{"dp_type": "Dataset", "free_text": "Sub-Antarctic"}
[{"awards": "1850988 Teets, Nicholas", "bounds_geometry": null, "date_created": "Wed, 12 Mar 2025 00:00:00 GMT", "description": "Insects are known for occurring in any biome due to their outstanding phenotypic plasticity, reproductive ability, and environmental resilience, but only a few species can survive Antarctica\u2019s environmental conditions. The chironomid midge Belgica antarctica is the only insect species endemic to Antarctica, and it has evolved throughout Antarctica\u2019s history and remains active until this day. Recent work has shown that B. antarctica has been isolated from its closest relatives for over 30 million years, which has allowed it to evolve specialized adaptations to thrive in Antarctica\u2019s harsh terrestrial ecosystems. A closely related midge, Eretmoptera murphyi, which is endemic to South Georgia (a sub-Antarctic Island), has invaded Signy Island (a Maritime Antarctica island), and the invasion was facilitated in part by its surprising ability to cope with abiotic stress. Also, the extent of the threat that E. murphyi, as an invasive species, can pose to B. antarctica has been not directly addressed.", "east": null, "geometry": null, "keywords": "Antarctica; Belgica Antarctica; Cryosphere", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Sousa Lima, Cleverson; Aquilino, Monica; Kawarasaki, Yuta; Pavinato, Vitor; Gantz, Josiah D.; Devlin, Jack; Michel, Andrew; Hayward, Scott; Teets, Nicholas", "project_titles": "NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects", "projects": [{"proj_uid": "p0010203", "repository": "USAP-DC", "title": "NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Stress tolerance in Belgica antarctica and Eretmoptera murphyi", "uid": "601871", "west": null}, {"awards": "1850988 Teets, Nicholas", "bounds_geometry": ["POINT(-64.0162 -64.7992)"], "date_created": "Sat, 04 Jan 2025 00:00:00 GMT", "description": "This dataset contains survival data for larvae of Belgica antarctica exposed to varying levels of cold, heat, desiccation, and salinity for 24 h. The goal of the experiment was to determine the lethal level for each of these distinct, ecologically relevant stressors.", "east": -64.0162, "geometry": ["POINT(-64.0162 -64.7992)"], "keywords": "Antarctica; Antarctic Peninsula; Cryosphere", "locations": "Antarctica; Antarctica; Antarctic Peninsula", "north": -64.7992, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Teets, Nicholas", "project_titles": "NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects", "projects": [{"proj_uid": "p0010203", "repository": "USAP-DC", "title": "NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.7992, "title": "Multiple stress tolerance in the Antarctic midge", "uid": "601867", "west": -64.0162}, {"awards": "1850988 Teets, Nicholas", "bounds_geometry": null, "date_created": "Fri, 03 Jan 2025 00:00:00 GMT", "description": "Protective mechanisms that confer protection to one type of environmental stressor can sometimes confer protection to stressors of different natures, which is a physiological response to stress called Cross-tolerance. Cross-tolerance has been shown in organisms of multiple orders, including Dipterans. Belgica antarctica is an extremely resilient animal and is able to withstand many types of stress that can occur both isolated and at the same time. Recently, it has been demonstrated that brief exposure to a modest level of a stressor can improve their tolerance to severe levels of multiple other stressors. This study had the objective of building on these results and investigate how their response to severe stress changes (either improve or reduce tolerance) to a long-term acclimation to modest level of stressors.", "east": null, "geometry": null, "keywords": "Antarctica; Belgica Antarctica; Cryosphere", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Sousa Lima, Cleverson; Michel, Andrew; Hayward, Scott; Colinet, Herve", "project_titles": "NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects", "projects": [{"proj_uid": "p0010203", "repository": "USAP-DC", "title": "NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Cross-tolerance in Belgica antarctica near Palmer Peninsula", "uid": "601872", "west": null}, {"awards": "1850988 Teets, Nicholas", "bounds_geometry": null, "date_created": "Fri, 03 Jan 2025 00:00:00 GMT", "description": "B. Antarctica collection site coordinates for NSFGEO-NERC #1850988 - Summer 2023/2024 field season", "east": null, "geometry": null, "keywords": "Antarctica; Cryosphere", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Sousa Lima, Cleverson; Michel, Andrew; Hayward, Scott; Teets, Nicholas", "project_titles": "NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects", "projects": [{"proj_uid": "p0010203", "repository": "USAP-DC", "title": "NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Belgica antarctica collection sites - Summer 2023/2024 field season", "uid": "601875", "west": null}, {"awards": "1850988 Teets, Nicholas", "bounds_geometry": ["POLYGON((-64.0844 -64.7651,-64.07249 -64.7651,-64.06058 -64.7651,-64.04867 -64.7651,-64.03676 -64.7651,-64.02485 -64.7651,-64.01294 -64.7651,-64.00103 -64.7651,-63.98912 -64.7651,-63.97721 -64.7651,-63.9653 -64.7651,-63.9653 -64.76798000000001,-63.9653 -64.77086,-63.9653 -64.77374,-63.9653 -64.77662,-63.9653 -64.7795,-63.9653 -64.78238,-63.9653 -64.78526,-63.9653 -64.78814,-63.9653 -64.79101999999999,-63.9653 -64.7939,-63.97721 -64.7939,-63.98912 -64.7939,-64.00103 -64.7939,-64.01294 -64.7939,-64.02485 -64.7939,-64.03676 -64.7939,-64.04867 -64.7939,-64.06058 -64.7939,-64.07249 -64.7939,-64.0844 -64.7939,-64.0844 -64.79101999999999,-64.0844 -64.78814,-64.0844 -64.78526,-64.0844 -64.78238,-64.0844 -64.7795,-64.0844 -64.77662,-64.0844 -64.77374,-64.0844 -64.77086,-64.0844 -64.76798000000001,-64.0844 -64.7651))"], "date_created": "Fri, 03 Jan 2025 00:00:00 GMT", "description": "For this study, larvae were collected every week for the entire summer field season from five sites, four located on Cormorant Island and a fifth site on Humble Island. The dataset contains microhabitat data for each site, as well as the metabolic rate, carbohydrate content, lipid content, and protein content of the larvae collected at those sites for each time point.", "east": -63.9653, "geometry": ["POINT(-64.02485 -64.7795)"], "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Seasonality", "locations": "Antarctic Peninsula; Antarctica", "north": -64.7651, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Teets, Nicholas; Spacht, Drew; Gantz, Josiah D.; Devlin, Jack; McCabe, Eleanor; Lee, Richard; Denlinger, David", "project_titles": "NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects", "projects": [{"proj_uid": "p0010203", "repository": "USAP-DC", "title": "NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.7939, "title": "Fine\u2011scale variation in microhabitat conditions influences physiology and metabolism in an Antarctic insect", "uid": "601865", "west": -64.0844}, {"awards": "1850988 Teets, Nicholas", "bounds_geometry": ["POLYGON((-64.074764 -64.771683,-64.06381760000001 -64.771683,-64.0528712 -64.771683,-64.0419248 -64.771683,-64.0309784 -64.771683,-64.020032 -64.771683,-64.0090856 -64.771683,-63.9981392 -64.771683,-63.9871928 -64.771683,-63.9762464 -64.771683,-63.9653 -64.771683,-63.9653 -64.7739047,-63.9653 -64.7761264,-63.9653 -64.77834809999999,-63.9653 -64.7805698,-63.9653 -64.7827915,-63.9653 -64.7850132,-63.9653 -64.78723489999999,-63.9653 -64.7894566,-63.9653 -64.7916783,-63.9653 -64.7939,-63.9762464 -64.7939,-63.9871928 -64.7939,-63.9981392 -64.7939,-64.0090856 -64.7939,-64.020032 -64.7939,-64.0309784 -64.7939,-64.0419248 -64.7939,-64.0528712 -64.7939,-64.06381760000001 -64.7939,-64.074764 -64.7939,-64.074764 -64.7916783,-64.074764 -64.7894566,-64.074764 -64.78723489999999,-64.074764 -64.7850132,-64.074764 -64.7827915,-64.074764 -64.7805698,-64.074764 -64.77834809999999,-64.074764 -64.7761264,-64.074764 -64.7739047,-64.074764 -64.771683))"], "date_created": "Fri, 03 Jan 2025 00:00:00 GMT", "description": "For this study, larvae of Belgica antarctica were exposed to varying concentrations of microplastics in lab conditions. After exposing larvae for 10 days, we measured a variety of physiological outcomes, including survival, metabolic rate, and energy store levels (carbohydrates, lipids, and proteins).", "east": -63.9653, "geometry": ["POINT(-64.020032 -64.7827915)"], "keywords": "Antarctica; Antarctic Peninsula; Cryosphere", "locations": "Antarctica; Antarctic Peninsula", "north": -64.771683, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Teets, Nicholas; Devlin, Jack", "project_titles": "NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects", "projects": [{"proj_uid": "p0010203", "repository": "USAP-DC", "title": "NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.7939, "title": "Data from microplastics exposure in Belgica antarctica", "uid": "601866", "west": -64.074764}, {"awards": "1850988 Teets, Nicholas", "bounds_geometry": ["POLYGON((-65.6867 -64.7256,-65.52717 -64.7256,-65.36764 -64.7256,-65.20811 -64.7256,-65.04858 -64.7256,-64.88905 -64.7256,-64.72952 -64.7256,-64.56998999999999 -64.7256,-64.41046 -64.7256,-64.25093 -64.7256,-64.0914 -64.7256,-64.0914 -64.86576,-64.0914 -65.00592,-64.0914 -65.14608,-64.0914 -65.28624,-64.0914 -65.4264,-64.0914 -65.56656,-64.0914 -65.70672,-64.0914 -65.84688,-64.0914 -65.98704000000001,-64.0914 -66.1272,-64.25093 -66.1272,-64.41046 -66.1272,-64.56998999999999 -66.1272,-64.72952 -66.1272,-64.88905 -66.1272,-65.04858 -66.1272,-65.20811 -66.1272,-65.36764 -66.1272,-65.52717 -66.1272,-65.6867 -66.1272,-65.6867 -65.98704000000001,-65.6867 -65.84688,-65.6867 -65.70672,-65.6867 -65.56656,-65.6867 -65.4264,-65.6867 -65.28624,-65.6867 -65.14608,-65.6867 -65.00592,-65.6867 -64.86576,-65.6867 -64.7256))"], "date_created": "Mon, 16 Dec 2024 00:00:00 GMT", "description": "In this study, we measured cold and dehydration tolerance of larvae of Belgica antarctica from three distinct geographic locations along the Antarctic Peninsula. Larvae were collected from Cape Rasmussen, Cape Evensen, and Dream Island, after which they were returned to the US for experiments. For cold tolerance, larvae were exposed to -14 or -15\u00b0C for 24 h, and survival was assessed 24 later. For dehydration tolerance, larvae were exposed to 75% RH for 72 h, and survival was checked after 24 h of rehydration. The dataset reports the numbers of live and dead larvae from each island and experimental conditions. Larvae were tested in groups of 10.", "east": -64.0914, "geometry": ["POINT(-64.88905 -65.4264)"], "keywords": "Antarctica; Antarctic Peninsula; Cryosphere", "locations": "Antarctica; Antarctic Peninsula", "north": -64.7256, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Teets, Nicholas; Kawarasaki, Yuta", "project_titles": "NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects", "projects": [{"proj_uid": "p0010203", "repository": "USAP-DC", "title": "NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -66.1272, "title": "Cold and dehydration tolerance of Belgica antarctica from three distinct geographic locations", "uid": "601864", "west": -65.6867}, {"awards": "1951500 Jenouvrier, Stephanie", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Tue, 27 Feb 2024 00:00:00 GMT", "description": "1. Differences among individuals within a population are ubiquitous. Those differences are known to affect the entire life cycle with important consequences for all demographic rates and outcomes. One source of among-individual phenotypic variation that has received little attention from a demographic perspective is animal personality, which is defined as consistent and heritable behavioral differences between individuals. While many studies have shown that individual variation in individual personality can generate individual differences in survival and reproductive rates, the impact of personality on all demographic rates and outcomes remains to be assessed empirically.\r\n\r\n\t2. Here, we used a unique, long-term, dataset coupling demography and personality of wandering albatross (Diomedea exulans) in the Crozet Archipelago and a comprehensive analysis based on a suite of approaches (capture-mark-recapture statistical models, Markov chains models and structured matrix population models). We assessed the effect of boldness on annual demographic rates (survival, breeding probability, breeding success), life-history out-comes (life expectancy, lifetime reproductive outcome, occupancy times), and an integrative demographic outcome (population growth rate).\r\n\r\n\t3. We found that boldness had little impact on female demographic rates, but was very likely associated with lower breeding probabilities in males. By integrating the effects of boldness over the entire life cycle, we found that bolder males had slightly lower lifetime reproductive success compared to shyer males. Indeed, bolder males spent a greater proportion of their lifetime as non-breeders, which suggests longer inter-breeding intervals due to higher reproductive allocation.\r\n\r\n\t4. Our results reveal that the link between boldness and demography is more complex than anticipated by the pace-of-life literature and highlight the importance of considering the entire life cycle with a comprehensive approach when assessing the role of personality on individual performance and demography.\r\n", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cryosphere; Demography; Sub-Antarctic", "locations": "Sub-Antarctic; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Joanie, Van de Walle; Jenouvrier, Stephanie", "project_titles": "NSFGEO-NERC: Integrating Individual Personality Differences in the Evolutionary Ecology of a Seabird in the Rapidly Changing Polar Environment", "projects": [{"proj_uid": "p0010283", "repository": "USAP-DC", "title": "NSFGEO-NERC: Integrating Individual Personality Differences in the Evolutionary Ecology of a Seabird in the Rapidly Changing Polar Environment"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "The impact of boldness on demographic rates and lifehistory outcomes in the wandering albatross", "uid": "601770", "west": -180.0}, {"awards": "2232891 Postlethwait, John; 1947040 Postlethwait, John; 1543383 Postlethwait, John", "bounds_geometry": ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"], "date_created": "Fri, 08 Sep 2023 00:00:00 GMT", "description": "Phylogenetic tree of Notothenioid species used in analyses and results of the HyPhy aBSREL tests for diversifying selection in notothenioid hemoglobin genes in the research article \u201cCold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\u201d by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Gene; Genetic Analysis; Hemoglobin; Icefish; Notothenioid; Notothenioid Fishes; Plunderfish; Sub-Antarctic", "locations": "Antarctica; Sub-Antarctic; Antarctica", "north": -37.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Postlethwait, John", "project_titles": "Evolution of hemoglobin genes in notothenioid fishes", "projects": [{"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "aBSREL tests for episodic diversifying selection on hemoglobin genes in notothenioids.", "uid": "601728", "west": -180.0}, {"awards": "1543383 Postlethwait, John; 1947040 Postlethwait, John; 2232891 Postlethwait, John", "bounds_geometry": ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"], "date_created": "Fri, 08 Sep 2023 00:00:00 GMT", "description": "Notothenioid hemoglobin protein 3D modeling using SWISS-MODEL in the research article \u201cCold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\u201d by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Genetic Analysis; Hemoglobin; Icefish; Notothenioid; Notothenioid Fishes; Plunderfish; Sub-Antarctic", "locations": "Sub-Antarctic; Antarctica", "north": -37.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Postlethwait, John", "project_titles": "Evolution of hemoglobin genes in notothenioid fishes", "projects": [{"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Notothenioid hemoglobin protein 3D modeling.", "uid": "601732", "west": -180.0}, {"awards": "1543383 Postlethwait, John; 1947040 Postlethwait, John; 2232891 Postlethwait, John", "bounds_geometry": ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"], "date_created": "Fri, 08 Sep 2023 00:00:00 GMT", "description": "Phylogenetic tree of Notothenioid species used in analyses and results of the HyPhy RELAX tests for pervasive changes in strength of natural selection on hemoglobin genes in the research article \u201cCold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\u201d by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Genetic Analysis; Hemoglobin; Icefish; Notothenioid; Notothenioid Fishes; Plunderfish; Sub-Antarctic", "locations": "Antarctica; Sub-Antarctic", "north": -37.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Postlethwait, John", "project_titles": "Evolution of hemoglobin genes in notothenioid fishes", "projects": [{"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "RELAX tests for pervasive changes in strength of natural selection on hemoglobin genes in notothenioids.", "uid": "601731", "west": -180.0}, {"awards": "2232891 Postlethwait, John; 1543383 Postlethwait, John; 1947040 Postlethwait, John", "bounds_geometry": ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"], "date_created": "Fri, 08 Sep 2023 00:00:00 GMT", "description": "Phylogenetic tree of Notothenioid species used in analyses and results of the HyPhy MEME tests for sites evolving under episodic diversifying selection in notothenioid hemoglobin genes in the research article \u201cCold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\u201d by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Genetic Analysis; Hemoglobin; Icefish; Notothenioid; Notothenioid Fishes; Plunderfish; Sub-Antarctic", "locations": "Antarctica; Sub-Antarctic", "north": -37.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Postlethwait, John", "project_titles": "Evolution of hemoglobin genes in notothenioid fishes", "projects": [{"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "MEME tests of sites evolving under episodic diversifying selection in notothenioid hemoglobin genes.", "uid": "601730", "west": -180.0}, {"awards": "2232891 Postlethwait, John; 1543383 Postlethwait, John; 1947040 Postlethwait, John", "bounds_geometry": ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"], "date_created": "Fri, 08 Sep 2023 00:00:00 GMT", "description": "Results of hemoglobin gene KaKs (dN/dS) analyses in notothenioids in the research article \u201cCold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\u201d by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Genetic Analysis; Hemoglobin; Icefish; Notothenioid; Notothenioid Fishes; Plunderfish; Sub-Antarctic", "locations": "Sub-Antarctic; Antarctica", "north": -37.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Postlethwait, John", "project_titles": "Evolution of hemoglobin genes in notothenioid fishes", "projects": [{"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Rates of hemoglobin evolution among genes and across notothenioid species.", "uid": "601729", "west": -180.0}, {"awards": "2232891 Postlethwait, John; 1947040 Postlethwait, John; 1543383 Postlethwait, John", "bounds_geometry": ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"], "date_created": "Thu, 24 Aug 2023 00:00:00 GMT", "description": "All input and output files of the phylogenetic trees of hemoglobin proteins in Notothenioids from the study \"Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\" by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, and John H. Postlethwait.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Gene; Hemoglobin; Icefish; Notothenioid; Plunderfish; Sub-Antarctic", "locations": "Sub-Antarctic; Antarctica", "north": -37.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Postlethwait, John", "project_titles": "Evolution of hemoglobin genes in notothenioid fishes", "projects": [{"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Phylogenetic trees of hemoglobin proteins in notothenioids from the study \"Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\"", "uid": "601722", "west": -180.0}, {"awards": "2232891 Postlethwait, John; 1947040 Postlethwait, John; 1543383 Postlethwait, John", "bounds_geometry": ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"], "date_created": "Thu, 24 Aug 2023 00:00:00 GMT", "description": "Phylogenetic tree of 36 notothenioid species and five outgroup used throughout the study \"Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\" by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Gene; Hemoglobin; Icefish; Notothenioid; Plunderfish; Sub-Antarctic", "locations": "Sub-Antarctic; Antarctica", "north": -37.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Postlethwait, John", "project_titles": "Evolution of hemoglobin genes in notothenioid fishes", "projects": [{"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Notothenioid species tree used in the study \"Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\"", "uid": "601721", "west": -180.0}, {"awards": "1850988 Teets, Nicholas", "bounds_geometry": ["POLYGON((-64.366767 -62.68104,-63.9917003 -62.68104,-63.6166336 -62.68104,-63.241566899999995 -62.68104,-62.8665002 -62.68104,-62.4914335 -62.68104,-62.1163668 -62.68104,-61.741300100000004 -62.68104,-61.3662334 -62.68104,-60.9911667 -62.68104,-60.6161 -62.68104,-60.6161 -62.953703700000005,-60.6161 -63.2263674,-60.6161 -63.4990311,-60.6161 -63.771694800000006,-60.6161 -64.0443585,-60.6161 -64.31702220000001,-60.6161 -64.5896859,-60.6161 -64.8623496,-60.6161 -65.13501330000001,-60.6161 -65.407677,-60.9911667 -65.407677,-61.3662334 -65.407677,-61.741300100000004 -65.407677,-62.1163668 -65.407677,-62.4914335 -65.407677,-62.8665002 -65.407677,-63.241566899999995 -65.407677,-63.6166336 -65.407677,-63.9917003 -65.407677,-64.366767 -65.407677,-64.366767 -65.13501330000001,-64.366767 -64.8623496,-64.366767 -64.5896859,-64.366767 -64.31702220000001,-64.366767 -64.0443585,-64.366767 -63.771694800000006,-64.366767 -63.4990311,-64.366767 -63.2263674,-64.366767 -62.953703700000005,-64.366767 -62.68104))"], "date_created": "Thu, 22 Jun 2023 00:00:00 GMT", "description": "This study examines how energy reserves and gene expression change between Belgica antarctica larvae that did and did not go through a freezing and recovery event (frozen and control). The midges were exposed to -5C for 24h and recovered for 15 days. Samples were taken immediately after thaw, 1, 3, 7, and 15 days of recovery for biochemical assays and RNA-sequencing, \r\n\r\nDataset \"survival\" shows survival rate between frozen and control\r\nDatasets \"carb results\", \"lipid results\", and \"protein results\" show changes in energy reserves between frozen and control\r\nDataset \"KEGG results\" show pathways elicited by differential gene expression between frozen and control", "east": -60.6161, "geometry": ["POINT(-62.4914335 -64.0443585)"], "keywords": "Antarctica; Belgica Antarctica; Palmer Station", "locations": "Antarctica; Palmer Station", "north": -62.68104, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Lecheta, Melise; Devlin, Jack; Teets, Nicholas; Sousa Lima, Cleverson", "project_titles": "NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects", "projects": [{"proj_uid": "p0010203", "repository": "USAP-DC", "title": "NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.407677, "title": "Long-term recovery from freezing in Belgica antarctica", "uid": "601698", "west": -64.366767}, {"awards": "1850988 Teets, Nicholas", "bounds_geometry": ["POLYGON((-64.366767 -62.68104,-63.991703599999994 -62.68104,-63.6166402 -62.68104,-63.2415768 -62.68104,-62.866513399999995 -62.68104,-62.49145 -62.68104,-62.1163866 -62.68104,-61.7413232 -62.68104,-61.366259799999995 -62.68104,-60.9911964 -62.68104,-60.616133 -62.68104,-60.616133 -62.953703700000005,-60.616133 -63.2263674,-60.616133 -63.4990311,-60.616133 -63.771694800000006,-60.616133 -64.0443585,-60.616133 -64.31702220000001,-60.616133 -64.5896859,-60.616133 -64.8623496,-60.616133 -65.13501330000001,-60.616133 -65.407677,-60.9911964 -65.407677,-61.366259799999995 -65.407677,-61.7413232 -65.407677,-62.1163866 -65.407677,-62.49145 -65.407677,-62.866513399999995 -65.407677,-63.2415768 -65.407677,-63.6166402 -65.407677,-63.991703599999994 -65.407677,-64.366767 -65.407677,-64.366767 -65.13501330000001,-64.366767 -64.8623496,-64.366767 -64.5896859,-64.366767 -64.31702220000001,-64.366767 -64.0443585,-64.366767 -63.771694800000006,-64.366767 -63.4990311,-64.366767 -63.2263674,-64.366767 -62.953703700000005,-64.366767 -62.68104))"], "date_created": "Tue, 09 May 2023 00:00:00 GMT", "description": "The file associated with this submission contains information about the collection of Belgica antarctica individuals realized during the 2022/2023 Antarctica summer season. Each entry on the table describes the collection locations, how many sites are within each location, how many individuals were collected in each site, the collection dates, the life stage, and the species.", "east": -60.616133, "geometry": ["POINT(-62.49145 -64.0443585)"], "keywords": "Antarctica; Antarctic Peninsula; Belgica Antarctica; Biota; Sample Location", "locations": "Antarctic Peninsula; Antarctica", "north": -62.68104, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Pavinato, Vitor; Gantz, Joseph; Kawarasaki, Yuta; Devlin, Jack; Teets, Nicholas; Michel, Andrew; Peter, Convey; Sousa Lima, Cleverson", "project_titles": "NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects", "projects": [{"proj_uid": "p0010203", "repository": "USAP-DC", "title": "NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.407677, "title": "Information on 2023 collection sites for Belgica antarctica", "uid": "601687", "west": -64.366767}, {"awards": "1443585 Polito, Michael; 1443386 Emslie, Steven; 1443424 McMahon, Kelton; 1826712 McMahon, Kelton", "bounds_geometry": ["POLYGON((-37.33 -54.05,-37.192 -54.05,-37.054 -54.05,-36.916 -54.05,-36.778 -54.05,-36.64 -54.05,-36.502 -54.05,-36.364 -54.05,-36.226 -54.05,-36.088 -54.05,-35.95 -54.05,-35.95 -54.107,-35.95 -54.164,-35.95 -54.221,-35.95 -54.278,-35.95 -54.335,-35.95 -54.392,-35.95 -54.449,-35.95 -54.506,-35.95 -54.563,-35.95 -54.62,-36.088 -54.62,-36.226 -54.62,-36.364 -54.62,-36.502 -54.62,-36.64 -54.62,-36.778 -54.62,-36.916 -54.62,-37.054 -54.62,-37.192 -54.62,-37.33 -54.62,-37.33 -54.563,-37.33 -54.506,-37.33 -54.449,-37.33 -54.392,-37.33 -54.335,-37.33 -54.278,-37.33 -54.221,-37.33 -54.164,-37.33 -54.107,-37.33 -54.05))"], "date_created": "Thu, 13 Jan 2022 00:00:00 GMT", "description": "This data set contains radiometric dating measurements from two aquatic sediment cores excavated from two separate sites (Salisbury Plain and Gold Harbor) on South Georgia Island in February 2019. It also contains biological and geochemical sediment proxy values from both sediment cores, including total carbon (%), total nitrogen (%), number of penguin feathers and eggshell fragments, number of seal hairs, and \u03b413C and \u03b415N stable isotope values. Cores were sectioned at 1cm intervals, and radiometric dating analyses were conducted on sediment fractions \u003c850 \u00b5m by measuring for 210Pb and 226Ra (via 214Pb) by direct gamma counting using the high purity germanium planar detector in the Marine Geochemistry Laboratory at Louisiana State University (LSU). The 210Pbex profiles were used to calculate sedimentation rates using a steady state model that assumes constant rate of supply and constant sedimentation rate (Maiti et al., 2010). Geochemical analyses were performed on sediment fractions \u003c125 \u00b5m using an Elemental Analyzer-Isotope Ratio Mass Spectrometry (EA-IRMS) in the Stable Isotope Ecology Lab at LSU. Biological counts of feathers and hairs were determined by enumeration using a dissecting microscope of sediment fractions \u003e1000 \u00b5m. The data set also includes sediment core excavation site names and coordinates, date of excavation, sediment depth and age, and carbon to nitrogen isotopic ratios. Details of the data set and all relevant methods are provided in Kristan et al., 2021.", "east": -35.95, "geometry": ["POINT(-36.64 -54.335)"], "keywords": "Antarctica; Antarctic Fur Seal; Elemental Concentrations; King Penguin; Population Dynamics; South Atlantic Ocean; South Georgia Island; Stable Isotope Analysis; Sub-Antarctic", "locations": "Sub-Antarctic; Antarctica; South Atlantic Ocean; South Georgia Island", "north": -54.05, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Kristan, Allyson; Maiti, Kanchan; McMahon, Kelton; Polito, Michael", "project_titles": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators", "projects": [{"proj_uid": "p0010047", "repository": "USAP-DC", "title": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -54.62, "title": "Radiometric dating, geochemical proxies, and predator biological remains obtained from aquatic sediment cores on South Georgia Island.", "uid": "601509", "west": -37.33}, {"awards": "0632389 Murray, Alison", "bounds_geometry": ["POLYGON((-65.3827 -64.4213,-65.13333 -64.4213,-64.88396 -64.4213,-64.63459 -64.4213,-64.38522 -64.4213,-64.13585 -64.4213,-63.88648 -64.4213,-63.63711 -64.4213,-63.38774 -64.4213,-63.13837 -64.4213,-62.889 -64.4213,-62.889 -64.47176,-62.889 -64.52222,-62.889 -64.57268,-62.889 -64.62314,-62.889 -64.6736,-62.889 -64.72406,-62.889 -64.77452,-62.889 -64.82498,-62.889 -64.87544,-62.889 -64.9259,-63.13837 -64.9259,-63.38774 -64.9259,-63.63711 -64.9259,-63.88648 -64.9259,-64.13585 -64.9259,-64.38522 -64.9259,-64.63459 -64.9259,-64.88396 -64.9259,-65.13333 -64.9259,-65.3827 -64.9259,-65.3827 -64.87544,-65.3827 -64.82498,-65.3827 -64.77452,-65.3827 -64.72406,-65.3827 -64.6736,-65.3827 -64.62314,-65.3827 -64.57268,-65.3827 -64.52222,-65.3827 -64.47176,-65.3827 -64.4213))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "The Western Antarctic Peninsula is experiencing one of the most rapid rates of climate warming on Earth, with an increase of 5degrees C in the mean winter temperature in 50 years. Impacts on upper trophic levels are evident, though there have been few, if any studies that have considered the impacts on bacterioplankton in the Southern Ocean. This proposal will characterize the winter bacterioplankton genome, transcriptome, and proteome and discover those features (community composition, genes up-regulated, and proteins expressed) that are essential to winter bacterioplankton survival and livelihood. We have assembled a polar ocean ecology and genomics network including strategic partnerships with Palmer LTER, the British Antarctic Survey\u0027s ocean metagenome program, US and Canadian scientists studying the Arctic Ocean genome, an Australian colleague who specialized in archaeal proteomics, and French colleagues studying Sub-Antarctic and Coastal Adelie Land marine bacterioplankton. The primary objectives of this program are: 1 Describe the differences in diversity and genomic content between austral winter and summer bacterioplankton communities. 2. Investigate the winter-time bacterioplankton growth and cellular signals (mRNA and proteins expressed) in order to understand the specific adaptations key to survival. Our results will extend from the Antarctic to the Arctic - as the cold, dark, carbon-limited deep seas linking these two systems have many common features. Education and outreach activities target (i) undergraduate and graduate students, hopefully including minority students recruited through the Diversity in Research in Environmental and Marine Sciences (DREAMS) Program at VIMS; (ii) a broad audience with our education and outreach partnerships with The Cousteau Society and with the Census for Antarctic Marine Life program. Data and links to external databases will be listed on the http://genex2.dri.edu website. Sequence data will be publicly accessible in GenBank and IMG-M databases.", "east": -62.889, "geometry": ["POINT(-64.13585 -64.6736)"], "keywords": "Antarctica; Antarctic Peninsula; Biota; Chemistry:fluid; Chemistry:Fluid; Oceans; Southern Ocean", "locations": "Southern Ocean; Antarctica; Antarctic Peninsula", "north": -64.4213, "nsf_funding_programs": null, "persons": "Grzymski, Joseph; Murray, Alison", "project_titles": "IPY: Bacterioplankton Genomic Adaptations to Antarctic Winter", "projects": [{"proj_uid": "p0000091", "repository": "USAP-DC", "title": "IPY: Bacterioplankton Genomic Adaptations to Antarctic Winter"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.9259, "title": "IPY: Bacterioplankton Genomic Adaptations to Antarctic Winter", "uid": "600061", "west": -65.3827}, {"awards": "0436190 Eastman, Joseph", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "Patterns of biodiversity, as revealed by basic research in organismal biology, may be derived from ecological and evolutionary processes expressed in unique settings, such as Antarctica. The polar regions and their faunas are commanding increased attention as declining species diversity, environmental change, commercial fisheries, and resource management are now being viewed in a global context. Commercial fishing is known to have a direct and pervasive effect on marine biodiversity, and occurs in the Southern Ocean as far south as the Ross Sea. The nature of fish biodiversity in the Antarctic is different than in all other ocean shelf areas. Waters of the Antarctic continental shelf are ice covered for most of the year and water temperatures are nearly constant at -1.5 C. In these waters components of the phyletically derived Antarctic clade of Notothenioids dominate fish diversity. In some regions, including the southwestern Ross Sea, Notothenioids are overwhelmingly dominant in terms of number of species, abundance, and biomass. Such dominance by a single taxonomic group is unique among shelf faunas of the world. In the absence of competition from a taxonomically diverse fauna, Notothenioids underwent a habitat or depth related diversification keyed to the utilization of unfilled niches in the water column, especially pelagic or partially pelagic zooplanktivory and piscivory. This has been accomplished in the absence of a swim bladder for buoyancy control. They also may form a special type of adaptive radiation known as a species flock, which is an assemblage of a disproportionately high number of related species that have evolved rapidly within a defined area where most species are endemic. Diversification in buoyancy is the hallmark of the notothenioid radiation. Buoyancy is the feature of notothenioid biology that determines whether a species lives on the substrate, in the water column or both. Buoyancy also influences other key aspects of life history including swimming, feeding and reproduction and thus has implications for the role of the species in the ecosystem. With similarities to classic evolutionary hot spots, the Antarctic shelf and its Notothenioid radiation merit further exploration. The 2004 \u0027International Collaborative Expedition to collect and study Fish Indigenous to Sub-Antarctic Habitats,\u0027 or, \u0027ICEFISH,\u0027 provided a platform for collection of notothenioid fishes from sub-Antarctic waters between South America and Africa, which will be examined in this project. This study will determine buoyancy for samples of all notothenioid species captured during the ICEFISH cruise. This essential aspect of the biology is known for only 19% of the notothenioid fauna. Also, the gross and microscopic anatomy of brains and sense organs of the phyletically basal families Bovichtidae, Eleginopidae, and of the non-Antarctic species of the primarily Antarctic family Nototheniidae will be examined. The fish biodiversity and endemicity in poorly known localities along the ICEFISH cruise track, seamounts and deep trenches will be quantified. Broader impacts include improved information for comprehending and conserving biodiversity, a scientific and societal priority.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Biota; NBP0404; Oceans; R/v Nathaniel B. Palmer; Southern Ocean", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Eastman, Joseph", "project_titles": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0000106", "repository": "USAP-DC", "title": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes", "uid": "600038", "west": -180.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Stress tolerance in Belgica antarctica and Eretmoptera murphyi
|
1850988 |
2025-03-12 | Sousa Lima, Cleverson; Aquilino, Monica; Kawarasaki, Yuta; Pavinato, Vitor; Gantz, Josiah D.; Devlin, Jack; Michel, Andrew; Hayward, Scott; Teets, Nicholas |
NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects |
Insects are known for occurring in any biome due to their outstanding phenotypic plasticity, reproductive ability, and environmental resilience, but only a few species can survive Antarctica’s environmental conditions. The chironomid midge Belgica antarctica is the only insect species endemic to Antarctica, and it has evolved throughout Antarctica’s history and remains active until this day. Recent work has shown that B. antarctica has been isolated from its closest relatives for over 30 million years, which has allowed it to evolve specialized adaptations to thrive in Antarctica’s harsh terrestrial ecosystems. A closely related midge, Eretmoptera murphyi, which is endemic to South Georgia (a sub-Antarctic Island), has invaded Signy Island (a Maritime Antarctica island), and the invasion was facilitated in part by its surprising ability to cope with abiotic stress. Also, the extent of the threat that E. murphyi, as an invasive species, can pose to B. antarctica has been not directly addressed. | [] | [] | false | false |
Multiple stress tolerance in the Antarctic midge
|
1850988 |
2025-01-04 | Teets, Nicholas |
NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects |
This dataset contains survival data for larvae of Belgica antarctica exposed to varying levels of cold, heat, desiccation, and salinity for 24 h. The goal of the experiment was to determine the lethal level for each of these distinct, ecologically relevant stressors. | ["POINT(-64.0162 -64.7992)"] | ["POINT(-64.0162 -64.7992)"] | false | false |
Cross-tolerance in Belgica antarctica near Palmer Peninsula
|
1850988 |
2025-01-03 | Sousa Lima, Cleverson; Michel, Andrew; Hayward, Scott; Colinet, Herve |
NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects |
Protective mechanisms that confer protection to one type of environmental stressor can sometimes confer protection to stressors of different natures, which is a physiological response to stress called Cross-tolerance. Cross-tolerance has been shown in organisms of multiple orders, including Dipterans. Belgica antarctica is an extremely resilient animal and is able to withstand many types of stress that can occur both isolated and at the same time. Recently, it has been demonstrated that brief exposure to a modest level of a stressor can improve their tolerance to severe levels of multiple other stressors. This study had the objective of building on these results and investigate how their response to severe stress changes (either improve or reduce tolerance) to a long-term acclimation to modest level of stressors. | [] | [] | false | false |
Belgica antarctica collection sites - Summer 2023/2024 field season
|
1850988 |
2025-01-03 | Sousa Lima, Cleverson; Michel, Andrew; Hayward, Scott; Teets, Nicholas |
NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects |
B. Antarctica collection site coordinates for NSFGEO-NERC #1850988 - Summer 2023/2024 field season | [] | [] | false | false |
Fine‑scale variation in microhabitat conditions influences physiology and metabolism in an Antarctic insect
|
1850988 |
2025-01-03 | Teets, Nicholas; Spacht, Drew; Gantz, Josiah D.; Devlin, Jack; McCabe, Eleanor; Lee, Richard; Denlinger, David |
NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects |
For this study, larvae were collected every week for the entire summer field season from five sites, four located on Cormorant Island and a fifth site on Humble Island. The dataset contains microhabitat data for each site, as well as the metabolic rate, carbohydrate content, lipid content, and protein content of the larvae collected at those sites for each time point. | ["POLYGON((-64.0844 -64.7651,-64.07249 -64.7651,-64.06058 -64.7651,-64.04867 -64.7651,-64.03676 -64.7651,-64.02485 -64.7651,-64.01294 -64.7651,-64.00103 -64.7651,-63.98912 -64.7651,-63.97721 -64.7651,-63.9653 -64.7651,-63.9653 -64.76798000000001,-63.9653 -64.77086,-63.9653 -64.77374,-63.9653 -64.77662,-63.9653 -64.7795,-63.9653 -64.78238,-63.9653 -64.78526,-63.9653 -64.78814,-63.9653 -64.79101999999999,-63.9653 -64.7939,-63.97721 -64.7939,-63.98912 -64.7939,-64.00103 -64.7939,-64.01294 -64.7939,-64.02485 -64.7939,-64.03676 -64.7939,-64.04867 -64.7939,-64.06058 -64.7939,-64.07249 -64.7939,-64.0844 -64.7939,-64.0844 -64.79101999999999,-64.0844 -64.78814,-64.0844 -64.78526,-64.0844 -64.78238,-64.0844 -64.7795,-64.0844 -64.77662,-64.0844 -64.77374,-64.0844 -64.77086,-64.0844 -64.76798000000001,-64.0844 -64.7651))"] | ["POINT(-64.02485 -64.7795)"] | false | false |
Data from microplastics exposure in Belgica antarctica
|
1850988 |
2025-01-03 | Teets, Nicholas; Devlin, Jack |
NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects |
For this study, larvae of Belgica antarctica were exposed to varying concentrations of microplastics in lab conditions. After exposing larvae for 10 days, we measured a variety of physiological outcomes, including survival, metabolic rate, and energy store levels (carbohydrates, lipids, and proteins). | ["POLYGON((-64.074764 -64.771683,-64.06381760000001 -64.771683,-64.0528712 -64.771683,-64.0419248 -64.771683,-64.0309784 -64.771683,-64.020032 -64.771683,-64.0090856 -64.771683,-63.9981392 -64.771683,-63.9871928 -64.771683,-63.9762464 -64.771683,-63.9653 -64.771683,-63.9653 -64.7739047,-63.9653 -64.7761264,-63.9653 -64.77834809999999,-63.9653 -64.7805698,-63.9653 -64.7827915,-63.9653 -64.7850132,-63.9653 -64.78723489999999,-63.9653 -64.7894566,-63.9653 -64.7916783,-63.9653 -64.7939,-63.9762464 -64.7939,-63.9871928 -64.7939,-63.9981392 -64.7939,-64.0090856 -64.7939,-64.020032 -64.7939,-64.0309784 -64.7939,-64.0419248 -64.7939,-64.0528712 -64.7939,-64.06381760000001 -64.7939,-64.074764 -64.7939,-64.074764 -64.7916783,-64.074764 -64.7894566,-64.074764 -64.78723489999999,-64.074764 -64.7850132,-64.074764 -64.7827915,-64.074764 -64.7805698,-64.074764 -64.77834809999999,-64.074764 -64.7761264,-64.074764 -64.7739047,-64.074764 -64.771683))"] | ["POINT(-64.020032 -64.7827915)"] | false | false |
Cold and dehydration tolerance of Belgica antarctica from three distinct geographic locations
|
1850988 |
2024-12-16 | Teets, Nicholas; Kawarasaki, Yuta |
NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects |
In this study, we measured cold and dehydration tolerance of larvae of Belgica antarctica from three distinct geographic locations along the Antarctic Peninsula. Larvae were collected from Cape Rasmussen, Cape Evensen, and Dream Island, after which they were returned to the US for experiments. For cold tolerance, larvae were exposed to -14 or -15°C for 24 h, and survival was assessed 24 later. For dehydration tolerance, larvae were exposed to 75% RH for 72 h, and survival was checked after 24 h of rehydration. The dataset reports the numbers of live and dead larvae from each island and experimental conditions. Larvae were tested in groups of 10. | ["POLYGON((-65.6867 -64.7256,-65.52717 -64.7256,-65.36764 -64.7256,-65.20811 -64.7256,-65.04858 -64.7256,-64.88905 -64.7256,-64.72952 -64.7256,-64.56998999999999 -64.7256,-64.41046 -64.7256,-64.25093 -64.7256,-64.0914 -64.7256,-64.0914 -64.86576,-64.0914 -65.00592,-64.0914 -65.14608,-64.0914 -65.28624,-64.0914 -65.4264,-64.0914 -65.56656,-64.0914 -65.70672,-64.0914 -65.84688,-64.0914 -65.98704000000001,-64.0914 -66.1272,-64.25093 -66.1272,-64.41046 -66.1272,-64.56998999999999 -66.1272,-64.72952 -66.1272,-64.88905 -66.1272,-65.04858 -66.1272,-65.20811 -66.1272,-65.36764 -66.1272,-65.52717 -66.1272,-65.6867 -66.1272,-65.6867 -65.98704000000001,-65.6867 -65.84688,-65.6867 -65.70672,-65.6867 -65.56656,-65.6867 -65.4264,-65.6867 -65.28624,-65.6867 -65.14608,-65.6867 -65.00592,-65.6867 -64.86576,-65.6867 -64.7256))"] | ["POINT(-64.88905 -65.4264)"] | false | false |
The impact of boldness on demographic rates and lifehistory outcomes in the wandering albatross
|
1951500 |
2024-02-27 | Joanie, Van de Walle; Jenouvrier, Stephanie |
NSFGEO-NERC: Integrating Individual Personality Differences in the Evolutionary Ecology of a Seabird in the Rapidly Changing Polar Environment |
1. Differences among individuals within a population are ubiquitous. Those differences are known to affect the entire life cycle with important consequences for all demographic rates and outcomes. One source of among-individual phenotypic variation that has received little attention from a demographic perspective is animal personality, which is defined as consistent and heritable behavioral differences between individuals. While many studies have shown that individual variation in individual personality can generate individual differences in survival and reproductive rates, the impact of personality on all demographic rates and outcomes remains to be assessed empirically. 2. Here, we used a unique, long-term, dataset coupling demography and personality of wandering albatross (Diomedea exulans) in the Crozet Archipelago and a comprehensive analysis based on a suite of approaches (capture-mark-recapture statistical models, Markov chains models and structured matrix population models). We assessed the effect of boldness on annual demographic rates (survival, breeding probability, breeding success), life-history out-comes (life expectancy, lifetime reproductive outcome, occupancy times), and an integrative demographic outcome (population growth rate). 3. We found that boldness had little impact on female demographic rates, but was very likely associated with lower breeding probabilities in males. By integrating the effects of boldness over the entire life cycle, we found that bolder males had slightly lower lifetime reproductive success compared to shyer males. Indeed, bolder males spent a greater proportion of their lifetime as non-breeders, which suggests longer inter-breeding intervals due to higher reproductive allocation. 4. Our results reveal that the link between boldness and demography is more complex than anticipated by the pace-of-life literature and highlight the importance of considering the entire life cycle with a comprehensive approach when assessing the role of personality on individual performance and demography. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
aBSREL tests for episodic diversifying selection on hemoglobin genes in notothenioids.
|
2232891 1947040 1543383 |
2023-09-08 | Desvignes, Thomas; Postlethwait, John |
Evolution of hemoglobin genes in notothenioid fishes |
Phylogenetic tree of Notothenioid species used in analyses and results of the HyPhy aBSREL tests for diversifying selection in notothenioid hemoglobin genes in the research article “Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes” by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait. | ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"] | ["POINT(0 -89.999)"] | false | false |
Notothenioid hemoglobin protein 3D modeling.
|
1543383 1947040 2232891 |
2023-09-08 | Desvignes, Thomas; Postlethwait, John |
Evolution of hemoglobin genes in notothenioid fishes |
Notothenioid hemoglobin protein 3D modeling using SWISS-MODEL in the research article “Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes” by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait. | ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"] | ["POINT(0 -89.999)"] | false | false |
RELAX tests for pervasive changes in strength of natural selection on hemoglobin genes in notothenioids.
|
1543383 1947040 2232891 |
2023-09-08 | Desvignes, Thomas; Postlethwait, John |
Evolution of hemoglobin genes in notothenioid fishes |
Phylogenetic tree of Notothenioid species used in analyses and results of the HyPhy RELAX tests for pervasive changes in strength of natural selection on hemoglobin genes in the research article “Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes” by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait. | ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"] | ["POINT(0 -89.999)"] | false | false |
MEME tests of sites evolving under episodic diversifying selection in notothenioid hemoglobin genes.
|
2232891 1543383 1947040 |
2023-09-08 | Desvignes, Thomas; Postlethwait, John |
Evolution of hemoglobin genes in notothenioid fishes |
Phylogenetic tree of Notothenioid species used in analyses and results of the HyPhy MEME tests for sites evolving under episodic diversifying selection in notothenioid hemoglobin genes in the research article “Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes” by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait. | ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"] | ["POINT(0 -89.999)"] | false | false |
Rates of hemoglobin evolution among genes and across notothenioid species.
|
2232891 1543383 1947040 |
2023-09-08 | Desvignes, Thomas; Postlethwait, John |
Evolution of hemoglobin genes in notothenioid fishes |
Results of hemoglobin gene KaKs (dN/dS) analyses in notothenioids in the research article “Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes” by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait. | ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"] | ["POINT(0 -89.999)"] | false | false |
Phylogenetic trees of hemoglobin proteins in notothenioids from the study "Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes"
|
2232891 1947040 1543383 |
2023-08-24 | Desvignes, Thomas; Postlethwait, John |
Evolution of hemoglobin genes in notothenioid fishes |
All input and output files of the phylogenetic trees of hemoglobin proteins in Notothenioids from the study "Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes" by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, and John H. Postlethwait. | ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"] | ["POINT(0 -89.999)"] | false | false |
Notothenioid species tree used in the study "Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes"
|
2232891 1947040 1543383 |
2023-08-24 | Desvignes, Thomas; Postlethwait, John |
Evolution of hemoglobin genes in notothenioid fishes |
Phylogenetic tree of 36 notothenioid species and five outgroup used throughout the study "Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes" by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait. | ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"] | ["POINT(0 -89.999)"] | false | false |
Long-term recovery from freezing in Belgica antarctica
|
1850988 |
2023-06-22 | Lecheta, Melise; Devlin, Jack; Teets, Nicholas; Sousa Lima, Cleverson |
NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects |
This study examines how energy reserves and gene expression change between Belgica antarctica larvae that did and did not go through a freezing and recovery event (frozen and control). The midges were exposed to -5C for 24h and recovered for 15 days. Samples were taken immediately after thaw, 1, 3, 7, and 15 days of recovery for biochemical assays and RNA-sequencing, Dataset "survival" shows survival rate between frozen and control Datasets "carb results", "lipid results", and "protein results" show changes in energy reserves between frozen and control Dataset "KEGG results" show pathways elicited by differential gene expression between frozen and control | ["POLYGON((-64.366767 -62.68104,-63.9917003 -62.68104,-63.6166336 -62.68104,-63.241566899999995 -62.68104,-62.8665002 -62.68104,-62.4914335 -62.68104,-62.1163668 -62.68104,-61.741300100000004 -62.68104,-61.3662334 -62.68104,-60.9911667 -62.68104,-60.6161 -62.68104,-60.6161 -62.953703700000005,-60.6161 -63.2263674,-60.6161 -63.4990311,-60.6161 -63.771694800000006,-60.6161 -64.0443585,-60.6161 -64.31702220000001,-60.6161 -64.5896859,-60.6161 -64.8623496,-60.6161 -65.13501330000001,-60.6161 -65.407677,-60.9911667 -65.407677,-61.3662334 -65.407677,-61.741300100000004 -65.407677,-62.1163668 -65.407677,-62.4914335 -65.407677,-62.8665002 -65.407677,-63.241566899999995 -65.407677,-63.6166336 -65.407677,-63.9917003 -65.407677,-64.366767 -65.407677,-64.366767 -65.13501330000001,-64.366767 -64.8623496,-64.366767 -64.5896859,-64.366767 -64.31702220000001,-64.366767 -64.0443585,-64.366767 -63.771694800000006,-64.366767 -63.4990311,-64.366767 -63.2263674,-64.366767 -62.953703700000005,-64.366767 -62.68104))"] | ["POINT(-62.4914335 -64.0443585)"] | false | false |
Information on 2023 collection sites for Belgica antarctica
|
1850988 |
2023-05-09 | Pavinato, Vitor; Gantz, Joseph; Kawarasaki, Yuta; Devlin, Jack; Teets, Nicholas; Michel, Andrew; Peter, Convey; Sousa Lima, Cleverson |
NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects |
The file associated with this submission contains information about the collection of Belgica antarctica individuals realized during the 2022/2023 Antarctica summer season. Each entry on the table describes the collection locations, how many sites are within each location, how many individuals were collected in each site, the collection dates, the life stage, and the species. | ["POLYGON((-64.366767 -62.68104,-63.991703599999994 -62.68104,-63.6166402 -62.68104,-63.2415768 -62.68104,-62.866513399999995 -62.68104,-62.49145 -62.68104,-62.1163866 -62.68104,-61.7413232 -62.68104,-61.366259799999995 -62.68104,-60.9911964 -62.68104,-60.616133 -62.68104,-60.616133 -62.953703700000005,-60.616133 -63.2263674,-60.616133 -63.4990311,-60.616133 -63.771694800000006,-60.616133 -64.0443585,-60.616133 -64.31702220000001,-60.616133 -64.5896859,-60.616133 -64.8623496,-60.616133 -65.13501330000001,-60.616133 -65.407677,-60.9911964 -65.407677,-61.366259799999995 -65.407677,-61.7413232 -65.407677,-62.1163866 -65.407677,-62.49145 -65.407677,-62.866513399999995 -65.407677,-63.2415768 -65.407677,-63.6166402 -65.407677,-63.991703599999994 -65.407677,-64.366767 -65.407677,-64.366767 -65.13501330000001,-64.366767 -64.8623496,-64.366767 -64.5896859,-64.366767 -64.31702220000001,-64.366767 -64.0443585,-64.366767 -63.771694800000006,-64.366767 -63.4990311,-64.366767 -63.2263674,-64.366767 -62.953703700000005,-64.366767 -62.68104))"] | ["POINT(-62.49145 -64.0443585)"] | false | false |
Radiometric dating, geochemical proxies, and predator biological remains obtained from aquatic sediment cores on South Georgia Island.
|
1443585 1443386 1443424 1826712 |
2022-01-13 | Kristan, Allyson; Maiti, Kanchan; McMahon, Kelton; Polito, Michael |
Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators |
This data set contains radiometric dating measurements from two aquatic sediment cores excavated from two separate sites (Salisbury Plain and Gold Harbor) on South Georgia Island in February 2019. It also contains biological and geochemical sediment proxy values from both sediment cores, including total carbon (%), total nitrogen (%), number of penguin feathers and eggshell fragments, number of seal hairs, and δ13C and δ15N stable isotope values. Cores were sectioned at 1cm intervals, and radiometric dating analyses were conducted on sediment fractions <850 µm by measuring for 210Pb and 226Ra (via 214Pb) by direct gamma counting using the high purity germanium planar detector in the Marine Geochemistry Laboratory at Louisiana State University (LSU). The 210Pbex profiles were used to calculate sedimentation rates using a steady state model that assumes constant rate of supply and constant sedimentation rate (Maiti et al., 2010). Geochemical analyses were performed on sediment fractions <125 µm using an Elemental Analyzer-Isotope Ratio Mass Spectrometry (EA-IRMS) in the Stable Isotope Ecology Lab at LSU. Biological counts of feathers and hairs were determined by enumeration using a dissecting microscope of sediment fractions >1000 µm. The data set also includes sediment core excavation site names and coordinates, date of excavation, sediment depth and age, and carbon to nitrogen isotopic ratios. Details of the data set and all relevant methods are provided in Kristan et al., 2021. | ["POLYGON((-37.33 -54.05,-37.192 -54.05,-37.054 -54.05,-36.916 -54.05,-36.778 -54.05,-36.64 -54.05,-36.502 -54.05,-36.364 -54.05,-36.226 -54.05,-36.088 -54.05,-35.95 -54.05,-35.95 -54.107,-35.95 -54.164,-35.95 -54.221,-35.95 -54.278,-35.95 -54.335,-35.95 -54.392,-35.95 -54.449,-35.95 -54.506,-35.95 -54.563,-35.95 -54.62,-36.088 -54.62,-36.226 -54.62,-36.364 -54.62,-36.502 -54.62,-36.64 -54.62,-36.778 -54.62,-36.916 -54.62,-37.054 -54.62,-37.192 -54.62,-37.33 -54.62,-37.33 -54.563,-37.33 -54.506,-37.33 -54.449,-37.33 -54.392,-37.33 -54.335,-37.33 -54.278,-37.33 -54.221,-37.33 -54.164,-37.33 -54.107,-37.33 -54.05))"] | ["POINT(-36.64 -54.335)"] | false | false |
IPY: Bacterioplankton Genomic Adaptations to Antarctic Winter
|
0632389 |
2011-01-01 | Grzymski, Joseph; Murray, Alison |
IPY: Bacterioplankton Genomic Adaptations to Antarctic Winter |
The Western Antarctic Peninsula is experiencing one of the most rapid rates of climate warming on Earth, with an increase of 5degrees C in the mean winter temperature in 50 years. Impacts on upper trophic levels are evident, though there have been few, if any studies that have considered the impacts on bacterioplankton in the Southern Ocean. This proposal will characterize the winter bacterioplankton genome, transcriptome, and proteome and discover those features (community composition, genes up-regulated, and proteins expressed) that are essential to winter bacterioplankton survival and livelihood. We have assembled a polar ocean ecology and genomics network including strategic partnerships with Palmer LTER, the British Antarctic Survey's ocean metagenome program, US and Canadian scientists studying the Arctic Ocean genome, an Australian colleague who specialized in archaeal proteomics, and French colleagues studying Sub-Antarctic and Coastal Adelie Land marine bacterioplankton. The primary objectives of this program are: 1 Describe the differences in diversity and genomic content between austral winter and summer bacterioplankton communities. 2. Investigate the winter-time bacterioplankton growth and cellular signals (mRNA and proteins expressed) in order to understand the specific adaptations key to survival. Our results will extend from the Antarctic to the Arctic - as the cold, dark, carbon-limited deep seas linking these two systems have many common features. Education and outreach activities target (i) undergraduate and graduate students, hopefully including minority students recruited through the Diversity in Research in Environmental and Marine Sciences (DREAMS) Program at VIMS; (ii) a broad audience with our education and outreach partnerships with The Cousteau Society and with the Census for Antarctic Marine Life program. Data and links to external databases will be listed on the http://genex2.dri.edu website. Sequence data will be publicly accessible in GenBank and IMG-M databases. | ["POLYGON((-65.3827 -64.4213,-65.13333 -64.4213,-64.88396 -64.4213,-64.63459 -64.4213,-64.38522 -64.4213,-64.13585 -64.4213,-63.88648 -64.4213,-63.63711 -64.4213,-63.38774 -64.4213,-63.13837 -64.4213,-62.889 -64.4213,-62.889 -64.47176,-62.889 -64.52222,-62.889 -64.57268,-62.889 -64.62314,-62.889 -64.6736,-62.889 -64.72406,-62.889 -64.77452,-62.889 -64.82498,-62.889 -64.87544,-62.889 -64.9259,-63.13837 -64.9259,-63.38774 -64.9259,-63.63711 -64.9259,-63.88648 -64.9259,-64.13585 -64.9259,-64.38522 -64.9259,-64.63459 -64.9259,-64.88396 -64.9259,-65.13333 -64.9259,-65.3827 -64.9259,-65.3827 -64.87544,-65.3827 -64.82498,-65.3827 -64.77452,-65.3827 -64.72406,-65.3827 -64.6736,-65.3827 -64.62314,-65.3827 -64.57268,-65.3827 -64.52222,-65.3827 -64.47176,-65.3827 -64.4213))"] | ["POINT(-64.13585 -64.6736)"] | false | false |
Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes
|
0436190 |
2009-01-01 | Eastman, Joseph |
Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes |
Patterns of biodiversity, as revealed by basic research in organismal biology, may be derived from ecological and evolutionary processes expressed in unique settings, such as Antarctica. The polar regions and their faunas are commanding increased attention as declining species diversity, environmental change, commercial fisheries, and resource management are now being viewed in a global context. Commercial fishing is known to have a direct and pervasive effect on marine biodiversity, and occurs in the Southern Ocean as far south as the Ross Sea. The nature of fish biodiversity in the Antarctic is different than in all other ocean shelf areas. Waters of the Antarctic continental shelf are ice covered for most of the year and water temperatures are nearly constant at -1.5 C. In these waters components of the phyletically derived Antarctic clade of Notothenioids dominate fish diversity. In some regions, including the southwestern Ross Sea, Notothenioids are overwhelmingly dominant in terms of number of species, abundance, and biomass. Such dominance by a single taxonomic group is unique among shelf faunas of the world. In the absence of competition from a taxonomically diverse fauna, Notothenioids underwent a habitat or depth related diversification keyed to the utilization of unfilled niches in the water column, especially pelagic or partially pelagic zooplanktivory and piscivory. This has been accomplished in the absence of a swim bladder for buoyancy control. They also may form a special type of adaptive radiation known as a species flock, which is an assemblage of a disproportionately high number of related species that have evolved rapidly within a defined area where most species are endemic. Diversification in buoyancy is the hallmark of the notothenioid radiation. Buoyancy is the feature of notothenioid biology that determines whether a species lives on the substrate, in the water column or both. Buoyancy also influences other key aspects of life history including swimming, feeding and reproduction and thus has implications for the role of the species in the ecosystem. With similarities to classic evolutionary hot spots, the Antarctic shelf and its Notothenioid radiation merit further exploration. The 2004 'International Collaborative Expedition to collect and study Fish Indigenous to Sub-Antarctic Habitats,' or, 'ICEFISH,' provided a platform for collection of notothenioid fishes from sub-Antarctic waters between South America and Africa, which will be examined in this project. This study will determine buoyancy for samples of all notothenioid species captured during the ICEFISH cruise. This essential aspect of the biology is known for only 19% of the notothenioid fauna. Also, the gross and microscopic anatomy of brains and sense organs of the phyletically basal families Bovichtidae, Eleginopidae, and of the non-Antarctic species of the primarily Antarctic family Nototheniidae will be examined. The fish biodiversity and endemicity in poorly known localities along the ICEFISH cruise track, seamounts and deep trenches will be quantified. Broader impacts include improved information for comprehending and conserving biodiversity, a scientific and societal priority. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |