{"dp_type": "Project", "free_text": "SURFACE PRESSURE"}
[{"awards": "1625904 TBD", "bounds_geometry": "POLYGON((166 -77.5,166.4 -77.5,166.8 -77.5,167.2 -77.5,167.6 -77.5,168 -77.5,168.4 -77.5,168.8 -77.5,169.2 -77.5,169.6 -77.5,170 -77.5,170 -77.75,170 -78,170 -78.25,170 -78.5,170 -78.75,170 -79,170 -79.25,170 -79.5,170 -79.75,170 -80,169.6 -80,169.2 -80,168.8 -80,168.4 -80,168 -80,167.6 -80,167.2 -80,166.8 -80,166.4 -80,166 -80,166 -79.75,166 -79.5,166 -79.25,166 -79,166 -78.75,166 -78.5,166 -78.25,166 -78,166 -77.75,166 -77.5))", "dataset_titles": "Sarah PCWS unmodified ten-minute observational data, 2020 - present (ongoing).; Skomik PCWS unmodified ten-minute observational data, 2022 - present (ongoing).", "datasets": [{"dataset_uid": "200340", "doi": "https://doi.org/10.48567/h6qx-0613", "keywords": null, "people": null, "repository": "Antarctic Meteorological Research and Data Center", "science_program": null, "title": "Skomik PCWS unmodified ten-minute observational data, 2022 - present (ongoing).", "url": "https://amrdcdata.ssec.wisc.edu/dataset/skomik-pcws-unmodified-ten-minute-observational-data-2022-present-ongoing"}, {"dataset_uid": "200341", "doi": "https://doi.org/10.48567/q4eh-nm67", "keywords": null, "people": null, "repository": "Antarctic Meteorological Research and Data Center", "science_program": null, "title": "Sarah PCWS unmodified ten-minute observational data, 2020 - present (ongoing).", "url": "https://amrdcdata.ssec.wisc.edu/dataset/sarah-pcws-unmodified-ten-minute-observational-data-2022-present-ongoing"}], "date_created": "Mon, 12 Dec 2022 00:00:00 GMT", "description": "The major goals of this Major Research Instrumentation (MRI) grant exclusively focus on the specification, design, construction, and laboratory testing of a modern polar climate and weather automated observing system (PCWS). \r\n* Up to 4 systems will be developed during the specification, design and testing phase of the project. \r\n* Approximately 10 additional systems will be constructed after the completion of the initial design and development phase of the project.\r\n* This project will involve students at every level and in nearly every aspect.\r\n* This effort includes all of the necessary equipment to enable the development, design, fabrication, construction, and laboratory testing of modern polar climate and weather automated observing systems. The systems will be complete base units including sensors, communications, power systems and tower/guying systems. This is in addition to the newly designed electronic core, which is the focal point of the project.\r\n\r\nThere is a sub-award to the University of Wisconsin-Madison which allows for critical collaboration and consultation, especially throughout the specification, design and testing phases of the project (including some co-located deployment of equipment via the Antarctic Automatic Weather Station project).", "east": 170.0, "geometry": "POINT(168 -78.75)", "instruments": null, "is_usap_dc": true, "keywords": "HUMIDITY; AIR TEMPERATURE; ATMOSPHERIC WINDS; Madison Area Technical College; SNOW/ICE; SURFACE PRESSURE; METEOROLOGICAL STATIONS; WEATHER STATIONS; ATMOSPHERIC RADIATION", "locations": "Madison Area Technical College", "north": -77.5, "nsf_funding_programs": null, "paleo_time": null, "persons": "Lazzara, Matthew; Cassano, John; L\u0027\u0027Ecuyer, Tristan; Kulie, Mark", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e METEOROLOGICAL STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e WEATHER STATIONS", "repo": "Antarctic Meteorological Research and Data Center", "repositories": "Other", "science_programs": null, "south": -80.0, "title": "MRI: Development of a Modern Polar Climate and Weather Automated Observing System", "uid": "p0010396", "west": 166.0}, {"awards": null, "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 23 Aug 2022 00:00:00 GMT", "description": "The Antarctic Automatic Weather Station network is the most extensive surficial meteorological network in the Antarctic, approaching its 30th year at several of its data stations. Its prime focus is also as a long term observational record, to measure the near surface weather and climatology of the Antarctic atmosphere. Antarctic Automatic Weather Stations measure air-temperature, pressure, wind speed and direction at a nominal surface height of ~ 2-3m. Other parameters such as relative humidity and snow accumulation may also be taken. The surface observations from the Antarctic Automatic Weather Station network are also used operationally, for forecast purposes, and in the planning of field work. Surface observations made from the network have also been used to check the validity of satellite and remote sensing observations. The proposed effort informs our understanding of the Antarctic environment and its weather and climate trends over the past few decades. The research has implications for potential future operations and logistics for the US Antarctic Program during the winter season. As a part of this endeavor, all project participants will engage in a coordinated outreach effort to bring the famous Antarctic \"cold\" to public seminars, K-12, undergraduate, and graduate classrooms, and senior citizen centers.\u003cbr/\u003e\u003cbr/\u003eThis project proposes to use the surface conditions observed by the Antarctic Automatic Weather Station (AWS) network to determine how large-scale modes of climate variability impact Antarctic weather and climate, how the surface observations from the AWS network are linked to surface layer and boundary layer processes. Consideration will also be given to low temperature physical environments such as may be encountered during Antarctic winter, and the best ways to characterize these, and other ?cold pool? phenomena. Observational data from the AWS are collected via Iridium network, or DCS Argos aboard either NOAA or MetOp polar orbiting satellites and thus made available in near real time to operational and synoptic weather forecasters over the GTS (WMO Global Telecommunication System). Being able to support improvements in numerical weather prediction and climate modeling will have lasting impacts on Antarctic science and logistical support.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "HUMIDITY; SURFACE WINDS; SURFACE PRESSURE; INCOMING SOLAR RADIATION; SURFACE AIR TEMPERATURE", "locations": null, "north": null, "nsf_funding_programs": null, "paleo_time": null, "persons": null, "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Antarctic Automatic Weather Station Program 2019-2022", "uid": "p0010371", "west": null}, {"awards": "1543305 Lazzara, Matthew", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctic Automatic Weather Station", "datasets": [{"dataset_uid": "200291", "doi": "https://doi.org/10.48567/1hn2-nw60", "keywords": null, "people": null, "repository": "Antarctic Meteorological Research and Data Center", "science_program": null, "title": "Antarctic Automatic Weather Station", "url": "https://amrdcdata.ssec.wisc.edu/group/about/automatic-weather-station-project"}], "date_created": "Mon, 16 May 2022 00:00:00 GMT", "description": "The Antarctic Automatic Weather Station (AWS) network is the most extensive ground meteorological network in the Antarctic, approaching its 30th year at several of its installations. Its prime focus as a long term observational record is to measure the near surface weather and climatology of the Antarctic atmosphere. AWS stations measure air-temperature, pressure, wind speed and direction at a nominal surface height of ~ 2-3m. Other parameters such as relative humidity, incoming sunshine, and snow accumulation may also be taken at selected sites. Observational data from the AWS are collected via Iridium network, or DCS Argos aboard either NOAA or MetOp polar orbiting satellites and thus made available in near real time to operational and synoptic weather forecasters. The surface observations from the Antarctic AWS network are important records for recent climate change and meteorological processes. The surface observations from the Antarctic AWS network are also used operationally, and in the planning of field work. The surface observations made from the network have been used to check on satellite and remote sensing observations.This project uses the surface conditions observed by the AWS network to determine how large-scale modes of climate variability impact Antarctic weather and climate, how the surface observations from the AWS network are linked to surface layer and boundary layer processes, and to quantify the impact of snowfall. Specifically, this project improves our understanding of the processes that lead to unusual weather events and how these events are related to large-scale modes of climate variability. ", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; HUMIDITY; SURFACE WINDS; SURFACE AIR TEMPERATURE; ATMOSPHERIC PRESSURE MEASUREMENTS; SURFACE PRESSURE; ATMOSPHERIC TEMPERATURE; AMD/US; AMD; WEATHER STATIONS; ATMOSPHERIC PRESSURE; USA/NSF; AIR TEMPERATURE; ATMOSPHERIC WINDS; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e WEATHER STATIONS", "repo": "Antarctic Meteorological Research and Data Center", "repositories": "Other", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Antarctic Automatic Weather Station Program 2016-2019", "uid": "p0010319", "west": -180.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MRI: Development of a Modern Polar Climate and Weather Automated Observing System
|
1625904 |
2022-12-12 | Lazzara, Matthew; Cassano, John; L''Ecuyer, Tristan; Kulie, Mark |
|
The major goals of this Major Research Instrumentation (MRI) grant exclusively focus on the specification, design, construction, and laboratory testing of a modern polar climate and weather automated observing system (PCWS). * Up to 4 systems will be developed during the specification, design and testing phase of the project. * Approximately 10 additional systems will be constructed after the completion of the initial design and development phase of the project. * This project will involve students at every level and in nearly every aspect. * This effort includes all of the necessary equipment to enable the development, design, fabrication, construction, and laboratory testing of modern polar climate and weather automated observing systems. The systems will be complete base units including sensors, communications, power systems and tower/guying systems. This is in addition to the newly designed electronic core, which is the focal point of the project. There is a sub-award to the University of Wisconsin-Madison which allows for critical collaboration and consultation, especially throughout the specification, design and testing phases of the project (including some co-located deployment of equipment via the Antarctic Automatic Weather Station project). | POLYGON((166 -77.5,166.4 -77.5,166.8 -77.5,167.2 -77.5,167.6 -77.5,168 -77.5,168.4 -77.5,168.8 -77.5,169.2 -77.5,169.6 -77.5,170 -77.5,170 -77.75,170 -78,170 -78.25,170 -78.5,170 -78.75,170 -79,170 -79.25,170 -79.5,170 -79.75,170 -80,169.6 -80,169.2 -80,168.8 -80,168.4 -80,168 -80,167.6 -80,167.2 -80,166.8 -80,166.4 -80,166 -80,166 -79.75,166 -79.5,166 -79.25,166 -79,166 -78.75,166 -78.5,166 -78.25,166 -78,166 -77.75,166 -77.5)) | POINT(168 -78.75) | false | false | |||||
Collaborative Research: Antarctic Automatic Weather Station Program 2019-2022
|
None | 2022-08-23 | None | No dataset link provided | The Antarctic Automatic Weather Station network is the most extensive surficial meteorological network in the Antarctic, approaching its 30th year at several of its data stations. Its prime focus is also as a long term observational record, to measure the near surface weather and climatology of the Antarctic atmosphere. Antarctic Automatic Weather Stations measure air-temperature, pressure, wind speed and direction at a nominal surface height of ~ 2-3m. Other parameters such as relative humidity and snow accumulation may also be taken. The surface observations from the Antarctic Automatic Weather Station network are also used operationally, for forecast purposes, and in the planning of field work. Surface observations made from the network have also been used to check the validity of satellite and remote sensing observations. The proposed effort informs our understanding of the Antarctic environment and its weather and climate trends over the past few decades. The research has implications for potential future operations and logistics for the US Antarctic Program during the winter season. As a part of this endeavor, all project participants will engage in a coordinated outreach effort to bring the famous Antarctic "cold" to public seminars, K-12, undergraduate, and graduate classrooms, and senior citizen centers.<br/><br/>This project proposes to use the surface conditions observed by the Antarctic Automatic Weather Station (AWS) network to determine how large-scale modes of climate variability impact Antarctic weather and climate, how the surface observations from the AWS network are linked to surface layer and boundary layer processes. Consideration will also be given to low temperature physical environments such as may be encountered during Antarctic winter, and the best ways to characterize these, and other ?cold pool? phenomena. Observational data from the AWS are collected via Iridium network, or DCS Argos aboard either NOAA or MetOp polar orbiting satellites and thus made available in near real time to operational and synoptic weather forecasters over the GTS (WMO Global Telecommunication System). Being able to support improvements in numerical weather prediction and climate modeling will have lasting impacts on Antarctic science and logistical support.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | |||||
Collaborative Research: Antarctic Automatic Weather Station Program 2016-2019
|
1543305 |
2022-05-16 | Lazzara, Matthew |
|
The Antarctic Automatic Weather Station (AWS) network is the most extensive ground meteorological network in the Antarctic, approaching its 30th year at several of its installations. Its prime focus as a long term observational record is to measure the near surface weather and climatology of the Antarctic atmosphere. AWS stations measure air-temperature, pressure, wind speed and direction at a nominal surface height of ~ 2-3m. Other parameters such as relative humidity, incoming sunshine, and snow accumulation may also be taken at selected sites. Observational data from the AWS are collected via Iridium network, or DCS Argos aboard either NOAA or MetOp polar orbiting satellites and thus made available in near real time to operational and synoptic weather forecasters. The surface observations from the Antarctic AWS network are important records for recent climate change and meteorological processes. The surface observations from the Antarctic AWS network are also used operationally, and in the planning of field work. The surface observations made from the network have been used to check on satellite and remote sensing observations.This project uses the surface conditions observed by the AWS network to determine how large-scale modes of climate variability impact Antarctic weather and climate, how the surface observations from the AWS network are linked to surface layer and boundary layer processes, and to quantify the impact of snowfall. Specifically, this project improves our understanding of the processes that lead to unusual weather events and how these events are related to large-scale modes of climate variability. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false |