{"dp_type": "Project", "free_text": "Wisconsin"}
[{"awards": "2048315 Zoet, Lucas", "bounds_geometry": null, "dataset_titles": "Till flux dependence on effective pressure", "datasets": [{"dataset_uid": "602003", "doi": null, "keywords": "Antarctica; Cryosphere", "people": "Zoet, Lucas", "repository": "USAP-DC", "science_program": null, "title": "Till flux dependence on effective pressure", "url": "https://www.usap-dc.org/view/dataset/602003"}], "date_created": "Mon, 08 Dec 2025 00:00:00 GMT", "description": "Many Antarctic glaciers are discharging ice to the sea and contributing to global sea-level rise at an accelerating pace. However, future rates of ice discharged remain uncertain in part because of incomplete characterization of processes occurring at the ice-bed interface. In particular, ice-bed interface processes depend sensitively on the subglacial effective pressure, N (overburden pressure minus basal water pressure), but limited knowledge of how N changes in space and time have inhibited the realistic incorporation of N into ice discharge estimates. N has only been directly measured in a few locations. Marine-acoustics researchers have proposed a seismic-wave propagation theory that relates N of water-saturated granular sediments, similar to the subglacial tills that are prevalent under Antarctic glaciers, to the seismic-wave reflection characteristics. This project will conduct novel lab experiments to constrain and test the theory, then investigate how N varies in space and time in Antarctica from the existing active-seismic data with the insights gained from the experiments. The outcome of this work could be applied to a large volume of existing and future active-seismic data, allowing for the possibility of increased mapping of N both in space and time. This could in turn lead to improved understanding of glacier and ice-sheet dynamics and ultimately reduce uncertainties in future projections of sea-level rise originating from the Antarctic Ice Sheet, or any other ice mass underlain by till. Subglacial effective pressure, N, is one of the key parameters required for estimating glacial motion but is notoriously hard to measure. Common techniques for estimating N have been the labor-intensive practice of measuring it directly from boreholes and connected moulins or inferring it from surface-velocity inversions. This project will test, calibrate and implement the theory of seismic-wave propagation that relates N of water-saturated granular sediments, developed for marine sediments, to subglacial conditions. A large-diameter ring-shear device will be used to shear temperate ice over a range of known till types at controlled N values, simulating subglacial slip over a deformable bed. The ring shear will be outfitted with an acoustic signal generating/sensing system that will allow continuous measurements of the seismic reflection amplitude of the ice-bed interface. These data will be used to relate reflection amplitudes directly to N in a situation where porosity and grain-size distribution can be measured. Till types will include end member fine- and course-grained tills, as well as a synthetic till generated to replicate Whillans Ice Stream. Even if N is found to only have a second-order effect on reflection amplitude and that porosity is the dominant factor, the experiments will still provide a much-needed constraint for interpreting existing active-seismic data in terms of porosity. The findings from the experiments will be used to reanalyze existing active-seismic data to investigate how N varies with space and time. Specifically, this work will reanalyze seismic data collected on Whillans, Kamb and Rutford Ice Streams where grain-size distributions are known from subglacial sediment-core samples. The results of this project could provide a novel technique to greatly increase our understanding of subglacial hydrology and dependency of ice flow on subglacial effective pressure. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Wisconsin; GLACIER MOTION/ICE SHEET MOTION", "locations": "Wisconsin", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Zoet, Lucas", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Estimating Subglacial Effective Pressure with Active-source Seismic Data", "uid": "p0010550", "west": null}, {"awards": "2418105 Zoet, Lucas", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Thu, 10 Oct 2024 00:00:00 GMT", "description": "Glaciers move in response to gravity pulling them downhill and much of the resistance to this motion is supplied by the bedrock that they sit on. For fast moving glaciers this motion is largely the result of basal ice sliding over and around bedrock bumps, and the specific processes at the ice-bed interface that facilitate this sliding play a dominant role in setting the glacier speed. Sliding atop the ice-bed interface is known to create cavities (pockets of water) downstream of bedrock bumps. These cavities facilitate water flow, control areas of ice-bed contact, regulate basal drag, dictate subglacial erosion, and affect ice mechanics in general. Thus, the length and shape of cavities (geometry) as they separate from the bed is of fundamental importance in glaciology. This project will determine the fundamental processes that set the shapes of those cavities. This work will benefit the scientific community by producing improved estimates to basal sliding and subglacial hydrology which are two of the main uncertainties in glacier-flow modeling. It will also lead to a better understanding of subglacial erosion which effectively controls the basal bump geometries. This in turn will lead to improved understanding of the fundamentals of glacier and ice-sheet dynamics. Therefore, the outcome of the project could ultimately improve future projections of sea-level rise, benefitting society at large. In addition, this project will train a postdoctoral researcher and undergraduate students from tribal institutions. This project will: 1) Use a novel experimental device to generate a cavity geometry data set for a range of independent controls; and 2) Use the results from part one to constrain numerical models that will allow for the exploration of a greater range of parameter space than is possible in the physical experiments alone. Using a novel cryogenic ring-shear device, this project will systematically assess three likely controls on cavity geometry: effective stress, sliding speed, and bump geometry, while simultaneously tracking strain indicators within the ice and the geometry of the cavity through the transparent walls of the device. These experiments will be conducted with the University of Wisconsin-Madison, state-of-the-art ring-shear device and represent the first instance where all three parameters\u2019 effects on the resultant cavity geometry can be measured simultaneously. The lab experiment findings of cavity geometry and strain rates within the ice will be used to help constrain the process-based numerical modeling of cavity formation. The numerical simulations of ice flow around obstacles will provide information about the stress and strain distribution within the ice, and from this data we can explore the ability of existing theories to predict cavity geometry for fast-flowing ice. The physics within the numerical model will be updated as needed to incorporate processes such as a stress dependent ice rheology or changes in the ice-bed contact physics that are currently unaccounted for. Outcomes will be 1) a detailed understanding of the physics that govern cavity geometry and 2) a simple parameterization of the lab and modeling results that can be easily incorporated into glaciological models for improved estimates of subglacial sliding, hydrology, and erosion. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "GLACIER MOTION/ICE SHEET MOTION; Madison, WI", "locations": "Madison, WI", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Zoet, Lucas", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "Determining the Controls on Subglacial Cavity Geometry", "uid": "p0010481", "west": null}, {"awards": "2012958 Meyer, Colin", "bounds_geometry": null, "dataset_titles": "Frozen fringe friction ; Ring shear bed deformation measurements ", "datasets": [{"dataset_uid": "601756", "doi": "10.15784/601756", "keywords": "Antarctica", "people": "Zoet, Lucas", "repository": "USAP-DC", "science_program": null, "title": "Frozen fringe friction ", "url": "https://www.usap-dc.org/view/dataset/601756"}, {"dataset_uid": "601757", "doi": "10.15784/601757", "keywords": "Antarctica", "people": "Zoet, Lucas", "repository": "USAP-DC", "science_program": null, "title": "Ring shear bed deformation measurements ", "url": "https://www.usap-dc.org/view/dataset/601757"}], "date_created": "Wed, 13 Sep 2023 00:00:00 GMT", "description": "The fastest-changing regions of the Antarctic and Greenland Ice Sheets that contribute most to sea-level rise are underlain by soft sediments that facilitate glacier motion. Glacier ice can infiltrate several meters into these sediments, depending on the temperature and water pressure at the base of the glacier. To understand how ice infiltration into subglacial sediments affects glacier slip, the team will conduct laboratory experiments under relevant temperature and pressure conditions and compare the results to state-of-the-art mathematical models. Through an undergraduate research exchange between University of Wisconsin-Madison, Dartmouth College, and the College of Menominee Nation, Native American students will work on laboratory experiments in one summer and mathematical theory in the following summer. Ice-sediment interactions are a central component of ice-sheet and landform-development models. Limited process understanding poses a key uncertainty for ice-sheet models that are used to forecast sea-level rise. This uncertainty underscores the importance of developing experimentally validated, theoretically robust descriptions of processes at the ice-sediment interface. To achieve this, the team aims to build on long-established theoretical, experimental, and field investigations that have elucidated the central role of premelting and surface-energy effects in controlling the dynamics of frost heave in soils. Project members will theoretically describe and experimentally test the role of premelting at the basal ice-sediment interface. The experiments are designed to provide quantitative insight into the impact of ice infiltration into sediments on glacier sliding, erosion, and subglacial landform evolution. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "BASAL SHEAR STRESS; GLACIER MOTION/ICE SHEET MOTION; GLACIERS/ICE SHEETS; New Hampshire", "locations": "New Hampshire", "north": null, "nsf_funding_programs": "Arctic Natural Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Meyer, Colin; Rempel, Alan; Zoet, Lucas", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Freeze-on of Subglacial Sediments in Experiments and Theory", "uid": "p0010434", "west": null}, {"awards": "1443557 Isbell, John", "bounds_geometry": "POLYGON((-180 -85,-177.1 -85,-174.2 -85,-171.3 -85,-168.4 -85,-165.5 -85,-162.6 -85,-159.7 -85,-156.8 -85,-153.9 -85,-151 -85,-151 -85.2,-151 -85.4,-151 -85.6,-151 -85.8,-151 -86,-151 -86.2,-151 -86.4,-151 -86.6,-151 -86.8,-151 -87,-153.9 -87,-156.8 -87,-159.7 -87,-162.6 -87,-165.5 -87,-168.4 -87,-171.3 -87,-174.2 -87,-177.1 -87,180 -87,179 -87,178 -87,177 -87,176 -87,175 -87,174 -87,173 -87,172 -87,171 -87,170 -87,170 -86.8,170 -86.6,170 -86.4,170 -86.2,170 -86,170 -85.8,170 -85.6,170 -85.4,170 -85.2,170 -85,171 -85,172 -85,173 -85,174 -85,175 -85,176 -85,177 -85,178 -85,179 -85,-180 -85))", "dataset_titles": "A LITHOFACIES ANALYSIS OF A SOUTH POLAR GLACIATION IN THE EARLY PERMIAN: PAGODA FORMATION, SHACKLETON GLACIER REGION, ANTARCTICA; A new stratigraphic framework built on U-Pb single-zircon TIMS agesand implications for the timing ofthe penultimate icehouse (Paran\u00e1 Basin, Brazil); Constraining late Paleozoic ice extent in the Paganzo Basin of western Argentina utilizing U-Pb detrital zircon geochronology for the lower Paganzo Group strata; Coupled stratigraphic and U-Pb zircon age constraints on the late Paleozoic icehouse-to-greenhouse turnover in south-central Gondwana; Isotopes to ice: Constraining provenance of glacial deposits and ice centers in west-central Gondwana; Late Permian soil-forming paleoenvironments on Gondwana: A review; Provenance of late Paleozoic glacial/post-glacial deposits in the eastern Chaco-Paran\u00e1 Basin, Uruguay and southernmost Paran\u00e1 Basin, Brazil; Supplemental material: Nitrogen-fixing symbiosis inferred from stable isotope analysis of fossil tree rings from the Oligocene of Ethiopia; When does large woody debris influence ancient rivers? Dendrochronology\r\napplications in the Permian and Triassic, Antarctica", "datasets": [{"dataset_uid": "200269", "doi": "10.1130/G46740.1", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Coupled stratigraphic and U-Pb zircon age constraints on the late Paleozoic icehouse-to-greenhouse turnover in south-central Gondwana", "url": "https://gsapubs.figshare.com/articles/journal_contribution/Supplemental_material_Coupled_stratigraphic_and_U-Pb_zircon_age_constraints_on_the_late_Paleozoic_icehouse-to-greenhouse_turnover_in_south-central_Gondwana/12542069"}, {"dataset_uid": "200266", "doi": "10.2110/jsr.2021.004", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "A LITHOFACIES ANALYSIS OF A SOUTH POLAR GLACIATION IN THE EARLY PERMIAN: PAGODA FORMATION, SHACKLETON GLACIER REGION, ANTARCTICA", "url": "https://www.sepm.org/publications"}, {"dataset_uid": "200270", "doi": "10.1016/j.jsames.2020.102989", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Provenance of late Paleozoic glacial/post-glacial deposits in the eastern Chaco-Paran\u00e1 Basin, Uruguay and southernmost Paran\u00e1 Basin, Brazil", "url": "https://www.sciencedirect.com/science/article/pii/S0895981120305320#mmc1"}, {"dataset_uid": "200271", "doi": "10.1016/j.palaeo.2019.109544", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "When does large woody debris influence ancient rivers? Dendrochronology\r\napplications in the Permian and Triassic, Antarctica", "url": "https://www.sciencedirect.com/science/article/abs/pii/S0031018219304006?via%3Dihub"}, {"dataset_uid": "200272", "doi": "10.1016/j.jsames.2020.102899", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Constraining late Paleozoic ice extent in the Paganzo Basin of western Argentina utilizing U-Pb detrital zircon geochronology for the lower Paganzo Group strata", "url": "https://www.sciencedirect.com/science/article/pii/S0895981120304429?via%3Dihub#mmc1"}, {"dataset_uid": "200273", "doi": "10.1016/j.palaeo.2018.04.020", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Isotopes to ice: Constraining provenance of glacial deposits and ice centers in west-central Gondwana", "url": "https://www.sciencedirect.com/science/article/abs/pii/S0031018217309008?via%3Dihub"}, {"dataset_uid": "200268", "doi": "10.1130/B31775.1.", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "A new stratigraphic framework built on U-Pb single-zircon TIMS agesand implications for the timing ofthe penultimate icehouse (Paran\u00e1 Basin, Brazil)", "url": "https://gsapubs.figshare.com/articles/journal_contribution/Supplemental_material_A_new_stratigraphic_framework_built_on_U-Pb_single-zircon_TIMS_ages_and_implications_for_the_timing_of_the_penultimate_icehouse_Paran_Basin_Brazil_/12535916"}, {"dataset_uid": "200274", "doi": "10.1130/G39213.1", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Supplemental material: Nitrogen-fixing symbiosis inferred from stable isotope analysis of fossil tree rings from the Oligocene of Ethiopia", "url": "https://pubs.geoscienceworld.org/gsa/geology/article-standard/45/8/687/207623/Nitrogen-fixing-symbiosis-inferred-from-stable"}, {"dataset_uid": "200267", "doi": "10.1016/j.palaeo.2021.110762", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Late Permian soil-forming paleoenvironments on Gondwana: A review", "url": "https://www.sciencedirect.com/science/article/abs/pii/S0031018221005472?via%3Dihub"}], "date_created": "Fri, 31 Dec 2021 00:00:00 GMT", "description": "The focus of this collaborative project is to collect fossil plants, wood, and sedimentary and chemical information from rocks in the Shackleton Glacier (SHK) area of Antarctica. This information will be used to reconstruct plant life and environments during the Permian and Triassic (~295-205 million years ago) in Antarctica. This time interval is important to study as Antarctica experienced a large glaciation in the Permian followed by deglaciation and recovery of plant and animal life, only to be subjected to the largest extinction in Earth history at the end of the Permian. After the extinction events, the climate in Antarctica continued to warm extensively and there were forests growing close to the paleo-South Pole. These ancient environments provide a natural laboratory in which to study the effects of climate change on plant life. The results of this project will advance the field in the areas of changing sedimentary patterns during global cooling and warming, as well as plant evolution during times following glaciation and during global warmth. This project will study the extent of the Gondwana glaciation in the SHK area, the invasion and subsequent flourishing of life following glacial retreat, and the eventual recovery of plant life after Late Permian extinction events. Only in Antarctica does a complete polar-to-near-polar succession occur across this climatic and biologic transition. The SHK area is an important one as it is one of the few regions in the world where the Permian-Triassic boundary (PTB) is exposed within terrestrial rocks. The field and lab work for this project is organized around three hypotheses that address fundamental issues in Earth history, including changes in the extent and diversity of flora during the Permian build up to the Late Paleozoic Ice Age, the possible diachronous nature of the PTB, and that poor fossil preservation during the Early Triassic has given a false impression that Antarctica was devoid of plants during this time. The hypotheses will be tested by integrating various types of paleobotanical approaches with detailed sedimentology, stratigraphy, and geochemistry. Compression floras and petrified wood will be collected (constrained by stratigraphy) both quantitatively and qualitatively in order to obtain biodiversity and abundance data, and as a data source for paleoecological analysis. Standard sedimentologic and stratigraphic analyses will be performed, as well as paleosol analyses, including mineralogic and major- and trace-element geochemistry. Collections will also be made for U-Pb zircon geochronology to better constrain geologic and biotic events through time. Results of the project will be incorporated into educational and outreach activities that are designed to include women and under-represented groups in the excitement of Antarctic earth sciences and paleontology, including workshops in Kansas and Wisconsin, as well as links to science classes during fieldwork.", "east": 170.0, "geometry": "POINT(-170.5 -86)", "instruments": null, "is_usap_dc": true, "keywords": "Shackleton Glacier; SEDIMENTARY ROCKS; GLACIATION", "locations": "Shackleton Glacier", "north": -85.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Isbell, John", "platforms": null, "repo": "Publication", "repositories": "Publication", "science_programs": null, "south": -87.0, "title": "Collaborative Research: Permian and Triassic Icehouse to Greenhouse Paleoenvironments and Paleobotany in the Shackleton Glacier Area, Antarctica", "uid": "p0010287", "west": -151.0}, {"awards": "1745049 Tyler, Scott", "bounds_geometry": null, "dataset_titles": "Ice Diver Madison Run #1 March 1, 2020", "datasets": [{"dataset_uid": "601368", "doi": "10.15784/601368", "keywords": "Antarctica; North America; Temperature", "people": "Tyler, Scott W.", "repository": "USAP-DC", "science_program": null, "title": "Ice Diver Madison Run #1 March 1, 2020", "url": "https://www.usap-dc.org/view/dataset/601368"}], "date_created": "Mon, 03 Aug 2020 00:00:00 GMT", "description": "Nontechnical Abstract Studies in Antarctica are, at present, severely limited by the costs of placing measurement instruments within and beneath thousands of meters of ice. Our aim is to enable dense, widespread measurement-networks by advancing development of low-cost ice melt probe technology to deploy instruments. Ice melt probes use electrical energy to descend through thick ice with little support structure on the ice surface. We are extending previous technology by using anti-freeze to maintain a partially open melt-hole above a descending probe, deploying as we go a new a new fiber-optic technology to measure ice temperature. Ice temperature measurements will reveal spatial patterns of heat welling up from the Earth beneath the ice, which in turn will contribute greatly to finding ancient ice that contains global climate records, and to understanding how ice flow may raise sea levels. Our immediate objective in this 1-year project is to test and refine our anti-freeze-based method in a 15 meter-tall ice column at the University of Wisconsin, so as to reduce technical risk in future field tests. Technical Abstract The overarching aim of our development is to enable widespread, spatially dense deployments of instruments within and beneath the Antarctic Ice Sheet for a variety of investigations, beginning with observations of basal temperature and geothermal flux at the base of the ice sheet. Dense, widespread deployment requires logistical costs far below current costs for ice drilling and coring. Our approach is to extend ice melt probe technology (which is inherently light, logistically) to allow the progressive deployment of cable for Distributed Temperature Sensing (DTS) from the ice surface as the probe descends, without greatly increasing logistical costs. Our extension is based on arresting refreezing of the melt-hole above the probe (at a diameter a few times the cable diameter) by injecting anti-freeze - specifically, ethanol at temperature near 0C - a few meters above the probe during descent. After thermal equilibration of the liquid ethanol/water column with the ice, DTS measurements yield the depth-profile of ice sheet temperature, from which basal temperature and (over frozen beds) geothermal flux can be inferred. We have carried out initial trials of our approach in a cold-room laboratory, but field work based only on such small-scale tests may still involve unnecessary risk. We therefore propose further testing at a facility of the Ice Drilling Design and Operations (IDDO) facility in Madison, WI. The new trials will test our approaches to melt-hole control and probe recovery in the taller column, will test cable and cable-tension-management methods more nearly approximating those needed to work on ice sheets, and will demonstrate the Distributed Temperature Sensing in its field configuration. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; North America; ICE DEPTH/THICKNESS; NOT APPLICABLE", "locations": "North America", "north": null, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Instrumentation and Facilities", "paleo_time": null, "persons": "Tyler, Scott W.", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Toward Dense Observation of Geothermal Fluxes in Antarctica Via Logistically Light Instrument Deployment", "uid": "p0010121", "west": null}, {"awards": "0943934 Taylor, Edith; 0943935 Isbell, John", "bounds_geometry": null, "dataset_titles": "Portal to search geologic sample collections, Polar Rock Repository, Byrd Polar Research Center, The Ohio State University; Portal to search paleobotanical collections, Biodiversity Institute, University of Kansas", "datasets": [{"dataset_uid": "001377", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Portal to search geologic sample collections, Polar Rock Repository, Byrd Polar Research Center, The Ohio State University", "url": "http://research.bpcrc.osu.edu/rr/"}, {"dataset_uid": "001402", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Portal to search paleobotanical collections, Biodiversity Institute, University of Kansas", "url": "https://biodiversity.ku.edu/paleobotany/collection-search"}, {"dataset_uid": "002567", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Portal to search paleobotanical collections, Biodiversity Institute, University of Kansas", "url": "https://biodiversity.ku.edu/paleobotany/collection-search"}], "date_created": "Tue, 23 Sep 2014 00:00:00 GMT", "description": "Intellectual Merit:\u003cbr/\u003eThe focus of this proposal is to collect fossil plants and palynomorphs from Permian-Triassic (P-T) rocks of the central Transantarctic Mountains (CTM), together with detailed data on sedimentologic and paleoecologic depositional environments. Fossil plants are important climate proxies that offer a unique window into the past, and the CTM fossils are an important source of data on the ways that plants responded to a strongly seasonal, polar light regime during a time of global change. The proposed project uses paleobotanical expertise, integrated with detailed sedimentology and stratigraphy, to reconstruct Permian-Triassic plant communities and their paleoenvironments. This interdisciplinary approach could uncover details of Antarctica?s complex late Paleozoic and Mesozoic environmental and climatic history which included: 1) deglaciation, 2) development and evolution of a post-glacial landscape and biota, 3) environmental and biotic change associated with the end-Permian mass extinction, 4) environmental recovery in the earliest Triassic, 5) strong, possible runaway Triassic greenhouse, and 6) widespread orogenesis and development of a foreland basin system. The PIs will collect compression floras both quantitatively and qualitatively to obtain biodiversity and abundance data. Since silicified wood is also present, the PIs will analyze tree rings and growth in a warm, high-latitude environment for which there is no modern analogue. Fossil plants from the CTM can provide biological and environmental information to: 1) interpret paleoclimate when Gondwana moved from icehouse to greenhouse conditions; 2) trace floral evolution across the P-T boundary; 3) reconstruct Antarctic plant life; 4) further understanding of plant adaptations to high latitudes. The Intellectual Merit of the research includes: 1) tracing floral evolution after the retreat of glaciers; 2) examining floral composition and diversity across the PTB; and 3) obtaining data on the recovery of these ecosystems in the Early Triassic, as well as changes in floral cover and diversity in the Early-Middle Triassic. Antarctica is the only place on Earth that includes extensive outcrops of terrestrial rocks, combined with widespread and well-preserved plant fossils, which spans this crucial time period.\u003cbr/\u003e\u003cbr/\u003eBroader impacts:\u003cbr/\u003eThe broader impacts include public outreach; teaching, and mentoring of women and underrepresented students; mentoring graduate student, postdoctoral, and new faculty women; development of an inquiry-based workshop on Antarctic paleoclimate with the Division of Education, KU Natural History Museum; continuing support of workshops for middle school girls in science via the Expanding Your Horizons Program, Emporia State University, and the TRIO program, KU; exploring Antarctic geosciences through video/computer links from McMurdo Station and satellite phone conferences from the field with K-12 science classes in Wisconsin and Kansas, and through participation in the NSF Research Experiences for Teachers program at the University of Wisconsin.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "FIELD SURVEYS; LABORATORY; Transanatarctic Basin; Paleobotany; Fossil Plants; FIELD INVESTIGATION; Sedimentology; Late Paleozoic Ice Age; Not provided; Central Transantarctic Mountains; Beardmore Glacier", "locations": "Transanatarctic Basin; Central Transantarctic Mountains; Beardmore Glacier", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Instrumentation and Support; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN; PHANEROZOIC \u003e MESOZOIC \u003e TRIASSIC; PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN; PHANEROZOIC \u003e MESOZOIC \u003e TRIASSIC", "persons": "Isbell, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "PRR", "repositories": "PI website; PRR", "science_programs": null, "south": null, "title": "Collaborative Research: Antarctic Ecosystems across the Permian-Triassic Boundary: Integrating Paleobotany, Sedimentology, and Paleoecology", "uid": "p0000372", "west": null}, {"awards": "9119683 Anderson, John", "bounds_geometry": "POLYGON((-179.999 -72.1543,-143.9991 -72.1543,-107.9992 -72.1543,-71.9993 -72.1543,-35.9994 -72.1543,0.000500000000017 -72.1543,36.0004 -72.1543,72.0003 -72.1543,108.0002 -72.1543,144.0001 -72.1543,180 -72.1543,180 -72.72384,180 -73.29338,180 -73.86292,180 -74.43246,180 -75.002,180 -75.57154,180 -76.14108,180 -76.71062,180 -77.28016,180 -77.8497,144.0001 -77.8497,108.0002 -77.8497,72.0003 -77.8497,36.0004 -77.8497,0.000499999999988 -77.8497,-35.9994 -77.8497,-71.9993 -77.8497,-107.9992 -77.8497,-143.9991 -77.8497,-179.999 -77.8497,-179.999 -77.28016,-179.999 -76.71062,-179.999 -76.14108,-179.999 -75.57154,-179.999 -75.002,-179.999 -74.43246,-179.999 -73.86292,-179.999 -73.29338,-179.999 -72.72384,-179.999 -72.1543))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002241", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9501"}, {"dataset_uid": "002258", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9401"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Marine geological and geophysical studies of the Ross Sea and Weddell Sea continental shelves provide evidence that the ice sheet grounded near the shelf edge in these areas during the late Wisconsinan, and that the retreat of the ice sheet to its present position was rapid and probably episodic. This Award supports a project which will establish the most recent (late Wisconsin- Holocene) history of ice sheet advance and retreat in Ross Sea. The objectives include: 1) reconstruction the late Wisconsin paleodrainage regime, including ice stream divides; 2) reconstruction of former grounding zone positions; 3) constraint of the timing of ice sheet retreat from the shelf; and 4) acquisition of geophysical, sedimentological, and paleontological data which may provide indicators the environmental factors that may have influenced to ice sheet retreat. This is a joint effort between Rice University, the University of Colorado, and Hamilton College. The project involves experts in a wide variety of fields, and will interface with glaciologists, physical oceanographers and climatologists who will address the problem of ice sheet stability and the record of climatic and glaciological change.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -72.1543, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.8497, "title": "Geologic Record of Late Wisconsinan/Holocene Ice Sheet Advance and Retreat from Ross Sea", "uid": "p0000641", "west": -179.999}, {"awards": "9419128 Stearns, Charles", "bounds_geometry": null, "dataset_titles": "Three-Hourly Antarctic Automatic Weather Station Data, 1980-2000", "datasets": [{"dataset_uid": "609111", "doi": "", "keywords": "Antarctica; Atmosphere; AWS; Weatherstation", "people": "Weidner, George A.; Lazzara, Matthew; Stearns, Charles R.; Keller, Linda M.", "repository": "USAP-DC", "science_program": null, "title": "Three-Hourly Antarctic Automatic Weather Station Data, 1980-2000", "url": "https://www.usap-dc.org/view/dataset/609111"}], "date_created": "Mon, 18 Aug 2003 00:00:00 GMT", "description": "9419128 Stearns This is a project to maintain and augment as necessary, the network of nearly fifty automatic weather stations established on the Antarctic continent and on several surrounding islands. These weather stations measure surface wind, pressure, temperature, humidity, and in some instances other atmospheric variables, such as snow accumulation and incident solar radiation, and report these via satellite to a number of ground stations. The data are used for operational weather forecasting in support of the United States Antarctic program, for climatological records, and for research purposes. The AWS network, which began as a small-scale program in 1980, has been extremely reliable and has proven indispensable for both forecasting and research purposes. ***", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e BAROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HUMIDITY SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS", "is_usap_dc": true, "keywords": "Surface Temperature Measurements; USAP-DC; Atmospheric Pressure; Automated Weather Station; Surface Winds; Near-Surface Air Temperatures; Surface Wind Speed Measurements; Atmospheric Humidity Measurements; AWS; Not provided; Snow Temperature; Surface Temperatures; Antarctica; Snow Temperature Measurements", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew; Stearns, Charles R.; Weidner, George A.; Keller, Linda M.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Continuation for the Antarctic Automatic Weather Station Climate Program 1995-1998", "uid": "p0000151", "west": null}, {"awards": "0537827 Lazzara, Matthew", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Access Antarctic NOAA Polar Orbiting AVHRR HRPT GAC and LAC images.; Access Arrival Heights Meteorological Observations; Access Building 189 Meteorological Observations; Access Building 69 Meteorological Observations; Access Building 71 Meteorological Observations; Access McMurdo Meteorological Observations; Access Neumayer Meteorological Observations; Access Palmer Meteorological Observations; Access South Pole Meteorological Observations", "datasets": [{"dataset_uid": "001297", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Palmer Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/palmer/observations/"}, {"dataset_uid": "001295", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access McMurdo Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/mcmurdo/climatology/"}, {"dataset_uid": "001294", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Building 71 Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/mcmurdo/building71/"}, {"dataset_uid": "001296", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Neumayer Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/neumayer/"}, {"dataset_uid": "001293", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Building 69 Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/mcmurdo/building69/"}, {"dataset_uid": "001292", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Building 189 Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/mcmurdo/building189/"}, {"dataset_uid": "001287", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Antarctic NOAA Polar Orbiting AVHRR HRPT GAC and LAC images.", "url": "ftp://amrc.ssec.wisc.edu"}, {"dataset_uid": "001298", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access South Pole Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/southpole/surface_observations/"}, {"dataset_uid": "001291", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Arrival Heights Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/mcmurdo/arrivalheights/"}], "date_created": "Thu, 12 Oct 2000 00:00:00 GMT", "description": "This proposed work is the continued operation of the Antarctic Meteorological Research Center (AMRC) for three years through 2009. AMRC is a meteorological data acquisition and management system with nodes at McMurdo Station and at the University of Wisconsin, Madison. The system is a resource and archive for meteorological research and a test bed for improving operational synoptic forecasting. Its basis is a computer-based system for organizing, manipulating, and integrating antarctic environmental data, developed by the University of Wisconsin. It captures the flow of meteorological information from polar orbiting satellites, automatic weather stations, operational station synoptic observations, and research project data, producing a mosaic of antarctic satellite images on an operational basis. It also receives environmental data products, such as weather forecasts, from outside Antarctica, and acts as a repository for existing archived databases. The AMRC provides customized weather and climate information for a variety of antarctic users, including aircraft and ship operations of the US Antarctic Program. Currently the AMRC produces the Antarctic Composite Infrared Image, a mosaic of images from four geostationary and three polar-orbiting satellites, which is used for both forecasting and research purposes. In the current time period, AMRC will develop a data exploration/classification toolkit based on self-organizing maps to produce a new, satellite-based antarctic cloud climatology for regions. The AMRC will also be at the center of the evolving Antarctic-Internet Data Distribution (Antarctic-IDD) system, a reliable and formalized means of sharing and distributing Antarctic data among operational and research users. \u003cbr/\u003e***", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e AVHRR", "is_usap_dc": false, "keywords": "NOAA-14; FIXED OBSERVATION STATIONS; Antarctica; Not provided; Satellite Imagery; NOAA-15; Noaa Avhrr Lac; NOAA-12; Observation Data", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew; Costanza, Carol; Snarski, Joey", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e POLAR ORBITING ENVIRONMENTAL SATELLITES (POES) \u003e NOAA-12; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e POLAR ORBITING ENVIRONMENTAL SATELLITES (POES) \u003e NOAA-14; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e POLAR ORBITING ENVIRONMENTAL SATELLITES (POES) \u003e NOAA-15", "repo": "AMRDC", "repositories": "AMRDC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Antarctic Meteorological Research Center (2006-2009)", "uid": "p0000280", "west": -180.0}, {"awards": "0838834 Lazzara, Matthew", "bounds_geometry": "POLYGON((-180 -62.83,-144 -62.83,-108 -62.83,-72 -62.83,-36 -62.83,0 -62.83,36 -62.83,72 -62.83,108 -62.83,144 -62.83,180 -62.83,180 -65.547,180 -68.264,180 -70.981,180 -73.698,180 -76.415,180 -79.132,180 -81.849,180 -84.566,180 -87.283,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.283,-180 -84.566,-180 -81.849,-180 -79.132,-180 -76.415,-180 -73.698,-180 -70.981,-180 -68.264,-180 -65.547,-180 -62.83))", "dataset_titles": "Access all real-time datasets; Access Antarctic Composite Images.; Access Antarctic Synoptic and METAR Observations.; Access McMurdo Radiosonde Observations; Access South Pole Radiosonde Observations; Archived METAR observational data; We have observations from three ships near Antarctica, the R/V Polar Duke the R/V Nathaniel B. Palmer and the R/V Laurence M. Gould. Data from 23 August 1993 are available via ftp and the files are updated with the most recent observations every 7-10 days as we receive the information. The AMRC has been archiving general ship and buoy observational data for the Antarctic and surrounding regions since 2 December 1998.", "datasets": [{"dataset_uid": "001288", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access South Pole Radiosonde Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/southpole/radiosonde/"}, {"dataset_uid": "001386", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Archived METAR observational data", "url": "ftp://amrc.ssec.wisc.edu/archive/"}, {"dataset_uid": "001382", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Antarctic Synoptic and METAR Observations.", "url": "ftp://amrc.ssec.wisc.edu"}, {"dataset_uid": "001299", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Antarctic Synoptic and METAR Observations.", "url": "ftp://amrc.ssec.wisc.edu/"}, {"dataset_uid": "001300", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access all real-time datasets", "url": "http://amrc.ssec.wisc.edu/"}, {"dataset_uid": "001285", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Antarctic Composite Images.", "url": "http://amrc.ssec.wisc.edu/data/view-data.php?action=list\u0026amp;amp;product=satellite/composite"}, {"dataset_uid": "001290", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "We have observations from three ships near Antarctica, the R/V Polar Duke the R/V Nathaniel B. Palmer and the R/V Laurence M. Gould. Data from 23 August 1993 are available via ftp and the files are updated with the most recent observations every 7-10 days as we receive the information. The AMRC has been archiving general ship and buoy observational data for the Antarctic and surrounding regions since 2 December 1998.", "url": "ftp://amrc.ssec.wisc.edu/pub/shipobs/"}, {"dataset_uid": "001289", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access McMurdo Radiosonde Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/mcmurdo/radiosonde/"}], "date_created": "Thu, 01 Jan 1970 00:00:00 GMT", "description": "Abstract\u003cbr/\u003e\u003cbr/\u003eThe Antarctic Meteorological Research Center (AMRC), located at the University of Wisconsin, Madison, serves several communities by maintaining and extending the stewardship of meteorological data pertinent to the Antarctic continent, its surrounding islands, ice sheets and ice margins and the adjacent Southern Ocean. This data will continue to be made freely available to interested researchers and the general public. Activities of particular interest for the current award include the development of an enhanced data portal to provide improved data and analysis tools to the research community, and to continue to add to the evolution of the Antarctic-Internet Data Distribution system, which is meant to overcome the costly and generally low bandwidth internet connectivity to and from the Antarctic continent. Operational forecasting for logistical activities in the Antarctic, as well as active Antarctic meteorological research programs, are clearly in need of a dependable, steady flow of meteorological observations, model output, and related data in what must be a collaborative environment in order to overcome the otherwise distributed nature of Antarctic meteorological and climatological observations.\u003cbr/\u003e\u003cbr/\u003eAMRC interaction with the public through answering e-mail questions, giving informal public lectures and presentations to K-12 education institutions through visits to schools will help to raise science literacy with regards to meteorology and of the Antarctic and polar regions. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\"This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\"", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e AVHRR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e GOES I-M IMAGER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e OLS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e VISSR; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e BAROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e WET BULB THERMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADIOSONDES; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e AMSU-A; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e AVHRR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e HIRS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e HIRS/2; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e MSU; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e TOVS", "is_usap_dc": false, "keywords": "Shortwave Composite Satellite Images; Radiosonde Data; Antarctic; Noaa Hrpt Raw Data; Synoptic Data; Water Vapor Composite Satellite Images; SATELLITES; Satellite Imagery; Infrared Imagery; NOAA POES; Visible Composite Satellite Images; BUOYS; Antarctica; Ship/buoy Data; FIXED OBSERVATION STATIONS; Longwave Composite Satellite Images; Not provided; COASTAL STATIONS; Metar Weather Observations", "locations": "Antarctic; Antarctica", "north": -62.83, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew; Costanza, Carol", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e COASTAL STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e POLAR ORBITING ENVIRONMENTAL SATELLITES (POES) \u003e NOAA POES; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED \u003e BUOYS", "repo": "AMRDC", "repositories": "AMRDC", "science_programs": null, "south": -90.0, "title": "Antarctic Meteorological Research Center (2009-2011)", "uid": "p0000264", "west": -180.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
| Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Collaborative Research: Estimating Subglacial Effective Pressure with Active-source Seismic Data
|
2048315 |
2025-12-08 | Zoet, Lucas |
|
Many Antarctic glaciers are discharging ice to the sea and contributing to global sea-level rise at an accelerating pace. However, future rates of ice discharged remain uncertain in part because of incomplete characterization of processes occurring at the ice-bed interface. In particular, ice-bed interface processes depend sensitively on the subglacial effective pressure, N (overburden pressure minus basal water pressure), but limited knowledge of how N changes in space and time have inhibited the realistic incorporation of N into ice discharge estimates. N has only been directly measured in a few locations. Marine-acoustics researchers have proposed a seismic-wave propagation theory that relates N of water-saturated granular sediments, similar to the subglacial tills that are prevalent under Antarctic glaciers, to the seismic-wave reflection characteristics. This project will conduct novel lab experiments to constrain and test the theory, then investigate how N varies in space and time in Antarctica from the existing active-seismic data with the insights gained from the experiments. The outcome of this work could be applied to a large volume of existing and future active-seismic data, allowing for the possibility of increased mapping of N both in space and time. This could in turn lead to improved understanding of glacier and ice-sheet dynamics and ultimately reduce uncertainties in future projections of sea-level rise originating from the Antarctic Ice Sheet, or any other ice mass underlain by till. Subglacial effective pressure, N, is one of the key parameters required for estimating glacial motion but is notoriously hard to measure. Common techniques for estimating N have been the labor-intensive practice of measuring it directly from boreholes and connected moulins or inferring it from surface-velocity inversions. This project will test, calibrate and implement the theory of seismic-wave propagation that relates N of water-saturated granular sediments, developed for marine sediments, to subglacial conditions. A large-diameter ring-shear device will be used to shear temperate ice over a range of known till types at controlled N values, simulating subglacial slip over a deformable bed. The ring shear will be outfitted with an acoustic signal generating/sensing system that will allow continuous measurements of the seismic reflection amplitude of the ice-bed interface. These data will be used to relate reflection amplitudes directly to N in a situation where porosity and grain-size distribution can be measured. Till types will include end member fine- and course-grained tills, as well as a synthetic till generated to replicate Whillans Ice Stream. Even if N is found to only have a second-order effect on reflection amplitude and that porosity is the dominant factor, the experiments will still provide a much-needed constraint for interpreting existing active-seismic data in terms of porosity. The findings from the experiments will be used to reanalyze existing active-seismic data to investigate how N varies with space and time. Specifically, this work will reanalyze seismic data collected on Whillans, Kamb and Rutford Ice Streams where grain-size distributions are known from subglacial sediment-core samples. The results of this project could provide a novel technique to greatly increase our understanding of subglacial hydrology and dependency of ice flow on subglacial effective pressure. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | |||||
|
Determining the Controls on Subglacial Cavity Geometry
|
2418105 |
2024-10-10 | Zoet, Lucas | No dataset link provided | Glaciers move in response to gravity pulling them downhill and much of the resistance to this motion is supplied by the bedrock that they sit on. For fast moving glaciers this motion is largely the result of basal ice sliding over and around bedrock bumps, and the specific processes at the ice-bed interface that facilitate this sliding play a dominant role in setting the glacier speed. Sliding atop the ice-bed interface is known to create cavities (pockets of water) downstream of bedrock bumps. These cavities facilitate water flow, control areas of ice-bed contact, regulate basal drag, dictate subglacial erosion, and affect ice mechanics in general. Thus, the length and shape of cavities (geometry) as they separate from the bed is of fundamental importance in glaciology. This project will determine the fundamental processes that set the shapes of those cavities. This work will benefit the scientific community by producing improved estimates to basal sliding and subglacial hydrology which are two of the main uncertainties in glacier-flow modeling. It will also lead to a better understanding of subglacial erosion which effectively controls the basal bump geometries. This in turn will lead to improved understanding of the fundamentals of glacier and ice-sheet dynamics. Therefore, the outcome of the project could ultimately improve future projections of sea-level rise, benefitting society at large. In addition, this project will train a postdoctoral researcher and undergraduate students from tribal institutions. This project will: 1) Use a novel experimental device to generate a cavity geometry data set for a range of independent controls; and 2) Use the results from part one to constrain numerical models that will allow for the exploration of a greater range of parameter space than is possible in the physical experiments alone. Using a novel cryogenic ring-shear device, this project will systematically assess three likely controls on cavity geometry: effective stress, sliding speed, and bump geometry, while simultaneously tracking strain indicators within the ice and the geometry of the cavity through the transparent walls of the device. These experiments will be conducted with the University of Wisconsin-Madison, state-of-the-art ring-shear device and represent the first instance where all three parameters’ effects on the resultant cavity geometry can be measured simultaneously. The lab experiment findings of cavity geometry and strain rates within the ice will be used to help constrain the process-based numerical modeling of cavity formation. The numerical simulations of ice flow around obstacles will provide information about the stress and strain distribution within the ice, and from this data we can explore the ability of existing theories to predict cavity geometry for fast-flowing ice. The physics within the numerical model will be updated as needed to incorporate processes such as a stress dependent ice rheology or changes in the ice-bed contact physics that are currently unaccounted for. Outcomes will be 1) a detailed understanding of the physics that govern cavity geometry and 2) a simple parameterization of the lab and modeling results that can be easily incorporated into glaciological models for improved estimates of subglacial sliding, hydrology, and erosion. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | |||||
|
Collaborative Research: Freeze-on of Subglacial Sediments in Experiments and Theory
|
2012958 |
2023-09-13 | Meyer, Colin; Rempel, Alan; Zoet, Lucas |
|
The fastest-changing regions of the Antarctic and Greenland Ice Sheets that contribute most to sea-level rise are underlain by soft sediments that facilitate glacier motion. Glacier ice can infiltrate several meters into these sediments, depending on the temperature and water pressure at the base of the glacier. To understand how ice infiltration into subglacial sediments affects glacier slip, the team will conduct laboratory experiments under relevant temperature and pressure conditions and compare the results to state-of-the-art mathematical models. Through an undergraduate research exchange between University of Wisconsin-Madison, Dartmouth College, and the College of Menominee Nation, Native American students will work on laboratory experiments in one summer and mathematical theory in the following summer. Ice-sediment interactions are a central component of ice-sheet and landform-development models. Limited process understanding poses a key uncertainty for ice-sheet models that are used to forecast sea-level rise. This uncertainty underscores the importance of developing experimentally validated, theoretically robust descriptions of processes at the ice-sediment interface. To achieve this, the team aims to build on long-established theoretical, experimental, and field investigations that have elucidated the central role of premelting and surface-energy effects in controlling the dynamics of frost heave in soils. Project members will theoretically describe and experimentally test the role of premelting at the basal ice-sediment interface. The experiments are designed to provide quantitative insight into the impact of ice infiltration into sediments on glacier sliding, erosion, and subglacial landform evolution. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | |||||
|
Collaborative Research: Permian and Triassic Icehouse to Greenhouse Paleoenvironments and Paleobotany in the Shackleton Glacier Area, Antarctica
|
1443557 |
2021-12-31 | Isbell, John | The focus of this collaborative project is to collect fossil plants, wood, and sedimentary and chemical information from rocks in the Shackleton Glacier (SHK) area of Antarctica. This information will be used to reconstruct plant life and environments during the Permian and Triassic (~295-205 million years ago) in Antarctica. This time interval is important to study as Antarctica experienced a large glaciation in the Permian followed by deglaciation and recovery of plant and animal life, only to be subjected to the largest extinction in Earth history at the end of the Permian. After the extinction events, the climate in Antarctica continued to warm extensively and there were forests growing close to the paleo-South Pole. These ancient environments provide a natural laboratory in which to study the effects of climate change on plant life. The results of this project will advance the field in the areas of changing sedimentary patterns during global cooling and warming, as well as plant evolution during times following glaciation and during global warmth. This project will study the extent of the Gondwana glaciation in the SHK area, the invasion and subsequent flourishing of life following glacial retreat, and the eventual recovery of plant life after Late Permian extinction events. Only in Antarctica does a complete polar-to-near-polar succession occur across this climatic and biologic transition. The SHK area is an important one as it is one of the few regions in the world where the Permian-Triassic boundary (PTB) is exposed within terrestrial rocks. The field and lab work for this project is organized around three hypotheses that address fundamental issues in Earth history, including changes in the extent and diversity of flora during the Permian build up to the Late Paleozoic Ice Age, the possible diachronous nature of the PTB, and that poor fossil preservation during the Early Triassic has given a false impression that Antarctica was devoid of plants during this time. The hypotheses will be tested by integrating various types of paleobotanical approaches with detailed sedimentology, stratigraphy, and geochemistry. Compression floras and petrified wood will be collected (constrained by stratigraphy) both quantitatively and qualitatively in order to obtain biodiversity and abundance data, and as a data source for paleoecological analysis. Standard sedimentologic and stratigraphic analyses will be performed, as well as paleosol analyses, including mineralogic and major- and trace-element geochemistry. Collections will also be made for U-Pb zircon geochronology to better constrain geologic and biotic events through time. Results of the project will be incorporated into educational and outreach activities that are designed to include women and under-represented groups in the excitement of Antarctic earth sciences and paleontology, including workshops in Kansas and Wisconsin, as well as links to science classes during fieldwork. | POLYGON((-180 -85,-177.1 -85,-174.2 -85,-171.3 -85,-168.4 -85,-165.5 -85,-162.6 -85,-159.7 -85,-156.8 -85,-153.9 -85,-151 -85,-151 -85.2,-151 -85.4,-151 -85.6,-151 -85.8,-151 -86,-151 -86.2,-151 -86.4,-151 -86.6,-151 -86.8,-151 -87,-153.9 -87,-156.8 -87,-159.7 -87,-162.6 -87,-165.5 -87,-168.4 -87,-171.3 -87,-174.2 -87,-177.1 -87,180 -87,179 -87,178 -87,177 -87,176 -87,175 -87,174 -87,173 -87,172 -87,171 -87,170 -87,170 -86.8,170 -86.6,170 -86.4,170 -86.2,170 -86,170 -85.8,170 -85.6,170 -85.4,170 -85.2,170 -85,171 -85,172 -85,173 -85,174 -85,175 -85,176 -85,177 -85,178 -85,179 -85,-180 -85)) | POINT(-170.5 -86) | false | false | ||||||
|
Collaborative Research: Toward Dense Observation of Geothermal Fluxes in Antarctica Via Logistically Light Instrument Deployment
|
1745049 |
2020-08-03 | Tyler, Scott W. |
|
Nontechnical Abstract Studies in Antarctica are, at present, severely limited by the costs of placing measurement instruments within and beneath thousands of meters of ice. Our aim is to enable dense, widespread measurement-networks by advancing development of low-cost ice melt probe technology to deploy instruments. Ice melt probes use electrical energy to descend through thick ice with little support structure on the ice surface. We are extending previous technology by using anti-freeze to maintain a partially open melt-hole above a descending probe, deploying as we go a new a new fiber-optic technology to measure ice temperature. Ice temperature measurements will reveal spatial patterns of heat welling up from the Earth beneath the ice, which in turn will contribute greatly to finding ancient ice that contains global climate records, and to understanding how ice flow may raise sea levels. Our immediate objective in this 1-year project is to test and refine our anti-freeze-based method in a 15 meter-tall ice column at the University of Wisconsin, so as to reduce technical risk in future field tests. Technical Abstract The overarching aim of our development is to enable widespread, spatially dense deployments of instruments within and beneath the Antarctic Ice Sheet for a variety of investigations, beginning with observations of basal temperature and geothermal flux at the base of the ice sheet. Dense, widespread deployment requires logistical costs far below current costs for ice drilling and coring. Our approach is to extend ice melt probe technology (which is inherently light, logistically) to allow the progressive deployment of cable for Distributed Temperature Sensing (DTS) from the ice surface as the probe descends, without greatly increasing logistical costs. Our extension is based on arresting refreezing of the melt-hole above the probe (at a diameter a few times the cable diameter) by injecting anti-freeze - specifically, ethanol at temperature near 0C - a few meters above the probe during descent. After thermal equilibration of the liquid ethanol/water column with the ice, DTS measurements yield the depth-profile of ice sheet temperature, from which basal temperature and (over frozen beds) geothermal flux can be inferred. We have carried out initial trials of our approach in a cold-room laboratory, but field work based only on such small-scale tests may still involve unnecessary risk. We therefore propose further testing at a facility of the Ice Drilling Design and Operations (IDDO) facility in Madison, WI. The new trials will test our approaches to melt-hole control and probe recovery in the taller column, will test cable and cable-tension-management methods more nearly approximating those needed to work on ice sheets, and will demonstrate the Distributed Temperature Sensing in its field configuration. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | |||||
|
Collaborative Research: Antarctic Ecosystems across the Permian-Triassic Boundary: Integrating Paleobotany, Sedimentology, and Paleoecology
|
0943934 0943935 |
2014-09-23 | Isbell, John | Intellectual Merit:<br/>The focus of this proposal is to collect fossil plants and palynomorphs from Permian-Triassic (P-T) rocks of the central Transantarctic Mountains (CTM), together with detailed data on sedimentologic and paleoecologic depositional environments. Fossil plants are important climate proxies that offer a unique window into the past, and the CTM fossils are an important source of data on the ways that plants responded to a strongly seasonal, polar light regime during a time of global change. The proposed project uses paleobotanical expertise, integrated with detailed sedimentology and stratigraphy, to reconstruct Permian-Triassic plant communities and their paleoenvironments. This interdisciplinary approach could uncover details of Antarctica?s complex late Paleozoic and Mesozoic environmental and climatic history which included: 1) deglaciation, 2) development and evolution of a post-glacial landscape and biota, 3) environmental and biotic change associated with the end-Permian mass extinction, 4) environmental recovery in the earliest Triassic, 5) strong, possible runaway Triassic greenhouse, and 6) widespread orogenesis and development of a foreland basin system. The PIs will collect compression floras both quantitatively and qualitatively to obtain biodiversity and abundance data. Since silicified wood is also present, the PIs will analyze tree rings and growth in a warm, high-latitude environment for which there is no modern analogue. Fossil plants from the CTM can provide biological and environmental information to: 1) interpret paleoclimate when Gondwana moved from icehouse to greenhouse conditions; 2) trace floral evolution across the P-T boundary; 3) reconstruct Antarctic plant life; 4) further understanding of plant adaptations to high latitudes. The Intellectual Merit of the research includes: 1) tracing floral evolution after the retreat of glaciers; 2) examining floral composition and diversity across the PTB; and 3) obtaining data on the recovery of these ecosystems in the Early Triassic, as well as changes in floral cover and diversity in the Early-Middle Triassic. Antarctica is the only place on Earth that includes extensive outcrops of terrestrial rocks, combined with widespread and well-preserved plant fossils, which spans this crucial time period.<br/><br/>Broader impacts:<br/>The broader impacts include public outreach; teaching, and mentoring of women and underrepresented students; mentoring graduate student, postdoctoral, and new faculty women; development of an inquiry-based workshop on Antarctic paleoclimate with the Division of Education, KU Natural History Museum; continuing support of workshops for middle school girls in science via the Expanding Your Horizons Program, Emporia State University, and the TRIO program, KU; exploring Antarctic geosciences through video/computer links from McMurdo Station and satellite phone conferences from the field with K-12 science classes in Wisconsin and Kansas, and through participation in the NSF Research Experiences for Teachers program at the University of Wisconsin. | None | None | false | false | ||||||
|
Geologic Record of Late Wisconsinan/Holocene Ice Sheet Advance and Retreat from Ross Sea
|
9119683 |
2010-05-04 | Anderson, John |
|
Marine geological and geophysical studies of the Ross Sea and Weddell Sea continental shelves provide evidence that the ice sheet grounded near the shelf edge in these areas during the late Wisconsinan, and that the retreat of the ice sheet to its present position was rapid and probably episodic. This Award supports a project which will establish the most recent (late Wisconsin- Holocene) history of ice sheet advance and retreat in Ross Sea. The objectives include: 1) reconstruction the late Wisconsin paleodrainage regime, including ice stream divides; 2) reconstruction of former grounding zone positions; 3) constraint of the timing of ice sheet retreat from the shelf; and 4) acquisition of geophysical, sedimentological, and paleontological data which may provide indicators the environmental factors that may have influenced to ice sheet retreat. This is a joint effort between Rice University, the University of Colorado, and Hamilton College. The project involves experts in a wide variety of fields, and will interface with glaciologists, physical oceanographers and climatologists who will address the problem of ice sheet stability and the record of climatic and glaciological change. | POLYGON((-179.999 -72.1543,-143.9991 -72.1543,-107.9992 -72.1543,-71.9993 -72.1543,-35.9994 -72.1543,0.000500000000017 -72.1543,36.0004 -72.1543,72.0003 -72.1543,108.0002 -72.1543,144.0001 -72.1543,180 -72.1543,180 -72.72384,180 -73.29338,180 -73.86292,180 -74.43246,180 -75.002,180 -75.57154,180 -76.14108,180 -76.71062,180 -77.28016,180 -77.8497,144.0001 -77.8497,108.0002 -77.8497,72.0003 -77.8497,36.0004 -77.8497,0.000499999999988 -77.8497,-35.9994 -77.8497,-71.9993 -77.8497,-107.9992 -77.8497,-143.9991 -77.8497,-179.999 -77.8497,-179.999 -77.28016,-179.999 -76.71062,-179.999 -76.14108,-179.999 -75.57154,-179.999 -75.002,-179.999 -74.43246,-179.999 -73.86292,-179.999 -73.29338,-179.999 -72.72384,-179.999 -72.1543)) | POINT(0 -89.999) | false | false | |||||
|
Continuation for the Antarctic Automatic Weather Station Climate Program 1995-1998
|
9419128 |
2003-08-18 | Lazzara, Matthew; Stearns, Charles R.; Weidner, George A.; Keller, Linda M. |
|
9419128 Stearns This is a project to maintain and augment as necessary, the network of nearly fifty automatic weather stations established on the Antarctic continent and on several surrounding islands. These weather stations measure surface wind, pressure, temperature, humidity, and in some instances other atmospheric variables, such as snow accumulation and incident solar radiation, and report these via satellite to a number of ground stations. The data are used for operational weather forecasting in support of the United States Antarctic program, for climatological records, and for research purposes. The AWS network, which began as a small-scale program in 1980, has been extremely reliable and has proven indispensable for both forecasting and research purposes. *** | None | None | false | false | |||||
|
Collaborative Research: Antarctic Meteorological Research Center (2006-2009)
|
0537827 |
2000-10-12 | Lazzara, Matthew; Costanza, Carol; Snarski, Joey | This proposed work is the continued operation of the Antarctic Meteorological Research Center (AMRC) for three years through 2009. AMRC is a meteorological data acquisition and management system with nodes at McMurdo Station and at the University of Wisconsin, Madison. The system is a resource and archive for meteorological research and a test bed for improving operational synoptic forecasting. Its basis is a computer-based system for organizing, manipulating, and integrating antarctic environmental data, developed by the University of Wisconsin. It captures the flow of meteorological information from polar orbiting satellites, automatic weather stations, operational station synoptic observations, and research project data, producing a mosaic of antarctic satellite images on an operational basis. It also receives environmental data products, such as weather forecasts, from outside Antarctica, and acts as a repository for existing archived databases. The AMRC provides customized weather and climate information for a variety of antarctic users, including aircraft and ship operations of the US Antarctic Program. Currently the AMRC produces the Antarctic Composite Infrared Image, a mosaic of images from four geostationary and three polar-orbiting satellites, which is used for both forecasting and research purposes. In the current time period, AMRC will develop a data exploration/classification toolkit based on self-organizing maps to produce a new, satellite-based antarctic cloud climatology for regions. The AMRC will also be at the center of the evolving Antarctic-Internet Data Distribution (Antarctic-IDD) system, a reliable and formalized means of sharing and distributing Antarctic data among operational and research users. <br/>*** | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||
|
Antarctic Meteorological Research Center (2009-2011)
|
0838834 |
1970-01-01 | Lazzara, Matthew; Costanza, Carol | Abstract<br/><br/>The Antarctic Meteorological Research Center (AMRC), located at the University of Wisconsin, Madison, serves several communities by maintaining and extending the stewardship of meteorological data pertinent to the Antarctic continent, its surrounding islands, ice sheets and ice margins and the adjacent Southern Ocean. This data will continue to be made freely available to interested researchers and the general public. Activities of particular interest for the current award include the development of an enhanced data portal to provide improved data and analysis tools to the research community, and to continue to add to the evolution of the Antarctic-Internet Data Distribution system, which is meant to overcome the costly and generally low bandwidth internet connectivity to and from the Antarctic continent. Operational forecasting for logistical activities in the Antarctic, as well as active Antarctic meteorological research programs, are clearly in need of a dependable, steady flow of meteorological observations, model output, and related data in what must be a collaborative environment in order to overcome the otherwise distributed nature of Antarctic meteorological and climatological observations.<br/><br/>AMRC interaction with the public through answering e-mail questions, giving informal public lectures and presentations to K-12 education institutions through visits to schools will help to raise science literacy with regards to meteorology and of the Antarctic and polar regions. <br/><br/><br/><br/>"This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5)." | POLYGON((-180 -62.83,-144 -62.83,-108 -62.83,-72 -62.83,-36 -62.83,0 -62.83,36 -62.83,72 -62.83,108 -62.83,144 -62.83,180 -62.83,180 -65.547,180 -68.264,180 -70.981,180 -73.698,180 -76.415,180 -79.132,180 -81.849,180 -84.566,180 -87.283,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.283,-180 -84.566,-180 -81.849,-180 -79.132,-180 -76.415,-180 -73.698,-180 -70.981,-180 -68.264,-180 -65.547,-180 -62.83)) | POINT(0 -89.999) | false | false |

