{"dp_type": "Project", "free_text": "Sedimentology"}
[{"awards": "1939139 Scherer, Reed; 1939146 Siddoway, Christine", "bounds_geometry": "POLYGON((-120 -66,-117.5 -66,-115 -66,-112.5 -66,-110 -66,-107.5 -66,-105 -66,-102.5 -66,-100 -66,-97.5 -66,-95 -66,-95 -67.1,-95 -68.2,-95 -69.3,-95 -70.4,-95 -71.5,-95 -72.6,-95 -73.7,-95 -74.8,-95 -75.9,-95 -77,-97.5 -77,-100 -77,-102.5 -77,-105 -77,-107.5 -77,-110 -77,-112.5 -77,-115 -77,-117.5 -77,-120 -77,-120 -75.9,-120 -74.8,-120 -73.7,-120 -72.6,-120 -71.5,-120 -70.4,-120 -69.3,-120 -68.2,-120 -67.1,-120 -66))", "dataset_titles": "Pliocene diatom abundance, IODP 379-U1532; Population morphometrics of the Southern Ocean diatom Fragilariopsis kerguelensis related to Sea Surface Temperature; U-Pb zircon and apatite fission track dates for IRD (ice-rafted cobbles and mineral grains) from IODP379 drill sites", "datasets": [{"dataset_uid": "601769", "doi": null, "keywords": "Antarctica; Biogenic Silica; Diatom", "people": "Furlong, Heather; Scherer, Reed Paul", "repository": "USAP-DC", "science_program": null, "title": "Pliocene diatom abundance, IODP 379-U1532", "url": "https://www.usap-dc.org/view/dataset/601769"}, {"dataset_uid": "601828", "doi": "10.15784/601828", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Geochronology; Marie Byrd Land; Subglacial Bedrock; Thermochronology", "people": "Siddoway, Christine", "repository": "USAP-DC", "science_program": null, "title": "U-Pb zircon and apatite fission track dates for IRD (ice-rafted cobbles and mineral grains) from IODP379 drill sites", "url": "https://www.usap-dc.org/view/dataset/601828"}, {"dataset_uid": "601804", "doi": "10.15784/601804", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Oceanography; Sabrina Coast; Sea Surface Temperature; Southern Ocean", "people": "Ruggiero, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Population morphometrics of the Southern Ocean diatom Fragilariopsis kerguelensis related to Sea Surface Temperature", "url": "https://www.usap-dc.org/view/dataset/601804"}], "date_created": "Tue, 20 Feb 2024 00:00:00 GMT", "description": "Part I, Non-technical Abstract Concerns that the West Antarctic Ice Sheet (WAIS) might be susceptible to releasing its ice as giant icebergs into the Southern Ocean due to a warming climate, raising global sea level, were first expressed more than 40 years ago. To best-assess this threat, scientists need to know whether such events occurred in the geologically recent past, during warm intervals of past glacial-interglacial cycles. Ocean drilling near the most vulnerable sector of the WAIS, in 2019, yielded seafloor geologic records demonstrating times when icebergs dropped large volumes of sands and pebbles, called ice-rafted detritus (IRD) in deep water of the Amundsen Sea. Occurring together with IRD that was eroded from bedrock beneath the ice sheets, there are abundant microfossils of diatoms (algal plankton), which indicate high biological productivity in the open ocean. The new sediment cores provide a complete, uninterrupted record of a time of dramatic fluctuations of ice sheet extent that occurred over the last 3 million years. Therefore, they provide the means to obtain clear answers to the question whether ice sheet collapse occurred in the past and offering clues to its potential future. This project will investigate sediment intervals where IRD coincides with evidence of high diatom production, to test whether these two criteria indicate rapid ice sheet collapse. Geochemical analysis of IRD pebbles will help trace the source of the icebergs to likely on-land sites. By analyzing conditions of high diatom and IRD accumulation in deep ocean sediment, where local coastal influences can be avoided, we will assess oceanographic and climatic conditions associated with past ice sheet collapse events. Diatoms provide powerful evidence of temperature and ocean productivity changes in the past, that, when linked to time, can translate into rates of ice sheet drawdown. These results will provide critical data for designing, constraining and testing the next suite computer models that can determine the likelihood and timing of future ice sheet collapse in a warming world. The project will include training of undergraduate and graduate students from diverse backgrounds, and the public will be introduced to Antarctic science and engaged through several different outreach efforts. Part 2, Technical Abstract New drillcores from the Amundsen Sea, Antarctica (IODP Expedition 379) contain a continuous record of oceanographic changes and iceberg rafted debris (IRD) spanning the last 5 million years. This study aims to identify the signature of retreat/collapse of the West Antarctic Ice Sheet (WAIS) in these continental margin, deep-sea sediments by quantitatively analyzing, in detail, diatom and IRD records across glacial-interglacial lithostratigraphic transitions to establish the timing and frequency of Late Pliocene and Pleistocene WAIS collapse events. The investigators will secure age constraints and diagnostic observations of marine paleoenvironmental conditions for selected interglacial intervals of cores from sites U1532 and U1533, using high resolution micropaleontology of diatom assemblages coupled with microstratigraphic analysis of IRD depositional events, while petrography, geochronology and thermochronology of iceberg rafted clasts will provide evidence of iceberg sources and pathways. Depositional paleotemperatures will be assessed via a new paleotemperature proxy based on quantitative assessment of morphologic changes in the dominant Southern Ocean diatom Fragilariopsis kerguelensis. Their results will contribute to parameterization of new ice sheet models that seek to reconstruct and forecast West Antarctic Ice Sheet behavior. This project will directly contribute to undergraduate education at an undergraduate-only college and at a public university that serves a demographic typified by first generation university students and underrepresented groups. Spanning geology, geochemistry, sedimentology, paleontology and paleoceanography, the proposed work will allow undergraduate students to develop diverse skills through hands-on research within a collaborative team that is dedicated to societally relevant research. The two graduate students will conduct original research and work alongside/mentor undergraduates, making for a well-rounded research experience that prepares them for success in future academic or employment sectors. The discoveries that come from this deep-sea record from West Antarctica will be communicated by students and investigators at national and international conferences and an array of public science outreach events. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -95.0, "geometry": "POINT(-107.5 -71.5)", "instruments": null, "is_usap_dc": true, "keywords": "ICEBERGS; SEA SURFACE TEMPERATURE; Amundsen Sea; MICROFOSSILS", "locations": "Amundsen Sea", "north": -66.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY; PHANEROZOIC \u003e CENOZOIC \u003e NEOGENE \u003e PLIOCENE", "persons": "Scherer, Reed Paul; Siddoway, Christine", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Collaborative Research: Testing the Linchpin of WAIS Collapse with Diatoms and IRD in Pleistocene and Late Pliocene Strata of the Resolution Drift, Amundsen Sea, Antarctica", "uid": "p0010451", "west": -120.0}, {"awards": "1443557 Isbell, John", "bounds_geometry": "POLYGON((-180 -85,-177.1 -85,-174.2 -85,-171.3 -85,-168.4 -85,-165.5 -85,-162.6 -85,-159.7 -85,-156.8 -85,-153.9 -85,-151 -85,-151 -85.2,-151 -85.4,-151 -85.6,-151 -85.8,-151 -86,-151 -86.2,-151 -86.4,-151 -86.6,-151 -86.8,-151 -87,-153.9 -87,-156.8 -87,-159.7 -87,-162.6 -87,-165.5 -87,-168.4 -87,-171.3 -87,-174.2 -87,-177.1 -87,180 -87,179 -87,178 -87,177 -87,176 -87,175 -87,174 -87,173 -87,172 -87,171 -87,170 -87,170 -86.8,170 -86.6,170 -86.4,170 -86.2,170 -86,170 -85.8,170 -85.6,170 -85.4,170 -85.2,170 -85,171 -85,172 -85,173 -85,174 -85,175 -85,176 -85,177 -85,178 -85,179 -85,-180 -85))", "dataset_titles": "A LITHOFACIES ANALYSIS OF A SOUTH POLAR GLACIATION IN THE EARLY PERMIAN: PAGODA FORMATION, SHACKLETON GLACIER REGION, ANTARCTICA; A new stratigraphic framework built on U-Pb single-zircon TIMS agesand implications for the timing ofthe penultimate icehouse (Paran\u00e1 Basin, Brazil); Constraining late Paleozoic ice extent in the Paganzo Basin of western Argentina utilizing U-Pb detrital zircon geochronology for the lower Paganzo Group strata; Coupled stratigraphic and U-Pb zircon age constraints on the late Paleozoic icehouse-to-greenhouse turnover in south-central Gondwana; Isotopes to ice: Constraining provenance of glacial deposits and ice centers in west-central Gondwana; Late Permian soil-forming paleoenvironments on Gondwana: A review; Provenance of late Paleozoic glacial/post-glacial deposits in the eastern Chaco-Paran\u00e1 Basin, Uruguay and southernmost Paran\u00e1 Basin, Brazil; Supplemental material: Nitrogen-fixing symbiosis inferred from stable isotope analysis of fossil tree rings from the Oligocene of Ethiopia; When does large woody debris influence ancient rivers? Dendrochronology\r\napplications in the Permian and Triassic, Antarctica", "datasets": [{"dataset_uid": "200273", "doi": "10.1016/j.palaeo.2018.04.020", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Isotopes to ice: Constraining provenance of glacial deposits and ice centers in west-central Gondwana", "url": "https://www.sciencedirect.com/science/article/abs/pii/S0031018217309008?via%3Dihub"}, {"dataset_uid": "200272", "doi": "10.1016/j.jsames.2020.102899", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Constraining late Paleozoic ice extent in the Paganzo Basin of western Argentina utilizing U-Pb detrital zircon geochronology for the lower Paganzo Group strata", "url": "https://www.sciencedirect.com/science/article/pii/S0895981120304429?via%3Dihub#mmc1"}, {"dataset_uid": "200271", "doi": "10.1016/j.palaeo.2019.109544", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "When does large woody debris influence ancient rivers? Dendrochronology\r\napplications in the Permian and Triassic, Antarctica", "url": "https://www.sciencedirect.com/science/article/abs/pii/S0031018219304006?via%3Dihub"}, {"dataset_uid": "200269", "doi": "10.1130/G46740.1", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Coupled stratigraphic and U-Pb zircon age constraints on the late Paleozoic icehouse-to-greenhouse turnover in south-central Gondwana", "url": "https://gsapubs.figshare.com/articles/journal_contribution/Supplemental_material_Coupled_stratigraphic_and_U-Pb_zircon_age_constraints_on_the_late_Paleozoic_icehouse-to-greenhouse_turnover_in_south-central_Gondwana/12542069"}, {"dataset_uid": "200274", "doi": "10.1130/G39213.1", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Supplemental material: Nitrogen-fixing symbiosis inferred from stable isotope analysis of fossil tree rings from the Oligocene of Ethiopia", "url": "https://pubs.geoscienceworld.org/gsa/geology/article-standard/45/8/687/207623/Nitrogen-fixing-symbiosis-inferred-from-stable"}, {"dataset_uid": "200266", "doi": "10.2110/jsr.2021.004", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "A LITHOFACIES ANALYSIS OF A SOUTH POLAR GLACIATION IN THE EARLY PERMIAN: PAGODA FORMATION, SHACKLETON GLACIER REGION, ANTARCTICA", "url": "https://www.sepm.org/publications"}, {"dataset_uid": "200270", "doi": "10.1016/j.jsames.2020.102989", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Provenance of late Paleozoic glacial/post-glacial deposits in the eastern Chaco-Paran\u00e1 Basin, Uruguay and southernmost Paran\u00e1 Basin, Brazil", "url": "https://www.sciencedirect.com/science/article/pii/S0895981120305320#mmc1"}, {"dataset_uid": "200268", "doi": "10.1130/B31775.1.", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "A new stratigraphic framework built on U-Pb single-zircon TIMS agesand implications for the timing ofthe penultimate icehouse (Paran\u00e1 Basin, Brazil)", "url": "https://gsapubs.figshare.com/articles/journal_contribution/Supplemental_material_A_new_stratigraphic_framework_built_on_U-Pb_single-zircon_TIMS_ages_and_implications_for_the_timing_of_the_penultimate_icehouse_Paran_Basin_Brazil_/12535916"}, {"dataset_uid": "200267", "doi": "10.1016/j.palaeo.2021.110762", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Late Permian soil-forming paleoenvironments on Gondwana: A review", "url": "https://www.sciencedirect.com/science/article/abs/pii/S0031018221005472?via%3Dihub"}], "date_created": "Fri, 31 Dec 2021 00:00:00 GMT", "description": "The focus of this collaborative project is to collect fossil plants, wood, and sedimentary and chemical information from rocks in the Shackleton Glacier (SHK) area of Antarctica. This information will be used to reconstruct plant life and environments during the Permian and Triassic (~295-205 million years ago) in Antarctica. This time interval is important to study as Antarctica experienced a large glaciation in the Permian followed by deglaciation and recovery of plant and animal life, only to be subjected to the largest extinction in Earth history at the end of the Permian. After the extinction events, the climate in Antarctica continued to warm extensively and there were forests growing close to the paleo-South Pole. These ancient environments provide a natural laboratory in which to study the effects of climate change on plant life. The results of this project will advance the field in the areas of changing sedimentary patterns during global cooling and warming, as well as plant evolution during times following glaciation and during global warmth. This project will study the extent of the Gondwana glaciation in the SHK area, the invasion and subsequent flourishing of life following glacial retreat, and the eventual recovery of plant life after Late Permian extinction events. Only in Antarctica does a complete polar-to-near-polar succession occur across this climatic and biologic transition. The SHK area is an important one as it is one of the few regions in the world where the Permian-Triassic boundary (PTB) is exposed within terrestrial rocks. The field and lab work for this project is organized around three hypotheses that address fundamental issues in Earth history, including changes in the extent and diversity of flora during the Permian build up to the Late Paleozoic Ice Age, the possible diachronous nature of the PTB, and that poor fossil preservation during the Early Triassic has given a false impression that Antarctica was devoid of plants during this time. The hypotheses will be tested by integrating various types of paleobotanical approaches with detailed sedimentology, stratigraphy, and geochemistry. Compression floras and petrified wood will be collected (constrained by stratigraphy) both quantitatively and qualitatively in order to obtain biodiversity and abundance data, and as a data source for paleoecological analysis. Standard sedimentologic and stratigraphic analyses will be performed, as well as paleosol analyses, including mineralogic and major- and trace-element geochemistry. Collections will also be made for U-Pb zircon geochronology to better constrain geologic and biotic events through time. Results of the project will be incorporated into educational and outreach activities that are designed to include women and under-represented groups in the excitement of Antarctic earth sciences and paleontology, including workshops in Kansas and Wisconsin, as well as links to science classes during fieldwork.", "east": 170.0, "geometry": "POINT(-170.5 -86)", "instruments": null, "is_usap_dc": true, "keywords": "Shackleton Glacier; SEDIMENTARY ROCKS; GLACIATION", "locations": "Shackleton Glacier", "north": -85.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Isbell, John", "platforms": null, "repo": "Publication", "repositories": "Publication", "science_programs": null, "south": -87.0, "title": "Collaborative Research: Permian and Triassic Icehouse to Greenhouse Paleoenvironments and Paleobotany in the Shackleton Glacier Area, Antarctica", "uid": "p0010287", "west": -151.0}, {"awards": "2114839 Passchier, Sandra", "bounds_geometry": null, "dataset_titles": "Argon thermochronological data on Pliocene ice-rafted detrital mineral grains from IODP Expedition 379 in the Amundsen Sea sector; Grain-size data for the Pliocene section at IODP Site U1533, Amundsen Sea", "datasets": [{"dataset_uid": "601900", "doi": "10.15784/601900", "keywords": "Amundsen Sea Sector; Antarctica; Cryosphere; Glaciation; Grain Size; Pliocene; Sediment Core Data; Sedimentology", "people": "Mino-Moreira, Lisbeth; Passchier, Sandra", "repository": "USAP-DC", "science_program": null, "title": "Grain-size data for the Pliocene section at IODP Site U1533, Amundsen Sea", "url": "https://www.usap-dc.org/view/dataset/601900"}, {"dataset_uid": "601907", "doi": "10.15784/601907", "keywords": "40Ar/39Ar; Amundsen Sea; Amundsen Sea Sector; Antarctica; Cryosphere; Ice-Rafted Detritus; IODP; Paleoclimate; Pliocene; Provenance; Sedimentology", "people": "Hemming, Sidney R.; Passchier, Sandra", "repository": "USAP-DC", "science_program": null, "title": "Argon thermochronological data on Pliocene ice-rafted detrital mineral grains from IODP Expedition 379 in the Amundsen Sea sector", "url": "https://www.usap-dc.org/view/dataset/601907"}], "date_created": "Wed, 25 Aug 2021 00:00:00 GMT", "description": "The West Antarctic Ice Sheet is the most vulnerable polar ice mass to warming and already a major contributor to global mean sea level rise. Its fate in the light of prolonged warming is a topic of major uncertainty. Accelerated sea level rise from ice mass loss in the polar regions is a major concern as a cause of increased coastal flooding affecting millions of people. This project will disclose a unique geological archive buried beneath the seafloor off the Amundsen Sea, Antarctica, which will reveal how the West Antarctic Ice Sheet behaved in a warmer climate in the past. The data and insights can be used to inform ice-sheet and ocean modeling used in coastal policy development. The project will also support the development of a competitive U.S. STEM workforce. Online class exercises for introductory geology classes will provide a gateway for qualified students into undergraduate research programs and this project will enhance the participation of women in science by funding the education of current female Ph.D. students. The project targets the long-term variability of the West Antarctic Ice Sheet over several glacial-interglacial cycles in the early Pliocene sedimentary record drilled by the International Ocean Discovery Program (IODP) Expedition 379 in the Amundsen Sea. Data collection includes 1) the sand provenance of ice-rafted debris and shelf diamictites and its sources within the Amundsen Sea and Antarctic Peninsula region; 2) sedimentary structures and sortable silt calculations from particle size records and reconstructions of current intensities and interactions; and 3) the bulk provenance of continental rise sediments compared to existing data from the Amundsen Sea shelf with investigations into downslope currents as pathways for Antarctic Bottom Water formation. The results are analyzed within a cyclostratigraphic framework of reflectance spectroscopy and colorimetry (RSC) and X-ray fluorescence scanner (XRF) data to gain insight into orbital forcing of the high-latitude processes. The early Pliocene Climatic Optimum (PCO) ~4.5-4.1 Ma spans a major warm period recognized in deep-sea stable isotope and sea-surface temperature records. This period also coincides with a global mean sea level highstand of \u003e 20 m requiring contributions in ice mass loss from Antarctica. The following hypotheses will be tested: 1) that the West Antarctic Ice Sheet retreated from the continental shelf break through an increase in sub iceshelf melt and iceberg calving at the onset of the PCO ~4.5 Ma, and 2) that dense shelf water cascaded down through slope channels after ~4.5 Ma as the continental shelf became exposed during glacial terminations. The project will reveal for the first time how the West Antarctic Ice Sheet operated in a warmer climate state prior to the onset of the current \u201cicehouse\u201d period ~3.3 Ma. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; TERRIGENOUS SEDIMENTS; Amd/Us; SEDIMENTS; FIELD SURVEYS; Amundsen Sea; USAP-DC; AMD", "locations": "Amundsen Sea", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Passchier, Sandra", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "West Antarctic Ice-sheet Change and Paleoceanography in the Amundsen Sea Across the Pliocene Climatic Optimum", "uid": "p0010252", "west": null}, {"awards": "1914743 Becker, Thorsten; 1914668 Aschwanden, Andy; 1914767 Winberry, Paul; 1914698 Hansen, Samantha", "bounds_geometry": "POLYGON((90 -65,99 -65,108 -65,117 -65,126 -65,135 -65,144 -65,153 -65,162 -65,171 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,171 -90,162 -90,153 -90,144 -90,135 -90,126 -90,117 -90,108 -90,99 -90,90 -90,90 -87.5,90 -85,90 -82.5,90 -80,90 -77.5,90 -75,90 -72.5,90 -70,90 -67.5,90 -65))", "dataset_titles": "East Antarctic Seismicity from different Automated Event Detection Algorithms; Full Waveform Ambient Noise Tomography for East Antarctica", "datasets": [{"dataset_uid": "601762", "doi": "10.15784/601762", "keywords": "Antarctica; Geoscientificinformation; Machine Learning; Seismic Event Detection; Seismology; Seismometer", "people": "Ho, Long; Hansen, Samantha; Walter, Jacob", "repository": "USAP-DC", "science_program": null, "title": "East Antarctic Seismicity from different Automated Event Detection Algorithms", "url": "https://www.usap-dc.org/view/dataset/601762"}, {"dataset_uid": "601763", "doi": "10.15784/601763", "keywords": "Ambient Noise; Antarctica; East Antarctica; Geoscientificinformation; Seismic Tomography; Seismology", "people": "Hansen, Samantha; Emry, Erica", "repository": "USAP-DC", "science_program": null, "title": "Full Waveform Ambient Noise Tomography for East Antarctica", "url": "https://www.usap-dc.org/view/dataset/601763"}], "date_created": "Fri, 25 Jun 2021 00:00:00 GMT", "description": "Part I: Nontechnical Earths warming climate has the potential to drive widespread collapse of glaciers and ice sheets across the planet, driving global sea-level rise. Understanding both the rate and magnitude of such changes is essential for predicting future sea-level and how it will impact infrastructure and property. Collapse of the ice sheets of Antarctica has the potential to raise global sea-level by up to 60 meters. However, not all regions of Antarctica are equally suspectable to collapse. One area with potential for collapse is the Wilkes Subglacial Basin in East Antarctica, a region twice the size of California\u0027s Central Valley. Geologic evidence indicates that the ice-sheet in this region has retreated significantly in response to past global warming events. While the geologic record clearly indicates ice-sheets in this area are vulnerable, the rate and magnitude of any future retreat will be influenced significantly by geology of the region. In particular, ice-sheets sitting above warm Earth will collapse more quickly during warming climate. Constraining the geologic controls on the stability of the ice-sheets of the Wilkes Subglacial Basin remains challenging since the ice-sheet hides the geology beneath kilometers of ice. As a step in understanding the potential for future ice loss in the Wilkes Subglacial Basin this project will conduct geophysical analysis of existing data to better constrain the geology of the region. These results will constrain new models designed to understand the tectonics that control the behavior of the ice-sheets in the region. These new models will highlight the geological properties that exert the most significant control on the future of the ice-sheets of the Wilkes Subglacial Basin. Such insights are critical to guide future efforts aimed at collecting in-situ observations needed to more fully constrain Antarctica\u0027s potential for future sea-level. Part II: Technical Description In polar environments, inward-sloping marine basins are susceptible to an effect known as the marine ice-sheet instability (MISI): run-away ice stream drainage caused by warm ocean water eroding the ice shelf from below. The magnitude and time-scale of the ice-sheet response strongly depend on the physical conditions along the ice-bed interface, which are, to a first order, controlled by the tectonic evolution of the basin. Topography, sedimentology, geothermal heat flux, and mantle viscosity all play critical roles in ice-sheet stability. However, in most cases, these solid-Earth parameters for regions susceptible to the MISI are largely unknown. One region with potential susceptibility to MISI is the Wilkes Subglacial Basin of East Antarctica. The project will provide an integrated investigation of the Wilkes Subglacial Basin, combining geophysical analyses with both mantle flow and ice-sheet modeling to understand the stability of the ice sheet in this region, and the associated potential sea level rise. The work will be focused on four primary objectives: (1) to develop an improved tectonic model for the region based on existing seismic observations as well as existing geophysical and geological data; (2) to use the new tectonic model and seismic data to estimate the thermal, density, and viscosity structure of the upper mantle and to develop a heat flow map for the WSB; (3) to simulate mantle flow and to assess paleotopography based on our density and viscosity constraints; and (4) to assess ice-sheet behavior by modeling (a) past ice-sheet stability using our paleotopography estimates and (b) future ice-sheet stability using our heat flow and mantle viscosity estimates. Ultimately, the project will generate improved images of the geophysical structure beneath the WSB that will allow us to assess the geodynamic origin for this region and to assess the influence of geologic parameters on past, current, and future ice-sheet behavior. These efforts will then highlight areas and geophysical properties that should be the focus of future geophysical deployments. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(135 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "TECTONICS; AMD; Wilkes Subglacial Basin; ICE SHEETS; USA/NSF; Amd/Us; SEISMOLOGICAL STATIONS; SEISMIC SURFACE WAVES; East Antarctica; USAP-DC", "locations": "East Antarctica; Wilkes Subglacial Basin", "north": -65.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Becker, Thorsten; Binder, April; Hansen, Samantha; Aschwanden, Andy; Winberry, Paul", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Resolving earth structure influence on ice-sheet stability in the Wilkes\r\nSubglacial Basin (RESISSt)", "uid": "p0010204", "west": 90.0}, {"awards": "0943934 Taylor, Edith; 0943935 Isbell, John", "bounds_geometry": null, "dataset_titles": "Portal to search geologic sample collections, Polar Rock Repository, Byrd Polar Research Center, The Ohio State University; Portal to search paleobotanical collections, Biodiversity Institute, University of Kansas", "datasets": [{"dataset_uid": "001402", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Portal to search paleobotanical collections, Biodiversity Institute, University of Kansas", "url": "http://biodiversity.ku.edu/paleobotany/collections/collections-search"}, {"dataset_uid": "002567", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Portal to search paleobotanical collections, Biodiversity Institute, University of Kansas", "url": "http://biodiversity.ku.edu/paleobotany/collections/collections-search"}, {"dataset_uid": "001377", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Portal to search geologic sample collections, Polar Rock Repository, Byrd Polar Research Center, The Ohio State University", "url": "http://research.bpcrc.osu.edu/rr/"}], "date_created": "Tue, 23 Sep 2014 00:00:00 GMT", "description": "Intellectual Merit:\u003cbr/\u003eThe focus of this proposal is to collect fossil plants and palynomorphs from Permian-Triassic (P-T) rocks of the central Transantarctic Mountains (CTM), together with detailed data on sedimentologic and paleoecologic depositional environments. Fossil plants are important climate proxies that offer a unique window into the past, and the CTM fossils are an important source of data on the ways that plants responded to a strongly seasonal, polar light regime during a time of global change. The proposed project uses paleobotanical expertise, integrated with detailed sedimentology and stratigraphy, to reconstruct Permian-Triassic plant communities and their paleoenvironments. This interdisciplinary approach could uncover details of Antarctica?s complex late Paleozoic and Mesozoic environmental and climatic history which included: 1) deglaciation, 2) development and evolution of a post-glacial landscape and biota, 3) environmental and biotic change associated with the end-Permian mass extinction, 4) environmental recovery in the earliest Triassic, 5) strong, possible runaway Triassic greenhouse, and 6) widespread orogenesis and development of a foreland basin system. The PIs will collect compression floras both quantitatively and qualitatively to obtain biodiversity and abundance data. Since silicified wood is also present, the PIs will analyze tree rings and growth in a warm, high-latitude environment for which there is no modern analogue. Fossil plants from the CTM can provide biological and environmental information to: 1) interpret paleoclimate when Gondwana moved from icehouse to greenhouse conditions; 2) trace floral evolution across the P-T boundary; 3) reconstruct Antarctic plant life; 4) further understanding of plant adaptations to high latitudes. The Intellectual Merit of the research includes: 1) tracing floral evolution after the retreat of glaciers; 2) examining floral composition and diversity across the PTB; and 3) obtaining data on the recovery of these ecosystems in the Early Triassic, as well as changes in floral cover and diversity in the Early-Middle Triassic. Antarctica is the only place on Earth that includes extensive outcrops of terrestrial rocks, combined with widespread and well-preserved plant fossils, which spans this crucial time period.\u003cbr/\u003e\u003cbr/\u003eBroader impacts:\u003cbr/\u003eThe broader impacts include public outreach; teaching, and mentoring of women and underrepresented students; mentoring graduate student, postdoctoral, and new faculty women; development of an inquiry-based workshop on Antarctic paleoclimate with the Division of Education, KU Natural History Museum; continuing support of workshops for middle school girls in science via the Expanding Your Horizons Program, Emporia State University, and the TRIO program, KU; exploring Antarctic geosciences through video/computer links from McMurdo Station and satellite phone conferences from the field with K-12 science classes in Wisconsin and Kansas, and through participation in the NSF Research Experiences for Teachers program at the University of Wisconsin.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "FIELD SURVEYS; LABORATORY; Transanatarctic Basin; Paleobotany; Fossil Plants; FIELD INVESTIGATION; Sedimentology; Late Paleozoic Ice Age; Not provided; Central Transantarctic Mountains; Beardmore Glacier", "locations": "Transanatarctic Basin; Central Transantarctic Mountains; Beardmore Glacier", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Instrumentation and Support; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN; PHANEROZOIC \u003e MESOZOIC \u003e TRIASSIC; PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN; PHANEROZOIC \u003e MESOZOIC \u003e TRIASSIC", "persons": "Isbell, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "PI website", "repositories": "PI website; PRR", "science_programs": null, "south": null, "title": "Collaborative Research: Antarctic Ecosystems across the Permian-Triassic Boundary: Integrating Paleobotany, Sedimentology, and Paleoecology", "uid": "p0000372", "west": null}, {"awards": "9814692 Kellogg, Thomas", "bounds_geometry": "POLYGON((-179.99342 -58.74225,-143.994734 -58.74225,-107.996048 -58.74225,-71.997362 -58.74225,-35.998676 -58.74225,0.000010000000003 -58.74225,35.998696 -58.74225,71.997382 -58.74225,107.996068 -58.74225,143.994754 -58.74225,179.99344 -58.74225,179.99344 -60.716231,179.99344 -62.690212,179.99344 -64.664193,179.99344 -66.638174,179.99344 -68.612155,179.99344 -70.586136,179.99344 -72.560117,179.99344 -74.534098,179.99344 -76.508079,179.99344 -78.48206,143.994754 -78.48206,107.996068 -78.48206,71.997382 -78.48206,35.998696 -78.48206,0.000010000000003 -78.48206,-35.998676 -78.48206,-71.997362 -78.48206,-107.996048 -78.48206,-143.994734 -78.48206,-179.99342 -78.48206,-179.99342 -76.508079,-179.99342 -74.534098,-179.99342 -72.560117,-179.99342 -70.586136,-179.99342 -68.612155,-179.99342 -66.638174,-179.99342 -64.664193,-179.99342 -62.690212,-179.99342 -60.716231,-179.99342 -58.74225))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001992", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0001"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a marine geological investigation of the Amundsen Sea region toward a better understanding of the deglaciation history of the West Antarctic Ice Sheet (WAIS). The WAIS may be inherently unstable because it is the last marine-based ice sheet in the world. Unlike other embayments in West Antarctica, major ice streams draining into the Amundsen Sea from the interior of the WAIS lack buttressing ice shelves. Mass balance data for the distal portions of these ice streams (Pine Island and Thwaites glaciers) appear to be in balance or may be becoming negative. Because both ice streams have beds that slope downward toward the center of the ice sheet, grounding-line recession resulting from either continued thinning or sea-level rise could trigger irreversible grounding-line retreat, leading to ice-sheet disintegration and consequent global sea-level rise. The limited marine geological and geophysical data available from the Amundsen Sea suggest that grounded ice or an ice shelf occupied the inner Amundsen Sea embayment until perhaps as recently as 1000 to 2000 years ago, and this ice may have retreated rapidly in historic time. This project, a study of the marine geology and geophysics of the Amundsen Sea continental shelf from 100 degrees W to 130 degrees W, is designed to address the Amundsen Sea part of WAIS Science Plan Priority Goal H2: \"What is the deglaciation history in the eastern Ross, the Bellingshausen and Amundsen Seas?\" This project will examine bathymetric data of the Amundsen Sea continental shelf to determine the positions of former ice-steam channels, and to aid in choosing sites for sediment coring. Single-channel seismic reflection studies will be conducted in order to determine sediment-thickness patterns, to aid in choice of coring sites, and to locate and identify morphologic features indicative of former grounded ice (e.g., moraines, scours, flutes, striations, till wedges and deltas, etc.). Coring will be concentrated along former ice flow-lines. Core samples will be analyzed in the laboratory for sedimentology, to determine whether of not basal tills are present (indicating former grounded ice and its former extent), and for calcareous and siliceous microfossils. The chronology of grounding-line and ice-shelf retreat from a presumed Last Glacial Maximum position near the shelf break will be established using accelerator mass spectrometry (AMS) carbon-14 dates of acid-insoluble particulate organic carbon. This project will share ship time in the Amundsen Sea with a physical oceanographic project. Marine geologic data and samples collected will be integrated with findings of other investigators toward developing a comprehensive interpretation of the history of the WAIS.", "east": 179.99344, "geometry": "POINT(0.000010000000003 -68.612155)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -58.74225, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kellogg, Thomas; Jacobs, Stanley", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -78.48206, "title": "Glacial History of the Amundsen Sea Shelf", "uid": "p0000620", "west": -179.99342}, {"awards": "0538475 Bart, Philip", "bounds_geometry": "POLYGON((-180 -75,-178 -75,-176 -75,-174 -75,-172 -75,-170 -75,-168 -75,-166 -75,-164 -75,-162 -75,-160 -75,-160 -75.3,-160 -75.6,-160 -75.9,-160 -76.2,-160 -76.5,-160 -76.8,-160 -77.1,-160 -77.4,-160 -77.7,-160 -78,-162 -78,-164 -78,-166 -78,-168 -78,-170 -78,-172 -78,-174 -78,-176 -78,-178 -78,-180 -78,-180 -77.7,-180 -77.4,-180 -77.1,-180 -76.8,-180 -76.5,-180 -76.2,-180 -75.9,-180 -75.6,-180 -75.3,-180 -75))", "dataset_titles": "NBP0802 and NBP0803 Sediment samples (full data link not provided); NBP0802 data; NBP0803 data", "datasets": [{"dataset_uid": "000123", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0803 data", "url": "https://www.rvdata.us/search/cruise/NBP0803"}, {"dataset_uid": "000122", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0802 data", "url": "https://www.rvdata.us/search/cruise/NBP0802"}, {"dataset_uid": "000138", "doi": "", "keywords": null, "people": null, "repository": "AMGRF", "science_program": null, "title": "NBP0802 and NBP0803 Sediment samples (full data link not provided)", "url": "http://www.arf.fsu.edu/"}], "date_created": "Thu, 29 Mar 2007 00:00:00 GMT", "description": "This project determines the recent history of the West Antarctic Ice Sheet (WAIS) through a multidisciplinary study of the seabed in the Ross Sea of Antarctica. WAIS is perhaps the world\u0027s most critical ice sheet to sea level rise dut to near-future global warming. its history has been a key focus for the past decade, but there are significant questions as to whether WAIS was stable during the last glacial maximum--about 20,000 years ago--or undergoing advance and retreat. This project studies grounding zone translantions in Eastern Basin to constrain WAIS movements using a multidisciplinary approach that integrates multibeam bathymetry, seismic stratigraphy, sedimentology, diatom biostratigraphy, radiocarbon dating, 10Be concentration analyses, and numerical modeling.\u003cbr/\u003e\u003cbr/\u003eThe broader impacts include improving society\u0027s understanding of sea level rise linked to global warming; postdoctoral, graduate, and undergraduate education; and expanding the participation of groups underrepresented in Earth sciences through links with LSU\u0027s Geoscience Alliance to Encourage Minority Participation.", "east": -160.0, "geometry": "POINT(-170 -76.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e SEISMIC REFLECTION PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e WATERGUNS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES", "is_usap_dc": true, "keywords": "Ross Sea; R/V NBP; Ice Sheet; Last Glacial Maximum; Seismic Stratigraphy", "locations": "Ross Sea", "north": -75.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "Bart, Philip; Tomkin, Jonathan", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "AMGRF; R2R", "science_programs": null, "south": -78.0, "title": "WAIS grounding-zone migrations in Eastern Basin, Ross Sea and the LGM dilemma: New strategies to resolve the style and timing of outer continental shelf grounding events", "uid": "p0000539", "west": -180.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Collaborative Research: Testing the Linchpin of WAIS Collapse with Diatoms and IRD in Pleistocene and Late Pliocene Strata of the Resolution Drift, Amundsen Sea, Antarctica
|
1939139 1939146 |
2024-02-20 | Scherer, Reed Paul; Siddoway, Christine | Part I, Non-technical Abstract Concerns that the West Antarctic Ice Sheet (WAIS) might be susceptible to releasing its ice as giant icebergs into the Southern Ocean due to a warming climate, raising global sea level, were first expressed more than 40 years ago. To best-assess this threat, scientists need to know whether such events occurred in the geologically recent past, during warm intervals of past glacial-interglacial cycles. Ocean drilling near the most vulnerable sector of the WAIS, in 2019, yielded seafloor geologic records demonstrating times when icebergs dropped large volumes of sands and pebbles, called ice-rafted detritus (IRD) in deep water of the Amundsen Sea. Occurring together with IRD that was eroded from bedrock beneath the ice sheets, there are abundant microfossils of diatoms (algal plankton), which indicate high biological productivity in the open ocean. The new sediment cores provide a complete, uninterrupted record of a time of dramatic fluctuations of ice sheet extent that occurred over the last 3 million years. Therefore, they provide the means to obtain clear answers to the question whether ice sheet collapse occurred in the past and offering clues to its potential future. This project will investigate sediment intervals where IRD coincides with evidence of high diatom production, to test whether these two criteria indicate rapid ice sheet collapse. Geochemical analysis of IRD pebbles will help trace the source of the icebergs to likely on-land sites. By analyzing conditions of high diatom and IRD accumulation in deep ocean sediment, where local coastal influences can be avoided, we will assess oceanographic and climatic conditions associated with past ice sheet collapse events. Diatoms provide powerful evidence of temperature and ocean productivity changes in the past, that, when linked to time, can translate into rates of ice sheet drawdown. These results will provide critical data for designing, constraining and testing the next suite computer models that can determine the likelihood and timing of future ice sheet collapse in a warming world. The project will include training of undergraduate and graduate students from diverse backgrounds, and the public will be introduced to Antarctic science and engaged through several different outreach efforts. Part 2, Technical Abstract New drillcores from the Amundsen Sea, Antarctica (IODP Expedition 379) contain a continuous record of oceanographic changes and iceberg rafted debris (IRD) spanning the last 5 million years. This study aims to identify the signature of retreat/collapse of the West Antarctic Ice Sheet (WAIS) in these continental margin, deep-sea sediments by quantitatively analyzing, in detail, diatom and IRD records across glacial-interglacial lithostratigraphic transitions to establish the timing and frequency of Late Pliocene and Pleistocene WAIS collapse events. The investigators will secure age constraints and diagnostic observations of marine paleoenvironmental conditions for selected interglacial intervals of cores from sites U1532 and U1533, using high resolution micropaleontology of diatom assemblages coupled with microstratigraphic analysis of IRD depositional events, while petrography, geochronology and thermochronology of iceberg rafted clasts will provide evidence of iceberg sources and pathways. Depositional paleotemperatures will be assessed via a new paleotemperature proxy based on quantitative assessment of morphologic changes in the dominant Southern Ocean diatom Fragilariopsis kerguelensis. Their results will contribute to parameterization of new ice sheet models that seek to reconstruct and forecast West Antarctic Ice Sheet behavior. This project will directly contribute to undergraduate education at an undergraduate-only college and at a public university that serves a demographic typified by first generation university students and underrepresented groups. Spanning geology, geochemistry, sedimentology, paleontology and paleoceanography, the proposed work will allow undergraduate students to develop diverse skills through hands-on research within a collaborative team that is dedicated to societally relevant research. The two graduate students will conduct original research and work alongside/mentor undergraduates, making for a well-rounded research experience that prepares them for success in future academic or employment sectors. The discoveries that come from this deep-sea record from West Antarctica will be communicated by students and investigators at national and international conferences and an array of public science outreach events. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-120 -66,-117.5 -66,-115 -66,-112.5 -66,-110 -66,-107.5 -66,-105 -66,-102.5 -66,-100 -66,-97.5 -66,-95 -66,-95 -67.1,-95 -68.2,-95 -69.3,-95 -70.4,-95 -71.5,-95 -72.6,-95 -73.7,-95 -74.8,-95 -75.9,-95 -77,-97.5 -77,-100 -77,-102.5 -77,-105 -77,-107.5 -77,-110 -77,-112.5 -77,-115 -77,-117.5 -77,-120 -77,-120 -75.9,-120 -74.8,-120 -73.7,-120 -72.6,-120 -71.5,-120 -70.4,-120 -69.3,-120 -68.2,-120 -67.1,-120 -66)) | POINT(-107.5 -71.5) | false | false | ||||||||
Collaborative Research: Permian and Triassic Icehouse to Greenhouse Paleoenvironments and Paleobotany in the Shackleton Glacier Area, Antarctica
|
1443557 |
2021-12-31 | Isbell, John | The focus of this collaborative project is to collect fossil plants, wood, and sedimentary and chemical information from rocks in the Shackleton Glacier (SHK) area of Antarctica. This information will be used to reconstruct plant life and environments during the Permian and Triassic (~295-205 million years ago) in Antarctica. This time interval is important to study as Antarctica experienced a large glaciation in the Permian followed by deglaciation and recovery of plant and animal life, only to be subjected to the largest extinction in Earth history at the end of the Permian. After the extinction events, the climate in Antarctica continued to warm extensively and there were forests growing close to the paleo-South Pole. These ancient environments provide a natural laboratory in which to study the effects of climate change on plant life. The results of this project will advance the field in the areas of changing sedimentary patterns during global cooling and warming, as well as plant evolution during times following glaciation and during global warmth. This project will study the extent of the Gondwana glaciation in the SHK area, the invasion and subsequent flourishing of life following glacial retreat, and the eventual recovery of plant life after Late Permian extinction events. Only in Antarctica does a complete polar-to-near-polar succession occur across this climatic and biologic transition. The SHK area is an important one as it is one of the few regions in the world where the Permian-Triassic boundary (PTB) is exposed within terrestrial rocks. The field and lab work for this project is organized around three hypotheses that address fundamental issues in Earth history, including changes in the extent and diversity of flora during the Permian build up to the Late Paleozoic Ice Age, the possible diachronous nature of the PTB, and that poor fossil preservation during the Early Triassic has given a false impression that Antarctica was devoid of plants during this time. The hypotheses will be tested by integrating various types of paleobotanical approaches with detailed sedimentology, stratigraphy, and geochemistry. Compression floras and petrified wood will be collected (constrained by stratigraphy) both quantitatively and qualitatively in order to obtain biodiversity and abundance data, and as a data source for paleoecological analysis. Standard sedimentologic and stratigraphic analyses will be performed, as well as paleosol analyses, including mineralogic and major- and trace-element geochemistry. Collections will also be made for U-Pb zircon geochronology to better constrain geologic and biotic events through time. Results of the project will be incorporated into educational and outreach activities that are designed to include women and under-represented groups in the excitement of Antarctic earth sciences and paleontology, including workshops in Kansas and Wisconsin, as well as links to science classes during fieldwork. | POLYGON((-180 -85,-177.1 -85,-174.2 -85,-171.3 -85,-168.4 -85,-165.5 -85,-162.6 -85,-159.7 -85,-156.8 -85,-153.9 -85,-151 -85,-151 -85.2,-151 -85.4,-151 -85.6,-151 -85.8,-151 -86,-151 -86.2,-151 -86.4,-151 -86.6,-151 -86.8,-151 -87,-153.9 -87,-156.8 -87,-159.7 -87,-162.6 -87,-165.5 -87,-168.4 -87,-171.3 -87,-174.2 -87,-177.1 -87,180 -87,179 -87,178 -87,177 -87,176 -87,175 -87,174 -87,173 -87,172 -87,171 -87,170 -87,170 -86.8,170 -86.6,170 -86.4,170 -86.2,170 -86,170 -85.8,170 -85.6,170 -85.4,170 -85.2,170 -85,171 -85,172 -85,173 -85,174 -85,175 -85,176 -85,177 -85,178 -85,179 -85,-180 -85)) | POINT(-170.5 -86) | false | false | ||||||||
West Antarctic Ice-sheet Change and Paleoceanography in the Amundsen Sea Across the Pliocene Climatic Optimum
|
2114839 |
2021-08-25 | Passchier, Sandra | The West Antarctic Ice Sheet is the most vulnerable polar ice mass to warming and already a major contributor to global mean sea level rise. Its fate in the light of prolonged warming is a topic of major uncertainty. Accelerated sea level rise from ice mass loss in the polar regions is a major concern as a cause of increased coastal flooding affecting millions of people. This project will disclose a unique geological archive buried beneath the seafloor off the Amundsen Sea, Antarctica, which will reveal how the West Antarctic Ice Sheet behaved in a warmer climate in the past. The data and insights can be used to inform ice-sheet and ocean modeling used in coastal policy development. The project will also support the development of a competitive U.S. STEM workforce. Online class exercises for introductory geology classes will provide a gateway for qualified students into undergraduate research programs and this project will enhance the participation of women in science by funding the education of current female Ph.D. students. The project targets the long-term variability of the West Antarctic Ice Sheet over several glacial-interglacial cycles in the early Pliocene sedimentary record drilled by the International Ocean Discovery Program (IODP) Expedition 379 in the Amundsen Sea. Data collection includes 1) the sand provenance of ice-rafted debris and shelf diamictites and its sources within the Amundsen Sea and Antarctic Peninsula region; 2) sedimentary structures and sortable silt calculations from particle size records and reconstructions of current intensities and interactions; and 3) the bulk provenance of continental rise sediments compared to existing data from the Amundsen Sea shelf with investigations into downslope currents as pathways for Antarctic Bottom Water formation. The results are analyzed within a cyclostratigraphic framework of reflectance spectroscopy and colorimetry (RSC) and X-ray fluorescence scanner (XRF) data to gain insight into orbital forcing of the high-latitude processes. The early Pliocene Climatic Optimum (PCO) ~4.5-4.1 Ma spans a major warm period recognized in deep-sea stable isotope and sea-surface temperature records. This period also coincides with a global mean sea level highstand of > 20 m requiring contributions in ice mass loss from Antarctica. The following hypotheses will be tested: 1) that the West Antarctic Ice Sheet retreated from the continental shelf break through an increase in sub iceshelf melt and iceberg calving at the onset of the PCO ~4.5 Ma, and 2) that dense shelf water cascaded down through slope channels after ~4.5 Ma as the continental shelf became exposed during glacial terminations. The project will reveal for the first time how the West Antarctic Ice Sheet operated in a warmer climate state prior to the onset of the current “icehouse” period ~3.3 Ma. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | ||||||||
Collaborative Research: Resolving earth structure influence on ice-sheet stability in the Wilkes
Subglacial Basin (RESISSt)
|
1914743 1914668 1914767 1914698 |
2021-06-25 | Becker, Thorsten; Binder, April; Hansen, Samantha; Aschwanden, Andy; Winberry, Paul |
|
Part I: Nontechnical Earths warming climate has the potential to drive widespread collapse of glaciers and ice sheets across the planet, driving global sea-level rise. Understanding both the rate and magnitude of such changes is essential for predicting future sea-level and how it will impact infrastructure and property. Collapse of the ice sheets of Antarctica has the potential to raise global sea-level by up to 60 meters. However, not all regions of Antarctica are equally suspectable to collapse. One area with potential for collapse is the Wilkes Subglacial Basin in East Antarctica, a region twice the size of California's Central Valley. Geologic evidence indicates that the ice-sheet in this region has retreated significantly in response to past global warming events. While the geologic record clearly indicates ice-sheets in this area are vulnerable, the rate and magnitude of any future retreat will be influenced significantly by geology of the region. In particular, ice-sheets sitting above warm Earth will collapse more quickly during warming climate. Constraining the geologic controls on the stability of the ice-sheets of the Wilkes Subglacial Basin remains challenging since the ice-sheet hides the geology beneath kilometers of ice. As a step in understanding the potential for future ice loss in the Wilkes Subglacial Basin this project will conduct geophysical analysis of existing data to better constrain the geology of the region. These results will constrain new models designed to understand the tectonics that control the behavior of the ice-sheets in the region. These new models will highlight the geological properties that exert the most significant control on the future of the ice-sheets of the Wilkes Subglacial Basin. Such insights are critical to guide future efforts aimed at collecting in-situ observations needed to more fully constrain Antarctica's potential for future sea-level. Part II: Technical Description In polar environments, inward-sloping marine basins are susceptible to an effect known as the marine ice-sheet instability (MISI): run-away ice stream drainage caused by warm ocean water eroding the ice shelf from below. The magnitude and time-scale of the ice-sheet response strongly depend on the physical conditions along the ice-bed interface, which are, to a first order, controlled by the tectonic evolution of the basin. Topography, sedimentology, geothermal heat flux, and mantle viscosity all play critical roles in ice-sheet stability. However, in most cases, these solid-Earth parameters for regions susceptible to the MISI are largely unknown. One region with potential susceptibility to MISI is the Wilkes Subglacial Basin of East Antarctica. The project will provide an integrated investigation of the Wilkes Subglacial Basin, combining geophysical analyses with both mantle flow and ice-sheet modeling to understand the stability of the ice sheet in this region, and the associated potential sea level rise. The work will be focused on four primary objectives: (1) to develop an improved tectonic model for the region based on existing seismic observations as well as existing geophysical and geological data; (2) to use the new tectonic model and seismic data to estimate the thermal, density, and viscosity structure of the upper mantle and to develop a heat flow map for the WSB; (3) to simulate mantle flow and to assess paleotopography based on our density and viscosity constraints; and (4) to assess ice-sheet behavior by modeling (a) past ice-sheet stability using our paleotopography estimates and (b) future ice-sheet stability using our heat flow and mantle viscosity estimates. Ultimately, the project will generate improved images of the geophysical structure beneath the WSB that will allow us to assess the geodynamic origin for this region and to assess the influence of geologic parameters on past, current, and future ice-sheet behavior. These efforts will then highlight areas and geophysical properties that should be the focus of future geophysical deployments. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((90 -65,99 -65,108 -65,117 -65,126 -65,135 -65,144 -65,153 -65,162 -65,171 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,171 -90,162 -90,153 -90,144 -90,135 -90,126 -90,117 -90,108 -90,99 -90,90 -90,90 -87.5,90 -85,90 -82.5,90 -80,90 -77.5,90 -75,90 -72.5,90 -70,90 -67.5,90 -65)) | POINT(135 -77.5) | false | false | |||||||
Collaborative Research: Antarctic Ecosystems across the Permian-Triassic Boundary: Integrating Paleobotany, Sedimentology, and Paleoecology
|
0943934 0943935 |
2014-09-23 | Isbell, John | Intellectual Merit:<br/>The focus of this proposal is to collect fossil plants and palynomorphs from Permian-Triassic (P-T) rocks of the central Transantarctic Mountains (CTM), together with detailed data on sedimentologic and paleoecologic depositional environments. Fossil plants are important climate proxies that offer a unique window into the past, and the CTM fossils are an important source of data on the ways that plants responded to a strongly seasonal, polar light regime during a time of global change. The proposed project uses paleobotanical expertise, integrated with detailed sedimentology and stratigraphy, to reconstruct Permian-Triassic plant communities and their paleoenvironments. This interdisciplinary approach could uncover details of Antarctica?s complex late Paleozoic and Mesozoic environmental and climatic history which included: 1) deglaciation, 2) development and evolution of a post-glacial landscape and biota, 3) environmental and biotic change associated with the end-Permian mass extinction, 4) environmental recovery in the earliest Triassic, 5) strong, possible runaway Triassic greenhouse, and 6) widespread orogenesis and development of a foreland basin system. The PIs will collect compression floras both quantitatively and qualitatively to obtain biodiversity and abundance data. Since silicified wood is also present, the PIs will analyze tree rings and growth in a warm, high-latitude environment for which there is no modern analogue. Fossil plants from the CTM can provide biological and environmental information to: 1) interpret paleoclimate when Gondwana moved from icehouse to greenhouse conditions; 2) trace floral evolution across the P-T boundary; 3) reconstruct Antarctic plant life; 4) further understanding of plant adaptations to high latitudes. The Intellectual Merit of the research includes: 1) tracing floral evolution after the retreat of glaciers; 2) examining floral composition and diversity across the PTB; and 3) obtaining data on the recovery of these ecosystems in the Early Triassic, as well as changes in floral cover and diversity in the Early-Middle Triassic. Antarctica is the only place on Earth that includes extensive outcrops of terrestrial rocks, combined with widespread and well-preserved plant fossils, which spans this crucial time period.<br/><br/>Broader impacts:<br/>The broader impacts include public outreach; teaching, and mentoring of women and underrepresented students; mentoring graduate student, postdoctoral, and new faculty women; development of an inquiry-based workshop on Antarctic paleoclimate with the Division of Education, KU Natural History Museum; continuing support of workshops for middle school girls in science via the Expanding Your Horizons Program, Emporia State University, and the TRIO program, KU; exploring Antarctic geosciences through video/computer links from McMurdo Station and satellite phone conferences from the field with K-12 science classes in Wisconsin and Kansas, and through participation in the NSF Research Experiences for Teachers program at the University of Wisconsin. | None | None | false | false | ||||||||
Glacial History of the Amundsen Sea Shelf
|
9814692 |
2010-05-04 | Kellogg, Thomas; Jacobs, Stanley |
|
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a marine geological investigation of the Amundsen Sea region toward a better understanding of the deglaciation history of the West Antarctic Ice Sheet (WAIS). The WAIS may be inherently unstable because it is the last marine-based ice sheet in the world. Unlike other embayments in West Antarctica, major ice streams draining into the Amundsen Sea from the interior of the WAIS lack buttressing ice shelves. Mass balance data for the distal portions of these ice streams (Pine Island and Thwaites glaciers) appear to be in balance or may be becoming negative. Because both ice streams have beds that slope downward toward the center of the ice sheet, grounding-line recession resulting from either continued thinning or sea-level rise could trigger irreversible grounding-line retreat, leading to ice-sheet disintegration and consequent global sea-level rise. The limited marine geological and geophysical data available from the Amundsen Sea suggest that grounded ice or an ice shelf occupied the inner Amundsen Sea embayment until perhaps as recently as 1000 to 2000 years ago, and this ice may have retreated rapidly in historic time. This project, a study of the marine geology and geophysics of the Amundsen Sea continental shelf from 100 degrees W to 130 degrees W, is designed to address the Amundsen Sea part of WAIS Science Plan Priority Goal H2: "What is the deglaciation history in the eastern Ross, the Bellingshausen and Amundsen Seas?" This project will examine bathymetric data of the Amundsen Sea continental shelf to determine the positions of former ice-steam channels, and to aid in choosing sites for sediment coring. Single-channel seismic reflection studies will be conducted in order to determine sediment-thickness patterns, to aid in choice of coring sites, and to locate and identify morphologic features indicative of former grounded ice (e.g., moraines, scours, flutes, striations, till wedges and deltas, etc.). Coring will be concentrated along former ice flow-lines. Core samples will be analyzed in the laboratory for sedimentology, to determine whether of not basal tills are present (indicating former grounded ice and its former extent), and for calcareous and siliceous microfossils. The chronology of grounding-line and ice-shelf retreat from a presumed Last Glacial Maximum position near the shelf break will be established using accelerator mass spectrometry (AMS) carbon-14 dates of acid-insoluble particulate organic carbon. This project will share ship time in the Amundsen Sea with a physical oceanographic project. Marine geologic data and samples collected will be integrated with findings of other investigators toward developing a comprehensive interpretation of the history of the WAIS. | POLYGON((-179.99342 -58.74225,-143.994734 -58.74225,-107.996048 -58.74225,-71.997362 -58.74225,-35.998676 -58.74225,0.000010000000003 -58.74225,35.998696 -58.74225,71.997382 -58.74225,107.996068 -58.74225,143.994754 -58.74225,179.99344 -58.74225,179.99344 -60.716231,179.99344 -62.690212,179.99344 -64.664193,179.99344 -66.638174,179.99344 -68.612155,179.99344 -70.586136,179.99344 -72.560117,179.99344 -74.534098,179.99344 -76.508079,179.99344 -78.48206,143.994754 -78.48206,107.996068 -78.48206,71.997382 -78.48206,35.998696 -78.48206,0.000010000000003 -78.48206,-35.998676 -78.48206,-71.997362 -78.48206,-107.996048 -78.48206,-143.994734 -78.48206,-179.99342 -78.48206,-179.99342 -76.508079,-179.99342 -74.534098,-179.99342 -72.560117,-179.99342 -70.586136,-179.99342 -68.612155,-179.99342 -66.638174,-179.99342 -64.664193,-179.99342 -62.690212,-179.99342 -60.716231,-179.99342 -58.74225)) | POINT(0.000010000000003 -68.612155) | false | false | |||||||
WAIS grounding-zone migrations in Eastern Basin, Ross Sea and the LGM dilemma: New strategies to resolve the style and timing of outer continental shelf grounding events
|
0538475 |
2007-03-29 | Bart, Philip; Tomkin, Jonathan |
|
This project determines the recent history of the West Antarctic Ice Sheet (WAIS) through a multidisciplinary study of the seabed in the Ross Sea of Antarctica. WAIS is perhaps the world's most critical ice sheet to sea level rise dut to near-future global warming. its history has been a key focus for the past decade, but there are significant questions as to whether WAIS was stable during the last glacial maximum--about 20,000 years ago--or undergoing advance and retreat. This project studies grounding zone translantions in Eastern Basin to constrain WAIS movements using a multidisciplinary approach that integrates multibeam bathymetry, seismic stratigraphy, sedimentology, diatom biostratigraphy, radiocarbon dating, 10Be concentration analyses, and numerical modeling.<br/><br/>The broader impacts include improving society's understanding of sea level rise linked to global warming; postdoctoral, graduate, and undergraduate education; and expanding the participation of groups underrepresented in Earth sciences through links with LSU's Geoscience Alliance to Encourage Minority Participation. | POLYGON((-180 -75,-178 -75,-176 -75,-174 -75,-172 -75,-170 -75,-168 -75,-166 -75,-164 -75,-162 -75,-160 -75,-160 -75.3,-160 -75.6,-160 -75.9,-160 -76.2,-160 -76.5,-160 -76.8,-160 -77.1,-160 -77.4,-160 -77.7,-160 -78,-162 -78,-164 -78,-166 -78,-168 -78,-170 -78,-172 -78,-174 -78,-176 -78,-178 -78,-180 -78,-180 -77.7,-180 -77.4,-180 -77.1,-180 -76.8,-180 -76.5,-180 -76.2,-180 -75.9,-180 -75.6,-180 -75.3,-180 -75)) | POINT(-170 -76.5) | false | false |