{"dp_type": "Dataset", "free_text": "Mount Erebus"}
[{"awards": "2023355 Schmandt, Brandon", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Wed, 26 Jun 2024 00:00:00 GMT", "description": "This catalog/dataset contains 60,006 seismic events between magnitude (Mw) -1.0 and 4.5. It was obtained using publicly available seismic data from 2000 through 2020. The catalog was generated using a workflow that includes new and established software for earthquake detection (Mousavi et al., 2020; Woollam et al., 2022), association (Zhang et al., 2019), location (Lomax et al., 2000, 2009) and magnitude estimation (Satriano, 2022). Events in the catalog are located near volcanoes, outlet glaciers, ice shelves, and within the continental interior. The catalog thus includes events from diverse source processes (cryospheric, volcanic, and tectonic). Preliminary observations include thousands of events near Mount Erebus, Ross Island, and the McMurdo Sound region, repeated seismic events at Ice Streams or large glaciers, and deep long period events in Marie Byrd Land Executive Committee Range. The file contains the latitude, longitude, depth, origin time, Magnitude, errors in the locations and the RMS. More details of the data set and all relevant methods can be found in Pena Castro et al., 2024.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cryosphere; Earthquakes; Icequakes; Volcanic Events", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Pena Castro, Andres", "project_titles": "EAGER: Lowering the detection threshold of Antarctic seismicity to reveal undiscovered intraplate deformation", "projects": [{"proj_uid": "p0010450", "repository": "USAP-DC", "title": "EAGER: Lowering the detection threshold of Antarctic seismicity to reveal undiscovered intraplate deformation"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "A seismic catalog for the southernmost continent", "uid": "601805", "west": -180.0}, {"awards": "1443522 Wannamaker, Philip", "bounds_geometry": ["POLYGON((166 -77.15,166.34 -77.15,166.68 -77.15,167.02 -77.15,167.36 -77.15,167.7 -77.15,168.04 -77.15,168.38 -77.15,168.72 -77.15,169.06 -77.15,169.4 -77.15,169.4 -77.225,169.4 -77.3,169.4 -77.375,169.4 -77.45,169.4 -77.525,169.4 -77.6,169.4 -77.675,169.4 -77.75,169.4 -77.825,169.4 -77.9,169.06 -77.9,168.72 -77.9,168.38 -77.9,168.04 -77.9,167.7 -77.9,167.36 -77.9,167.02 -77.9,166.68 -77.9,166.34 -77.9,166 -77.9,166 -77.825,166 -77.75,166 -77.675,166 -77.6,166 -77.525,166 -77.45,166 -77.375,166 -77.3,166 -77.225,166 -77.15))"], "date_created": "Tue, 14 Dec 2021 00:00:00 GMT", "description": "Submitted zip file contains the tensor impedance and tipper responses from magnetotelluric (MT) surveying at 130 sites over Erebus volcano and Ross Island from 2014-2017. The individual site responses are provided in edi format, which is the self-explained global standard for MT response archiving and distribution. The X coordinate axis for all sites is Grid North.", "east": 169.4, "geometry": ["POINT(167.7 -77.525)"], "keywords": "Antarctica; Mantle Melting; Mount Erebus", "locations": "Mount Erebus; Antarctica", "north": -77.15, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Wannamaker, Philip; Hill, Graham", "project_titles": "Magma Sources, Residence and Pathways of Mount Erebus Phonolitic Volcano, Antarctica, from Magnetotelluric Resistivity Structure", "projects": [{"proj_uid": "p0010444", "repository": "USAP-DC", "title": "Magma Sources, Residence and Pathways of Mount Erebus Phonolitic Volcano, Antarctica, from Magnetotelluric Resistivity Structure"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Erebus volcano/Ross Island Magnetotelluric (MT) data", "uid": "601493", "west": 166.0}, {"awards": "1917149 Grapenthin, Ronni; 1643952 Grapenthin, Ronni; 2039432 Grapenthin, Ronni", "bounds_geometry": ["POLYGON((166 -77.1,166.39 -77.1,166.78 -77.1,167.17 -77.1,167.56 -77.1,167.95 -77.1,168.34 -77.1,168.73 -77.1,169.12 -77.1,169.51 -77.1,169.9 -77.1,169.9 -77.18,169.9 -77.26,169.9 -77.34,169.9 -77.42,169.9 -77.5,169.9 -77.58,169.9 -77.66,169.9 -77.74,169.9 -77.82,169.9 -77.9,169.51 -77.9,169.12 -77.9,168.73 -77.9,168.34 -77.9,167.95 -77.9,167.56 -77.9,167.17 -77.9,166.78 -77.9,166.39 -77.9,166 -77.9,166 -77.82,166 -77.74,166 -77.66,166 -77.58,166 -77.5,166 -77.42,166 -77.34,166 -77.26,166 -77.18,166 -77.1))"], "date_created": "Fri, 03 Sep 2021 00:00:00 GMT", "description": "We use NASA\u0027s Jet Propulsion Laboratory\u0027s (JPL) GipsyX software in PPP mode with ambiguity resolution \r\napplied to 24 hour segments of data to generate daily position solutions. We use JPL\u0027s orbit and\r\nclock products and International GNSS Service (IGS) antenna phase center models. Where available, \r\nwe use JPL\u0027s second order ionospheric corrections, otherwise we fall back on those provided by the \r\nIGS. To correct tropospheric delays, we use the GPT2 model as implemented in GipsyX. Ocean tidal \r\nloading corrections utilize the TPXO7.2 and ATLAS model, a combination of hydrodynamic model and \r\naltimetry data, with respect to Earth\u0027s Center of Mass implemented in SPOTL. We obtain position \r\nsolutions for each station day in a fiducial-free reference frame, which we then transform into \r\nthe 2014 International Reference Frame using JPL\u0027s transformation coefficients and generate\r\ntimeseries of position change relative to the first epoch, given in the *.series files which \r\nare ASCII files with the following columns:\r\n\r\ndecimal year\r\ndisplacement east (m)\r\ndisplacement north (m)\r\ndisplacement up (m) \r\nsigma east (m)\r\nsigma north (m)\r\nsigma up (m)\r\neast-north covariance\r\neast-up covariance\r\nnorth-up covariance\r\nYear (YYYY)\r\nMonth (MM)\r\nDay (DD)\r\nHour (hh)\r\nMinute (mm)\r\nSecond (ss)\r\nSolution path\r\n \r\nWe generate position time series relative to stable Antarctic plate by removing the plate velocities \r\nmodeled by Argus et al (2010). These are provided in the *.npy files that be readily read into \r\npython scripts:\r\n\r\npos_ts = np.load(\u0027test.npy\u0027).flatten()[0]\r\n\r\npos_ts[\u0027itrf\u0027] provides the ITRF data as above\r\npos_ts[\u0027plate\u0027] provides the data with Antarctic plate motion removed. ", "east": 169.9, "geometry": ["POINT(167.95 -77.5)"], "keywords": "Antarctica; GPS; Mount Erebus; Ross Island", "locations": "Antarctica; Ross Island; Ross Island; Mount Erebus", "north": -77.1, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "Grapenthin, Ronni", "project_titles": "Collaborative Research: Multi-Parameter Geophysical Constraints on Volcano Dynamics of Mt. Erebus and Ross Island, Antarctica", "projects": [{"proj_uid": "p0010255", "repository": "USAP-DC", "title": "Collaborative Research: Multi-Parameter Geophysical Constraints on Volcano Dynamics of Mt. Erebus and Ross Island, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Erebus GPS timeseries ", "uid": "601471", "west": 166.0}, {"awards": "1142083 Kyle, Philip", "bounds_geometry": ["POINT(167.15334 -77.529724)"], "date_created": "Sat, 03 Dec 2016 00:00:00 GMT", "description": "Mt. Erebus is one of only a handful of volcanoes worldwide that have lava lakes with readily observable and nearly continuous Strombolian explosive activity. Erebus is also unique in having a permanent convecting lava lake of anorthoclase phonolite magma. Over the years significant infrastructure has been established at the summit of Mt. Erebus as part of the Mount Erebus Volcano Observatory (MEVO), which serves as a natural laboratory to study a wide range of volcanic processes, especially magma degassing associated with an open convecting magma conduit. The PI proposes to continue operating MEVO for a further five years. The fundamental fundamental research objectives are: to understand diffuse flank degassing by using distributed temperature sensing and gas measurements in ice caves, to understand conduit processes, and to examine the environmental impact of volcanic emissions from Erebus on atmospheric and cryospheric environments. To examine conduit processes the PI will make simultaneous observations with video records, thermal imaging, measurements of gas emission rates and gas compositions, seismic, and infrasound data.\n An important aspect of Erebus research is the education and training of students. Both graduate and undergraduate students will have the opportunity to work on MEVO data and deploy to the field site. In addition, this proposal will support a middle or high school science teacher for two field seasons. The PI will also continue working with various media organizations and filmmakers.\nThis dataset contains video taken from a series of cameras that were installed at Shackleton\u0027s Cairn (-77.525337, 167.157509) looking into the lava lake. This dataset contains all such video taken between 2005 and 2011. Camera downlink depended on power at a relay station at the Cones site. The camera was operational during G-081 field seasons and often for a period of weeks or months thereafter.", "east": 167.15334, "geometry": ["POINT(167.15334 -77.529724)"], "keywords": "Antarctica; Cable Observatory; Geology/Geophysics - Other; Infrared Imagery; Intracontinental Magmatism; IntraContinental Magmatism; MEVO; Mount Erebus; Photo/video; Photo/Video; Ross Island; Solid Earth; Thermal Camera; Volcano", "locations": "Antarctica; Ross Island; Mount Erebus", "north": -77.529724, "nsf_funding_programs": null, "persons": "Oppenheimer, Clive; Kyle, Philip", "project_titles": "Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)", "projects": [{"proj_uid": "p0000383", "repository": "USAP-DC", "title": "Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "MEVO", "south": -77.529724, "title": "Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)", "uid": "600381", "west": 167.15334}, {"awards": "0838817 Kyle, Philip", "bounds_geometry": null, "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Mount Erebus is Antarctica\u0027s most active volcano that has been in a persistent state of activity for at least the last 35 years. It has a unique geochemistry among the Earth\u0027s active volcanoes and is also unique in hosting a persistent convecting lake(s) of anorthclase phonolite magma in its summit crater. The relative simplicity of the magmatic system, consistency of activity, and accessibility of close-range observation make Erebus attractive as a target for extensive studies. Although the Erebus\u0027 seismicity and eruptive activity and processes are becoming increasingly well understood over years of research, there is a near total lack of understanding its deeper magmatic system. The primary goal of this proposal is to continue supporting the Mt. Erebus Volcano Observatory (MEVO III) improving our current understanding of the Erebus eruptive and non-eruptive magmatic system using an integrated approach from geophysical, geochemical and remote sensing observations. This goal can be grouped into the following fundamental research objectives: (a) to sustain year-round surveillance of on-going volcanic activity primarily using geophysical observatories; (b) to understand processes within the convecting conduit which feeds the persistent lava lakes; and (c) to understand the impact of Erebus eruptive activity upon the Antarctic environment. Continued reliance on students provides a broader impact to this proposed research and firmly grounds this effort in its educational mission.", "east": null, "geometry": null, "keywords": "Antarctica; Cable Observatory; Intracontinental Magmatism; IntraContinental Magmatism; MEVO; Mount Erebus; Photo/video; Photo/Video; Ross Sea; Solid Earth; Volcano", "locations": "Antarctica; Mount Erebus; Ross Sea", "north": null, "nsf_funding_programs": null, "persons": "Kyle, Philip", "project_titles": "Mount Erebus Volcano Observatory III (MEVO III): Conduit Processes and Surveillance", "projects": [{"proj_uid": "p0000488", "repository": "USAP-DC", "title": "Mount Erebus Volcano Observatory III (MEVO III): Conduit Processes and Surveillance"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "MEVO", "south": null, "title": "Mount Erebus Volcano Observatory III (MEVO III): Conduit Processes and Surveillance", "uid": "600153", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
A seismic catalog for the southernmost continent
|
2023355 |
2024-06-26 | Pena Castro, Andres |
EAGER: Lowering the detection threshold of Antarctic seismicity to reveal undiscovered intraplate deformation |
This catalog/dataset contains 60,006 seismic events between magnitude (Mw) -1.0 and 4.5. It was obtained using publicly available seismic data from 2000 through 2020. The catalog was generated using a workflow that includes new and established software for earthquake detection (Mousavi et al., 2020; Woollam et al., 2022), association (Zhang et al., 2019), location (Lomax et al., 2000, 2009) and magnitude estimation (Satriano, 2022). Events in the catalog are located near volcanoes, outlet glaciers, ice shelves, and within the continental interior. The catalog thus includes events from diverse source processes (cryospheric, volcanic, and tectonic). Preliminary observations include thousands of events near Mount Erebus, Ross Island, and the McMurdo Sound region, repeated seismic events at Ice Streams or large glaciers, and deep long period events in Marie Byrd Land Executive Committee Range. The file contains the latitude, longitude, depth, origin time, Magnitude, errors in the locations and the RMS. More details of the data set and all relevant methods can be found in Pena Castro et al., 2024. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Erebus volcano/Ross Island Magnetotelluric (MT) data
|
1443522 |
2021-12-14 | Wannamaker, Philip; Hill, Graham |
Magma Sources, Residence and Pathways of Mount Erebus Phonolitic Volcano, Antarctica, from Magnetotelluric Resistivity Structure |
Submitted zip file contains the tensor impedance and tipper responses from magnetotelluric (MT) surveying at 130 sites over Erebus volcano and Ross Island from 2014-2017. The individual site responses are provided in edi format, which is the self-explained global standard for MT response archiving and distribution. The X coordinate axis for all sites is Grid North. | ["POLYGON((166 -77.15,166.34 -77.15,166.68 -77.15,167.02 -77.15,167.36 -77.15,167.7 -77.15,168.04 -77.15,168.38 -77.15,168.72 -77.15,169.06 -77.15,169.4 -77.15,169.4 -77.225,169.4 -77.3,169.4 -77.375,169.4 -77.45,169.4 -77.525,169.4 -77.6,169.4 -77.675,169.4 -77.75,169.4 -77.825,169.4 -77.9,169.06 -77.9,168.72 -77.9,168.38 -77.9,168.04 -77.9,167.7 -77.9,167.36 -77.9,167.02 -77.9,166.68 -77.9,166.34 -77.9,166 -77.9,166 -77.825,166 -77.75,166 -77.675,166 -77.6,166 -77.525,166 -77.45,166 -77.375,166 -77.3,166 -77.225,166 -77.15))"] | ["POINT(167.7 -77.525)"] | false | false |
Erebus GPS timeseries
|
1917149 1643952 2039432 |
2021-09-03 | Grapenthin, Ronni |
Collaborative Research: Multi-Parameter Geophysical Constraints on Volcano Dynamics of Mt. Erebus and Ross Island, Antarctica |
We use NASA's Jet Propulsion Laboratory's (JPL) GipsyX software in PPP mode with ambiguity resolution applied to 24 hour segments of data to generate daily position solutions. We use JPL's orbit and clock products and International GNSS Service (IGS) antenna phase center models. Where available, we use JPL's second order ionospheric corrections, otherwise we fall back on those provided by the IGS. To correct tropospheric delays, we use the GPT2 model as implemented in GipsyX. Ocean tidal loading corrections utilize the TPXO7.2 and ATLAS model, a combination of hydrodynamic model and altimetry data, with respect to Earth's Center of Mass implemented in SPOTL. We obtain position solutions for each station day in a fiducial-free reference frame, which we then transform into the 2014 International Reference Frame using JPL's transformation coefficients and generate timeseries of position change relative to the first epoch, given in the *.series files which are ASCII files with the following columns: decimal year displacement east (m) displacement north (m) displacement up (m) sigma east (m) sigma north (m) sigma up (m) east-north covariance east-up covariance north-up covariance Year (YYYY) Month (MM) Day (DD) Hour (hh) Minute (mm) Second (ss) Solution path We generate position time series relative to stable Antarctic plate by removing the plate velocities modeled by Argus et al (2010). These are provided in the *.npy files that be readily read into python scripts: pos_ts = np.load('test.npy').flatten()[0] pos_ts['itrf'] provides the ITRF data as above pos_ts['plate'] provides the data with Antarctic plate motion removed. | ["POLYGON((166 -77.1,166.39 -77.1,166.78 -77.1,167.17 -77.1,167.56 -77.1,167.95 -77.1,168.34 -77.1,168.73 -77.1,169.12 -77.1,169.51 -77.1,169.9 -77.1,169.9 -77.18,169.9 -77.26,169.9 -77.34,169.9 -77.42,169.9 -77.5,169.9 -77.58,169.9 -77.66,169.9 -77.74,169.9 -77.82,169.9 -77.9,169.51 -77.9,169.12 -77.9,168.73 -77.9,168.34 -77.9,167.95 -77.9,167.56 -77.9,167.17 -77.9,166.78 -77.9,166.39 -77.9,166 -77.9,166 -77.82,166 -77.74,166 -77.66,166 -77.58,166 -77.5,166 -77.42,166 -77.34,166 -77.26,166 -77.18,166 -77.1))"] | ["POINT(167.95 -77.5)"] | false | false |
Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)
|
1142083 |
2016-12-03 | Oppenheimer, Clive; Kyle, Philip |
Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO) |
Mt. Erebus is one of only a handful of volcanoes worldwide that have lava lakes with readily observable and nearly continuous Strombolian explosive activity. Erebus is also unique in having a permanent convecting lava lake of anorthoclase phonolite magma. Over the years significant infrastructure has been established at the summit of Mt. Erebus as part of the Mount Erebus Volcano Observatory (MEVO), which serves as a natural laboratory to study a wide range of volcanic processes, especially magma degassing associated with an open convecting magma conduit. The PI proposes to continue operating MEVO for a further five years. The fundamental fundamental research objectives are: to understand diffuse flank degassing by using distributed temperature sensing and gas measurements in ice caves, to understand conduit processes, and to examine the environmental impact of volcanic emissions from Erebus on atmospheric and cryospheric environments. To examine conduit processes the PI will make simultaneous observations with video records, thermal imaging, measurements of gas emission rates and gas compositions, seismic, and infrasound data. An important aspect of Erebus research is the education and training of students. Both graduate and undergraduate students will have the opportunity to work on MEVO data and deploy to the field site. In addition, this proposal will support a middle or high school science teacher for two field seasons. The PI will also continue working with various media organizations and filmmakers. This dataset contains video taken from a series of cameras that were installed at Shackleton's Cairn (-77.525337, 167.157509) looking into the lava lake. This dataset contains all such video taken between 2005 and 2011. Camera downlink depended on power at a relay station at the Cones site. The camera was operational during G-081 field seasons and often for a period of weeks or months thereafter. | ["POINT(167.15334 -77.529724)"] | ["POINT(167.15334 -77.529724)"] | false | false |
Mount Erebus Volcano Observatory III (MEVO III): Conduit Processes and Surveillance
|
0838817 |
2016-01-01 | Kyle, Philip |
Mount Erebus Volcano Observatory III (MEVO III): Conduit Processes and Surveillance |
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Mount Erebus is Antarctica's most active volcano that has been in a persistent state of activity for at least the last 35 years. It has a unique geochemistry among the Earth's active volcanoes and is also unique in hosting a persistent convecting lake(s) of anorthclase phonolite magma in its summit crater. The relative simplicity of the magmatic system, consistency of activity, and accessibility of close-range observation make Erebus attractive as a target for extensive studies. Although the Erebus' seismicity and eruptive activity and processes are becoming increasingly well understood over years of research, there is a near total lack of understanding its deeper magmatic system. The primary goal of this proposal is to continue supporting the Mt. Erebus Volcano Observatory (MEVO III) improving our current understanding of the Erebus eruptive and non-eruptive magmatic system using an integrated approach from geophysical, geochemical and remote sensing observations. This goal can be grouped into the following fundamental research objectives: (a) to sustain year-round surveillance of on-going volcanic activity primarily using geophysical observatories; (b) to understand processes within the convecting conduit which feeds the persistent lava lakes; and (c) to understand the impact of Erebus eruptive activity upon the Antarctic environment. Continued reliance on students provides a broader impact to this proposed research and firmly grounds this effort in its educational mission. | [] | [] | false | false |