{"dp_type": "Project", "free_text": "ALTIMETERS"}
[{"awards": "1443690 Young, Duncan", "bounds_geometry": "POLYGON((95 -68,100.5 -68,106 -68,111.5 -68,117 -68,122.5 -68,128 -68,133.5 -68,139 -68,144.5 -68,150 -68,150 -70.2,150 -72.4,150 -74.6,150 -76.8,150 -79,150 -81.2,150 -83.4,150 -85.6,150 -87.8,150 -90,144.5 -90,139 -90,133.5 -90,128 -90,122.5 -90,117 -90,111.5 -90,106 -90,100.5 -90,95 -90,95 -87.8,95 -85.6,95 -83.4,95 -81.2,95 -79,95 -76.8,95 -74.6,95 -72.4,95 -70.2,95 -68))", "dataset_titles": "Airborne potential fields data from Titan Dome, Antarctica; ICECAP Basal Interface Specularity Content Profiles: IPY and OIB; ICECAP: Gridded boundary conditions for Little Dome C, Antarctica, and extracted subglacial lake locations; ICECAP: High resolution survey of the Little Dome C region in support of the IPICS Old Ice goal; ICECAP radargrams in support of the international old ice search at Dome C - 2016; Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau; SPICECAP/ICECAP II Instrument Measurements (LASER, MAGNETICS and POSITIONING); Titan Dome, East Antarctica, Aerogeophysical Survey", "datasets": [{"dataset_uid": "601411", "doi": "10.15784/601411", "keywords": "Antarctica; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; ICECAP; Ice Penetrating Radar; Internal Reflecting Horizons", "people": "Paden, John; Blankenship, Donald D.; Schroeder, Dustin; Tozer, Carly; Roberts, Jason; Frezzotti, Massimo; Muldoon, Gail R.; Quartini, Enrica; Kempf, Scott D.; Ng, Gregory; Greenbaum, Jamin; Ritz, Catherine; Mulvaney, Robert; Young, Duncan A.; Cavitte, Marie G. P", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau", "url": "https://www.usap-dc.org/view/dataset/601411"}, {"dataset_uid": "601371", "doi": "10.15784/601371", "keywords": "Antarctica; East Antarctica; ICECAP; Ice Penetrating Radar; Radar Echo Sounder; Radar Echo Sounding; Subglacial Hydrology", "people": "Blankenship, Donald D.; Young, Duncan A.; van Ommen, Tas; Roberts, Jason; Schroeder, Dustin; Greenbaum, Jamin; Siegert, Martin", "repository": "USAP-DC", "science_program": null, "title": "ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "url": "https://www.usap-dc.org/view/dataset/601371"}, {"dataset_uid": "200233", "doi": "http://dx.doi.org/doi:10.26179/5wkf-7361", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "ICECAP radargrams in support of the international old ice search at Dome C - 2016", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_ICECAP_OIA_RADARGRAMS"}, {"dataset_uid": "200235", "doi": "10.26179/jydx-yz69", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "SPICECAP/ICECAP II Instrument Measurements (LASER, MAGNETICS and POSITIONING)", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_ICECAP_OIA_Level1B_AEROGEOPHYSICS"}, {"dataset_uid": "601437", "doi": "10.15784/601437", "keywords": "Airborne Laser Altimetry; Airborne Radar; Airplane; Antarctica; Bedrock Elevation; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness; Radar Echo Sounder; Surface Elevation; Titan Dome", "people": "Blankenship, Donald D.; Bo, Sun; Young, Duncan; Greenbaum, Jamin; Cavitte, Marie G. P; Young, Duncan A.; Jingxue, Guo; Beem, Lucas H.; Ng, Gregory", "repository": "USAP-DC", "science_program": null, "title": "Titan Dome, East Antarctica, Aerogeophysical Survey", "url": "https://www.usap-dc.org/view/dataset/601437"}, {"dataset_uid": "601461", "doi": "10.15784/601461", "keywords": "Antarctica; ICECAP; Titan Dome", "people": "Jingxue, Guo; Bo, Sun; Blankenship, Donald D.; Young, Duncan A.; Greenbaum, Jamin", "repository": "USAP-DC", "science_program": null, "title": "Airborne potential fields data from Titan Dome, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601461"}, {"dataset_uid": "601463", "doi": "10.15784/601463", "keywords": "Antarctica; Epica Dome C; ICECAP; Ice Penetrating Radar; Subglacial Lake", "people": "Roberts, Jason; Blankenship, Donald D.; Van Ommen, Tas; Corr, Hugh F. J.; Urbini, Stefano; Steinhage, Daniel; Tozer, Carly; Cavitte, Marie G. P; Quartini, Enrica; Frezzotti, Massimo; Ritz, Catherine; Young, Duncan A.", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "ICECAP: Gridded boundary conditions for Little Dome C, Antarctica, and extracted subglacial lake locations", "url": "https://www.usap-dc.org/view/dataset/601463"}, {"dataset_uid": "601355", "doi": "10.15784/601355", "keywords": "Aerogeophysics; Antarctica; Bed Elevation; Bed Reflectivity; Epica Dome C; Ice Thickness", "people": "Ritz, Catherine; Kempf, Scott D.; Habbal, Feras; Ng, Gregory; Tozer, Carly; Quartini, Enrica; Beem, Lucas H.; Cavitte, Marie G. P; Greenbaum, Jamin; Richter, Thomas; van Ommen, Tas; Blankenship, Donald D.; Roberts, Jason; Young, Duncan A.", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "ICECAP: High resolution survey of the Little Dome C region in support of the IPICS Old Ice goal", "url": "https://www.usap-dc.org/view/dataset/601355"}], "date_created": "Tue, 07 Jul 2020 00:00:00 GMT", "description": "This study focuses on processing and interpretation of internationally collected aerogeophysical data from the Southern Plateau of the East Antarctic Ice Sheet. The data include ice penetrating radar data, laser altimetry, gravity and magnetics. The project will provide information on geological trends under the ice, the topography and character of the ice/rock interface, and the stratigraphy of the ice. The project will also provide baseline site characterization for future drilling. Future drilling sites and deep ice cores for old ice require that the base of the ice sheet be frozen to the bed (i.e. no free water at the interface between rock and ice) and the assessment will map the extent of frozen vs. thawed areas. Specifically, three main outcomes are anticipated for this project. First, the study will provide an assessment of the viability of Titan Dome, a subglacial highland region located near South Pole, as a potential old ice drilling prospect. The assessment will include determining the hydraulic context of the bed by processing and interpreting the radar data, ice sheet mass balance through time by mapping englacial reflectors in the ice and connecting them to ice stratigraphy in the recent South Pole, and ice sheet geometry using laser altimetry. Second, the study will provide an assessment of the geological context of the Titan Dome region with respect to understanding regional geologic boundaries and the potential for bedrock sampling. For these two goals, we will use data opportunistically collected by China, and the recent PolarGAP dataset. Third, the study will provide an assessment of the risk posture for RAID site targeting in the Titan Dome region, and the Dome C region. This will use a high-resolution dataset the team collected previously at Dome C, an area similar to the coarser resolution data collected at Titan Dome, and will enable an understanding of what is missed by the wide lines spacing at Titan Dome. Specifically, we will model subglacial hydrology with and without the high resolution data, and statistically examine the detection of subglacial mountains (which could preserve old ice) and subglacial lakes (which could destroy old ice), as a function of line spacing.", "east": 150.0, "geometry": "POINT(122.5 -79)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e LIDAR ALTIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e NUCLEAR PRECESSION MAGNETOMETER", "is_usap_dc": true, "keywords": "BT-67; MAGNETIC ANOMALIES; Epica Dome C; GRAVITY ANOMALIES; GLACIER ELEVATION/ICE SHEET ELEVATION; GLACIER THICKNESS/ICE SHEET THICKNESS", "locations": "Epica Dome C", "north": -68.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Young, Duncan A.; Blankenship, Donald D.; Roberts, Jason; Bo, Sun", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e BT-67", "repo": "USAP-DC", "repositories": "AADC; USAP-DC", "science_programs": "Dome C Ice Core", "south": -90.0, "title": "Collaborative Research: Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP)", "uid": "p0010115", "west": 95.0}, {"awards": "9978236 Bell, Robin", "bounds_geometry": "POLYGON((101 -75.5,101.9 -75.5,102.8 -75.5,103.7 -75.5,104.6 -75.5,105.5 -75.5,106.4 -75.5,107.3 -75.5,108.2 -75.5,109.1 -75.5,110 -75.5,110 -75.85,110 -76.2,110 -76.55,110 -76.9,110 -77.25,110 -77.6,110 -77.95,110 -78.3,110 -78.65,110 -79,109.1 -79,108.2 -79,107.3 -79,106.4 -79,105.5 -79,104.6 -79,103.7 -79,102.8 -79,101.9 -79,101 -79,101 -78.65,101 -78.3,101 -77.95,101 -77.6,101 -77.25,101 -76.9,101 -76.55,101 -76.2,101 -75.85,101 -75.5))", "dataset_titles": "SOAR-Lake Vostok Survey airborne radar data; SOAR-Lake Vostok Survey bed elevation data; SOAR-Lake Vostok Survey Gravity data; SOAR-Lake Vostok Survey ice thickness data; SOAR-Lake Vostok survey magnetic anomaly data; SOAR-Lake Vostok Survey surface elevation data", "datasets": [{"dataset_uid": "601297", "doi": "10.1594/IEDA/306567", "keywords": "Airborne Laser Altimeters; Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Sheet; Ice Stratigraphy; Ice Thickness; Ice Thickness Distribution; Lake Vostok; Radar; Radar Altimetry; Radar Echo Sounder; SOAR; Subglacial Lake", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey ice thickness data", "url": "https://www.usap-dc.org/view/dataset/601297"}, {"dataset_uid": "601296", "doi": " 10.1594/IEDA/306564", "keywords": "Airborne Magnetic; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Lake Vostok; Magnetic; Magnetic Anomaly; Magnetometer; Potential Field; SOAR; Solid Earth", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok survey magnetic anomaly data", "url": "https://www.usap-dc.org/view/dataset/601296"}, {"dataset_uid": "601299", "doi": "10.1594/IEDA/306565", "keywords": "Airborne Laser Altimeters; Airborne Laser Altimetry; Airborne Radar; Airplane; Antarctica; Bed Elevation; Bedrock Elevation; Digital Elevation Model; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Lake Vostok; Radar; Radar Echo Sounder; SOAR", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey bed elevation data", "url": "https://www.usap-dc.org/view/dataset/601299"}, {"dataset_uid": "601298", "doi": "10.1594/IEDA/306566", "keywords": "Airborne Altimetry; Airborne Laser Altimeters; Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Ice Sheet Elevation; Ice Surface; Lake Vostok; Radar Echo Sounder; SOAR; Surface Elevation", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey surface elevation data", "url": "https://www.usap-dc.org/view/dataset/601298"}, {"dataset_uid": "601295", "doi": "10.1594/IEDA/306563", "keywords": "Airborne Gravity; Airplane; Antarctica; East Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Lake Vostok; Potential Field; Solid Earth", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey Gravity data", "url": "https://www.usap-dc.org/view/dataset/601295"}, {"dataset_uid": "601300", "doi": "10.1594/IEDA/306568", "keywords": "Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Lake Vostok; Navigation; Radar; SOAR; Subglacial Lakes", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey airborne radar data", "url": "https://www.usap-dc.org/view/dataset/601300"}], "date_created": "Fri, 24 Apr 2020 00:00:00 GMT", "description": "This award, provided by the Office of Polar Programs under the Life in Extreme Environments (LExEn) Program, supports a geophysical study of Lake Vostok, a large lake beneath the East Antarctic Ice Sheet. \u003cbr/\u003e\u003cbr/\u003eSubglacial ecosystems, in particular subglacial lake ecosystems are extreme oligotrophic environments. These environments, and the ecosystems which may exist within them, should provide key insights into a range of fundamental questions about the development of Earth and other bodies in the Solar System including: 1) the processes associated with rapid evolutionary radiation after the extensive Neoproterozoic glaciations; 2) the overall carbon cycle through glacial and interglacial periods; and 3) the possible adaptations organisms may require to thrive in environments such as on Europa, the ice covered moon of Jupiter. Over 70 subglacial lakes have been identified beneath the 3-4 kilometer thick ice of Antarctica. One lake, Lake Vostok, is sufficiently large to be clearly identified from space with satellite altimetry. Lake Vostok is similar to Lake Ontario in area but with a much larger volume including measured water depths of 600 meters. The overlying ice sheet is acting as a conveyer belt continually delivering new water, nutrients, gas hydrates, sediments and microbes as the ice sheet flows across the lake. \u003cbr/\u003e\u003cbr/\u003eThe goal of this program is to determine the fundamental boundary conditions for this subglacial lake as an essential first step toward understanding the physical processes within the lake. An aerogeophysical survey over the lake and into the surrounding regions will be acquired to meet this goal. This data set includes gravity, magnetic, laser altimetry and ice penetrating radar data and will be used to compile a basic set of ice surface elevation, subglacial topography, gravity and magnetic anomaly maps. \u003cbr/\u003e\u003cbr/\u003ePotential field methods widely used in the oil industry will be modified to estimate the subglacial topography from gravity data where the ice penetrating radar will be unable to recover the depth of the lake. A similar method can be modified to estimate the thickness of the sediments beneath the lake from magnetic data. These methods will be tested and applied to subglacial lakes near South Pole prior to the Lake Vostok field campaign and will provide valuable comparisons to the planned survey. Once the methods have been adjusted for the Lake Vostok application, maps of the water cavity and sediment thickness beneath the lake will be produced.\u003cbr/\u003e\u003cbr/\u003eThese maps will become tools to explore the geologic origin of the lake. The two endmember models are, first, that the lake is an active tectonic rift such as Lake Baikal and, second, the lake is the result of glacial scouring. The distinct characteristics of an extensional rift can be easily identified with our aerogeophysical survey. The geological interpretation of the airborne geophysical survey will provide the first geological constraints of the interior of the East Antarctic continent based on modern data. In addition, the underlying geology will influence the ecosystem within the lake. \u003cbr/\u003e\u003cbr/\u003eOne of the critical issues for the ecosystem within the lake will be the flux of nutrients. A preliminary estimation of the regions of freezing and melting based on the distance between distinctive internal layers observed on the radar data will be made. These basic boundary conditions will provide guidance for a potential international effort aimed at in situ exploration of the lake and improve the understanding of East Antarctic geologic structures.", "east": 110.0, "geometry": "POINT(105.5 -77.25)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e MAGNETOMETERS \u003e MGF; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e AIRGRAV", "is_usap_dc": true, "keywords": "Gravity; GLACIERS/ICE SHEETS; East Antarctica; USAP-DC; Lake Vostok; Airborne Radar; Subglacial Lake; MAGNETIC FIELD; GRAVITY", "locations": "East Antarctica; Lake Vostok", "north": -75.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bell, Robin; Studinger, Michael S.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work\r\n", "uid": "p0010097", "west": 101.0}, {"awards": "1246203 Gooseff, Michael; 1245749 Levy, Joseph; 1246342 Fountain, Andrew", "bounds_geometry": "POLYGON((160.105465 -77.2119,160.7907435 -77.2119,161.476022 -77.2119,162.1613005 -77.2119,162.846579 -77.2119,163.5318575 -77.2119,164.217136 -77.2119,164.9024145 -77.2119,165.587693 -77.2119,166.2729715 -77.2119,166.95825 -77.2119,166.95825 -77.3189628,166.95825 -77.4260256,166.95825 -77.5330884,166.95825 -77.6401512,166.95825 -77.747214,166.95825 -77.8542768,166.95825 -77.9613396,166.95825 -78.0684024,166.95825 -78.1754652,166.95825 -78.282528,166.2729715 -78.282528,165.587693 -78.282528,164.9024145 -78.282528,164.217136 -78.282528,163.5318575 -78.282528,162.846579 -78.282528,162.1613005 -78.282528,161.476022 -78.282528,160.7907435 -78.282528,160.105465 -78.282528,160.105465 -78.1754652,160.105465 -78.0684024,160.105465 -77.9613396,160.105465 -77.8542768,160.105465 -77.747214,160.105465 -77.6401512,160.105465 -77.5330884,160.105465 -77.4260256,160.105465 -77.3189628,160.105465 -77.2119))", "dataset_titles": "2014-2015 lidar survey of the McMurdo Dry Valleys, Antarctica; Active Layer Temperatures from Crescent Stream banks, Taylor Valley Antarctica", "datasets": [{"dataset_uid": "000209", "doi": "", "keywords": null, "people": null, "repository": "OpenTopo", "science_program": null, "title": "2014-2015 lidar survey of the McMurdo Dry Valleys, Antarctica", "url": "http://opentopo.sdsc.edu/datasetMetadata?otCollectionID=OT.112016.3294.1"}, {"dataset_uid": "601075", "doi": "10.15784/601075", "keywords": "Antarctica; Dry Valleys; Glaciology; Paleoclimate; Permafrost; Soil Temperature; Taylor Valley", "people": "Gooseff, Michael N.", "repository": "USAP-DC", "science_program": null, "title": "Active Layer Temperatures from Crescent Stream banks, Taylor Valley Antarctica", "url": "https://www.usap-dc.org/view/dataset/601075"}], "date_created": "Wed, 20 Dec 2017 00:00:00 GMT", "description": "Collaborative Research: THE MCMURDO DRY VALLEYS: A Landscape on the Threshold of Change is supported by the Antarctic Integrated System Science (AISS) program in the Antarctic Sciences Section of the Division of Polar Programs within the Geosciences Directorate of the National Sciences Foundation (NSF). The funds will support the collection of state-of-the-art high resolution LIDAR (combining the terms light and radar) imagery of the Dry Valleys of Antarctica in the 2014/2015 Antarctic field season, with LIDAR data collection and processing being provided by the NSF-supported NCALM (National Center for Airborne Laser Mapping) facility. LIDAR images collected in 2014/2015 will be compared to images from 2001 in order to detect decadal change. Additional fieldwork will look at the distribution of buried massive ice, and the impacts that major changes like slumping are having on the biota. All field data will be used to improve models on energy balance, and hydrology.\u003cbr/\u003e\u003cbr/\u003eIntellectual Merit: There have been dramatic changes over the past decade in the McMurdo Dry Valleys: rivers are incising by more than three meters, and thermokarst slumps are appearing near several streams and lakes. These observations have all been made by researchers in the field, but none of the changes have been mapped on a valley-wide scale. This award will provide a new baseline map for the entire Dry Valley system, with high-resolution imagery provided for the valley floors, and lower resolution imagery available for the higher elevation areas that are undergoing less change. The project will test the idea that sediment-covered ice is associated with the most dramatic changes, due to differential impacts of the increased solar radiation on sediment-covered compared to clean ice, and despite the current trend of slightly cooling air temperatures within the Dry Valleys. Information collected on the topography, coupled with the GPR determined buried ice distributions, will also be incorporated into improved energy and hydrological models. In addition to providing the new high-resolution digital elevation model (DEM), the project will ultimately result in identification of areas that are susceptible to sediment-enhanced melt-driven change, providing a powerful prediction tool for the impacts of climate change.\u003cbr/\u003e\u003cbr/\u003eBroader Impacts: The new DEM will be immediately useful to a wide range of disciplines, and will provide a comprehensive new baseline against which future changes will be compared. The project will provide a tool for the whole community to use, and the investigators will work with the community to make them aware of the new assets via public presentations, and perhaps via a workshop. The map will have international interest, and will also serve as a tool for environmental managers to draw on as they consider conservation plans. Several undergraduate and graduate students will participate in the project, and one of the co-PIs is a new investigator. The imagery collected is expected to be of interest to the general public in addition to scientific researchers, and venues for outreach such as museum exhibits and the internet will be explored. The proposed work is synergistic with 1) the co-located McMurdo LTER program, and 2) the NCALM facility that is also funded by the Geosciences Directorate.", "east": 166.95825, "geometry": "POINT(163.5318575 -77.747214)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e AIRBORNE LASER SCANNER", "is_usap_dc": true, "keywords": "USAP-DC; Antarctica; Not provided; LANDFORMS; NOT APPLICABLE", "locations": "Antarctica", "north": -77.2119, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Levy, Joseph; Gooseff, Michael N.; Fountain, Andrew", "platforms": "Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "OpenTopo", "repositories": "OpenTopo; USAP-DC", "science_programs": null, "south": -78.282528, "title": "Collaborative Research: THE MCMURDO DRY VALLEYS: A landscape on the Threshold of Change", "uid": "p0000076", "west": 160.105465}, {"awards": "1043761 Young, Duncan", "bounds_geometry": "POLYGON((-145 -74,-141.6 -74,-138.2 -74,-134.8 -74,-131.4 -74,-128 -74,-124.6 -74,-121.2 -74,-117.8 -74,-114.4 -74,-111 -74,-111 -74.6,-111 -75.2,-111 -75.8,-111 -76.4,-111 -77,-111 -77.6,-111 -78.2,-111 -78.8,-111 -79.4,-111 -80,-114.4 -80,-117.8 -80,-121.2 -80,-124.6 -80,-128 -80,-131.4 -80,-134.8 -80,-138.2 -80,-141.6 -80,-145 -80,-145 -79.4,-145 -78.8,-145 -78.2,-145 -77.6,-145 -77,-145 -76.4,-145 -75.8,-145 -75.2,-145 -74.6,-145 -74))", "dataset_titles": "AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment; Geophysical Investigations of Marie Byrd Land Lithospheric Evolution (GIMBLE) Airborne VHF Radar Transects: 2012/2013 and 2014/2015; Gravity disturbance data over central Marie Byrd Land, West Antarctica (GIMBLE.GGCMG2); Ice thickness and related data over central Marie Byrd Land, West Antarctica (GIMBLE.GR2HI2); Magnetic anomaly data over central Marie Byrd Land, West Antarctica (GIMBLE.GMGEO2)", "datasets": [{"dataset_uid": "200407", "doi": "10.18738/T8/BMXUHX", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "Geophysical Investigations of Marie Byrd Land Lithospheric Evolution (GIMBLE) Airborne VHF Radar Transects: 2012/2013 and 2014/2015", "url": "https://doi.org/10.18738/T8/BMXUHX"}, {"dataset_uid": "601673", "doi": "10.15784/601673", "keywords": "Antarchitecture; Antarctica; Ice Penetrating Radar; Isochron; Layers; Radar; Radioglaciology; Thwaites Glacier", "people": "Jackson, Charles; Blankenship, Donald D.; Muldoon, Gail R.; Young, Duncan A.", "repository": "USAP-DC", "science_program": null, "title": "AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment", "url": "https://www.usap-dc.org/view/dataset/601673"}, {"dataset_uid": "601003", "doi": "10.15784/601003", "keywords": "Antarctica; Gimble; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravity; Marie Byrd Land; Navigation; Potential Field; Solid Earth", "people": "Young, Duncan A.; Blankenship, Donald D.; Holt, John W.", "repository": "USAP-DC", "science_program": null, "title": "Gravity disturbance data over central Marie Byrd Land, West Antarctica (GIMBLE.GGCMG2)", "url": "https://www.usap-dc.org/view/dataset/601003"}, {"dataset_uid": "601002", "doi": "10.15784/601002", "keywords": "Antarctica; Gimble; Glaciers/ice Sheet; Glaciers/Ice Sheet; Magnetic; Marie Byrd Land; Navigation; Potential Field; Solid Earth", "people": "Holt, John W.; Young, Duncan A.; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "Magnetic anomaly data over central Marie Byrd Land, West Antarctica (GIMBLE.GMGEO2)", "url": "https://www.usap-dc.org/view/dataset/601002"}, {"dataset_uid": "601001", "doi": "10.15784/601001", "keywords": "Airborne Radar; Antarctica; Gimble; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness; Marie Byrd Land; Navigation; Radar", "people": "Young, Duncan A.; Holt, John W.; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "Ice thickness and related data over central Marie Byrd Land, West Antarctica (GIMBLE.GR2HI2)", "url": "https://www.usap-dc.org/view/dataset/601001"}], "date_created": "Tue, 01 Dec 2015 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe PIs propose to use airborne geophysics to provide detailed geophysical mapping over the Marie Byrd Land dome of West Antarctica. They will use a Basler equipped with advanced ice penetrating radar, a magnetometer, an airborne gravimeter and laser altimeter. They will test models of Marie Byrd Land lithospheric evolution in three ways: 1) constrain bedrock topography and crustal structure of central Marie Byrd Land for the first time; 2) map subglacial geomorphology of Marie Byrd Land to constrain landscape evolution; and 3) map the distribution of subglacial volcanic centers and identify active sources. Marie Byrd Land is one of the few parts of West Antarctica whose bedrock lies above sea level; as such, it has a key role to play in the formation and decay of the West Antarctic Ice Sheet (WAIS), and thus on eustatic sea level change during the Neogene. Several lines of evidence suggest that the topography of Marie Byrd Land has changed over the course of the Cenozoic, with significant implications for the origin and evolution of the ice sheet.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis work will have important implications for both the cryospheric and geodynamic communities. These data will also leverage results from the POLENET project. The PIs will train both graduate and undergraduate students in the interpretation of large geophysical datasets providing them with the opportunity to co-author peer-reviewed papers and present their work to the broader science community. This research will also support a young female researcher. The PIs will conduct informal education using their Polar Studies website and contribute formally to K-12 curriculum development. The research will incorporate microblogging and data access to allow the project?s first-order hypothesis to be confirmed or denied in public.", "east": -111.0, "geometry": "POINT(-128 -77)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e HICARS1; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e LIDAR ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e NUCLEAR PRECESSION MAGNETOMETER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e CMG-GT-1A", "is_usap_dc": false, "keywords": "BT-67; Marie Byrd Land; ICE SHEETS", "locations": "Marie Byrd Land", "north": -74.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Young, Duncan A.; Holt, John W.; Blankenship, Donald D.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e BT-67", "repo": "Texas Data Repository", "repositories": "Texas Data Repository; USAP-DC", "science_programs": null, "south": -80.0, "title": "Geophysical Investigations of Marie Byrd Land Lithospheric Evolution (GIMBLE)", "uid": "p0000435", "west": -145.0}, {"awards": "1240707 Fahnestock, Mark; 0632292 Bell, Robin", "bounds_geometry": "POLYGON((65 -77.5,67.4 -77.5,69.8 -77.5,72.2 -77.5,74.6 -77.5,77 -77.5,79.4 -77.5,81.8 -77.5,84.2 -77.5,86.6 -77.5,89 -77.5,89 -78.25,89 -79,89 -79.75,89 -80.5,89 -81.25,89 -82,89 -82.75,89 -83.5,89 -84.25,89 -85,86.6 -85,84.2 -85,81.8 -85,79.4 -85,77 -85,74.6 -85,72.2 -85,69.8 -85,67.4 -85,65 -85,65 -84.25,65 -83.5,65 -82.75,65 -82,65 -81.25,65 -80.5,65 -79.75,65 -79,65 -78.25,65 -77.5))", "dataset_titles": "Data Access Tool; Processed Ice Penetrating Radar Altimeter data (SEGY format) from the Gamburtsev Mountains in Antarctica acquired during GAMBIT; Processed Ice Penetrating Radar Data (jpeg images) from the Gamburtsev Mountains in Antarctica acquired during GAMBIT ; Processed Ice Penetrating Radar Data (Matlab format) from the Gamburtsev Mountains in Antarctica acquired during GAMBIT ; Processed Ice Penetrating Radar Data (Netcdf format) from the Gamburtsev Mountains in Antarctica acquired during GAMBIT ", "datasets": [{"dataset_uid": "601285", "doi": null, "keywords": "Airborne Radar; Airplane; Antarctica; East Antarctica; Gamburtsev Mountains; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Radar Echo Sounder", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "Processed Ice Penetrating Radar Data (Netcdf format) from the Gamburtsev Mountains in Antarctica acquired during GAMBIT ", "url": "https://www.usap-dc.org/view/dataset/601285"}, {"dataset_uid": "001489", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "Data Access Tool", "url": "http://www.marine-geo.org/tools/search/entry.php?id=AGAP_GAMBIT"}, {"dataset_uid": "601286", "doi": "10.15784/601286", "keywords": "AGAP; Airborne Radar; Airplane; Antarctica; East Antarctica; Gamburtsev Mountains; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Radar; Radar Echo Sounder", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "Processed Ice Penetrating Radar Data (jpeg images) from the Gamburtsev Mountains in Antarctica acquired during GAMBIT ", "url": "https://www.usap-dc.org/view/dataset/601286"}, {"dataset_uid": "601284", "doi": null, "keywords": "Airborne Radar; Airplane; Antarctica; East Antarctica; Gamburtsev Mountains; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Radar; Radar Echo Sounder", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "Processed Ice Penetrating Radar Data (Matlab format) from the Gamburtsev Mountains in Antarctica acquired during GAMBIT ", "url": "https://www.usap-dc.org/view/dataset/601284"}, {"dataset_uid": "601283", "doi": "10.1594/IEDA/318208", "keywords": "Aerogeophysics; AGAP; Airborne Radar; Airplane; Antarctica; East Antarctica; Gamburtsev Mountains; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Radar; Radar Echo Sounder", "people": "Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "Processed Ice Penetrating Radar Altimeter data (SEGY format) from the Gamburtsev Mountains in Antarctica acquired during GAMBIT", "url": "https://www.usap-dc.org/view/dataset/601283"}], "date_created": "Sun, 29 Sep 2013 00:00:00 GMT", "description": "This award supports an aerogeophysical study of the Gamburtsev Subglacial Mountains (GSM), a Texas-sized mountain range buried beneath the ice sheets of East Antarctica. The project would perform a combined gravity, magnetics, and radar study to achieve a range of goals including: advancing our understanding of the origin and evolution of the polar ice sheets and subglacial lakes; defining the crustal architecture of East Antarctica, a key question in the earth\u0027s history; and locating the oldest ice in East Antarctica, which may ultimately help find ancient climate records. Virtually unexplored, the GSM represents the largest unstudied area of crustal uplift on earth. As well, the region is the starting point for growth of the Antarctic ice sheets. \u003cbr/\u003eBecause of these outstanding questions, the GSM has been identified by the international Antarctic science community as a research focus for the International Polar Year (2007-2009). In addition to this study, NSF is also supporting a seismological survey of the GSM under award number 0537371. Major international partners in the project include Germany, China, Australia, and the United Kingdom. For more information see IPY Project #67 at IPY.org. In terms of broader impacts, this project also supports postdoctoral and graduate student research, and various forms of outreach including a focus on groups underrepresented in the earth sciences.", "east": 89.0, "geometry": "POINT(77 -81.25)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e AIRBORNE LASER SCANNER; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": false, "keywords": "GRAVITY; East Antarctica; GLACIERS/ICE SHEETS; ICE SHEETS; DHC-6; MAGNETIC FIELD; Not provided; Gamburtsev Mountains", "locations": "East Antarctica; Gamburtsev Mountains", "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Bell, Robin; Studinger, Michael S.; Fahnestock, Mark", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6; Not provided", "repo": "USAP-DC", "repositories": "MGDS; USAP-DC", "science_programs": null, "south": -85.0, "title": "Collaborative Research: IPY: GAMBIT: Gamburtsev Aerogeophysical Mapping of Bedrock and Ice Targets", "uid": "p0000114", "west": 65.0}, {"awards": "0636883 Bell, Robin", "bounds_geometry": "POLYGON((20 -75,23 -75,26 -75,29 -75,32 -75,35 -75,38 -75,41 -75,44 -75,47 -75,50 -75,50 -76.5,50 -78,50 -79.5,50 -81,50 -82.5,50 -84,50 -85.5,50 -87,50 -88.5,50 -90,47 -90,44 -90,41 -90,38 -90,35 -90,32 -90,29 -90,26 -90,23 -90,20 -90,20 -88.5,20 -87,20 -85.5,20 -84,20 -82.5,20 -81,20 -79.5,20 -78,20 -76.5,20 -75))", "dataset_titles": "Data portal at Lamont for airborne data", "datasets": [{"dataset_uid": "000111", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Data portal at Lamont for airborne data", "url": "http://wonder.ldeo.columbia.edu/wordpress/"}], "date_created": "Tue, 02 Apr 2013 00:00:00 GMT", "description": "Bell/0636883\u003cbr/\u003e\u003cbr/\u003eThis award support a project to study the role that subglacial water plays in the overall stability of major ice sheets. An estimated 22,000 km3 of water is currently stored within Antarctica\u0027s subglacial lakes. Movement of this water occurs through a complex and largely inferred drainage system in both East and West Antarctica. Geomorphic evidence for the catastrophic drainage of subglacial lakes documents repeated events. These major flood events appear to have drained the largest subglacial lakes situated in the relatively stable interior of the East Antarctic ice sheet. Emerging evidence suggests there is a close connection between significant subglacial lakes and the onset of the Recovery Ice Stream one of the largest in East Antarctica. Our preliminary analysis of the Recovery Lakes region, East Antarctica suggests a direct linkage between lakes and streaming ice flow, specifically the 800 km long Recovery Ice Stream and its tributaries. Located just upslope of the Recovery Ice Stream, the Recovery Lakes Region is composed of 3 well-defined lakes and a fourth, ambiguous, \u0027lake-like\u0027 feature. While other large lakes have a localized impact on ice surface slope, the Recovery Lakes Region lakes are coincident with an abrupt regional change in the ice sheet surface slope. Satellite imagery demonstrates that the downslope margin of this lake area contains distinct flow strips and crevasses: both indicative of increasing ice velocities. The discovery of a series of large lakes coincident with the onset of rapid ice flow in East Antarctica clearly links subglacial lakes and ice sheet dynamics for the first time. The evidence linking the onset of streaming in the Recovery Drainage Ice Stream to the series of large subglacial lakes raises the fundamental question: How can subglacial lakes trigger the onset of ice streaming? We advance two possible mechanisms: (i) Subglacial lakes can produce accelerated ice flow through the drainage of lake water beneath the ice sheet downslope of the lakes. (ii) Subglacial lakes can produce accelerated ice flow accelerated ice flow by modifying the basal thermal gradient via basal accretion over the lakes so when the ice sheet regrounds basal melting dominates. To evaluate the contribution of lake water and the changing basal thermal gradient, we propose an integrated program incorporating satellite imagery analysis, a series of reconnaissance aerogeophysical profiles over the Recovery Lake Region and the installation of continuous GPS sites over the Recovery Lakes. This analysis and new data will enable us (1) to produce a velocity field over the Recovery Lakes Region, (2) to map the ice thickness changes over the lakes due to acceleration triggered thinning, basal melting and freezing, (3) determine the depth and possible the tectonic origin of the Recovery Lakes and (4) determine the stability of these lakes over time. These basic data sets will enable us to advance our understanding of how subglacial lakes trigger the onset of streaming. The intellectual merit of this project is that it will be the first systematic analysis of ice streams triggering the onset of ice streams. This work has profound implications for the modeling of ice sheet behavior in the future, the geologic record of abrupt climate changes and the longevity of subglacial lakes. The broader impacts of the project are programs that will reach students of all ages through undergraduates involved in the research, formal presentations in teacher education programs and ongoing public outreach efforts at major science museums. Subglacial Antarctic lake environments are emerging as a premier, major frontier for exploration during the IPY 2007-2009.", "east": 50.0, "geometry": "POINT(35 -82.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e AEM; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IMAGING RADAR SYSTEMS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e LIDAR ALTIMETERS", "is_usap_dc": false, "keywords": "DHC-6; Basal Melting; Ice Stream; Ice Thickness; Velocity; Ice Stream Stability; Basal Freezing; Antarctica; Drainage; Aerogeophysical; Subglacial Lake; Flood Event", "locations": "Antarctica", "north": -75.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bell, Robin; Studinger, Michael S.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": -90.0, "title": "Subglacial Lakes and the Onset of Ice Streaming: Recovery Lakes", "uid": "p0000702", "west": 20.0}, {"awards": "0537752 Creyts, Timothy; 0538674 Winebrenner, Dale", "bounds_geometry": null, "dataset_titles": "Millennially Averaged Accumulation Rates for Lake Vostok; Modeled Radar Attenuation Rate Profile at the Vostok 5G Ice Core Site, Antarctica", "datasets": [{"dataset_uid": "609501", "doi": "10.7265/N59K485D", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Lake Vostok; Radar Attenuation Rate; Vostok Ice Core", "people": "Macgregor, Joseph A.; Studinger, Michael S.; Matsuoka, Kenichi", "repository": "USAP-DC", "science_program": null, "title": "Modeled Radar Attenuation Rate Profile at the Vostok 5G Ice Core Site, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609501"}, {"dataset_uid": "609500", "doi": "10.7265/N5F769HV", "keywords": "Accumulation Rate; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Lake Vostok", "people": "Studinger, Michael S.; Winebrenner, Dale; Macgregor, Joseph A.; Matsuoka, Kenichi; Waddington, Edwin D.", "repository": "USAP-DC", "science_program": null, "title": "Millennially Averaged Accumulation Rates for Lake Vostok", "url": "https://www.usap-dc.org/view/dataset/609500"}], "date_created": "Thu, 09 Aug 2012 00:00:00 GMT", "description": "0538674\u003cbr/\u003eMatsuoka\u003cbr/\u003eThis award supports a project to evaluate radio-echo intensities in the available SOAR ice-penetrating radar data along grids covering Lake Vostok, and along four regional tracks from Ridge B toward the lake. The project has two objectives; first, it will examine the upper surface of the lake and reflectors hypothesized to be a boundary between the meteoric and accreted ice. They will provide crucial knowledge on the dynamic evolution of the lake. Second, this project will examine a poorly understood echo-free zone within the deep ice in central East Antarctica. This zone may consist of distorted stagnant ice, while its upper boundary may be a shear zone. The SOAR radar data provide a unique resource to examine spatiotemporal water circulation patterns that should be understood in order to select the best direct-sampling strategy to the lake. The Vostok ice core provides a unique opportunity to do this work. First, the path effects, i.e. propagation loss and birefringence, will be derived at the ice-core site using ice temperature, chemistry, and fabric data. Second, lateral variations of the propagation loss will be estimated by tracking chemistry associated with radar-detected isochronous layers, and by inferring temperatures from an ice-flow model that can replicate those layers. Ice-fabric patterns will be inferred from anisotropy in the reflectivity at about 100 radar-track cross-over sites. In terms of broader impacts, a graduate student will be trained to interpret the radar data in the light of radar theory and glaciological context of Lake Vostok and summer workshops for K-12 teachers will be provided in Seattle and New York. This project will contribute to ongoing efforts to study Lake Vostok and will complement the site selection for a North Vostok ice core, which has been proposed by Russia and France as an IPY program.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LASERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e RADAR ALTIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS", "is_usap_dc": true, "keywords": "Airborne Radar Sounding; DHC-6; Salinity; Lake Vostok; Antarctic Ice Sheet; Modeling; FIELD SURVEYS; Model Output; Accumulation Rate; MODELS; Numerical Model; Ice Sheet; Not provided; Hydrostatic; Aerogeophysical; Subglacial; Attenuation Rate; Radar; FIELD INVESTIGATION; Model; Circulation; LABORATORY", "locations": "Lake Vostok; Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Matsuoka, Kenichi; Winebrenner, Dale; Creyts, Timothy; Macgregor, Joseph A.; Studinger, Michael S.; Waddington, Edwin D.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e MODELS \u003e MODELS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Deciphering the Deep Ice and the Ice-water Interface over Lake Vostok Using Existing Radar Data", "uid": "p0000090", "west": null}, {"awards": "0636584 Creyts, Timothy", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 07 Aug 2012 00:00:00 GMT", "description": "Studinger/0636584\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to estimate the salinity of subglacial Lake Vostok, Lake Concordia and the 90 deg.E lake using existing airborne ice-penetrating radar and laser altimeter data. These lakes have been selected because of the availability of modern aerogeophysical data and because they are large enough for the floating ice to be unaffected by boundary stresses near the grounding lines. The proposed approach is based on the assumption that the ice sheet above large subglacial lakes is in hydrostatic equilibrium and the density and subsequently salinity of the lake\u0027s water can be estimated from the (linear) relationship between ice surface elevation and ice thickness of the floating ice. The goal of the proposed work is to estimate the salinity of Lake Vostok and determine spatial changes and to compare the salinity estimates of 3 large subglacial lakes in East Antarctica. The intellectual merits of the project are that this work will contribute to the knowledge of the physical and chemical processes operating within subglacial lake environments. Due to the inaccessibility of subglacial lakes numerical modeling of the water circulation is currently the only way forward to develop a conceptual understanding of the circulation and melting and freezing regimes in subglacial lakes. Numerical experiments show that the salinity of the lake\u0027s water is a crucial input parameter for the 3-D fluid dynamic models. Improved numerical models will contribute to our knowledge of water circulation in subglacial lakes, its effects on water and heat budgets, stratification, melting and freezing, and the conditions that support life in such extreme environments. The broader impacts of the project are that subglacial lakes have captured the interest of many people, scientists and laymen. The national and international press frequently reports about the research of the Principal Investigator. His Lake Vostok illustrations have been used in math and earth science text books. Lake Vostok will be used for education and outreach in the Earth2Class project. Earth2Class is a highly successful science/math/technology learning resource for K-12 students, teachers, and administrators in the New York metropolitan area. Earth2Class is created through collaboration by research scientists at the Lamont- Doherty Earth Observatory; curriculum and educational technology specialists from Teachers College, Columbia University; and classroom teachers in the New York metropolitan area.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LASERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e RADAR ALTIMETERS", "is_usap_dc": false, "keywords": "Subglacial; Hydrostatic; Not provided; LABORATORY; Aerogeophysical; Numerical Model; FIELD SURVEYS; Salinity; Circulation", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Creyts, Timothy; Studinger, Michael S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Estimating the Salinity of Subglacial Lakes From Existing Aerogeophysical Data", "uid": "p0000704", "west": null}, {"awards": "0739654 Catania, Ginny; 0739372 Conway, Howard", "bounds_geometry": null, "dataset_titles": "Coastal and Terminus History of the Eastern Amundsen Sea Embayment, West Antarctica, 1972 - 2011; Ice Flow History of the Thwaites Glacier, West Antarctica", "datasets": [{"dataset_uid": "609463", "doi": "10.7265/N5RR1W6X", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Flow Lines; Thwaites Glacier", "people": "Fudge, T. J.; Conway, Howard; Catania, Ginny", "repository": "USAP-DC", "science_program": null, "title": "Ice Flow History of the Thwaites Glacier, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609463"}, {"dataset_uid": "609522", "doi": "10.7265/N5CC0XNK", "keywords": "Amundsen Sea; Antarctica; Climate Change; Coastline; GIS Data; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Satellite Data Interpretation", "people": "Catania, Ginny; Macgregor, Joseph A.; Markowski, Michael; Andrews, Alan G.", "repository": "USAP-DC", "science_program": null, "title": "Coastal and Terminus History of the Eastern Amundsen Sea Embayment, West Antarctica, 1972 - 2011", "url": "https://www.usap-dc.org/view/dataset/609522"}], "date_created": "Wed, 30 May 2012 00:00:00 GMT", "description": "Catania 0739654\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to study the Amundsen Sea drainage system and improve understanding of the impact of recent glaciological changes as an aid to predicting how this region will change in the future. The intellectual merit of the work is that the Amundsen Sea drainage system has been a recent focus for glaciological research because of rapid changes occurring there as a result of grounding line retreat. The work will focus on the regions of flow transition and will map the internal stratigraphy of the ice sheet across the Thwaites Glacier shear margins and use the age and geometry of radar-detected internal layers to interpret ice flow history. Thwaites Glacier (one of the main pathways for ice drainage in the region) has recently widened and may continue to do so in the near future. Thwaites Glacier may be particularly vulnerable to grounding line retreat because it lacks a well-defined subglacial channel. The subglacial environment exerts strong control on ice flow and flow history will be mapped in the context of bed topography and bed reflectivity. The plan is to use existing ice-penetrating radar data and coordinate with planned upcoming surveys to reduce logistical costs. The work proposed here will take three years to complete but no additional fieldwork in Antarctica is required. More detailed ground-based geophysical (radar and seismic) experiments will be needed at key locations to achieve our overall goal and the work proposed here will aid in identifying those regions. The broader impacts of the project are that it will initiate a new collaboration among radar communities within the US including those that are on the forefront of radar systems engineering and those that are actively involved in radar-derived internal layer and bed analysis. The project will also provide support for a postdoctoral researcher and a graduate student, thus giving them exposure to a variety of methodologies and scientific issues. Finally, there are plans to further develop the \"Wired Antarctica\" website designed by Ginny Catania with the help of a student-teacher. This will allow for the existing lesson plans to be updated to Texas State standards so that they can be used more broadly within state middle and high schools.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e TM; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": true, "keywords": "ERS-1; Coastal; Terminus; LABORATORY; Subglacial; Glacier; Not provided; Thwaites Glacier; Antarctica; LANDSAT; Internal Stratigraphy; West Antarctica; Internal Layers; Amundsen Sea; FIELD INVESTIGATION; FIELD SURVEYS; Glaciers; LANDSAT-5; Radar; Seismic", "locations": "Coastal; Antarctica; Thwaites Glacier; Amundsen Sea; West Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard; Catania, Ginny; Markowski, Michael; Macgregor, Joseph A.; Andrews, Alan G.; Fudge, T. J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e EUROPEAN REMOTE SENSING SATELLITE (ERS) \u003e ERS-1; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e LANDSAT \u003e LANDSAT; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e LANDSAT \u003e LANDSAT-5", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Ice-flow history of the Thwaites Glacier, West Antarctica", "uid": "p0000143", "west": null}, {"awards": "0758274 Parizek, Byron; 0636724 Blankenship, Donald", "bounds_geometry": "POLYGON((-110.058 -74.0548,-109.57993 -74.0548,-109.10186 -74.0548,-108.62379 -74.0548,-108.14572 -74.0548,-107.66765 -74.0548,-107.18958 -74.0548,-106.71151 -74.0548,-106.23344 -74.0548,-105.75537 -74.0548,-105.2773 -74.0548,-105.2773 -74.31383,-105.2773 -74.57286,-105.2773 -74.83189,-105.2773 -75.09092,-105.2773 -75.34995,-105.2773 -75.60898,-105.2773 -75.86801,-105.2773 -76.12704,-105.2773 -76.38607,-105.2773 -76.6451,-105.75537 -76.6451,-106.23344 -76.6451,-106.71151 -76.6451,-107.18958 -76.6451,-107.66765 -76.6451,-108.14572 -76.6451,-108.62379 -76.6451,-109.10186 -76.6451,-109.57993 -76.6451,-110.058 -76.6451,-110.058 -76.38607,-110.058 -76.12704,-110.058 -75.86801,-110.058 -75.60898,-110.058 -75.34995,-110.058 -75.09092,-110.058 -74.83189,-110.058 -74.57286,-110.058 -74.31383,-110.058 -74.0548))", "dataset_titles": "Access to data; AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment; AGASEA Ice Thickness Profile Data from the Amundsen Sea Embayment, Antarctica; Airborne Laser Altimetry of the Thwaites Glacier Catchment, West Antarctica; ICECAP Basal Interface Specularity Content Profiles: IPY and OIB; Subglacial water flow paths under Thwaites Glacier, West Antarctica; Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "datasets": [{"dataset_uid": "601673", "doi": "10.15784/601673", "keywords": "Antarchitecture; Antarctica; Ice Penetrating Radar; Isochron; Layers; Radar; Radioglaciology; Thwaites Glacier", "people": "Jackson, Charles; Blankenship, Donald D.; Muldoon, Gail R.; Young, Duncan A.", "repository": "USAP-DC", "science_program": null, "title": "AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment", "url": "https://www.usap-dc.org/view/dataset/601673"}, {"dataset_uid": "601371", "doi": "10.15784/601371", "keywords": "Antarctica; East Antarctica; ICECAP; Ice Penetrating Radar; Radar Echo Sounder; Radar Echo Sounding; Subglacial Hydrology", "people": "Blankenship, Donald D.; Young, Duncan A.; van Ommen, Tas; Roberts, Jason; Schroeder, Dustin; Greenbaum, Jamin; Siegert, Martin", "repository": "USAP-DC", "science_program": null, "title": "ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "url": "https://www.usap-dc.org/view/dataset/601371"}, {"dataset_uid": "609619", "doi": "10.7265/N58913TN", "keywords": "Amundsen Sea; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; Thwaites Glacier", "people": "Dupont, Todd K.; Holt, John W.; Parizek, Byron R.; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "url": "https://www.usap-dc.org/view/dataset/609619"}, {"dataset_uid": "609334", "doi": "10.7265/N5HD7SK8", "keywords": "AGASEA; Airborne Altimetry; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Thwaites Glacier", "people": "Young, Duncan A.; Morse, David L.; Holt, John W.; Blankenship, Donald D.; Kempf, Scott D.", "repository": "USAP-DC", "science_program": null, "title": "Airborne Laser Altimetry of the Thwaites Glacier Catchment, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609334"}, {"dataset_uid": "000248", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Access to data", "url": "http://nsidc.org/data/netcdf/tools.html"}, {"dataset_uid": "609517", "doi": "10.7265/N5W95730", "keywords": "AGASEA; Airborne Radar; Amundsen Sea; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness", "people": "Kempf, Scott D.; Young, Duncan A.; Blankenship, Donald D.; Holt, John W.", "repository": "USAP-DC", "science_program": null, "title": "AGASEA Ice Thickness Profile Data from the Amundsen Sea Embayment, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609517"}, {"dataset_uid": "002536", "doi": "", "keywords": null, "people": null, "repository": "NASA", "science_program": null, "title": "Access to data", "url": "http://www.giss.nasa.gov/tools/panoply/"}, {"dataset_uid": "609518", "doi": "10.7265/N5RJ4GC8", "keywords": "AGASEA; Airborne Radar; Antarctica; Elevation; Flow Paths; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Thwaites Glacier", "people": "Blankenship, Donald D.; Young, Duncan A.; Carter, Sasha P.", "repository": "USAP-DC", "science_program": null, "title": "Subglacial water flow paths under Thwaites Glacier, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609518"}], "date_created": "Tue, 15 May 2012 00:00:00 GMT", "description": "This award supports a three-year study to isolate essential physical processes affecting Thwaites Glacier (TG) in the Amundsen Sea Embayment (ASE) of West Antarctica using a suite of existing numerical models in conjunction with existing and International Polar Year (IPY)-proposed data sets. Four different models will be utilized to explore the effects of embayment geometry, ice-shelf buttressing, basal-stress distribution, surface mass balance, surface climate, and inland dynamic perturbations on the present and future dynamics of TG. This particular collection of models is ideally suited for the broad nature of this investigation, as they incorporate efficient and complementary simplifications of the stress field (shallow-ice and shelf-stream), system geometry (1-d and 2-d plan-view and flowline; depth-integrated and depth-dependent), and mass-momentum energy coupling (mechanical and thermo-mechanical). The models will be constrained and validated by data sets (including regional maps of ice thickness, surface elevation, basal topography, ice surface velocity, and potential fields) and geophysical data analyses (including increasing the spatial resolution of surface elevations, improving regional estimates of geothermal flux, and characterizing the sub-glacial interface of grounded ice as well as the grounding-zone transition between grounded and floating ice). The intellectual merit of the research focuses on several of the NSF Glaciology program\u0027s emphases, including: ice dynamics, numerical modeling, and remote sensing of ice sheets. In addition, the research directly addresses the following specific NSF objectives: \"investigation of the physics of fast glacier flow with emphasis on processes at glacier beds\"; \"investigation of ice-shelf stability\"; and \"identification and quantification of the feedback between ice dynamics and climate change\". The broader impacts of this research effort will help answer societally relevant questions of future ice sheet stability and sea-level change. The research also will aid in the early career development of two young investigators and will contribute to the education of both graduate and undergraduate students directly involved in the research, and results will be incorporated into courses and informal presentations.", "east": -105.2773, "geometry": "POINT(-107.66765 -75.34995)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e RADIO \u003e INS", "is_usap_dc": true, "keywords": "Ice Sheet Thickness; Ice Sheet Elevation; Glacier Dynamics; Ice Stream; Numerical Model; West Antarctic; Surface Elevation; Basal Rheology; Ice Surface Velocity; Embayment Geometry; Amundsen Sea; Hydrology; FIELD SURVEYS; Antarctic Ice Sheet; Glacier; Subglacial; DHC-6; West Antarctic Ice Sheet; Model Output; Surface Climate; Glaciers; Basal Topography; Grounding Zone; Model Input Data; Airborne Laser Altimeters; FIELD INVESTIGATION; Thwaites Glacier; Airborne Laser Altimetry; Diagnostic; Ice-Shelf Buttressing; Ice Sheet; Prognostic; Glacier Surface; Airborne Radar Sounding; Digital Elevation Model; Ice Dynamic; Antarctica; Altimetry; Antarctica (agasea); Bed Elevation; Basal Stress; LABORATORY", "locations": "Antarctica; Thwaites Glacier; West Antarctic Ice Sheet; Antarctic Ice Sheet; West Antarctic; Amundsen Sea", "north": -74.0548, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Carter, Sasha P.; Dupont, Todd K.; Holt, John W.; Morse, David L.; Parizek, Byron R.; Young, Duncan A.; Kempf, Scott D.; Blankenship, Donald D.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "NASA; NSIDC; USAP-DC", "science_programs": null, "south": -76.6451, "title": "Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "uid": "p0000174", "west": -110.058}, {"awards": "0636719 Joughin, Ian; 0636970 Tulaczyk, Slawek", "bounds_geometry": null, "dataset_titles": "Antarctic Active Subglacial Lake Inventory from ICESat Altimetry", "datasets": [{"dataset_uid": "601439", "doi": "10.15784/601439", "keywords": "Altimetry; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Icesat; Laser Altimetry; Subglacial Lake", "people": "Joughin, Ian; Fricker, Helen; Tulaczyk, Slawek; Smith, Ben", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Active Subglacial Lake Inventory from ICESat Altimetry", "url": "https://www.usap-dc.org/view/dataset/601439"}], "date_created": "Wed, 27 Jul 2011 00:00:00 GMT", "description": "Tulaczyk/0636970\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to study elevation change anomalies (henceforth ECAs), which are oval-shaped, 5-to-10 km areas observed in remote sensing images in several locations within the Ross Sea sector of the West Antarctic Ice Sheet (WAIS). Within these anomalies, surface elevation changes at rates of up to ~1 to ~2 cm per day, significantly faster than in surrounding regions. These anomalies are thought to result from filling and draining of multi-kilometer-scale subglacial water pockets. The intellectual merit of this project is that these ECA\u0027s represent an unprecedented window into the elusive world of water drainage dynamics beneath the modern Antarctic ice sheet. Although subglacial water fluxes are small compared to normal terrestrial conditions, they play an important role in controlling fast ice streaming and, potentially, stability of the ice sheet. The dearth of observational constraints on sub-ice sheet water dynamics represents one of the most important limitations on progress in quantitative modeling of ice streams and ice sheets. Such models are necessary to assess future ice sheet mass balance and to reconstruct the response of ice sheets to past climate changes. The dynamic sub-ice sheet water transport indicated by the ECAs may have also implications for studies of subglacial lakes and other subglacial environments, which may harbor life adapted to such extreme conditions. The broader impacts of this project are that it will provide advanced training opportunities to one postdoctoral fellow (UW), two female doctoral students (UCSC), who will enhance diversity in polar sciences, and at least three undergraduate students (UCSC). Project output will be relevant to broad scientific and societal interests, such as the future global sea level changes and the response of Polar Regions to climate changes. Douglas Fox, a freelance science journalist, is interested in joining the first field season to write feature articles to popular science magazines and promote the exposure of this project, and Antarctic Science in general, to mass media.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e GLAS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e GLAS", "is_usap_dc": false, "keywords": "ICESAT; Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Smith, Ben; Joughin, Ian; Tulaczyk, Slawek; SMITH, BENJAMIN", "platforms": "Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e ICE, CLOUD AND LAND ELEVATION SATELLITE (ICESAT) \u003e ICESAT", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Elevation Change Anomalies in West Antarctica and Dynamics of Subglacial Water Transport Beneath Ice Streams and their Tributaries", "uid": "p0000115", "west": null}, {"awards": "0338151 Raymond, Charles", "bounds_geometry": "POINT(-112.086 -79.468)", "dataset_titles": "Englacial Layers and Attenuation Rates across the Ross and Amundsen Sea Ice-Flow Divide (WAIS Divide), West Antarctica; Surface Elevation and Ice Thickness, Western Marie Byrd Land, Antarctica", "datasets": [{"dataset_uid": "609470", "doi": "10.7265/N5416V0W", "keywords": "Airborne Radar; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Radar; WAIS Divide", "people": "Matsuoka, Kenichi; Raymond, Charles", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Englacial Layers and Attenuation Rates across the Ross and Amundsen Sea Ice-Flow Divide (WAIS Divide), West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609470"}, {"dataset_uid": "609119", "doi": "10.7265/N5BZ63ZH", "keywords": "Airborne Radar; Airplane; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marie Byrd Land", "people": "Luyendyk, Bruce P.; Wilson, Douglas S.", "repository": "USAP-DC", "science_program": null, "title": "Surface Elevation and Ice Thickness, Western Marie Byrd Land, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609119"}], "date_created": "Tue, 11 May 2010 00:00:00 GMT", "description": "This award supports an investigation of spatial variations of ice temperature and subglacial conditions using available ice-penetrating radar data around a future deep ice coring site near the Ross and Amundsen flow divide of West Antarctic Ice Sheet. Besides geometry of reflection layers the focus will be on intensities of radar echoes from within ice deeper than several hundred meters and will also examine echoes from the bed. Preliminary studies on theory and comparison with Japanese radar data from East Antarctica suggest that large spatial variations of the vertical gradient of radar echoes from within ice exist and are caused primarily by ice temperature and secondarily by crystal-orientation fabric. The hypothesis that the vertical gradient is a proxy of ice temperature will be tested. The project will utilize an existing data set from the Support Office for Aerogeophysical Research in Antarctica (SOAR) and will complement work already underway at University of Texas to analyze the radar data. The project will provide undergraduate research experience with an emphasis on computer analysis of time series and large data sets as well as development of web-based resource of results and methods and will support an international collaboration between US and Japan through discussions on the preliminary results from their study sites. Practical procedures developed through this study will be downloadable from the project\u0027s web site in the third year and will allow investigation of other ice sheets using existing radar data sets. This project will contribute to the interpretation of the future inland West Antarctic ice core and will help in the understanding of ice sheet history and climate change.", "east": -112.086, "geometry": "POINT(-112.086 -79.468)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LASERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e RADAR ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR", "is_usap_dc": true, "keywords": "SOAR; Ice Sheet Elevation; Antarctic Ice Sheet; Layers; USAP-DC; West Antarctic; FIELD INVESTIGATION; Amundsen; Ice Sheet; Airborne Laser Altimetry; Ice Surface; Not provided; Ice Penetrating Radar; Ice Sheet Thickness; Ice Extent; Ice Surface Elevation; Ice Cover; Ice Deformation; FIELD SURVEYS; Antarctica; Ground Ice; Subglacial; Reflection Layers; West Antarctic Ice Sheet; Ice Surface Temperature; LABORATORY; Amundsen Flow Divide; Radar Echo Sounding; Internal Layering; Radar Altimetry; Ice; Radar Echoes; Englacial; Crystal Orientation Fabric; Ice Thickness; Altimetry; Ice Temperature; Radar Echo Sounder; Ice Thickness Distribution", "locations": "Antarctic Ice Sheet; Antarctica; West Antarctic; Amundsen; Amundsen Flow Divide; West Antarctic Ice Sheet", "north": -79.468, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Raymond, Charles; Matsuoka, Kenichi; Luyendyk, Bruce P.; Wilson, Douglas S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.468, "title": "Glaciological Characteristics of the Ross/Amundsen Sea Ice-flow Divide Deduced by a New Analysis of Ice-penetrating Radar Data", "uid": "p0000017", "west": -112.086}, {"awards": "9911617 Blankenship, Donald; 9319379 Blankenship, Donald", "bounds_geometry": null, "dataset_titles": "Antarctic Aerogeophysics Data; Antarctic Subglacial Lake Classification Inventory; RBG - Robb Glacier Survey; SOAR-Lake Vostok Survey airborne radar data; SOAR-Lake Vostok Survey bed elevation data; SOAR-Lake Vostok Survey Gravity data; SOAR-Lake Vostok Survey ice thickness data; SOAR-Lake Vostok survey magnetic anomaly data; SOAR-Lake Vostok Survey surface elevation data", "datasets": [{"dataset_uid": "601297", "doi": "10.1594/IEDA/306567", "keywords": "Airborne Laser Altimeters; Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Sheet; Ice Stratigraphy; Ice Thickness; Ice Thickness Distribution; Lake Vostok; Radar; Radar Altimetry; Radar Echo Sounder; SOAR; Subglacial Lake", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey ice thickness data", "url": "https://www.usap-dc.org/view/dataset/601297"}, {"dataset_uid": "601298", "doi": "10.1594/IEDA/306566", "keywords": "Airborne Altimetry; Airborne Laser Altimeters; Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Ice Sheet Elevation; Ice Surface; Lake Vostok; Radar Echo Sounder; SOAR; Surface Elevation", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey surface elevation data", "url": "https://www.usap-dc.org/view/dataset/601298"}, {"dataset_uid": "601296", "doi": " 10.1594/IEDA/306564", "keywords": "Airborne Magnetic; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Lake Vostok; Magnetic; Magnetic Anomaly; Magnetometer; Potential Field; SOAR; Solid Earth", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok survey magnetic anomaly data", "url": "https://www.usap-dc.org/view/dataset/601296"}, {"dataset_uid": "601295", "doi": "10.1594/IEDA/306563", "keywords": "Airborne Gravity; Airplane; Antarctica; East Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Lake Vostok; Potential Field; Solid Earth", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey Gravity data", "url": "https://www.usap-dc.org/view/dataset/601295"}, {"dataset_uid": "609240", "doi": "", "keywords": "Airborne Radar; Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Navigation; Potential Field; SOAR; Solid Earth", "people": "Blankenship, Donald D.; Dalziel, Ian W.; Holt, John W.; Morse, David L.", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Aerogeophysics Data", "url": "https://www.usap-dc.org/view/dataset/609240"}, {"dataset_uid": "601299", "doi": "10.1594/IEDA/306565", "keywords": "Airborne Laser Altimeters; Airborne Laser Altimetry; Airborne Radar; Airplane; Antarctica; Bed Elevation; Bedrock Elevation; Digital Elevation Model; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Lake Vostok; Radar; Radar Echo Sounder; SOAR", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey bed elevation data", "url": "https://www.usap-dc.org/view/dataset/601299"}, {"dataset_uid": "601604", "doi": "10.15784/601604", "keywords": "Airborne Radar; Antarctica; Bed Elevation; Geophysics; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Surface Elevation; Ice Thickness; Robb Glacier; Transantarctic Mountains", "people": "Blankenship, Donald D.; Young, Duncan A.; Buck, W. Roger; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "RBG - Robb Glacier Survey", "url": "https://www.usap-dc.org/view/dataset/601604"}, {"dataset_uid": "601300", "doi": "10.1594/IEDA/306568", "keywords": "Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Lake Vostok; Navigation; Radar; SOAR; Subglacial Lakes", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey airborne radar data", "url": "https://www.usap-dc.org/view/dataset/601300"}, {"dataset_uid": "609336", "doi": "10.7265/N5CN71VX", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Subglacial Lake", "people": "Holt, John W.; Blankenship, Donald D.; Carter, Sasha P.", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Subglacial Lake Classification Inventory", "url": "https://www.usap-dc.org/view/dataset/609336"}], "date_created": "Fri, 06 Feb 2009 00:00:00 GMT", "description": "9911617\u003cbr/\u003eBlankenship\u003cbr/\u003e\u003cbr/\u003eThis award, provided jointly by the Antarctic Geology and Geophysics Program, the Antarctic Glaciology Program, and the Polar Research Support Section of the Office of Polar Programs, provides funds for continuation of the Support Office for Aerogeophysical Research (SOAR). From July 1994 to July 2000, SOAR served as a facility to accomplish aerogeophysical research in Antarctica under an agreement between the University of Texas at Austin and the National Science Foundation\u0027s Office of Polar Programs (NSF/OPP). SOAR operated and maintained an aerogeophysical instrument package that consists of an ice-penetrating radar sounder, a laser altimeter, a gravimeter and a magnetometer that are tightly integrated with each other as well as with the aircraft\u0027s avionics and power packages. An array of aircraft and ground-based GPS receivers supported kinematic differential positioning using carrier-phase observations. SOAR activities included: developing aerogeophysical research projects with NSF/OPP investigators; upgrading of the aerogeophysical instrumentation package to accommodate new science projects and advances in technology; fielding this instrument package to accomplish SOAR-developed projects; and management, reduction, and analysis of the acquired aerogeophysical data. In pursuit of 9 NSF-OPP funded aerogeophysical research projects (involving 14 investigators from 9 institutions), SOAR carried out six field campaigns over a six-year period and accomplished approximately 200,000 line kilometers of aerogeophysical surveying over both East and West Antarctica in 377 flights.\u003cbr/\u003e\u003cbr/\u003eThis award supports SOAR to undertake a one year and 8 month program of aerogeophysical activities that are consistent with continuing U.S. support for geophysical research in Antarctica. \u003cbr/\u003e- SOAR will conduct an aerogeophysical campaign during the 200/01 austral summer to accomplish surveys for two SOAR-developed projects: \"Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Studies\" (Co-PI\u0027s Bell and Studinger, LDEO); and \"Collaborative Research: Seismic Investigation of the Deep Continental Structure Across the East-West Antarctic Boundary\" (Co-PI\u0027s Weins, Washington U. and Anandakrishnan, U. Alabama). After configuration and testing of the survey aircraft in McMurdo, SOAR will conduct survey flights from an NSF-supported base adjacent to the Russian Station above Lake Vostok and briefly occupy one or two remote bases on the East Antarctic ice sheet.\u003cbr/\u003e- SOAR will reduce these aerogeophysical data and produce profiles and maps of surface elevation, bed elevation, gravity and magnetic field intensity. These results will be provided to the respective project investigators within nine months of conclusion of field activities. We will also submit a technical manuscript that describes these results to a refereed scientific journal and distribute these results to appropriate national geophysical data centers within approximately 24 months of completion of field activities.\u003cbr/\u003e- SOAR will standardize all previously reduced SOAR data products and transfer them to the appropriate national geophysical data centers by the end of this grant.\u003cbr/\u003e- SOAR will convene a workshop to establish a community consensus for future U.S. Antarctic aerogeophysical research. This workshop will be co-convened by Ian Dalziel and Richard Alley and will take place during the spring of 2001.\u003cbr/\u003e- SOAR will upgrade the existing SOAR in-field quality control procedures to serve as a web-based interface for efficient browsing of many low-level SOAR data streams.\u003cbr/\u003e- SOAR will repair and/or refurbish equipment that was used during the 2000/01 field campaign.\u003cbr/\u003e\u003cbr/\u003eSupport for SOAR is essential for accomplishing major geophysical investigations in Antarctica. Following data interpretation by the science teams, these data will provide valuable insights to the structure and evolution of the Antarctic continent.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IMAGING RADAR SYSTEMS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LIDAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e PROTON MAGNETOMETER", "is_usap_dc": true, "keywords": "Ice Sheet; Ice Sheet Elevation; Surface Winds; Snow Temperature; Atmospheric Pressure; Antarctic; West Antarctic Ice Sheet; Surface Temperature Measurements; FIELD INVESTIGATION; Surface Wind Speed Measurements; Subglacial Topography; Atmospheric Humidity Measurements; Not provided; Aerogeophysics; FIELD SURVEYS; GROUND STATIONS; Antarctica; SOAR; Snow Temperature Measurements; West Antarctica; Antarctic Ice Sheet; East Antarctic Plateau", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; West Antarctica; West Antarctic Ice Sheet; East Antarctic Plateau", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Carter, Sasha P.; Holt, John W.; Blankenship, Donald D.; Morse, David L.; Dalziel, Ian W.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR)", "uid": "p0000125", "west": null}, {"awards": "0230197 Holt, John", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment; Amundsen Sea Sector Data Set; Subglacial Topography: Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica", "datasets": [{"dataset_uid": "609292", "doi": "10.7265/N59W0CDC", "keywords": "AGASEA; Airborne Radar; Amundsen Sea; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Solid Earth", "people": "Vaughan, David G.; Holt, John W.; Corr, Hugh F. J.; Blankenship, Donald D.; Morse, David L.; Young, Duncan A.", "repository": "USAP-DC", "science_program": null, "title": "Subglacial Topography: Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609292"}, {"dataset_uid": "609312", "doi": "10.7265/N5J9649Q", "keywords": "Amundsen Sea; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology", "people": "Fastook, James L.", "repository": "USAP-DC", "science_program": null, "title": "Amundsen Sea Sector Data Set", "url": "https://www.usap-dc.org/view/dataset/609312"}, {"dataset_uid": "601673", "doi": "10.15784/601673", "keywords": "Antarchitecture; Antarctica; Ice Penetrating Radar; Isochron; Layers; Radar; Radioglaciology; Thwaites Glacier", "people": "Jackson, Charles; Blankenship, Donald D.; Muldoon, Gail R.; Young, Duncan A.", "repository": "USAP-DC", "science_program": null, "title": "AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment", "url": "https://www.usap-dc.org/view/dataset/601673"}], "date_created": "Mon, 01 Jan 2007 00:00:00 GMT", "description": "This award supports a comprehensive aerogeophysical survey of the Amundsen Sea Embayment (ASE) in West Antarctica. The University of Texas will join forces with the British Antarctic Survey to use both US and UK aircraft and instrumentation to achieve this survey. Analyses of the new aerogeophysical\u003cbr/\u003edata will result in the generation of maps of ice sheet surface, volume and bottom-interface characteristics. These maps will support the efforts of a community of US and international researchers to assess the present and predict the future behavior of the ice sheet in the ASE.\u003cbr/\u003eThe West Antarctic ice sheet has been the subject of intensive interdisciplinary study by both the European and U.S. scientific communities since it was recognized to be a potential source for up to 5 meters of sea\u003cbr/\u003elevel rise, possibly on short timescales. In terms of ice discharge, the ASE is the largest drainage system in West Antarctica. Yet it has been comparatively unstudied, primarily due to its remoteness from logistical\u003cbr/\u003ecenters. The ASE is the only major drainage to exhibit significant elevation change over the period of available satellite observations. Present knowledge of the ice thickness and subglacial boundary conditions in the ASE are insufficient to understand its evolution or its sensitivity to climatic change.\u003cbr/\u003eThe results from our surveys are required to achieve the fundamental research objectives outlined by the US scientific community in an ASE Science Plan. The surveys and analyses will be achieved through international collaboration and will involve graduate students, undergraduates and high school apprentices.\u003cbr/\u003eThrough its potential for influencing sea level, the future behavior of the ASE is of primary societal importance. Given the substantial public and scientific interest that recent reports of change in West Antarctica have generated, we expect fundamental research in the Amundsen Sea Embayment, enabled by our surveys, will have widespread impact.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e RADAR ALTIMETERS", "is_usap_dc": true, "keywords": "Thwaites Glacier; Ice Velocity; Ablation; Amundsen Sea; Pine Island Glacier; Elevation; Antarctica (agasea); Ice Sheet Elevation; West Antarctic Ice Sheet; Ice Temperature; Amundsen Basin; Subglacial Topography; Ice Melt; West Antarctica; Velocity Measurements; Snow Accumulation; Antarctica; Bedrock Elevation; Modeling", "locations": "Antarctica; West Antarctica; Amundsen Basin; Pine Island Glacier; Thwaites Glacier; West Antarctic Ice Sheet; Amundsen Sea", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Blankenship, Donald D.; Fastook, James L.; Corr, Hugh F. J.; Holt, John W.; Morse, David L.; Vaughan, David G.; Young, Duncan A.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA)", "uid": "p0000243", "west": -180.0}, {"awards": "8919147 Elliot, David", "bounds_geometry": null, "dataset_titles": "Ice Thickness and Surface Elevation, Southeastern Ross Embayment, West Antarctica", "datasets": [{"dataset_uid": "609099", "doi": "10.7265/N5WW7FKC", "keywords": "Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ross Embayment; West Antarctica", "people": "Kempf, Scott D.; Bell, Robin; Peters, M. E.; Blankenship, Donald D.; Finn, C. A.; Hodge, S. M.; Behrendt, J. C.; Brozena, J. M.; Studinger, Michael S.; Morse, David L.", "repository": "USAP-DC", "science_program": null, "title": "Ice Thickness and Surface Elevation, Southeastern Ross Embayment, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609099"}], "date_created": "Wed, 17 Mar 2004 00:00:00 GMT", "description": "This award will support a combined airborne radar and aeromagnetic survey of two 220 x 330 km regions between the Transantarctica Mountains and Marie Byrd Land during the 1990-91 and 1991-92 field seasons. These efforts will address significant problems identified in the Ross Transect Zone (RTZ) by the National Academy of Sciences (1986) report \"Antarctic Solid Earth Sciences Research,\" and by the report to NSF \"A Plan for a United States Program to Study the Structure and Evolution of the Antarctic Lithosphere (SEAL).\" The surveys will be flown using the NSF/TUD radar and an areomagnetics system mounted in a light aircraft. The grid spacing will be 5 km and navigation will be by radiopositioning. In addition to maps of subglacial topography and magnetic intensity, attempts will be made to reconstruct the position of subglacial diffractors in three dimensions. This reconstruction should give new information about the distribution of escarpments and therefore the tectonic relationships within the region, especially when combined with the magnetic results. These experiments will be conducted by the Byrd Polar Research Center of the Ohio State University and the Water Resources and Geological Divisions of the U.S. Geological Survey.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": true, "keywords": "Subglacial Topography; SOAR; Airborne Laser Altimeters; Ross Embayment; West Antarctica; Ice Stream; Surface Morphology; Airborne Laser Altimetry; Aerogeophysics; Ice Sheet Thickness; Airborne Radar Sounding; Ice Thickness; West Antarctic Ice Sheet; Ice Surface Elevation; Casertz", "locations": "Ross Embayment; West Antarctica; West Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Elliot, David; Bell, Robin; Blankenship, Donald D.; Brozena, J. M.; Finn, C. A.; Hodge, S. M.; Kempf, Scott D.; Behrendt, J. C.; Morse, David L.; Peters, M. E.; Studinger, Michael S.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Corridor Aerogeophysics of the Southeastern Ross Transect Zone (CASERTZ), Antarctica", "uid": "p0000056", "west": null}, {"awards": "9615347 Conway, Howard", "bounds_geometry": null, "dataset_titles": "Roosevelt Island Bedrock and Surface Elevations; Roosevelt Island Ice Core Density and Beta Count Data", "datasets": [{"dataset_uid": "609139", "doi": "10.7265/N55718ZW", "keywords": "Antarctica; Beta Count; Density; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; Roosevelt Island", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Ice Core Density and Beta Count Data", "url": "https://www.usap-dc.org/view/dataset/609139"}, {"dataset_uid": "609140", "doi": "10.7265/N51J97NB", "keywords": "Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Roosevelt Island; Solid Earth", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Bedrock and Surface Elevations", "url": "https://www.usap-dc.org/view/dataset/609140"}], "date_created": "Fri, 23 May 2003 00:00:00 GMT", "description": "This award is for two years of support to perform radar investigations across former shear margins at Roosevelt Island and Ice Stream C in order to measure changes in the configuration and continuity of internal layers and the bed. The broad goal of these investigations is to gain an understanding of ice stream flow and the timing and mechanisms of ice stream shutdown. A high-resolution short-pulse radar system will be used for detailed examination of the uppermost hundred meters of the firn and ice, and a monopulse sounding-radar system will be used to image the rest of the ice column (including internal layers) and the bed. Changes in the shape and continuity of layers will be used to interpret mechanisms and modes of ice stream flow including the possible migration of stagnation fronts and rates of shut-down. Variations in bed reflectivity will be used to deduce basal hydrology conditions across lineations. Accumulation rates deduced from snow pits and shallow cores will be used to estimate near-surface depth-age profiles. Improved understanding of ice stream history opens the possibility of linking changes in the West Antarctic ice sheet with the geologic evidence from Northern Victoria Land and the ocean record of the retreat of the grounding line in the Ross Sea.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e RA; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Radioactive Decay; Radar Echo Sounder; Antarctica; Radar Altimetry; Densification; Bedrock Elevation; Ice Sheet Elevation; Satellite Radar Data; GROUND-BASED OBSERVATIONS; Radar; Ice Core; Snow Stratigraphy; Terrain Elevation; Antarctic Ice Sheet; Stable Isotopes; Ice Surface Elevation; Surface Elevation; Glaciology; Snow Densification; Ice Core Data; GROUND STATIONS; Not provided; Altimetry; Antarctic; Ice Core Stratigraphy; Ice Stratigraphy", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Radar Investigations of Former Shear Margins: Roosevelt Island and Ice Stream C", "uid": "p0000164", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Collaborative Research: Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP)
|
1443690 |
2020-07-07 | Young, Duncan A.; Blankenship, Donald D.; Roberts, Jason; Bo, Sun | This study focuses on processing and interpretation of internationally collected aerogeophysical data from the Southern Plateau of the East Antarctic Ice Sheet. The data include ice penetrating radar data, laser altimetry, gravity and magnetics. The project will provide information on geological trends under the ice, the topography and character of the ice/rock interface, and the stratigraphy of the ice. The project will also provide baseline site characterization for future drilling. Future drilling sites and deep ice cores for old ice require that the base of the ice sheet be frozen to the bed (i.e. no free water at the interface between rock and ice) and the assessment will map the extent of frozen vs. thawed areas. Specifically, three main outcomes are anticipated for this project. First, the study will provide an assessment of the viability of Titan Dome, a subglacial highland region located near South Pole, as a potential old ice drilling prospect. The assessment will include determining the hydraulic context of the bed by processing and interpreting the radar data, ice sheet mass balance through time by mapping englacial reflectors in the ice and connecting them to ice stratigraphy in the recent South Pole, and ice sheet geometry using laser altimetry. Second, the study will provide an assessment of the geological context of the Titan Dome region with respect to understanding regional geologic boundaries and the potential for bedrock sampling. For these two goals, we will use data opportunistically collected by China, and the recent PolarGAP dataset. Third, the study will provide an assessment of the risk posture for RAID site targeting in the Titan Dome region, and the Dome C region. This will use a high-resolution dataset the team collected previously at Dome C, an area similar to the coarser resolution data collected at Titan Dome, and will enable an understanding of what is missed by the wide lines spacing at Titan Dome. Specifically, we will model subglacial hydrology with and without the high resolution data, and statistically examine the detection of subglacial mountains (which could preserve old ice) and subglacial lakes (which could destroy old ice), as a function of line spacing. | POLYGON((95 -68,100.5 -68,106 -68,111.5 -68,117 -68,122.5 -68,128 -68,133.5 -68,139 -68,144.5 -68,150 -68,150 -70.2,150 -72.4,150 -74.6,150 -76.8,150 -79,150 -81.2,150 -83.4,150 -85.6,150 -87.8,150 -90,144.5 -90,139 -90,133.5 -90,128 -90,122.5 -90,117 -90,111.5 -90,106 -90,100.5 -90,95 -90,95 -87.8,95 -85.6,95 -83.4,95 -81.2,95 -79,95 -76.8,95 -74.6,95 -72.4,95 -70.2,95 -68)) | POINT(122.5 -79) | false | false | ||||||
Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work
|
9978236 |
2020-04-24 | Bell, Robin; Studinger, Michael S. | This award, provided by the Office of Polar Programs under the Life in Extreme Environments (LExEn) Program, supports a geophysical study of Lake Vostok, a large lake beneath the East Antarctic Ice Sheet. <br/><br/>Subglacial ecosystems, in particular subglacial lake ecosystems are extreme oligotrophic environments. These environments, and the ecosystems which may exist within them, should provide key insights into a range of fundamental questions about the development of Earth and other bodies in the Solar System including: 1) the processes associated with rapid evolutionary radiation after the extensive Neoproterozoic glaciations; 2) the overall carbon cycle through glacial and interglacial periods; and 3) the possible adaptations organisms may require to thrive in environments such as on Europa, the ice covered moon of Jupiter. Over 70 subglacial lakes have been identified beneath the 3-4 kilometer thick ice of Antarctica. One lake, Lake Vostok, is sufficiently large to be clearly identified from space with satellite altimetry. Lake Vostok is similar to Lake Ontario in area but with a much larger volume including measured water depths of 600 meters. The overlying ice sheet is acting as a conveyer belt continually delivering new water, nutrients, gas hydrates, sediments and microbes as the ice sheet flows across the lake. <br/><br/>The goal of this program is to determine the fundamental boundary conditions for this subglacial lake as an essential first step toward understanding the physical processes within the lake. An aerogeophysical survey over the lake and into the surrounding regions will be acquired to meet this goal. This data set includes gravity, magnetic, laser altimetry and ice penetrating radar data and will be used to compile a basic set of ice surface elevation, subglacial topography, gravity and magnetic anomaly maps. <br/><br/>Potential field methods widely used in the oil industry will be modified to estimate the subglacial topography from gravity data where the ice penetrating radar will be unable to recover the depth of the lake. A similar method can be modified to estimate the thickness of the sediments beneath the lake from magnetic data. These methods will be tested and applied to subglacial lakes near South Pole prior to the Lake Vostok field campaign and will provide valuable comparisons to the planned survey. Once the methods have been adjusted for the Lake Vostok application, maps of the water cavity and sediment thickness beneath the lake will be produced.<br/><br/>These maps will become tools to explore the geologic origin of the lake. The two endmember models are, first, that the lake is an active tectonic rift such as Lake Baikal and, second, the lake is the result of glacial scouring. The distinct characteristics of an extensional rift can be easily identified with our aerogeophysical survey. The geological interpretation of the airborne geophysical survey will provide the first geological constraints of the interior of the East Antarctic continent based on modern data. In addition, the underlying geology will influence the ecosystem within the lake. <br/><br/>One of the critical issues for the ecosystem within the lake will be the flux of nutrients. A preliminary estimation of the regions of freezing and melting based on the distance between distinctive internal layers observed on the radar data will be made. These basic boundary conditions will provide guidance for a potential international effort aimed at in situ exploration of the lake and improve the understanding of East Antarctic geologic structures. | POLYGON((101 -75.5,101.9 -75.5,102.8 -75.5,103.7 -75.5,104.6 -75.5,105.5 -75.5,106.4 -75.5,107.3 -75.5,108.2 -75.5,109.1 -75.5,110 -75.5,110 -75.85,110 -76.2,110 -76.55,110 -76.9,110 -77.25,110 -77.6,110 -77.95,110 -78.3,110 -78.65,110 -79,109.1 -79,108.2 -79,107.3 -79,106.4 -79,105.5 -79,104.6 -79,103.7 -79,102.8 -79,101.9 -79,101 -79,101 -78.65,101 -78.3,101 -77.95,101 -77.6,101 -77.25,101 -76.9,101 -76.55,101 -76.2,101 -75.85,101 -75.5)) | POINT(105.5 -77.25) | false | false | ||||||
Collaborative Research: THE MCMURDO DRY VALLEYS: A landscape on the Threshold of Change
|
1246203 1245749 1246342 |
2017-12-20 | Levy, Joseph; Gooseff, Michael N.; Fountain, Andrew |
|
Collaborative Research: THE MCMURDO DRY VALLEYS: A Landscape on the Threshold of Change is supported by the Antarctic Integrated System Science (AISS) program in the Antarctic Sciences Section of the Division of Polar Programs within the Geosciences Directorate of the National Sciences Foundation (NSF). The funds will support the collection of state-of-the-art high resolution LIDAR (combining the terms light and radar) imagery of the Dry Valleys of Antarctica in the 2014/2015 Antarctic field season, with LIDAR data collection and processing being provided by the NSF-supported NCALM (National Center for Airborne Laser Mapping) facility. LIDAR images collected in 2014/2015 will be compared to images from 2001 in order to detect decadal change. Additional fieldwork will look at the distribution of buried massive ice, and the impacts that major changes like slumping are having on the biota. All field data will be used to improve models on energy balance, and hydrology.<br/><br/>Intellectual Merit: There have been dramatic changes over the past decade in the McMurdo Dry Valleys: rivers are incising by more than three meters, and thermokarst slumps are appearing near several streams and lakes. These observations have all been made by researchers in the field, but none of the changes have been mapped on a valley-wide scale. This award will provide a new baseline map for the entire Dry Valley system, with high-resolution imagery provided for the valley floors, and lower resolution imagery available for the higher elevation areas that are undergoing less change. The project will test the idea that sediment-covered ice is associated with the most dramatic changes, due to differential impacts of the increased solar radiation on sediment-covered compared to clean ice, and despite the current trend of slightly cooling air temperatures within the Dry Valleys. Information collected on the topography, coupled with the GPR determined buried ice distributions, will also be incorporated into improved energy and hydrological models. In addition to providing the new high-resolution digital elevation model (DEM), the project will ultimately result in identification of areas that are susceptible to sediment-enhanced melt-driven change, providing a powerful prediction tool for the impacts of climate change.<br/><br/>Broader Impacts: The new DEM will be immediately useful to a wide range of disciplines, and will provide a comprehensive new baseline against which future changes will be compared. The project will provide a tool for the whole community to use, and the investigators will work with the community to make them aware of the new assets via public presentations, and perhaps via a workshop. The map will have international interest, and will also serve as a tool for environmental managers to draw on as they consider conservation plans. Several undergraduate and graduate students will participate in the project, and one of the co-PIs is a new investigator. The imagery collected is expected to be of interest to the general public in addition to scientific researchers, and venues for outreach such as museum exhibits and the internet will be explored. The proposed work is synergistic with 1) the co-located McMurdo LTER program, and 2) the NCALM facility that is also funded by the Geosciences Directorate. | POLYGON((160.105465 -77.2119,160.7907435 -77.2119,161.476022 -77.2119,162.1613005 -77.2119,162.846579 -77.2119,163.5318575 -77.2119,164.217136 -77.2119,164.9024145 -77.2119,165.587693 -77.2119,166.2729715 -77.2119,166.95825 -77.2119,166.95825 -77.3189628,166.95825 -77.4260256,166.95825 -77.5330884,166.95825 -77.6401512,166.95825 -77.747214,166.95825 -77.8542768,166.95825 -77.9613396,166.95825 -78.0684024,166.95825 -78.1754652,166.95825 -78.282528,166.2729715 -78.282528,165.587693 -78.282528,164.9024145 -78.282528,164.217136 -78.282528,163.5318575 -78.282528,162.846579 -78.282528,162.1613005 -78.282528,161.476022 -78.282528,160.7907435 -78.282528,160.105465 -78.282528,160.105465 -78.1754652,160.105465 -78.0684024,160.105465 -77.9613396,160.105465 -77.8542768,160.105465 -77.747214,160.105465 -77.6401512,160.105465 -77.5330884,160.105465 -77.4260256,160.105465 -77.3189628,160.105465 -77.2119)) | POINT(163.5318575 -77.747214) | false | false | |||||
Geophysical Investigations of Marie Byrd Land Lithospheric Evolution (GIMBLE)
|
1043761 |
2015-12-01 | Young, Duncan A.; Holt, John W.; Blankenship, Donald D. | Intellectual Merit: <br/>The PIs propose to use airborne geophysics to provide detailed geophysical mapping over the Marie Byrd Land dome of West Antarctica. They will use a Basler equipped with advanced ice penetrating radar, a magnetometer, an airborne gravimeter and laser altimeter. They will test models of Marie Byrd Land lithospheric evolution in three ways: 1) constrain bedrock topography and crustal structure of central Marie Byrd Land for the first time; 2) map subglacial geomorphology of Marie Byrd Land to constrain landscape evolution; and 3) map the distribution of subglacial volcanic centers and identify active sources. Marie Byrd Land is one of the few parts of West Antarctica whose bedrock lies above sea level; as such, it has a key role to play in the formation and decay of the West Antarctic Ice Sheet (WAIS), and thus on eustatic sea level change during the Neogene. Several lines of evidence suggest that the topography of Marie Byrd Land has changed over the course of the Cenozoic, with significant implications for the origin and evolution of the ice sheet.<br/><br/>Broader impacts: <br/>This work will have important implications for both the cryospheric and geodynamic communities. These data will also leverage results from the POLENET project. The PIs will train both graduate and undergraduate students in the interpretation of large geophysical datasets providing them with the opportunity to co-author peer-reviewed papers and present their work to the broader science community. This research will also support a young female researcher. The PIs will conduct informal education using their Polar Studies website and contribute formally to K-12 curriculum development. The research will incorporate microblogging and data access to allow the project?s first-order hypothesis to be confirmed or denied in public. | POLYGON((-145 -74,-141.6 -74,-138.2 -74,-134.8 -74,-131.4 -74,-128 -74,-124.6 -74,-121.2 -74,-117.8 -74,-114.4 -74,-111 -74,-111 -74.6,-111 -75.2,-111 -75.8,-111 -76.4,-111 -77,-111 -77.6,-111 -78.2,-111 -78.8,-111 -79.4,-111 -80,-114.4 -80,-117.8 -80,-121.2 -80,-124.6 -80,-128 -80,-131.4 -80,-134.8 -80,-138.2 -80,-141.6 -80,-145 -80,-145 -79.4,-145 -78.8,-145 -78.2,-145 -77.6,-145 -77,-145 -76.4,-145 -75.8,-145 -75.2,-145 -74.6,-145 -74)) | POINT(-128 -77) | false | false | ||||||
Collaborative Research: IPY: GAMBIT: Gamburtsev Aerogeophysical Mapping of Bedrock and Ice Targets
|
1240707 0632292 |
2013-09-29 | Bell, Robin; Studinger, Michael S.; Fahnestock, Mark | This award supports an aerogeophysical study of the Gamburtsev Subglacial Mountains (GSM), a Texas-sized mountain range buried beneath the ice sheets of East Antarctica. The project would perform a combined gravity, magnetics, and radar study to achieve a range of goals including: advancing our understanding of the origin and evolution of the polar ice sheets and subglacial lakes; defining the crustal architecture of East Antarctica, a key question in the earth's history; and locating the oldest ice in East Antarctica, which may ultimately help find ancient climate records. Virtually unexplored, the GSM represents the largest unstudied area of crustal uplift on earth. As well, the region is the starting point for growth of the Antarctic ice sheets. <br/>Because of these outstanding questions, the GSM has been identified by the international Antarctic science community as a research focus for the International Polar Year (2007-2009). In addition to this study, NSF is also supporting a seismological survey of the GSM under award number 0537371. Major international partners in the project include Germany, China, Australia, and the United Kingdom. For more information see IPY Project #67 at IPY.org. In terms of broader impacts, this project also supports postdoctoral and graduate student research, and various forms of outreach including a focus on groups underrepresented in the earth sciences. | POLYGON((65 -77.5,67.4 -77.5,69.8 -77.5,72.2 -77.5,74.6 -77.5,77 -77.5,79.4 -77.5,81.8 -77.5,84.2 -77.5,86.6 -77.5,89 -77.5,89 -78.25,89 -79,89 -79.75,89 -80.5,89 -81.25,89 -82,89 -82.75,89 -83.5,89 -84.25,89 -85,86.6 -85,84.2 -85,81.8 -85,79.4 -85,77 -85,74.6 -85,72.2 -85,69.8 -85,67.4 -85,65 -85,65 -84.25,65 -83.5,65 -82.75,65 -82,65 -81.25,65 -80.5,65 -79.75,65 -79,65 -78.25,65 -77.5)) | POINT(77 -81.25) | false | false | ||||||
Subglacial Lakes and the Onset of Ice Streaming: Recovery Lakes
|
0636883 |
2013-04-02 | Bell, Robin; Studinger, Michael S. |
|
Bell/0636883<br/><br/>This award support a project to study the role that subglacial water plays in the overall stability of major ice sheets. An estimated 22,000 km3 of water is currently stored within Antarctica's subglacial lakes. Movement of this water occurs through a complex and largely inferred drainage system in both East and West Antarctica. Geomorphic evidence for the catastrophic drainage of subglacial lakes documents repeated events. These major flood events appear to have drained the largest subglacial lakes situated in the relatively stable interior of the East Antarctic ice sheet. Emerging evidence suggests there is a close connection between significant subglacial lakes and the onset of the Recovery Ice Stream one of the largest in East Antarctica. Our preliminary analysis of the Recovery Lakes region, East Antarctica suggests a direct linkage between lakes and streaming ice flow, specifically the 800 km long Recovery Ice Stream and its tributaries. Located just upslope of the Recovery Ice Stream, the Recovery Lakes Region is composed of 3 well-defined lakes and a fourth, ambiguous, 'lake-like' feature. While other large lakes have a localized impact on ice surface slope, the Recovery Lakes Region lakes are coincident with an abrupt regional change in the ice sheet surface slope. Satellite imagery demonstrates that the downslope margin of this lake area contains distinct flow strips and crevasses: both indicative of increasing ice velocities. The discovery of a series of large lakes coincident with the onset of rapid ice flow in East Antarctica clearly links subglacial lakes and ice sheet dynamics for the first time. The evidence linking the onset of streaming in the Recovery Drainage Ice Stream to the series of large subglacial lakes raises the fundamental question: How can subglacial lakes trigger the onset of ice streaming? We advance two possible mechanisms: (i) Subglacial lakes can produce accelerated ice flow through the drainage of lake water beneath the ice sheet downslope of the lakes. (ii) Subglacial lakes can produce accelerated ice flow accelerated ice flow by modifying the basal thermal gradient via basal accretion over the lakes so when the ice sheet regrounds basal melting dominates. To evaluate the contribution of lake water and the changing basal thermal gradient, we propose an integrated program incorporating satellite imagery analysis, a series of reconnaissance aerogeophysical profiles over the Recovery Lake Region and the installation of continuous GPS sites over the Recovery Lakes. This analysis and new data will enable us (1) to produce a velocity field over the Recovery Lakes Region, (2) to map the ice thickness changes over the lakes due to acceleration triggered thinning, basal melting and freezing, (3) determine the depth and possible the tectonic origin of the Recovery Lakes and (4) determine the stability of these lakes over time. These basic data sets will enable us to advance our understanding of how subglacial lakes trigger the onset of streaming. The intellectual merit of this project is that it will be the first systematic analysis of ice streams triggering the onset of ice streams. This work has profound implications for the modeling of ice sheet behavior in the future, the geologic record of abrupt climate changes and the longevity of subglacial lakes. The broader impacts of the project are programs that will reach students of all ages through undergraduates involved in the research, formal presentations in teacher education programs and ongoing public outreach efforts at major science museums. Subglacial Antarctic lake environments are emerging as a premier, major frontier for exploration during the IPY 2007-2009. | POLYGON((20 -75,23 -75,26 -75,29 -75,32 -75,35 -75,38 -75,41 -75,44 -75,47 -75,50 -75,50 -76.5,50 -78,50 -79.5,50 -81,50 -82.5,50 -84,50 -85.5,50 -87,50 -88.5,50 -90,47 -90,44 -90,41 -90,38 -90,35 -90,32 -90,29 -90,26 -90,23 -90,20 -90,20 -88.5,20 -87,20 -85.5,20 -84,20 -82.5,20 -81,20 -79.5,20 -78,20 -76.5,20 -75)) | POINT(35 -82.5) | false | false | |||||
Collaborative Research: Deciphering the Deep Ice and the Ice-water Interface over Lake Vostok Using Existing Radar Data
|
0537752 0538674 |
2012-08-09 | Matsuoka, Kenichi; Winebrenner, Dale; Creyts, Timothy; Macgregor, Joseph A.; Studinger, Michael S.; Waddington, Edwin D. |
|
0538674<br/>Matsuoka<br/>This award supports a project to evaluate radio-echo intensities in the available SOAR ice-penetrating radar data along grids covering Lake Vostok, and along four regional tracks from Ridge B toward the lake. The project has two objectives; first, it will examine the upper surface of the lake and reflectors hypothesized to be a boundary between the meteoric and accreted ice. They will provide crucial knowledge on the dynamic evolution of the lake. Second, this project will examine a poorly understood echo-free zone within the deep ice in central East Antarctica. This zone may consist of distorted stagnant ice, while its upper boundary may be a shear zone. The SOAR radar data provide a unique resource to examine spatiotemporal water circulation patterns that should be understood in order to select the best direct-sampling strategy to the lake. The Vostok ice core provides a unique opportunity to do this work. First, the path effects, i.e. propagation loss and birefringence, will be derived at the ice-core site using ice temperature, chemistry, and fabric data. Second, lateral variations of the propagation loss will be estimated by tracking chemistry associated with radar-detected isochronous layers, and by inferring temperatures from an ice-flow model that can replicate those layers. Ice-fabric patterns will be inferred from anisotropy in the reflectivity at about 100 radar-track cross-over sites. In terms of broader impacts, a graduate student will be trained to interpret the radar data in the light of radar theory and glaciological context of Lake Vostok and summer workshops for K-12 teachers will be provided in Seattle and New York. This project will contribute to ongoing efforts to study Lake Vostok and will complement the site selection for a North Vostok ice core, which has been proposed by Russia and France as an IPY program. | None | None | false | false | |||||
Estimating the Salinity of Subglacial Lakes From Existing Aerogeophysical Data
|
0636584 |
2012-08-07 | Creyts, Timothy; Studinger, Michael S. | No dataset link provided | Studinger/0636584<br/><br/>This award supports a project to estimate the salinity of subglacial Lake Vostok, Lake Concordia and the 90 deg.E lake using existing airborne ice-penetrating radar and laser altimeter data. These lakes have been selected because of the availability of modern aerogeophysical data and because they are large enough for the floating ice to be unaffected by boundary stresses near the grounding lines. The proposed approach is based on the assumption that the ice sheet above large subglacial lakes is in hydrostatic equilibrium and the density and subsequently salinity of the lake's water can be estimated from the (linear) relationship between ice surface elevation and ice thickness of the floating ice. The goal of the proposed work is to estimate the salinity of Lake Vostok and determine spatial changes and to compare the salinity estimates of 3 large subglacial lakes in East Antarctica. The intellectual merits of the project are that this work will contribute to the knowledge of the physical and chemical processes operating within subglacial lake environments. Due to the inaccessibility of subglacial lakes numerical modeling of the water circulation is currently the only way forward to develop a conceptual understanding of the circulation and melting and freezing regimes in subglacial lakes. Numerical experiments show that the salinity of the lake's water is a crucial input parameter for the 3-D fluid dynamic models. Improved numerical models will contribute to our knowledge of water circulation in subglacial lakes, its effects on water and heat budgets, stratification, melting and freezing, and the conditions that support life in such extreme environments. The broader impacts of the project are that subglacial lakes have captured the interest of many people, scientists and laymen. The national and international press frequently reports about the research of the Principal Investigator. His Lake Vostok illustrations have been used in math and earth science text books. Lake Vostok will be used for education and outreach in the Earth2Class project. Earth2Class is a highly successful science/math/technology learning resource for K-12 students, teachers, and administrators in the New York metropolitan area. Earth2Class is created through collaboration by research scientists at the Lamont- Doherty Earth Observatory; curriculum and educational technology specialists from Teachers College, Columbia University; and classroom teachers in the New York metropolitan area. | None | None | false | false | |||||
Collaborative Research: Ice-flow history of the Thwaites Glacier, West Antarctica
|
0739654 0739372 |
2012-05-30 | Conway, Howard; Catania, Ginny; Markowski, Michael; Macgregor, Joseph A.; Andrews, Alan G.; Fudge, T. J. |
|
Catania 0739654<br/><br/>This award supports a project to study the Amundsen Sea drainage system and improve understanding of the impact of recent glaciological changes as an aid to predicting how this region will change in the future. The intellectual merit of the work is that the Amundsen Sea drainage system has been a recent focus for glaciological research because of rapid changes occurring there as a result of grounding line retreat. The work will focus on the regions of flow transition and will map the internal stratigraphy of the ice sheet across the Thwaites Glacier shear margins and use the age and geometry of radar-detected internal layers to interpret ice flow history. Thwaites Glacier (one of the main pathways for ice drainage in the region) has recently widened and may continue to do so in the near future. Thwaites Glacier may be particularly vulnerable to grounding line retreat because it lacks a well-defined subglacial channel. The subglacial environment exerts strong control on ice flow and flow history will be mapped in the context of bed topography and bed reflectivity. The plan is to use existing ice-penetrating radar data and coordinate with planned upcoming surveys to reduce logistical costs. The work proposed here will take three years to complete but no additional fieldwork in Antarctica is required. More detailed ground-based geophysical (radar and seismic) experiments will be needed at key locations to achieve our overall goal and the work proposed here will aid in identifying those regions. The broader impacts of the project are that it will initiate a new collaboration among radar communities within the US including those that are on the forefront of radar systems engineering and those that are actively involved in radar-derived internal layer and bed analysis. The project will also provide support for a postdoctoral researcher and a graduate student, thus giving them exposure to a variety of methodologies and scientific issues. Finally, there are plans to further develop the "Wired Antarctica" website designed by Ginny Catania with the help of a student-teacher. This will allow for the existing lesson plans to be updated to Texas State standards so that they can be used more broadly within state middle and high schools. | None | None | false | false | |||||
Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System
|
0758274 0636724 |
2012-05-15 | Carter, Sasha P.; Dupont, Todd K.; Holt, John W.; Morse, David L.; Parizek, Byron R.; Young, Duncan A.; Kempf, Scott D.; Blankenship, Donald D. | This award supports a three-year study to isolate essential physical processes affecting Thwaites Glacier (TG) in the Amundsen Sea Embayment (ASE) of West Antarctica using a suite of existing numerical models in conjunction with existing and International Polar Year (IPY)-proposed data sets. Four different models will be utilized to explore the effects of embayment geometry, ice-shelf buttressing, basal-stress distribution, surface mass balance, surface climate, and inland dynamic perturbations on the present and future dynamics of TG. This particular collection of models is ideally suited for the broad nature of this investigation, as they incorporate efficient and complementary simplifications of the stress field (shallow-ice and shelf-stream), system geometry (1-d and 2-d plan-view and flowline; depth-integrated and depth-dependent), and mass-momentum energy coupling (mechanical and thermo-mechanical). The models will be constrained and validated by data sets (including regional maps of ice thickness, surface elevation, basal topography, ice surface velocity, and potential fields) and geophysical data analyses (including increasing the spatial resolution of surface elevations, improving regional estimates of geothermal flux, and characterizing the sub-glacial interface of grounded ice as well as the grounding-zone transition between grounded and floating ice). The intellectual merit of the research focuses on several of the NSF Glaciology program's emphases, including: ice dynamics, numerical modeling, and remote sensing of ice sheets. In addition, the research directly addresses the following specific NSF objectives: "investigation of the physics of fast glacier flow with emphasis on processes at glacier beds"; "investigation of ice-shelf stability"; and "identification and quantification of the feedback between ice dynamics and climate change". The broader impacts of this research effort will help answer societally relevant questions of future ice sheet stability and sea-level change. The research also will aid in the early career development of two young investigators and will contribute to the education of both graduate and undergraduate students directly involved in the research, and results will be incorporated into courses and informal presentations. | POLYGON((-110.058 -74.0548,-109.57993 -74.0548,-109.10186 -74.0548,-108.62379 -74.0548,-108.14572 -74.0548,-107.66765 -74.0548,-107.18958 -74.0548,-106.71151 -74.0548,-106.23344 -74.0548,-105.75537 -74.0548,-105.2773 -74.0548,-105.2773 -74.31383,-105.2773 -74.57286,-105.2773 -74.83189,-105.2773 -75.09092,-105.2773 -75.34995,-105.2773 -75.60898,-105.2773 -75.86801,-105.2773 -76.12704,-105.2773 -76.38607,-105.2773 -76.6451,-105.75537 -76.6451,-106.23344 -76.6451,-106.71151 -76.6451,-107.18958 -76.6451,-107.66765 -76.6451,-108.14572 -76.6451,-108.62379 -76.6451,-109.10186 -76.6451,-109.57993 -76.6451,-110.058 -76.6451,-110.058 -76.38607,-110.058 -76.12704,-110.058 -75.86801,-110.058 -75.60898,-110.058 -75.34995,-110.058 -75.09092,-110.058 -74.83189,-110.058 -74.57286,-110.058 -74.31383,-110.058 -74.0548)) | POINT(-107.66765 -75.34995) | false | false | ||||||
Collaborative Research: Elevation Change Anomalies in West Antarctica and Dynamics of Subglacial Water Transport Beneath Ice Streams and their Tributaries
|
0636719 0636970 |
2011-07-27 | Smith, Ben; Joughin, Ian; Tulaczyk, Slawek; SMITH, BENJAMIN |
|
Tulaczyk/0636970<br/><br/>This award supports a project to study elevation change anomalies (henceforth ECAs), which are oval-shaped, 5-to-10 km areas observed in remote sensing images in several locations within the Ross Sea sector of the West Antarctic Ice Sheet (WAIS). Within these anomalies, surface elevation changes at rates of up to ~1 to ~2 cm per day, significantly faster than in surrounding regions. These anomalies are thought to result from filling and draining of multi-kilometer-scale subglacial water pockets. The intellectual merit of this project is that these ECA's represent an unprecedented window into the elusive world of water drainage dynamics beneath the modern Antarctic ice sheet. Although subglacial water fluxes are small compared to normal terrestrial conditions, they play an important role in controlling fast ice streaming and, potentially, stability of the ice sheet. The dearth of observational constraints on sub-ice sheet water dynamics represents one of the most important limitations on progress in quantitative modeling of ice streams and ice sheets. Such models are necessary to assess future ice sheet mass balance and to reconstruct the response of ice sheets to past climate changes. The dynamic sub-ice sheet water transport indicated by the ECAs may have also implications for studies of subglacial lakes and other subglacial environments, which may harbor life adapted to such extreme conditions. The broader impacts of this project are that it will provide advanced training opportunities to one postdoctoral fellow (UW), two female doctoral students (UCSC), who will enhance diversity in polar sciences, and at least three undergraduate students (UCSC). Project output will be relevant to broad scientific and societal interests, such as the future global sea level changes and the response of Polar Regions to climate changes. Douglas Fox, a freelance science journalist, is interested in joining the first field season to write feature articles to popular science magazines and promote the exposure of this project, and Antarctic Science in general, to mass media. | None | None | false | false | |||||
Glaciological Characteristics of the Ross/Amundsen Sea Ice-flow Divide Deduced by a New Analysis of Ice-penetrating Radar Data
|
0338151 |
2010-05-11 | Raymond, Charles; Matsuoka, Kenichi; Luyendyk, Bruce P.; Wilson, Douglas S. | This award supports an investigation of spatial variations of ice temperature and subglacial conditions using available ice-penetrating radar data around a future deep ice coring site near the Ross and Amundsen flow divide of West Antarctic Ice Sheet. Besides geometry of reflection layers the focus will be on intensities of radar echoes from within ice deeper than several hundred meters and will also examine echoes from the bed. Preliminary studies on theory and comparison with Japanese radar data from East Antarctica suggest that large spatial variations of the vertical gradient of radar echoes from within ice exist and are caused primarily by ice temperature and secondarily by crystal-orientation fabric. The hypothesis that the vertical gradient is a proxy of ice temperature will be tested. The project will utilize an existing data set from the Support Office for Aerogeophysical Research in Antarctica (SOAR) and will complement work already underway at University of Texas to analyze the radar data. The project will provide undergraduate research experience with an emphasis on computer analysis of time series and large data sets as well as development of web-based resource of results and methods and will support an international collaboration between US and Japan through discussions on the preliminary results from their study sites. Practical procedures developed through this study will be downloadable from the project's web site in the third year and will allow investigation of other ice sheets using existing radar data sets. This project will contribute to the interpretation of the future inland West Antarctic ice core and will help in the understanding of ice sheet history and climate change. | POINT(-112.086 -79.468) | POINT(-112.086 -79.468) | false | false | ||||||
Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR)
|
9911617 9319379 |
2009-02-06 | Carter, Sasha P.; Holt, John W.; Blankenship, Donald D.; Morse, David L.; Dalziel, Ian W. | 9911617<br/>Blankenship<br/><br/>This award, provided jointly by the Antarctic Geology and Geophysics Program, the Antarctic Glaciology Program, and the Polar Research Support Section of the Office of Polar Programs, provides funds for continuation of the Support Office for Aerogeophysical Research (SOAR). From July 1994 to July 2000, SOAR served as a facility to accomplish aerogeophysical research in Antarctica under an agreement between the University of Texas at Austin and the National Science Foundation's Office of Polar Programs (NSF/OPP). SOAR operated and maintained an aerogeophysical instrument package that consists of an ice-penetrating radar sounder, a laser altimeter, a gravimeter and a magnetometer that are tightly integrated with each other as well as with the aircraft's avionics and power packages. An array of aircraft and ground-based GPS receivers supported kinematic differential positioning using carrier-phase observations. SOAR activities included: developing aerogeophysical research projects with NSF/OPP investigators; upgrading of the aerogeophysical instrumentation package to accommodate new science projects and advances in technology; fielding this instrument package to accomplish SOAR-developed projects; and management, reduction, and analysis of the acquired aerogeophysical data. In pursuit of 9 NSF-OPP funded aerogeophysical research projects (involving 14 investigators from 9 institutions), SOAR carried out six field campaigns over a six-year period and accomplished approximately 200,000 line kilometers of aerogeophysical surveying over both East and West Antarctica in 377 flights.<br/><br/>This award supports SOAR to undertake a one year and 8 month program of aerogeophysical activities that are consistent with continuing U.S. support for geophysical research in Antarctica. <br/>- SOAR will conduct an aerogeophysical campaign during the 200/01 austral summer to accomplish surveys for two SOAR-developed projects: "Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Studies" (Co-PI's Bell and Studinger, LDEO); and "Collaborative Research: Seismic Investigation of the Deep Continental Structure Across the East-West Antarctic Boundary" (Co-PI's Weins, Washington U. and Anandakrishnan, U. Alabama). After configuration and testing of the survey aircraft in McMurdo, SOAR will conduct survey flights from an NSF-supported base adjacent to the Russian Station above Lake Vostok and briefly occupy one or two remote bases on the East Antarctic ice sheet.<br/>- SOAR will reduce these aerogeophysical data and produce profiles and maps of surface elevation, bed elevation, gravity and magnetic field intensity. These results will be provided to the respective project investigators within nine months of conclusion of field activities. We will also submit a technical manuscript that describes these results to a refereed scientific journal and distribute these results to appropriate national geophysical data centers within approximately 24 months of completion of field activities.<br/>- SOAR will standardize all previously reduced SOAR data products and transfer them to the appropriate national geophysical data centers by the end of this grant.<br/>- SOAR will convene a workshop to establish a community consensus for future U.S. Antarctic aerogeophysical research. This workshop will be co-convened by Ian Dalziel and Richard Alley and will take place during the spring of 2001.<br/>- SOAR will upgrade the existing SOAR in-field quality control procedures to serve as a web-based interface for efficient browsing of many low-level SOAR data streams.<br/>- SOAR will repair and/or refurbish equipment that was used during the 2000/01 field campaign.<br/><br/>Support for SOAR is essential for accomplishing major geophysical investigations in Antarctica. Following data interpretation by the science teams, these data will provide valuable insights to the structure and evolution of the Antarctic continent. | None | None | false | false | ||||||
Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA)
|
0230197 |
2007-01-01 | Blankenship, Donald D.; Fastook, James L.; Corr, Hugh F. J.; Holt, John W.; Morse, David L.; Vaughan, David G.; Young, Duncan A. | This award supports a comprehensive aerogeophysical survey of the Amundsen Sea Embayment (ASE) in West Antarctica. The University of Texas will join forces with the British Antarctic Survey to use both US and UK aircraft and instrumentation to achieve this survey. Analyses of the new aerogeophysical<br/>data will result in the generation of maps of ice sheet surface, volume and bottom-interface characteristics. These maps will support the efforts of a community of US and international researchers to assess the present and predict the future behavior of the ice sheet in the ASE.<br/>The West Antarctic ice sheet has been the subject of intensive interdisciplinary study by both the European and U.S. scientific communities since it was recognized to be a potential source for up to 5 meters of sea<br/>level rise, possibly on short timescales. In terms of ice discharge, the ASE is the largest drainage system in West Antarctica. Yet it has been comparatively unstudied, primarily due to its remoteness from logistical<br/>centers. The ASE is the only major drainage to exhibit significant elevation change over the period of available satellite observations. Present knowledge of the ice thickness and subglacial boundary conditions in the ASE are insufficient to understand its evolution or its sensitivity to climatic change.<br/>The results from our surveys are required to achieve the fundamental research objectives outlined by the US scientific community in an ASE Science Plan. The surveys and analyses will be achieved through international collaboration and will involve graduate students, undergraduates and high school apprentices.<br/>Through its potential for influencing sea level, the future behavior of the ASE is of primary societal importance. Given the substantial public and scientific interest that recent reports of change in West Antarctica have generated, we expect fundamental research in the Amundsen Sea Embayment, enabled by our surveys, will have widespread impact. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||
Corridor Aerogeophysics of the Southeastern Ross Transect Zone (CASERTZ), Antarctica
|
8919147 |
2004-03-17 | Elliot, David; Bell, Robin; Blankenship, Donald D.; Brozena, J. M.; Finn, C. A.; Hodge, S. M.; Kempf, Scott D.; Behrendt, J. C.; Morse, David L.; Peters, M. E.; Studinger, Michael S. |
|
This award will support a combined airborne radar and aeromagnetic survey of two 220 x 330 km regions between the Transantarctica Mountains and Marie Byrd Land during the 1990-91 and 1991-92 field seasons. These efforts will address significant problems identified in the Ross Transect Zone (RTZ) by the National Academy of Sciences (1986) report "Antarctic Solid Earth Sciences Research," and by the report to NSF "A Plan for a United States Program to Study the Structure and Evolution of the Antarctic Lithosphere (SEAL)." The surveys will be flown using the NSF/TUD radar and an areomagnetics system mounted in a light aircraft. The grid spacing will be 5 km and navigation will be by radiopositioning. In addition to maps of subglacial topography and magnetic intensity, attempts will be made to reconstruct the position of subglacial diffractors in three dimensions. This reconstruction should give new information about the distribution of escarpments and therefore the tectonic relationships within the region, especially when combined with the magnetic results. These experiments will be conducted by the Byrd Polar Research Center of the Ohio State University and the Water Resources and Geological Divisions of the U.S. Geological Survey. | None | None | false | false | |||||
Radar Investigations of Former Shear Margins: Roosevelt Island and Ice Stream C
|
9615347 |
2003-05-23 | Conway, Howard |
|
This award is for two years of support to perform radar investigations across former shear margins at Roosevelt Island and Ice Stream C in order to measure changes in the configuration and continuity of internal layers and the bed. The broad goal of these investigations is to gain an understanding of ice stream flow and the timing and mechanisms of ice stream shutdown. A high-resolution short-pulse radar system will be used for detailed examination of the uppermost hundred meters of the firn and ice, and a monopulse sounding-radar system will be used to image the rest of the ice column (including internal layers) and the bed. Changes in the shape and continuity of layers will be used to interpret mechanisms and modes of ice stream flow including the possible migration of stagnation fronts and rates of shut-down. Variations in bed reflectivity will be used to deduce basal hydrology conditions across lineations. Accumulation rates deduced from snow pits and shallow cores will be used to estimate near-surface depth-age profiles. Improved understanding of ice stream history opens the possibility of linking changes in the West Antarctic ice sheet with the geologic evidence from Northern Victoria Land and the ocean record of the retreat of the grounding line in the Ross Sea. | None | None | false | false |