601632", "doi": "10.15784/601632", "keywords": "Antarctica; Joinville Island", "people": "Simms, Alexander", "repository": "USAP-DC", "science_program": null, "title": "Ground Penetrating Radar Profiles from Beaches on Joinville Island, Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601632"}, {"dataset_uid": "601633", "doi": "10.15784/601633", "keywords": "Antarctica; Joinville Island", "people": "Simms, Alexander", "repository": "USAP-DC", "science_program": null, "title": "Ground-Penetrating Radar data from Livingston Island in the Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601633"}, {"dataset_uid": "601531", "doi": "10.15784/601531", "keywords": "Antarctica; Geochronology; Joinville Island; Livingston Island; OSL dating; Raised Beaches", "people": "DeWitt, Regina", "repository": "USAP-DC", "science_program": null, "title": "Electron Microprobe Analysis of feldspar separates from rock and sediment OSL samples from Joinville and Livingston Island Beaches", "url": "https://www.usap-dc.org/view/dataset/601531"}, {"dataset_uid": "601534", "doi": "10.15784/601534", "keywords": "Antarctica; Geochronology; Joinville Island; Livingston Island; OSL dating; Raised Beaches", "people": "DeWitt, Regina", "repository": "USAP-DC", "science_program": null, "title": "Joinville and Livingston Islands - rock and sediment OSL ages", "url": "https://www.usap-dc.org/view/dataset/601534"}, {"dataset_uid": "601532", "doi": "10.15784/601532", "keywords": "Antarctica; Geochronology; Joinville Island; Livingston Island; OSL dating; Raised Beaches", "people": "DeWitt, Regina", "repository": "USAP-DC", "science_program": null, "title": "OSL data - Joinville and Livingston Islands - Raw data", "url": "https://www.usap-dc.org/view/dataset/601532"}, {"dataset_uid": "601400", "doi": "10.15784/601400", "keywords": "Antarctica; Grain Size; Granulometry; Joinville Island; Livingston Island; LMG0412; Raised Beaches", "people": "Simms, Alexander; Theilen, Brittany", "repository": "USAP-DC", "science_program": null, "title": "Granulometry of Joinville and Livingston Island beaches", "url": "https://www.usap-dc.org/view/dataset/601400"}], "date_created": "Thu, 08 Oct 2020 00:00:00 GMT", "description": "Nontechnical Description Glacier ice loss from Antarctica has the potential to lead to a significant rise in global sea level. One line of evidence for accelerated glacier ice loss has been an increase in the rate at which the land has been rising across the Antarctic Peninsula as measured by GPS receivers. However, GPS observations of uplift are limited to the last two decades. One goal of this study is to determine how these newly observed rates of uplift compare to average rates of uplift across the Antarctic Peninsula over a longer time interval. Researchers will reconstruct past sea levels using the age and elevation of ancient beaches now stranded above sea level on the low-lying coastal hills of the Antarctica Peninsula to determine the rate of uplift over the last 5,000 years. The researchers will also analyze the structure of the beaches using ground-penetrating radar and the characteristics of beach sediments to understand how sea-level rise and past climate changes are recorded in beach deposits. The benefits of these new records will be threefold: (1) they will help determine the natural variability of the Antarctic Ice Sheet and relative sea level (2) they will provide new insight about uplift and the structure of the Earth\u0027s interior; and 3) they will help researchers refine the methods used to determine the age of geologic deposits. The study results will be shared in outreach events at K-12 schools and with visitors of the Santa Barbara Natural History Museum. Three graduate students will be supported through this project. Technical description Paleo sea-level data is critical for reconstructing the size and extent of past ice sheets, documenting increased uplift following glacial retreat, and correcting gravity-based measurements of ice-mass loss for the impacts of post-glacial rebound. However, there are only 14 sites with relative sea-level data for Antarctica compared to over 500 sites used in a recent study of the North American Ice-Sheet complex. The purpose of this project is to use optically stimulated luminescence to date a series of newly discovered raised beaches along the eastern Antarctic Peninsula and an already known, but only preliminarily dated, series of raised beaches in the South Shetland Islands. Data to be collected at the raised beaches include the age and elevation, ground-penetrating radar profiles, and the roundness of cobbles and the lithology of ice-rafted debris. The study will test three hypotheses: (1) uplift rates have increased in modern times relative to the late Holocene across the Antarctic Peninsula, (2) the sea-level history at the northern tip of the Antarctic Peninsula is distinctly different than that of the South Shetland Islands, and (3) cobble roundness and the source of ice-rafted debris on raised beaches varied systematically through time reflecting the climate history of the northern Antarctic Peninsula.", "east": -55.0, "geometry": "POINT(-60 -63)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "Antarctic Peninsula; COASTAL LANDFORMS/PROCESSES; USAP-DC; SEA LEVEL RECONSTRUCTION; South Shetland Islands; AMD; FIELD INVESTIGATION; Amd/Us; USA/NSF", "locations": "South Shetland Islands; Antarctic Peninsula", "north": -61.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Simms, Alexander; DeWitt, Regina", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Collaborative Research: New Constraints on Post-Glacial Rebound and Holocene Environmental History along the Northern Antarctic Peninsula from Raised Beaches", "uid": "p0010132", "west": -65.0}, {"awards": "1043740 Lenczewski, Melissa", "bounds_geometry": "POLYGON((165 -77.5,165.3 -77.5,165.6 -77.5,165.9 -77.5,166.2 -77.5,166.5 -77.5,166.8 -77.5,167.1 -77.5,167.4 -77.5,167.7 -77.5,168 -77.5,168 -77.6,168 -77.7,168 -77.8,168 -77.9,168 -78,168 -78.1,168 -78.2,168 -78.3,168 -78.4,168 -78.5,167.7 -78.5,167.4 -78.5,167.1 -78.5,166.8 -78.5,166.5 -78.5,166.2 -78.5,165.9 -78.5,165.6 -78.5,165.3 -78.5,165 -78.5,165 -78.4,165 -78.3,165 -78.2,165 -78.1,165 -78,165 -77.9,165 -77.8,165 -77.7,165 -77.6,165 -77.5))", "dataset_titles": "Fate of Drilling Fluids during the South McMurdo Sound Project (SMS) of the Antarctic Geological Drilling Program (ANDRILL)", "datasets": [{"dataset_uid": "600129", "doi": "10.15784/600129", "keywords": "Andrill; Antarctica; Chemistry:fluid; Chemistry:Fluid; Chemistry:rock; Chemistry:Rock; Drilling Fluid; Geochemistry; McMurdo; Ross Sea; Sediment Core", "people": "Lenczewski, Melissa", "repository": "USAP-DC", "science_program": "ANDRILL", "title": "Fate of Drilling Fluids during the South McMurdo Sound Project (SMS) of the Antarctic Geological Drilling Program (ANDRILL)", "url": "https://www.usap-dc.org/view/dataset/600129"}], "date_created": "Mon, 27 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: The PI proposes to utilize computer models used by hydrogeologists to establish the fate and transport of contamination and determine the extent of drilling fluid contamination in the ANDRILL SMS core. For these models, previously collected logs of lithology, porosity, fracture density, fracture type, fracture orientation, drilling fluid loss, drilling fluid characteristics and temperature will be used as input parameters. In addition, biodegradation and sorption constants for the drilling fluid will be determined and incorporated into the models. Samples of drilling fluids used during coring as well as the return fluids were collected at the drill site using standard microbiological sampling techniques. Fluids will be tested at in situ temperatures under aerobic and anaerobic conditions to determine biodegradation constants. Sorption will be determined between the drilling fluids and core samples using standard isotherm methods. Geochemical and microbial fingerprints of the fluids and the changes during biodegradation will determine the potential impact of the drilling fluids on the isolated microbial communities and the geochemistry within various subsurface lithologic units beneath the southern McMurdo Sound in Antarctica. The results of this study could potentially provide guidelines on developing less detrimental methods for future exploration, if deemed necessary through this research. Broader impacts: This proposed project will train a graduate student. The methods developed for analyses of samples in this project will serve as a guide for future studies of similar interest and will improve the understanding of ecological impacts of geologic drilling in Antarctica. The results of this study will be used as a reference for comparison with future studies examining newly developed, and improved, sample collection methods in future exploratory drilling projects in pristine environments. The PI is new to Antarctic research.", "east": 168.0, "geometry": "POINT(166.5 -78)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Lenczewski, Melissa", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ANDRILL", "south": -78.5, "title": "Fate of Drilling Fluids during the South McMurdo Sound Project (SMS) of the Antarctic Geological Drilling Program (ANDRILL)", "uid": "p0000468", "west": 165.0}, {"awards": "0538097 Anandakrishnan, Sridhar", "bounds_geometry": "POLYGON((140 -89.8,144 -89.8,148 -89.8,152 -89.8,156 -89.8,160 -89.8,164 -89.8,168 -89.8,172 -89.8,176 -89.8,180 -89.8,180 -89.82,180 -89.84,180 -89.86,180 -89.88,180 -89.9,180 -89.92,180 -89.94,180 -89.96,180 -89.98,180 -90,176 -90,172 -90,168 -90,164 -90,160 -90,156 -90,152 -90,148 -90,144 -90,140 -90,140 -89.98,140 -89.96,140 -89.94,140 -89.92,140 -89.9,140 -89.88,140 -89.86,140 -89.84,140 -89.82,140 -89.8))", "dataset_titles": "IRIS Data Management Center (DMC) holds the full resolution seismic data. Keyword: POLELAKE. Dataset ID: 10-019; seismic data. Keyword: POLELAKE. Dataset ID: 10-019", "datasets": [{"dataset_uid": "001466", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IRIS Data Management Center (DMC) holds the full resolution seismic data. Keyword: POLELAKE. Dataset ID: 10-019", "url": "http://www.iris.edu/dms/dmc"}, {"dataset_uid": "000102", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "seismic data. Keyword: POLELAKE. Dataset ID: 10-019", "url": "http://ds.iris.edu/ds/nodes/dmc/"}], "date_created": "Wed, 08 Sep 2010 00:00:00 GMT", "description": "0538097\u003cbr/\u003eAnandakrishnan\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to intensively study a subglacial Antarctic lake near the geographic South Pole using seismic and radar methods. These ground-based experiments are better suited to determine the presence of water and its thickness than are airborne methods. We hypothesize that there are two end-member explanations for this feature: either the lake is thawed, but freezing on (and likely to have been freezing on through much of the current interglacial period), or it is a frozen, relict lake for which the high basal radar reflectivity is due to intergranular water in a permafrost-like layer beneath the ice. The seismic experiment we propose is ideally suited to examine these alternatives. Intermediate cases of, e.g., a thawed saturated sedimentary base or a smooth crystalline basement layer would also be resolved by this experiment. Seismic reflections are sensitive to changes in acoustic impedance which is strongly variable with fluid content, porosity, and lithology. Water has low density relative to most rocks and low seismic velocity (and nil shear wave velocity) relative to both ice and rock. Thus, discriminating between subglacial water and subglacial rock is a task ideally suited to the seismic reflection technique. This project has significant impacts outside the directly affected fields of Antarctic glaciology and geology. The lake (either thawed or sediments with thin liquid layers around the matrix particles) will have the potential for harboring novel life forms. The experiment has the potential for expanding our information about the newest frontier in life on Earth. The collaboration between PIs in the seismic community and the marine acoustics community will foster cross-disciplinary pollination of ideas, techniques, and tools. In addition to traditional seismic techniques, new methods of data analysis that have been developed by acousticians will be applied to this problem as an independent measure of lake properties. We will train students who will have a wider view of seismology than would be possible in a traditional ocean acoustics or traditional geoscience seismology program of study.", "east": 180.0, "geometry": "POINT(160 -89.9)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e SEISMIC REFLECTION PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS", "is_usap_dc": false, "keywords": "Antarctica; South Pole; Porosity; Not provided; Seismic; Lithology; FIELD INVESTIGATION; Subglacial; Subglacial Lake; FIELD SURVEYS; LABORATORY; Fluid Content; Acoustic Impedance", "locations": "Antarctica; South Pole", "north": -89.8, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Anandakrishnan, Sridhar; Holland, Charles", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": -90.0, "title": "Characterization of Lake Amundsen-Scott, S. Pole: A Ground Geophysical Program", "uid": "p0000693", "west": 140.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Magmatic Volatiles, Unraveling the Reservoirs and Processes of the Volcanism in the Antarctic Peninsula
|
1643494 |
2021-06-22 | Saal, Alberto |
|
The Earth's mantle influences the movement of tectonic plates and volcanism on the surface. One way to understand the composition and nature of the Earth's mantle is by studying the chemistry of basalts, which originate by volcanic eruptions of partially melting mantle rocks. This study will establish the budget and distribution of volatile elements (hydrogen, carbon, fluorine, chlorine, sulfur) in volcanic basalts to better understand the composition of the Earth's interior. Volatiles influence mantle melting, magma crystallization, magma migration and volcanic eruptions. Their abundances and spatial distribution provide important constraints on models of mantle flow and temperature. Moreover, volatiles are key constituents of the Earth's atmosphere and oceans. Establishing the cycles of volatiles between the Earth's interior and surface is of fundamental importance to understand the long-term evolution of our planet. This project supports a graduate student and research scientist at Brown University. It promotes the collaboration with geochemists from eleven institutions representing six different countries: USA, Germany, United Kingdom, Argentina, South Korea and Japan, and utilizes several NSF-funded USA analytical facilities. Communication of results will occur through: 1) peer-reviewed journals, presentations at conferences and invited university lectures, 2) hands-on science learning activities for local elementary and high school classes, and 3) outreach to the general audience through public lectures. Over the last 60 years of funded research, the Antarctic Peninsula and nearby ocean ridges have been extensively investigated providing information on the origin of the magmatism, and the composition, structure, temperature and evolution of the lithospheric and asthenospheric mantle. Diverse hypotheses have been proposed for the origin of the magmatism in the Antarctic Peninsula, from flux melting of the mantle wedge during devolatilization of the subducted Phoenix plate, to adiabatic decompression melting of a carbonated and hydrous asthenosphere, to melting of a volatile-rich metasomatized subcontinental lithospheric mantle. All proposed hypotheses invoke the role of volatiles. Surprisingly, data on the volatile contents of basalts and mantle from this region are non-existent. This is a significant omission from the geochemical data set, given the important role volatile elements play in the generation and composition of magmas and their sources. The focus of our research is to examine the regional variations in volatile contents (C, H, F, S, Cl) in geochemically well-characterized Pliocene-recent basalts from the Antarctic Peninsula and Phoenix ridge. Our goal is to establish the budget and distribution of volatiles in the mantle to understand 1) the processes responsible for the generation of chemically diverse basalts in close spatial and temporal proximity and 2) the nature (lithology, composition and temperature) of the heterogeneous mantle source beneath the Antarctic Peninsula and Phoenix ridge. | POLYGON((-68.074 -57.345,-66.6033 -57.345,-65.1326 -57.345,-63.6619 -57.345,-62.1912 -57.345,-60.7205 -57.345,-59.2498 -57.345,-57.7791 -57.345,-56.3084 -57.345,-54.8377 -57.345,-53.367 -57.345,-53.367 -58.12517,-53.367 -58.90534,-53.367 -59.68551,-53.367 -60.46568,-53.367 -61.24585,-53.367 -62.02602,-53.367 -62.80619,-53.367 -63.58636,-53.367 -64.36653,-53.367 -65.1467,-54.8377 -65.1467,-56.3084 -65.1467,-57.7791 -65.1467,-59.2498 -65.1467,-60.7205 -65.1467,-62.1912 -65.1467,-63.6619 -65.1467,-65.1326 -65.1467,-66.6033 -65.1467,-68.074 -65.1467,-68.074 -64.36653,-68.074 -63.58636,-68.074 -62.80619,-68.074 -62.02602,-68.074 -61.24585,-68.074 -60.46568,-68.074 -59.68551,-68.074 -58.90534,-68.074 -58.12517,-68.074 -57.345)) | POINT(-60.7205 -61.24585) | false | false | |||||
Collaborative Research: Building Geologically Informed Bed Classes to Improve Projections of Ice Sheet Change
|
2001714 2002346 |
2021-03-02 | Tinto, Kirsty; Bell, Robin; Porter, David; Muto, Atsu | No dataset link provided | Predictions of future changes of the Antarctic ice sheet are essential for understanding changes in the global sea level expected for the coming centuries. These predictions rely on models of ice-sheet flow that in turn rely on knowledge of the physical conditions of the Antarctic continent beneath the ice. Exploration of Antarctica by land, sea, and air has advanced our understanding of the geological material under the Antarctic ice sheet, but this information has not yet been fully integrated into ice-sheet models. This project will take advantage of existing data from decades of US and international investment in geophysical surveys to create a new understanding of the geology underlying the Amundsen Sea and the adjacent areas of the West Antarctic Ice Sheet—a portion of Antarctica that is considered particularly vulnerable to collapse. A series of new datasets called “Bed Classes” will be developed that will translate the geological properties of the Antarctic continent in ways that can be incorporated into ice-sheet models. This project will develop a new regional geologic/tectonic framework for the Amundsen Sea Embayment and its ice catchments using extensive marine and airborne geophysical data together with ground-based onshore geophysical and geological constraints to delineate sedimentary basins, bedrock ridges, faults, and volcanic structures. Using this new geologic interpretation of the region, several key issues regarding the geologic influence on ice-sheet stability will be addressed: whether the regional heat flow is dominated by localization along the faults or lithology; the role of geology on the sources, sinks, and flow-paths of subglacial water; the distribution of sediments that determine bed-character variability; and the extent of geologic control on the current Thwaites Glacier grounding line. The impact of improved geological knowledge on ice-sheet models will be tested with the development of a set of “Bed Class” grids to capture these new insights for use in the models. Bed Classes will be tested within the Parallel Ice Sheet Model framework with initial experiments to identify the sensitivity of model simulations to geological parameterizations. Through a series of workshops with ice-sheet modelers, the Bed Classes will be refined and made accessible to the broader modelling community. This work aims to ensure that the Bed-Class concept can be applied more broadly to ice-sheet models working in different geographic areas and on different timescales. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-115 -70,-113 -70,-111 -70,-109 -70,-107 -70,-105 -70,-103 -70,-101 -70,-99 -70,-97 -70,-95 -70,-95 -70.8,-95 -71.6,-95 -72.4,-95 -73.2,-95 -74,-95 -74.8,-95 -75.6,-95 -76.4,-95 -77.2,-95 -78,-97 -78,-99 -78,-101 -78,-103 -78,-105 -78,-107 -78,-109 -78,-111 -78,-113 -78,-115 -78,-115 -77.2,-115 -76.4,-115 -75.6,-115 -74.8,-115 -74,-115 -73.2,-115 -72.4,-115 -71.6,-115 -70.8,-115 -70)) | POINT(-105 -74) | false | false | |||||
Collaborative Research: New Constraints on Post-Glacial Rebound and Holocene Environmental History along the Northern Antarctic Peninsula from Raised Beaches
|
1644197 |
2020-10-08 | Simms, Alexander; DeWitt, Regina | Nontechnical Description Glacier ice loss from Antarctica has the potential to lead to a significant rise in global sea level. One line of evidence for accelerated glacier ice loss has been an increase in the rate at which the land has been rising across the Antarctic Peninsula as measured by GPS receivers. However, GPS observations of uplift are limited to the last two decades. One goal of this study is to determine how these newly observed rates of uplift compare to average rates of uplift across the Antarctic Peninsula over a longer time interval. Researchers will reconstruct past sea levels using the age and elevation of ancient beaches now stranded above sea level on the low-lying coastal hills of the Antarctica Peninsula to determine the rate of uplift over the last 5,000 years. The researchers will also analyze the structure of the beaches using ground-penetrating radar and the characteristics of beach sediments to understand how sea-level rise and past climate changes are recorded in beach deposits. The benefits of these new records will be threefold: (1) they will help determine the natural variability of the Antarctic Ice Sheet and relative sea level (2) they will provide new insight about uplift and the structure of the Earth's interior; and 3) they will help researchers refine the methods used to determine the age of geologic deposits. The study results will be shared in outreach events at K-12 schools and with visitors of the Santa Barbara Natural History Museum. Three graduate students will be supported through this project. Technical description Paleo sea-level data is critical for reconstructing the size and extent of past ice sheets, documenting increased uplift following glacial retreat, and correcting gravity-based measurements of ice-mass loss for the impacts of post-glacial rebound. However, there are only 14 sites with relative sea-level data for Antarctica compared to over 500 sites used in a recent study of the North American Ice-Sheet complex. The purpose of this project is to use optically stimulated luminescence to date a series of newly discovered raised beaches along the eastern Antarctic Peninsula and an already known, but only preliminarily dated, series of raised beaches in the South Shetland Islands. Data to be collected at the raised beaches include the age and elevation, ground-penetrating radar profiles, and the roundness of cobbles and the lithology of ice-rafted debris. The study will test three hypotheses: (1) uplift rates have increased in modern times relative to the late Holocene across the Antarctic Peninsula, (2) the sea-level history at the northern tip of the Antarctic Peninsula is distinctly different than that of the South Shetland Islands, and (3) cobble roundness and the source of ice-rafted debris on raised beaches varied systematically through time reflecting the climate history of the northern Antarctic Peninsula. | POLYGON((-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-60 -61,-59 -61,-58 -61,-57 -61,-56 -61,-55 -61,-55 -61.4,-55 -61.8,-55 -62.2,-55 -62.6,-55 -63,-55 -63.4,-55 -63.8,-55 -64.2,-55 -64.6,-55 -65,-56 -65,-57 -65,-58 -65,-59 -65,-60 -65,-61 -65,-62 -65,-63 -65,-64 -65,-65 -65,-65 -64.6,-65 -64.2,-65 -63.8,-65 -63.4,-65 -63,-65 -62.6,-65 -62.2,-65 -61.8,-65 -61.4,-65 -61)) | POINT(-60 -63) | false | false | ||||||
Fate of Drilling Fluids during the South McMurdo Sound Project (SMS) of the Antarctic Geological Drilling Program (ANDRILL)
|
1043740 |
2014-01-27 | Lenczewski, Melissa |
|
Intellectual Merit: The PI proposes to utilize computer models used by hydrogeologists to establish the fate and transport of contamination and determine the extent of drilling fluid contamination in the ANDRILL SMS core. For these models, previously collected logs of lithology, porosity, fracture density, fracture type, fracture orientation, drilling fluid loss, drilling fluid characteristics and temperature will be used as input parameters. In addition, biodegradation and sorption constants for the drilling fluid will be determined and incorporated into the models. Samples of drilling fluids used during coring as well as the return fluids were collected at the drill site using standard microbiological sampling techniques. Fluids will be tested at in situ temperatures under aerobic and anaerobic conditions to determine biodegradation constants. Sorption will be determined between the drilling fluids and core samples using standard isotherm methods. Geochemical and microbial fingerprints of the fluids and the changes during biodegradation will determine the potential impact of the drilling fluids on the isolated microbial communities and the geochemistry within various subsurface lithologic units beneath the southern McMurdo Sound in Antarctica. The results of this study could potentially provide guidelines on developing less detrimental methods for future exploration, if deemed necessary through this research. Broader impacts: This proposed project will train a graduate student. The methods developed for analyses of samples in this project will serve as a guide for future studies of similar interest and will improve the understanding of ecological impacts of geologic drilling in Antarctica. The results of this study will be used as a reference for comparison with future studies examining newly developed, and improved, sample collection methods in future exploratory drilling projects in pristine environments. The PI is new to Antarctic research. | POLYGON((165 -77.5,165.3 -77.5,165.6 -77.5,165.9 -77.5,166.2 -77.5,166.5 -77.5,166.8 -77.5,167.1 -77.5,167.4 -77.5,167.7 -77.5,168 -77.5,168 -77.6,168 -77.7,168 -77.8,168 -77.9,168 -78,168 -78.1,168 -78.2,168 -78.3,168 -78.4,168 -78.5,167.7 -78.5,167.4 -78.5,167.1 -78.5,166.8 -78.5,166.5 -78.5,166.2 -78.5,165.9 -78.5,165.6 -78.5,165.3 -78.5,165 -78.5,165 -78.4,165 -78.3,165 -78.2,165 -78.1,165 -78,165 -77.9,165 -77.8,165 -77.7,165 -77.6,165 -77.5)) | POINT(166.5 -78) | false | false | |||||
Characterization of Lake Amundsen-Scott, S. Pole: A Ground Geophysical Program
|
0538097 |
2010-09-08 | Anandakrishnan, Sridhar; Holland, Charles |
|
0538097<br/>Anandakrishnan<br/><br/>This award supports a project to intensively study a subglacial Antarctic lake near the geographic South Pole using seismic and radar methods. These ground-based experiments are better suited to determine the presence of water and its thickness than are airborne methods. We hypothesize that there are two end-member explanations for this feature: either the lake is thawed, but freezing on (and likely to have been freezing on through much of the current interglacial period), or it is a frozen, relict lake for which the high basal radar reflectivity is due to intergranular water in a permafrost-like layer beneath the ice. The seismic experiment we propose is ideally suited to examine these alternatives. Intermediate cases of, e.g., a thawed saturated sedimentary base or a smooth crystalline basement layer would also be resolved by this experiment. Seismic reflections are sensitive to changes in acoustic impedance which is strongly variable with fluid content, porosity, and lithology. Water has low density relative to most rocks and low seismic velocity (and nil shear wave velocity) relative to both ice and rock. Thus, discriminating between subglacial water and subglacial rock is a task ideally suited to the seismic reflection technique. This project has significant impacts outside the directly affected fields of Antarctic glaciology and geology. The lake (either thawed or sediments with thin liquid layers around the matrix particles) will have the potential for harboring novel life forms. The experiment has the potential for expanding our information about the newest frontier in life on Earth. The collaboration between PIs in the seismic community and the marine acoustics community will foster cross-disciplinary pollination of ideas, techniques, and tools. In addition to traditional seismic techniques, new methods of data analysis that have been developed by acousticians will be applied to this problem as an independent measure of lake properties. We will train students who will have a wider view of seismology than would be possible in a traditional ocean acoustics or traditional geoscience seismology program of study. | POLYGON((140 -89.8,144 -89.8,148 -89.8,152 -89.8,156 -89.8,160 -89.8,164 -89.8,168 -89.8,172 -89.8,176 -89.8,180 -89.8,180 -89.82,180 -89.84,180 -89.86,180 -89.88,180 -89.9,180 -89.92,180 -89.94,180 -89.96,180 -89.98,180 -90,176 -90,172 -90,168 -90,164 -90,160 -90,156 -90,152 -90,148 -90,144 -90,140 -90,140 -89.98,140 -89.96,140 -89.94,140 -89.92,140 -89.9,140 -89.88,140 -89.86,140 -89.84,140 -89.82,140 -89.8)) | POINT(160 -89.9) | false | false |