{"dp_type": "Dataset", "free_text": "Aerosol"}
[{"awards": "1443144 Steig, Eric; 1443448 Schaefer, Joerg", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Wed, 03 Feb 2021 00:00:00 GMT", "description": "Experiments were conducted using ECHAM5-HAM atmospheric aerosol - climate model at horizontal resolution of T42 (~2.8\u00b0 latitude \u00d7 2.8\u00b0 longitude) with 19 vertical levels to examine the relationship between the production of 10Be in the atmosphere and its deposition at the surface. Five experiments were conducted, using a) constant 10Be production but varying, observed climate b) climatological climate of the last 50 years but varying 10Be production, c) constant 10Be production with 50-years of varying climate for 0 ka, (d) 6 ka, and (e) 21 ka, using the TraCE21 simulation to provide boundary conditions. The results will be useful for comparison with 10Be concentration records obtained from the South Pole ice core and other Antarctic and Greenland records.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; South Pole", "locations": "South Pole; Antarctica; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "persons": "Ding, Qinghua; Schaefer, Joerg; Steig, Eric J.", "project_titles": "Collaborative Research: A High-sensitivity Beryllium-10 Record from an Ice Core at South Pole", "projects": [{"proj_uid": "p0010158", "repository": "USAP-DC", "title": "Collaborative Research: A High-sensitivity Beryllium-10 Record from an Ice Core at South Pole"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Simulations of 10Be over Antarctica", "uid": "601431", "west": -180.0}, {"awards": "1341494 Gao, Yuan", "bounds_geometry": ["POINT(64 64)"], "date_created": "Mon, 24 Aug 2020 00:00:00 GMT", "description": "The dataset includes the concentrations and particle size distributions of aerosol trace elements (TEs) through the sampling of size-segregated aerosol particles made at Palmer Station, Antarctic Peninsula, which took place in the austral summer of 2016-2017. The estimated dry deposition fluxes of these elements were derived from these new results.", "east": 64.0, "geometry": ["POINT(64 64)"], "keywords": "Antarctica; Antarctic Peninsula; Palmer Station; Trace Elements", "locations": "Palmer Station; Palmer Station; Antarctic Peninsula; Antarctica", "north": 64.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Gao, Yuan", "project_titles": "Quantifying Atmospheric Iron Properties over West Antarctic Peninsula", "projects": [{"proj_uid": "p0010082", "repository": "USAP-DC", "title": "Quantifying Atmospheric Iron Properties over West Antarctic Peninsula"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": 64.0, "title": "Concentrations and Particle Size Distributions of Aerosol Trace Elements", "uid": "601370", "west": 64.0}, {"awards": "1341494 Gao, Yuan", "bounds_geometry": ["POINT(-64.05 -64.766)"], "date_created": "Thu, 20 Feb 2020 00:00:00 GMT", "description": "The dataset includes the particle size measurements of aerosol iron (Fe) through sampling of size-segregated aerosol particles made at Palmer Station, Antarctic Peninsula, which took place in the austral summer of 2016-2017. New results include particle-size distributions of total Fe, labile Fe, and fractional Fe solubility in aerosols from these samples.", "east": -64.05, "geometry": ["POINT(-64.05 -64.766)"], "keywords": "Aerosol Concentration; Antarctica; Chemistry:gas; Chemistry:Gas; Iron; Palmer Station; Particle Size", "locations": "Antarctica; Palmer Station", "north": -64.766, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Gao, Yuan", "project_titles": "Quantifying Atmospheric Iron Properties over West Antarctic Peninsula", "projects": [{"proj_uid": "p0010082", "repository": "USAP-DC", "title": "Quantifying Atmospheric Iron Properties over West Antarctic Peninsula"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.766, "title": "Particle sizes of aerosol iron", "uid": "601257", "west": -64.05}, {"awards": "1141939 Lubin, Dan", "bounds_geometry": ["POLYGON((166.31 -77.5203,166.38265 -77.5203,166.4553 -77.5203,166.52795 -77.5203,166.6006 -77.5203,166.67325 -77.5203,166.7459 -77.5203,166.81855 -77.5203,166.8912 -77.5203,166.96385 -77.5203,167.0365 -77.5203,167.0365 -77.52527,167.0365 -77.53024,167.0365 -77.53521,167.0365 -77.54018,167.0365 -77.54515,167.0365 -77.55012,167.0365 -77.55509,167.0365 -77.56006,167.0365 -77.56503,167.0365 -77.57,166.96385 -77.57,166.8912 -77.57,166.81855 -77.57,166.7459 -77.57,166.67325 -77.57,166.6006 -77.57,166.52795 -77.57,166.4553 -77.57,166.38265 -77.57,166.31 -77.57,166.31 -77.56503,166.31 -77.56006,166.31 -77.55509,166.31 -77.55012,166.31 -77.54515,166.31 -77.54018,166.31 -77.53521,166.31 -77.53024,166.31 -77.52527,166.31 -77.5203))"], "date_created": "Tue, 12 Dec 2017 00:00:00 GMT", "description": "In this project we made fundamental measurements of cloud optical and microphysical properties at Ross Island, Antarctica, using a versatile shortwave spectroradiometer (Panalytical, Inc.) acquired for atmospheric field research by the Scripps Institution of Oceanography (SIO). This instrument measures downwelling spectral irradiance at the Earth surface in the wavelength interval 350-2200 nm. From this data set one can retrieve properties of coastal Antarctic stratiform clouds including optical depth, thermodynamic phase, liquid water droplet effective radius, and ice cloud effective particle size. The instrument was installed at Arrival Heights, and measurements were made from 10 October 2012 to 4 February 2013. Spectral data recorded in one-minute averages, with some gaps for instrument maintenance and data backup, and some occasional down time when the site was inaccessible. Active satellite remote sensing data (CloudSat and CALIPSO) were used for validation and interpretation of the spectroradiometer retrievals (Scott and Lubin 2014).\r\n\t\r\n\t\u003cbr\u003e\u003cbr\u003eThere are two reasons why this measurement program remains timely. One straightforward reason involves the location of McMurdo Station, which is the US Antarctic Programs air transport entry point to the continent. Improvements in our knowledge of atmospheric physics in this region can eventually lead to improvements in numerical weather forecasting relevant to aviation. A second reason involves the recent advances in cloud microphysics for global climate model simulation. Mixed-phase cloud parameterizations have become very sophisticated, requiring validation with each new improvement. Traditional observational test cases - from the Arctic or mid-latitude storm systems - are often quite complex. A coastal Antarctic site at very high latitudes can provide more straightforward cases for testing current microphysical parameterizations. Over Ross Island aerosol and cloud nucleation sources are essentially all natural and oceanic, and cloud geometry is simple, while at the same time there is abundant supercooled cloud liquid water.\r\n\t\r\n\t\u003cbr\u003e\u003cbr\u003eAncillary meteorological data from the McMurdo Weather Office are also included here for help in interpreting the spectroradiometer data, including rawinsonde profiles, surface weather observations from the active ice runway, and automated FMQ19 surface weather measurements from Williams Field and Pegasus runway. For interpretation of clear sky or nearly cloud-free irradiance spectra (i.e., when a large fraction of the irradiance is directional from the Sun and not diffused by clouds), we recommend consulting Meywerk and Ramanathan (1999) for information about the Panalytical instruments cosine response.", "east": 167.0365, "geometry": ["POINT(166.67325 -77.54515)"], "keywords": "Antarctica; Atmosphere; Meteorology; Radiosounding; Ross Island", "locations": "Ross Island; Antarctica", "north": -77.5203, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Lubin, Dan", "project_titles": "Antarctic Cloud Physics: Fundamental Observations from Ross Island", "projects": [{"proj_uid": "p0000327", "repository": "USAP-DC", "title": "Antarctic Cloud Physics: Fundamental Observations from Ross Island"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.57, "title": "Shortwave Spectroradiometer Data from Ross Island, Antarctica", "uid": "601074", "west": 166.31}, {"awards": "0839093 McConnell, Joseph", "bounds_geometry": ["POLYGON((161.41425 -77.73489,161.486884 -77.73489,161.559518 -77.73489,161.632152 -77.73489,161.704786 -77.73489,161.77742 -77.73489,161.850054 -77.73489,161.922688 -77.73489,161.995322 -77.73489,162.067956 -77.73489,162.14059 -77.73489,162.14059 -77.747868,162.14059 -77.760846,162.14059 -77.773824,162.14059 -77.786802,162.14059 -77.79978,162.14059 -77.812758,162.14059 -77.825736,162.14059 -77.838714,162.14059 -77.851692,162.14059 -77.86467,162.067956 -77.86467,161.995322 -77.86467,161.922688 -77.86467,161.850054 -77.86467,161.77742 -77.86467,161.704786 -77.86467,161.632152 -77.86467,161.559518 -77.86467,161.486884 -77.86467,161.41425 -77.86467,161.41425 -77.851692,161.41425 -77.838714,161.41425 -77.825736,161.41425 -77.812758,161.41425 -77.79978,161.41425 -77.786802,161.41425 -77.773824,161.41425 -77.760846,161.41425 -77.747868,161.41425 -77.73489))"], "date_created": "Mon, 19 Jun 2017 00:00:00 GMT", "description": "Black carbon (BC) and other biomass-burning (BB) aerosols are critical components of climate forcing but quantification, predictive climate modeling, and policy decisions have been hampered by limited understanding of the climate drivers of BB and by the lack of long-term records. Prior modeling studies suggested that increased Northern Hemisphere anthropogenic BC emissions increased recent temperatures and regional precipitation, including a northward shift in the Inter-Tropical Convergence Zone (ITCZ). Two Antarctic ice cores were analyzed for BC and the longest record shows that the highest BC deposition during the Holocene occurred ~8-6k years before present in a period of relatively high austral burning season and low growing season insolation. Atmospheric transport modeling suggests South America (SA) as the dominant source of modern Antarctic BC and, consistent with the ice-core record, climate model experiments using mid-Holocene and preindustrial insolation simulate comparable increases in carbon loss due to fires in SA during the mid-Holocene. SA climate proxies document a northward shifted ITCZ and weakened SA Summer Monsoon (SASM) during this period, with associated impacts on hydroclimate and burning. A second Antarctic ice core spanning the last 2.5k years documents similar linkages between hydroclimate and BC, with the lowest deposition during the Little Ice Age characterized by a southerly shifted ITCZ and strengthened SASM. These new results indicate that insolation-driven changes in SA hydroclimate and BB, likely linked to the position of the ITCZ, modulated Antarctic BC deposition during most of the Holocene and suggests connections and feedbacks between future BC emissions and hydroclimate.", "east": 162.14059, "geometry": ["POINT(161.77742 -77.79978)"], "keywords": "Antarctica; Atmosphere; Black Carbon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -77.73489, "nsf_funding_programs": null, "persons": "McConnell, Joseph; Arienzo, Monica", "project_titles": "Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core", "projects": [{"proj_uid": "p0000273", "repository": "USAP-DC", "title": "Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -77.86467, "title": "Holocene Black Carbon in Antarctica", "uid": "601034", "west": 161.41425}, {"awards": "0944197 Waddington, Edwin", "bounds_geometry": ["POINT(-112.1115 -79.481)"], "date_created": "Tue, 28 Mar 2017 00:00:00 GMT", "description": "The West Antarctic Ice Sheet Divide (WAIS Divide, WD) ice core is a newly drilled, high-accumulation deep ice core that provides Antarctic climate records of the past ~68 ka at unprecedented temporal resolution. The upper 2850 m (back to 31.2 ka BP) have been dated using annual-layer counting. Here we present a chronology for the deep part of the core (67.8-31.2 ka BP), which is based on stratigraphic matching to annual-layer-counted Greenland ice cores using globally well-mixed atmospheric methane. We calculate the WD gas age-ice age difference (Delta age) using a combination of firn densification modeling, ice-flow modeling, and a data set of d15N-N2, a proxy for past firn column thickness. The largest Delta age at WD occurs during the Last Glacial Maximum, and is 525 +/- 120 years. Internally consistent solutions can be found only when assuming little to no influence of impurity content on densification rates, contrary to a recently proposed hypothesis. We synchronize the WD chronology to a linearly scaled version of the layer-counted Greenland Ice Core Chronology (GICC05), which brings the age of Dansgaard-Oeschger (DO) events into agreement with the U/Th absolutely dated Hulu Cave speleothem record. The small Delta age at WD provides valuable opportunities to investigate the timing of atmospheric greenhouse gas variations relative to Antarctic climate, as well as the interhemispheric phasing of the \\\"bipolar seesaw\\\".\n\nWe present the WD2014 chronology for the upper part (0-2850 m; 31.2 ka BP) of the West Antarctic Ice Sheet (WAIS) Divide (WD) ice core. The chronology is based on counting of annual layers observed in the chemical, dust and electrical conductivity records. These layers are caused by seasonal changes in the source, transport, and deposition of aerosols. The measurements were interpreted manually and with the aid of two automated methods. We validated the chronology by comparing to two high-accuracy, absolutely dated chronologies. For the Holocene, the cosmogenic isotope records of 10Be from WAIS Divide and 14C for IntCal13 demonstrated that WD2014 was consistently accurate to better than 0.5% of the age. For the glacial period, comparisons to the Hulu Cave chronology demonstrated that WD2014 had an accuracy of better than 1% of the age at three abrupt climate change events between 27 and 31ka. WD2014 has consistently younger ages than Greenland ice core chronologies during most of the Holocene. For the Younger Dryas-Preboreal transition (11.595 ka; 24 years younger) and the Bolling-Allerod Warming (14.621 ka; 7 years younger), WD2014 ages are within the combined uncertainties of the timescales. Given its high accuracy, WD2014 can become a reference chronology for the Southern Hemisphere, with synchronization to other chronologies feasible using high-quality proxies of volcanism, solar activity, atmospheric mineral dust, and atmospheric methane concentrations.", "east": -112.1115, "geometry": ["POINT(-112.1115 -79.481)"], "keywords": "Antarctica; Depth-Age-Model; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.481, "nsf_funding_programs": null, "persons": "Fudge, T. J.", "project_titles": "Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core", "projects": [{"proj_uid": "p0000026", "repository": "USAP-DC", "title": "Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "WD2014: Timescale for WAIS Divide Core 2006 A (WDC-06A)", "uid": "601015", "west": -112.1115}, {"awards": "0538427 McConnell, Joseph", "bounds_geometry": ["POINT(-112.1115 -79.481)"], "date_created": "Thu, 23 Mar 2017 00:00:00 GMT", "description": "A state-of-the-art continuous ice core analytical system was used to analyze samples from ~1.5 to ~577 m depth in the recently collected WAIS Divide deep ice core from West Antarctica. Interpretation of these records and publication of findings is ongoing.", "east": -112.1115, "geometry": ["POINT(-112.1115 -79.481)"], "keywords": "Aerosol; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.481, "nsf_funding_programs": null, "persons": "McConnell, Joseph", "project_titles": "Trace and Ultra-Trace Chemistry Measurements of the WAIS Divide Ice Core", "projects": [{"proj_uid": "p0000148", "repository": "USAP-DC", "title": "Trace and Ultra-Trace Chemistry Measurements of the WAIS Divide Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "WAIS Divide Ice-Core Aerosol Records from 1.5 to 577 m", "uid": "601009", "west": -112.1115}, {"awards": "0538427 McConnell, Joseph", "bounds_geometry": ["POINT(-112.1115 -79.481)"], "date_created": "Thu, 23 Mar 2017 00:00:00 GMT", "description": "A state-of-the-art continuous ice core analytical system was used to analyze samples from 0 to ~130 m depth of the recently collected intermediate core WDC05Q from West Antarctica. Interpretation of these records and publication of findings is ongoing.", "east": -112.1115, "geometry": ["POINT(-112.1115 -79.481)"], "keywords": "Aerosol; Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.481, "nsf_funding_programs": null, "persons": "McConnell, Joseph", "project_titles": "Trace and Ultra-Trace Chemistry Measurements of the WAIS Divide Ice Core", "projects": [{"proj_uid": "p0000148", "repository": "USAP-DC", "title": "Trace and Ultra-Trace Chemistry Measurements of the WAIS Divide Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "WAIS Divide Ice-Core Aerosol Records from Intermediate Core WDC05Q", "uid": "601011", "west": -112.1115}, {"awards": "0538427 McConnell, Joseph", "bounds_geometry": ["POINT(-112.1115 -79.481)"], "date_created": "Thu, 23 Mar 2017 00:00:00 GMT", "description": "A state-of-the-art continuous ice core analytical system was used to analyze samples from the firn portion (0 to ~70 m depth) of the recently collected intermediate core WDC05A from West Antarctica. Interpretation of these records and publication of findings is ongoing.", "east": -112.1115, "geometry": ["POINT(-112.1115 -79.481)"], "keywords": "Aerosol; Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.481, "nsf_funding_programs": null, "persons": "McConnell, Joseph", "project_titles": "Trace and Ultra-Trace Chemistry Measurements of the WAIS Divide Ice Core", "projects": [{"proj_uid": "p0000148", "repository": "USAP-DC", "title": "Trace and Ultra-Trace Chemistry Measurements of the WAIS Divide Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "WAIS Divide Ice-Core Aerosol Records from Intermediate Core WDC05A", "uid": "601010", "west": -112.1115}, {"awards": "1142166 McConnell, Joseph", "bounds_geometry": ["POINT(-112.1115 -79.481)"], "date_created": "Wed, 22 Mar 2017 00:00:00 GMT", "description": "A state-of-the-art continuous ice core analytical system was used to analyze ~3 cm by ~3 cm longitudinal samples from ~1300 to ~3404 m depth in the recently collected WAIS Divide deep ice core from West Antarctica. Interpretation of these records and publication of findings is ongoing.", "east": -112.1115, "geometry": ["POINT(-112.1115 -79.481)"], "keywords": "Aerosol; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.481, "nsf_funding_programs": null, "persons": "McConnell, Joseph", "project_titles": "Collaborative Research: Investigating Upper Pleistocene Rapid Climate Change using Continuous, Ultra-High-Resolution Aerosol and Gas Measurements in the WAIS Divide Ice Core", "projects": [{"proj_uid": "p0000287", "repository": "USAP-DC", "title": "Collaborative Research: Investigating Upper Pleistocene Rapid Climate Change using Continuous, Ultra-High-Resolution Aerosol and Gas Measurements in the WAIS Divide Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "WAIS Divide Ice-Core Aerosol Records from 1300 to 3404 m", "uid": "601008", "west": -112.1115}, {"awards": "1043145 Obbard, Rachel", "bounds_geometry": ["POLYGON((164.1005 -77.1188,164.36443 -77.1188,164.62836 -77.1188,164.89229 -77.1188,165.15622 -77.1188,165.42015 -77.1188,165.68408 -77.1188,165.94801 -77.1188,166.21194 -77.1188,166.47587 -77.1188,166.7398 -77.1188,166.7398 -77.19337,166.7398 -77.26794,166.7398 -77.34251,166.7398 -77.41708,166.7398 -77.49165,166.7398 -77.56622,166.7398 -77.64079,166.7398 -77.71536,166.7398 -77.78993,166.7398 -77.8645,166.47587 -77.8645,166.21194 -77.8645,165.94801 -77.8645,165.68408 -77.8645,165.42015 -77.8645,165.15622 -77.8645,164.89229 -77.8645,164.62836 -77.8645,164.36443 -77.8645,164.1005 -77.8645,164.1005 -77.78993,164.1005 -77.71536,164.1005 -77.64079,164.1005 -77.56622,164.1005 -77.49165,164.1005 -77.41708,164.1005 -77.34251,164.1005 -77.26794,164.1005 -77.19337,164.1005 -77.1188))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "A range of chemical and microphysical pathways in polar latitudes, including spring time (tropospheric) ozone depletion, oxidative pathways for mercury, and cloud condensation nuclei (CCN) production leading to changes in the cloud cover and attendant surface energy budgets, have been invoked as being dependent upon the emission of halogen gases formed in sea-ice.\nThe prospects for climate warming induced reductions in sea ice extent causing alteration of these incompletely known surface-atmospheric feedbacks and interactions requires confirmation of mechanistic details in both laboratory studies and field campaigns. One such mechanistic question is how bromine (BrO and Br) enriched snow migrates or is formed through processes in sea-ice, prior to its subsequent mobilization as an aerosol fraction into the atmosphere by strong winds. Once aloft, it may react with ozone and other atmospheric species. Dartmouth researchers will collect snow from the surface of sea ice, from freely blowing snow and in sea-ice cores from Cape Byrd, Ross Sea. A range of spectroscopic, microanalytic and and microstructural approaches will be subsequently used to determine the Br distribution gradients through sea-ice, in order to shed light on how sea-ice first forms and then releases bromine species into the polar atmospheric boundary layer.", "east": 166.7398, "geometry": ["POINT(165.42015 -77.49165)"], "keywords": "Atmosphere; Chemistry:ice; Chemistry:Ice; Critical Zone; Crystals; Glaciology; Oceans; Photo/video; Photo/Video; Ross Sea; Sea Ice; Sea Surface; Snow; Southern Ocean", "locations": "Southern Ocean; Ross Sea; Sea Surface", "north": -77.1188, "nsf_funding_programs": null, "persons": "Obbard, Rachel", "project_titles": "Bromide in Snow in the Sea Ice Zone", "projects": [{"proj_uid": "p0000414", "repository": "USAP-DC", "title": "Bromide in Snow in the Sea Ice Zone"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.8645, "title": "Bromide in Snow in the Sea Ice Zone", "uid": "600158", "west": 164.1005}, {"awards": "0944659 Kiene, Ronald", "bounds_geometry": ["POLYGON((-160 -68,-159 -68,-158 -68,-157 -68,-156 -68,-155 -68,-154 -68,-153 -68,-152 -68,-151 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-151 -78,-152 -78,-153 -78,-154 -78,-155 -78,-156 -78,-157 -78,-158 -78,-159 -78,-160 -78,-160 -77,-160 -76,-160 -75,-160 -74,-160 -73,-160 -72,-160 -71,-160 -70,-160 -69,-160 -68))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "Spectacular blooms of Phaeocystis antarctica in the Ross Sea, Antarctica are the source of some of the world\u0027s highest concentrations of dimethylsulfoniopropionate (DMSP) and its volatile degradation product, dimethylsulfide (DMS). The flux of DMS from the oceans to the atmosphere in this region and its subsequent gas phase oxidation generates aerosols that have a strong influence on cloud properties and possibly climate. In the oceans, DMS and DMSP are quantitatively significant components of the carbon, sulfur, and energy flows in marine food webs, especially in the Ross Sea. Despite its central role in carbon and sulfur biogeochemistry in the Ross Sea, surprisingly little is known about the physiological functions of DMSP in P. Antarctica. The research will isolate and characterize DMSP lyases from P. antarctica, with the goal of obtaining amino acid and gene sequence information on these important enzymes. The physiological studies will focus on the effects of varying intensities of photosynthetically active radiation, with and without ultraviolet radiation as these are factors that we have found to be important controls on DMSP and DMS dynamics. The research also will examine the effects of prolonged darkness on the dynamics of DMSP and related compounds in P. antarctica, as survival of this species during the dark Antarctic winter and at sub-euphotic depths appears to be an important part of the Phaeocystis? ecology. A unique aspect of this work is the focus on measurements of intracellular MSA, which if detected, would provide strong evidence for in vivo radical scavenging functions for methyl sulfur compounds. The study will advance understanding of what controls DMSP cycling and ultimately DMS emissions from the Ross Sea and also provide information on what makes P. antarctica so successful in this extreme environment. The research will directly benefit and build on several interrelated ocean-atmosphere programs including the International Surface Ocean Lower Atmosphere Study (SOLAS) program. The PIs will participate in several activities involving K-12 education, High School teacher training, public education and podcasting through the auspices of the Dauphin Island Sea Lab Discovery Hall program and SUNY ESF. Two graduate students will be employed full time, and six undergraduates (2 each summer) will be trained as part of this project.\n", "east": -150.0, "geometry": ["POINT(-155 -73)"], "keywords": "Antarctica; Biota; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Oceans; Ross Sea", "locations": "Antarctica; Ross Sea", "north": -68.0, "nsf_funding_programs": null, "persons": "Kiene, Ronald", "project_titles": "Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "projects": [{"proj_uid": "p0000085", "repository": "USAP-DC", "title": "Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "uid": "600150", "west": -160.0}, {"awards": "1343649 Levy, Joseph", "bounds_geometry": ["POLYGON((162.852 -77.6111,162.9893 -77.6111,163.1266 -77.6111,163.2639 -77.6111,163.4012 -77.6111,163.5385 -77.6111,163.6758 -77.6111,163.8131 -77.6111,163.9504 -77.6111,164.0877 -77.6111,164.225 -77.6111,164.225 -77.65331,164.225 -77.69552,164.225 -77.73773,164.225 -77.77994,164.225 -77.82215,164.225 -77.86436,164.225 -77.90657,164.225 -77.94878,164.225 -77.99099,164.225 -78.0332,164.0877 -78.0332,163.9504 -78.0332,163.8131 -78.0332,163.6758 -78.0332,163.5385 -78.0332,163.4012 -78.0332,163.2639 -78.0332,163.1266 -78.0332,162.9893 -78.0332,162.852 -78.0332,162.852 -77.99099,162.852 -77.94878,162.852 -77.90657,162.852 -77.86436,162.852 -77.82215,162.852 -77.77994,162.852 -77.73773,162.852 -77.69552,162.852 -77.65331,162.852 -77.6111))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "The PIs propose to quantify the hillslope water, solute, and carbon budgets for Taylor Valley in the McMurdo Dry Valleys, using water tracks to investigate near-surface geological processes and challenge the paradigm that shallow groundwater is minimal or non-exixtant. Water tracks are linear zones of high soil moisture that route shallow groundwater downslope in permafrost dominated soils. Four hypotheses will be tested: 1) water tracks are important pathways for water and solute transport; 2) water tracks transport more dissolved silica than streams in Taylor Valley indicating they are the primary site of chemical weathering for cold desert soils and bedrock; 3) water tracks that drain highland terrains are dominated by humidity-separated brines while water tracks that drain lowland terrains are dominated by marine aerosols; 4) water tracks are the sites of the highest terrestrial soil carbon concentrations and the strongest CO2 fluxes in Taylor Valley and their carbon content increases with soil age, while carbon flux decreases with age. To test these hypotheses the PIs will carry out a suite of field measurements supported by modeling and remote sensing. They will install shallow permafrost wells in water tracks that span the range of geological, climatological, and topographic conditions in Taylor Valley. Multifrequency electromagnetic induction sounding of the upper ~1 m of the permafrost will create the first comprehensive map of soil moisture in Taylor Valley, and will permit direct quantification of water track discharge across the valley. The carbon contents of water track soils will be measured and linked to global carbon dynamics.\n\nNon-science majors at Oregon State University will be integrated into the proposed research through a new Global Environmental Change course focusing on the scientific method in Antarctica. Three undergraduate students, members of underrepresented minorities, will be entrained in the research, will contribute to all aspects of field and laboratory science, and will present results at national meetings.\n", "east": 164.225, "geometry": ["POINT(163.5385 -77.82215)"], "keywords": "Antarctica; Chemistry:soil; Chemistry:Soil; Critical Zone; Dry Valleys; Permafrost; Sample/collection Description; Sample/Collection Description; Well Measurements", "locations": "Antarctica; Dry Valleys", "north": -77.6111, "nsf_funding_programs": null, "persons": "Levy, Joseph", "project_titles": "Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica", "projects": [{"proj_uid": "p0000407", "repository": "USAP-DC", "title": "Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0332, "title": "Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica", "uid": "600139", "west": 162.852}, {"awards": "0944686 Kieber, David", "bounds_geometry": ["POLYGON((-160 -68,-159 -68,-158 -68,-157 -68,-156 -68,-155 -68,-154 -68,-153 -68,-152 -68,-151 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-151 -78,-152 -78,-153 -78,-154 -78,-155 -78,-156 -78,-157 -78,-158 -78,-159 -78,-160 -78,-160 -77,-160 -76,-160 -75,-160 -74,-160 -73,-160 -72,-160 -71,-160 -70,-160 -69,-160 -68))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Spectacular blooms of Phaeocystis antarctica in the Ross Sea, Antarctica are the source of some of the world\u0027s highest concentrations of dimethylsulfoniopropionate (DMSP) and its volatile degradation product, dimethylsulfide (DMS). The flux of DMS from the oceans to the atmosphere in this region and its subsequent gas phase oxidation generates aerosols that have a strong influence on cloud properties and possibly climate. In the oceans, DMS and DMSP are quantitatively significant components of the carbon, sulfur, and energy flows in marine food webs, especially in the Ross Sea. Despite its central role in carbon and sulfur biogeochemistry in the Ross Sea, surprisingly little is known about the physiological functions of DMSP in P. antarctica. The research will isolate and characterize DMSP lyases from P. antarctica, with the goal of obtaining amino acid and gene sequence information on these important enzymes. The physiological studies will focus on the effects of varying intensities of photosynthetically active radiation, with and without ultraviolet radiation as these are factors that we have found to be important controls on DMSP and DMS dynamics. The research also will examine the effects of prolonged darkness on the dynamics of DMSP and related compounds in P. antarctica, as survival of this species during the dark Antarctic winter and at sub-euphotic depths appears to be an important part of the Phaeocystis\u0027 ecology. A unique aspect of this work is the focus on measurements of intracellular MSA, which if detected, would provide strong evidence for in vivo radical scavenging functions for methyl sulfur compounds. The study will advance understanding of what controls DMSP cycling and ultimately DMS emissions from the Ross Sea and also provide information on what makes P. antarctica so successful in this extreme environment. The research will directly benefit and build on several interrelated ocean-atmosphere programs including the International Surface Ocean Lower Atmosphere Study (SOLAS) program. The PIs will participate in several activities involving K-12 education, High School teacher training, public education and podcasting through the auspices of the Dauphin Island Sea Lab Discovery Hall program and SUNY ESF. Two graduate students will be employed full time, and six undergraduates (2 each summer) will be trained as part of this project.\n", "east": -150.0, "geometry": ["POINT(-155 -73)"], "keywords": "Biota; Ross Sea; Southern Ocean", "locations": "Southern Ocean; Ross Sea", "north": -68.0, "nsf_funding_programs": null, "persons": "Kieber, David John", "project_titles": "Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "projects": [{"proj_uid": "p0000085", "repository": "USAP-DC", "title": "Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "uid": "600117", "west": -160.0}, {"awards": "0739780 Taylor, Kendrick", "bounds_geometry": ["POINT(-112.117 -79.666)"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "This award supports a project to develop a 2,000-year high-temporal resolution record of biomass burning from the analysis of black carbon in the WAIS Divide bedrock ice core. Pilot data for the WAIS WD05A core demonstrates that we now have the ability to reconstruct this record with minimal impact on the amount of ice available for other projects. The intellectual merit of this project is that black carbon (BC) aerosols result solely from combustion and play a critical but poorly quantified role in global climate forcing and the carbon cycle. When incorporated into snow and ice, BC increases absorption of solar radiation making seasonal snow packs, mountain glaciers, polar ice sheets, and sea ice much more vulnerable to climate warming. BC emissions in the Southern Hemisphere are dominated by biomass burning in the tropical regions of Southern Africa, South America and South Asia. Biomass burning, which results from both climate and human activities, alters the atmospheric composition of greenhouse gases, aerosols and perturbs key biogeochemical cycles. A long-term record of biomass burning is needed to aid in the interpretation of ice core gas composition and will provide important information regarding human impacts on the environment and climate before instrumental records.", "east": -112.117, "geometry": ["POINT(-112.117 -79.666)"], "keywords": "Antarctica; Atmosphere; Black Carbon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.666, "nsf_funding_programs": null, "persons": "Taylor, Kendrick C.", "project_titles": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "projects": [{"proj_uid": "p0000022", "repository": "USAP-DC", "title": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.666, "title": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "uid": "600142", "west": -112.117}, {"awards": "0125761 Thiemens, Mark", "bounds_geometry": ["POINT(139.2728 -89.9975)"], "date_created": "Wed, 01 Nov 2006 00:00:00 GMT", "description": "This data set contains snow pit measurements of oxygen isotopes, \u003csup\u003e17\u003c/sup\u003eO and \u003csup\u003e18\u003c/sup\u003eO, in nitrate and ion concentrations, and surface measurements of oxygen isotopes in nitrate and in nitrate aerosols from the Amundsen-Scott South Pole Station, Antarctica. The 6-meter snow pit provides investigators with a 25-year record of nitrate isotope variations and ion concentrations for a period spanning from 1979 to 2004. Monthly surface snow and weekly aerosol collections yield a year-long record of nitrate isotopic composition starting 01 December 2003 and ending 31 December 2004.\n\nLittle is known about the past denitrification of the stratosphere in high latitude regions. Such knowledge is important to understanding the chemical state of the ancient atmospheres and evaluating the present climate models. With this research, investigators aim to understand the denitrification of the Antarctic stratosphere and quantify the sources of nitrate aerosols over time.\n\nData are in Microsoft Excel format and are available via FTP.", "east": 139.2728, "geometry": ["POINT(139.2728 -89.9975)"], "keywords": "Aerosol; Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; NBP1502; Snow/ice; Snow/Ice; South Pole Station", "locations": "Antarctica; South Pole Station", "north": -89.9975, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Thiemens, Mark H.; Savarino, Joel", "project_titles": "South Pole Atmospheric Nitrate Isotopic Analysis (SPANIA)", "projects": [{"proj_uid": "p0000242", "repository": "USAP-DC", "title": "South Pole Atmospheric Nitrate Isotopic Analysis (SPANIA)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -89.9975, "title": "Atmospheric Nitrate Isotopic Analysis at Amundsen-Scott South Pole Station, A Twenty-Five Year Record", "uid": "609281", "west": 139.2728}, {"awards": "9527373 Dunbar, Nelia", "bounds_geometry": ["POLYGON((158.55 -75.86,158.562 -75.86,158.574 -75.86,158.586 -75.86,158.598 -75.86,158.61 -75.86,158.622 -75.86,158.634 -75.86,158.646 -75.86,158.658 -75.86,158.67 -75.86,158.67 -75.864,158.67 -75.868,158.67 -75.872,158.67 -75.876,158.67 -75.88,158.67 -75.884,158.67 -75.888,158.67 -75.892,158.67 -75.896,158.67 -75.9,158.658 -75.9,158.646 -75.9,158.634 -75.9,158.622 -75.9,158.61 -75.9,158.598 -75.9,158.586 -75.9,158.574 -75.9,158.562 -75.9,158.55 -75.9,158.55 -75.896,158.55 -75.892,158.55 -75.888,158.55 -75.884,158.55 -75.88,158.55 -75.876,158.55 -75.872,158.55 -75.868,158.55 -75.864,158.55 -75.86))"], "date_created": "Tue, 18 Feb 2003 00:00:00 GMT", "description": "This data set is the result of a study of volcanic ash and rock fragment (tephra) layers in exposed blue ice areas on Brimstone Peak (75.888S 158.55E) in East Antarctica. Tephra samples were collected between 15 November 1996 and 15 January 1997.\n\nThe Antarctic ice sheets preserve a record of the volcanic ash layers and chemical aerosol signatures of local and distant volcanic eruptions. Correlation of individual tephra layers, or sets of layers, in blue ice areas will allow a better understanding of the geometry of ice flow in these areas. Tephra layers in deep ice cores can also provide unique time-stratigraphic markers in cores that are difficult to date.\n\nData include the following information for each sample site: a general description, electron microprobe analysis, GPS location, neutron activation analysis, and a visual description of the petrography.Data are provided as Excel 97 data files, JPG map files, and GIF-formatted BSE images. Data are available via ftp.", "east": 158.67, "geometry": ["POINT(158.61 -75.88)"], "keywords": "Antarctica; Blue Ice; Brimstone Peak; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Petrography; Tephra", "locations": "Brimstone Peak; Antarctica", "north": -75.86, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Dunbar, Nelia", "project_titles": "Collaborative Research: Volcanic Record in Antarctic Ice: Implications for Climatic and Eruptive History and Ice Sheet Dynamics of the South Polar Region", "projects": [{"proj_uid": "p0000065", "repository": "USAP-DC", "title": "Collaborative Research: Volcanic Record in Antarctic Ice: Implications for Climatic and Eruptive History and Ice Sheet Dynamics of the South Polar Region"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.9, "title": "Blue Ice Tephra II - Brimstone Peak", "uid": "609114", "west": 158.55}, {"awards": "9527373 Dunbar, Nelia", "bounds_geometry": ["POINT(-159.51 -77.12)"], "date_created": "Sat, 01 Feb 2003 00:00:00 GMT", "description": "This data set is the result of a study of volcanic ash and rock fragment (tephra) layers in exposed blue ice areas on Mt. DeWitt, Antarctica (77.12 deg S, 159.51 deg E). Tephra samples were collected between 15 November 1996 and 15 January 1997.\n\nData include the following information for each sample site: a general description, electron microprobe analysis, GPS location, neutron activation analysis, and a visual description of the petrography. Data are provided as an Excel 97 data file, (this file is also divided into various text files) and TIF images. Data are available via ftp.\n\nAntarctic ice sheets preserve a record of the volcanic ash layers and chemical aerosol signatures of local and distant volcanic eruptions. Correlation of individual tephra layers, or sets of layers, in blue ice areas will allow a better understanding of the geometry of ice flow in these areas. Tephra layers in deep ice cores can also provide unique time-stratigraphic markers in cores that are difficult to date.", "east": -159.51, "geometry": ["POINT(-159.51 -77.12)"], "keywords": "Antarctica; Blue Ice; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Mount Dewitt; Petrography; Tephra", "locations": "Mount Dewitt; Antarctica", "north": -77.12, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Dunbar, Nelia", "project_titles": "Collaborative Research: Volcanic Record in Antarctic Ice: Implications for Climatic and Eruptive History and Ice Sheet Dynamics of the South Polar Region", "projects": [{"proj_uid": "p0000065", "repository": "USAP-DC", "title": "Collaborative Research: Volcanic Record in Antarctic Ice: Implications for Climatic and Eruptive History and Ice Sheet Dynamics of the South Polar Region"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.12, "title": "Blue Ice Tephra II - Mt. DeWitt", "uid": "609115", "west": -159.51}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Simulations of 10Be over Antarctica
|
1443144 1443448 |
2021-02-03 | Ding, Qinghua; Schaefer, Joerg; Steig, Eric J. |
Collaborative Research: A High-sensitivity Beryllium-10 Record from an Ice Core at South Pole |
Experiments were conducted using ECHAM5-HAM atmospheric aerosol - climate model at horizontal resolution of T42 (~2.8° latitude × 2.8° longitude) with 19 vertical levels to examine the relationship between the production of 10Be in the atmosphere and its deposition at the surface. Five experiments were conducted, using a) constant 10Be production but varying, observed climate b) climatological climate of the last 50 years but varying 10Be production, c) constant 10Be production with 50-years of varying climate for 0 ka, (d) 6 ka, and (e) 21 ka, using the TraCE21 simulation to provide boundary conditions. The results will be useful for comparison with 10Be concentration records obtained from the South Pole ice core and other Antarctic and Greenland records. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Concentrations and Particle Size Distributions of Aerosol Trace Elements
|
1341494 |
2020-08-24 | Gao, Yuan |
Quantifying Atmospheric Iron Properties over West Antarctic Peninsula |
The dataset includes the concentrations and particle size distributions of aerosol trace elements (TEs) through the sampling of size-segregated aerosol particles made at Palmer Station, Antarctic Peninsula, which took place in the austral summer of 2016-2017. The estimated dry deposition fluxes of these elements were derived from these new results. | ["POINT(64 64)"] | ["POINT(64 64)"] | false | false |
Particle sizes of aerosol iron
|
1341494 |
2020-02-20 | Gao, Yuan |
Quantifying Atmospheric Iron Properties over West Antarctic Peninsula |
The dataset includes the particle size measurements of aerosol iron (Fe) through sampling of size-segregated aerosol particles made at Palmer Station, Antarctic Peninsula, which took place in the austral summer of 2016-2017. New results include particle-size distributions of total Fe, labile Fe, and fractional Fe solubility in aerosols from these samples. | ["POINT(-64.05 -64.766)"] | ["POINT(-64.05 -64.766)"] | false | false |
Shortwave Spectroradiometer Data from Ross Island, Antarctica
|
1141939 |
2017-12-12 | Lubin, Dan |
Antarctic Cloud Physics: Fundamental Observations from Ross Island |
In this project we made fundamental measurements of cloud optical and microphysical properties at Ross Island, Antarctica, using a versatile shortwave spectroradiometer (Panalytical, Inc.) acquired for atmospheric field research by the Scripps Institution of Oceanography (SIO). This instrument measures downwelling spectral irradiance at the Earth surface in the wavelength interval 350-2200 nm. From this data set one can retrieve properties of coastal Antarctic stratiform clouds including optical depth, thermodynamic phase, liquid water droplet effective radius, and ice cloud effective particle size. The instrument was installed at Arrival Heights, and measurements were made from 10 October 2012 to 4 February 2013. Spectral data recorded in one-minute averages, with some gaps for instrument maintenance and data backup, and some occasional down time when the site was inaccessible. Active satellite remote sensing data (CloudSat and CALIPSO) were used for validation and interpretation of the spectroradiometer retrievals (Scott and Lubin 2014). <br><br>There are two reasons why this measurement program remains timely. One straightforward reason involves the location of McMurdo Station, which is the US Antarctic Programs air transport entry point to the continent. Improvements in our knowledge of atmospheric physics in this region can eventually lead to improvements in numerical weather forecasting relevant to aviation. A second reason involves the recent advances in cloud microphysics for global climate model simulation. Mixed-phase cloud parameterizations have become very sophisticated, requiring validation with each new improvement. Traditional observational test cases - from the Arctic or mid-latitude storm systems - are often quite complex. A coastal Antarctic site at very high latitudes can provide more straightforward cases for testing current microphysical parameterizations. Over Ross Island aerosol and cloud nucleation sources are essentially all natural and oceanic, and cloud geometry is simple, while at the same time there is abundant supercooled cloud liquid water. <br><br>Ancillary meteorological data from the McMurdo Weather Office are also included here for help in interpreting the spectroradiometer data, including rawinsonde profiles, surface weather observations from the active ice runway, and automated FMQ19 surface weather measurements from Williams Field and Pegasus runway. For interpretation of clear sky or nearly cloud-free irradiance spectra (i.e., when a large fraction of the irradiance is directional from the Sun and not diffused by clouds), we recommend consulting Meywerk and Ramanathan (1999) for information about the Panalytical instruments cosine response. | ["POLYGON((166.31 -77.5203,166.38265 -77.5203,166.4553 -77.5203,166.52795 -77.5203,166.6006 -77.5203,166.67325 -77.5203,166.7459 -77.5203,166.81855 -77.5203,166.8912 -77.5203,166.96385 -77.5203,167.0365 -77.5203,167.0365 -77.52527,167.0365 -77.53024,167.0365 -77.53521,167.0365 -77.54018,167.0365 -77.54515,167.0365 -77.55012,167.0365 -77.55509,167.0365 -77.56006,167.0365 -77.56503,167.0365 -77.57,166.96385 -77.57,166.8912 -77.57,166.81855 -77.57,166.7459 -77.57,166.67325 -77.57,166.6006 -77.57,166.52795 -77.57,166.4553 -77.57,166.38265 -77.57,166.31 -77.57,166.31 -77.56503,166.31 -77.56006,166.31 -77.55509,166.31 -77.55012,166.31 -77.54515,166.31 -77.54018,166.31 -77.53521,166.31 -77.53024,166.31 -77.52527,166.31 -77.5203))"] | ["POINT(166.67325 -77.54515)"] | false | false |
Holocene Black Carbon in Antarctica
|
0839093 |
2017-06-19 | McConnell, Joseph; Arienzo, Monica |
Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core |
Black carbon (BC) and other biomass-burning (BB) aerosols are critical components of climate forcing but quantification, predictive climate modeling, and policy decisions have been hampered by limited understanding of the climate drivers of BB and by the lack of long-term records. Prior modeling studies suggested that increased Northern Hemisphere anthropogenic BC emissions increased recent temperatures and regional precipitation, including a northward shift in the Inter-Tropical Convergence Zone (ITCZ). Two Antarctic ice cores were analyzed for BC and the longest record shows that the highest BC deposition during the Holocene occurred ~8-6k years before present in a period of relatively high austral burning season and low growing season insolation. Atmospheric transport modeling suggests South America (SA) as the dominant source of modern Antarctic BC and, consistent with the ice-core record, climate model experiments using mid-Holocene and preindustrial insolation simulate comparable increases in carbon loss due to fires in SA during the mid-Holocene. SA climate proxies document a northward shifted ITCZ and weakened SA Summer Monsoon (SASM) during this period, with associated impacts on hydroclimate and burning. A second Antarctic ice core spanning the last 2.5k years documents similar linkages between hydroclimate and BC, with the lowest deposition during the Little Ice Age characterized by a southerly shifted ITCZ and strengthened SASM. These new results indicate that insolation-driven changes in SA hydroclimate and BB, likely linked to the position of the ITCZ, modulated Antarctic BC deposition during most of the Holocene and suggests connections and feedbacks between future BC emissions and hydroclimate. | ["POLYGON((161.41425 -77.73489,161.486884 -77.73489,161.559518 -77.73489,161.632152 -77.73489,161.704786 -77.73489,161.77742 -77.73489,161.850054 -77.73489,161.922688 -77.73489,161.995322 -77.73489,162.067956 -77.73489,162.14059 -77.73489,162.14059 -77.747868,162.14059 -77.760846,162.14059 -77.773824,162.14059 -77.786802,162.14059 -77.79978,162.14059 -77.812758,162.14059 -77.825736,162.14059 -77.838714,162.14059 -77.851692,162.14059 -77.86467,162.067956 -77.86467,161.995322 -77.86467,161.922688 -77.86467,161.850054 -77.86467,161.77742 -77.86467,161.704786 -77.86467,161.632152 -77.86467,161.559518 -77.86467,161.486884 -77.86467,161.41425 -77.86467,161.41425 -77.851692,161.41425 -77.838714,161.41425 -77.825736,161.41425 -77.812758,161.41425 -77.79978,161.41425 -77.786802,161.41425 -77.773824,161.41425 -77.760846,161.41425 -77.747868,161.41425 -77.73489))"] | ["POINT(161.77742 -77.79978)"] | false | false |
WD2014: Timescale for WAIS Divide Core 2006 A (WDC-06A)
|
0944197 |
2017-03-28 | Fudge, T. J. |
Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core |
The West Antarctic Ice Sheet Divide (WAIS Divide, WD) ice core is a newly drilled, high-accumulation deep ice core that provides Antarctic climate records of the past ~68 ka at unprecedented temporal resolution. The upper 2850 m (back to 31.2 ka BP) have been dated using annual-layer counting. Here we present a chronology for the deep part of the core (67.8-31.2 ka BP), which is based on stratigraphic matching to annual-layer-counted Greenland ice cores using globally well-mixed atmospheric methane. We calculate the WD gas age-ice age difference (Delta age) using a combination of firn densification modeling, ice-flow modeling, and a data set of d15N-N2, a proxy for past firn column thickness. The largest Delta age at WD occurs during the Last Glacial Maximum, and is 525 +/- 120 years. Internally consistent solutions can be found only when assuming little to no influence of impurity content on densification rates, contrary to a recently proposed hypothesis. We synchronize the WD chronology to a linearly scaled version of the layer-counted Greenland Ice Core Chronology (GICC05), which brings the age of Dansgaard-Oeschger (DO) events into agreement with the U/Th absolutely dated Hulu Cave speleothem record. The small Delta age at WD provides valuable opportunities to investigate the timing of atmospheric greenhouse gas variations relative to Antarctic climate, as well as the interhemispheric phasing of the \"bipolar seesaw\". We present the WD2014 chronology for the upper part (0-2850 m; 31.2 ka BP) of the West Antarctic Ice Sheet (WAIS) Divide (WD) ice core. The chronology is based on counting of annual layers observed in the chemical, dust and electrical conductivity records. These layers are caused by seasonal changes in the source, transport, and deposition of aerosols. The measurements were interpreted manually and with the aid of two automated methods. We validated the chronology by comparing to two high-accuracy, absolutely dated chronologies. For the Holocene, the cosmogenic isotope records of 10Be from WAIS Divide and 14C for IntCal13 demonstrated that WD2014 was consistently accurate to better than 0.5% of the age. For the glacial period, comparisons to the Hulu Cave chronology demonstrated that WD2014 had an accuracy of better than 1% of the age at three abrupt climate change events between 27 and 31ka. WD2014 has consistently younger ages than Greenland ice core chronologies during most of the Holocene. For the Younger Dryas-Preboreal transition (11.595 ka; 24 years younger) and the Bolling-Allerod Warming (14.621 ka; 7 years younger), WD2014 ages are within the combined uncertainties of the timescales. Given its high accuracy, WD2014 can become a reference chronology for the Southern Hemisphere, with synchronization to other chronologies feasible using high-quality proxies of volcanism, solar activity, atmospheric mineral dust, and atmospheric methane concentrations. | ["POINT(-112.1115 -79.481)"] | ["POINT(-112.1115 -79.481)"] | false | false |
WAIS Divide Ice-Core Aerosol Records from 1.5 to 577 m
|
0538427 |
2017-03-23 | McConnell, Joseph |
Trace and Ultra-Trace Chemistry Measurements of the WAIS Divide Ice Core |
A state-of-the-art continuous ice core analytical system was used to analyze samples from ~1.5 to ~577 m depth in the recently collected WAIS Divide deep ice core from West Antarctica. Interpretation of these records and publication of findings is ongoing. | ["POINT(-112.1115 -79.481)"] | ["POINT(-112.1115 -79.481)"] | false | false |
WAIS Divide Ice-Core Aerosol Records from Intermediate Core WDC05Q
|
0538427 |
2017-03-23 | McConnell, Joseph |
Trace and Ultra-Trace Chemistry Measurements of the WAIS Divide Ice Core |
A state-of-the-art continuous ice core analytical system was used to analyze samples from 0 to ~130 m depth of the recently collected intermediate core WDC05Q from West Antarctica. Interpretation of these records and publication of findings is ongoing. | ["POINT(-112.1115 -79.481)"] | ["POINT(-112.1115 -79.481)"] | false | false |
WAIS Divide Ice-Core Aerosol Records from Intermediate Core WDC05A
|
0538427 |
2017-03-23 | McConnell, Joseph |
Trace and Ultra-Trace Chemistry Measurements of the WAIS Divide Ice Core |
A state-of-the-art continuous ice core analytical system was used to analyze samples from the firn portion (0 to ~70 m depth) of the recently collected intermediate core WDC05A from West Antarctica. Interpretation of these records and publication of findings is ongoing. | ["POINT(-112.1115 -79.481)"] | ["POINT(-112.1115 -79.481)"] | false | false |
WAIS Divide Ice-Core Aerosol Records from 1300 to 3404 m
|
1142166 |
2017-03-22 | McConnell, Joseph |
Collaborative Research: Investigating Upper Pleistocene Rapid Climate Change using Continuous, Ultra-High-Resolution Aerosol and Gas Measurements in the WAIS Divide Ice Core |
A state-of-the-art continuous ice core analytical system was used to analyze ~3 cm by ~3 cm longitudinal samples from ~1300 to ~3404 m depth in the recently collected WAIS Divide deep ice core from West Antarctica. Interpretation of these records and publication of findings is ongoing. | ["POINT(-112.1115 -79.481)"] | ["POINT(-112.1115 -79.481)"] | false | false |
Bromide in Snow in the Sea Ice Zone
|
1043145 |
2016-01-01 | Obbard, Rachel |
Bromide in Snow in the Sea Ice Zone |
A range of chemical and microphysical pathways in polar latitudes, including spring time (tropospheric) ozone depletion, oxidative pathways for mercury, and cloud condensation nuclei (CCN) production leading to changes in the cloud cover and attendant surface energy budgets, have been invoked as being dependent upon the emission of halogen gases formed in sea-ice. The prospects for climate warming induced reductions in sea ice extent causing alteration of these incompletely known surface-atmospheric feedbacks and interactions requires confirmation of mechanistic details in both laboratory studies and field campaigns. One such mechanistic question is how bromine (BrO and Br) enriched snow migrates or is formed through processes in sea-ice, prior to its subsequent mobilization as an aerosol fraction into the atmosphere by strong winds. Once aloft, it may react with ozone and other atmospheric species. Dartmouth researchers will collect snow from the surface of sea ice, from freely blowing snow and in sea-ice cores from Cape Byrd, Ross Sea. A range of spectroscopic, microanalytic and and microstructural approaches will be subsequently used to determine the Br distribution gradients through sea-ice, in order to shed light on how sea-ice first forms and then releases bromine species into the polar atmospheric boundary layer. | ["POLYGON((164.1005 -77.1188,164.36443 -77.1188,164.62836 -77.1188,164.89229 -77.1188,165.15622 -77.1188,165.42015 -77.1188,165.68408 -77.1188,165.94801 -77.1188,166.21194 -77.1188,166.47587 -77.1188,166.7398 -77.1188,166.7398 -77.19337,166.7398 -77.26794,166.7398 -77.34251,166.7398 -77.41708,166.7398 -77.49165,166.7398 -77.56622,166.7398 -77.64079,166.7398 -77.71536,166.7398 -77.78993,166.7398 -77.8645,166.47587 -77.8645,166.21194 -77.8645,165.94801 -77.8645,165.68408 -77.8645,165.42015 -77.8645,165.15622 -77.8645,164.89229 -77.8645,164.62836 -77.8645,164.36443 -77.8645,164.1005 -77.8645,164.1005 -77.78993,164.1005 -77.71536,164.1005 -77.64079,164.1005 -77.56622,164.1005 -77.49165,164.1005 -77.41708,164.1005 -77.34251,164.1005 -77.26794,164.1005 -77.19337,164.1005 -77.1188))"] | ["POINT(165.42015 -77.49165)"] | false | false |
Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica
|
0944659 |
2015-01-01 | Kiene, Ronald |
Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica |
Spectacular blooms of Phaeocystis antarctica in the Ross Sea, Antarctica are the source of some of the world's highest concentrations of dimethylsulfoniopropionate (DMSP) and its volatile degradation product, dimethylsulfide (DMS). The flux of DMS from the oceans to the atmosphere in this region and its subsequent gas phase oxidation generates aerosols that have a strong influence on cloud properties and possibly climate. In the oceans, DMS and DMSP are quantitatively significant components of the carbon, sulfur, and energy flows in marine food webs, especially in the Ross Sea. Despite its central role in carbon and sulfur biogeochemistry in the Ross Sea, surprisingly little is known about the physiological functions of DMSP in P. Antarctica. The research will isolate and characterize DMSP lyases from P. antarctica, with the goal of obtaining amino acid and gene sequence information on these important enzymes. The physiological studies will focus on the effects of varying intensities of photosynthetically active radiation, with and without ultraviolet radiation as these are factors that we have found to be important controls on DMSP and DMS dynamics. The research also will examine the effects of prolonged darkness on the dynamics of DMSP and related compounds in P. antarctica, as survival of this species during the dark Antarctic winter and at sub-euphotic depths appears to be an important part of the Phaeocystis? ecology. A unique aspect of this work is the focus on measurements of intracellular MSA, which if detected, would provide strong evidence for in vivo radical scavenging functions for methyl sulfur compounds. The study will advance understanding of what controls DMSP cycling and ultimately DMS emissions from the Ross Sea and also provide information on what makes P. antarctica so successful in this extreme environment. The research will directly benefit and build on several interrelated ocean-atmosphere programs including the International Surface Ocean Lower Atmosphere Study (SOLAS) program. The PIs will participate in several activities involving K-12 education, High School teacher training, public education and podcasting through the auspices of the Dauphin Island Sea Lab Discovery Hall program and SUNY ESF. Two graduate students will be employed full time, and six undergraduates (2 each summer) will be trained as part of this project. | ["POLYGON((-160 -68,-159 -68,-158 -68,-157 -68,-156 -68,-155 -68,-154 -68,-153 -68,-152 -68,-151 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-151 -78,-152 -78,-153 -78,-154 -78,-155 -78,-156 -78,-157 -78,-158 -78,-159 -78,-160 -78,-160 -77,-160 -76,-160 -75,-160 -74,-160 -73,-160 -72,-160 -71,-160 -70,-160 -69,-160 -68))"] | ["POINT(-155 -73)"] | false | false |
Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica
|
1343649 |
2015-01-01 | Levy, Joseph |
Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica |
The PIs propose to quantify the hillslope water, solute, and carbon budgets for Taylor Valley in the McMurdo Dry Valleys, using water tracks to investigate near-surface geological processes and challenge the paradigm that shallow groundwater is minimal or non-exixtant. Water tracks are linear zones of high soil moisture that route shallow groundwater downslope in permafrost dominated soils. Four hypotheses will be tested: 1) water tracks are important pathways for water and solute transport; 2) water tracks transport more dissolved silica than streams in Taylor Valley indicating they are the primary site of chemical weathering for cold desert soils and bedrock; 3) water tracks that drain highland terrains are dominated by humidity-separated brines while water tracks that drain lowland terrains are dominated by marine aerosols; 4) water tracks are the sites of the highest terrestrial soil carbon concentrations and the strongest CO2 fluxes in Taylor Valley and their carbon content increases with soil age, while carbon flux decreases with age. To test these hypotheses the PIs will carry out a suite of field measurements supported by modeling and remote sensing. They will install shallow permafrost wells in water tracks that span the range of geological, climatological, and topographic conditions in Taylor Valley. Multifrequency electromagnetic induction sounding of the upper ~1 m of the permafrost will create the first comprehensive map of soil moisture in Taylor Valley, and will permit direct quantification of water track discharge across the valley. The carbon contents of water track soils will be measured and linked to global carbon dynamics. Non-science majors at Oregon State University will be integrated into the proposed research through a new Global Environmental Change course focusing on the scientific method in Antarctica. Three undergraduate students, members of underrepresented minorities, will be entrained in the research, will contribute to all aspects of field and laboratory science, and will present results at national meetings. | ["POLYGON((162.852 -77.6111,162.9893 -77.6111,163.1266 -77.6111,163.2639 -77.6111,163.4012 -77.6111,163.5385 -77.6111,163.6758 -77.6111,163.8131 -77.6111,163.9504 -77.6111,164.0877 -77.6111,164.225 -77.6111,164.225 -77.65331,164.225 -77.69552,164.225 -77.73773,164.225 -77.77994,164.225 -77.82215,164.225 -77.86436,164.225 -77.90657,164.225 -77.94878,164.225 -77.99099,164.225 -78.0332,164.0877 -78.0332,163.9504 -78.0332,163.8131 -78.0332,163.6758 -78.0332,163.5385 -78.0332,163.4012 -78.0332,163.2639 -78.0332,163.1266 -78.0332,162.9893 -78.0332,162.852 -78.0332,162.852 -77.99099,162.852 -77.94878,162.852 -77.90657,162.852 -77.86436,162.852 -77.82215,162.852 -77.77994,162.852 -77.73773,162.852 -77.69552,162.852 -77.65331,162.852 -77.6111))"] | ["POINT(163.5385 -77.82215)"] | false | false |
Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica
|
0944686 |
2014-01-01 | Kieber, David John |
Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica |
Spectacular blooms of Phaeocystis antarctica in the Ross Sea, Antarctica are the source of some of the world's highest concentrations of dimethylsulfoniopropionate (DMSP) and its volatile degradation product, dimethylsulfide (DMS). The flux of DMS from the oceans to the atmosphere in this region and its subsequent gas phase oxidation generates aerosols that have a strong influence on cloud properties and possibly climate. In the oceans, DMS and DMSP are quantitatively significant components of the carbon, sulfur, and energy flows in marine food webs, especially in the Ross Sea. Despite its central role in carbon and sulfur biogeochemistry in the Ross Sea, surprisingly little is known about the physiological functions of DMSP in P. antarctica. The research will isolate and characterize DMSP lyases from P. antarctica, with the goal of obtaining amino acid and gene sequence information on these important enzymes. The physiological studies will focus on the effects of varying intensities of photosynthetically active radiation, with and without ultraviolet radiation as these are factors that we have found to be important controls on DMSP and DMS dynamics. The research also will examine the effects of prolonged darkness on the dynamics of DMSP and related compounds in P. antarctica, as survival of this species during the dark Antarctic winter and at sub-euphotic depths appears to be an important part of the Phaeocystis' ecology. A unique aspect of this work is the focus on measurements of intracellular MSA, which if detected, would provide strong evidence for in vivo radical scavenging functions for methyl sulfur compounds. The study will advance understanding of what controls DMSP cycling and ultimately DMS emissions from the Ross Sea and also provide information on what makes P. antarctica so successful in this extreme environment. The research will directly benefit and build on several interrelated ocean-atmosphere programs including the International Surface Ocean Lower Atmosphere Study (SOLAS) program. The PIs will participate in several activities involving K-12 education, High School teacher training, public education and podcasting through the auspices of the Dauphin Island Sea Lab Discovery Hall program and SUNY ESF. Two graduate students will be employed full time, and six undergraduates (2 each summer) will be trained as part of this project. | ["POLYGON((-160 -68,-159 -68,-158 -68,-157 -68,-156 -68,-155 -68,-154 -68,-153 -68,-152 -68,-151 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-151 -78,-152 -78,-153 -78,-154 -78,-155 -78,-156 -78,-157 -78,-158 -78,-159 -78,-160 -78,-160 -77,-160 -76,-160 -75,-160 -74,-160 -73,-160 -72,-160 -71,-160 -70,-160 -69,-160 -68))"] | ["POINT(-155 -73)"] | false | false |
WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning
|
0739780 |
2011-01-01 | Taylor, Kendrick C. |
WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning |
This award supports a project to develop a 2,000-year high-temporal resolution record of biomass burning from the analysis of black carbon in the WAIS Divide bedrock ice core. Pilot data for the WAIS WD05A core demonstrates that we now have the ability to reconstruct this record with minimal impact on the amount of ice available for other projects. The intellectual merit of this project is that black carbon (BC) aerosols result solely from combustion and play a critical but poorly quantified role in global climate forcing and the carbon cycle. When incorporated into snow and ice, BC increases absorption of solar radiation making seasonal snow packs, mountain glaciers, polar ice sheets, and sea ice much more vulnerable to climate warming. BC emissions in the Southern Hemisphere are dominated by biomass burning in the tropical regions of Southern Africa, South America and South Asia. Biomass burning, which results from both climate and human activities, alters the atmospheric composition of greenhouse gases, aerosols and perturbs key biogeochemical cycles. A long-term record of biomass burning is needed to aid in the interpretation of ice core gas composition and will provide important information regarding human impacts on the environment and climate before instrumental records. | ["POINT(-112.117 -79.666)"] | ["POINT(-112.117 -79.666)"] | false | false |
Atmospheric Nitrate Isotopic Analysis at Amundsen-Scott South Pole Station, A Twenty-Five Year Record
|
0125761 |
2006-11-01 | Thiemens, Mark H.; Savarino, Joel |
South Pole Atmospheric Nitrate Isotopic Analysis (SPANIA) |
This data set contains snow pit measurements of oxygen isotopes, <sup>17</sup>O and <sup>18</sup>O, in nitrate and ion concentrations, and surface measurements of oxygen isotopes in nitrate and in nitrate aerosols from the Amundsen-Scott South Pole Station, Antarctica. The 6-meter snow pit provides investigators with a 25-year record of nitrate isotope variations and ion concentrations for a period spanning from 1979 to 2004. Monthly surface snow and weekly aerosol collections yield a year-long record of nitrate isotopic composition starting 01 December 2003 and ending 31 December 2004. Little is known about the past denitrification of the stratosphere in high latitude regions. Such knowledge is important to understanding the chemical state of the ancient atmospheres and evaluating the present climate models. With this research, investigators aim to understand the denitrification of the Antarctic stratosphere and quantify the sources of nitrate aerosols over time. Data are in Microsoft Excel format and are available via FTP. | ["POINT(139.2728 -89.9975)"] | ["POINT(139.2728 -89.9975)"] | false | false |
Blue Ice Tephra II - Brimstone Peak
|
9527373 |
2003-02-18 | Dunbar, Nelia |
Collaborative Research: Volcanic Record in Antarctic Ice: Implications for Climatic and Eruptive History and Ice Sheet Dynamics of the South Polar Region |
This data set is the result of a study of volcanic ash and rock fragment (tephra) layers in exposed blue ice areas on Brimstone Peak (75.888S 158.55E) in East Antarctica. Tephra samples were collected between 15 November 1996 and 15 January 1997. The Antarctic ice sheets preserve a record of the volcanic ash layers and chemical aerosol signatures of local and distant volcanic eruptions. Correlation of individual tephra layers, or sets of layers, in blue ice areas will allow a better understanding of the geometry of ice flow in these areas. Tephra layers in deep ice cores can also provide unique time-stratigraphic markers in cores that are difficult to date. Data include the following information for each sample site: a general description, electron microprobe analysis, GPS location, neutron activation analysis, and a visual description of the petrography.Data are provided as Excel 97 data files, JPG map files, and GIF-formatted BSE images. Data are available via ftp. | ["POLYGON((158.55 -75.86,158.562 -75.86,158.574 -75.86,158.586 -75.86,158.598 -75.86,158.61 -75.86,158.622 -75.86,158.634 -75.86,158.646 -75.86,158.658 -75.86,158.67 -75.86,158.67 -75.864,158.67 -75.868,158.67 -75.872,158.67 -75.876,158.67 -75.88,158.67 -75.884,158.67 -75.888,158.67 -75.892,158.67 -75.896,158.67 -75.9,158.658 -75.9,158.646 -75.9,158.634 -75.9,158.622 -75.9,158.61 -75.9,158.598 -75.9,158.586 -75.9,158.574 -75.9,158.562 -75.9,158.55 -75.9,158.55 -75.896,158.55 -75.892,158.55 -75.888,158.55 -75.884,158.55 -75.88,158.55 -75.876,158.55 -75.872,158.55 -75.868,158.55 -75.864,158.55 -75.86))"] | ["POINT(158.61 -75.88)"] | false | false |
Blue Ice Tephra II - Mt. DeWitt
|
9527373 |
2003-02-01 | Dunbar, Nelia |
Collaborative Research: Volcanic Record in Antarctic Ice: Implications for Climatic and Eruptive History and Ice Sheet Dynamics of the South Polar Region |
This data set is the result of a study of volcanic ash and rock fragment (tephra) layers in exposed blue ice areas on Mt. DeWitt, Antarctica (77.12 deg S, 159.51 deg E). Tephra samples were collected between 15 November 1996 and 15 January 1997. Data include the following information for each sample site: a general description, electron microprobe analysis, GPS location, neutron activation analysis, and a visual description of the petrography. Data are provided as an Excel 97 data file, (this file is also divided into various text files) and TIF images. Data are available via ftp. Antarctic ice sheets preserve a record of the volcanic ash layers and chemical aerosol signatures of local and distant volcanic eruptions. Correlation of individual tephra layers, or sets of layers, in blue ice areas will allow a better understanding of the geometry of ice flow in these areas. Tephra layers in deep ice cores can also provide unique time-stratigraphic markers in cores that are difficult to date. | ["POINT(-159.51 -77.12)"] | ["POINT(-159.51 -77.12)"] | false | false |