{"dp_type": "Project", "free_text": "ANIMALS/VERTEBRATES"}
[{"awards": "1947094 Sidor, Christian", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 30 Jun 2021 00:00:00 GMT", "description": "The research supported by this grant centers on the evolution of fossil amphibians (temnospondyls) from the Early Triassic, a crucial time interval in the evolution of life on Earth following the end-Permian mass extinction, specifically based on fossil material from Antarctica, a high-latitude paleoenvironment that may have served as a refuge for tetrapods across the extinction event. Previous records of temnospondyls, mostly reported several decades ago, are highly fragmentary, and their original interpretations are considered dubious or demonstrably erroneous by contemporary workers. The Antarctic record of temnospondyls is of great import in understanding the biotic recovery in terrestrial environments for several reasons. Firstly, temnospondyls, like amphibians today, were highly speciose in the Triassic but were also some of the most susceptible to environmental perturbations and instability. Therefore, temnospondyls provide key insights into the paleoenvironmental conditions, either in place of or alongside other lines of data. Secondly, the record of temnospondyls from the Early Triassic is quite rich, but it is also restricted to a few densely sampled regions, such as the Karoo Basin of South Africa. In order to ascertain whether observed patterns such as an unusual abundance of small-bodied taxa or a lack of faunal overlap between different depositional basins (endemism) are real or merely artifactual, study of additional, less sampled regions takes on great import. Recent collection of substantial new temnospondyl material from several horizons in the Triassic exposure of Antarctica provides the requisite data to begin to address these questions. Finally, correlating the Triassic rocks of Antarctica with those of adjacent regions is largely reliant on comparisons of faunal assemblages. In particular, the middle Fremouw Formation, one of the horizons from which new temnospondyl material was collected, remains of uncertain relation and age due to the paucity of described material. ", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "AMD/US; USAP-DC; Permian extinction; FIELD INVESTIGATION; AMD; MACROFOSSILS; USA/NSF; Triassic ; ANIMALS/VERTEBRATES; temnospondyls ; Shackleton Glacier", "locations": "Shackleton Glacier", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN", "persons": "Sidor, Christian", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": null, "title": "A non-amniote perspective on the recovery from the end-Permian extinction at high latitudes: paleobiology of Early Triassic temnospondyls from Antarctica", "uid": "p0010217", "west": null}, {"awards": "1341645 Makovicky, Peter; 1341475 Smith, Nathan; 1341304 Sidor, Christian; 1341376 Tabor, Neil; 2001033 Makovicky, Peter", "bounds_geometry": "POLYGON((-180 -84,-178 -84,-176 -84,-174 -84,-172 -84,-170 -84,-168 -84,-166 -84,-164 -84,-162 -84,-160 -84,-160 -84.3,-160 -84.6,-160 -84.9,-160 -85.2,-160 -85.5,-160 -85.8,-160 -86.1,-160 -86.4,-160 -86.7,-160 -87,-162 -87,-164 -87,-166 -87,-168 -87,-170 -87,-172 -87,-174 -87,-176 -87,-178 -87,180 -87,178.5 -87,177 -87,175.5 -87,174 -87,172.5 -87,171 -87,169.5 -87,168 -87,166.5 -87,165 -87,165 -86.7,165 -86.4,165 -86.1,165 -85.8,165 -85.5,165 -85.2,165 -84.9,165 -84.6,165 -84.3,165 -84,166.5 -84,168 -84,169.5 -84,171 -84,172.5 -84,174 -84,175.5 -84,177 -84,178.5 -84,-180 -84))", "dataset_titles": "Lower Triassic Antarctic vertebrate fossils at Field Museum, Chicago, IL", "datasets": [{"dataset_uid": "601511", "doi": "10.15784/601511", "keywords": "Allan Hills; Antarctica; Cryosphere; Fremouw Formation; Lystrosaurus; Permo-Triassic Extinction; Prolacerta; Sample Location; Thrinaxofon; Triassic", "people": "Makovicky, Peter", "repository": "USAP-DC", "science_program": null, "title": "Lower Triassic Antarctic vertebrate fossils at Field Museum, Chicago, IL", "url": "https://www.usap-dc.org/view/dataset/601511"}], "date_created": "Tue, 29 Jun 2021 00:00:00 GMT", "description": "This project will advance our understanding of Antarctic life during the Permian and Triassic. We will apply an interdisciplinary approach to address relationships between environmental change, faunal composition, and biogeographic patterns in the context of the high-latitude strata preserved in the Buckley and Fremouw formations in the Shackleton Glacier region. We will use multiple types of data to assess paleoenvironment, including: 1) paleosol morphology; 2) paleosol geochemistry; 3) pedogenic organic matter; and 4) fossil wood chronology and stable isotopes. The Fremouw Formation of Antarctica preserves the highest paleolatitude tetrapod fauna of the entire Triassic (~70\u00b0 S) and thus has the potential to shed important light on the evolution of polar life during the early Mesozoic. We will collect new fossils from known localities to understand the relationship between Antarctic and southern African tetrapod faunas. Furthermore, we will refine the stratigraphic, sedimentological, and geochronological framework for these Mesozoic faunas, which will include using U/Pb detrital zircon dating to provide the first dates for these vertebrate assemblages. In the lab, we will examine the biology of Triassic vertebrates from Antarctica by comparing their bone and tusk histology to conspecifics from lower paleolatitudes. In addition, we will test Bergmann\u2019s Rule with six species (viz. Lystrosaurus curvatus, L. maccaigi, L. murrayi, Prolacerta broomi, Procolophon trigoniceps, and Thrinaxodon liorhinus). The Early Triassic presents a unique opportunity to perform such investigations as there is no other geologic interval in which species occurring in Antarctica can be compared to conspecifics across a range of paleolatitudes.", "east": -160.0, "geometry": "POINT(-177.5 -85.5)", "instruments": null, "is_usap_dc": true, "keywords": "REPTILES; FIELD INVESTIGATION; USAP-DC; TERRESTRIAL ECOSYSTEMS; MACROFOSSILS; Shackleton Glacier; fossils; USA/NSF; LAND RECORDS; AMD/US; ANIMALS/VERTEBRATES; PALEOCLIMATE RECONSTRUCTIONS; AMD; Triassic", "locations": "Shackleton Glacier", "north": -84.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Sidor, Christian; Smith, Nathan; Makovicky, Peter; Tabor, Neil", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.0, "title": "Collaborative Research: Understanding the evolution of high-latitude Permo-Triassic paleoenvironments and their vertebrate communities", "uid": "p0010213", "west": 165.0}, {"awards": "1644196 Cziko, Paul", "bounds_geometry": "POLYGON((163.47 -77.14,163.803 -77.14,164.136 -77.14,164.469 -77.14,164.802 -77.14,165.135 -77.14,165.468 -77.14,165.801 -77.14,166.134 -77.14,166.467 -77.14,166.8 -77.14,166.8 -77.216,166.8 -77.292,166.8 -77.368,166.8 -77.444,166.8 -77.52,166.8 -77.596,166.8 -77.672,166.8 -77.748,166.8 -77.824,166.8 -77.9,166.467 -77.9,166.134 -77.9,165.801 -77.9,165.468 -77.9,165.135 -77.9,164.802 -77.9,164.469 -77.9,164.136 -77.9,163.803 -77.9,163.47 -77.9,163.47 -77.824,163.47 -77.748,163.47 -77.672,163.47 -77.596,163.47 -77.52,163.47 -77.444,163.47 -77.368,163.47 -77.292,163.47 -77.216,163.47 -77.14))", "dataset_titles": "High-resolution nearshore benthic seawater temperature from around McMurdo Sound, Antarctica (2017-2019); Long-Term broadband underwater acoustic recordings from McMurdo Sound, Antarctica (2017-2019); Long-term underwater images from around a single mooring site in McMurdo Sound, Antarctica (2017-2019)", "datasets": [{"dataset_uid": "601416", "doi": "10.15784/601416", "keywords": "Antarctica; Bioacoustics; Biology; Cryosphere; Hydroacoustics; Killer Whales; Leptonychotes Weddellii; McMurdo Oceanographic Observatory (2017-2019); McMurdo Sound; Oceans; Orcinus Orca; Sea Ice; Weddell Seals; Whales", "people": "Cziko, Paul", "repository": "USAP-DC", "science_program": null, "title": "Long-Term broadband underwater acoustic recordings from McMurdo Sound, Antarctica (2017-2019)", "url": "https://www.usap-dc.org/view/dataset/601416"}, {"dataset_uid": "601417", "doi": "10.15784/601417", "keywords": "Antarctica; Benthic Ecology; Benthic Invertebrates; Biology; Biosphere; Cryosphere; McMurdo Oceanographic Observatory (2017-2019); McMurdo Sound; Notothenioid Fishes; Notothenioids; Photo/Video; Rocky Reef Community; Soft-Bottom Community; Time Laps Images", "people": "Cziko, Paul", "repository": "USAP-DC", "science_program": null, "title": "Long-term underwater images from around a single mooring site in McMurdo Sound, Antarctica (2017-2019)", "url": "https://www.usap-dc.org/view/dataset/601417"}, {"dataset_uid": "601420", "doi": "10.15784/601420", "keywords": "Antarctica; Benthic Ecology; Cryosphere; CTD; Depth; McMurdo Sound; Oceanography; Oceans; Physical Oceanography; Pressure; Salinity; seawater measurements; Seawater Temperature; Supercooling; Tides", "people": "Cziko, Paul", "repository": "USAP-DC", "science_program": null, "title": "High-resolution nearshore benthic seawater temperature from around McMurdo Sound, Antarctica (2017-2019)", "url": "https://www.usap-dc.org/view/dataset/601420"}], "date_created": "Tue, 15 Dec 2020 00:00:00 GMT", "description": "Notothenioid fishes live in the world\u0027s coldest marine waters surrounding Antarctica and have evolved strategies to avoid freezing. Past studies have shown that most Antarctic notothenioids produce special antifreeze proteins that prevent the growth of ice crystals that enter the body. While these proteins help prevent individuals from being killed by growing ice crystals, it is unclear how these fish avoid the accumulation of these small ice crystals inside their tissues over time. This project will observe how ice crystal accumulation relates to the harshness of a fish\u0027s environment within different habitats of McMurdo Sound, Antarctica. The researchers collected fishes and ocean observations at different field sites that cover a range of habitat severity in terms of temperature and iciness. The researchers installed an underwater ocean observatory near McMurdo Station (The McMurdo Oceanographic Observatory, MOO; Nov. 2017 - Nov. 2019) which included a conductivity-temperature-depth sensor (CTD), a high-definition video/still image camera and a research quality hydrophone. The observatory produced oceanographic data, time-lapse images of the immediate environs, and a high-resolution hydroacoustic dataset from the entire deployment. Seawater temperature data loggers were also deployed at other shallow, nearshore sites around McMurdo Sound to provide context and assessment of environmental conditions experienced by the fishes. ", "east": 166.8, "geometry": "POINT(165.135 -77.52)", "instruments": null, "is_usap_dc": true, "keywords": "Benthic Ecology; ANIMALS/VERTEBRATES; USA/NSF; OCEAN TEMPERATURE; USAP-DC; MAMMALS; AMD/US; McMurdo Sound; FISH; FIELD INVESTIGATION; AMD", "locations": "McMurdo Sound", "north": -77.14, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Cziko, Paul; DeVries, Arthur", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes", "uid": "p0010147", "west": 163.47}, {"awards": "1743035 Saba, Grace", "bounds_geometry": "POLYGON((164 -72.2,165 -72.2,166 -72.2,167 -72.2,168 -72.2,169 -72.2,170 -72.2,171 -72.2,172 -72.2,173 -72.2,174 -72.2,174 -72.74,174 -73.28,174 -73.82,174 -74.36,174 -74.9,174 -75.44,174 -75.98,174 -76.52,174 -77.06,174 -77.6,173 -77.6,172 -77.6,171 -77.6,170 -77.6,169 -77.6,168 -77.6,167 -77.6,166 -77.6,165 -77.6,164 -77.6,164 -77.06,164 -76.52,164 -75.98,164 -75.44,164 -74.9,164 -74.36,164 -73.82,164 -73.28,164 -72.74,164 -72.2))", "dataset_titles": "Grazing rates of Euphausia crystallorophias from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, Jan.-Feb. 2018; NBP1801 Expedition data; ru32-20180109T0531; Zooplankton abundance from Isaacs-Kid Midwater Trawl (IKMT) hauls from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, Jan.-Feb. 2018; Zooplankton abundance from ring net tows from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, January 2018", "datasets": [{"dataset_uid": "200137", "doi": "10.1575/1912/bco-dmo.789299.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Zooplankton abundance from ring net tows from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, January 2018", "url": "https://www.bco-dmo.org/dataset/789299"}, {"dataset_uid": "200139", "doi": "10.1575/1912/bco-dmo.792478.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Grazing rates of Euphausia crystallorophias from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, Jan.-Feb. 2018", "url": "https://www.bco-dmo.org/dataset/792478"}, {"dataset_uid": "200140", "doi": "", "keywords": null, "people": null, "repository": "ERDDAP", "science_program": null, "title": "ru32-20180109T0531", "url": "http://slocum-data.marine.rutgers.edu/erddap/tabledap/ru32-20180109T0531-profile-sci-delayed.html"}, {"dataset_uid": "200138", "doi": "10.1575/1912/bco-dmo.792385.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Zooplankton abundance from Isaacs-Kid Midwater Trawl (IKMT) hauls from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, Jan.-Feb. 2018", "url": "https://www.bco-dmo.org/dataset/792385"}, {"dataset_uid": "200056", "doi": "10.7284/907753", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1801 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1801"}], "date_created": "Thu, 27 Feb 2020 00:00:00 GMT", "description": "Terra Nova Bay (western Ross Sea, Antarctica) supports dense populations of several key species in the Ross Sea food web, including copepods, crystal krill (Euphausia crystallorophias), Antarctic silverfish (Pleuragramma antarcticum), and colonies of Ad\u00e9lie and Emperor penguins that feed primarily on crystal krill and silverfish. Absent from our understanding of the Ross Sea food web is zooplankton and silverfish mesoscale distribution, spatial structure of age/maturity classes, and their interactions with physical drivers and each other. The quantitative linkages between primary producers and the higher trophic levels, specifically, the processes responsible for the regulation of abundance and rates of middle trophic levels dominated by copepods and crystal krill (Euphausia crystallorophias), is virtually unknown. Given that the next century will see extensive changes in the Ross Sea\u2019s ice distributions and oceanography as a result of climate change, understanding the basic controls of zooplankton and silverfish abundance and distribution is essential. \r\nDuring a January \u2013 March 2018 cruise in the western Ross Sea, we deployed a glider equipped with an echo sounder (Acoustic Zooplankton Fish Profiler) that simultaneously measured depth, temperature, conductivity, chlorophyll fluorescence, and dissolved oxygen. Additionally, net tows, mid-water trawls, and crystal krill grazing experiments were conducted. Our study provided the first glider-based acoustic assessment of simultaneous distributions of multiple trophic levels in the Ross Sea, from which predator-prey interactions and the relationships between organisms and physics drivers (sea ice, circulation features) were investigated. We illustrated high variability in ocean physics, phytoplankton biomass, and crystal krill biomass and aggregation over time and between locations within Terra Nova Bay. Biomass of krill was highest in locations characterized by deeper mixed layers and highest integrated chlorophyll concentrations. Krill aggregations were consistently located at depth well below the mixed layer and chlorophyll maximum. Experiments investigating krill grazing, in combination with krill depth distributions relative to chlorophyll biomass, illuminate high krill grazing rates could be attributed to the occupation of a unique niche whereby they are opportunistically feeding on sinking high concentrations of detritus derived from surface blooms. The information on the abundance, distribution, and interactions of key species in multiple trophic levels resulting from this project provide a conceptual background to understand how this ecosystem might respond to future conditions under climate change.\r\nOur project tested the capability of a multi-frequency echo sounder on a glider for the first time. The production of consistent, vertically-resolved, high resolution glider-based acoustic measurements will pave the way for cost-effective, automated examination of entire food webs and ecosystems in regions all over the global ocean. A wide range of users including academic and government scientists, ecosystem-based fisheries managers, and monitoring programs including those conducted by OOI, IOOS, and NOAA will benefit from this project. This project also provided the opportunity to focus on broadening participation in research and articulating the societal benefits through education and innovative outreach programs. A data set from this project is being included in the new NSF-funded Polar CAP initiative, that will be used by a diverse and young audience to increase understanding of the polar system and the ability to reason with data. Finally, this project provided a unique field opportunity and excellent hand-on training for a post-doctoral researcher, a graduate student, and two undergraduate students.", "east": 174.0, "geometry": "POINT(169 -74.9)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "AQUATIC SCIENCES; PELAGIC; PLANKTON; NOT APPLICABLE; FISH; Terra Nova Bay; USAP-DC; ANIMALS/VERTEBRATES", "locations": "Terra Nova Bay", "north": -72.2, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Saba, Grace", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "BCO-DMO", "repositories": "BCO-DMO; Other", "science_programs": null, "south": -77.6, "title": "Using Bio-acoustics on an Autonomous Surveying Platform for the Examination of Phytoplankton-zooplankton and Fish Interactions in the Western Ross Sea", "uid": "p0010086", "west": 164.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A non-amniote perspective on the recovery from the end-Permian extinction at high latitudes: paleobiology of Early Triassic temnospondyls from Antarctica
|
1947094 |
2021-06-30 | Sidor, Christian | No dataset link provided | The research supported by this grant centers on the evolution of fossil amphibians (temnospondyls) from the Early Triassic, a crucial time interval in the evolution of life on Earth following the end-Permian mass extinction, specifically based on fossil material from Antarctica, a high-latitude paleoenvironment that may have served as a refuge for tetrapods across the extinction event. Previous records of temnospondyls, mostly reported several decades ago, are highly fragmentary, and their original interpretations are considered dubious or demonstrably erroneous by contemporary workers. The Antarctic record of temnospondyls is of great import in understanding the biotic recovery in terrestrial environments for several reasons. Firstly, temnospondyls, like amphibians today, were highly speciose in the Triassic but were also some of the most susceptible to environmental perturbations and instability. Therefore, temnospondyls provide key insights into the paleoenvironmental conditions, either in place of or alongside other lines of data. Secondly, the record of temnospondyls from the Early Triassic is quite rich, but it is also restricted to a few densely sampled regions, such as the Karoo Basin of South Africa. In order to ascertain whether observed patterns such as an unusual abundance of small-bodied taxa or a lack of faunal overlap between different depositional basins (endemism) are real or merely artifactual, study of additional, less sampled regions takes on great import. Recent collection of substantial new temnospondyl material from several horizons in the Triassic exposure of Antarctica provides the requisite data to begin to address these questions. Finally, correlating the Triassic rocks of Antarctica with those of adjacent regions is largely reliant on comparisons of faunal assemblages. In particular, the middle Fremouw Formation, one of the horizons from which new temnospondyl material was collected, remains of uncertain relation and age due to the paucity of described material. | None | None | false | false | |||
Collaborative Research: Understanding the evolution of high-latitude Permo-Triassic paleoenvironments and their vertebrate communities
|
1341645 1341475 1341304 1341376 2001033 |
2021-06-29 | Sidor, Christian; Smith, Nathan; Makovicky, Peter; Tabor, Neil |
|
This project will advance our understanding of Antarctic life during the Permian and Triassic. We will apply an interdisciplinary approach to address relationships between environmental change, faunal composition, and biogeographic patterns in the context of the high-latitude strata preserved in the Buckley and Fremouw formations in the Shackleton Glacier region. We will use multiple types of data to assess paleoenvironment, including: 1) paleosol morphology; 2) paleosol geochemistry; 3) pedogenic organic matter; and 4) fossil wood chronology and stable isotopes. The Fremouw Formation of Antarctica preserves the highest paleolatitude tetrapod fauna of the entire Triassic (~70° S) and thus has the potential to shed important light on the evolution of polar life during the early Mesozoic. We will collect new fossils from known localities to understand the relationship between Antarctic and southern African tetrapod faunas. Furthermore, we will refine the stratigraphic, sedimentological, and geochronological framework for these Mesozoic faunas, which will include using U/Pb detrital zircon dating to provide the first dates for these vertebrate assemblages. In the lab, we will examine the biology of Triassic vertebrates from Antarctica by comparing their bone and tusk histology to conspecifics from lower paleolatitudes. In addition, we will test Bergmann’s Rule with six species (viz. Lystrosaurus curvatus, L. maccaigi, L. murrayi, Prolacerta broomi, Procolophon trigoniceps, and Thrinaxodon liorhinus). The Early Triassic presents a unique opportunity to perform such investigations as there is no other geologic interval in which species occurring in Antarctica can be compared to conspecifics across a range of paleolatitudes. | POLYGON((-180 -84,-178 -84,-176 -84,-174 -84,-172 -84,-170 -84,-168 -84,-166 -84,-164 -84,-162 -84,-160 -84,-160 -84.3,-160 -84.6,-160 -84.9,-160 -85.2,-160 -85.5,-160 -85.8,-160 -86.1,-160 -86.4,-160 -86.7,-160 -87,-162 -87,-164 -87,-166 -87,-168 -87,-170 -87,-172 -87,-174 -87,-176 -87,-178 -87,180 -87,178.5 -87,177 -87,175.5 -87,174 -87,172.5 -87,171 -87,169.5 -87,168 -87,166.5 -87,165 -87,165 -86.7,165 -86.4,165 -86.1,165 -85.8,165 -85.5,165 -85.2,165 -84.9,165 -84.6,165 -84.3,165 -84,166.5 -84,168 -84,169.5 -84,171 -84,172.5 -84,174 -84,175.5 -84,177 -84,178.5 -84,-180 -84)) | POINT(-177.5 -85.5) | false | false | |||
Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes
|
1644196 |
2020-12-15 | Cziko, Paul; DeVries, Arthur | Notothenioid fishes live in the world's coldest marine waters surrounding Antarctica and have evolved strategies to avoid freezing. Past studies have shown that most Antarctic notothenioids produce special antifreeze proteins that prevent the growth of ice crystals that enter the body. While these proteins help prevent individuals from being killed by growing ice crystals, it is unclear how these fish avoid the accumulation of these small ice crystals inside their tissues over time. This project will observe how ice crystal accumulation relates to the harshness of a fish's environment within different habitats of McMurdo Sound, Antarctica. The researchers collected fishes and ocean observations at different field sites that cover a range of habitat severity in terms of temperature and iciness. The researchers installed an underwater ocean observatory near McMurdo Station (The McMurdo Oceanographic Observatory, MOO; Nov. 2017 - Nov. 2019) which included a conductivity-temperature-depth sensor (CTD), a high-definition video/still image camera and a research quality hydrophone. The observatory produced oceanographic data, time-lapse images of the immediate environs, and a high-resolution hydroacoustic dataset from the entire deployment. Seawater temperature data loggers were also deployed at other shallow, nearshore sites around McMurdo Sound to provide context and assessment of environmental conditions experienced by the fishes. | POLYGON((163.47 -77.14,163.803 -77.14,164.136 -77.14,164.469 -77.14,164.802 -77.14,165.135 -77.14,165.468 -77.14,165.801 -77.14,166.134 -77.14,166.467 -77.14,166.8 -77.14,166.8 -77.216,166.8 -77.292,166.8 -77.368,166.8 -77.444,166.8 -77.52,166.8 -77.596,166.8 -77.672,166.8 -77.748,166.8 -77.824,166.8 -77.9,166.467 -77.9,166.134 -77.9,165.801 -77.9,165.468 -77.9,165.135 -77.9,164.802 -77.9,164.469 -77.9,164.136 -77.9,163.803 -77.9,163.47 -77.9,163.47 -77.824,163.47 -77.748,163.47 -77.672,163.47 -77.596,163.47 -77.52,163.47 -77.444,163.47 -77.368,163.47 -77.292,163.47 -77.216,163.47 -77.14)) | POINT(165.135 -77.52) | false | false | ||||
Using Bio-acoustics on an Autonomous Surveying Platform for the Examination of Phytoplankton-zooplankton and Fish Interactions in the Western Ross Sea
|
1743035 |
2020-02-27 | Saba, Grace | Terra Nova Bay (western Ross Sea, Antarctica) supports dense populations of several key species in the Ross Sea food web, including copepods, crystal krill (Euphausia crystallorophias), Antarctic silverfish (Pleuragramma antarcticum), and colonies of Adélie and Emperor penguins that feed primarily on crystal krill and silverfish. Absent from our understanding of the Ross Sea food web is zooplankton and silverfish mesoscale distribution, spatial structure of age/maturity classes, and their interactions with physical drivers and each other. The quantitative linkages between primary producers and the higher trophic levels, specifically, the processes responsible for the regulation of abundance and rates of middle trophic levels dominated by copepods and crystal krill (Euphausia crystallorophias), is virtually unknown. Given that the next century will see extensive changes in the Ross Sea’s ice distributions and oceanography as a result of climate change, understanding the basic controls of zooplankton and silverfish abundance and distribution is essential. During a January – March 2018 cruise in the western Ross Sea, we deployed a glider equipped with an echo sounder (Acoustic Zooplankton Fish Profiler) that simultaneously measured depth, temperature, conductivity, chlorophyll fluorescence, and dissolved oxygen. Additionally, net tows, mid-water trawls, and crystal krill grazing experiments were conducted. Our study provided the first glider-based acoustic assessment of simultaneous distributions of multiple trophic levels in the Ross Sea, from which predator-prey interactions and the relationships between organisms and physics drivers (sea ice, circulation features) were investigated. We illustrated high variability in ocean physics, phytoplankton biomass, and crystal krill biomass and aggregation over time and between locations within Terra Nova Bay. Biomass of krill was highest in locations characterized by deeper mixed layers and highest integrated chlorophyll concentrations. Krill aggregations were consistently located at depth well below the mixed layer and chlorophyll maximum. Experiments investigating krill grazing, in combination with krill depth distributions relative to chlorophyll biomass, illuminate high krill grazing rates could be attributed to the occupation of a unique niche whereby they are opportunistically feeding on sinking high concentrations of detritus derived from surface blooms. The information on the abundance, distribution, and interactions of key species in multiple trophic levels resulting from this project provide a conceptual background to understand how this ecosystem might respond to future conditions under climate change. Our project tested the capability of a multi-frequency echo sounder on a glider for the first time. The production of consistent, vertically-resolved, high resolution glider-based acoustic measurements will pave the way for cost-effective, automated examination of entire food webs and ecosystems in regions all over the global ocean. A wide range of users including academic and government scientists, ecosystem-based fisheries managers, and monitoring programs including those conducted by OOI, IOOS, and NOAA will benefit from this project. This project also provided the opportunity to focus on broadening participation in research and articulating the societal benefits through education and innovative outreach programs. A data set from this project is being included in the new NSF-funded Polar CAP initiative, that will be used by a diverse and young audience to increase understanding of the polar system and the ability to reason with data. Finally, this project provided a unique field opportunity and excellent hand-on training for a post-doctoral researcher, a graduate student, and two undergraduate students. | POLYGON((164 -72.2,165 -72.2,166 -72.2,167 -72.2,168 -72.2,169 -72.2,170 -72.2,171 -72.2,172 -72.2,173 -72.2,174 -72.2,174 -72.74,174 -73.28,174 -73.82,174 -74.36,174 -74.9,174 -75.44,174 -75.98,174 -76.52,174 -77.06,174 -77.6,173 -77.6,172 -77.6,171 -77.6,170 -77.6,169 -77.6,168 -77.6,167 -77.6,166 -77.6,165 -77.6,164 -77.6,164 -77.06,164 -76.52,164 -75.98,164 -75.44,164 -74.9,164 -74.36,164 -73.82,164 -73.28,164 -72.74,164 -72.2)) | POINT(169 -74.9) | false | false |