{"dp_type": "Project", "free_text": "Field Investigations"}
[{"awards": "2012958 Meyer, Colin", "bounds_geometry": null, "dataset_titles": "Frozen fringe friction ; Ring shear bed deformation measurements ", "datasets": [{"dataset_uid": "601756", "doi": "10.15784/601756", "keywords": "Antarctica", "people": "Zoet, Lucas", "repository": "USAP-DC", "science_program": null, "title": "Frozen fringe friction ", "url": "https://www.usap-dc.org/view/dataset/601756"}, {"dataset_uid": "601757", "doi": "10.15784/601757", "keywords": "Antarctica", "people": "Zoet, Lucas", "repository": "USAP-DC", "science_program": null, "title": "Ring shear bed deformation measurements ", "url": "https://www.usap-dc.org/view/dataset/601757"}], "date_created": "Wed, 13 Sep 2023 00:00:00 GMT", "description": "The fastest-changing regions of the Antarctic and Greenland Ice Sheets that contribute most to sea-level rise are underlain by soft sediments that facilitate glacier motion. Glacier ice can infiltrate several meters into these sediments, depending on the temperature and water pressure at the base of the glacier. To understand how ice infiltration into subglacial sediments affects glacier slip, the team will conduct laboratory experiments under relevant temperature and pressure conditions and compare the results to state-of-the-art mathematical models. Through an undergraduate research exchange between University of Wisconsin-Madison, Dartmouth College, and the College of Menominee Nation, Native American students will work on laboratory experiments in one summer and mathematical theory in the following summer.\u003cbr/\u003e\u003cbr/\u003eIce-sediment interactions are a central component of ice-sheet and landform-development models. Limited process understanding poses a key uncertainty for ice-sheet models that are used to forecast sea-level rise. This uncertainty underscores the importance of developing experimentally validated, theoretically robust descriptions of processes at the ice-sediment interface. To achieve this, the team aims to build on long-established theoretical, experimental, and field investigations that have elucidated the central role of premelting and surface-energy effects in controlling the dynamics of frost heave in soils. Project members will theoretically describe and experimentally test the role of premelting at the basal ice-sediment interface. The experiments are designed to provide quantitative insight into the impact of ice infiltration into sediments on glacier sliding, erosion, and subglacial landform evolution.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "BASAL SHEAR STRESS; GLACIER MOTION/ICE SHEET MOTION; GLACIERS/ICE SHEETS", "locations": null, "north": null, "nsf_funding_programs": "Arctic Natural Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Meyer, Colin; Rempel, Alan; Zoet, Lucas", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Freeze-on of Subglacial Sediments in Experiments and Theory", "uid": "p0010434", "west": null}, {"awards": "1947562 van Gestel, Natasja; 1643871 van Gestel, Natasja", "bounds_geometry": "POLYGON((-65 -64.5,-64.8 -64.5,-64.6 -64.5,-64.4 -64.5,-64.2 -64.5,-64 -64.5,-63.8 -64.5,-63.6 -64.5,-63.4 -64.5,-63.2 -64.5,-63 -64.5,-63 -64.55,-63 -64.6,-63 -64.65,-63 -64.7,-63 -64.75,-63 -64.8,-63 -64.85,-63 -64.9,-63 -64.95,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.95,-65 -64.9,-65 -64.85,-65 -64.8,-65 -64.75,-65 -64.7,-65 -64.65,-65 -64.6,-65 -64.55,-65 -64.5))", "dataset_titles": "2022-2023 Palmer Station terrestrial carbon fluxes - field warming experiment; Soil moisture and soil temperature data (0-5 cm) near Palmer Station, Antarctica", "datasets": [{"dataset_uid": "601853", "doi": "10.15784/601853", "keywords": "Antarctica; CO2; Cryosphere; Field Investigations; Palmer Station", "people": "van Gestel, Natasja", "repository": "USAP-DC", "science_program": null, "title": "2022-2023 Palmer Station terrestrial carbon fluxes - field warming experiment", "url": "https://www.usap-dc.org/view/dataset/601853"}, {"dataset_uid": "601877", "doi": "10.15784/601877", "keywords": "Antarctica; Antarctic Peninsula; Conductivity; Cryosphere; Palmer Station; Soil; Temperature", "people": "van Gestel, Natasja", "repository": "USAP-DC", "science_program": null, "title": "Soil moisture and soil temperature data (0-5 cm) near Palmer Station, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601877"}], "date_created": "Sat, 21 Aug 2021 00:00:00 GMT", "description": "Responses of the carbon balance of terrestrial ecosystems to warming will feed back to the pace of climate change, but the size and direction of this feedback are poorly constrained. Least known are the effects of warming on carbon losses from soil, and clarifying the major microbial controls is an important research frontier. This study uses a series of experiments and observations to investigate microbial, including autotrophic taxa, and plant controls of net ecosystem productivity in response to warming in intact ecosystems. Field warming is achieved using open-top chambers paired with control plots, arrayed along a productivity gradient. Along this gradient incoming and outgoing carbon fluxes will be measured at the ecosystem-level. The goal is to tie warming-induced shifts in net ecosystem carbon balance to warming effects on soil microbes and plants. The field study will be supplemented with lab temperature incubations. Because soil microbes dominate biogeochemical cycles in Antarctica, a major focus of this study is to determine warming responses of bacteria, fungi and archaea. This is achieved using a cutting-edge stable isotope technique, quantitative stable isotope probing (qSIP) developed by the proposing research team, that can identify the taxa that are active and involved in processing new carbon. This technique can identify individual microbial taxa that are actively participating in biogeochemical cycling of nutrients (through combined use of 18O-water and 13C-bicarbonate) and thus can be distinguished from those that are simply present (cold-preserved). The study further assesses photosynthetic uptake of carbon by the vegetation and their sensitivity to warming. Results will advance research in climate change, plant and soil microbial ecology, and ecosystem modeling.", "east": -63.0, "geometry": "POINT(-64 -64.75)", "instruments": null, "is_usap_dc": true, "keywords": "Palmer Station; TERRESTRIAL ECOSYSTEMS; USA/NSF; AMD; Amd/Us; USAP-DC; FIELD SURVEYS", "locations": "Palmer Station", "north": -64.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Earth Sciences", "paleo_time": null, "persons": "van Gestel, Natasja", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Antarctica as a Model System for Responses of Terrestrial Carbon Balance to Warming", "uid": "p0010251", "west": -65.0}, {"awards": "1246407 Jenouvrier, Stephanie", "bounds_geometry": "POINT(70.2433 -49.6875)", "dataset_titles": "Demographic outputs and their variances for three life history complexes for the Southern Fulmar across contrasted sea ice conditions.; Desprez, M., Jenouvrier, S., Barbraud, C., Delord, K. and Weimerskirch, H., 2018. Linking oceanographic conditions, migratory schedules and foraging behaviour during the non\u2010breeding season to reproductive performance in a long\u2010lived seabird. Functional ecology, 32(8), pp.2040-2053.; Jenouvrier, S., Desprez, M., Fay, R., Barbraud, C., Weimerskirch, H., Delord, K. and Caswell, H., 2018. Climate change and functional traits affect population dynamics of a long\u2010lived seabird. Journal of Animal Ecology, 87(4), pp.906-920.; Linking oceanographic conditions, migratory schedules and foraging behaviour during the non-breeding season to reproductive performance in a long-lived seabird", "datasets": [{"dataset_uid": "601585", "doi": "10.15784/601585", "keywords": "Antarctica; Biota; Birds; East Antarctica; Southern Fulmar", "people": "Jenouvrier, Stephanie", "repository": "USAP-DC", "science_program": null, "title": "Demographic outputs and their variances for three life history complexes for the Southern Fulmar across contrasted sea ice conditions.", "url": "https://www.usap-dc.org/view/dataset/601585"}, {"dataset_uid": "200008", "doi": "10.1111/1365-2435.13117", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Desprez, M., Jenouvrier, S., Barbraud, C., Delord, K. and Weimerskirch, H., 2018. Linking oceanographic conditions, migratory schedules and foraging behaviour during the non\u2010breeding season to reproductive performance in a long\u2010lived seabird. Functional ecology, 32(8), pp.2040-2053.", "url": "https://datadryad.org/resource/doi:10.5061/dryad.pb209db"}, {"dataset_uid": "200007", "doi": "10.1111/1365-2656.12827.", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Jenouvrier, S., Desprez, M., Fay, R., Barbraud, C., Weimerskirch, H., Delord, K. and Caswell, H., 2018. Climate change and functional traits affect population dynamics of a long\u2010lived seabird. Journal of Animal Ecology, 87(4), pp.906-920.", "url": "https://doi.org/10.5061/dryad.h5vk5"}, {"dataset_uid": "601140", "doi": "10.15784/601140", "keywords": "Albatross; Animal Behavior Observation; Antarctica; Biota; Birds; Black-Browed Albatross (thalassarche Melanophris); Field Investigations; Foraging; Kerguelen Island; Ocean Island/plateau; Ocean Island/Plateau; Southern Ocean", "people": "Jenouvrier, Stephanie", "repository": "USAP-DC", "science_program": null, "title": "Linking oceanographic conditions, migratory schedules and foraging behaviour during the non-breeding season to reproductive performance in a long-lived seabird", "url": "https://www.usap-dc.org/view/dataset/601140"}], "date_created": "Thu, 31 Jan 2019 00:00:00 GMT", "description": "Understanding the ecological consequences - present and future-of climate change is a central question in conservation biology. The goal of this project is to identify the effects of climate change on the Black-Browed Albatross, a seabird breeding in the Southern Ocean. The Black-Browed Albatross exhibits remarkable flight adaptations, using winds as an energy source to glide for long distances. This is the basis of their foraging strategy, by which they obtain food for themselves and their offspring. Climate change, however, is expected to modify wind patterns over the Southern Ocean. This project will analyze the effect of winds on life history traits (foraging behaviors, body conditions and demographic traits), and the effects of these traits on populations. New demographic models will provide the link between foraging behavior and the physical environment, and evaluate the persistence of this population in the face of climate change.\u003cbr/\u003e\u003cbr/\u003eUnderstanding and predicting population responses to climate change is important because the world?s climate will continue to change throughout the 21st century and beyond. To help guide conservation strategies and policy decisions in the face of climate change, reliable assessments of population extinction risks are urgently needed. The Black-Browed Albatross is considered endangered by the International Union for Conservation of Nature due to recent drastic reductions in its population size. This project will improve our understanding of the mechanisms by which climate affects the life history and populations of Black-Browed Albatross to improve prediction of extinction risks under future climate change.", "east": 70.2433, "geometry": "POINT(70.2433 -49.6875)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Southern Ocean; NOT APPLICABLE; USAP-DC; BIRDS", "locations": "Southern Ocean", "north": -49.6875, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Jenouvrier, Stephanie", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "Dryad; USAP-DC", "science_programs": null, "south": -49.6875, "title": "Linking Foraging Behaviors to Demography to understand Albatrosses Population Responses to Climate Change", "uid": "p0010002", "west": 70.2433}, {"awards": "0838955 Gast, Rebecca", "bounds_geometry": "POLYGON((71.504166 -76.159164,71.5142214 -76.159164,71.5242768 -76.159164,71.5343322 -76.159164,71.5443876 -76.159164,71.554443 -76.159164,71.5644984 -76.159164,71.5745538 -76.159164,71.5846092 -76.159164,71.5946646 -76.159164,71.60472 -76.159164,71.60472 -76.2018032,71.60472 -76.2444424,71.60472 -76.2870816,71.60472 -76.3297208,71.60472 -76.37236,71.60472 -76.4149992,71.60472 -76.4576384,71.60472 -76.5002776,71.60472 -76.5429168,71.60472 -76.585556,71.5946646 -76.585556,71.5846092 -76.585556,71.5745538 -76.585556,71.5644984 -76.585556,71.554443 -76.585556,71.5443876 -76.585556,71.5343322 -76.585556,71.5242768 -76.585556,71.5142214 -76.585556,71.504166 -76.585556,71.504166 -76.5429168,71.504166 -76.5002776,71.504166 -76.4576384,71.504166 -76.4149992,71.504166 -76.37236,71.504166 -76.3297208,71.504166 -76.2870816,71.504166 -76.2444424,71.504166 -76.2018032,71.504166 -76.159164))", "dataset_titles": "Alternative Nutritional Strategies in Antarctic Protists", "datasets": [{"dataset_uid": "600103", "doi": "10.15784/600103", "keywords": "Biota; Microbiology; NBP0305; NBP0405; NBP0508; NBP1101; Oceans; Southern Ocean", "people": "Gast, Rebecca", "repository": "USAP-DC", "science_program": null, "title": "Alternative Nutritional Strategies in Antarctic Protists", "url": "https://www.usap-dc.org/view/dataset/600103"}], "date_created": "Wed, 30 Oct 2013 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). \u003cbr/\u003e\u003cbr/\u003eMost organisms meet their carbon and energy needs using photosynthesis (phototrophy) or ingestion/assimilation of organic substances (heterotrophy). However, a nutritional strategy that combines phototrophy and heterotrophy - mixotrophy - is geographically and taxonomically widespread in aquatic systems. While the presence of mixotrophs in the Southern Ocean is known only recently, preliminary evidence indicates a significant role in Southern Ocean food webs. Recent work on Southern Ocean dinoflagellate, Kleptodinium, suggests that it sequesters functional chloroplasts of the bloom-forming haptophyte, Phaeocystis antarctica. This dinoflagellate is abundant in the Ross Sea, has been reported elsewhere in the Southern Ocean, and may have a circumpolar distribution. By combining nutritional modes. mixotrophy may offer competitive advantages over pure autotrophs and heterotrophs. \u003cbr/\u003e\u003cbr/\u003eThe goals of this project are to understand the importance of alternative nutritional strategies for Antarctic species that combine phototrophic and phagotrophic processes in the same organism. The research will combine field investigations of plankton and ice communities in the Southern Ocean with laboratory experiments on Kleptodinium and recently identified mixotrophs from our Antarctic culture collections. The research will address: 1) the relative contributions of phototrophy and phagotrophy in Antarctic mixotrophs; 2) the nature of the relationship between Kleptodinium and its kleptoplastids; 3) the distributions and abundances of mixotrophs and Kleptodinium in the Southern Ocean during austral spring/summer; and 4) the impacts of mixotrophs and Kleptodinium on prey populations, the factors influencing these behaviors and the physiological conditions of these groups in their natural environment. The project will contribute to the maintenance of a culture collection of heterotrophic, phototrophic and mixotrophic Antarctic protists that are available to the scientific community, and it will train graduate and undergraduate students at Temple University. Research findings and activities will be summarized for non-scientific audiences through the PIs\u0027 websites and through other public forums, and will involve middle school teachers via collaboration with COSEE-New England.", "east": 71.60472, "geometry": "POINT(71.554443 -76.37236)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -76.159164, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Gast, Rebecca", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.585556, "title": "Collaborative Research: Alternative Nutritional Strategies in Antarctic Protists", "uid": "p0000490", "west": 71.504166}, {"awards": "0538120 Catania, Ginny; 0538015 Hulbe, Christina", "bounds_geometry": "POLYGON((154.71 -82.78,154.79000000000002 -82.78,154.87 -82.78,154.95 -82.78,155.03 -82.78,155.11 -82.78,155.19 -82.78,155.26999999999998 -82.78,155.35 -82.78,155.43 -82.78,155.51 -82.78,155.51 -82.788,155.51 -82.796,155.51 -82.804,155.51 -82.812,155.51 -82.82,155.51 -82.828,155.51 -82.836,155.51 -82.844,155.51 -82.852,155.51 -82.86,155.43 -82.86,155.35 -82.86,155.26999999999998 -82.86,155.19 -82.86,155.11 -82.86,155.03 -82.86,154.95 -82.86,154.87 -82.86,154.79000000000002 -82.86,154.71 -82.86,154.71 -82.852,154.71 -82.844,154.71 -82.836,154.71 -82.828,154.71 -82.82,154.71 -82.812,154.71 -82.804,154.71 -82.796,154.71 -82.788,154.71 -82.78))", "dataset_titles": "Grounding Line Strain Grid Surveys, Kamb Ice Stream, Antarctica; Ice-Penetrating Radar Data Across Siple Coast Grounding Lines", "datasets": [{"dataset_uid": "609474", "doi": "10.7265/N5M043BH", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; GPR; Grounding Line; Radar; Siple Coast", "people": "Hulbe, Christina; Catania, Ginny", "repository": "USAP-DC", "science_program": null, "title": "Ice-Penetrating Radar Data Across Siple Coast Grounding Lines", "url": "https://www.usap-dc.org/view/dataset/609474"}, {"dataset_uid": "609494", "doi": "10.7265/N5Z899C6", "keywords": "Antarctica; Geodesy; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Grounding Line; Kamb Ice Stream; Strain", "people": "Hulbe, Christina", "repository": "USAP-DC", "science_program": null, "title": "Grounding Line Strain Grid Surveys, Kamb Ice Stream, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609494"}], "date_created": "Sat, 02 Jul 2011 00:00:00 GMT", "description": "0538120\u003cbr/\u003eCatania\u003cbr/\u003eThis award supports a project to identify and map ice surface and internal features that chronicle the sequence of events leading to the shut-down of Kamb ice stream. In particular, the project will study past grounding line migration and the relationship between that process and ice stream shutdown. The intellectual merits of the project include the fact that an understanding of such processes has important implications for our ability to accurately predict mass balance changes in this region. Currently, one of the five major West Antarctic ice streams, Kamb, is quiescent, and another, Whillans, is slowing in its downstream reaches. The Kamb shutdown appears to have begun at its downstream end but beyond that simple observation, it is not possible, yet, to draw meaningful comparisons between the two adjacent streams. We do not know if current events on Whillans Ice Stream are similar to what transpired during the Kamb shut-down. The work proposed here intends to bridge that gap. It is expected that this effort will yield useful insights into the influence of grounding line dynamics on ice stream flow. The work will involve a combination of field investigations using radio-echo sounding and GPS combined with computational efforts involving the interpretation of ice-surface features such as relict flow traces and crevasses. The broader impacts of the project will be in addressing a global environmental problem with critical societal implications, training the next generation of scientists and engineers to serve the nation, and encouraging women to pursue scientific or engineering careers. Participants from both institutions are involved in a range of public outreach activities.", "east": 155.51, "geometry": "POINT(155.11 -82.82)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR", "is_usap_dc": true, "keywords": "Not provided; Ice Sheet Elevation; West Antarctic Ice Stream; MODELS; Ice Sheet Thickness; West Antarctic Ice Sheet; Kamb Ice Stream; Antarctic Ice Sheet; Ice Sheet; Ice Stream Motion; Antarctica; Siple Dome; Grounding Line; FIELD INVESTIGATION; GPS; FIELD SURVEYS; West Antarctica; Ice Stream; Radar", "locations": "Antarctica; Kamb Ice Stream; West Antarctic Ice Stream; Antarctic Ice Sheet; West Antarctica; West Antarctic Ice Sheet; Siple Dome", "north": -82.78, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Hulbe, Christina; Catania, Ginny", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e MODELS \u003e MODELS; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.86, "title": "Collaborative Research: Grounding Line Forensics: The History of Grounding Line Retreat in the Kamb Ice Stream Outlet Region", "uid": "p0000019", "west": 154.71}, {"awards": "0424589 Gogineni, S. Prasad", "bounds_geometry": "POLYGON((-137 -74,-132.1 -74,-127.2 -74,-122.3 -74,-117.4 -74,-112.5 -74,-107.6 -74,-102.7 -74,-97.8 -74,-92.9 -74,-88 -74,-88 -74.65,-88 -75.3,-88 -75.95,-88 -76.6,-88 -77.25,-88 -77.9,-88 -78.55,-88 -79.2,-88 -79.85,-88 -80.5,-92.9 -80.5,-97.8 -80.5,-102.7 -80.5,-107.6 -80.5,-112.5 -80.5,-117.4 -80.5,-122.3 -80.5,-127.2 -80.5,-132.1 -80.5,-137 -80.5,-137 -79.85,-137 -79.2,-137 -78.55,-137 -77.9,-137 -77.25,-137 -76.6,-137 -75.95,-137 -75.3,-137 -74.65,-137 -74))", "dataset_titles": "Airborne radar profiles of the Whillans, Bindschadler, and Kamb Ice Streams; Archive of data; Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau; Ku-band Radar Echograms; Radar Depth Sounder Echograms and Ice Thickness; Snow Radar Echograms", "datasets": [{"dataset_uid": "600384", "doi": "10.15784/600384", "keywords": "Airborne Radar; Antarctica; Basler; Glaciers/ice Sheet; Glaciers/Ice Sheet; Kamb Ice Stream; Radar; Siple Coast; Whillans Ice Stream", "people": "Paden, John; Hale, Richard", "repository": "USAP-DC", "science_program": null, "title": "Airborne radar profiles of the Whillans, Bindschadler, and Kamb Ice Streams", "url": "https://www.usap-dc.org/view/dataset/600384"}, {"dataset_uid": "601411", "doi": "10.15784/601411", "keywords": "Antarctica; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; ICECAP; Ice Penetrating Radar; Internal Reflecting Horizons", "people": "Ng, Gregory; Blankenship, Donald D.; Schroeder, Dustin; Tozer, Carly; Roberts, Jason; Frezzotti, Massimo; Paden, John; Muldoon, Gail R.; Quartini, Enrica; Kempf, Scott D.; Greenbaum, Jamin; Ritz, Catherine; Mulvaney, Robert; Young, Duncan A.; Cavitte, Marie G. P", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau", "url": "https://www.usap-dc.org/view/dataset/601411"}, {"dataset_uid": "002497", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Archive of data", "url": "https://www.cresis.ku.edu/data/accumulation"}, {"dataset_uid": "601049", "doi": "10.15784/601049", "keywords": "Airborne Radar; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Navigation; Radar; Snow", "people": "Paden, John; Rodriguez, Fernando; Leuschen, Carl; Gogineni, Prasad; Allen, Chris; Li, Jilu", "repository": "USAP-DC", "science_program": null, "title": "Snow Radar Echograms", "url": "https://www.usap-dc.org/view/dataset/601049"}, {"dataset_uid": "601047", "doi": "10.15784/601047", "keywords": "Airborne Radar; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; MCoRDS; Navigation; Radar", "people": "Allen, Chris; Rodriguez, Fernando; Li, Jilu; Leuschen, Carl; Paden, John; Gogineni, Prasad", "repository": "USAP-DC", "science_program": null, "title": "Radar Depth Sounder Echograms and Ice Thickness", "url": "https://www.usap-dc.org/view/dataset/601047"}, {"dataset_uid": "601048", "doi": "10.15784/601048", "keywords": "Airborne Radar; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ku-Band; Navigation; Radar", "people": "Allen, Chris; Li, Jilu; Rodriguez, Fernando; Leuschen, Carl; Paden, John; Gogineni, Prasad", "repository": "USAP-DC", "science_program": null, "title": "Ku-band Radar Echograms", "url": "https://www.usap-dc.org/view/dataset/601048"}], "date_created": "Wed, 01 Jun 2011 00:00:00 GMT", "description": "This award is for the continuation of the Center for Remote Sensing of Ice Sheets (CReSIS), an NSF Science and Technology Center (STC) established in June 2005 to study present and probable future contributions of the Greenland and Antarctic ice sheets to sea-level rise. The Center?s vision is to understand and predict the role of polar ice sheets in sea level change. In particular, the Center?s mission is to develop technologies, to conduct field investigations, to compile data to understand why many outlet glaciers and ice streams are changing rapidly, and to develop models that explain and predict ice sheet response to climate change. The Center?s mission is also to educate and train a diverse population of graduate and undergraduate students in Center-related disciplines and to encourage K-12 students to pursue careers in science, technology, engineering and mathematics (STEM-fields). The long-term goals are to perform a four-dimensional characterization (space and time) of rapidly changing ice-sheet regions, develop diagnostic and predictive ice-sheet models, and contribute to future assessments of sea level change in a warming climate. In the first five years, significant progress was made in developing, testing and optimizing innovative sensors and platforms and completing a major aircraft campaign, which included sounding the channel under Jakobshavn Isbr\u00e6. In the second five years, research will focus on the interpretation of integrated data from a suite of sensors to understand the physical processes causing changes and the subsequent development and validation of models. Information about CReSIS can be found at http://www.cresis.ku.edu.\u003cbr/\u003e\u003cbr/\u003eThe intellectual merits of the STC are the multidisciplinary research it enables its faculty, staff and students to pursue, as well as the broad education and training opportunities it provides to students at all levels. During the first phase, the Center provided scientists and engineers with a collaborative research environment and the opportunity to interact, enabling the development of high-sensitivity radars integrated with several airborne platforms and innovative seismic instruments. Also, the Center successfully collected data on ice thickness and bed conditions, key variables in the study of ice dynamics and the development of models, for three major fast-flowing glaciers in Greenland. During the second phase, the Center will collect additional data over targeted sites in areas undergoing rapid changes; process, analyze and interpret collected data; and develop advanced process-oriented and ice sheet models to predict future behavior. The Center will continue to provide a rich environment for multidisciplinary education and mentoring for undergraduate students, graduate students, and postdoctoral fellows, as well as for conducting K-12 education and public outreach. The broader impacts of the Center stem from addressing a global environmental problem with critical societal implications, providing a forum for citizens and policymakers to become informed about climate change issues, training the next generation of scientists and engineers to serve the nation, encouraging underrepresented students to pursue careers in STEM-related fields, and transferring new technologies to industry. Students involved in the Center find an intellectually stimulating atmosphere where collaboration between disciplines is the norm and exposure to a wide variety of methodologies and scientific issues enriches their educational experience. The next generation of researchers should reflect the diversity of our society; the Center will therefore continue its work with ECSU to conduct outreach and educational programs that attract minority students to careers in science and technology. The Center has also established a new partnership with ADMI that supports faculty and student exchanges at the national level and provides expanded opportunities for students and faculty to be involved in Center-related research and education activities. These, and other collaborations, will provide broader opportunities to encourage underrepresented students to pursue STEM careers. \u003cbr/\u003e\u003cbr/\u003eAs lead institution, The University of Kansas (KU) provides overall direction and management, as well as expertise in radar and remote sensing, Uninhabited Aerial Vehicles (UAVs), and modeling and interpretation of data. Five partner institutions and a DOE laboratory play critical roles in the STC. The Pennsylvania State University (PSU) continues to participate in technology development for seismic measurements, field activities, and modeling. The Center of Excellence in Remote Sensing, Education and Research (CERSER) at Elizabeth City State University (ECSU) contributes its expertise to analyzing satellite data and generating high-level data products. ECSU also brings to the Center their extensive experience in mentoring and educating traditionally under-represented students. ADMI, the Association of Computer and Information Science/Engineering Departments at Minority Institutions, expands the program?s reach to underrepresented groups at the national level. Indiana University (IU) provides world-class expertise in CI and high-performance computing to address challenges in data management, processing, distribution and archival, as well as high-performance modeling requirements. The University of Washington (UW) provides expertise in satellite observations of ice sheets and process-oriented interpretation and model development. Los Alamos National Laboratory (LANL) contributes in the area of ice sheet modeling. All partner institutions are actively involved in the analysis and interpretation of observational and numerical data sets.", "east": -88.0, "geometry": "POINT(-112.5 -77.25)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": true, "keywords": "Remote Sensing; Not provided; Pine Island; Ice Sheet; DHC-6; Antarctic; Thwaites Region; Antarctica; Mass Balance; Accumulation; Velocity; Insar", "locations": "Antarctica; Antarctic; Pine Island; Thwaites Region", "north": -74.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Glaciology", "paleo_time": null, "persons": "Braaten, David; Joughin, Ian; Steig, Eric J.; Das, Sarah; Paden, John; Gogineni, Prasad", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6; Not provided", "repo": "USAP-DC", "repositories": "Project website; USAP-DC", "science_programs": null, "south": -80.5, "title": "Center for Remote Sensing of Ice Sheets (CReSIS)", "uid": "p0000102", "west": -137.0}, {"awards": "0636506 Mayewski, Paul", "bounds_geometry": "POLYGON((-137.7 -75.7,-137.4 -75.7,-137.1 -75.7,-136.8 -75.7,-136.5 -75.7,-136.2 -75.7,-135.9 -75.7,-135.6 -75.7,-135.3 -75.7,-135 -75.7,-134.7 -75.7,-134.7 -75.773,-134.7 -75.846,-134.7 -75.919,-134.7 -75.992,-134.7 -76.065,-134.7 -76.138,-134.7 -76.211,-134.7 -76.284,-134.7 -76.357,-134.7 -76.43,-135 -76.43,-135.3 -76.43,-135.6 -76.43,-135.9 -76.43,-136.2 -76.43,-136.5 -76.43,-136.8 -76.43,-137.1 -76.43,-137.4 -76.43,-137.7 -76.43,-137.7 -76.357,-137.7 -76.284,-137.7 -76.211,-137.7 -76.138,-137.7 -76.065,-137.7 -75.992,-137.7 -75.919,-137.7 -75.846,-137.7 -75.773,-137.7 -75.7))", "dataset_titles": "Ion Concentrations from SPRESSO Ice Core, Antarctica; Mt. Moulton Ice Trench Mass Spectrometry Data, Antarctica", "datasets": [{"dataset_uid": "609471", "doi": "10.7265/N508638J", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; ITASE; Paleoclimate; South Pole; SPRESSO Ice Core", "people": "Mayewski, Paul A.; Korotkikh, Elena", "repository": "USAP-DC", "science_program": null, "title": "Ion Concentrations from SPRESSO Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609471"}, {"dataset_uid": "609472", "doi": "10.7265/N5VH5KSV", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Mt Moulton; Paleoclimate", "people": "Mayewski, Paul A.; Korotkikh, Elena", "repository": "USAP-DC", "science_program": null, "title": "Mt. Moulton Ice Trench Mass Spectrometry Data, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609472"}], "date_created": "Thu, 29 Jul 2010 00:00:00 GMT", "description": "This award supports a project to examine an existing ice core of opportunity from South Pole (SPRESO core) to develop a 2000+ year long climate record. SPRESO ice core will be an annually dated, sub-annually-resolved reconstruction of past climate (atmospheric circulation, temperature, precipitation rate, and atmospheric chemistry) utilizing continuous, co-registered measurements (n=45) of: major ions, trace elements, and stable isotope series, plus selected sections for microparticle size and composition. The intellectual merit of this project relates to the fact that few 2000+ year records of this quality exist in Antarctica despite increasing scientific interest in this critical time period as the framework within which to understand modern climate. The scientific impact of this ice core investigation are that it will provide an in-depth understanding of climate variability; a baseline for assessing modern climate variability in the context of human activity; and a contribution to the prediction of future climate variability. The broader impact of this work is that the proposed research addresses important questions concerning the role of Antarctica in past, present, and future global change. Results will be translated into publicly accessible information through public lectures, media appearances, and an extensive outreach activity housed in our Institute. Our ice core activities provide a major basis for curriculum in K-12 and University plus a basis for several field and laboratory based graduate theses and undergraduate student projects. The project will support one PhD student for 3 years and undergraduate salaries. The Climate Change Institute has a long history of gender and ethnically diverse student and staff involvement in research.", "east": -134.7, "geometry": "POINT(-136.2 -76.065)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Ice Core Interpretation; Ions; US ITASE; Explorations; LABORATORY; Ice Core Data; Ice Core; Ice Analysis; Ice; Not provided; Antarctic Ice Sheet; Laboratory Investigation; Field Investigations; Ice Core Chemistry; Horizontal Ice Core; Ice Chemistry; Ice Sheet", "locations": "Antarctic Ice Sheet", "north": -75.7, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Korotkikh, Elena; Kreutz, Karl; Kurbatov, Andrei V.; Mayewski, Paul A.", "platforms": "Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.43, "title": "Collaborative Proposal: 2000+ Year Detailed, Calibrated Climate Reconstruction from a South Pole Ice Core Set in an Antarctic - Global Scale Context", "uid": "p0000209", "west": -137.7}, {"awards": "9614844 Jeffries, Martin", "bounds_geometry": "POLYGON((-180 -43.56557,-144 -43.56557,-108 -43.56557,-72 -43.56557,-36 -43.56557,0 -43.56557,36 -43.56557,72 -43.56557,108 -43.56557,144 -43.56557,180 -43.56557,180 -46.996716,180 -50.427862,180 -53.859008,180 -57.290154,180 -60.7213,180 -64.152446,180 -67.583592,180 -71.014738,180 -74.445884,180 -77.87703,144 -77.87703,108 -77.87703,72 -77.87703,36 -77.87703,0 -77.87703,-36 -77.87703,-72 -77.87703,-108 -77.87703,-144 -77.87703,-180 -77.87703,-180 -74.445884,-180 -71.014738,-180 -67.583592,-180 -64.152446,-180 -60.7213,-180 -57.290154,-180 -53.859008,-180 -50.427862,-180 -46.996716,-180 -43.56557))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002003", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9901"}, {"dataset_uid": "002110", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9803"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project is a study of the effects of antarctic sea ice in the global climate system, through an examination of how the spatial distribution of ice and snow thickness and of open water is reflected in satellite-based synthetic aperture radar (SAR) imagery. The field investigations will be carried out from the RVIB Nathaniel B. Palmer in winter 1998 and summer 1999, and will produce observations of the snow and ice distribution, the crystal structure, stable isotopes, salinity and temperature structure of ice cores, and the stratigraphy, grain size, and water content of the snow cover. The SAR images from ERS-2 and RADARSAT will be acquired at the McMurdo ground station, and processed at the Alaska SAR Facility. These will provide information about the large-scale ice motion field and the small-scale ice deformation field, both of which contribute to the observed ice thickness distribution. In addition, a study of the spatial and temporal variation of the backscattered microwave energy will contribute to the development of numerical models that simulate the dynamic and thermodynamic interactions among the sea ice, ocean, and atmosphere. The surface data is vital for the extraction of environmental information from the radar data, and for the ultimate validation of interactive models.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -43.56557, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jeffries, Martin", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.87703, "title": "Dynamic/Thermodynamic Processes and Their Contribution to the Sea Ice Thickness Distribution and Radar Backscatter in the Ross Sea", "uid": "p0000628", "west": -180.0}, {"awards": "0225110 Garrott, Robert", "bounds_geometry": "POLYGON((163.1 -70.3,163.59 -70.3,164.08 -70.3,164.57 -70.3,165.06 -70.3,165.55 -70.3,166.04 -70.3,166.53 -70.3,167.02 -70.3,167.51 -70.3,168 -70.3,168 -70.98,168 -71.66,168 -72.34,168 -73.02,168 -73.7,168 -74.38,168 -75.06,168 -75.74,168 -76.42,168 -77.1,167.51 -77.1,167.02 -77.1,166.53 -77.1,166.04 -77.1,165.55 -77.1,165.06 -77.1,164.57 -77.1,164.08 -77.1,163.59 -77.1,163.1 -77.1,163.1 -76.42,163.1 -75.74,163.1 -75.06,163.1 -74.38,163.1 -73.7,163.1 -73.02,163.1 -72.34,163.1 -71.66,163.1 -70.98,163.1 -70.3))", "dataset_titles": "Weddell Seal data", "datasets": [{"dataset_uid": "000120", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Weddell Seal data", "url": "http://www.montana.edu/weddellseals/"}], "date_created": "Wed, 28 Jan 2009 00:00:00 GMT", "description": "The Erebus Bay Weddell seal population study in eastern McMurdo Sound, Antarctica was initiated in 1968 and represents one of the longest intensive field investigations of a long-lived mammal in existence. Over the thirty-four year period of this study a total of 15,636 animals have been tagged with 144,927 re-sighting records logged in the current database. As such, this study is an extremely valuable resource for understanding population dynamics of not only Weddell seals, but also other species of both terrestrial and marine mammals with similar life-history characteristics. With the retirement of the original investigator, Dr. Donald Siniff, this proposal represents an effort to transition the long-term studies to a new team of investigators. Dr. Robert Garrott and Dr. Jay Rotella propose building upon the foundation with two lines of investigation that combine use of the long-term database with new field initiatives. The continuity of the demographic data will be maintained by annually marking all pups born, replace lost or broken tags, and perform multiple mark-recapture censuses of the Erebus Bay seal colonies. The new data will be combined with the existing database and a progressively complex series of analyses will be performed using recently developed mark-recapture methods to decompose, evaluate, and integrate the demographic characteristics of the Erebus Bay Weddell seal population. These analyses will allow the testing of specific hypotheses about population regulation as well as temporal and spatial patterns of variation in vital rates among colonies within the population that have been posed by previous investigators, but have not been adequately evaluated due to data and analytical limitations. The primary new field initiative will involve an intensive study of mass dynamics of both pups and adult females as a surrogate measure for assessing annual variation in marine resources and their potential role in limiting and/or regulating the population. In conjunction with the collection of data on body mass dynamics the investigators will use satellite imagery to develop an extended time series of sea ice extent in McMurdo Sound. Regional extent of sea ice affects both regional primary productivity and availability of haul out areas for Weddell seals. Increased primary productivity may increase marine resources which would be expected to have a positive affect on Weddell seal foraging efficiency, leading to increased body mass. These data combined with the large proportion of known-aged seals in the current study population (\u003e60%) will allow the investigators to develop a powerful database to test specific hypotheses about ecological processes affecting Weddell seals. Knowledge of the mechanisms that limit and/or regulate Weddell seal populations and the specific bio-physical linkages between climate, oceans, ice, and Antarctic food webs can provide important contributions to understanding of pinniped population dynamics, as well as contribute more generally to theoretical understanding of population, community, and ecosystem patterns and processes. Such knowledge can be readily applied elsewhere to enhance the ability of natural resource managers to effectively maintain assemblages of other large-mammal species and the ecological processes that they facilitate. Continuation of this long-term study may also contribute to understanding the potential impacts of human activities such as global climate warming and the commercial exploitation of Antarctic marine resources. And finally, the study can contribute significantly to the development and testing of new research and analytical methodologies that will almost certainly have many other applications.", "east": 168.0, "geometry": "POINT(165.55 -73.7)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -70.3, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Garrott, Robert; Siniff, Donald; Rotella, Jay", "platforms": "Not provided", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": -77.1, "title": "Patterns and Processes: Dynamics of the Erebus Bay Weddell Seal Population", "uid": "p0000109", "west": 163.1}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Collaborative Research: Freeze-on of Subglacial Sediments in Experiments and Theory
|
2012958 |
2023-09-13 | Meyer, Colin; Rempel, Alan; Zoet, Lucas |
|
The fastest-changing regions of the Antarctic and Greenland Ice Sheets that contribute most to sea-level rise are underlain by soft sediments that facilitate glacier motion. Glacier ice can infiltrate several meters into these sediments, depending on the temperature and water pressure at the base of the glacier. To understand how ice infiltration into subglacial sediments affects glacier slip, the team will conduct laboratory experiments under relevant temperature and pressure conditions and compare the results to state-of-the-art mathematical models. Through an undergraduate research exchange between University of Wisconsin-Madison, Dartmouth College, and the College of Menominee Nation, Native American students will work on laboratory experiments in one summer and mathematical theory in the following summer.<br/><br/>Ice-sediment interactions are a central component of ice-sheet and landform-development models. Limited process understanding poses a key uncertainty for ice-sheet models that are used to forecast sea-level rise. This uncertainty underscores the importance of developing experimentally validated, theoretically robust descriptions of processes at the ice-sediment interface. To achieve this, the team aims to build on long-established theoretical, experimental, and field investigations that have elucidated the central role of premelting and surface-energy effects in controlling the dynamics of frost heave in soils. Project members will theoretically describe and experimentally test the role of premelting at the basal ice-sediment interface. The experiments are designed to provide quantitative insight into the impact of ice infiltration into sediments on glacier sliding, erosion, and subglacial landform evolution.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | |||||
Antarctica as a Model System for Responses of Terrestrial Carbon Balance to Warming
|
1947562 1643871 |
2021-08-21 | van Gestel, Natasja |
|
Responses of the carbon balance of terrestrial ecosystems to warming will feed back to the pace of climate change, but the size and direction of this feedback are poorly constrained. Least known are the effects of warming on carbon losses from soil, and clarifying the major microbial controls is an important research frontier. This study uses a series of experiments and observations to investigate microbial, including autotrophic taxa, and plant controls of net ecosystem productivity in response to warming in intact ecosystems. Field warming is achieved using open-top chambers paired with control plots, arrayed along a productivity gradient. Along this gradient incoming and outgoing carbon fluxes will be measured at the ecosystem-level. The goal is to tie warming-induced shifts in net ecosystem carbon balance to warming effects on soil microbes and plants. The field study will be supplemented with lab temperature incubations. Because soil microbes dominate biogeochemical cycles in Antarctica, a major focus of this study is to determine warming responses of bacteria, fungi and archaea. This is achieved using a cutting-edge stable isotope technique, quantitative stable isotope probing (qSIP) developed by the proposing research team, that can identify the taxa that are active and involved in processing new carbon. This technique can identify individual microbial taxa that are actively participating in biogeochemical cycling of nutrients (through combined use of 18O-water and 13C-bicarbonate) and thus can be distinguished from those that are simply present (cold-preserved). The study further assesses photosynthetic uptake of carbon by the vegetation and their sensitivity to warming. Results will advance research in climate change, plant and soil microbial ecology, and ecosystem modeling. | POLYGON((-65 -64.5,-64.8 -64.5,-64.6 -64.5,-64.4 -64.5,-64.2 -64.5,-64 -64.5,-63.8 -64.5,-63.6 -64.5,-63.4 -64.5,-63.2 -64.5,-63 -64.5,-63 -64.55,-63 -64.6,-63 -64.65,-63 -64.7,-63 -64.75,-63 -64.8,-63 -64.85,-63 -64.9,-63 -64.95,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.95,-65 -64.9,-65 -64.85,-65 -64.8,-65 -64.75,-65 -64.7,-65 -64.65,-65 -64.6,-65 -64.55,-65 -64.5)) | POINT(-64 -64.75) | false | false | |||||
Linking Foraging Behaviors to Demography to understand Albatrosses Population Responses to Climate Change
|
1246407 |
2019-01-31 | Jenouvrier, Stephanie | Understanding the ecological consequences - present and future-of climate change is a central question in conservation biology. The goal of this project is to identify the effects of climate change on the Black-Browed Albatross, a seabird breeding in the Southern Ocean. The Black-Browed Albatross exhibits remarkable flight adaptations, using winds as an energy source to glide for long distances. This is the basis of their foraging strategy, by which they obtain food for themselves and their offspring. Climate change, however, is expected to modify wind patterns over the Southern Ocean. This project will analyze the effect of winds on life history traits (foraging behaviors, body conditions and demographic traits), and the effects of these traits on populations. New demographic models will provide the link between foraging behavior and the physical environment, and evaluate the persistence of this population in the face of climate change.<br/><br/>Understanding and predicting population responses to climate change is important because the world?s climate will continue to change throughout the 21st century and beyond. To help guide conservation strategies and policy decisions in the face of climate change, reliable assessments of population extinction risks are urgently needed. The Black-Browed Albatross is considered endangered by the International Union for Conservation of Nature due to recent drastic reductions in its population size. This project will improve our understanding of the mechanisms by which climate affects the life history and populations of Black-Browed Albatross to improve prediction of extinction risks under future climate change. | POINT(70.2433 -49.6875) | POINT(70.2433 -49.6875) | false | false | ||||||
Collaborative Research: Alternative Nutritional Strategies in Antarctic Protists
|
0838955 |
2013-10-30 | Gast, Rebecca |
|
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). <br/><br/>Most organisms meet their carbon and energy needs using photosynthesis (phototrophy) or ingestion/assimilation of organic substances (heterotrophy). However, a nutritional strategy that combines phototrophy and heterotrophy - mixotrophy - is geographically and taxonomically widespread in aquatic systems. While the presence of mixotrophs in the Southern Ocean is known only recently, preliminary evidence indicates a significant role in Southern Ocean food webs. Recent work on Southern Ocean dinoflagellate, Kleptodinium, suggests that it sequesters functional chloroplasts of the bloom-forming haptophyte, Phaeocystis antarctica. This dinoflagellate is abundant in the Ross Sea, has been reported elsewhere in the Southern Ocean, and may have a circumpolar distribution. By combining nutritional modes. mixotrophy may offer competitive advantages over pure autotrophs and heterotrophs. <br/><br/>The goals of this project are to understand the importance of alternative nutritional strategies for Antarctic species that combine phototrophic and phagotrophic processes in the same organism. The research will combine field investigations of plankton and ice communities in the Southern Ocean with laboratory experiments on Kleptodinium and recently identified mixotrophs from our Antarctic culture collections. The research will address: 1) the relative contributions of phototrophy and phagotrophy in Antarctic mixotrophs; 2) the nature of the relationship between Kleptodinium and its kleptoplastids; 3) the distributions and abundances of mixotrophs and Kleptodinium in the Southern Ocean during austral spring/summer; and 4) the impacts of mixotrophs and Kleptodinium on prey populations, the factors influencing these behaviors and the physiological conditions of these groups in their natural environment. The project will contribute to the maintenance of a culture collection of heterotrophic, phototrophic and mixotrophic Antarctic protists that are available to the scientific community, and it will train graduate and undergraduate students at Temple University. Research findings and activities will be summarized for non-scientific audiences through the PIs' websites and through other public forums, and will involve middle school teachers via collaboration with COSEE-New England. | POLYGON((71.504166 -76.159164,71.5142214 -76.159164,71.5242768 -76.159164,71.5343322 -76.159164,71.5443876 -76.159164,71.554443 -76.159164,71.5644984 -76.159164,71.5745538 -76.159164,71.5846092 -76.159164,71.5946646 -76.159164,71.60472 -76.159164,71.60472 -76.2018032,71.60472 -76.2444424,71.60472 -76.2870816,71.60472 -76.3297208,71.60472 -76.37236,71.60472 -76.4149992,71.60472 -76.4576384,71.60472 -76.5002776,71.60472 -76.5429168,71.60472 -76.585556,71.5946646 -76.585556,71.5846092 -76.585556,71.5745538 -76.585556,71.5644984 -76.585556,71.554443 -76.585556,71.5443876 -76.585556,71.5343322 -76.585556,71.5242768 -76.585556,71.5142214 -76.585556,71.504166 -76.585556,71.504166 -76.5429168,71.504166 -76.5002776,71.504166 -76.4576384,71.504166 -76.4149992,71.504166 -76.37236,71.504166 -76.3297208,71.504166 -76.2870816,71.504166 -76.2444424,71.504166 -76.2018032,71.504166 -76.159164)) | POINT(71.554443 -76.37236) | false | false | |||||
Collaborative Research: Grounding Line Forensics: The History of Grounding Line Retreat in the Kamb Ice Stream Outlet Region
|
0538120 0538015 |
2011-07-02 | Hulbe, Christina; Catania, Ginny |
|
0538120<br/>Catania<br/>This award supports a project to identify and map ice surface and internal features that chronicle the sequence of events leading to the shut-down of Kamb ice stream. In particular, the project will study past grounding line migration and the relationship between that process and ice stream shutdown. The intellectual merits of the project include the fact that an understanding of such processes has important implications for our ability to accurately predict mass balance changes in this region. Currently, one of the five major West Antarctic ice streams, Kamb, is quiescent, and another, Whillans, is slowing in its downstream reaches. The Kamb shutdown appears to have begun at its downstream end but beyond that simple observation, it is not possible, yet, to draw meaningful comparisons between the two adjacent streams. We do not know if current events on Whillans Ice Stream are similar to what transpired during the Kamb shut-down. The work proposed here intends to bridge that gap. It is expected that this effort will yield useful insights into the influence of grounding line dynamics on ice stream flow. The work will involve a combination of field investigations using radio-echo sounding and GPS combined with computational efforts involving the interpretation of ice-surface features such as relict flow traces and crevasses. The broader impacts of the project will be in addressing a global environmental problem with critical societal implications, training the next generation of scientists and engineers to serve the nation, and encouraging women to pursue scientific or engineering careers. Participants from both institutions are involved in a range of public outreach activities. | POLYGON((154.71 -82.78,154.79000000000002 -82.78,154.87 -82.78,154.95 -82.78,155.03 -82.78,155.11 -82.78,155.19 -82.78,155.26999999999998 -82.78,155.35 -82.78,155.43 -82.78,155.51 -82.78,155.51 -82.788,155.51 -82.796,155.51 -82.804,155.51 -82.812,155.51 -82.82,155.51 -82.828,155.51 -82.836,155.51 -82.844,155.51 -82.852,155.51 -82.86,155.43 -82.86,155.35 -82.86,155.26999999999998 -82.86,155.19 -82.86,155.11 -82.86,155.03 -82.86,154.95 -82.86,154.87 -82.86,154.79000000000002 -82.86,154.71 -82.86,154.71 -82.852,154.71 -82.844,154.71 -82.836,154.71 -82.828,154.71 -82.82,154.71 -82.812,154.71 -82.804,154.71 -82.796,154.71 -82.788,154.71 -82.78)) | POINT(155.11 -82.82) | false | false | |||||
Center for Remote Sensing of Ice Sheets (CReSIS)
|
0424589 |
2011-06-01 | Braaten, David; Joughin, Ian; Steig, Eric J.; Das, Sarah; Paden, John; Gogineni, Prasad | This award is for the continuation of the Center for Remote Sensing of Ice Sheets (CReSIS), an NSF Science and Technology Center (STC) established in June 2005 to study present and probable future contributions of the Greenland and Antarctic ice sheets to sea-level rise. The Center?s vision is to understand and predict the role of polar ice sheets in sea level change. In particular, the Center?s mission is to develop technologies, to conduct field investigations, to compile data to understand why many outlet glaciers and ice streams are changing rapidly, and to develop models that explain and predict ice sheet response to climate change. The Center?s mission is also to educate and train a diverse population of graduate and undergraduate students in Center-related disciplines and to encourage K-12 students to pursue careers in science, technology, engineering and mathematics (STEM-fields). The long-term goals are to perform a four-dimensional characterization (space and time) of rapidly changing ice-sheet regions, develop diagnostic and predictive ice-sheet models, and contribute to future assessments of sea level change in a warming climate. In the first five years, significant progress was made in developing, testing and optimizing innovative sensors and platforms and completing a major aircraft campaign, which included sounding the channel under Jakobshavn Isbræ. In the second five years, research will focus on the interpretation of integrated data from a suite of sensors to understand the physical processes causing changes and the subsequent development and validation of models. Information about CReSIS can be found at http://www.cresis.ku.edu.<br/><br/>The intellectual merits of the STC are the multidisciplinary research it enables its faculty, staff and students to pursue, as well as the broad education and training opportunities it provides to students at all levels. During the first phase, the Center provided scientists and engineers with a collaborative research environment and the opportunity to interact, enabling the development of high-sensitivity radars integrated with several airborne platforms and innovative seismic instruments. Also, the Center successfully collected data on ice thickness and bed conditions, key variables in the study of ice dynamics and the development of models, for three major fast-flowing glaciers in Greenland. During the second phase, the Center will collect additional data over targeted sites in areas undergoing rapid changes; process, analyze and interpret collected data; and develop advanced process-oriented and ice sheet models to predict future behavior. The Center will continue to provide a rich environment for multidisciplinary education and mentoring for undergraduate students, graduate students, and postdoctoral fellows, as well as for conducting K-12 education and public outreach. The broader impacts of the Center stem from addressing a global environmental problem with critical societal implications, providing a forum for citizens and policymakers to become informed about climate change issues, training the next generation of scientists and engineers to serve the nation, encouraging underrepresented students to pursue careers in STEM-related fields, and transferring new technologies to industry. Students involved in the Center find an intellectually stimulating atmosphere where collaboration between disciplines is the norm and exposure to a wide variety of methodologies and scientific issues enriches their educational experience. The next generation of researchers should reflect the diversity of our society; the Center will therefore continue its work with ECSU to conduct outreach and educational programs that attract minority students to careers in science and technology. The Center has also established a new partnership with ADMI that supports faculty and student exchanges at the national level and provides expanded opportunities for students and faculty to be involved in Center-related research and education activities. These, and other collaborations, will provide broader opportunities to encourage underrepresented students to pursue STEM careers. <br/><br/>As lead institution, The University of Kansas (KU) provides overall direction and management, as well as expertise in radar and remote sensing, Uninhabited Aerial Vehicles (UAVs), and modeling and interpretation of data. Five partner institutions and a DOE laboratory play critical roles in the STC. The Pennsylvania State University (PSU) continues to participate in technology development for seismic measurements, field activities, and modeling. The Center of Excellence in Remote Sensing, Education and Research (CERSER) at Elizabeth City State University (ECSU) contributes its expertise to analyzing satellite data and generating high-level data products. ECSU also brings to the Center their extensive experience in mentoring and educating traditionally under-represented students. ADMI, the Association of Computer and Information Science/Engineering Departments at Minority Institutions, expands the program?s reach to underrepresented groups at the national level. Indiana University (IU) provides world-class expertise in CI and high-performance computing to address challenges in data management, processing, distribution and archival, as well as high-performance modeling requirements. The University of Washington (UW) provides expertise in satellite observations of ice sheets and process-oriented interpretation and model development. Los Alamos National Laboratory (LANL) contributes in the area of ice sheet modeling. All partner institutions are actively involved in the analysis and interpretation of observational and numerical data sets. | POLYGON((-137 -74,-132.1 -74,-127.2 -74,-122.3 -74,-117.4 -74,-112.5 -74,-107.6 -74,-102.7 -74,-97.8 -74,-92.9 -74,-88 -74,-88 -74.65,-88 -75.3,-88 -75.95,-88 -76.6,-88 -77.25,-88 -77.9,-88 -78.55,-88 -79.2,-88 -79.85,-88 -80.5,-92.9 -80.5,-97.8 -80.5,-102.7 -80.5,-107.6 -80.5,-112.5 -80.5,-117.4 -80.5,-122.3 -80.5,-127.2 -80.5,-132.1 -80.5,-137 -80.5,-137 -79.85,-137 -79.2,-137 -78.55,-137 -77.9,-137 -77.25,-137 -76.6,-137 -75.95,-137 -75.3,-137 -74.65,-137 -74)) | POINT(-112.5 -77.25) | false | false | ||||||
Collaborative Proposal: 2000+ Year Detailed, Calibrated Climate Reconstruction from a South Pole Ice Core Set in an Antarctic - Global Scale Context
|
0636506 |
2010-07-29 | Korotkikh, Elena; Kreutz, Karl; Kurbatov, Andrei V.; Mayewski, Paul A. |
|
This award supports a project to examine an existing ice core of opportunity from South Pole (SPRESO core) to develop a 2000+ year long climate record. SPRESO ice core will be an annually dated, sub-annually-resolved reconstruction of past climate (atmospheric circulation, temperature, precipitation rate, and atmospheric chemistry) utilizing continuous, co-registered measurements (n=45) of: major ions, trace elements, and stable isotope series, plus selected sections for microparticle size and composition. The intellectual merit of this project relates to the fact that few 2000+ year records of this quality exist in Antarctica despite increasing scientific interest in this critical time period as the framework within which to understand modern climate. The scientific impact of this ice core investigation are that it will provide an in-depth understanding of climate variability; a baseline for assessing modern climate variability in the context of human activity; and a contribution to the prediction of future climate variability. The broader impact of this work is that the proposed research addresses important questions concerning the role of Antarctica in past, present, and future global change. Results will be translated into publicly accessible information through public lectures, media appearances, and an extensive outreach activity housed in our Institute. Our ice core activities provide a major basis for curriculum in K-12 and University plus a basis for several field and laboratory based graduate theses and undergraduate student projects. The project will support one PhD student for 3 years and undergraduate salaries. The Climate Change Institute has a long history of gender and ethnically diverse student and staff involvement in research. | POLYGON((-137.7 -75.7,-137.4 -75.7,-137.1 -75.7,-136.8 -75.7,-136.5 -75.7,-136.2 -75.7,-135.9 -75.7,-135.6 -75.7,-135.3 -75.7,-135 -75.7,-134.7 -75.7,-134.7 -75.773,-134.7 -75.846,-134.7 -75.919,-134.7 -75.992,-134.7 -76.065,-134.7 -76.138,-134.7 -76.211,-134.7 -76.284,-134.7 -76.357,-134.7 -76.43,-135 -76.43,-135.3 -76.43,-135.6 -76.43,-135.9 -76.43,-136.2 -76.43,-136.5 -76.43,-136.8 -76.43,-137.1 -76.43,-137.4 -76.43,-137.7 -76.43,-137.7 -76.357,-137.7 -76.284,-137.7 -76.211,-137.7 -76.138,-137.7 -76.065,-137.7 -75.992,-137.7 -75.919,-137.7 -75.846,-137.7 -75.773,-137.7 -75.7)) | POINT(-136.2 -76.065) | false | false | |||||
Dynamic/Thermodynamic Processes and Their Contribution to the Sea Ice Thickness Distribution and Radar Backscatter in the Ross Sea
|
9614844 |
2010-05-04 | Jeffries, Martin |
|
This project is a study of the effects of antarctic sea ice in the global climate system, through an examination of how the spatial distribution of ice and snow thickness and of open water is reflected in satellite-based synthetic aperture radar (SAR) imagery. The field investigations will be carried out from the RVIB Nathaniel B. Palmer in winter 1998 and summer 1999, and will produce observations of the snow and ice distribution, the crystal structure, stable isotopes, salinity and temperature structure of ice cores, and the stratigraphy, grain size, and water content of the snow cover. The SAR images from ERS-2 and RADARSAT will be acquired at the McMurdo ground station, and processed at the Alaska SAR Facility. These will provide information about the large-scale ice motion field and the small-scale ice deformation field, both of which contribute to the observed ice thickness distribution. In addition, a study of the spatial and temporal variation of the backscattered microwave energy will contribute to the development of numerical models that simulate the dynamic and thermodynamic interactions among the sea ice, ocean, and atmosphere. The surface data is vital for the extraction of environmental information from the radar data, and for the ultimate validation of interactive models. | POLYGON((-180 -43.56557,-144 -43.56557,-108 -43.56557,-72 -43.56557,-36 -43.56557,0 -43.56557,36 -43.56557,72 -43.56557,108 -43.56557,144 -43.56557,180 -43.56557,180 -46.996716,180 -50.427862,180 -53.859008,180 -57.290154,180 -60.7213,180 -64.152446,180 -67.583592,180 -71.014738,180 -74.445884,180 -77.87703,144 -77.87703,108 -77.87703,72 -77.87703,36 -77.87703,0 -77.87703,-36 -77.87703,-72 -77.87703,-108 -77.87703,-144 -77.87703,-180 -77.87703,-180 -74.445884,-180 -71.014738,-180 -67.583592,-180 -64.152446,-180 -60.7213,-180 -57.290154,-180 -53.859008,-180 -50.427862,-180 -46.996716,-180 -43.56557)) | POINT(0 -89.999) | false | false | |||||
Patterns and Processes: Dynamics of the Erebus Bay Weddell Seal Population
|
0225110 |
2009-01-28 | Garrott, Robert; Siniff, Donald; Rotella, Jay |
|
The Erebus Bay Weddell seal population study in eastern McMurdo Sound, Antarctica was initiated in 1968 and represents one of the longest intensive field investigations of a long-lived mammal in existence. Over the thirty-four year period of this study a total of 15,636 animals have been tagged with 144,927 re-sighting records logged in the current database. As such, this study is an extremely valuable resource for understanding population dynamics of not only Weddell seals, but also other species of both terrestrial and marine mammals with similar life-history characteristics. With the retirement of the original investigator, Dr. Donald Siniff, this proposal represents an effort to transition the long-term studies to a new team of investigators. Dr. Robert Garrott and Dr. Jay Rotella propose building upon the foundation with two lines of investigation that combine use of the long-term database with new field initiatives. The continuity of the demographic data will be maintained by annually marking all pups born, replace lost or broken tags, and perform multiple mark-recapture censuses of the Erebus Bay seal colonies. The new data will be combined with the existing database and a progressively complex series of analyses will be performed using recently developed mark-recapture methods to decompose, evaluate, and integrate the demographic characteristics of the Erebus Bay Weddell seal population. These analyses will allow the testing of specific hypotheses about population regulation as well as temporal and spatial patterns of variation in vital rates among colonies within the population that have been posed by previous investigators, but have not been adequately evaluated due to data and analytical limitations. The primary new field initiative will involve an intensive study of mass dynamics of both pups and adult females as a surrogate measure for assessing annual variation in marine resources and their potential role in limiting and/or regulating the population. In conjunction with the collection of data on body mass dynamics the investigators will use satellite imagery to develop an extended time series of sea ice extent in McMurdo Sound. Regional extent of sea ice affects both regional primary productivity and availability of haul out areas for Weddell seals. Increased primary productivity may increase marine resources which would be expected to have a positive affect on Weddell seal foraging efficiency, leading to increased body mass. These data combined with the large proportion of known-aged seals in the current study population (>60%) will allow the investigators to develop a powerful database to test specific hypotheses about ecological processes affecting Weddell seals. Knowledge of the mechanisms that limit and/or regulate Weddell seal populations and the specific bio-physical linkages between climate, oceans, ice, and Antarctic food webs can provide important contributions to understanding of pinniped population dynamics, as well as contribute more generally to theoretical understanding of population, community, and ecosystem patterns and processes. Such knowledge can be readily applied elsewhere to enhance the ability of natural resource managers to effectively maintain assemblages of other large-mammal species and the ecological processes that they facilitate. Continuation of this long-term study may also contribute to understanding the potential impacts of human activities such as global climate warming and the commercial exploitation of Antarctic marine resources. And finally, the study can contribute significantly to the development and testing of new research and analytical methodologies that will almost certainly have many other applications. | POLYGON((163.1 -70.3,163.59 -70.3,164.08 -70.3,164.57 -70.3,165.06 -70.3,165.55 -70.3,166.04 -70.3,166.53 -70.3,167.02 -70.3,167.51 -70.3,168 -70.3,168 -70.98,168 -71.66,168 -72.34,168 -73.02,168 -73.7,168 -74.38,168 -75.06,168 -75.74,168 -76.42,168 -77.1,167.51 -77.1,167.02 -77.1,166.53 -77.1,166.04 -77.1,165.55 -77.1,165.06 -77.1,164.57 -77.1,164.08 -77.1,163.59 -77.1,163.1 -77.1,163.1 -76.42,163.1 -75.74,163.1 -75.06,163.1 -74.38,163.1 -73.7,163.1 -73.02,163.1 -72.34,163.1 -71.66,163.1 -70.98,163.1 -70.3)) | POINT(165.55 -73.7) | false | false |