{"dp_type": "Project", "free_text": "Andvord Bay"}
[{"awards": "1947040 Postlethwait, John", "bounds_geometry": "POLYGON((-65.3 -63.3,-65 -63.3,-64.7 -63.3,-64.4 -63.3,-64.1 -63.3,-63.8 -63.3,-63.5 -63.3,-63.2 -63.3,-62.9 -63.3,-62.6 -63.3,-62.3 -63.3,-62.3 -63.47,-62.3 -63.64,-62.3 -63.81,-62.3 -63.98,-62.3 -64.15,-62.3 -64.32,-62.3 -64.49,-62.3 -64.66,-62.3 -64.83,-62.3 -65,-62.6 -65,-62.9 -65,-63.2 -65,-63.5 -65,-63.8 -65,-64.1 -65,-64.4 -65,-64.7 -65,-65 -65,-65.3 -65,-65.3 -64.83,-65.3 -64.66,-65.3 -64.49,-65.3 -64.32,-65.3 -64.15,-65.3 -63.98,-65.3 -63.81,-65.3 -63.64,-65.3 -63.47,-65.3 -63.3))", "dataset_titles": "18 SSU rDNA type sequences for Notoxcellia coronata (nov. sp.); 18 SSU rDNA type sequences for Notoxcellia picta (nov. sp.); Expedition Data of LMG1805; Fish pictures and skin pathology of X-cell infection in Trematomus scotti.; Gonad and skin histology of Trematomus loennbergii infected by Notoxcellia sp.; Histopathology of X-cell xenomas in Trematomus scotti and Nototheniops larseni.; In situ hybridization of X-cell and host fish 18S SSU rRNA in alternate sections of tumor xenomas.; Metagenomic analysis of apparently healthy and tumor samples using Kaiju software ; microMRI analyses of Trematomus scotti Tsco_18_08 with X-cell xenomas; Morphological and pathological data of Trematomus scotti specimens captured on May 30th, 2018 in Andvord Bay.; Morphological, fecundity, and age data of Trematomus scotti from Andvord Bay and the Weddell Sea.; Nomenclatural Act for the genus Notoxcellia; Nomenclatural Act for the species Notoxcellia coronata; Nomenclatural Act for the species Notoxcellia picta; Phylogenetic Analysis of Notoxcellia species.; Phylogenetic Analysis of Notoxcellia species, including novel Ross Sea specimen; Raw Illumina sequencing reads from skin tumors and visually healthy skins from Trematomus scotti and Nototheniops larseni; Similarity matrices of Notoxcellia spp.; Temperature profiles at five fishing locations on the West Antarctic Peninsula during austral fall 2018.; Trematomus scotti mt-co1 sequence alignment.; Trematomus scotti with X-cell xenomas", "datasets": [{"dataset_uid": "601495", "doi": "10.15784/601495", "keywords": "Antarctica; Antarctic Peninsula", "people": "Desvignes, Thomas", "repository": "USAP-DC", "science_program": null, "title": "Temperature profiles at five fishing locations on the West Antarctic Peninsula during austral fall 2018.", "url": "https://www.usap-dc.org/view/dataset/601495"}, {"dataset_uid": "601893", "doi": "10.15784/601893", "keywords": "Age; Antarctica; Biota; Cryonotothenioid; Cryosphere; Fecundity; Growth; Length; Nototheniidae; Oceans; Otolith; Reproduction; Weight", "people": "Papetti, Chiara; Detrich, H. William; Mark, Felix C; Lucassen, Magnus; Le Francois, Nathalie; Grondin, Jacob; Streeter, Margaret; Riginella, Emilio; Cal\u00ec, Federico; Sguotti, Camilla; Valdivieso, Alejandro; Desvignes, Thomas; La Mesa, Mario; Postlethwait, John", "repository": "USAP-DC", "science_program": null, "title": "Morphological, fecundity, and age data of Trematomus scotti from Andvord Bay and the Weddell Sea.", "url": "https://www.usap-dc.org/view/dataset/601893"}, {"dataset_uid": "601915", "doi": "10.15784/601915", "keywords": "Alveolata; Antarctic; Cryosphere; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "people": "Desvignes, Thomas; P\u00e9ron, Clara; Devine, Jennifer; Postlethwait, John", "repository": "USAP-DC", "science_program": null, "title": "Phylogenetic Analysis of Notoxcellia species, including novel Ross Sea specimen", "url": "https://www.usap-dc.org/view/dataset/601915"}, {"dataset_uid": "601892", "doi": "10.15784/601892", "keywords": "Antarctica; Biota; CO1; COX1; Cryonotothenioid; Cryosphere; Genetic Sequences; LMG1805; MT-CO1; Nototheniidae; Notothenioid; Population Genetics", "people": "Desvignes, Thomas; Schiavon, Luca ; Papetti, Chiara; Postlethwait, John", "repository": "USAP-DC", "science_program": null, "title": "Trematomus scotti mt-co1 sequence alignment.", "url": "https://www.usap-dc.org/view/dataset/601892"}, {"dataset_uid": "601916", "doi": "10.15784/601916", "keywords": "Alveolata; Antarctica; Cryosphere; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Ross Sea; Xcellidae", "people": "P\u00e9ron, Clara; Postlethwait, John; Devine, Jennifer; Desvignes, Thomas", "repository": "USAP-DC", "science_program": null, "title": "Gonad and skin histology of Trematomus loennbergii infected by Notoxcellia sp.", "url": "https://www.usap-dc.org/view/dataset/601916"}, {"dataset_uid": "601917", "doi": "10.15784/601917", "keywords": "Alveolata; Antarctic; Cryosphere; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "people": "Postlethwait, John; Desvignes, Thomas; Devine, Jennifer; P\u00e9ron, Clara", "repository": "USAP-DC", "science_program": null, "title": "Similarity matrices of Notoxcellia spp.", "url": "https://www.usap-dc.org/view/dataset/601917"}, {"dataset_uid": "200254", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of LMG1805", "url": "https://www.rvdata.us/search/cruise/LMG1805"}, {"dataset_uid": "200262", "doi": "", "keywords": null, "people": null, "repository": "MorphoSource", "science_program": null, "title": "Trematomus scotti with X-cell xenomas", "url": "https://www.morphosource.org/projects/000405843?locale=en"}, {"dataset_uid": "200275", "doi": "", "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "18 SSU rDNA type sequences for Notoxcellia coronata (nov. sp.)", "url": "https://www.ncbi.nlm.nih.gov/nuccore/OL630144"}, {"dataset_uid": "200276", "doi": "", "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "18 SSU rDNA type sequences for Notoxcellia picta (nov. sp.)", "url": "https://www.ncbi.nlm.nih.gov/nuccore/OL630145"}, {"dataset_uid": "200277", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "Raw Illumina sequencing reads from skin tumors and visually healthy skins from Trematomus scotti and Nototheniops larseni", "url": "https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA789574"}, {"dataset_uid": "601496", "doi": "10.15784/601496", "keywords": "Andvord Bay; Antarctica; Fish", "people": "Lauridsen, Henrik; Desvignes, Thomas; Postlethwait, John", "repository": "USAP-DC", "science_program": null, "title": "Fish pictures and skin pathology of X-cell infection in Trematomus scotti.", "url": "https://www.usap-dc.org/view/dataset/601496"}, {"dataset_uid": "200443", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of LMG1805", "url": "https://doi.org/10.7284/907930"}, {"dataset_uid": "601539", "doi": "10.15784/601539", "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "people": "Desvignes, Thomas; Postlethwait, John", "repository": "USAP-DC", "science_program": null, "title": "In situ hybridization of X-cell and host fish 18S SSU rRNA in alternate sections of tumor xenomas.", "url": "https://www.usap-dc.org/view/dataset/601539"}, {"dataset_uid": "601538", "doi": "10.15784/601538", "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "people": "Postlethwait, John; Lauridsen, Henrik; Desvignes, Thomas", "repository": "USAP-DC", "science_program": null, "title": "microMRI analyses of Trematomus scotti Tsco_18_08 with X-cell xenomas", "url": "https://www.usap-dc.org/view/dataset/601538"}, {"dataset_uid": "601537", "doi": "10.15784/601537", "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "people": "Fontenele, Rafaela S. ; Kraberger, Simona ; Postlethwait, John; Varsani, Arvind; Desvignes, Thomas", "repository": "USAP-DC", "science_program": null, "title": "Metagenomic analysis of apparently healthy and tumor samples using Kaiju software ", "url": "https://www.usap-dc.org/view/dataset/601537"}, {"dataset_uid": "601536", "doi": "10.15784/601536", "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "people": "Kent, Michael L. ; Postlethwait, John; Desvignes, Thomas; Murray, Katrina N. ", "repository": "USAP-DC", "science_program": null, "title": "Histopathology of X-cell xenomas in Trematomus scotti and Nototheniops larseni.", "url": "https://www.usap-dc.org/view/dataset/601536"}, {"dataset_uid": "601501", "doi": "10.15784/601501", "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Biota; Notoxcellia Coronata; Notoxcellia Picta; Oceans; Perkinsozoa; Xcellidae", "people": "Desvignes, Thomas; Postlethwait, John; Varsani, Arvind", "repository": "USAP-DC", "science_program": null, "title": "Phylogenetic Analysis of Notoxcellia species.", "url": "https://www.usap-dc.org/view/dataset/601501"}, {"dataset_uid": "200382", "doi": "", "keywords": null, "people": null, "repository": "ZooBank", "science_program": null, "title": "Nomenclatural Act for the genus Notoxcellia", "url": "https://zoobank.org/NomenclaturalActs/5cf9609e-0111-4386-8518-bd50b5bdde0e"}, {"dataset_uid": "200383", "doi": "", "keywords": null, "people": null, "repository": "ZooBank", "science_program": null, "title": "Nomenclatural Act for the species Notoxcellia coronata", "url": "https://zoobank.org/NomenclaturalActs/194d91b2-e268-4238-89e2-385819f2c35b"}, {"dataset_uid": "200384", "doi": "", "keywords": null, "people": null, "repository": "ZooBank", "science_program": null, "title": "Nomenclatural Act for the species Notoxcellia picta", "url": "https://zoobank.org/NomenclaturalActs/31062dd2-7202-47fa-86e0-7be5c55ac0e2"}, {"dataset_uid": "601494", "doi": "10.15784/601494", "keywords": "Andvord Bay; Antarctica; Fish", "people": "Postlethwait, John; Desvignes, Thomas; Le Francois, Nathalie; Lauridsen, Henrik", "repository": "USAP-DC", "science_program": null, "title": "Morphological and pathological data of Trematomus scotti specimens captured on May 30th, 2018 in Andvord Bay.", "url": "https://www.usap-dc.org/view/dataset/601494"}], "date_created": "Thu, 01 Jul 2021 00:00:00 GMT", "description": "Antarctica\u2019s native animals face increasing stressors from warming oceans. A key unanswered question is how Antarctic life will respond. If warmer waters contribute to fish disease susceptibility, then iconic Antarctic predators they support, including penguins, seals, and killer whales, will suffer. A recent scientific cruise on the Antarctic peninsula encountered a population of crowned notothen fish that were plagued by pink, wart-like tumors that covered 10% to 30% of the body surface on about a third of the animals. Similar tumors had not previously been reported, suggesting that this might be a new disease that threatens Antarctic fish. The goal of proposed work is to identify the biological origins of the tumor and how it affects cell function and organismal physiology. The work is potentially transformative because it studies what might be a harbinger of Antarctic fish responses to global climate change. The project has several Broader Impacts. First, it will publicize the tumors. Because Antarctic researchers have never reported a tumor epidemic, the community must become aware of the outbreak and the tumor\u2019s distinct diagnostic features. Second, dissemination of project results will stir further research to determine if this is an isolated event or is becoming a general phenomenon, and thus a broad concern for Antarctic ecosystems. Third, assays the project develops to detect the disease will enhance research infrastructure. Finally, work will broaden the nation\u2019s scientific workforce by providing authentic research experiences for high school students and undergraduates from groups underrepresented in scientific research. The overall goal of proposed work is to identify the biological origins of the neoplasia and how it affects cell function and physiology. Aim 1 is to identify the pathogenic agent. Aim 1a is to test the hypothesis that a virus causes the neoplasia by isolating and sequencing viral nucleic acids from neoplasias and from animals that are not visibly affected. Aim 1b is to test neoplasias for bacteria, fungi, protozoa, or invertebrate parasites not present in healthy skin. Aim 2 is to learn how the disease alters the biology of affected cells. Aim 2a is to examine histological sections of affected and control tissues to see if the neoplasias are similar to previously reported skin diseases in temperate water fishes. Aim 2b is to examine the function of neoplastic cells by RNA-seq transcriptomics to identify genes that are differentially expressed in neoplasias and normal skin. Achieving these Aims will advance knowledge by identifying the causes and consequences of an outbreak of neoplasias in Antarctic fish. Proposed work is significant because it is the first to investigate a neoplasia cluster in Antarctic fish. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -62.3, "geometry": "POINT(-63.8 -64.15)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; Andvord Bay; Amd/Us; PROTISTS; BENTHIC; FISH; Dallmann Bay; USAP-DC; NSF/USA; AMD", "locations": "Andvord Bay; Dallmann Bay", "north": -63.3, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Postlethwait, John; Varsani, Arvind; Desvignes, Thomas", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "GenBank; MorphoSource; NCBI SRA; R2R; USAP-DC; ZooBank", "science_programs": null, "south": -65.0, "title": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish ", "uid": "p0010221", "west": -65.3}, {"awards": "1643877 Friedlaender, Ari", "bounds_geometry": "POLYGON((-65 -63.5,-64.5 -63.5,-64 -63.5,-63.5 -63.5,-63 -63.5,-62.5 -63.5,-62 -63.5,-61.5 -63.5,-61 -63.5,-60.5 -63.5,-60 -63.5,-60 -63.73,-60 -63.96,-60 -64.19,-60 -64.42,-60 -64.65,-60 -64.88,-60 -65.11,-60 -65.34,-60 -65.57,-60 -65.8,-60.5 -65.8,-61 -65.8,-61.5 -65.8,-62 -65.8,-62.5 -65.8,-63 -65.8,-63.5 -65.8,-64 -65.8,-64.5 -65.8,-65 -65.8,-65 -65.57,-65 -65.34,-65 -65.11,-65 -64.88,-65 -64.65,-65 -64.42,-65 -64.19,-65 -63.96,-65 -63.73,-65 -63.5))", "dataset_titles": "Motion-sensing biologging data from Antarctic minke whales, West Antarctic Peninsula", "datasets": [{"dataset_uid": "601542", "doi": "10.15784/601542", "keywords": "Antarctica; Antarctic Peninsula; Biologging; Foraging; Ice; Minke Whales", "people": "Friedlaender, Ari", "repository": "USAP-DC", "science_program": null, "title": "Motion-sensing biologging data from Antarctic minke whales, West Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601542"}], "date_created": "Fri, 25 Jun 2021 00:00:00 GMT", "description": "The Antarctic Peninsula is warming and one of the consequences is a decrease in sea ice cover. Antarctic minke whales are the largest ice-obligate krill predator in the region, yet- little is known about their foraging behavior and ecology. The goals of the project are to use a suite of new technological tools to measure the underwater behavior of the whales and better understand how they exploit the sea ice habitat. Using video-recording motion-sensing tags, the underwater movements of the whales can be reconstructed and it can be determine where and when they feed. UAS (unmanned aerial systems) will be used to generate real-time images of sea ice cover that will be linked with tag data to determine how much time whales spend in sea ice versus open water, and how the behavior of the whales changes between these two habitats. Lastly, scientific echosounders will be used to characterize the prey field that the whales are exploiting and differences in krill availability inside and out of the ice will be investigated. All of this information is critical to understand the ecological role of Antarctic minke whales so that better predictions can be made regarding impacts of climate change not only on these animals, but on the structure and function of the Antarctic marine ecosystem. The project will promote the progress of science by elucidating the ecological role of a poorly known Antarctic predator and using this information to better understand the impact of changes that are occurring in Polar Regions. The educational and outreach program will increase awareness and understanding of minke whales, Antarctic marine ecosystems, sea ice, and the dynamics of climate change through the use of film, social media, and curriculum development for formal STEM educators. To understand how changes in sea ice will manifest in the demography of predators that rely on sea ice habitat requires knowledge of their behavior and ecology. The largest ice-dependent krill predator and most abundant cetacean in the Southern Ocean is the Antarctic minke whale (AMW)- yet, virtually nothing is known of its foraging behavior or ecological role. Thus, the knowledge to understand how climate-driven changes will affect these animals and therefore the dynamics of the ecosystem as a whole is lacking. The project will use multi-sensor and video recording tags, fisheries acoustics, and unmanned aerial systems to study the foraging behavior and ecological role of minke whales in the waters of the Antarctic Peninsula. The following research questions will be posed: 1. What is the feeding performance of AMWs? 2. How important is sea ice to the foraging behavior of AMW? 3. How do AMWs feed directly under sea ice? Proven tagging and analytical approaches to characterize the underwater feeding behavior and kinematics of minke whales will be used. Combined with quantitative measurements of the prey field, the energetic costs of feeding will be measured and it will be determined how minke whales optimize energy gain. Using animal-borne video recording tags and UAS technology it will also be determined how much feeding occurs directly under sea ice and how this mode differs from open water feeding. This knowledge will: (1) significantly enhance knowledge of the least-studied Antarctic krill predator; and (2) be made directly available to international, long-term efforts to understand how climate-driven changes will affect the structure and function of the Antarctic marine ecosystem. The educational and outreach efforts aim to increase awareness and understanding of: (i) the ecological role of minke whales around the Antarctic Peninsula; (ii) the effects of environmental change on an abundant but largely unstudied marine predator; (iii) the advanced methods and technologies used by whale researchers to study these cryptic animals and their prey; and (iv) the variety of careers in the ocean sciences by sharing the experiences of scientists and students. These educational aims will be achieved by delivering continuous near-real-time delivery of project events and data to informal audiences through social media channels as well as curricula and professional development programs that will provide formal STEM educators with specific standards-compliant lesson plans.", "east": -60.0, "geometry": "POINT(-62.5 -64.65)", "instruments": null, "is_usap_dc": true, "keywords": "Andvord Bay; USAP-DC; MARINE ECOSYSTEMS; AMD; FIELD INVESTIGATION; Amd/Us; USA/NSF", "locations": "Andvord Bay", "north": -63.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Friedlaender, Ari", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.8, "title": "Foraging Behavior and Ecological Role of the Least Studied Antarctic Krill Predator, the Antarctic Minke Whale (Balaenoptera Bonaerensis)", "uid": "p0010207", "west": -65.0}, {"awards": "1443705 Vernet, Maria; 1443733 Winsor, Peter; 1443680 Smith, Craig", "bounds_geometry": "POLYGON((-66 -64,-65.6 -64,-65.2 -64,-64.8 -64,-64.4 -64,-64 -64,-63.6 -64,-63.2 -64,-62.8 -64,-62.4 -64,-62 -64,-62 -64.1,-62 -64.2,-62 -64.3,-62 -64.4,-62 -64.5,-62 -64.6,-62 -64.7,-62 -64.8,-62 -64.9,-62 -65,-62.4 -65,-62.8 -65,-63.2 -65,-63.6 -65,-64 -65,-64.4 -65,-64.8 -65,-65.2 -65,-65.6 -65,-66 -65,-66 -64.9,-66 -64.8,-66 -64.7,-66 -64.6,-66 -64.5,-66 -64.4,-66 -64.3,-66 -64.2,-66 -64.1,-66 -64))", "dataset_titles": "Andvord Bay Glacier Timelapse; Andvord Bay sediment core data collected during the FjordEco project (LMG1510 and NBP1603); Expedition Data; Expedition data of LMG1702; FjordEco Phytoplankton Ecology Dataset in Andvord Bay ; Fjord-Eco Sediment OrgC OrgN Data - Craig Smith; LMG1510 Expedition data; NBP1603 Expedition data; Sediment macrofaunal abundance and family richness from inner Andvord Bay to the open continental shelf", "datasets": [{"dataset_uid": "601236", "doi": "10.15784/601236", "keywords": "Abundance; Andvord Bay; Antarctica; Antarctic Peninsula; Biota; Fjord; LMG1510; Marine Sediments; Oceans; Polychaete; Polychaete Family Richness; R/v Laurence M. Gould; Sediment Core Data; Sediment Macrofauna", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "FjordEco", "title": "Sediment macrofaunal abundance and family richness from inner Andvord Bay to the open continental shelf", "url": "https://www.usap-dc.org/view/dataset/601236"}, {"dataset_uid": "601157", "doi": "10.15784/601157", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Snow/ice; Snow/Ice", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "FjordEco", "title": "Fjord-Eco Sediment OrgC OrgN Data - Craig Smith", "url": "https://www.usap-dc.org/view/dataset/601157"}, {"dataset_uid": "000402", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1702"}, {"dataset_uid": "200040", "doi": "10.7284/907085", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "LMG1510 Expedition data", "url": "https://www.rvdata.us/search/cruise/LMG1510"}, {"dataset_uid": "002733", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1702", "url": "https://www.rvdata.us/search/cruise/LMG1702"}, {"dataset_uid": "601158", "doi": "10.15784/601158", "keywords": "Antarctica; Antarctic Peninsula; Biota; Ecology; Fjord; Phytoplankton", "people": "Pan, B. Jack; Manck, Lauren; Vernet, Maria; Forsch, Kiefer", "repository": "USAP-DC", "science_program": "FjordEco", "title": "FjordEco Phytoplankton Ecology Dataset in Andvord Bay ", "url": "https://www.usap-dc.org/view/dataset/601158"}, {"dataset_uid": "601193", "doi": "10.15784/601193", "keywords": "Antarctica; Geochronology; Grain Size; LMG1510; NBP1603; Sediment; Sediment Core Data", "people": "Homolka, Khadijah; Nittrouer, Charles; Eidam, Emily; Smith, Craig", "repository": "USAP-DC", "science_program": null, "title": "Andvord Bay sediment core data collected during the FjordEco project (LMG1510 and NBP1603)", "url": "https://www.usap-dc.org/view/dataset/601193"}, {"dataset_uid": "001366", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1702"}, {"dataset_uid": "601111", "doi": "10.15784/601111", "keywords": "Antarctica; Antarctic Peninsula; Glaciers/ice Sheet; Glaciers/Ice Sheet; Iceberg; Photo; Photo/video; Photo/Video", "people": "Winsor, Peter; Truffer, Martin", "repository": "USAP-DC", "science_program": "FjordEco", "title": "Andvord Bay Glacier Timelapse", "url": "https://www.usap-dc.org/view/dataset/601111"}, {"dataset_uid": "200039", "doi": "10.7284/907205", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1603 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1603"}], "date_created": "Wed, 13 Feb 2019 00:00:00 GMT", "description": "Marine communities along the western Antarctic Peninsula are highly productive ecosystems which support a diverse assemblage of charismatic animals such as penguins, seals, and whales as well as commercial fisheries such as that on Antarctic krill. Fjords (long, narrow, deep inlets of the sea between high cliffs) along the central coast of the Peninsula appear to be intense, potentially climate sensitive, hotspots of biological production and biodiversity, yet the structure and dynamics of these fjord ecosystems are very poorly understood. Because of this intense biological activity and the charismatic fauna it supports, these fjords are also major destinations for a large Antarctic tourism industry. This project is an integrated field and modeling program to evaluate physical oceanographic processes, glacial inputs, water column community dynamics, and seafloor bottom community structure and function in these important yet little understood fjord systems. These Antarctic fjords have characteristics that are substantially different from well-studied Arctic fjords, likely yielding much different responses to climate warming. This project will provide major new insights into the dynamics and climate sensitivity of Antarctic fjord ecosystems, highlighting contrasts with Arctic sub-polar fjords, and potentially transforming our understanding of the ecological role of fjords in the rapidly warming west Antarctic coastal marine landscape. The project will also further the NSF goal of training new generations of scientists, providing scientific training for undergraduate, graduate, and postdoctoral students. This includes the unique educational opportunity for undergraduates to participate in research cruises in Antarctica and the development of a novel summer graduate course on fjord ecosystems. Internet based outreach activities will be enhanced and extended by the participation of a professional photographer who will produce magazine articles, websites, radio broadcasts, and other forms of public outreach on the fascinating Antarctic ecosystem. This project will involve a 15-month field program to test mechanistic hypotheses concerning oceanographic and glaciological forcing, and phytoplankton and benthic community response in the Antarctic fjords. Those efforts will be followed by a coupled physical/biological modeling effort to evaluate the drivers of biogeochemical cycles in the fjords and to explore their potential sensitivity to enhanced meltwater and sediment inputs. Fieldwork over two oceanographic cruises will utilize moorings, weather stations, and glacial, sea-ice and seafloor time-lapse cameras to obtain an integrated view of fjord ecosystem processes. The field team will also make multiple shipboard measurements and will use towed and autonomous underwater vehicles to intensively evaluate fjord ecosystem structure and function during spring/summer and autumn seasons. These integrated field and modeling studies are expected to elucidate fundamental properties of water column and sea bottom ecosystem structure and function in the fjords, and to identify key physical-chemical-glaciological forcing in these rapidly warming ecosystems.", "east": -62.0, "geometry": "POINT(-64 -64.5)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "OCEAN CURRENTS; Bellingshausen Sea; LMG1702; COMMUNITY DYNAMICS; FJORDS; R/V LMG; MARINE ECOSYSTEMS; USAP-DC; ECOSYSTEM FUNCTIONS; ANIMALS/INVERTEBRATES; SEDIMENTATION; NOT APPLICABLE; BENTHIC", "locations": "Bellingshausen Sea", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science", "paleo_time": null, "persons": "Winsor, Peter; Truffer, Martin; Smith, Craig; Powell, Brian; Merrifield, Mark; Vernet, Maria; Kohut, Josh", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": "FjordEco", "south": -65.0, "title": "Collaborative Research: Fjord Ecosystem Structure and Function on the West Antarctic Peninsula - Hotspots of Productivity and Biodiversity? (FjordEco)", "uid": "p0010010", "west": -66.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish
|
1947040 |
2021-07-01 | Postlethwait, John; Varsani, Arvind; Desvignes, Thomas | Antarctica’s native animals face increasing stressors from warming oceans. A key unanswered question is how Antarctic life will respond. If warmer waters contribute to fish disease susceptibility, then iconic Antarctic predators they support, including penguins, seals, and killer whales, will suffer. A recent scientific cruise on the Antarctic peninsula encountered a population of crowned notothen fish that were plagued by pink, wart-like tumors that covered 10% to 30% of the body surface on about a third of the animals. Similar tumors had not previously been reported, suggesting that this might be a new disease that threatens Antarctic fish. The goal of proposed work is to identify the biological origins of the tumor and how it affects cell function and organismal physiology. The work is potentially transformative because it studies what might be a harbinger of Antarctic fish responses to global climate change. The project has several Broader Impacts. First, it will publicize the tumors. Because Antarctic researchers have never reported a tumor epidemic, the community must become aware of the outbreak and the tumor’s distinct diagnostic features. Second, dissemination of project results will stir further research to determine if this is an isolated event or is becoming a general phenomenon, and thus a broad concern for Antarctic ecosystems. Third, assays the project develops to detect the disease will enhance research infrastructure. Finally, work will broaden the nation’s scientific workforce by providing authentic research experiences for high school students and undergraduates from groups underrepresented in scientific research. The overall goal of proposed work is to identify the biological origins of the neoplasia and how it affects cell function and physiology. Aim 1 is to identify the pathogenic agent. Aim 1a is to test the hypothesis that a virus causes the neoplasia by isolating and sequencing viral nucleic acids from neoplasias and from animals that are not visibly affected. Aim 1b is to test neoplasias for bacteria, fungi, protozoa, or invertebrate parasites not present in healthy skin. Aim 2 is to learn how the disease alters the biology of affected cells. Aim 2a is to examine histological sections of affected and control tissues to see if the neoplasias are similar to previously reported skin diseases in temperate water fishes. Aim 2b is to examine the function of neoplastic cells by RNA-seq transcriptomics to identify genes that are differentially expressed in neoplasias and normal skin. Achieving these Aims will advance knowledge by identifying the causes and consequences of an outbreak of neoplasias in Antarctic fish. Proposed work is significant because it is the first to investigate a neoplasia cluster in Antarctic fish. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-65.3 -63.3,-65 -63.3,-64.7 -63.3,-64.4 -63.3,-64.1 -63.3,-63.8 -63.3,-63.5 -63.3,-63.2 -63.3,-62.9 -63.3,-62.6 -63.3,-62.3 -63.3,-62.3 -63.47,-62.3 -63.64,-62.3 -63.81,-62.3 -63.98,-62.3 -64.15,-62.3 -64.32,-62.3 -64.49,-62.3 -64.66,-62.3 -64.83,-62.3 -65,-62.6 -65,-62.9 -65,-63.2 -65,-63.5 -65,-63.8 -65,-64.1 -65,-64.4 -65,-64.7 -65,-65 -65,-65.3 -65,-65.3 -64.83,-65.3 -64.66,-65.3 -64.49,-65.3 -64.32,-65.3 -64.15,-65.3 -63.98,-65.3 -63.81,-65.3 -63.64,-65.3 -63.47,-65.3 -63.3)) | POINT(-63.8 -64.15) | false | false | ||||
Foraging Behavior and Ecological Role of the Least Studied Antarctic Krill Predator, the Antarctic Minke Whale (Balaenoptera Bonaerensis)
|
1643877 |
2021-06-25 | Friedlaender, Ari |
|
The Antarctic Peninsula is warming and one of the consequences is a decrease in sea ice cover. Antarctic minke whales are the largest ice-obligate krill predator in the region, yet- little is known about their foraging behavior and ecology. The goals of the project are to use a suite of new technological tools to measure the underwater behavior of the whales and better understand how they exploit the sea ice habitat. Using video-recording motion-sensing tags, the underwater movements of the whales can be reconstructed and it can be determine where and when they feed. UAS (unmanned aerial systems) will be used to generate real-time images of sea ice cover that will be linked with tag data to determine how much time whales spend in sea ice versus open water, and how the behavior of the whales changes between these two habitats. Lastly, scientific echosounders will be used to characterize the prey field that the whales are exploiting and differences in krill availability inside and out of the ice will be investigated. All of this information is critical to understand the ecological role of Antarctic minke whales so that better predictions can be made regarding impacts of climate change not only on these animals, but on the structure and function of the Antarctic marine ecosystem. The project will promote the progress of science by elucidating the ecological role of a poorly known Antarctic predator and using this information to better understand the impact of changes that are occurring in Polar Regions. The educational and outreach program will increase awareness and understanding of minke whales, Antarctic marine ecosystems, sea ice, and the dynamics of climate change through the use of film, social media, and curriculum development for formal STEM educators. To understand how changes in sea ice will manifest in the demography of predators that rely on sea ice habitat requires knowledge of their behavior and ecology. The largest ice-dependent krill predator and most abundant cetacean in the Southern Ocean is the Antarctic minke whale (AMW)- yet, virtually nothing is known of its foraging behavior or ecological role. Thus, the knowledge to understand how climate-driven changes will affect these animals and therefore the dynamics of the ecosystem as a whole is lacking. The project will use multi-sensor and video recording tags, fisheries acoustics, and unmanned aerial systems to study the foraging behavior and ecological role of minke whales in the waters of the Antarctic Peninsula. The following research questions will be posed: 1. What is the feeding performance of AMWs? 2. How important is sea ice to the foraging behavior of AMW? 3. How do AMWs feed directly under sea ice? Proven tagging and analytical approaches to characterize the underwater feeding behavior and kinematics of minke whales will be used. Combined with quantitative measurements of the prey field, the energetic costs of feeding will be measured and it will be determined how minke whales optimize energy gain. Using animal-borne video recording tags and UAS technology it will also be determined how much feeding occurs directly under sea ice and how this mode differs from open water feeding. This knowledge will: (1) significantly enhance knowledge of the least-studied Antarctic krill predator; and (2) be made directly available to international, long-term efforts to understand how climate-driven changes will affect the structure and function of the Antarctic marine ecosystem. The educational and outreach efforts aim to increase awareness and understanding of: (i) the ecological role of minke whales around the Antarctic Peninsula; (ii) the effects of environmental change on an abundant but largely unstudied marine predator; (iii) the advanced methods and technologies used by whale researchers to study these cryptic animals and their prey; and (iv) the variety of careers in the ocean sciences by sharing the experiences of scientists and students. These educational aims will be achieved by delivering continuous near-real-time delivery of project events and data to informal audiences through social media channels as well as curricula and professional development programs that will provide formal STEM educators with specific standards-compliant lesson plans. | POLYGON((-65 -63.5,-64.5 -63.5,-64 -63.5,-63.5 -63.5,-63 -63.5,-62.5 -63.5,-62 -63.5,-61.5 -63.5,-61 -63.5,-60.5 -63.5,-60 -63.5,-60 -63.73,-60 -63.96,-60 -64.19,-60 -64.42,-60 -64.65,-60 -64.88,-60 -65.11,-60 -65.34,-60 -65.57,-60 -65.8,-60.5 -65.8,-61 -65.8,-61.5 -65.8,-62 -65.8,-62.5 -65.8,-63 -65.8,-63.5 -65.8,-64 -65.8,-64.5 -65.8,-65 -65.8,-65 -65.57,-65 -65.34,-65 -65.11,-65 -64.88,-65 -64.65,-65 -64.42,-65 -64.19,-65 -63.96,-65 -63.73,-65 -63.5)) | POINT(-62.5 -64.65) | false | false | |||
Collaborative Research: Fjord Ecosystem Structure and Function on the West Antarctic Peninsula - Hotspots of Productivity and Biodiversity? (FjordEco)
|
1443705 1443733 1443680 |
2019-02-13 | Winsor, Peter; Truffer, Martin; Smith, Craig; Powell, Brian; Merrifield, Mark; Vernet, Maria; Kohut, Josh | Marine communities along the western Antarctic Peninsula are highly productive ecosystems which support a diverse assemblage of charismatic animals such as penguins, seals, and whales as well as commercial fisheries such as that on Antarctic krill. Fjords (long, narrow, deep inlets of the sea between high cliffs) along the central coast of the Peninsula appear to be intense, potentially climate sensitive, hotspots of biological production and biodiversity, yet the structure and dynamics of these fjord ecosystems are very poorly understood. Because of this intense biological activity and the charismatic fauna it supports, these fjords are also major destinations for a large Antarctic tourism industry. This project is an integrated field and modeling program to evaluate physical oceanographic processes, glacial inputs, water column community dynamics, and seafloor bottom community structure and function in these important yet little understood fjord systems. These Antarctic fjords have characteristics that are substantially different from well-studied Arctic fjords, likely yielding much different responses to climate warming. This project will provide major new insights into the dynamics and climate sensitivity of Antarctic fjord ecosystems, highlighting contrasts with Arctic sub-polar fjords, and potentially transforming our understanding of the ecological role of fjords in the rapidly warming west Antarctic coastal marine landscape. The project will also further the NSF goal of training new generations of scientists, providing scientific training for undergraduate, graduate, and postdoctoral students. This includes the unique educational opportunity for undergraduates to participate in research cruises in Antarctica and the development of a novel summer graduate course on fjord ecosystems. Internet based outreach activities will be enhanced and extended by the participation of a professional photographer who will produce magazine articles, websites, radio broadcasts, and other forms of public outreach on the fascinating Antarctic ecosystem. This project will involve a 15-month field program to test mechanistic hypotheses concerning oceanographic and glaciological forcing, and phytoplankton and benthic community response in the Antarctic fjords. Those efforts will be followed by a coupled physical/biological modeling effort to evaluate the drivers of biogeochemical cycles in the fjords and to explore their potential sensitivity to enhanced meltwater and sediment inputs. Fieldwork over two oceanographic cruises will utilize moorings, weather stations, and glacial, sea-ice and seafloor time-lapse cameras to obtain an integrated view of fjord ecosystem processes. The field team will also make multiple shipboard measurements and will use towed and autonomous underwater vehicles to intensively evaluate fjord ecosystem structure and function during spring/summer and autumn seasons. These integrated field and modeling studies are expected to elucidate fundamental properties of water column and sea bottom ecosystem structure and function in the fjords, and to identify key physical-chemical-glaciological forcing in these rapidly warming ecosystems. | POLYGON((-66 -64,-65.6 -64,-65.2 -64,-64.8 -64,-64.4 -64,-64 -64,-63.6 -64,-63.2 -64,-62.8 -64,-62.4 -64,-62 -64,-62 -64.1,-62 -64.2,-62 -64.3,-62 -64.4,-62 -64.5,-62 -64.6,-62 -64.7,-62 -64.8,-62 -64.9,-62 -65,-62.4 -65,-62.8 -65,-63.2 -65,-63.6 -65,-64 -65,-64.4 -65,-64.8 -65,-65.2 -65,-65.6 -65,-66 -65,-66 -64.9,-66 -64.8,-66 -64.7,-66 -64.6,-66 -64.5,-66 -64.4,-66 -64.3,-66 -64.2,-66 -64.1,-66 -64)) | POINT(-64 -64.5) | false | false |