{"dp_type": "Project", "free_text": "Sabrina Coast"}
[{"awards": "1939146 Siddoway, Christine; 1939139 Scherer, Reed", "bounds_geometry": "POLYGON((-120 -66,-117.5 -66,-115 -66,-112.5 -66,-110 -66,-107.5 -66,-105 -66,-102.5 -66,-100 -66,-97.5 -66,-95 -66,-95 -67.1,-95 -68.2,-95 -69.3,-95 -70.4,-95 -71.5,-95 -72.6,-95 -73.7,-95 -74.8,-95 -75.9,-95 -77,-97.5 -77,-100 -77,-102.5 -77,-105 -77,-107.5 -77,-110 -77,-112.5 -77,-115 -77,-117.5 -77,-120 -77,-120 -75.9,-120 -74.8,-120 -73.7,-120 -72.6,-120 -71.5,-120 -70.4,-120 -69.3,-120 -68.2,-120 -67.1,-120 -66))", "dataset_titles": "Pliocene diatom abundance, IODP 379-U1532; Population morphometrics of the Southern Ocean diatom Fragilariopsis kerguelensis related to Sea Surface Temperature; U-Pb zircon and apatite fission track dates for IRD (ice-rafted cobbles and mineral grains) from IODP379 drill sites", "datasets": [{"dataset_uid": "601804", "doi": "10.15784/601804", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Oceanography; Sabrina Coast; Sea Surface Temperature; Southern Ocean", "people": "Ruggiero, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Population morphometrics of the Southern Ocean diatom Fragilariopsis kerguelensis related to Sea Surface Temperature", "url": "https://www.usap-dc.org/view/dataset/601804"}, {"dataset_uid": "601769", "doi": null, "keywords": "Antarctica; Biogenic Silica; Diatom", "people": "Scherer, Reed Paul; Furlong, Heather", "repository": "USAP-DC", "science_program": null, "title": "Pliocene diatom abundance, IODP 379-U1532", "url": "https://www.usap-dc.org/view/dataset/601769"}, {"dataset_uid": "601828", "doi": "10.15784/601828", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Geochronology; Marie Byrd Land; Subglacial Bedrock; Thermochronology", "people": "Siddoway, Christine", "repository": "USAP-DC", "science_program": null, "title": "U-Pb zircon and apatite fission track dates for IRD (ice-rafted cobbles and mineral grains) from IODP379 drill sites", "url": "https://www.usap-dc.org/view/dataset/601828"}], "date_created": "Tue, 20 Feb 2024 00:00:00 GMT", "description": "Part I, Non-technical Abstract \u003cbr/\u003eConcerns that the West Antarctic Ice Sheet (WAIS) might be susceptible to releasing its ice as giant icebergs into the Southern Ocean due to a warming climate, raising global sea level, were first expressed more than 40 years ago. To best-assess this threat, scientists need to know whether such events occurred in the geologically recent past, during warm intervals of past glacial-interglacial cycles. Ocean drilling near the most vulnerable sector of the WAIS, in 2019, yielded seafloor geologic records demonstrating times when icebergs dropped large volumes of sands and pebbles, called ice-rafted detritus (IRD) in deep water of the Amundsen Sea. Occurring together with IRD that was eroded from bedrock beneath the ice sheets, there are abundant microfossils of diatoms (algal plankton), which indicate high biological productivity in the open ocean. The new sediment cores provide a complete, uninterrupted record of a time of dramatic fluctuations of ice sheet extent that occurred over the last 3 million years. Therefore, they provide the means to obtain clear answers to the question whether ice sheet collapse occurred in the past and offering clues to its potential future. This project will investigate sediment intervals where IRD coincides with evidence of high diatom production, to test whether these two criteria indicate rapid ice sheet collapse. Geochemical analysis of IRD pebbles will help trace the source of the icebergs to likely on-land sites. By analyzing conditions of high diatom and IRD accumulation in deep ocean sediment, where local coastal influences can be avoided, we will assess oceanographic and climatic conditions associated with past ice sheet collapse events. Diatoms provide powerful evidence of temperature and ocean productivity changes in the past, that, when linked to time, can translate into rates of ice sheet drawdown. These results will provide critical data for designing, constraining and testing the next suite computer models that can determine the likelihood and timing of future ice sheet collapse in a warming world. The project will include training of undergraduate and graduate students from diverse backgrounds, and the public will be introduced to Antarctic science and engaged through several different outreach efforts.\u003cbr/\u003e\u003cbr/\u003ePart 2, Technical Abstract\u003cbr/\u003e\u003cbr/\u003eNew drillcores from the Amundsen Sea, Antarctica (IODP Expedition 379) contain a continuous record of oceanographic changes and iceberg rafted debris (IRD) spanning the last 5 million years. This study aims to identify the signature of retreat/collapse of the West Antarctic Ice Sheet (WAIS) in these continental margin, deep-sea sediments by quantitatively analyzing, in detail, diatom and IRD records across glacial-interglacial lithostratigraphic transitions to establish the timing and frequency of Late Pliocene and Pleistocene WAIS collapse events. The investigators will secure age constraints and diagnostic observations of marine paleoenvironmental conditions for selected interglacial intervals of cores from sites U1532 and U1533, using high resolution micropaleontology of diatom assemblages coupled with microstratigraphic analysis of IRD depositional events, while petrography, geochronology and thermochronology of iceberg rafted clasts will provide evidence of iceberg sources and pathways. Depositional paleotemperatures will be assessed via a new paleotemperature proxy based on quantitative assessment of morphologic changes in the dominant Southern Ocean diatom Fragilariopsis kerguelensis. Their results will contribute to parameterization of new ice sheet models that seek to reconstruct and forecast West Antarctic Ice Sheet behavior. This project will directly contribute to undergraduate education at an undergraduate-only college and at a public university that serves a demographic typified by first generation university students and underrepresented groups. Spanning geology, geochemistry, sedimentology, paleontology and paleoceanography, the proposed work will allow undergraduate students to develop diverse skills through hands-on research within a collaborative team that is dedicated to societally relevant research. The two graduate students will conduct original research and work alongside/mentor undergraduates, making for a well-rounded research experience that prepares them for success in future academic or employment sectors. The discoveries that come from this deep-sea record from West Antarctica will be communicated by students and investigators at national and international conferences and an array of public science outreach events.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -95.0, "geometry": "POINT(-107.5 -71.5)", "instruments": null, "is_usap_dc": true, "keywords": "ICEBERGS; SEA SURFACE TEMPERATURE; Amundsen Sea; MICROFOSSILS", "locations": "Amundsen Sea", "north": -66.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY; PHANEROZOIC \u003e CENOZOIC \u003e NEOGENE \u003e PLIOCENE", "persons": "Scherer, Reed Paul; Siddoway, Christine", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Collaborative Research: Testing the Linchpin of WAIS Collapse with Diatoms and IRD in Pleistocene and Late Pliocene Strata of the Resolution Drift, Amundsen Sea, Antarctica", "uid": "p0010451", "west": -120.0}, {"awards": "1744970 Shevenell, Amelia", "bounds_geometry": "POLYGON((120 -66,120.1 -66,120.2 -66,120.3 -66,120.4 -66,120.5 -66,120.6 -66,120.7 -66,120.8 -66,120.9 -66,121 -66,121 -66.1,121 -66.2,121 -66.3,121 -66.4,121 -66.5,121 -66.6,121 -66.7,121 -66.8,121 -66.9,121 -67,120.9 -67,120.8 -67,120.7 -67,120.6 -67,120.5 -67,120.4 -67,120.3 -67,120.2 -67,120.1 -67,120 -67,120 -66.9,120 -66.8,120 -66.7,120 -66.6,120 -66.5,120 -66.4,120 -66.3,120 -66.2,120 -66.1,120 -66))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 22 Jun 2021 00:00:00 GMT", "description": "At present, Antarctica\u2019s glaciers are melting as the Southern Ocean warms. While glacial retreat in West Antarctica is linked to ocean warming, less is known about the response of East Antarctica\u2019s glaciers. Totten Glacier, located on the Sabrina Coast, East Antarctica is presently retreating. Totten\u2019s retreat is important because it is associated with warm ocean waters and because the glacier drains part of the East Antarctic Ice Sheet that contains enough ice to raise global sea levels ~3.5 meters. Mud accumulating on the seafloor around Antarctica is composed of sediment from the adjacent continent, as well as the skeletons and debris from microscopic marine organisms. As mud accumulates, so does a record of past environmental changes, including ocean temperatures and the advance and retreat of glaciers. Scientists use a variety of physical and chemical analyses to determine how long ago this mud was deposited, the temperature of the ocean at that location through time, and the relative location of glacial ice. In this project, researchers from the University of South Florida will refine and test new geochemical thermometers to better understand the influence of ocean temperatures on East Antarctic glacier extent over the last ~16,000 years. Results will be integrated into ice sheet and climate models to improve the accuracy of predictions.", "east": 121.0, "geometry": "POINT(120.5 -66.5)", "instruments": null, "is_usap_dc": true, "keywords": "SEDIMENTS; FIELD INVESTIGATION; USA/NSF; USAP-DC; PALEOCLIMATE RECONSTRUCTIONS; Sabrina Coast; AMD; Amd/Us", "locations": "Sabrina Coast", "north": -66.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Shevenell, Amelia", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": -67.0, "title": "Deglacial to Recent Paleoceanography of the Sabrina Coast, East Antarctica: A Multi-proxy Study of Ice-ocean Interactions at the Outlet of the Aurora Subglacial Basin", "uid": "p0010194", "west": 120.0}, {"awards": "1908399 Bizimis, Michael; 1908548 Feakins, Sarah", "bounds_geometry": "POLYGON((74.787 -67.27617,74.816483 -67.27617,74.845966 -67.27617,74.875449 -67.27617,74.904932 -67.27617,74.934415 -67.27617,74.963898 -67.27617,74.993381 -67.27617,75.022864 -67.27617,75.052347 -67.27617,75.08183 -67.27617,75.08183 -67.31817,75.08183 -67.36017,75.08183 -67.40217,75.08183 -67.44417,75.08183 -67.48617,75.08183 -67.52817,75.08183 -67.57017,75.08183 -67.61217,75.08183 -67.65417,75.08183 -67.69617,75.052347 -67.69617,75.022864 -67.69617,74.993381 -67.69617,74.963898 -67.69617,74.934415 -67.69617,74.904932 -67.69617,74.875449 -67.69617,74.845966 -67.69617,74.816483 -67.69617,74.787 -67.69617,74.787 -67.65417,74.787 -67.61217,74.787 -67.57017,74.787 -67.52817,74.787 -67.48617,74.787 -67.44417,74.787 -67.40217,74.787 -67.36017,74.787 -67.31817,74.787 -67.27617))", "dataset_titles": "Ejtibbett/EOTproxymodel: Proxy Model Comparison for the Eocene-Oligocene Transition [Computational Notebook]; Paleoceanography and biomarker data from the Antarctic Peninsula over the past 37-3 million years; Prydz Bay East Antarctica, biomarkers and pollen, 36-33 million years; Sabrina Coast East Antarctica, Pollen and Biomarker Data from 59-38 million years ago; Southern High Latitude Temperature Proxies from the Late Eocene and Early Oligocene [Dataset]", "datasets": [{"dataset_uid": "200317", "doi": "10.25921/n9kg-yw91", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Paleoceanography and biomarker data from the Antarctic Peninsula over the past 37-3 million years", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/35613"}, {"dataset_uid": "200206", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Prydz Bay East Antarctica, biomarkers and pollen, 36-33 million years", "url": "https://www.ncdc.noaa.gov/paleo-search/study/32052"}, {"dataset_uid": "200335", "doi": "10.5281/zenodo.7254536", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Southern High Latitude Temperature Proxies from the Late Eocene and Early Oligocene [Dataset]", "url": "https://zenodo.org/record/7254536#.Y2BLgOTMI2w"}, {"dataset_uid": "200334", "doi": "10.5281/zenodo.7254786", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Ejtibbett/EOTproxymodel: Proxy Model Comparison for the Eocene-Oligocene Transition [Computational Notebook]", "url": "https://zenodo.org/record/7254786#.Y2BLAeTMI2w"}, {"dataset_uid": "200259", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Sabrina Coast East Antarctica, Pollen and Biomarker Data from 59-38 million years ago", "url": "https://www.ncdc.noaa.gov/paleo/study/34772"}], "date_created": "Sat, 05 Dec 2020 00:00:00 GMT", "description": "The East Antarctic Ice Sheet holds the largest volume of freshwater on the planet, in total enough to raise sea level by almost two hundred feet. Even minor adjustments in the volume of ice stored have major implications for coastlines and climates around the world. The question motivating this project is how did the ice grow to cover the continent over thirty million years ago when Antarctica changed from a warmer environment to an ice-covered southern continent? The seafloor of Prydz Bay, a major drainage basin of the East Antarctic Ice Sheet (EAIS), has been drilled previously to recover sediments dating from millions of years prior to and across the time when inception of continental ice sheets occurred in Antarctica. The last remnants of plant material found as \u0027biomarkers\u0027 in the ocean sediments record the chemical signatures of rain and snowfall that fed the plants and later the expanding glaciers. Sediment carried by glaciers was also deposited on the seafloor and can be analyzed to discover how glaciers flowed across the landscape. Here, the researchers will identify precipitation changes that result from, and drive, ice sheet growth. This study will gather data and further analyze samples from the seafloor sediment archives of the International Ocean Discovery Program\u0027s (IODP) core repositories. Ultimately these findings can help inform temperature-precipitation-ice linkages within climate and ice sheet models. The project will support the training of three female, early career scientists (PhD \u0026 MS students, and research technician) and both PIs and the PhD student will continue their engagement with broadening participation efforts (e.g., Women in Science and Engineering Program; local chapters of Society for the advancement of Native Americans and Chicanos in Science and other access programs) to recruit undergraduate student participants from underrepresented minorities at both campuses and from local community colleges. Antarctic earth science education materials will be assisted by professional illustrations to be open access and used in public education and communication efforts to engage local communities in Los Angeles CA and Columbia SC. \u003cbr/\u003e\u003cbr/\u003eThe researchers at the University of Southern California and the University of South Carolina will together study the penultimate moment of the early Cenozoic greenhouse climate state: the ~4 million years of global cooling that culminated in the Eocene/Oligocene transition (~34 Ma). Significant gaps remain in the understanding of the conditions that preceded ice expansion on Antarctica. In particular, the supply of raw material for ice sheets (i.e., moisture) and the timing, frequency, and duration of precursor glaciations is poorly constrained. This collaborative proposal combines organic and inorganic proxies to examine how Antarctic hydroclimate changed during the greenhouse to icehouse transition. The central hypothesis is that the hydrological cycle weakened as cooling proceeded. Plant-wax hydrogen and carbon isotopes (hydroclimate proxies) and Hf-Nd isotopes of lithogenous and hydrogenous sediments (mechanical weathering proxies) respond strongly and rapidly to precipitation and glacial advance. This detailed and sensitive combined approach will test whether there were hidden glaciations (and/or warm events) that punctuated the pre-icehouse interval. Studies will be conducted on Prydz Bay marine sediment cores in a depositional area for products of weathering and erosion that were (and are) transported through Lambert Graben from the center of Antarctica. The project will yield proxy information about the presence of plants and the hydroclimate of Antarctica and the timing of glacial advance, and is expected to show drying associated with cooling and ice-sheet growth. The dual approach will untangle climate signals from changes in fluvial versus glacial erosion of plant biomarkers. This proposal is potentially transformative because the combination of organic and inorganic proxies can reveal rapid transitions in aridity and glacial expansion, that may have been missed in slower-response proxies and more distal archives. The research is significant as hydroclimate seems to be a key player in the temperature-cryosphere hysteresis.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 75.08183, "geometry": "POINT(74.934415 -67.48617)", "instruments": null, "is_usap_dc": true, "keywords": "MICROFOSSILS; Prydz Bay; PALEOCLIMATE RECONSTRUCTIONS; Sabrina Coast; DROUGHT/PRECIPITATION RECONSTRUCTION; ISOTOPES; AIR TEMPERATURE RECONSTRUCTION", "locations": "Prydz Bay; Sabrina Coast", "north": -67.27617, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Feakins, Sarah; Scher, Howard", "platforms": null, "repo": "NCEI", "repositories": "NCEI; Zenodo", "science_programs": null, "south": -67.69617, "title": "Collaborative Research: Organic and Inorganic Geochemical Investigation of Hydrologic Change in East Antarctica in the 4 Million Years Before Full Glaciation", "uid": "p0010143", "west": 74.787}, {"awards": "1143833 Orsi, Alejandro; 1143836 Leventer, Amy; 1143834 Huber, Bruce; 1430550 Domack, Eugene", "bounds_geometry": "POLYGON((116 -65.2,116.5 -65.2,117 -65.2,117.5 -65.2,118 -65.2,118.5 -65.2,119 -65.2,119.5 -65.2,120 -65.2,120.5 -65.2,121 -65.2,121 -65.38,121 -65.56,121 -65.74,121 -65.92,121 -66.1,121 -66.28,121 -66.46,121 -66.64,121 -66.82,121 -67,120.5 -67,120 -67,119.5 -67,119 -67,118.5 -67,118 -67,117.5 -67,117 -67,116.5 -67,116 -67,116 -66.82,116 -66.64,116 -66.46,116 -66.28,116 -66.1,116 -65.92,116 -65.74,116 -65.56,116 -65.38,116 -65.2))", "dataset_titles": "AU1402 Final UCTD data; AU1402 mooring data; Bottom photos from the Southern Ocean acquired during R/V Nathaniel B. Palmer expedition NBP1402 ; NBP1402 diatom data; NBP1402 Final CTD data; NBP1402 Final UCTD data; NBP1402 JPC43 Diatom Data; NBP14-02 JPC-54 and JPC-55 Pollen Assemblage data; NBP14-02 JPC-55 Bulk Sediment Carbon and Nitrogen data; NBP14-02 JPC-55 foraminifer assemblage data; NBP1402 Lowered ADCP data; Near-bottom Videos from the Southern Ocean acquired during R/V Nathaniel B. Palmer expedition NBP1402; Sabrina Coast mooring data - sediment trap mooring 2014", "datasets": [{"dataset_uid": "601042", "doi": "10.15784/601042", "keywords": "Antarctica; Biota; Continental Margin; Foraminifera; NBP1402; Oceans; Paleoclimate; Sabrina Coast; Sample/collection Description; Sample/Collection Description; Southern Ocean; Totten Glacier", "people": "Shevenell, Amelia; Leventer, Amy", "repository": "USAP-DC", "science_program": null, "title": "NBP14-02 JPC-55 foraminifer assemblage data", "url": "https://www.usap-dc.org/view/dataset/601042"}, {"dataset_uid": "601147", "doi": "10.15784/601147", "keywords": "Antarctica; CTD Data; NBP1402; Ocean Temperature; Physical Oceanography; Sabrina Coast; Salinity; Southern Ocean; Temperature; Underway CTD", "people": "Orsi, Alejandro", "repository": "USAP-DC", "science_program": null, "title": "AU1402 Final UCTD data", "url": "https://www.usap-dc.org/view/dataset/601147"}, {"dataset_uid": "601845", "doi": "10.15784/601845", "keywords": "Antarctica; Cryosphere; Diatom; NBP1402; Totten Glacier", "people": "NBP1402 science party, ; Leventer, Amy", "repository": "USAP-DC", "science_program": null, "title": "NBP1402 diatom data", "url": "https://www.usap-dc.org/view/dataset/601845"}, {"dataset_uid": "601440", "doi": "10.15784/601440", "keywords": "Antarctica; Diatom; Holocene; Jumbo Piston Corer; NBP1402; R/v Nathaniel B. Palmer; Sabrina Coast; Sediment Core Data; Species Abundance; Totten Glacier", "people": "Leventer, Amy", "repository": "USAP-DC", "science_program": null, "title": "NBP1402 JPC43 Diatom Data", "url": "https://www.usap-dc.org/view/dataset/601440"}, {"dataset_uid": "601146", "doi": "10.15784/601146", "keywords": "Antarctica; CTD Data; NBP1402; Oceans; Ocean Temperature; Physical Oceanography; R/v Nathaniel B. Palmer; Sabrina Coast; Salinity; Southern Ocean; Temperature", "people": "Orsi, Alejandro", "repository": "USAP-DC", "science_program": null, "title": "NBP1402 Final UCTD data", "url": "https://www.usap-dc.org/view/dataset/601146"}, {"dataset_uid": "601069", "doi": "10.15784/601069", "keywords": "Antarctica; Mooring; NBP1402; Oceans; Physical Oceanography; Sabrina Coast; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Sabrina Coast mooring data - sediment trap mooring 2014", "url": "https://www.usap-dc.org/view/dataset/601069"}, {"dataset_uid": "601068", "doi": "10.15784/601068", "keywords": "ADCP Acoustic Doppler Current Profiler; Antarctica; NBP1402; Oceans; Physical Oceanography; Sabrina Coast; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "NBP1402 Lowered ADCP data", "url": "https://www.usap-dc.org/view/dataset/601068"}, {"dataset_uid": "601067", "doi": "10.15784/601067", "keywords": "Antarctica; CTD Data; NBP1402; Oceans; Physical Oceanography; Sabrina Coast; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "NBP1402 Final CTD data", "url": "https://www.usap-dc.org/view/dataset/601067"}, {"dataset_uid": "601148", "doi": "10.15784/601148", "keywords": "Antarctica; Au1402; Mooring; NBP1402; Oceans; Ocean Temperature; Physical Oceanography; R/v Aurora Australis; R/v Nathaniel B. Palmer; Sabrina Coast; Salinity; Southern Ocean; Temperature", "people": "Orsi, Alejandro", "repository": "USAP-DC", "science_program": null, "title": "AU1402 mooring data", "url": "https://www.usap-dc.org/view/dataset/601148"}, {"dataset_uid": "601312", "doi": null, "keywords": "Antarctica; Benthic Images; Camera; East Antarctica; Marine Geoscience; NBP1402; Photo/video; Photo/Video; R/v Nathaniel B. Palmer; Sabrina Coast; Totten Glacier; Video Data; Yoyo Camera", "people": "Leventer, Amy; Post, Alexandra; Blankenship, Donald D.; Domack, Eugene Walter; Gulick, Sean; Huber, Bruce; Orsi, Alejandro; Shevenell, Amelia", "repository": "USAP-DC", "science_program": null, "title": "Near-bottom Videos from the Southern Ocean acquired during R/V Nathaniel B. Palmer expedition NBP1402", "url": "https://www.usap-dc.org/view/dataset/601312"}, {"dataset_uid": "601310", "doi": null, "keywords": "Antarctica; Benthic Images; Benthos; East Antarctica; Marine Geoscience; NBP1402; Photo; Photo/video; Photo/Video; R/v Nathaniel B. Palmer; Totten Glacier; Yoyo Camera", "people": "Leventer, Amy; Shevenell, Amelia; Orsi, Alejandro; Huber, Bruce; Gulick, Sean; Domack, Eugene Walter; Post, Alexandra", "repository": "USAP-DC", "science_program": null, "title": "Bottom photos from the Southern Ocean acquired during R/V Nathaniel B. Palmer expedition NBP1402 ", "url": "https://www.usap-dc.org/view/dataset/601310"}, {"dataset_uid": "601046", "doi": "10.15784/601046", "keywords": "Antarctica; Biota; Marine Sediments; NBP1402; Oceans; Paleoclimate; Pollen; Sabrina Coast; Sediment Core; Southern Ocean; Totten Glacier", "people": "Smith, Catherine; Domack, Eugene Walter; Shevenell, Amelia", "repository": "USAP-DC", "science_program": null, "title": "NBP14-02 JPC-54 and JPC-55 Pollen Assemblage data", "url": "https://www.usap-dc.org/view/dataset/601046"}, {"dataset_uid": "601044", "doi": "10.15784/601044", "keywords": "Antarctica; Carbon; Chemistry:sediment; Chemistry:Sediment; Geochemistry; Marine Sediments; NBP1402; Nitrogen; Oceans; Sabrina Coast; Sediment Core; Southern Ocean; Totten Glacier", "people": "Domack, Eugene Walter; Smith, Catherine; Shevenell, Amelia", "repository": "USAP-DC", "science_program": null, "title": "NBP14-02 JPC-55 Bulk Sediment Carbon and Nitrogen data", "url": "https://www.usap-dc.org/view/dataset/601044"}], "date_created": "Fri, 26 Jan 2018 00:00:00 GMT", "description": "This project will investigate the marine component of the Totten Glacier and Moscow University Ice Shelf, East Antarctica. This system is of critical importance because it drains one-eighth of the East Antarctic Ice Sheet and contains a volume equivalent to nearly 7 meters of potential sea level rise, greater than the entire West Antarctic Ice Sheet. This nearly completely unexplored region is the single largest and least understood marine glacial system that is potentially unstable. Despite intense scrutiny of marine based systems in the West Antarctic Ice Sheet, little is known about the Totten Glacier system. This study will add substantially to the meager oceanographic and marine geology and geophysics data available in this region, and will significantly advance understanding of this poorly understood glacial system and its potentially sensitive response to environmental change.\u003cbr/\u003e\u003cbr/\u003eIndependent, space-based platforms indicate accelerating mass loss of the Totten system. Recent aerogeophysical surveys of the Aurora Subglacial Basin, which contains the deepest ice in Antarctica and drains into the Totten system, have provided the subglacial context for measured surface changes and show that the Totten Glacier has been the most significant drainage pathway for at least two previous ice flow regimes. However, the offshore context is far less understood. Limited physical oceanographic data from the nearby shelf/slope break indicate the presence of Modified Circumpolar Deep Water within a thick bottom layer at the mouth of a trough with apparent access to Totten Glacier, suggesting the possibility of sub-glacial bottom inflow of relatively warm water, a process considered to be responsible for West Antarctic Ice Sheet grounding line retreat. This project will conduct a ship-based marine geologic and geophysical survey of the region, combined with a physical oceanographic study, in order to evaluate both the recent and longer-term behavior of the glacial system and its relationship to the adjacent oceanographic system. This endeavor will complement studies of other Antarctic ice shelves, oceanographic studies near the Antarctic Peninsula, and ongoing development of ice sheet and other ocean models.", "east": 121.0, "geometry": "POINT(118.5 -66.1)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD", "is_usap_dc": true, "keywords": "Totten Glacier; NBP1402; Sabrina Coast; LABORATORY; Diatom; R/V NBP; Amd/Us; Bottom Photos; R/V AA; Not provided; USAP-DC; AMD; USA/NSF", "locations": "Sabrina Coast; Totten Glacier", "north": -65.2, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Orsi, Alejandro; Huber, Bruce; Leventer, Amy; Domack, Eugene Walter", "platforms": "Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V AA; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.0, "title": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics", "uid": "p0000008", "west": 116.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |
---|---|---|---|---|---|---|---|---|---|---|
Collaborative Research: Testing the Linchpin of WAIS Collapse with Diatoms and IRD in Pleistocene and Late Pliocene Strata of the Resolution Drift, Amundsen Sea, Antarctica
|
1939146 1939139 |
2024-02-20 | Scherer, Reed Paul; Siddoway, Christine | Part I, Non-technical Abstract <br/>Concerns that the West Antarctic Ice Sheet (WAIS) might be susceptible to releasing its ice as giant icebergs into the Southern Ocean due to a warming climate, raising global sea level, were first expressed more than 40 years ago. To best-assess this threat, scientists need to know whether such events occurred in the geologically recent past, during warm intervals of past glacial-interglacial cycles. Ocean drilling near the most vulnerable sector of the WAIS, in 2019, yielded seafloor geologic records demonstrating times when icebergs dropped large volumes of sands and pebbles, called ice-rafted detritus (IRD) in deep water of the Amundsen Sea. Occurring together with IRD that was eroded from bedrock beneath the ice sheets, there are abundant microfossils of diatoms (algal plankton), which indicate high biological productivity in the open ocean. The new sediment cores provide a complete, uninterrupted record of a time of dramatic fluctuations of ice sheet extent that occurred over the last 3 million years. Therefore, they provide the means to obtain clear answers to the question whether ice sheet collapse occurred in the past and offering clues to its potential future. This project will investigate sediment intervals where IRD coincides with evidence of high diatom production, to test whether these two criteria indicate rapid ice sheet collapse. Geochemical analysis of IRD pebbles will help trace the source of the icebergs to likely on-land sites. By analyzing conditions of high diatom and IRD accumulation in deep ocean sediment, where local coastal influences can be avoided, we will assess oceanographic and climatic conditions associated with past ice sheet collapse events. Diatoms provide powerful evidence of temperature and ocean productivity changes in the past, that, when linked to time, can translate into rates of ice sheet drawdown. These results will provide critical data for designing, constraining and testing the next suite computer models that can determine the likelihood and timing of future ice sheet collapse in a warming world. The project will include training of undergraduate and graduate students from diverse backgrounds, and the public will be introduced to Antarctic science and engaged through several different outreach efforts.<br/><br/>Part 2, Technical Abstract<br/><br/>New drillcores from the Amundsen Sea, Antarctica (IODP Expedition 379) contain a continuous record of oceanographic changes and iceberg rafted debris (IRD) spanning the last 5 million years. This study aims to identify the signature of retreat/collapse of the West Antarctic Ice Sheet (WAIS) in these continental margin, deep-sea sediments by quantitatively analyzing, in detail, diatom and IRD records across glacial-interglacial lithostratigraphic transitions to establish the timing and frequency of Late Pliocene and Pleistocene WAIS collapse events. The investigators will secure age constraints and diagnostic observations of marine paleoenvironmental conditions for selected interglacial intervals of cores from sites U1532 and U1533, using high resolution micropaleontology of diatom assemblages coupled with microstratigraphic analysis of IRD depositional events, while petrography, geochronology and thermochronology of iceberg rafted clasts will provide evidence of iceberg sources and pathways. Depositional paleotemperatures will be assessed via a new paleotemperature proxy based on quantitative assessment of morphologic changes in the dominant Southern Ocean diatom Fragilariopsis kerguelensis. Their results will contribute to parameterization of new ice sheet models that seek to reconstruct and forecast West Antarctic Ice Sheet behavior. This project will directly contribute to undergraduate education at an undergraduate-only college and at a public university that serves a demographic typified by first generation university students and underrepresented groups. Spanning geology, geochemistry, sedimentology, paleontology and paleoceanography, the proposed work will allow undergraduate students to develop diverse skills through hands-on research within a collaborative team that is dedicated to societally relevant research. The two graduate students will conduct original research and work alongside/mentor undergraduates, making for a well-rounded research experience that prepares them for success in future academic or employment sectors. The discoveries that come from this deep-sea record from West Antarctica will be communicated by students and investigators at national and international conferences and an array of public science outreach events.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-120 -66,-117.5 -66,-115 -66,-112.5 -66,-110 -66,-107.5 -66,-105 -66,-102.5 -66,-100 -66,-97.5 -66,-95 -66,-95 -67.1,-95 -68.2,-95 -69.3,-95 -70.4,-95 -71.5,-95 -72.6,-95 -73.7,-95 -74.8,-95 -75.9,-95 -77,-97.5 -77,-100 -77,-102.5 -77,-105 -77,-107.5 -77,-110 -77,-112.5 -77,-115 -77,-117.5 -77,-120 -77,-120 -75.9,-120 -74.8,-120 -73.7,-120 -72.6,-120 -71.5,-120 -70.4,-120 -69.3,-120 -68.2,-120 -67.1,-120 -66)) | POINT(-107.5 -71.5) | false | false | ||
Deglacial to Recent Paleoceanography of the Sabrina Coast, East Antarctica: A Multi-proxy Study of Ice-ocean Interactions at the Outlet of the Aurora Subglacial Basin
|
1744970 |
2021-06-22 | Shevenell, Amelia | No dataset link provided | At present, Antarctica’s glaciers are melting as the Southern Ocean warms. While glacial retreat in West Antarctica is linked to ocean warming, less is known about the response of East Antarctica’s glaciers. Totten Glacier, located on the Sabrina Coast, East Antarctica is presently retreating. Totten’s retreat is important because it is associated with warm ocean waters and because the glacier drains part of the East Antarctic Ice Sheet that contains enough ice to raise global sea levels ~3.5 meters. Mud accumulating on the seafloor around Antarctica is composed of sediment from the adjacent continent, as well as the skeletons and debris from microscopic marine organisms. As mud accumulates, so does a record of past environmental changes, including ocean temperatures and the advance and retreat of glaciers. Scientists use a variety of physical and chemical analyses to determine how long ago this mud was deposited, the temperature of the ocean at that location through time, and the relative location of glacial ice. In this project, researchers from the University of South Florida will refine and test new geochemical thermometers to better understand the influence of ocean temperatures on East Antarctic glacier extent over the last ~16,000 years. Results will be integrated into ice sheet and climate models to improve the accuracy of predictions. | POLYGON((120 -66,120.1 -66,120.2 -66,120.3 -66,120.4 -66,120.5 -66,120.6 -66,120.7 -66,120.8 -66,120.9 -66,121 -66,121 -66.1,121 -66.2,121 -66.3,121 -66.4,121 -66.5,121 -66.6,121 -66.7,121 -66.8,121 -66.9,121 -67,120.9 -67,120.8 -67,120.7 -67,120.6 -67,120.5 -67,120.4 -67,120.3 -67,120.2 -67,120.1 -67,120 -67,120 -66.9,120 -66.8,120 -66.7,120 -66.6,120 -66.5,120 -66.4,120 -66.3,120 -66.2,120 -66.1,120 -66)) | POINT(120.5 -66.5) | false | false | |
Collaborative Research: Organic and Inorganic Geochemical Investigation of Hydrologic Change in East Antarctica in the 4 Million Years Before Full Glaciation
|
1908399 1908548 |
2020-12-05 | Feakins, Sarah; Scher, Howard | The East Antarctic Ice Sheet holds the largest volume of freshwater on the planet, in total enough to raise sea level by almost two hundred feet. Even minor adjustments in the volume of ice stored have major implications for coastlines and climates around the world. The question motivating this project is how did the ice grow to cover the continent over thirty million years ago when Antarctica changed from a warmer environment to an ice-covered southern continent? The seafloor of Prydz Bay, a major drainage basin of the East Antarctic Ice Sheet (EAIS), has been drilled previously to recover sediments dating from millions of years prior to and across the time when inception of continental ice sheets occurred in Antarctica. The last remnants of plant material found as 'biomarkers' in the ocean sediments record the chemical signatures of rain and snowfall that fed the plants and later the expanding glaciers. Sediment carried by glaciers was also deposited on the seafloor and can be analyzed to discover how glaciers flowed across the landscape. Here, the researchers will identify precipitation changes that result from, and drive, ice sheet growth. This study will gather data and further analyze samples from the seafloor sediment archives of the International Ocean Discovery Program's (IODP) core repositories. Ultimately these findings can help inform temperature-precipitation-ice linkages within climate and ice sheet models. The project will support the training of three female, early career scientists (PhD & MS students, and research technician) and both PIs and the PhD student will continue their engagement with broadening participation efforts (e.g., Women in Science and Engineering Program; local chapters of Society for the advancement of Native Americans and Chicanos in Science and other access programs) to recruit undergraduate student participants from underrepresented minorities at both campuses and from local community colleges. Antarctic earth science education materials will be assisted by professional illustrations to be open access and used in public education and communication efforts to engage local communities in Los Angeles CA and Columbia SC. <br/><br/>The researchers at the University of Southern California and the University of South Carolina will together study the penultimate moment of the early Cenozoic greenhouse climate state: the ~4 million years of global cooling that culminated in the Eocene/Oligocene transition (~34 Ma). Significant gaps remain in the understanding of the conditions that preceded ice expansion on Antarctica. In particular, the supply of raw material for ice sheets (i.e., moisture) and the timing, frequency, and duration of precursor glaciations is poorly constrained. This collaborative proposal combines organic and inorganic proxies to examine how Antarctic hydroclimate changed during the greenhouse to icehouse transition. The central hypothesis is that the hydrological cycle weakened as cooling proceeded. Plant-wax hydrogen and carbon isotopes (hydroclimate proxies) and Hf-Nd isotopes of lithogenous and hydrogenous sediments (mechanical weathering proxies) respond strongly and rapidly to precipitation and glacial advance. This detailed and sensitive combined approach will test whether there were hidden glaciations (and/or warm events) that punctuated the pre-icehouse interval. Studies will be conducted on Prydz Bay marine sediment cores in a depositional area for products of weathering and erosion that were (and are) transported through Lambert Graben from the center of Antarctica. The project will yield proxy information about the presence of plants and the hydroclimate of Antarctica and the timing of glacial advance, and is expected to show drying associated with cooling and ice-sheet growth. The dual approach will untangle climate signals from changes in fluvial versus glacial erosion of plant biomarkers. This proposal is potentially transformative because the combination of organic and inorganic proxies can reveal rapid transitions in aridity and glacial expansion, that may have been missed in slower-response proxies and more distal archives. The research is significant as hydroclimate seems to be a key player in the temperature-cryosphere hysteresis.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((74.787 -67.27617,74.816483 -67.27617,74.845966 -67.27617,74.875449 -67.27617,74.904932 -67.27617,74.934415 -67.27617,74.963898 -67.27617,74.993381 -67.27617,75.022864 -67.27617,75.052347 -67.27617,75.08183 -67.27617,75.08183 -67.31817,75.08183 -67.36017,75.08183 -67.40217,75.08183 -67.44417,75.08183 -67.48617,75.08183 -67.52817,75.08183 -67.57017,75.08183 -67.61217,75.08183 -67.65417,75.08183 -67.69617,75.052347 -67.69617,75.022864 -67.69617,74.993381 -67.69617,74.963898 -67.69617,74.934415 -67.69617,74.904932 -67.69617,74.875449 -67.69617,74.845966 -67.69617,74.816483 -67.69617,74.787 -67.69617,74.787 -67.65417,74.787 -67.61217,74.787 -67.57017,74.787 -67.52817,74.787 -67.48617,74.787 -67.44417,74.787 -67.40217,74.787 -67.36017,74.787 -67.31817,74.787 -67.27617)) | POINT(74.934415 -67.48617) | false | false | ||
Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics
|
1143833 1143836 1143834 1430550 |
2018-01-26 | Orsi, Alejandro; Huber, Bruce; Leventer, Amy; Domack, Eugene Walter | This project will investigate the marine component of the Totten Glacier and Moscow University Ice Shelf, East Antarctica. This system is of critical importance because it drains one-eighth of the East Antarctic Ice Sheet and contains a volume equivalent to nearly 7 meters of potential sea level rise, greater than the entire West Antarctic Ice Sheet. This nearly completely unexplored region is the single largest and least understood marine glacial system that is potentially unstable. Despite intense scrutiny of marine based systems in the West Antarctic Ice Sheet, little is known about the Totten Glacier system. This study will add substantially to the meager oceanographic and marine geology and geophysics data available in this region, and will significantly advance understanding of this poorly understood glacial system and its potentially sensitive response to environmental change.<br/><br/>Independent, space-based platforms indicate accelerating mass loss of the Totten system. Recent aerogeophysical surveys of the Aurora Subglacial Basin, which contains the deepest ice in Antarctica and drains into the Totten system, have provided the subglacial context for measured surface changes and show that the Totten Glacier has been the most significant drainage pathway for at least two previous ice flow regimes. However, the offshore context is far less understood. Limited physical oceanographic data from the nearby shelf/slope break indicate the presence of Modified Circumpolar Deep Water within a thick bottom layer at the mouth of a trough with apparent access to Totten Glacier, suggesting the possibility of sub-glacial bottom inflow of relatively warm water, a process considered to be responsible for West Antarctic Ice Sheet grounding line retreat. This project will conduct a ship-based marine geologic and geophysical survey of the region, combined with a physical oceanographic study, in order to evaluate both the recent and longer-term behavior of the glacial system and its relationship to the adjacent oceanographic system. This endeavor will complement studies of other Antarctic ice shelves, oceanographic studies near the Antarctic Peninsula, and ongoing development of ice sheet and other ocean models. | POLYGON((116 -65.2,116.5 -65.2,117 -65.2,117.5 -65.2,118 -65.2,118.5 -65.2,119 -65.2,119.5 -65.2,120 -65.2,120.5 -65.2,121 -65.2,121 -65.38,121 -65.56,121 -65.74,121 -65.92,121 -66.1,121 -66.28,121 -66.46,121 -66.64,121 -66.82,121 -67,120.5 -67,120 -67,119.5 -67,119 -67,118.5 -67,118 -67,117.5 -67,117 -67,116.5 -67,116 -67,116 -66.82,116 -66.64,116 -66.46,116 -66.28,116 -66.1,116 -65.92,116 -65.74,116 -65.56,116 -65.38,116 -65.2)) | POINT(118.5 -66.1) | false | false |