{"dp_type": "Project", "free_text": "Ice Stream Flow"}
[{"awards": "0838811 Sergienko, Olga", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -87,180 -84,180 -81,180 -78,180 -75,180 -72,180 -69,180 -66,180 -63,180 -60,180 -60,180 -60,180 -60,180 -60,180 -60,180 -60,180 -60,180 -60,180 -60,-180 -60))", "dataset_titles": "Interaction of Ice Stream Flow with Heterogeneous Beds", "datasets": [{"dataset_uid": "609583", "doi": "10.7265/N53R0QS6", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; Ice Thickness; Ice Velocity", "people": "Sergienko, Olga", "repository": "USAP-DC", "science_program": null, "title": "Interaction of Ice Stream Flow with Heterogeneous Beds", "url": "https://www.usap-dc.org/view/dataset/609583"}], "date_created": "Tue, 27 Aug 2013 00:00:00 GMT", "description": "Sergienko/0838811 \u003cbr/\u003e\u003cbr/\u003eThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to conduct a modeling study of the ice stream ? sub-glacial water system. A suite of numerical models of various dimensionality and complexity will be constructed in a sequential, hierarchical fashion to formulate and test hypotheses regarding how sub-glacial lakes form under ice streams, determine the effect of sub-glacial lakes on ice-stream flow and mass balance, and to determine feedback effects whereby the ice stream ? sub-glacial water system can elicit both stable and unstable responses to environmental perturbations. This research will address one of the only observationally verified fast-time-scale processes apparent within the Antarctic Ice Stream system. The intellectual merit of the project is that understanding the origins and consequences of near-grounding-line sub-glacial lakes is a priority in glaciological research designed to predict short-term variations in Antarctica?s near-term future mass balance. The broader impacts of the proposed work are that it will contribute to better understanding of a system that has important societal relevance through contribution to sea level rise. Participation of a graduate student in the project will provide the student?s training and education in application of the numerical modeling in geosciences.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Subglacial And Supraglacial Water Depth; Not provided; Basal Stress; Ice Stream; Direct Numerical Simulation", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Sergienko, Olga; Hulbe, Christina", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Model Investigation of Ice Stream/Subglacial Lake Systems", "uid": "p0000045", "west": 180.0}, {"awards": "9615420 Kamb, Barclay", "bounds_geometry": "POINT(-136.404633 -82.39955)", "dataset_titles": "Temperature of the West Antarctic Ice Sheet; Videos of Basal Ice in Boreholes on the Kamb Ice Stream in West Antarctica", "datasets": [{"dataset_uid": "609528", "doi": "10.7265/N5028PFH", "keywords": "Antarctica; Borehole Video; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Kamb Ice Stream; Photo/video; Photo/Video", "people": "Engelhardt, Hermann", "repository": "USAP-DC", "science_program": null, "title": "Videos of Basal Ice in Boreholes on the Kamb Ice Stream in West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609528"}, {"dataset_uid": "609537", "doi": "10.7265/N5PN93J8", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Temperature", "people": "Engelhardt, Hermann", "repository": "USAP-DC", "science_program": null, "title": "Temperature of the West Antarctic Ice Sheet", "url": "https://www.usap-dc.org/view/dataset/609537"}], "date_created": "Thu, 14 Feb 2013 00:00:00 GMT", "description": "This award is for support for a four year program to study the basal conditions of ice stream D using techniques previously applied to ice stream B. The objective is to determine whether the physical conditions and processes to be observed by borehole geophysics at the base of this large ice stream are consistent with what has been observed at ice stream B and to point to a common basal mechanism of ice streaming. This project includes a comparison between two parts of ice stream D, an upstream reach where flow velocities are modest (about 80 meters/year) and a downstream reach of high velocity (about 400 meters/year). The comparison will help to reveal what physical variable or combination of variables is mainly responsible for the streaming flow. The variables to be monitmred by borehole observation include basal water pressure, basal sliding velocity, flow properties and sedimentological characteristics of subglacial till if present, ice temperature profile including basal water transport velocity, connection time to the basal water system, basal melting rate and others.", "east": -136.404633, "geometry": "POINT(-136.404633 -82.39955)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": true, "keywords": "Raymond Ridge; Kamb Ice Stream; Engelhardt Ridge; Basal Ice; Unicorn; Alley Ice Stream; Borehole Video; Basal Freeze-on; Ice Stream Flow; Basal Freezing; West Antarctic Ice Sheet Instability; GROUND-BASED OBSERVATIONS; Whillans Ice Stream; Basal Debris; Simple Dome; Basal Water; Bindschadler Ice Stream; West Antarctic Ice Sheet", "locations": "Kamb Ice Stream; Alley Ice Stream; Bindschadler Ice Stream; Engelhardt Ridge; Raymond Ridge; Simple Dome; Unicorn; West Antarctic Ice Sheet; Whillans Ice Stream", "north": -82.39955, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Kamb, Barclay; Engelhardt, Hermann", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.39955, "title": "Basal Conditions of Ice Stream D and Related Borehole Studies of Antarctic Ice Stream Mechanics", "uid": "p0000181", "west": -136.404633}, {"awards": "0538120 Catania, Ginny; 0538015 Hulbe, Christina", "bounds_geometry": "POLYGON((154.71 -82.78,154.79000000000002 -82.78,154.87 -82.78,154.95 -82.78,155.03 -82.78,155.11 -82.78,155.19 -82.78,155.26999999999998 -82.78,155.35 -82.78,155.43 -82.78,155.51 -82.78,155.51 -82.788,155.51 -82.796,155.51 -82.804,155.51 -82.812,155.51 -82.82,155.51 -82.828,155.51 -82.836,155.51 -82.844,155.51 -82.852,155.51 -82.86,155.43 -82.86,155.35 -82.86,155.26999999999998 -82.86,155.19 -82.86,155.11 -82.86,155.03 -82.86,154.95 -82.86,154.87 -82.86,154.79000000000002 -82.86,154.71 -82.86,154.71 -82.852,154.71 -82.844,154.71 -82.836,154.71 -82.828,154.71 -82.82,154.71 -82.812,154.71 -82.804,154.71 -82.796,154.71 -82.788,154.71 -82.78))", "dataset_titles": "Grounding Line Strain Grid Surveys, Kamb Ice Stream, Antarctica; Ice-Penetrating Radar Data Across Siple Coast Grounding Lines", "datasets": [{"dataset_uid": "609494", "doi": "10.7265/N5Z899C6", "keywords": "Antarctica; Geodesy; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Grounding Line; Kamb Ice Stream; Strain", "people": "Hulbe, Christina", "repository": "USAP-DC", "science_program": null, "title": "Grounding Line Strain Grid Surveys, Kamb Ice Stream, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609494"}, {"dataset_uid": "609474", "doi": "10.7265/N5M043BH", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; GPR; Grounding Line; Radar; Siple Coast", "people": "Hulbe, Christina; Catania, Ginny", "repository": "USAP-DC", "science_program": null, "title": "Ice-Penetrating Radar Data Across Siple Coast Grounding Lines", "url": "https://www.usap-dc.org/view/dataset/609474"}], "date_created": "Sat, 02 Jul 2011 00:00:00 GMT", "description": "0538120\u003cbr/\u003eCatania\u003cbr/\u003eThis award supports a project to identify and map ice surface and internal features that chronicle the sequence of events leading to the shut-down of Kamb ice stream. In particular, the project will study past grounding line migration and the relationship between that process and ice stream shutdown. The intellectual merits of the project include the fact that an understanding of such processes has important implications for our ability to accurately predict mass balance changes in this region. Currently, one of the five major West Antarctic ice streams, Kamb, is quiescent, and another, Whillans, is slowing in its downstream reaches. The Kamb shutdown appears to have begun at its downstream end but beyond that simple observation, it is not possible, yet, to draw meaningful comparisons between the two adjacent streams. We do not know if current events on Whillans Ice Stream are similar to what transpired during the Kamb shut-down. The work proposed here intends to bridge that gap. It is expected that this effort will yield useful insights into the influence of grounding line dynamics on ice stream flow. The work will involve a combination of field investigations using radio-echo sounding and GPS combined with computational efforts involving the interpretation of ice-surface features such as relict flow traces and crevasses. The broader impacts of the project will be in addressing a global environmental problem with critical societal implications, training the next generation of scientists and engineers to serve the nation, and encouraging women to pursue scientific or engineering careers. Participants from both institutions are involved in a range of public outreach activities.", "east": 155.51, "geometry": "POINT(155.11 -82.82)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR", "is_usap_dc": true, "keywords": "Not provided; Ice Sheet Elevation; West Antarctic Ice Stream; MODELS; Ice Sheet Thickness; West Antarctic Ice Sheet; Kamb Ice Stream; Antarctic Ice Sheet; Ice Sheet; Ice Stream Motion; Antarctica; Siple Dome; Grounding Line; FIELD INVESTIGATION; GPS; FIELD SURVEYS; West Antarctica; Ice Stream; Radar", "locations": "Antarctica; Kamb Ice Stream; West Antarctic Ice Stream; Antarctic Ice Sheet; West Antarctica; West Antarctic Ice Sheet; Siple Dome", "north": -82.78, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Hulbe, Christina; Catania, Ginny", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e MODELS \u003e MODELS; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.86, "title": "Collaborative Research: Grounding Line Forensics: The History of Grounding Line Retreat in the Kamb Ice Stream Outlet Region", "uid": "p0000019", "west": 154.71}, {"awards": "0229629 Anandakrishnan, Sridhar", "bounds_geometry": "POLYGON((-165 -82,-161.5 -82,-158 -82,-154.5 -82,-151 -82,-147.5 -82,-144 -82,-140.5 -82,-137 -82,-133.5 -82,-130 -82,-130 -82.2,-130 -82.4,-130 -82.6,-130 -82.8,-130 -83,-130 -83.2,-130 -83.4,-130 -83.6,-130 -83.8,-130 -84,-133.5 -84,-137 -84,-140.5 -84,-144 -84,-147.5 -84,-151 -84,-154.5 -84,-158 -84,-161.5 -84,-165 -84,-165 -83.8,-165 -83.6,-165 -83.4,-165 -83.2,-165 -83,-165 -82.8,-165 -82.6,-165 -82.4,-165 -82.2,-165 -82))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 14 Jun 2007 00:00:00 GMT", "description": "This award supports a project to investigate the new-found, startling sensitivity of two major West Antarctic ice streams to tidal oscillations to learn the extent and character of the effect and its ramifications for future ice-stream behavior. Ice streams D, C and Whillans (B) all show strong but distinct tidal signals. The ice plain of Whillans is usually stopped outright, forward motion being limited to two brief periods each day, at high tide and on the falling tide. Motion events propagate across the ice plain at seismic wave velocities. Near the mouth of D, tides cause a diurnal variation of about 50% in ice-stream speed that propagates upglacier more slowly than on Whillans, and seismic data show that C experiences even slower upglacier propagation of tidal signals. Tidal influences are observed more than 100 km upglacier on C, more than 40 km upglacier on D, and may be responsible for fluctuations in basal water pressure reported 400 km upstream on Whillans, nearly the full length of the ice stream. During the first year, the spatial extent of this behavior will be measured on Whillans Ice Stream and ice stream D by five coordinated seismic and GPS instrument packages at 100-km spacing on each ice stream. These packages will be deployed by Twin Otter at sites selected by review of satellite imagery and will operate autonomously through a combination of solar and battery power for two lunar cycles to study the sensitivity of the ice stream motion to spring and neap tides. Additionally, existing data sets will be examined further for clues to the mechanisms involved, and preliminary models will be developed to reconcile the seemingly contrasting behaviors observed on the ice streams. The second and third field seasons will examine in greater detail the tidal behavior of Whillans (year 2) and D (year 3). Work will especially focus on detailed study of at least one source area for events on Whillans, assuming that source areas inferred from preliminary data remain active. Vertical motions have not yet been detected, but differential GPS will increase our detection sensitivity. Seismic instrumentation will greatly increase temporal resolution and the ability to measure the propagation speed and any spatial heterogeneity. Modeling will be refined as more is learned from the field experiments. The project should yield numerous broader impacts. The improved knowledge of ice-stream behavior from this study will contribute to assessment of the potential for rapid ice-sheet change affecting global sea level with societal consequences. Results will be disseminated through scientific publication and talks at professional meetings, as well as contacts with the press, university classes taught by the PIs, visits to schools and community groups, and other activities. Two graduate students will be educated through the project.", "east": -130.0, "geometry": "POINT(-147.5 -83)", "instruments": null, "is_usap_dc": false, "keywords": "Ice Stream; Tidal Motion; Vertical Motions; Seismic; West Antarctic; Ice Stream Motion; Global Sea Level; Modeling; Not provided", "locations": "West Antarctic", "north": -82.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Anandakrishnan, Sridhar; Alley, Richard; Voigt, Donald E.", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -84.0, "title": "Collaborative Research: Tidal Modulation of Ice Stream Flow", "uid": "p0000075", "west": -165.0}, {"awards": "0125610 Waddington, Edwin", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 30 Apr 2007 00:00:00 GMT", "description": "0125610\u003cbr/\u003eWaddington\u003cbr/\u003e\u003cbr/\u003eThis award provides three years of funding to study the transition from slow inland flow to fast ice stream flow by making use of a suite of geophysical measurements that have been made near the onset region of ice stream D in West Antarctica. These data provide a unique opportunity to develop and validate glaciological models of the controlling processes in ice stream onset zones. Important processes to quantify are motion at the bed and deformation in the ice. Previous analyses indicate that the controlling resistive forces shift from the bed to the sides during the transition from slow inland flow to fast, streaming flow. Model sensitivity analyses will be used to investigate the relative importance of feedbacks between basal processes and ice deformation in the transition from inland to ice stream flow. Model experiments will determine what factors control the location of the onset of streaming flow, and how that location might migrate when conditions at the bed, or along the flow direction, changes over time. The overall goal of this work is to improve understanding of the evolution of the WAIS drainage system. This study is a first step towards understanding the physics that govern the transition from slow inland flow to fast streaming flow.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": false, "keywords": "FIXED OBSERVATION STATIONS", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Price, Stephen", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS", "repositories": null, "science_programs": null, "south": null, "title": "Model Investigations of the Transition from Inland to Ice Stream Flow", "uid": "p0000759", "west": null}, {"awards": "9814816 Blankenship, Donald", "bounds_geometry": "POLYGON((-129 -80.5,-128.4 -80.5,-127.8 -80.5,-127.2 -80.5,-126.6 -80.5,-126 -80.5,-125.4 -80.5,-124.8 -80.5,-124.2 -80.5,-123.6 -80.5,-123 -80.5,-123 -80.55,-123 -80.6,-123 -80.65,-123 -80.7,-123 -80.75,-123 -80.8,-123 -80.85,-123 -80.9,-123 -80.95,-123 -81,-123.6 -81,-124.2 -81,-124.8 -81,-125.4 -81,-126 -81,-126.6 -81,-127.2 -81,-127.8 -81,-128.4 -81,-129 -81,-129 -80.95,-129 -80.9,-129 -80.85,-129 -80.8,-129 -80.75,-129 -80.7,-129 -80.65,-129 -80.6,-129 -80.55,-129 -80.5))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 13 Feb 2007 00:00:00 GMT", "description": "9814816\u003cbr/\u003eBlankenship\u003cbr/\u003e\u003cbr/\u003eThis award supports a four year project to develop of better understanding the ice streams of the Ross Sea Embayment (A--F) which drain the interior West Antarctic Ice Sheet (WAIS) by rapidly moving vast quantities of ice to the calving front of the Ross Ice Shelf. The project will examine the role of these ice streams as buffers between the interior ice and the floating ice shelves. The reasons for their fast flow, the factors controlling their current grounding-line-, margin-, and head-positions are crucial to any attempt at modeling the WAIS system and predicting the future of the ice sheet. For the Antarctic ice streams of the Siple Coast, the transition from no-sliding (or all internal deformation) to motion dominated by sliding is defined as the \"onset-region\". To fully understand (and adequately model) the WAIS, this onset region must be better understood. The lateral margins of the ice streams are also a transition that need better explanation. Hypotheses on controls of the location of the onset region range from the \"purely-glaciologic\" to the \"purely-geologic. Thus, to model the ice sheet accurately, the basal boundary conditions (roughness, wetness, till properties) and a good subglacial geologic map, showing the distribution, thickness, and properties of the sedimentary basins, are required. These parameters can be estimated from seismic, radar, and other geophysical methods. The transition region of ice stream D will be studied in detail with this coupled geophysical experiment. In addition, selected other locations on ice streams C \u0026 D will be made, to compare and contrast conditions with the main site on ice stream D. Site-selection for the main camp will be based on existing radar, GPS, and satellite data as well as input from the modeling community.", "east": -123.0, "geometry": "POINT(-126 -80.75)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": -80.5, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Blankenship, Donald D.", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -81.0, "title": "Collaborative Research: Characterizing the Onset of Ice Stream Flow: A Ground Geophysical Field Program", "uid": "p0000603", "west": -129.0}, {"awards": "9615347 Conway, Howard", "bounds_geometry": null, "dataset_titles": "Roosevelt Island Bedrock and Surface Elevations; Roosevelt Island Ice Core Density and Beta Count Data", "datasets": [{"dataset_uid": "609139", "doi": "10.7265/N55718ZW", "keywords": "Antarctica; Beta Count; Density; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; Roosevelt Island", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Ice Core Density and Beta Count Data", "url": "https://www.usap-dc.org/view/dataset/609139"}, {"dataset_uid": "609140", "doi": "10.7265/N51J97NB", "keywords": "Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Roosevelt Island; Solid Earth", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Bedrock and Surface Elevations", "url": "https://www.usap-dc.org/view/dataset/609140"}], "date_created": "Fri, 23 May 2003 00:00:00 GMT", "description": "This award is for two years of support to perform radar investigations across former shear margins at Roosevelt Island and Ice Stream C in order to measure changes in the configuration and continuity of internal layers and the bed. The broad goal of these investigations is to gain an understanding of ice stream flow and the timing and mechanisms of ice stream shutdown. A high-resolution short-pulse radar system will be used for detailed examination of the uppermost hundred meters of the firn and ice, and a monopulse sounding-radar system will be used to image the rest of the ice column (including internal layers) and the bed. Changes in the shape and continuity of layers will be used to interpret mechanisms and modes of ice stream flow including the possible migration of stagnation fronts and rates of shut-down. Variations in bed reflectivity will be used to deduce basal hydrology conditions across lineations. Accumulation rates deduced from snow pits and shallow cores will be used to estimate near-surface depth-age profiles. Improved understanding of ice stream history opens the possibility of linking changes in the West Antarctic ice sheet with the geologic evidence from Northern Victoria Land and the ocean record of the retreat of the grounding line in the Ross Sea.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e RA; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Radioactive Decay; Radar Echo Sounder; Antarctica; Radar Altimetry; Densification; Bedrock Elevation; Ice Sheet Elevation; Satellite Radar Data; GROUND-BASED OBSERVATIONS; Radar; Ice Core; Snow Stratigraphy; Terrain Elevation; Antarctic Ice Sheet; Stable Isotopes; Ice Surface Elevation; Surface Elevation; Glaciology; Snow Densification; Ice Core Data; GROUND STATIONS; Not provided; Altimetry; Antarctic; Ice Core Stratigraphy; Ice Stratigraphy", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Radar Investigations of Former Shear Margins: Roosevelt Island and Ice Stream C", "uid": "p0000164", "west": null}, {"awards": "9316338 Jacobel, Robert", "bounds_geometry": null, "dataset_titles": "Siple Dome Glaciology and Ice Stream History 1994, 1996", "datasets": [{"dataset_uid": "609085", "doi": "10.7265/N5Z31WJQ", "keywords": "Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Sample/collection Description; Sample/Collection Description; Siple Dome; Siple Dome Ice Core", "people": "Jacobel, Robert", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Siple Dome Glaciology and Ice Stream History 1994, 1996", "url": "https://www.usap-dc.org/view/dataset/609085"}], "date_created": "Fri, 01 Jan 1999 00:00:00 GMT", "description": "9316338 Jacobel This award is for support for a program of glaciological studies of Siple Dome and its surroundings between Ice Streams C and D. The purpose of the work is to characterize the dynamic environment and ice stratigraphy to aid in the assessment of Siple Dome as a potential deep ice core site, and to determine whether the configuration of ice stream flow in the region was different in the past than now. The work involves measurements of the configuration and continuity of internal layers in the ice, using radar echo sounding and determination of velocity field, based on standard GPS surveying. The goals of the work are relevant to understanding the dynamics of the West Antarctic Ice Sheet (WAIS), its past history and its potential future behavior, including possible effects on global sea level. This work is a collaborative project between the University of Washington, the University of Colorado and St. Olaf College. ***", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR", "is_usap_dc": true, "keywords": "Siple Dome; Antarctic; Glaciology; Radar; GROUND-BASED OBSERVATIONS; Ice Stream", "locations": "Antarctic; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Jacobel, Robert", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Siple Dome Glaciology and Ice Stream History", "uid": "p0000190", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model Investigation of Ice Stream/Subglacial Lake Systems
|
0838811 |
2013-08-27 | Sergienko, Olga; Hulbe, Christina |
|
Sergienko/0838811 <br/><br/>This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>This award supports a project to conduct a modeling study of the ice stream ? sub-glacial water system. A suite of numerical models of various dimensionality and complexity will be constructed in a sequential, hierarchical fashion to formulate and test hypotheses regarding how sub-glacial lakes form under ice streams, determine the effect of sub-glacial lakes on ice-stream flow and mass balance, and to determine feedback effects whereby the ice stream ? sub-glacial water system can elicit both stable and unstable responses to environmental perturbations. This research will address one of the only observationally verified fast-time-scale processes apparent within the Antarctic Ice Stream system. The intellectual merit of the project is that understanding the origins and consequences of near-grounding-line sub-glacial lakes is a priority in glaciological research designed to predict short-term variations in Antarctica?s near-term future mass balance. The broader impacts of the proposed work are that it will contribute to better understanding of a system that has important societal relevance through contribution to sea level rise. Participation of a graduate student in the project will provide the student?s training and education in application of the numerical modeling in geosciences. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -87,180 -84,180 -81,180 -78,180 -75,180 -72,180 -69,180 -66,180 -63,180 -60,180 -60,180 -60,180 -60,180 -60,180 -60,180 -60,180 -60,180 -60,180 -60,-180 -60)) | POINT(0 -89.999) | false | false | |||||
Basal Conditions of Ice Stream D and Related Borehole Studies of Antarctic Ice Stream Mechanics
|
9615420 |
2013-02-14 | Kamb, Barclay; Engelhardt, Hermann |
|
This award is for support for a four year program to study the basal conditions of ice stream D using techniques previously applied to ice stream B. The objective is to determine whether the physical conditions and processes to be observed by borehole geophysics at the base of this large ice stream are consistent with what has been observed at ice stream B and to point to a common basal mechanism of ice streaming. This project includes a comparison between two parts of ice stream D, an upstream reach where flow velocities are modest (about 80 meters/year) and a downstream reach of high velocity (about 400 meters/year). The comparison will help to reveal what physical variable or combination of variables is mainly responsible for the streaming flow. The variables to be monitmred by borehole observation include basal water pressure, basal sliding velocity, flow properties and sedimentological characteristics of subglacial till if present, ice temperature profile including basal water transport velocity, connection time to the basal water system, basal melting rate and others. | POINT(-136.404633 -82.39955) | POINT(-136.404633 -82.39955) | false | false | |||||
Collaborative Research: Grounding Line Forensics: The History of Grounding Line Retreat in the Kamb Ice Stream Outlet Region
|
0538120 0538015 |
2011-07-02 | Hulbe, Christina; Catania, Ginny |
|
0538120<br/>Catania<br/>This award supports a project to identify and map ice surface and internal features that chronicle the sequence of events leading to the shut-down of Kamb ice stream. In particular, the project will study past grounding line migration and the relationship between that process and ice stream shutdown. The intellectual merits of the project include the fact that an understanding of such processes has important implications for our ability to accurately predict mass balance changes in this region. Currently, one of the five major West Antarctic ice streams, Kamb, is quiescent, and another, Whillans, is slowing in its downstream reaches. The Kamb shutdown appears to have begun at its downstream end but beyond that simple observation, it is not possible, yet, to draw meaningful comparisons between the two adjacent streams. We do not know if current events on Whillans Ice Stream are similar to what transpired during the Kamb shut-down. The work proposed here intends to bridge that gap. It is expected that this effort will yield useful insights into the influence of grounding line dynamics on ice stream flow. The work will involve a combination of field investigations using radio-echo sounding and GPS combined with computational efforts involving the interpretation of ice-surface features such as relict flow traces and crevasses. The broader impacts of the project will be in addressing a global environmental problem with critical societal implications, training the next generation of scientists and engineers to serve the nation, and encouraging women to pursue scientific or engineering careers. Participants from both institutions are involved in a range of public outreach activities. | POLYGON((154.71 -82.78,154.79000000000002 -82.78,154.87 -82.78,154.95 -82.78,155.03 -82.78,155.11 -82.78,155.19 -82.78,155.26999999999998 -82.78,155.35 -82.78,155.43 -82.78,155.51 -82.78,155.51 -82.788,155.51 -82.796,155.51 -82.804,155.51 -82.812,155.51 -82.82,155.51 -82.828,155.51 -82.836,155.51 -82.844,155.51 -82.852,155.51 -82.86,155.43 -82.86,155.35 -82.86,155.26999999999998 -82.86,155.19 -82.86,155.11 -82.86,155.03 -82.86,154.95 -82.86,154.87 -82.86,154.79000000000002 -82.86,154.71 -82.86,154.71 -82.852,154.71 -82.844,154.71 -82.836,154.71 -82.828,154.71 -82.82,154.71 -82.812,154.71 -82.804,154.71 -82.796,154.71 -82.788,154.71 -82.78)) | POINT(155.11 -82.82) | false | false | |||||
Collaborative Research: Tidal Modulation of Ice Stream Flow
|
0229629 |
2007-06-14 | Anandakrishnan, Sridhar; Alley, Richard; Voigt, Donald E. | No dataset link provided | This award supports a project to investigate the new-found, startling sensitivity of two major West Antarctic ice streams to tidal oscillations to learn the extent and character of the effect and its ramifications for future ice-stream behavior. Ice streams D, C and Whillans (B) all show strong but distinct tidal signals. The ice plain of Whillans is usually stopped outright, forward motion being limited to two brief periods each day, at high tide and on the falling tide. Motion events propagate across the ice plain at seismic wave velocities. Near the mouth of D, tides cause a diurnal variation of about 50% in ice-stream speed that propagates upglacier more slowly than on Whillans, and seismic data show that C experiences even slower upglacier propagation of tidal signals. Tidal influences are observed more than 100 km upglacier on C, more than 40 km upglacier on D, and may be responsible for fluctuations in basal water pressure reported 400 km upstream on Whillans, nearly the full length of the ice stream. During the first year, the spatial extent of this behavior will be measured on Whillans Ice Stream and ice stream D by five coordinated seismic and GPS instrument packages at 100-km spacing on each ice stream. These packages will be deployed by Twin Otter at sites selected by review of satellite imagery and will operate autonomously through a combination of solar and battery power for two lunar cycles to study the sensitivity of the ice stream motion to spring and neap tides. Additionally, existing data sets will be examined further for clues to the mechanisms involved, and preliminary models will be developed to reconcile the seemingly contrasting behaviors observed on the ice streams. The second and third field seasons will examine in greater detail the tidal behavior of Whillans (year 2) and D (year 3). Work will especially focus on detailed study of at least one source area for events on Whillans, assuming that source areas inferred from preliminary data remain active. Vertical motions have not yet been detected, but differential GPS will increase our detection sensitivity. Seismic instrumentation will greatly increase temporal resolution and the ability to measure the propagation speed and any spatial heterogeneity. Modeling will be refined as more is learned from the field experiments. The project should yield numerous broader impacts. The improved knowledge of ice-stream behavior from this study will contribute to assessment of the potential for rapid ice-sheet change affecting global sea level with societal consequences. Results will be disseminated through scientific publication and talks at professional meetings, as well as contacts with the press, university classes taught by the PIs, visits to schools and community groups, and other activities. Two graduate students will be educated through the project. | POLYGON((-165 -82,-161.5 -82,-158 -82,-154.5 -82,-151 -82,-147.5 -82,-144 -82,-140.5 -82,-137 -82,-133.5 -82,-130 -82,-130 -82.2,-130 -82.4,-130 -82.6,-130 -82.8,-130 -83,-130 -83.2,-130 -83.4,-130 -83.6,-130 -83.8,-130 -84,-133.5 -84,-137 -84,-140.5 -84,-144 -84,-147.5 -84,-151 -84,-154.5 -84,-158 -84,-161.5 -84,-165 -84,-165 -83.8,-165 -83.6,-165 -83.4,-165 -83.2,-165 -83,-165 -82.8,-165 -82.6,-165 -82.4,-165 -82.2,-165 -82)) | POINT(-147.5 -83) | false | false | |||||
Model Investigations of the Transition from Inland to Ice Stream Flow
|
0125610 |
2007-04-30 | Price, Stephen | No dataset link provided | 0125610<br/>Waddington<br/><br/>This award provides three years of funding to study the transition from slow inland flow to fast ice stream flow by making use of a suite of geophysical measurements that have been made near the onset region of ice stream D in West Antarctica. These data provide a unique opportunity to develop and validate glaciological models of the controlling processes in ice stream onset zones. Important processes to quantify are motion at the bed and deformation in the ice. Previous analyses indicate that the controlling resistive forces shift from the bed to the sides during the transition from slow inland flow to fast, streaming flow. Model sensitivity analyses will be used to investigate the relative importance of feedbacks between basal processes and ice deformation in the transition from inland to ice stream flow. Model experiments will determine what factors control the location of the onset of streaming flow, and how that location might migrate when conditions at the bed, or along the flow direction, changes over time. The overall goal of this work is to improve understanding of the evolution of the WAIS drainage system. This study is a first step towards understanding the physics that govern the transition from slow inland flow to fast streaming flow. | None | None | false | false | |||||
Collaborative Research: Characterizing the Onset of Ice Stream Flow: A Ground Geophysical Field Program
|
9814816 |
2007-02-13 | Blankenship, Donald D. | No dataset link provided | 9814816<br/>Blankenship<br/><br/>This award supports a four year project to develop of better understanding the ice streams of the Ross Sea Embayment (A--F) which drain the interior West Antarctic Ice Sheet (WAIS) by rapidly moving vast quantities of ice to the calving front of the Ross Ice Shelf. The project will examine the role of these ice streams as buffers between the interior ice and the floating ice shelves. The reasons for their fast flow, the factors controlling their current grounding-line-, margin-, and head-positions are crucial to any attempt at modeling the WAIS system and predicting the future of the ice sheet. For the Antarctic ice streams of the Siple Coast, the transition from no-sliding (or all internal deformation) to motion dominated by sliding is defined as the "onset-region". To fully understand (and adequately model) the WAIS, this onset region must be better understood. The lateral margins of the ice streams are also a transition that need better explanation. Hypotheses on controls of the location of the onset region range from the "purely-glaciologic" to the "purely-geologic. Thus, to model the ice sheet accurately, the basal boundary conditions (roughness, wetness, till properties) and a good subglacial geologic map, showing the distribution, thickness, and properties of the sedimentary basins, are required. These parameters can be estimated from seismic, radar, and other geophysical methods. The transition region of ice stream D will be studied in detail with this coupled geophysical experiment. In addition, selected other locations on ice streams C & D will be made, to compare and contrast conditions with the main site on ice stream D. Site-selection for the main camp will be based on existing radar, GPS, and satellite data as well as input from the modeling community. | POLYGON((-129 -80.5,-128.4 -80.5,-127.8 -80.5,-127.2 -80.5,-126.6 -80.5,-126 -80.5,-125.4 -80.5,-124.8 -80.5,-124.2 -80.5,-123.6 -80.5,-123 -80.5,-123 -80.55,-123 -80.6,-123 -80.65,-123 -80.7,-123 -80.75,-123 -80.8,-123 -80.85,-123 -80.9,-123 -80.95,-123 -81,-123.6 -81,-124.2 -81,-124.8 -81,-125.4 -81,-126 -81,-126.6 -81,-127.2 -81,-127.8 -81,-128.4 -81,-129 -81,-129 -80.95,-129 -80.9,-129 -80.85,-129 -80.8,-129 -80.75,-129 -80.7,-129 -80.65,-129 -80.6,-129 -80.55,-129 -80.5)) | POINT(-126 -80.75) | false | false | |||||
Radar Investigations of Former Shear Margins: Roosevelt Island and Ice Stream C
|
9615347 |
2003-05-23 | Conway, Howard |
|
This award is for two years of support to perform radar investigations across former shear margins at Roosevelt Island and Ice Stream C in order to measure changes in the configuration and continuity of internal layers and the bed. The broad goal of these investigations is to gain an understanding of ice stream flow and the timing and mechanisms of ice stream shutdown. A high-resolution short-pulse radar system will be used for detailed examination of the uppermost hundred meters of the firn and ice, and a monopulse sounding-radar system will be used to image the rest of the ice column (including internal layers) and the bed. Changes in the shape and continuity of layers will be used to interpret mechanisms and modes of ice stream flow including the possible migration of stagnation fronts and rates of shut-down. Variations in bed reflectivity will be used to deduce basal hydrology conditions across lineations. Accumulation rates deduced from snow pits and shallow cores will be used to estimate near-surface depth-age profiles. Improved understanding of ice stream history opens the possibility of linking changes in the West Antarctic ice sheet with the geologic evidence from Northern Victoria Land and the ocean record of the retreat of the grounding line in the Ross Sea. | None | None | false | false | |||||
Siple Dome Glaciology and Ice Stream History
|
9316338 |
1999-01-01 | Jacobel, Robert |
|
9316338 Jacobel This award is for support for a program of glaciological studies of Siple Dome and its surroundings between Ice Streams C and D. The purpose of the work is to characterize the dynamic environment and ice stratigraphy to aid in the assessment of Siple Dome as a potential deep ice core site, and to determine whether the configuration of ice stream flow in the region was different in the past than now. The work involves measurements of the configuration and continuity of internal layers in the ice, using radar echo sounding and determination of velocity field, based on standard GPS surveying. The goals of the work are relevant to understanding the dynamics of the West Antarctic Ice Sheet (WAIS), its past history and its potential future behavior, including possible effects on global sea level. This work is a collaborative project between the University of Washington, the University of Colorado and St. Olaf College. *** | None | None | false | false |